Statistics, NAP_70001
Question
120 pies are being sold at the market fair. The chart below shows the number of pies that are left at the end of each day.
What fraction of the total number of pies sold from Monday to Thursday?
Worked Solution
Number of sold pies from Monday to Thursday:
Fraction of sold pies from Monday to Thursday:
|
= 12050 |
= {{{correctAnswer}}} |
U2FsdGVkX1/Ok7nRg3nsbSUvQCWDkS24PFjSXmAbs+iYw+iRSmoA/9bj2/5sU/LghCbh4NZxKnRSnaCiU3juv2f6vfcelbNAHq6WuQE+p378cVwjhIR+AJ+nJcJpOsaEnjRKVi6RmV5Ub2ufQ15rswOgTl0ymH2KACeKlKbdSJoXkauTsrAslRLUpsPWT1NZKEwdiUbmQJOG8uCQSjtqO9lKpBTXZmKQvdyrTFdwXmzHkBOMTGOZnLtvaN0Cfrzbpwwo4Z1Ml/l6yeF7RD0gldbExOLyPvUaNy3/LWnuU7zpW49zKdbfYlDnfL7fapU8P8s2KpDqd+/Vl/v5wYZx8KhFK17LDB5hPHO/KgG1bTwc8RLDaoPBHzyifSzdjcudnj9ws44OPfY6J7uUWT6/463ciqxXwJf6kizyEkRdopFcyJxXMJWjGFsKwfSEN5g7wrDL3LOuxXF1FMuKiGiQzM6FHja60mINgw1REu4k5LxtfWeXcdtw14Er88XP92AX+WLi5/XQw1alv1C3mWPfH/Zu+j5BvYOCC8zq/qFAtOmDvRpvLRvpgviUbujoGrWt0qjRv6/WRfW9nhVHEqXdITz1NY4u7UZXBBiqIK64thXLGZ1SnWjVYFqPimYvUrNclwdipO+2Afexb+xj4iZ9iVP5uWzlwGRBetgArq3SKIg09bUIc4uQXCHrWHCimx1HPyabWOq4rBBpf0d1npNbo9VTigkBbGZ+weZ4acwFV0MNqlgKqAC2ToD9KGkmpsGWXvZkqi4GMhMW4K78jAuUT33Hxfv7Xv6ZlGSLgQutsj7YPVqO1m+RI1HPLw/muCuNor35UHAb7Amv9PBNX95Ua5p97on/B9UJkBDIrOCwckl+YQZYKBnq34ZOgkdhJaSS9M0Tf/gh+QIicO4X1OHWi/1VCSErEc3Kk/53RyCm/qXb/Mf6yjisxdRAmwJCjW339jAJUYryYHdVOrqWlmIsW4KKdBLTeB0JIX9GyM9g5GJvhzXy1nmJHwgcrpKM9p9vQuau93fVSHZ7yUyQSX5msfEs3rSZcXVNUdyKq+gn3CouGNSP1CaRVsIPPonZecKFcUYtM7buTN8kWBD9ogUENdtJ0eIdvMlYste+KVDuXFF76UI33tAGHMtx5YlZZBehqVQuktWMmwozeMpQ92PNi9tMKjcB8bhy+Saio5uCKCIy6OIEjtdBwNXGit1emRmujF+rnwQ7/7bf3GGCgDQPsnqOsz4V/dVZaGUoIg8Orhj3bmOr8d65SRPNstfbeD2G8onHviSlUGcwT6Z5WNytXlsY6VMffxt83SuMDJWRIOcVQgGJMOr+hzx8H9xq4Qqhs1sYCTLa4tSge5BIVOaqlW60m6pyNKLJS7UlFxmi8i1UjVaV5cY/kYH506t6Zcdpo4O7G9rj9SiFANbR/XKXE2SjjIesIMkfaqt674+TFW9HX0fjrg8yT5HnudHktwgaMjn9OTu6u18+JeSULKYcUKaKK01bRWQITt+6OlznuTQWIfaxHor5iCjzfYb7T4JTV/W7I7Anowwd8WKErS5ZcQjjKLtI6JNUE/wLisQyHZrtTyQ1LpXxujDmQgIflFS8yBTbrMdGJLl0Ow5SCwsxkx4Egx7QUouMx5ncHY8v3JZZe7VsFKwOMXDi0B7GtpfDHUYkkbJKLjRt2oXAkVsZ+eSOchjXG83I3fbCaABeQ7NA/RFJnVQwaa493M4EGUZ1DZqZRxRkHwc0mC76K0PkWFVwbuF1rfEzAy0gp53qSkv947mDkzxPhniMbKBd8fTy6+N96v+aNm5YZl6ZPPULb2v5GQHOkNi13iE0LSE4/ZMaKBIdfC+UfKoaFf3iLmKz5SqSmSPpcBAS6cFM5X8t8fl1RukArFZI+xkT4/ZdWebXRIS3FpO5ViVSAflP1mg+SRiWkOz0f7wVkznqnONqOAIGV4iQcg8KulOwWXEvMR9WRGQm2O2WeXmlCos0COO37Gp9+FGL58Iu0avQW6IS75xxWXBXdBLiPKJBqMkBdjb+gkJigakUaMqWAyZw56TiWTfkHPCA+cvA3V+NYfgdcJLV7eB9s1JYnStpYQNbMZMJFsmQP3FTYI5nUnQE2faMHL8z/L8FkrjiveNiyU/eJKhFVw7MmrqAZrRR9qq0yyoD9pPyx3gYKOmSrNfL5thqPbP6tl0tVRmMCtlSHdmfeblJ1pchuTm4B2TKL3dD1j2p8zaEDhhP5sy/dEbeZ4ELyb/hUyK2l/SB0aADJMXN5SoPdmxYxomTKs/CAnK/CO02jZe+tM3q6X6+OP7PoR3vrRsLMenNSw80vvx9FgCkkDG+mJMhUfBhsRI5on5eWRUWzxRUgoUwiw//T5oIJQcIpKGckDKLyhj3AjDmJgfSY45k+0NrRwZdadhaFqni369UQxhTLuhRmpTUZcxH5SjiTZ+0nrg3VeuOmazrwaijr+B+J4XGaE8Vzi8yJ0qx9/fJYhsUAilP4UN6qzXf+xY4OgLRY9L5v1QJVqgkPqhP2+37hl3eBrbeWFv7UGWdoaz6uMQz49FV+ShuleeTumaNVvEO10zUvZnvqbSsf6+7vgq7yAMQegRKm8HaER7pUTFjEk3IMCfdH1feY8mxFcv9iEJIB0SF1kkxE4z+nzR//eZiRbcos4vdEI1cQjSCvL8rOjFPVk4SHWVOlm8P1G6NHTkkuFI1rb924u/nG2Qs7kaYk7pu+H+ILSa06V1lWrYIRSozub7R3rhVVpAvGyu7v/pL7OD+Sc7wjQ+ABCPQk6buo43i3le3kQnrtUQg7q7tglCw10j2Cgnm0+a5d41bprJJlli6STCOzh3MkFD4Hq5sbiQouUZhWiaBHG8YGthzdqbw0X/Of75uB+s6TqTDMvPLW3R1GbZ6rf33uKS2IDJXIb6lnlG+7gwYL0IR4Lt486gmkoqFKT344s+elFP8bm6pXIeMV65T87HRHee82gGjmb85pf0m+JaN4O3E+J3YFYUUIwH9B+5NyC6pa4C86oLNVMju6hGnZ0g6wzFa8aHb8QhZG6NZX5DuOMOfX44asC5jJchbKqp9qyRuPUZUa67RjORKsZM26ypZRmImSki/4I+j47dOG0fsXDpiZqQMMSzBG2OiLRdsNAQ1DnLFMljOvxRPQRcRkpjhv+ZbtJcDSmaPiRRy+orNdJQGd9ePtu3tGHFljvtvt0xSdEOxAbtCOObW8EfCnfZH5045znKzFEJ0xv2fdP8zxhaovnjhcyEwRGXKs/w1JADPIP0jLgkWfSOWbdndbRbGbX25+AZTvRwBpXEls2O9agXFyuHhAJ65yajp67HIuwcp+5HbjOpZIuB5Smh1f1UZRAcu6ws245y+QOyqxv+DDQdG2h1M9GfQSuGEFf9Xllf+LvaAut+E5YSlmzvucFWh34sJLAWRelkenCdiRPVJ+3Kl9VffUhiM9LodqiDEDeZ4xub04qQZfhQBfcZ0dIw6pPYIKQSOn7r1e6fd7n+draKJShyGBJVBUJNHd+BNOh3x2VvM93dCGvjoF9gP7Xm2yPJFv7XkmDFXPj/kzDzrSE5MJh8Cjmm0tzTc0BzPRqjOduN2YyMNgANykVHcvntjpQcvyDNRXfhb9T/7cn96VbXRnhxSQvUwQBguFwMzN/ohLrwJJl/jg3ajgPFOze0trN3bGkElH6sRDI2/GLtpwXpTDiTXJl7qGe2DRPP3R+W0W5TZJsdmV6i8TSBvtq1zTdYvSqfvJC1jXSXPhmj/GhowO+hrjvngo9rmiCWEJbo57/e5BLG2mx4RqZVFPxFrvtCnZOVCtVxWVcoR9LDSQn+HlyNpsbYYXEnyCxx7vtqTAIH2wMVC7z9Mv/6Aue97q38dYXH3WpjUMSdnCmUTD2ebHMKlH4JjEWjz2GAUNjIXWCe+5QL57VSCovPr+Vmriz7lW1jFKaqpUxrn4xE5vEOz1xU0OiQdTKxLfbHnYz9aJDGIAz5vEkbmuLUJHoXMf6lU8w0CLpsn3tukkEpMICixDMjnk5O1fpYnGQBj9Soef+ijpN9vvsCSPQbzopekaajJvBtK4RjaxRkoM7CS1xPe8aihzEtX/TWgS7pe9gQrIbwmZ6zdxewjbc3H3yvGs1GFoVGLeSsmLxOBBysSu2Pp9ezdjhf6mj/8vWOR0c8waQtZb2cJNivWqDhhN6AekvY9uw+AazFwB2d6OTR+ta2gYurfZ+CiuzFHI9OZWybPlvH/FOPAI3ZbW8NNLCNkc8oadkNqW/aNTHMZD6Az/ywPDU89KgLOPmA2MrHx+yKe70SY3E4oRH5cOx7/BeYrUiDRloS5ix6z34Sznou0sCsoPEeI/sxklXVt9tEfqt+f7ZfkJyoPAja/oTy/hE7LSF0U7sQMkpJhj6ZKT44RRO9isPS9G3875Skxxh477ctIDL25w/Qvq22+jAVHrAWyYbrvojE7Pv1aVmdEQNLXpFBx4zLEEbKSRHWE3JBxJEcUCnbiwEUv9bLlVXVagogkbHAnJ2G4to1O3G0ws1+8Db+UMSsDdz7IqsDz48wQNOW636ryGDv9wYAdaFuJ8ycgsZ1qITpAqf3RFq3TxQRZQFVfQm8eERs7uYk+OkXc3r51BYSYS2AyCvG+aE7s25qeJPDwmn+1OCmf+SSyXx5eQYGvMfbDOeeBJGAGE7pcIk8K7yP0tnuDfsarHsmoYjrHrcX+Dv2JkHvGEGOBZItXRP7OMlPuP1pYxWZKXiC1i8nX8uAisoujvO1AVuYS1nixYd8D7jn4A9WFYgpgfVkRyWz5E60ZuYKbQpN8hs3kQZ1irflm/BYIMwWwn/QUzZQKBOkwGcpk2Q/HK3CzihMMwEF36tQAswl39Obx3GYPcoz5DBUS9IdUb3HdhB9l2NYqXMjIvFneLGmQMljHGuePLktLNbG4RMuN+oQ5zME3yK1bv08fjKqjVKwlPAOEIQpga0i1K6Gec5GpzV3+Ak+rggwtznUtSZhvCN7OTbkVBDaXh9zQdslJ/xf2/Dqw0/MdigF3i9fV8YH6wichcbqO9mB7OHbCQ1qn295qVosM/pcU8WlbCIyT73hmEtrNGGMt8cBmzV4UISbGFkYTRr2I/QnxmuPd5woq515j94pe7nJUZ3stCcdO3hrwj/gdwsMokcHlqsQJBI1aTs7cY5Vah6qo47pU9UdRD84lXdpbkh4ZNXYbpqrLksyYOO+hAYdbrEGEUxHNwzJsPJg6TXnVUWa4Wjag3l6cVKRFJx/iXWPlbh9rcUxv9VGPKvvG+353Og9GRACO16fcJJRrG7UEqCnX1Q6K+lBTIYEOgLryVbgI0+UUeeSPyzpucVZYXP+ouiLbALh1TibxIjKXYDY55sohJPSYHs3+D+qG0PPmJ/A6FvCCICtIVsjvCXBytjJ0psaOZ0MNuPqrwCIrKoub+4fMElKqMsai5fF6/mTja80OyYVL1fOE/6qxa0ONJPWnhfDBYG60stSMEXTaOeNE9EPeHHhsXV16DN9Qaj7zSm7GCCJ8nLAuc9be4CQd29RXWt/UE8Y12PeZ1+PkhLTboE6ub7tWEerDs+ketDA0lTPndHn8m0aQt8x76zWwaiOZ0jLrIgqV+z5Gl+Ibpjhpb/WH/7NiofD1R8NX9WiAtl5zCHbjq9ICbRNwlwaDc9b/dLIewnQNxQzADrJxqC3Y7vhxMmPaxWXzsoO2Wl9QTuSHFWFdJIYb0Rmx3XWAwq9tNn4PBeaj+vRnNwOSCwoLpMT0JuMMOyllqrAec1NPAhVtIUIatqmK9URPKBvnIBmIGsEnWA2w0NgQ0TZnXgIII2O0ZAfYn3WWVCdo1JahKRGspOxFX5zEfNBJt46cIilaZU4NJ9kk6xPNiWJQRCydRJyv0sdgOS+9C5/TFjxflHJLq91zQqpYnYgX21K+oZXZ6SzWfHP/V5KmCwuZBm+2EH5F+JTeF599UP3qkS2hJ8/N1QaAPLr5hXUSSRX/U/uE4XEpX8rMR9J+reCgKJc+ByPxIWAIU0IpTFOYhA1ckXg1AaK5oII/QHPpzcSfG7Ts7Ly7/t+6C6/N2oFFZUDN7aweY6I7BFoRbhdAU5ddP2fSFWKpamBJyUNLYDCLBaSEdJXjZSR5KaAppXDdgIpXm382YTTkxsDhLRl5jyikJ5DyJuFHza2n/BMRGE2lOSO73deONLxFve4lfNnihI+NRBfpBatusiLSXKG7ujUMVy0qP1qCbIbMqBtH5dmUuki/UmJJPsiB7mmKtgQatisgE4asN3ZJ1jX5w14AkV541j6iQ3L5uLsIrl69AWWpJMcHhIesy05ywf9E7Vc0HB+GcTByJpoIxSLP3fdkji4judEMctBCsZQQ86Tg9Yc/kvamYaOHqqoRpR4QsZ/g4gxlbilIYBJuc79WcLCtQ40EPvVhba2gv6ShMGp311dss/+1egFgJWZPzAqFddakE/g1q/Os53GI2k2rATqNMZ0ltlaJkyfDZyg/mevqlYawFUo6UHvG7DNibMJxPxgmXdKvFlBNg6BYMbfrSLAy2Wuh55yd6X2SIP4kano0nKOywyzNUo//uMVTNxnXFi8GgtWRYAnyDzUTZ1kLe5+deNOlKmnW+3+QKDa+s1ZK6hcXDoEC8AfLyPsXVWR+qnK9wsNtQlhJeq2SUsHO3Bcy3Rsdok4qsaq27wEBXHqIC3LIZVMiFoHX0qOCeS0USXevtzcvKG/Pdw7mXZCN4KEQs6WUPULQsrQj+3Q7Hl6TkvHnRbKNcVb5SDj6P36e3owK/YHZPLyqKA5ou3fGIi3SmeLwqZQ5eoA65dQHEcioJ3nmslBviJyQ9rM+GiTsnsCTHo5VVg44aq21nF84hs4wgblMZigB1iqQcJ4EXgA35sj3FoDXGJNNThTuPpeGdO6XGOnqimBCAVT3/wcTd4T1DKQ+HsPDrKmKiGiLIVtOPxTjddOyZk139ZA9B436VwaawopV8pU5WUKuqYE1y0uk59U+8HbboIZ8oNAjPgH8SwVddNrMRh6S4BYzWKKFOllDKpvjDkNTXgPbPHa6tfsq0vaoEDe7fJm5+ufMTWYsx0u/LOKxiOSuYXgovnpJYzQStXXeUpr1xIf+7/ZA1OJ++/GbhAGM2QdcVLuNn3uKkb4gP47aKnzPRAw5yyoiyztY1nc1BbHUWUKu8jfhIOt7/JhYLQaJTUq1CRIUtsKi48tOHD/xTBav+Lqx+hnzi3UXx30Ab45+opJ8tY0CzM8E+RclzlvNXjxjZstagX0hPYeXojts1axFu8B9ZSTDS0GS0dom/Liwvec8c0OpjiSs1EDKb6+FebS+nM4vOT9SPEG+iwHSIaM5xBH2GIBFRM1SR/yxvrAnXevI45thdI5tdXXSjC97TJU1r4zc5gQXq6IzV3G7efvroBIGWHlrmXsFbyUrcwvYqfwqdx6yp0uNr7SZDLH1c285kfzA0LYANpAPDemk9EYq+aFcgSS0bcZEzdtGC3IvnqAW53Em8eXPCd4NdoQaiNKexWeWW5iguQ6u8mLbnoVgLXQH/jmUV9etEgCNL0YVrHva0y2V3sZNUlqcGesGcq0FY1INh/NjztUZ12lCr6wrcgnZEFoBzymYIgOyqg5vmsmhNYpqTx4ZhCQWrFUHuFcpbQlhPa2+Q/8HLk8mDTaEIA9w5CJ8XaY12Wu62jJYNSlrJFFlBOjCkqT4hpdaHTqZvtGOTTV2R1K933RY6IRD+vBBMttvQjuvVam8/X2fOzsI3mFcGWkIur/9OtRbGliJ8muUvvjNI+kjwKdnJKk4VzkPTWGNJfL0ZUhP4d8zcAPGhBFICYGK+pvSXAxRajq/1TSZwuzjoS0mAJ7vcsuhM5F65LKbugcf2uz4vhDBjFEdnMKzj6kRSxdInyBofEkKJU9pwRzuJrFV3g8ZngBExbr4CHozy8s/XVMeQZW2NxaZwce+rm0Z7IDEM2dBlLlBSTHmVTh9wsIo3xL48cTfKFfeKm2HLs4ZQnJsKGt1cttmVqsamXiEoDUxOKkP8tF9S3vFb7EjmMzePYmKJCOKGUi1xwfp7T0ljKFQk/2oz84Us/1Up/ls8VSZHf2bNmbTCuHZFicrj2SBb8zM2mMuUgpO5+QFmZSAs6P30DazQkcjhu7Ac5PKrVU3tOkHM19f7vo7TqRId2ysIkJvhVqxB5CEldOWh8ol9ENBKUGtK2MBj0bdEhcnNIq+qaBn7IzwBdsVd4hbNYsqXJyMCuDIzQ84YGG31eRU4Z7Q3gZ0TorEHz6fpqp8jOaenLXnK/ETY//T3n32F5eGceyipbzA7SD/8eeoN1d1KKCK7k/TR/XbkvmLVHQVKp97rcEi6js9fiqhEL6ZTOnykCCfH3ew1Gxz/yhbD9DOabidvGI2PF6EM0B5J3Vsy93PJmCJ8s0hCjxqLNc+jYbhj5SMrrx07jxpUHDbaCOZJGq/P8NWiTKQAMSCvUnMcEAHtdx/KjhhLvwyoaQCTxHL3GPUrEje/kmeNHeWzQVZ69yXQtEO4URzMtSTgl9Ss1/2JiwEMor5v7ERQYJHxj26pnp/nugnlcK/u6qfPM8jMeXCLl6WeuVUs6J2XbUgBOSWjpFi2qw9YW1GMxgKfyIkih0iAv42IZY7epc+4rHjmCRzDcv9rhRVm3QCD6XaNL5xVS42S8LoEXaGr80Wtvhexpw+4BXFj5zCNJX+Sfbeoj3eJlYDjOdXk1DHksGIaq2aRdejpl0CnMc8soBECsq4vWZmCPBXTZoZ6iPjTgQcHNdAtkOGQa7aINTF4QhfE+wzxI7cOl54lQrSJkv6qiZxYJ9MOAq6lBO3nuQAXivsYLqS4t1/RYD+M7pl0S3L8KlCvSboh3SRTn3LxoIB0V9+7V/yLyetKs0+88UId3tdZIfdy9w7nEKJovt2+afM1TvsNAmsZ/yVy9sGF0kPsxgz4Jh8hUmFbwLt7Eg/+hoCytbo9tXUt7uDOL+WSbKwSwoEOYPJ8OThO23TO5uOBCbxilWza57uC6Yb4YR/sByG84uHqwscWdI/Z+qplX11T1NY6uj+QXQtwZom/dTu/7ZmdgDPcHi38huIap1iYoU8DlrX5TTG7jULLlMXGnhzhfg5NRTz4aYXht3anzTaoAlKAr4sSx3++0BXYGewc3rnW/4c8eZcLF1V0f4MuzouZh2w8t1GZwJTVi20gb0TWEkyj8n9QzphHRKsAEXFmcXkrSpZYDZ2EjX87lbJv+4mlWsJhAG25d52WqTsA2PhF13kHyKGrXBTBh7Cae4wwS5S1MRBWQVuGE7tZuHM6K4BYD/syGI9jEx1zM+845M9yLcViUyMIPOdc+V+lB1Vh1A14uo12uaV7MixWJBSlXS2wYow3N9MCcgGHZaMc55ZUTRCoweAq3lLCCtIophBFqOwS9W8Bs9QY7JE2p10xAVR3aE/DwQ/r5ruZnSQN20idHnU3AKR/4WH4J0iK3Dcbg3I1WEF35Xb9K1pT6US16yuDJW/FEqwTL9RqUSdy1/jxW/gm2BdKET+4pO6kHKBQTQr+r0IqrD2aRUIYeNFMBFrLtlw4gkok6aKxv04xUzu0zJW2KLZ2gfbdiCC5Vv/C9OVwJkizeeqBiZzWda1linsy7yHGvypC3x8LVGFOZBJLuQAYuUod4FL1HDVf2Td+CIRZ/Jb7Sn64vSNQ9SpKCc9zItVoqp0iEt8w5dY+kC5UdnKF/E9xMM4uPFnyCDbrEoIg/fX2SueBg4ipw7ysf2YPd13P1BVIZ5o6TV9Tx0t/qTVRDjWF1YU42sgz6lH1a0/SfgCXfaCXM5Y5cFxPcnnZa72TuNe5cRwCkDAISYZO3dAlAxi/hefktO0RblQ5YKYquvCxxFbbKTEygAu4MkunRYcR6LxqVVThW+26pDnqQCkYXHl+1+Ti4Z3JiOI6UY73/wfRsvFpxt1W2Q9Ccg4tP22Xwn/BjRjl+IW6iVkNqGWpZCoVQ0Cd3jR7awzbJd1yc0XC35YkAMkfbvRqSgdElz63kwQqdDyMy5iNzn7Dhb2XXljJCZi4ZhfInVf4j1kP/IaPQY+16oWOySTB7/kYsEbOIgf2kEFrMR1HvM47L8dEECHNW7gjqntB9ybcJY+6or2s6gOqP4IXMKodCOOlosXIXU1H2ouansnkyWzUA4/Qne17GcFZ9upjWk17j9P1uB4vPwQKYH+E2Dn3EG7uEN/VnZ2qJKmewkZVWEkX783GEk/I0i4V0sgKav7l9c7fM4OgT/KdfieeQW8GxSSOy7khgAFkCVUGzS0Xi/JDplNiRRFru+jutOJpm4B9bg1XWeIB4yUJb9ocsEDv8NVtVqF4FlYrYwRtuYg3pqkG5M8dqneeFkSd4pdwEVGThfdGbh7o6ZngwKsJgCbTOyFJlK2ME0Ybsmm1SB0KzXBdvI9Z1/tlhuGvlwanllU/Yea09cCz7uZhxqiyK5VA81mBsnAzOmvv6hqj0f79yeuQYf6eCnhKPirEJ8L44TpWMi/H/a/vF1EG65xtJr8K+McidHw8eFc19hgBz5JXWuc5+L/F8/up/HIwIeFwPQXEIvknA20ryHQ4MJt9cINiwM+blMk13dHGvceOvo0gC4zVYkmQmE2RwYADN6/JW+VSqDW7L58s9dLy99xwot42rgVM73Vr+L2rVeZj+dnYHTZ3egQuNUfj4jsspdIaD0F6JGAb/7cf6kXHdXYK0Vpg3jfuJiJ3u0C7QJV1a+4Oy+vP5DdR+Dt5a2YIWGguUaQBGIgqgjoodUWEZHE7AVm0XGQOJDV2hLdjYrj0PRctC7ILJ8oTOmzSlkEfvaT5RIrwChaJXXsQfKmsP5l/08mX4VHvSivdR7z4uLJCXqLfSMDV4BUF2uT3Px8TL5ix6Os//PPwrT0ApWLXhm1fMbcAL4k81tysyVjCjYpsUQVb9Y7EG6q/zKebW2JaFhV+oKfAe7hYCm6LNL7znGIfB/e8SOnyvXUp1kn/zF2q9wfzPqQpFMwctrBU5C+neh4YBG6MXVv6bsasmW34efMPuppemDpKrb0KgTZ66AmkxkDuNnIlBqf5IhqyF0r4fNnd+BT2w30Ty0Sxr/LmMrhVznCAoB410uQrfXaOojqG6ybjC8YtLi4ESOj4xvyuRMiBlsQfqmxsNzaxo/Onh8SKcA7EZZJgpF7y0IzVjmrMHpnG7AlZV14+8WfnRJQR6zIn+whq7SL99NMG3HGHMh4sqmSkXkDOeSHu0qoQforuoPRK7BKS4lYkNEmppzjXhHsaNAjVZrsiIaNK5QOBf2QyO2Jogi51RElj6bWhJehsAMYnsew5iH2DTP9WRh5qmd4aNOW/LwCTQX6gx7blcod/kUYZLOjcxTYMsqcJdUJW2vhj7LuD0XhFdIK9RPyuVo5FUXkueDmIDrS9CGmveWL1NfFkFmIUhqFIVnEjpjDdhh4FHYOoI3x6Hcb2boOFGwamdJiRO3g2PZ0Fk4SR/DdqSs8lsDZPtWzbGdMfvLxb2XTMZjgnKQ/tO96Ku1MwPjOs+u/y5Uj/AoopsMD3m1hXBeo4xUL1A1Dh+UpT/QE4gn/P1tMs4hh1h2wqefPz7BPsWg6qVg5LVqSv5si/5akmTb4H1uDh6dCM7mfslodq6yVs+FvIr6YEmNuw7DuUsZwZadDriB556lURzWnc9Aoh0/e1BM3ztt5EtMgibDf4SfcxNiNO/G+tU3hQom1Mf8gWPc+eun69fhzy6DTmoDzeTZBzZfhQAWEY95BH8HhxuSSOVS7dUomWQxX4InhdNeYn8A99LLW86tlQHBnRDfgixa99PuXhDTTyp1BPq/z/yh/saxJxSd3tn8DGExFogg6jgqFED+3NB+7N682FqbhYQWesuUYS/26O5t5vGvY8nor34jWeF1rPMiqXgvMDE3qB9bb0x12PWozQBwodlHIKx82p73ppmOBsueRqcpCe4P/jCwFYC/BEwaM5G9vBBjCzVRWwWx5zB9rYZzUJeNvsMzC1jcz5QYAg+zZzdBcXaRoDoWyFi2hNacPhEii66jTvL0vQA/TTL6VBpo+qlvGS6OCC5DzJTMWCm11pdEAIsgrjTaot7ZWHDm390mmewtJ5CAo/LrxvjSNQPHc8ewm9rAB1jKYVY5HuCQsAwGzyAKtn6lNEl3+J34IXrIyTH+C/Vg9ccjS44PfDktMZ24rhx0df/6BF281X51qBnF3K5wHWqx1yXnGGTac7rfBOtpaEgLSHIfWLCzwFqhDgyq94uwLZ7+WIV07Ve++aBHramw0zz8AqhUv8IZKM8EZRgjmIk7PFRprt6UDnVwjuTMHrA78IZTuquTWwsNkPZxjwbspR8MJJqX1Sfm7zalOVDCecbpxw2Fs7z9YZzdj0APMgKkBxwoqXYmwKL6/6YoqAlbPebIJv3p6PWR80QuDiHwJtuz16dzkMDIDI5gnb7Ox6+/1gQ/1Z3w41XFemBzAu6N7ugSFRQb5qW+IdC7NJmfAhZSqIo9cLN22vk2DrsD0I+QmyBF0rt0xq2uhaFNv9PbKFcyzQP5qtFIZA9EPPoeUfsmrJqDCcv6eCUXVOoKbzs5HYKLQGHrTWTIlsQqJ+JXQk0kG2HiFQmesonPMUdyOioEIgF4c2ZAhDQABHCrhsY54tIptkHp4T98W+njjcxwjQKLeZ7gY97UMG73S0gLVx+t7xSo9uhP61E0ziQLM2/nQz7+DOdxtOFdIyy6cmnzQ3fF4t7eyL4f9jq9sW7sD+iGn/2JY0WaUt1096VaqpbIqTDeP4/wUMkWyq6mlpTtl/Aq8zUFpA7v6Wc8cYR87utVsLM543Zwth3KyFBSYgEIUq2k7R6rI3LoT1Z1DZdzUBaC1cD3dqrMxqPvdqYSiDUYhiHaTgjLSGZqiB+zQI+IhUDYjvsYDJ8j6NGgPoB05Tj+AyTfq/eVj5IsfeRgUwrxn3vUXCmeTyvjm9rcMoW78BogFH3tohEJk+Eg2kiMkG9EmrbDTtfbDrdJmZIyHmE25MKju7PHdYBRrOcAKYglmsOYS4WiM8TD+YbS+JjzWxaSPTGgeOZJqQ1hHfWDG4hsXUCzMsdpdE39IJ+O/U423wl8UVovbwRXga+6g0+qWCk4oNeAdb1zIIZJi2ksWATwqGlSKhBEQgiebHYuXykkWSOr/vrx+O/x2wUoe3H+wDKLix89s3MjN/IyqfaN2X0uvif2+PAslcfSyma5QD2yvvGR+bque004TImAIWyX5OD0xIfPDcK0NDsOViqtGDh2v1t2U0fGcip6BXX8J0cJR+9PexxJkgaT0IxfB+H+Nobjg7+r0WhGsc7xXg9GhrzI3ryGmGb90ZUD9rvhfWNTCzz8cPIE88ZLTsIYu
Variant 0
DifficultyLevel
539
Question
120 pies are being sold at the market fair. The chart below shows the number of pies that are left at the end of each day.
What fraction of the total number of pies sold from Monday to Thursday?
Worked Solution
Number of sold pies from Monday to Thursday:
Fraction of sold pies from Monday to Thursday:
|
= 12050 |
= 125 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers