30204
U2FsdGVkX1/lGBtdiHm8mo144reO6DPFQjaGnMhTf456lPSBb+lLlvsEkpZgIAJiDfzpTaLuyemwjxRjGWrjCci7c7WX6RQPWH+364+Wbqnc09B7ijsmZ0s16GP1nDuTddJgdKjdBqTo+s7sZTh7vOvf7KAU13KcsN2YWc1DFNy+uSriUelARrT7eJ59JpChUlRN5B/DDB+SzVr+0E+ZdOhKgvuv4Jcw8Yu96WoUUSQ8/CYWl22XzC0pjsO8EGBpWC61QbTN0a5lIpP2nqpV5v0yXONZPAoSQQjiQaI1w/bcDNdFo68W96bhpDvlZ1nIcryusaPYKMsa8jWCQzZIiFJKJ1JhGAH5a5jLu0DQP/la5azmL1yBJrsGdaocbI9WXxhH57vUVsGa3wgVvlwz1jZpxT7WynJcmqTDbqStddVOzusNLhmCYedYLXHoK726UWnVlQl3kjpDQy2X31vncgl13Vkx+nxZym97FMHbtOaYXTGTLJ4kauzypoK2yLgvqJhnjOf4Z4r5+RjGTW62lUr+W4BeaS7y7mobYjGj78X3FRA5VaJkXTMv4Q570F8ghrLCSbrCgX2ifXb2c6XvHT7L/sY6b27Ly+Wu47qH/XM5p6rv7tOcUQjM2hZ93YTlVjV4WQCETTSJUvp2kcetSvDOreCA6jAB2RVRIJyYzF01kweFuyascYBGrJ3F4xbg/UBX43Jjets9vLWLfFSqQab8o4wOY+Su3ZOJ7rPLT8dofrFh0q7XMp1MO2lRsPAEwSI8YyHpWLb55FcqNYlL7uIPLbhugPWOKteFVC8rQha0hfhuNQTBz5IJ14SnRt0VAkmC5JWIeMYya1DfCBHTl3nyblwZAxgJ3enAP4fv49NRtarqUc5rQX9JxqoqijsdLlPiVXOaE2r35+YxjMso6E0jy+uPRjZ5ZnRdkmufX9YMQtlkAfTF2KaKHxQvAPAJs443t/p7Vv5wwotf0Pbff8pvYKTAiCBL1wC7830qml7iUqo7SOQrO//3k3TY1O2DGSs9ZkEA2LZK72qlHe9dixUms5KRlZ2Bt6LtA4TbGBmVml+dHK7EUbFBii+F9fYsF9dEH5y8FpcmyPaULW90n03LqJcjnoe0GB8nKM5iRCEF9j+EFzAkgPf5aywDiy6YNKrKhhZtQar7NTW/eW17fXYsvsHWxtsk1xsKDJTdDJmTq+SmCDrpd6fuGQ9SydBLlzd/IYjtiJG/WVo2Qc+DmJvApEmNM5qMx2niS8Zqv3JygUYVL9nvQ9j8D7tzlE7+DosK7JcQwXqmDJSx/CkUWM2kN+kuzNu7yg5bZ7wm4gG8c57qPfwz35MJkwWXvKSC2X/bt9TO/uC1XmMW7U477Vhv4o99BPtL28xhoSXZm54ydM7GMLTUhGwyZFcsxKmBvUYKh/EBICRzqtW64wv+YXbQku816Zw1C7dvlsln8P7RnWDUNAqUe0obPh5VLVKPfUwkYt0Bikj2Ximc69oGGfq23OTN14fQn+wpM9tYPKsaYDOmiY11w3wj0kEV//2ubztNdztYzW/trTm0UTRQV5eDRWSyC1D0vbOTesaDQgwcIhLQ3H8MI2qqEBiU3U+HuPnaDz8RzsdiXdarFx1ud1aQOQYRAI/ysS6v8zBhMXk1EXC2JI/DovO3V2yJFLffkQM4Aw7JJ3nCLsgn9UeO1pEb1ifQQxFiHqYt541ckv3k+0bL5+t9G2NMaXraMaav3Bib078nyl51d9HChgSLH39H5mTfk5mbXkiNA3FdfEbc33eEXY4nZtcah5k1gNxPvqyY4SParo+h28eMVwrdGNWvd02mwbnUx+Ru+xKRwI7Fs4feKA9geZL8MyPtpvifyr4MoHxn2jM6fW9XDoTqJv5O0X7UWDauInZmUW/OixcHkn+RP5tt9EesTW3PSbbVmoghkvHgNv/GfsYoYrZBQMrhTaMSiYF0ums240bkgMl+LoKl0COPWshfm0ak4fMIc/Y+sSX2G/4vr6sgUg3GRYkkeul+kSEbtg5FCiyM0u9W921D/UrXvqdPBXBtuU+fph/xNdq5SsdAH9O622TccCZ1PKlZWHSXyGGi2a+VWmZUFC6Vj3otvKzl5P8LtfFVHuk5bNthFSWXHFEON1/aMvhOwQtv7PcZpKgjzPC66CvRpjq1eDvkm1WMUZTeXqMmMlyVrhuUVcxfaFv1NUXuxX1dB5aSvwrL9kr2heZGOITb1dJLuscH5tGBfb1SmWxGkH6wCWTbUYk7OSDul8H8cj1Ggnr9FathGiX6OwLSfZ26rfScdSWF9i83/3Tm+Lu/ENUm8k/j6Nzy+iKcIkRf194KMtKXAKxpqGlkgcC8AazziDuY6ZL6OC36p/SO6KNEr5m9DdrKxOn/epGhf5aGeSE9U+uGaHMNfG0/usPNsV9c5zzTa0oOLGzOhnC1d1Hyrx0kSd/X17bp3g16JlTcHD/hsPNhARG9lrK5d5uLvXvEkLRpx1l3ydfYF7f4tXPi4+JwCbbo9Dk/ywyF1S96LuUoGM+5BhJt7FMfdpGVME01F6Jgm3Gr/XhRxvpJeuP1jNZTHO8QzHIQKWKJWTaqUU4cI4BQFaau72zto6oXe5XuipP7ZdslAp2zAgcl0puA2miTwEjwUDtsmXd96onxjlAfA0/jfh9iudXEojSFpfdhDm6qUQHEMNdpj1q3tCSF+L6CYMPP0zuv4MOvDpAmwdn80k852gBJB0A2RRJK/P3lHNOv2UPJkTHdcOYA+zU4vdxpWi/35vsnyXUFKCD/wOJ0/XdaOBghnZieQQcm81m3t9mkL/MR1P0JWN1ecffr8OdUaIjIgiyj2yTfKt2+tFmPO/N3JsakRDATxIbmksO5bfy6CqItygRqSvIVPALkI1OooR8ewDCARGqciK1ATxTFtvdL0PdcIZAb5Lnsm+0F06+RBxtzKvUQI3dLWidCRkNCyklrQV3PRnvIHm6IhjvrwMkJU15JIxEFhSkxHztxeHJKylHwbbYKUAevc7zlNDF0PNml7ZPFf7iu+jvfUYiXiBJQXWuJ8Oj0TSzDdIG0yNaL1TcovLwvXxqta/EKPHuw7fMdE1t9sUBLv+VF22LpLX4e594tHwIORRW2xdPXXA0uwYZ3nRSy8epLl08FSq1tMfC97EqCDO+4U6+aB3dFnKKLx0G+jTFaeI4Q+vwdcoCdOvaEbK7gZJwMdK6ei21l6gHTrNt3xXIDgCsQ5oNP+wcHkATeHMiH8YdAUD25mFogsMaZADymFNriPcxYZjM9fgONBKSeejUzdis1AgQyAiA89stzSxqJ1kvSSGw7t87fX32SwF/XgBMzWzUtlKIXMKEKhRX9vLiPbDX72nBKWCkIjd92ndX41W/2dOLc3GE2hRpPl9szgSyOPNjTXSF+hVnXtYvjepESZZJbC+jZuZUBIh2FeLNywFtyTFHPhiruD9pxNWJSaeRJrkrx1bdmD4Js7QfbXXgZFOeAm+mC6vQXa8QqSrdDC1p5dkqcG1GGnj0cEZd9xxNqlNEsEU0AmObsWGxb9z154svuxkxZyG0MzlDdWcHXmhLH2EhjCMQqYkv665PivJ48fvizl0RAoVWs5d4RORXgtrEkEnPIB8NHMIblGDA/9ZTyAMvVz3C8xGQrmkHOMX8N7tytg9IXUHKosTiGLbtHMbsRZYB3D/KfaCF9VQnmaQFbJjyszVQm4bGi9PTP+0s+7uZuVGVWSkgGopuoKzTWqk2bPLzzdDTLjtW8qavj0i4WK9peyC1GIAQ7IQFCUnioszcPWKu/1DRMUSdGeiYjGq5nO2bfdqltI3j6xxUq4RWI6GdFymv4zfdFkn3gg07JhhrH70m/qMgJv99dEa6pH/O+380ysxGfHaxmMfysfyKMBikVWnsrI24qN/dqkWSmMLeSPmbG3JhLLL+4GzSFcI/jqLoSJerbVwPvRLl3hiwnR4RbhZmsscRkKNjv1YaDB2H6U/noztZJLVGiX4xCz/JQIUV+wpq9rE+yEZaP7pyZQqLc8Sq3rBfq86Yxjp5DIlvE/A4gJgz+tHcdr+sLVj/Zy8Pq5nFKAhawv1yHR43De+NkMMeaYp3FmBxHnUWGsWEhAl/jSVHtXDjdBRpoIcPn1nVUMAhZo6GP2x9FrhSiF1jdaG+VJYxVv9cj9+pOfaqpQRU1lT1qcM+nRS/NFwPhbF/YqvVmLlw6gM4XQzg8SS9pEFdI47Jx+yveUQ/KTtqN1ltrhmbp5ItVHU3Ia42Qp9MuojQ7L9kEwCS/ZAsHTCMH/l+QU6VyafQUZGvUxmPmkY/ksyIfgbF6fFwgPMVoqrwLEq61Bc9UqYw1L136QQg85GdJ2hYvlMZbRYK0pRDXINnKzQPdfntJYbPN9iVSiif4sdtkEre2Uf4rlbXbQwvAKHtWcaCC21+BdnLu20wEFLA0G8a+H26EhMZQ5h9OWzKOJU6zwch6WW9xKO+wM1bW/s5REYiduKNOUBfBUoJ6Iy7igefk6dmtVy4EdQHUhDv+04AQXanbUhZqsZNDKn9yCUvo/BPj1cgZtRzIcRhzPigsgLJiN2FKdc7UNFgcCl++GtN9l51yhlU47NDel9TOVeOlnNa67yB1Pc1j97pMTc8Q6C1czJqkableAFbruRCmPbexIA8qBekpaNKNnTMrQtHPQtHO5rJde5HG8tGrWVlMGdFCl4eXg+P4jCd8fIV3mURSc4MCgGG0YT/2+BZbUJjWQP0rx2qfbMBTvM759LVYuP9IIKDYtPvLGSRk3QsWGuFxl8As6rhg9XMxlgF2+CnhqNlCSnmse8CUDrwmnHXCH9mhnTQmgXnCUQxNr544bcbtlnuJ0SJDHqY/lXWljrGT37/aVvKjHHONnSkb9urFCaOpyzl4iyw4QMXI0XHxNfzrvN6J+JnqT17jXMMJUHW+XN2qUrbro1hVbWgSMoedoIMafQRGXHFceERZ1qRbWl1iQShWISmidXJOylDJiygCLXYTJgiwpQzN1/mGdcH5hvCcqtU8n2Go6mnEI8xiLsIy0k0Ien9H9fLKGdDvleGP1kAqYr0Yr4xdrZEd
Variant 0
DifficultyLevel
524
Question
At sunrise the temperature is −4°C.
At midday the temperature is 13°C.
Which one of these calculations can be used to work out how many degrees warmer it is at midday than at sunrise?
Worked Solution
= 13 −(−4)
= 13 + 4
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | At sunrise the temperature is $-4$°C.
At midday the temperature is 13°C.
Which one of these calculations can be used to work out how many degrees warmer it is at midday than at sunrise? |
workedSolution | sm_nogap Degrees warmer
>>= 13 $- (-4)$
>>= {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+lV4P7C7Id3gOEwgD4rq0DzlKRtpJrhUy7L5N2P0nS3i/9APUL9xsUl2Dl0oeG+8E9ik8pt+DDh2LSnVCsoIrb65Pn+JwgETy6mtPhuSQ3Yqi8XnpK8A5GgVzWTrzjPDcmXDpXZxc5p29dTKzJugwTWk89jhPZO6C0fP9e8t07RLanLuotEpQaD6/fly95bMhLvQtDTpAE+kVOuWilICt3hfW47BhLLlUkE2dYKnVcMr/QKTTnoJiHuBNXsfWAHlrVkae9uoIQOToYxOJZU1X/WZHqQAZchpNTqir043hk2jp2MquSQou+R6A1x7Aw+sqPlYAAZ3Hd+RcZt+nwpL06XgtaMzXFbCFfprA52MJbftaLDZlRiRv8Fv3Z46oJqlHyqfjkvL1o40rTv1zGDaFOe7hwymt307dEQdG8wqZ7AtFjPKLefw1KHNidAdy6kKWDN04uuwh9adLtb8B5GrJTc2PFlUFwVrlF9MCQNtNasdLvt35DrJg5MovufEjH8fjILzLD7PmD9O9laICIxtigS/KwTQZCtO84cFDuStwThiuNVJadJUaMRSHQDAoViz+CY8S8iiThnO0sxxzHH7gVYb8H7pQ1aX8n1k3itNx7V7emmWrg30bFP6c7ncl8jFnrD+7qff6p2X+ugCZizg/vYvtHNX+OmKdKtImOF+PuhhNZgnGk/44/+BbwPm2kzo0s2EOlo/F5CAyBRqQZsdEsFibtKqHa1+6UFhFx3juJMLuk/96gLtVCOgLC2vB+LlitDFpHyzCcKb9q3r5gvVVgg9S4WIEhSeSbI692OI39OufDRwBkfp8tKQP/+AZSOi6thS4osv+xyoYS5mLAyKIQes/g/JFDezBPEL8smBTmA3vF75XC7Ylug9ZtaR4I1rMfMlSJafUKWrjtr34kVGmYApzobNJsngnZ5X2+QDzCH+/h92cyf0pvmrluktxx/NOgEsbYi8JxxiI5Q5kGqL8gnjkdfeR0FOerlBurygtRqdWpiWOphspbweKedhnO8U8zC+Uwpu3j4dvzL/1w1fkAmVZJu96cqojss4EH4WiK0HqPd6eWieHF2odfI9hu6WcdYcB68T0OLD9I0tJTAvdBaffKVNbKGG5iZVgfgb3vJdsxyfcqZKg4f+GPtZjrV5vpxAhj1XMRXZMAwFeqfi7UYOJLAJGKkT4M/SWpYsotKlt4XCKuwE4lBTMY5ACNSY5AsXosLCxhfauAloeQJy0MQuf38nns791ytigHV39A7g4AcKdVcf/5l2Pyf+66bP1KKzxPydoc9i1jc+z6timsh0yp3wFgyV0jFZpddjC4+ZLrcEXP5M9irfJUHGy8MZJdaOlWJLwbRWKJs7Zihrgc/q5wy8VRWOAZaBzB913o7XPGwYp9fd/YMhXTHyhT4uM5S3w0/IzKgoQwIa/089M9kX4Eql6YHdes0cubyu4/AixIsHr0wzHBug/g7LBlhrHGkkEB1JdzeAldGa+PgQpL0FIg6vuVhBfKIaEMsZJqH7b4VH3Frr5mKrVhd4S3+yJ5XLaqQYgtC2176Phvgj2n4mW78gSulaG2N1HSmfcJVMU2OudvnFU2tIOutd2aEvn+UVlTcOpJ5d3u8HuSGPtRGDbiSGYj1mlM2UPGCdCpJlQYHAlb3QNBHAlnIwy9s+Q8d6tMdlTwFnN3eTdNYGCze9JoNZ2qjdMowJ5SXjHe+BH5mgKE1TfKMQrbzhBmIKYBSSsICA3kW9zYNihCXD/v2kqp4xn00RxuldVofLdaPyIAiy8dXi3qWJLWIPCjWMz1resf9leRyEIoFiC/3C5mB28JdY69EVlNX77w8NOt36VlHOEFWz8HWpBU2xZGWeHtnMk1svoVM/trVb0QuilV80+zkFpBG+aqR/3IZFQDaDX5sTdhz6TAueKDyiWVtvd/4EF8+UVcacqdC/R/krUa361yFToiRRjNfy5QSp1CPq1wtgattVRlnU6k8IX5chpdUfESLupmBn4V1+BGPQpTUc3t97SxOXkHN/NljvwmGCwsXBzRgVqDQzyGaP14dTfmnEJ2NiyqMtHdQRtwu3t3xlyB0FGYWu+r29sfuAFrneofCcAEdeVxPpJqtWgI2uPwz3EPcBd6aj1PHa7kcNekJDfVNnPYYml7FE6suQ38Vs5MM6H49YBv0fqQjLu1nBQg2Sa4HyjrhmRngOyWDcnoq5y/lPgAs4RFvmFqRjU1CZRPgR4CXpvCPvlskNTkFHDCY9hMEfhByXUv/jcyDU76WjKuMP9BfkPkhsruFBUEJUxZfula2VhHDST+g5ra/U3oiuupEKd8FLAgtPR0wipPaVkLhahAtdtTh2Jnj5REgYUY03+8ck12ffgeZdhBLqjUKV60aYDJWq8tXgh3dvh5t1y5Tx3ZvAoRXNOMnqul+cSxYp3AohS1OkKbltT9WI5OoyX9qlN97QpqY7DgojQzuapSjFyYvhTWSC78wiyetNmeiHKiw30QI2JuTxnMB2BPUKABL2P+C+Bves64QACHoBGjyVZRq7PQoaTZaF44hVyO+vA5j/+TswAqJKxmPsOPZ1Fq5wbQy4hfeNG8Tve1r1qPLjxSrnKLOOLVL56mSXr/ybAGAuP2Yaq+5owg657E02YsA4FFUxtNjSxoW4ZebcvXFhdeqgrCNSDLX8h5/8SxIrV3IRE+0rgDUgo87nsHzHInmfi1EqslOkll9bE6+Cq3yQ+1euQ5Zn1QaJTFCFLkfOUHZiGsYFWEo8FmYVgjPmZe36qVHkgAtxdbjiizaBG+JlML6NCPcmQKNy7SqWHZ0cU2X8dAuMVYABk5sXqEHr1+fesCtRD7y8R8A2Fygpuq4D+EZ9pZRBmg/5efuEiraukhrSzfdRRNkihtdBV+Dxmj12G+3pTTgkYPeCEOKt7Vwy+Qx4WtwZRmORDwe5pFWbGXe0uP+FgoeDkmzXyFugva1XH4uAmzx3RIXOQ98KcHPrm7pRgPAJKgT+JlPBEOe2eduZxh5xxizuFI31bKeTo5PKcELH3otIWDbf2s+Nu7oCgRfKKr2Mr6cF2nswkenCbeRtNKuUBg9ta6onCWmxItzoD4IOcM/BWXHjULbmyuQZ0WiL+Uk3RxQ8nEDIEsSA/r6NQFuFQI4rUgRVFT2CLgEYwZ0w==
Variant 1
DifficultyLevel
523
Question
At sunrise the temperature is −6°C.
At midday the temperature is 2°C.
Which one of these calculations can be used to work out how many degrees warmer it is at midday than at sunrise?
Worked Solution
= 2 −(−6)
= 2 + 6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | At sunrise the temperature is $-6$°C.
At midday the temperature is 2°C.
Which one of these calculations can be used to work out how many degrees warmer it is at midday than at sunrise? |
workedSolution | sm_nogap Degrees warmer
>>= 2 $- (-6)$
>>= {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/Xf4Y3o0GV84Wlcz7p40ySIe/PdUV3/fkaqKEi/4/qCyQ48hfclGxy/aJ/UfIMrwRNK9RBUWt4x23182RmXZY7oh8kvQY8GRXCWrR6E1d6tnjRCCyx3pNtgfqiajmNLB5WCt4bsXqEHBpJk5n7F7cfyll4V6TmxeamvHefyqOTZQhZ9elh0GpN5m167UBXluDHCQyOBYQ/KSogWrnfTCP7gfIuxG6WQVt1cb1FUXoT3dCkdLqferplvJbIDGumw4w9XIwbouvQxQPDxv4P/IzlPB9FlCTPVJJeh4OwVf//byH31beylnE6Sg6GadYE5FRk9pkRqU6h1ta1RwYivRr9O8/Ec7BuO3YyoHelMKqlvGnNG5SnjlAXC7u4W7AcAWNKqSM9gp4W+bY6R4WLAEXkE9SzmbpfOGVc3cPSOQ6EH7DRL2/7QLWiPE9JINb4Sek6kpHNukSD/rILDeC8cTfgrOenoHKZ++8rR8n45b274UO0sT/GoaRWv4wOSEnzin5YWQGZI94JKRKjq9hCM+LvO8vXpag0AmatqGlOVSeyxIpUWSfYFqbFG053zDLb+4XteO4G0iel+oV7VhHMii+vAtYIGALCJMYQ77PdM7H7fMaEgZTWVRQfVjlUfvQdArHV/ogeZ/jX0v0AVmFPhbI5Cyg/RcwcpFZ0SYnfzLHDXTnJ1DOALZncyGpXDTX7ep1e+6JARsTDZa8jUT6yRTtYZ93RbTtqa2LuLDT86RNMXPet+wYeHNQB5qbAJdAhLd+Ag2QCHXnMuB+tq0Sox4IWxbopBsOHBXtUXMZDlhZ6/H3azX3nCojJlQGkKfgDDk2R4uTuJkYGd7YWhFRynNk5aSbh7c8wW5i70u66YiitggqpPTx1bfMTCywNvEHpHb9XimAFDGhvVt/87v1MA0mbSeCtTet71fKA6FLUxellwLvGhYsBs+7FfpwNZk3pmyvelRoCeFq+hmRnt+rEFWE/hMkYsvllujZYzXg616nBhWhV4WvA2PpV5rlixc9wZbNlJ+dVl6gFA3Yn7hSPsZt1dijjqwK2DOiJoENXgpvRwpK9WniY6tJ8gefNQ2Ds8/ntV1LMwJCav9om7/VdIa+mZglENjGFosSuWKJUZBdLsyuMgholusWXZoDxeLS3XkZZyDirXQaBA2T39oKe+7ZpqT3QDy2lMdIdJOj/d0wXAcNrhRZ6c95hkexziWBJhE3kHPAQu39dYbAQDGNbOKEn8v5BbRuvRirCiTkWYcTC/Tf8zUYPba75abLbu8FznUwc2admF04u0VGgwVFcWTnoTNS/UxXXhVtviSpeRzknyaJjvqz4NGzNjIZ2DKrqysch7IJbCydpFb+L6cKxtnB19E2BVp1aNJT2vkS4hlyHo9JC1BvTl5d+085KG8k9jadkb8l1+QlQafk7j742ETHqIEhPkC0d2IQvc7mD6Q1PLQJlDHUQWL5m9j5r+jhVG8nTp4fx5QpyBTFeFz7ekVubrxhFR4EkhMAkiwMwxtLdT/WWs99KLiaaZbouPFvS6e7cipbZXwpyzDzrj6i+pxfIgESWQTOZBzYXGVR0bpOoUcP8CGJS3OEAabGADAA3b/JLsSYTxxp04eBvfzyVV3Z0/DW0c0xb9YVi5f4h5oypPIgg2bofLv3iH5pHfV/Kv1QHusk+icmhD5htBuKH4ervuqvD2cCtPIEqniK76hv3eLMT7bSxhfbSw0+ACXMch3bOtz/GKXOSw9hdC/ngff1mx8KnSzELn62aQC2pEAGs7C9q3CR3PziyZ58Qb8bEbouhX5uO+lsX+jaeEEk9gtllH2a6OwyoQehW7nWqPmzOUB3UZIjIL0Nn1jliJwRFGMygn8CUtaLZ+BvRmOQ0dKKO2PXOlGxwdyJfCkTw7WaNurbHSheuhyyaE0ccrCkkN5PCn6uzHnCkyTwJ2C22Z/Vs3zIuT05jjTHzVj2qCWpVQa4fX2Cf44hnutFapTEK/UwBShO57KtoMQsPCWytriDpgGG3zis3DK0SmYbNN2rD5TvnCaNa4cp0ETmMH512UGkFeIvP12uwH6jkt9iE1n1GzKI45Ura0uqJb+6YhMfBio7q2pB0lakvfeIY3hK25UKs8cLTHOKsNr6jSiGW8gpzOvjqBlND3agA/xz847jAMA6pLfBzC3Vv1D4KxIXGgIXW5xjb7n4AgSt/5NL9wD6DLsrT+PatZCdPfsfdWwgVrcuQOjhx+qpE11AORAwBbVz5fS2zwuVALifYAnrtM34P+lvri9xoG1EijyPZ8/F1zmuZc6uv3ZlbjZFlOwDLLOzwK6MXYB+disxByk//OJpup8blYeFopDMQce8/1DgcE8FDo7k8Dgee4BuvzyCaNHmy0LBxGbxEYy5guXMplaF8Yf6YxUFPyHcH4buNCAXzFJY0BNBhDMrrxFwEQM6Ya/OEgcBFodFj9ubmQ75AxWMDjqV5zNBbmUqWeE/jgMskZzUPwkQCGsAXTvMsuiPzwm0GXX7/UlJ1EIJBmSnyR7I9kLC7IVNdDUfNHn4KrMFMk43pjKje77ZJZZdemol4mCHIyMWl4vybDw6cKV/s31zFb69Rpme43lN3fcjV9sF4+PERTgVhBCCVlWKEEnyZNzCKkx7z6OcMNbjEett+p7D4q6ZQa+02+NQc7sZbe4uJIhNtTw2U/j6ZVdlAd60JJSXLWb3lDUXaMGhYxYKCj0Yo5tBA3m7IRtXFoC1wrqutPVwWgtHKZ23sZdOCrV/fiU6icIgr2YEqUU00R8w4GyUh6zwZOVihPDe0ws5tKJQiXdwixW1lQkuPRXdoj13bBaqQYtmllWhLTe8S70UMg2few+FE/TweLwf+NDk26amYvze99HILX+3+Hjbx+hNBUr3SFTtg/6GqqrdCXDPybUV+DcHINR44xzGhr7EgNXg78Kfr8DOnj6Q5N4eo/XWRNC5w+hoBUEepLvh4NqSnwLL9I80V9f8QjFjzy3hlCxPd1WeppBBb3600kiVeHr/YsIOgW8AzxO0/9ZJLvWFGVvhyoJd0zEzMUIPpQChOyFFgtYre8X4GyIIM70EiolpRyQ8neQFo8tWWl7zmNN7uEQiFXxEKmzTs7YA=
Variant 2
DifficultyLevel
522
Question
At midday the temperature is 12°C.
At 9pm the temperature is −3°C.
Which one of these calculations can be used to work out how many degrees warmer it is at midday than at 9 pm?
Worked Solution
= 12 −(−3)
= 12 + 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | At midday the temperature is $12$°C.
At 9pm the temperature is −3°C.
Which one of these calculations can be used to work out how many degrees warmer it is at midday than at 9 pm? |
workedSolution | sm_nogap Degrees warmer
>>= 12 $- (-3)$
>>= {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX18J0L5zdqBuu2TWP5CpGWDezTZbw6Nuly0dAZ7G63u8um9F8y7fs9VwVekVRg8xfHfCjEkqN0KiRxGXz9AkyvTTNnFyWH0QBGBY50pwjtLq6g/LXGh+ASknEe5QVZUETQwh/3unMAcxCnw0ELEhUaEUdBrf+VmrMc1kdoFa8TbtH/tzLe1ClM5iMb1u2jk0PllLYZ7hUaQ8G4pqALbYc6/ASNgss3xIZTXSx8G/qRk01q95RFwOrnd7dKlvfHcE46fNwVv7n3pPL+fAu3RyawDmb4d54OQRy59090q2GOCVLfGfkHkO7Mn8Mxb2ngz86qMWurVjAAMRMrUCNGF0Nvq+MaHKVG4thAQ535Td2b5nJFw+ZmReB1iC70QXy2wX68pcUkGl8g5rXIET5nrMmU+bNL1nj10Y3YhPJc6FO0n4A1kR7MdsR5ExAMOiriFh5Eb32SCrLHh/7VGOaFLh2p+V+AuwvRNhgBetMV+9D5Mqbk+Pzy4KC8i9kWMPZ0pX5jhHAKQowVtSzlEC1/qhbcocyx890/2ZI2YEJ6zSMn7gpPaoea6rl2vZMLUCJITE7GQaoCbgLIlTD/oC/l6ZpxPqI1baC2YWUIheXApvZ0bjNjxVN32oeoO09Df4DkOYEAixMHK2yD+v9xUr+I/a0d0V44Z4qCiecwjUhgQ7aAE9xMXC21Ufg7MSiN4LJPjZzFIMwz6TUc4cclp3roNbzsXm1d3IrtJFAJQWJ+z48egMFT/2yQoB2hO6bQoMtWO5gB70dsgrfaBdL9NDMCDNJyOmFxhRH5V61sSv2aj5iujmbASk/eXAuzHMKNq65G1FR1nqdiBDqnkPhT/H5fqXEwfnRP3kGxDoRdbLsg4CmJGA0LtNz7Y3A7QUUDu2BE02VtjwR6XuvMwi4Gk0U2LmQEJy8sBO0kofH5ajCgwPh1D1IU/+gYnjEZri2AUmn/en3Fk8TIX29FnH+Ay/NfCmd4MEmXCwvO8zp5dIRMhltY3nWVn3Jr1DqfkvNcv/8RS83OmxEGvxcCp/XfNz1uGaZ+SoKaIpHvrsoJoZc18vyqXY4m2OwaEIyHACxxEkD4f9hYYkZUV6iVQB9jzQVYcUNyIDItKUq59amGBr1OUPagnOvGHHvzZbwbIeQ4E68QO6DaUMjDodDdciQDayufvREowFFy/mhtId1PJmIGqdkoFpL7dQFLLq5bK/K3SgjUXLv2QI7mUI/1y7ZdrTysIsPM0SySuyRNK9WhtVnr3NlHZ2jy3lkDsRMaQXMZ1skz32528XoRCIoB/bDukCi5RU/Pg/j96Gz4Zf/8+vzVeOQ0VMFHyF6APWe8HfGpMmEi0lUcpXaFVRZ2JSLuw3dmHB3EDr1DPb9rW7PAsLnWlE7Efx6TUWypns8z26x3qV+x0CevK9H3ZYfBPjgkUkQaE14XQC+u5/yYDhq3IyLzvIVg8aUtRBO247QDCeU9Rgj2ULfyt9D2dBBefOuJjGE3wRgg6bNlDI6Xw+udpnDRHkCq6q0QHzUDQl1rd+aCkLtqhHWOLaSUX8aDXOdJ670cjZkriWw6fU1Y1iy+JW1xAX5tzd4d19eYQB9gxx72PSUdcGnCk1DSvZoo9RlHRTHFPNciqEixx9EBpi77jnez6AREoP02uhec/lr+669A4KXF+kiqkAVI7+S7rC6Y123VtKCoBv3TC5lisHsruAEmZ2icN/e9WD5IAWP5N5d+EkBh73eXXNhZ8oeQS2bYqtDOXAqD+pY0FmCGGqB/ekSRbHOmk5rVNLAFrEihaJd94ZlgWd6vlFB8E12H+RhPDmTK471MbIUQGwtyFqWzsyY+dfGUptmtLRpeKcmmGdoTdoneWwMFcEDBBIsXmRq9VlVo4ThKBX37GdSAKob8vm6kii0SvQFgG169SN9FtQq4mtSg8c6TDU15djeeCXXM0Vjva+bjSMaeuw5eNvqLeoOAozP00/Tw/6MT6kXwJS4e2eNeZR6YMzh68IiWisLWR2VIIrRZSkdkKbyvjoqyx6cGLWfvKaO3HiIJjwY4uPJ+wObVzu9pHVWtHTgi0ErieClA89ZhIivnk1EMLVel/Efrp5bEvhHjhgPiCqBP9PBVHYiEa+AAaLFDB6AIicpbeFnbTRX1uxnOgQ+N2xcQc750rYkSgM3zU3oyoqDZmJcIuJkmKIqrG5OOdGzyP5wlPwVfHItpVNGUWisG6FkOGS/QJUR6wHUr8HiPAvKZuHfj2nLlMhWv1pessEyC6fNGKtXjS3Hv894vMcWa8BJQHQNVcRFUZTBX/YB0I5LA1v9e1nWCqdNUpFSEUrCUiTVbM5MaHFXx0H+KyXsElqMJFFgfG7HqwjiSwA5U/royEJUrXHc7916rhTb4ZrD8hX7jJ3+BJ90sQ9JNbuoOGZyRZIKQqtGZf6GX1GuvgI7SE15ZYEOiHYG9F4z0WC73D1qZDEQHq4QBqRzjuLCKpa6UhX8CCNv8YUIK5cmzO1E5mrLU7H6rLyurJphcjmbBnnOdgNvfMvB0x4MRFCO5PxWGUgRtHVGrNN4P5UaEOsfxMfF8TuLzkJQ27/4qNHqckV1QH62EaxH/8k6LevoNRvZomkslB6iQz4qIRpnqSxHz2SKlNBuUqeK+yQgFmra6pjoOdVaVHE8LvpmeRDwNXaNV5BHyXjfl+3/D7NJSJ2hUE+v0nnG1C11RKCX7deUWtShHKs8kf4RdgcJrItzEE+gVPZyHKpkM6K3ZSoTgN77SM15M1czoNycikJf/wZRxuqRY7u06GmdkacJVrcdifYuDcvvGh/AliJrlA65oxW2z7Axj+6QYlqe7/F7buEUj304XGy/x3e/KIAJsqf2qiU0/vjcxsNUcq9TEpm1MN0X7G4TL1ETy8MW/Ka3MQKbqc/WP121fOWHVZoVfkqulIpHWNvmfTCtkOnPKrCIG4cK+LaIuOkLBkgNResNpBfRdwGPJlxzir46w3JmbAyNawSx8GQc7U23XujlIGgfUGGw0glSt2m2ynIxUn2x/nfsGTnfH9VyB6BZYGErZQVb4PRGfmL+QvNg3Oz0VtLumsRLLV9FsuJu+n6AC/w0yFRmtJT11j8U2mJsGUB1ze/RCTomklzdTKVXtvzK/BftAqS3s4Iwe9U7hRv6+Llyg2eQNELxSLsAS8o1heIEhp8gwPWhJEdIRUlPIjcDyEmfi1zYIyJ6Lc3op4AqO1qp/Dj7rUceuITZNfyT9DW7SqZk1TLGYnQmD5rIcyi16xFIGefryu1P5/xSMRUmtpELxM6d/yynypEpIeT7bN7AhDQ4bFdsHrH9eE3HQYohAi6OgGp0JtTIDfZGQVJDqRjVmc4rj0Pi/u2QQsv0YqcxxfDEPx2uNaHOhvb5KM1ZPH1qxS4GazDGrcHo+pLUHc/7C9h5LfBPNh/ah5ysXhWzuQNwzCjNHozmFqnjAo51s/IXB5i3Dk53C/SZQr1re8LnH1E5xHhrowZjOUePl+ikm9k1Ary5dlov8fHuv1bq+rdXnfwqGKLXJj218GFEQqErmJ0/74xZYszaEWcRhAwwCKqGX+FIIEwHJ0XjQ8RX+brfoLNZr6EutsWd4D8cNeyk01CKhqQPECxQrkZoxS2NdMTmmod+AtdIw05lp8IrBJgisZjqiGJppZ+VxworlnR0qSaLf3rjmP9lHeVwTyyjtO2okQWHn6U8kv4tCHRTx49PGSTdUDdztQeU/GyZrGoCBgf5hmyW30dKv44CUd15tXnnFr1dXB3raVmi5TZLtbkAoe3FmEv83Q03JuUdabCU6vcU0o3L+k8+/9hmoR1RjR4HSo+JHGJSGrFf4Qog8nW+h/qtFjBoD8qpCysecIYUfb3OAkJ/c/+ydz6bpogOiMctWzlesID5RpUG1zV9zC/7WzZIky7Dfh3d/k9SlT9IKG/g0Whb//9xpILX1WHooRsPkbTtwRSH4BE/fWv8NiRYcBvKpgd8c25A1R4HpeZzOhFnHaa3BwzKrWud0dtN7y3QM8Qf+8wurxi9fpbsyWjhlC/AlJDuUTCV/K0QQ8Q9lZYQMEWuqFFIpiOyIJt2FzEIlt5MCPkFP0tZwWB0q8EoVF06/U7p5sD8mbWV+D18ihVp1NK6OtSxvjzXLp4pFkHdRoGuW126XK1JkohOnxtV+5A9bdx6pYRBnBsJNwbEqihdePNTWp9DRsIalt0fiUHtNbXJpcNIL7DCoP5wi4QMgegLKy/GMnhbL1fBVHW7Y7QweS4EovgQsf+1Xz4AzVn9kulClGSqzplIts1z9+CBxg4O4lxghqhjYdsJ+fDnXOS0Dmbml/XivMfxegOV8Rf7kqRCUCARDHd+bc5rbnAEfbXhD22EnqjzD14x5QXnKPyrY97Ll3Af/AgOzp0gYszcFkryVuWoE+flhAshFb7Rrip7U8dos7eu086zaoA6bRfgny8mfcEq3XIRCeCAzP1P9zwmuhDDEs/FX7dZdyedNsjksRIOcA2sVlBm4MSxsN4LShnD24Ax8qrBxPqPP7PdNwCJ1roxIMwFe+VzOzsQcY3p4+Lh2CixEwm6pgS5EOxptIkNiVNN2nQfYTVtIibO/TqwPdfeuNlQfuiLIJgt5WWqsRsh7GnAQiB08HRXa7jNi3ExczcqifUa2FAPHnZdKF5IP5nGrMgHx2cFWdSi23wMbGFxLAA5wyZHI3whZkJOGXR2u4EBF6RMTFq8vE52NhDZsXE2gJn/nop9tmFRe43xrCf0TFnb0/ZsoN44SeaDEzEMieZwru2x57/NVcJQVx6733sq5x2TOZWXVWH3UrDPY0pPda4tHs+demF9dMhPXlfvB39vDhaZWsD8DrdSFGV6mupF9UDyHSCVcj0PnGLzn8u9OWTUEjUUeK6f/NOioc0Ax06Ylf+bpknUBcVN78Qxsf+HJ+tNRX0e9t0tF9IIW6VUAiSVsM+IfGiN0Vfwx19W+eUHIWKhDRu9eE5zOQSf6FiEkvCF6oqSzeVtkdqNetviYQLKLfLJ/BdUljKVqABRURwyJKabWnqv7u1Xz4I6zhA3vp9nBpXRWLdIBTSGoD0PXk4L+hlqjuGVB1Xf7tl1YtG1NYvYoUvPjWKDLUWTXPWT0c1CIOcTQD43pHPOyFOadNTNkj66Xzz+01ej7gqWna+67gMh81R9Tr/+SwYHY1oMbU2lsD9oAygHnIohHVi71jUztjbGJykLUnZglgMELkkLjge3qXZ9VSV50zWPknrQFIi+J+1ACj+omyfRN8HcD40VfmZHWLwM+4D0V3ERzdOJ9QubpxyChcNETLnwHGfLr41IJ72/iEt5OnO+S22w1mjULOXVJ0JsLS6XBbTNjYkON5WNuL+2QjO6ydx1mqrJp5dcMDyUl8K7s2QbDDkp/VnKC94Und2sEEZkjf8JQJNlOsIFbhMeUiBKXywjwiu1hluetfRZOiAvyTCaHN1gSNz8cG6/JMGu3RLAXXvbPBymYUKea8fiXL74BruLvR7rSfRQXyDTjYctcRPI+mZykYCPZOnZLcxf78nlBp4GwkZq+CT7xW1Q3DzsHx0AT2zMJ72plZA32HBSQwu2wwxUXiSe06zbw4RBwfYhDcDmtxNJC3i5jEWqPnuyVgrFrTOmXvIfJxDAQNC1Eg2CVDj21FmAH9eNE48jRGVJwouiM8wzQrXvfYl0Gn9ihy/HA3bKgcbWhkWD3pXXfCwfxns9Z3c64jk0FcJRZQmptz2BNYjUDWR3fMpbE9JpRsO8QR2t9u5kFIjt7TL/5Bfv9+ktBF8aS0uFdWMNBOHDKDEaW90v2DmdWuEA41XVaPikkDl63g5GH8Z7FQ1FrExUtTC4UvgAAcA3MM9OuAC+VSK3GYn4j8KYbsheapA3hWiqZ0DZ3yJwgHvhetsTZ+2ALAWDowsMHhzL4aAV3kyKEwMpt000K3ouOQVHjQXYbnOKN1isgoYOxbjbShuOoHpbcQOI6mmSTgxPDd6v56VJh7GafIb92xhnyqxOnvn5ZDi7IA3mZjf+809Y7uHMlAtZrYp+2wl1HLXGllohGt1VvNqTI8onKljmyppEEojtbcgWLo7MdilPYrWhgVkyppmDlz4Y4AnhSTIsv0lVssyaf5Vt73ZWrZYMUNhDuwlTGcSppkzgT+OvxeXSFOwKgP9TZb5VIZ2gYnYXOeiCDyyq6GPGIalRN/hrHXdf3Arf9YVw9fMaCTGyTwhq62rY5/WriS0D7fXUNTjSX581kGiu+sJ6r/MKQ+bBZdeFNB2OnaL5HDiC4fuECahUuFF4yC7466vWdp/4m/QxES6ks0p1MdZXjPNqEgdSmzhsWlrbXuSY7NEJmTzoBRcQKuMMTvFBUNJQzjzQfUzPOIoEUOdTDzGfsU5vKNjrFHFTN/GbeGX9wzzSkGQ7wEU1IrcwiPPBebkv9x2AhSCmFnyc40doNcs1kkx7B47IctF5uWyZAPJaZ46tFLwAqxvBJTClT7K8D+KAbVNZdWwb4r0dRi9btZvgERC/U+y9T2CYcY6mG7n3iz9bZfMSr3BllPNYzfJAWNmtJWKkup6HQUBVM+yPjWFhxgiaFfz3BlMo9aqcYy2pV6ztNh5gqiASNRHlR2aoL4Txrf/oU29ktBS/CBozijdOyLR7ZaYm66+1ebg248l+hPEnfi9v2o3qsFp0XrgwxGF1B8pRWkKiGgb3b7Sgxp0u3kLXyIjEL6hS8AjWaWFGEDwqe/ekQ28Kf6WXa3InCbdE6VqJYmmkcIzPeNAu07nWhzbAcump5L8Sf77JM1Jncw4gLj2KXOOzARzQrMhitsqf2E2N5BYmUrAjur4A9yh+HhxHi6ebGp2fEWGcuT++sSRkY9kJjmj+yEwNvs1z1/AA22LXbdvNsj952V0pL626OUwJCRXdvhGJPM/DNhWmKL5V1R4l5hCtkVM2xzFnmpYnLTsLSnOKaTfqhKr7cx9Sbd8PcZkv3Dvh1j+u5UefBCWHm6GKQC+Z+iWNEG9NE/7SNjA3tW+8MuLZwZpotXW4U5bGnJic7qYOKpxHjbx5rzDHgFZqiOGttTyI4lRwApBNVOxoUxujAunrpHmkKk3PMhiWId7ew8b08lPiRLZNWkujaRERhXe5O759XkV7/YmnMZuM9l7Fg6dJrC9+Xj649dGCAs/o3fj5Ri4szELghncshvgtOADsLcZS5cp+d9Wa4SmC8kS3+VpdusGcTyBuLi9/GRy4JHGiwf2h24QiBwqgnd6sysVTAUwWCztxNTNLQyVskD+8mpBj2dO264CrOIRY+YVsu3a46Yuv5KXzyYWgEbF/LYbSYXB/15T+TvYnoXIjJUYzUro3z4vNyO//N1M02UIJikok09DbDZ60mm5cd8IoY9Jszr8lkMNY/U843q28S1Irh/Sh6ieU/f53EXrbzzctvVGXmmRcCUat6OnNwnsPgKW8PZk3OfJoWLM0tY1wnU3GDNBsmET6iugvjoHvoWTZR/i4+/RhGffxdf5ymkzmEvSqvAq/Lbv3L5rvGk3SzJ+OgsO07vLw1p6wNfkTKtDHQBfiGQuYvGqZGciiyLVCdqV6lLc1coH7jCPm9yfjiqyJd6Y5YcT4UUIle6HdskojcAVkVqfjNvMs+BO7L2QKFiZOVe9iqpmcV5lyBRn2RBqkJ64V/FL+DA+aNla06SRmbA9p38o2NQ63ELAMekljAWCWfUsg3JOy4V556SezLTn+fNt6oPngJx787sLPGuhdfRxRkX9kL3DAAw=
Variant 3
DifficultyLevel
521
Question
At sunrise the temperature is −4°C.
At 11pm the temperature is −2°C.
Which one of these calculations can be used to work out how many degrees warmer it is at 11 pm than at sunrise?
Worked Solution
= −2 −(−4)
= −2 + 4
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | At sunrise the temperature is $-4$°C.
At 11pm the temperature is $-2$°C.
Which one of these calculations can be used to work out how many degrees warmer it is at 11 pm than at sunrise? |
workedSolution | sm_nogap Degrees warmer
>>= $-2$ $- (-4)$
>>= {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+SWGeHKjqccDG86B0/XEClquy2hkYKwW0Q9PDZfmyqT4SoqjKx6T1ubzNqeXbuMkCNqykx5pVyyDAx81Snm2bMRrRN1y0bRfOfTw7Aq45eiMY7PoDhCndE0s5DoJ4RIfItewzDYVyvSZ1TeWZLfGoXdVGcjutI0+UQuFzHLFDQS6FbyQIYufzHh0+50lwHpdrpvJEgzHn0Kr9ThoR4yuAEM5vmDg62UF+b9VxNUClVDO9g4f9ByABCghNUP83Vrmr8dZfpse51q0ZHnBdhwHyMqdauuGCzcLKbxB0L+nAnsZqPhOOPEhNPIMqhHUW2Jq+dkyO2HePMi8PwAS+tvD1XPA7nnkd7QDHRia0OOg9QkHQfPkiOmLJw+vTFw1pbMnCxFCZL0ZNMwDuamwbEKdc2a2iXsYzD1XhBYSlb0ux9+ead1mj0G4ompN5IDdw/yw+/2bIqtJam6Z7U1hv4jNYLrb0NfrwiWs4B5FhtC+k5gYfzP1E6MOKN+BPbet4149qlbqrVzt21qHIQNxuzRQmK7ua1y3ibokDvxK9wYBEOIxMngHlzuF9YuT0bNqLSUNr3TYFIegs2lQtf0WXX1HPJhcHlkKHHjufrsSYW1KweGeggTZrx53EFirrl68iS5G06Jp/H5/yBV83uHGTdw6NtiXJUjHHhvkCxoltIZgZ/3A/QAuHzz3WobIuPj7kXQDbZiqGO5mATXmc3DdsbVtXactkQ/eBMV0PTJ9pW2c/VoGNN72juYs12oV9fyG6Wrroito11cvngLIunhzz8XNmIP1tFSszaBygPPrA3ZcMe2X/ilpxeiOHhVLFcKGShHWRXtI3nySyYeZ5Ta4h0ZeMnOFhJghQFkHBa7MWayio+3cBzAftZCBlBwuZX+Fyb0a8+QL6wIVcJGHoI3c3gcpF0LVM/1xUjZl13eeJZH0wTVdvlGuDTBu4tAlulX8H0uMvD1znaPBQ8O//2X9QStERL378PPxXVhlt0fhbjX4Jn3Rcog1fB1aqOj04k/SQ1aUamS0X53sEZEiMTNk2NnNW1ZYv8eh9JCDjb2Hr4epAv+eZoxrGqh1vVCjE58bGvrNilTFn5Tdc/Qh7RbVoWaDnSOFufamUTYi/cXuMaT/qJx5xEFQ/OJ18M0eydt4Tab12JvIQgjPzbCOE2JxTaTkAKxD4nduQ/LUrYYIXhS+TLIErqBevnYacCb3S9Nx+aTGYGOvGldW18gRBjZXFkxT9a7Mzl6Hn9DmBr2lPCRNzxddpL+WRPRsMmdzfIUvBDswavB1SlD1XOHXb+k5FLmvElKPIFyra/a8h/PylEsiqkM6xmq0XiVRXsHZe+JDyTtyZz313j060SL3TWfnyRLSAeAzfs9//8+TdDrs2a0yqHs3TQtQlfqtAU7+IrFveu/mWLHGsG9BOZORRoFkC6+N/Ekc2dsvN6qKK7lveGqQ2UFtn+CaQydDN4FzNR4k7jvQLD5J2Nvan0ONkheGLHbNHU5r2PRimlpx5jVIY8V0vks+B0g+QtXo9/g9KGpw2O/KtpwS69cPVi9Y8/WwgfOAbkMQXWtRoUZumePBymfn3EQgw4vCo1RGnuvggsBNhhuo/HJ6hBtLDOPhbWB4ujNbE7Y6PkSWr4xMqfWf8RII1JYAoyONgSX7Y3UpP/PLoemjf4arIu9kMyBOfoMjGcxdyMyrcetCngv0SP47eOO5v/3h1sUsMuAfleWaY1IVeogeeEHotZubKRdMBpW8DzUf0bBz7XSmrpYXPdvE+I0qQeG1eynObOVREzgXPKiEiDRGcDqjoNDmgbHA/gq5PcVxR0EufGtvUBsJcY4hyJTVqMH1veSemHoPRoqkzQhT45ji0jYuXYo6kxgt04mdVt9LcCgSjYhIifqVbBOg5kHpJE6mAvmjc9ph5+OK8Twt8uhihmB+A0VY+5M56Vf0cd4Aa8K9sMGjZ7SuhfEer+GUlz8zTQIqklkS6zW5Kke4jepefIZGsf0lCzDB4/xCaiEjUvKR5DbvQFgIPEpIi3ImjB4eKTqtO8+T/cUF721arDI17PCR5C8l2dDzuChDCUEeF03STbFSkSdhta4260JC0HIdYiZb1LWu1fPXvRJk36YNNi9kRibv/QYx1d6dymYJ6nRiO+vw0kgmxePwVriXsezoAutOJbZgyTkvbhlErwaMsu+kOz7VUxXjnXf0QI/UnQ46ie2fSJga2ALGGjqPHjNwHQhrDZLYPYY0ldVPyGM8Qr/fidB41QQ9yeol9PaEm/zF4PgQ21T16aFXBAhQc69FLfkQAYlQ06t0MupN1w0xW8dWMezPRi06mmZcyecomkgL/JRxs++hdgP0huXpzupk5UjQ86WCZc7G/Lo8icTo+UevnKbLZuztLeLt8uCjRIz+12C2ZNqWS/QnrtyoGadlBoiiUDky37Szf5aLXXP5UR0Lct2Vd1EkV8XPIkOx3iVPnhNdDnmtdKI495YOdM3jr+PJIL4M6lGqpWPR0ZM+DLiVUN9Ka661ZGHZOD2R1+DQV9CnY7mN3h8zKV2x/pJEMTw7WKBG9597dYF4F7iQiFqcD7+HTvB+8IHIG2dye2e8ZPUOHPiOIKTBXAuVJsmoS+5PIeckeU63uFxYeLi1ZJ+Q9GdMg1yVTvJBhaZyr/2CeV2B8kVehB9oJH1TJz5I95Oi3EQhM8RqVypwJM1Yuab6fg/1pumLjTaCmt9Qdu2dzvGbcXItBihnd2XLBFc7EgTZHdzVWiKcPLu/+CnVDhHNuTt6tgBxJPzdiwqRvLeoY2/LOBndYhZsW8d96awz00djMN+N2ezBLf1z0Dhs2ctkG3h6uHmJYAUZCx3vAtlJ5zCB6N/ji2C20jYYDYTkF0hYC10wjG/8HRnP03P74UMfGNgx9VPEfBrr5dPUvQLTJQcRlNcvyxmaIXAA920Dk9cEmHkNf1RHuQxCQYejhzlku5jZPSEjrqImlSbXEwUrOm3sZR0NBnAnL5IilwFRymnhk2/9mp0xyE8odNu3uSVf73wiH1rabD4fjc8k7Pwhn8LjWMrsyRdmjS7BMUELjNxzoqWXXeqXI4FswxIo/qaBhGqfjOwr8qztyQEAHcDjlz3Inh4jDnuw9DCHTGRxbqq4oBZ8C/sPuHeLOjygtDAvRxdg6+LX1HsYn1bBLyA0M+ZmMGOdsR8HjcCXh6f6SFdz2pTLYzoRSaNDiU1L+cYLQiuqtAxyeMbFIHhjX3S6LtcKRJFYwFvSAGvIvNS79X2lQtm2UXRFcbXazykWoV0kd+0TR1xfuQPtTc+1xcKT2lPGAAoI3jY/VnJTauU49u7VCyvflseqotqthIgh8Qw1bLUQuA/j9Nvp0sheac3JRPJe3TxRyZsMwvq9aXxR0MBgZcw1x96bKgmD0mz0dRp/q843RspThqjScRPUP20WIqxiR3YccIpvmvhjAOOofjZYYWoutBqsaENzf1mQUJYK3P1Dr6dsLszDTNUqRfai4iGA13hKoDdXDMxp8/WJNlFGuDKP3dfO97qpiXeIYJGk44IXl0koYc63S1YQ55hHLxNuV2hbr5kAeEMJFg8Of2HHxmJFRQlSWQwEuYT9WDNh8l6jW6TMv2M8qB17VvGK3516iHkGTZCA+rGkRe2pOiZzaaBE+osIwX8knyWvK+5y7fzgl58UT7I9Cm4PU5EkSW26nkmuMu+abZyUL+hIQXc4Xl2O3RCvqmV4JgSiHgb5yay8O6XLFfgK/txpsrhwDksOSLdGiBww/ZLE0QR72b73RwB6tsVMz2UtwdWaWIpFrFNfgJzRyWLNJoDNaWl1wXcyegV267Mky6b8RrY7+93mVI1FLkVtoh0xw7/oKGfc2mddX1meCZ9Ai0zgnBcnSxZz7Z9xL/OeSNeQONUjBSIpLOuMJkX7JBqWMo5Vd9P3JHjS5TtxLu25CbFxYhqdddcqEms5IRiopA34tHdNNXjB6xstPmw6G2L8P2I27ZxKPDkIAaHutslTWhTtCyDQiB4C34C9ohDxcZ4RQUAPf4z4J0N184i7A1MtZxWZv0DD6dp6IKS+W3W2rMUThiecuo2VO8llfwhQiPkN9zOXQ6oaUcTjwjQCPa7yck6+lXF2zlBiz1949TMaKXPm+mu5xUxk0elpv6hNey2YPHPboGgDDX1VibFiSfT882a7cmx3M1sT2iuOEK9E6fKBxUol3iaOitiFkG9KeavHBaKqOkKnZqevELGY5b7wmtn0VkSQ/K9jtdIiZQMY84HU/lvL2QHujivRuWNQ57lzFwvScqmTlp2vE6YkJ3rOPiQvO+ho7hP5X4tqQZgX9YuDmOuatQkEyHJK00B+os9ni4TMxqnGOr1AFqQWO60yXUqpSkhX6e3jEr22MK2BoKZ8krSzxYISkc6kuDOdicyaWol+D+Q37jHOQ+DfVH2NR+nR2AB58Dgp3YfflKZMJ7hFnlxMAsAD70EI7SdL31WGMJCQ11NRV18oy1wTTlN1rpCstGki3zAyCHxUd6otCpuwECx0T3MZRiJugoYcjbXNsCXx1AdvB5jA5uP+8FDuwZvga1V/tV5ipOlY/VXMGqUH/2567JQKhMGCbLxbLTZ+3aSMj6KVA+3Jfn9XM4YX2BD4Sr/DUXD4CMI7E5HuPs0SCfTPZHPa4KLv1Wy3+0c+BFal0f0+2PzApJI6l6wPWRp0z1yJuOEZs9sXX5j9Yx/PNZTe3JE25II3sMf7yMY73VUXLuwWRmurjXQD50X7w0RyveFlEFQiaXp2Skkzm/BFU0DVQP8TD3fT9IAyvyl1q/TaJC3PjuUnzRNHWr/SG2TD6YH86CR16IcuK4e1mScrIitVnaokr8CxdRnNzU7uKh/4LNpglUdohNjLPGSg8avaVTp6Ogj7JdfhTtJ80QSHPNtp4s3xJYh4OvuQ1ll/VjtoSE9BROwoq1JppRGnI1HzmAl9p81PJq/evqKyA9Be1//mq2ALUaZtqC9cQ+bIMKx11UF9HEROrFg87t+QkTOcyOWmHu1HFjdKt2mHlVZtb7k3G9LmzIQwIwMs2SvIi9d5X+LLVMi1FLWSxxQ9PnEW8t5Ym4tOKEGp2LcJTuk7smdsRLc5J13C1d2C1P4BXXNBVKnIUhswNf4R+FixPYvKuK0et/FS6hFmeUm58DzQmmNO886ePpflZqpd+2Tk+/0FRfJTVYzjrPV1OjThXjuF5iN79hVe6+mQQS6WyVMs/hUcExu7QZmZH/m7JQM0zfoPczZgz6hCHejXRVzCZq/Ua0uofOJpUanHbOS2IhYTUqNeVaK0HOEKkaAx63CCGp7mBokqIokprYRllYEZqhznImmfsXz81Uj8pf4m88SnEOS9hNLI2MliyCLDuZCqt7nljxdA3VfFmZ+WLetHrUwrEoRBLiUjYQ7KDw34Trr2NJ2kkFM/HS0PslDQIkULuSS+j34NWYaRqzNMl5mrjE29Ycm/a9V72b6DFURNdrc/dmP64V9X9BqakM2dIVeMdOEt69AqwvxD/sC/70+gUfO6fE+iQnLyftFs3j44uSoNNNPR6IoTuM+jV5LK6QrrFXFV7Pes76hboCGDphLhhZkM62gpHmXSaSPLWSM+eDc6dP3qFzsnmawWXAF1dzbj2lXwyfoP67aXkcKJLwjlqxt4XUhQBo0dnfShS73vWvJeYHcu4SCn/7xUC+ZUnFCGQ01+5pBBL/hD6ilAv9faKnVb/n3uQ70FSZ0J6jiQNAJhKWuz3OuEk4X8jaOh39M0sYBw5TNRtP9osN2sPcL8x5bZ/TecYht7UG1pFoikCNCRsBcuJ4CK+/8aYlJ4U6rAteFj9lPYN5Mnns/mKz7yp94jpUV+mrHchdNCTVn2upJxWnosU6YL6w8+mVqqNPEkg2b0flYTnIK7BIA/ktoLHUsyDrXjbz4ttp2qA+cwGT3/mh2wC0QUO7wcwloSpVHbwLuIWs4+dK06fBmfjGkS9xptNLZPRcojtGZVPpvt5RcLlqfWlJOd/Q8k+1Ie57O5Lu5C1vnHEAMqtPU2Ps/yjCRqgRXEo7V2wwMbEBgaaR3j1Udo1KwjRysvmT979NUaTjpyxO01DPsCwAoP8xOH2axSZ12qb5sDSR3Iv0JpETbVFiq+FPIadLldRKYcIfmIY+fc0ICdZq48b+BNjsWxLbDlezupm/qzFfBiKb3rx48zsSk3Z4273gicnzOsfZXQJuZEsOpU39UP4tJOcZj3jUwcsevpj/my9u5kmRExtA7JnfZ4dLOaEpmAoGlUKcd4eZ6sqC15IEmAzCPOovFKjs2Uxw/D01exTcCA7Komwq6fwEp3hvuNNqdtRgtD1+pkYLVh/AcKjbQenA59Kk4Qdd1jJsIusGyInEXEOCql2hSd2A5pm4MwDxHjoAmEd+kC1TZmonKPwRwDyfxgrByqyyRYjP0e8ubkBi1apohH84xt7GYajqaPdKfR8Gax8V8xHT5ccpfsdX7124zgFfzmPIIKZ+npnp1BFednwwvcXKCyHNSdY4359CjGUT6aL7dzml+qpX7fNjnALVUIzj/JhOci4nS0lkWh7r6K2yAAJti8ZSTW8YvBpSKy6LJaUnHJzWZSmiFPI+yZUI8m4nHQEmvCX/r16kJAF0HOdml2a14rmxHdOsPjICe+CdeIhUsGoM2cd4MpK4h1ja99yRi3ch46YijNXpsOI9UqgVCNFVcPm2KkctbKKThoqmWujeQx06Yu9FS0+i58XjU47KGwSo34Dn02v0cMUs7cPaIk1ewQ3Lsnp3Yy3UQ+BmxtqgAWOnERqhu9vEderxQK2O6ogHemcOU4gOszj4fbGOxb3AfVsCVKv9EnUAEEnQmsjNsq9rvBnKs2+CnLNCIW6AAH0F41j7H5ga7mP5O0JGH3wfyNyCT4j4OAvGQ7/9V7uKOGN86UWveHzXOUXmd4VfGE5VNLDhXoFXe8ngugLptm7ePUCXeGCgLMqS8MWDJ1fXSUxnrJKc1AknfOsH6Eh7Ot4JnnDATmf1ZYeQTcXgrYzafxD2xhzFgD5C6yywDXiFPFql7VHXNmrgTAHMU6gP5yZgIxcXaDIxfyTC6XvMWRAPoPl+0C/qfGBJCX3p76sM2H8oc5k2cD1QO0mtoXayb4LYibD/vEG58BvRpxhbYSUaprpbtDJnjn29O5bY5JgO47rTPWeQMaMN+yF3P6M9hZPDTI2hd5FuxaJ1e7RL+i1xeFpJhT2XfcQ/u2/3t2IzJrWrNxH6js1mIQAoUyi/+9dYd9umedG4daRYqtAXwqXbXnj/tqpWRA5CZGtobMtmvg0Pg1KkDrO62SGOpZG6SA5SIsI9WZuN+BIQGiE+LMXOsFXmrPmCUwwtB+6THmfeNXj/UHtf6E6/OLjEVRs1ziA7XJj6HDJrzoilvYALxyY3sTGVZqLOyHZo6jZlM9oPJ8PN78QPG/KVTBDJWw/lNNTOFs44suP7cigURf4DbK+TaEkGpBEdVMvgaU+gDnZEIgelK2c++LceB7QSfL+ub9LI1ow9DZgGX9zjF9lYhKHN5LUMt3I6NfV9WHQJMoVRFbEIJBNqs0lHNlUjWEr2y1sf19y9ehbraYPokyx7RIlnifVBEkZshlQPvL/fQhYOmx1Rea/v/pKU55QE68PuSpfAbtOcoKyj3tgxbCqyz6EVL+aLVDtPDxF7MnNJHeKBs8z69/OVj2ZS7aq1ntF4jlxs7uLND+GhMTubng7kPk34JP3i01wFp6XbtIHX7pH5AKRpLNKWYDz/Nd4Kncu0Bm+8LSy6pzNVj+I+EH6IekKu7YHVuGsfGcLWDPJDBbHYcN4uhWMli5XZg7gNauFbRRykC5mgP3w9aBc03pFUe3rXbZ2ls/c9B4XTeLpXNVTX5tVHlzSW8pB9aNxHWoYMFR5NLLLt8HVPMjGnI1Ij6H939ZsJ0sHbl0McqNBfeX4jLRr2IY4erGgwInl4CMqDOh8UCWUyZqkU2ZcZrJQvp6Nv6Zf0ekViYd5ApUBmrC8ffMb/ltd3SSzJCGtH1l4bqg2cwiG6YjmvoUBS92Dbmgw2zF093QKI1bk7iI07ieJ2LQmFg5vOAX12dEmlaQv+L7NUWqimZsONYVohhj5Pv9NT0HYze+wq6qKLaph5QDJq3LUFok23bW9PFPwloDLfPuiI7q3emDM050f0gbH6LTVvRjLqn02KhJhxK93vhY+/ENbcx7enObRK0BARTQ7eMCuz2ZZGe9wV5uRo5GG7klBfAEuT0EgkQz7lrqi2umiSsMO7Vb8XjJd0BNU/JuEM47qQdDN6QP7hmOgIgTBn5qFcw54eO++AMNMNDQpp/AHKFlkvhSZCQcPCVwhygVHZ1hZVZUq4D9mqOBWE8B43E98S/ekvKoP1478pBtmmkd3SxMt024gLljhvg0um4G/urLI562AVQj6hTVIcYU0qMXMbKB1FnYsHvhqDAc2N/gsUk6893/kAD7ofP6YtUShOWa7tveWr8AhWPxG2FQ==
Variant 4
DifficultyLevel
520
Question
At sunrise the temperature is −8°C.
At sunset the temperature is −4°C.
Which one of these calculations can be used to work out how many degrees warmer it is at sunset than at sunrise?
Worked Solution
= −4 −(−8)
= −4 + 8
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | At sunrise the temperature is $-8$°C.
At sunset the temperature is $-4$°C.
Which one of these calculations can be used to work out how many degrees warmer it is at sunset than at sunrise? |
workedSolution | sm_nogap Degrees warmer
>>= $-4$ $- (-8)$
>>= {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+6vJHxKdisvC71StWZQ6U3xgKsJw+pb4mTQCHXXapCXziVn6G8GZZ94m6+Y3UKkkf1gs5jhGT4QxZ3St5nw6jH8wSfSC50FqcXDpNLBjG40eOMOl+2rhP1AON9YDp11jfiF3nBNpyL2KQpdHqbI8+zx7kt9OMJSTHDWbvTqrNbq6CxBCTf9nWXAAGn6JhAyoS1IVfNB2o0D90jNPSYZABAbd+PXChIuujhbM8v6pEBLY21hRtDSxGUTdl98QAAGlo16SzuQWZN21hy54UavXLpvndXLAdE9IfErdqmJzmt9G4sKLiTcXbaCMf8mAAliSsS48cE/wsWqldE92+V962tPpzNtSPqkkF7eNFwn8HuFmjeya+SQGqdeGu1r6xal11AqRhCyJkmBmipDG/rBzr/ReqW8hjSletulb+FVmUNCozwWTanaAJuq9KCknUnCXhFM3NG1Pv+y/HNr9E7DUYJs9gG2pj8FXbbrbWv3wC0u1iO6KlLOh8gnPM9uzMlBndWv35W2DNCmD4VbeTJ9Sn79TxbY1J4fhjRR+mablfWDTEqBvKdVGBz8SB32aGj4IpcirA4fDHdwW6E30WwB1Wx/KHmjU+7aiO6KU28W5iTFz8ozF06yXRfxCKxRsZLSdqkr7wCbUtMuOZ/N7kT0gr3Q2k/uj/ZWiwrth9UlqeAhMzP1hnCs3JnDUj7+MgLqCedwKwSIm4K0efw4yCT/4f81hGYRdTpHCi4KAGCocBUDB4wW4bsdYiojhJHz6aoGkopIOfuXAFaFbJ+Ij0EuBY8KDgXSKnwmDvG6hLq6yIM4+NWdKljjtQ8qEzDtI8fpwi1vtn6COtuUdh6i+ddk9194xf2rYI77jTRbWf4GTaJQq9t9lkmGf8zAFYMCnal6sVBDR275iHt1XSLhnGjSeBSgTQfeXRRj3meYYGdKTMgE55lmTE19SEYOy6gHqqHEaCFOeZaiyNF3mq2BNBSYb3ql5Jc8ePXqeDarTpJYdJ9fHKhWFC+5sgke69F+Vq8b+OhDhCycv4KZr3oQ5MjvoHgCBJTqwmDV89euPdXbutEc/ENDensqEqAONVmtXInxhQ56zkhcErgoO+Tjw9K8gtGSkuzUhubmc/AfG/HgFdzEazkRLFwP97sb2Z/yXhdLWCXi3ciuRQXk3qo/wGTuZssctFEQIp1osFV4E1xFCytCBU8V8ldz5T/U5Rrfo4Dih6lGB0GsWpgOiwmLweeJsvOoI/8K/YNGaBidYs7OlHHtxsNvn4ID2x6HV3GbuVgs9T4le3su9f/+124buZ/+1MbMDaUPTX/URB511bKJ0IcZIKVFtYtvYtWLw6kxo7WT/QkUGvgsB8R6+gGkoEufHdWpXIKbQIfNvAWp9QUNWnqTtDN7sJwN6V4Yov7OZfGnYVHuX5q3J4uVHurvw0BasxKxjy1PabbyJS1cmlxKz2kcoa7f2RAkxk51T3R1CfUF2bJS4hD4BqjUUP00l3crgFNVv7QZ9igqQ6CBEDQLWW2teaykwy0m4kAcGz3cTzJkd9wwrtA/4hrjTWc+23hgvxfu5XVOWt6o8r0VivLDEY/YeJkbYxlOADBjJcZUnfAocxJu0GHImlYCDnHcGu9j3dIr0BSS2kM6G8tu/gGZstM3wX1C4UCw4z3A2XE551K9/U87LiLaceFNy73mEEqPKzuNzPq8RmLqAbkej2FxNFf9kqPp4/2MIc4c8t7v5G6Sf2YxgsFlQHI9DjQRTlwhRwqLnF370Qa+WcQZkp429yGGIInBVto8oynSi7kg/rndOoMW17UtXSQmmRiavutB/rB0CYPOXCbPSLg/wxwkVpAY/TeswXvnUw9UOnNNqCdvFosPtPLyb4GYreKx1bXek4ha2ILA9AQWUfNGYaYospmqBKduQU0lp7wt4m7+SgiPl8poSu/WI8yRtXYT/vw6YIDNvmQJhVSjpHrEWn6CuWnn0sHMV1SPTDeT7kA/9Mgv3d9X2uJGgnfLJqaaiLVpYyzuIQNiKlBXj/D+zRCP0wEtWPSWFixtgeGQ1K6Y5+updbserX5+J7zFwnb3FBx4RE10E5xd9JY5bai9KF0yvMLUIwlmysLrNf88HlOWACzCJwmKLraAqspBjCVzl5ZnWHdz64k2k1gS8QAGnKSOz4t2V80WdOp5RFVg4pRIkvklF400Hf15jJDeTiFGzyZRS53NoJEZvii9fITz2CMpp7jNF9dYf8xxhL2IHm2/L5g+/w8L1OuB8uG+yVeYojdKaJzToZiyK48yRNEX8J6y6NZweYQWPbvBjeNCJqopZn3O96fcNZvWgxm+fTMRBwH7N5KBSyXrrqP51DOHFZTBbCNBi7XErOHY+2OXqM73dYvGxsgFnUQRcKXma/s7p9NwHRDrDPcbG42SCqzGlBbGG/MaIEyszgX4SNgPKnd7rFxaathzfS1eE1AACwHhOtRAtknqnLIBzTpeqZIn2bIpdNgSxEphsjdQtmzYm92cdZaovNBEhaURo9hyYAO5df37NviaUyQPWfHYY5jIIlROdPwwKMaoH/HgevRnPirm5oJ5v3zUVPJJFSe4HTg09BSQgrebaPDDWItaepurTgs/9tLtqkcdTsNW0zhPY8W2zwWcsok1ZBi9oHBrG0Qj0jvUnR/vBLoq2382y8HtL2UherYx20obhcXFMcJHYGh5pzcizktAsVZwrgaWzXHfAmsVb96Jq476nWE7n1mswcNrwnfKlUIdf4Xx18mnpegReDD5q/L8r49dqZVMZLkdoS5QsMVCp53wG5EY/EvgNycBAKR1XUxwwKL/v5nKAoavXCa9J+aVJaZZU00nSatqXy64UVUqVt7uEGA/hD++4v+fF/ae8X8mwe1k+ouyXlYnPCmSObHFRqPJOElmA0g631Hy7HBAKGFlgEP/iBtpSxnO4kqWfwYnc7Z+z89P+zDmQoIyUxvjo5Z/EolBuzq8+cdhSFNWojOACew5m4g+PCyxYz+dmG06/gkSpMpHXNRl6ubxTkEB6UoiUDWEpJpsAzcIpsE7NFkh41kVYliGn10aSSunnTq6UaCijQEZu43t5eaCaRd+3aPqq8zSHrjxCPxL4XKGjQz31eDAfUdMuyopzTQSprDT9m0vUh51jHeCgYtL/VYrvXBgFo5RyCNvGepq7bVFATEkfIUMqXlgzT+dwdjhgbhGiwle1ItNM6WBxi4XNQh3KVgeRSuyG8fcVzwonBNwwpMU8CZKynfmO+pgWhbeLRen1MfnUgbd6ZObZ+d3OmonEpDTrOYxvsk4JxuRptbbfwzJWht8/1i0H0Y7hkenvebaaqDFub7ck34NXGm2mpVUzMf9OmtExvxMm1z2SW9fpDI0HxU0ZZ7+LhOJnwJtBcmEctG8AUcXmijQTyMTo2PvSJFnY6BnBlgWh6Pg8c2ymAxYXd02y4qCPX5zTTpLP5Y2lZ4jQdrtjTDQpWsz0+Li50ewCcjXLXL57caKY0N6koEu41ERo7icAL/8xXcS08DKeg6J+4ofIc0eDkK3k/a51SqO4s+7IjjISy0hEO7MDaJUN2sA5tJH4scBH90GsP1mpZTYQVaOVdNb/FZto9k+xVF6pBUMfK0QW4/uS9mPZGdqbxKdP4ldvhy8KGnEguw46Tzl0sT3yChfBFIXaPjMbNMB38hFtBZ2WbILZpYdnb/6LF/YsSlEciTKRj9EMkRN3qLZ7OgJJR2tkHogOxaSG+jQGGTgIwXEBYnESjaqajBVD7s6U5qq98z7UTNIeduLJWYmEo54n0xwzuraXJ/f2pmBgtmgMgkC8hY8YGZsEzqxXuVCNKFJvhknZw+rYwsi39Pyx4O/C/bSdthacReo92InRa04S2DGD69eEFg273IfWd3qvAFW/9vYBd9gjJLEwCeDnjW4Noe5P179Tp6kg2w6OjvGVR4Gpk0pq59XwMfApHKKscd5eYqJN4HnJxMtxnxNi58UuG6RYGWyBFDkGrHv87GbxSF7VS2TfvUsIFr6QwhrwW8T2oM01/RykLaIazlsk0G8W85UHn3GyHo+ER8yiTjfuCpD8Uywn3Jr/3lTXVo91PXWmJV1xgJrPS+iaK7Ho7vyDOrUlXGaAiHBvyOslPFCabcmcME/2SCKCvRmHIosdGF6OaDm4zMouScTe4CVHCqI3zwMMfP3Zal5GU3Dzoj7zmkflSlqpjBdfMd184ChQU27BW9SJG8XYBM6kW+h/3jrVb7h88OOlD5/ouTT9Wzt+Cw8Sujo2IYHOhYZSHPGoUgE3ch4IKF1Fp/zSyKMly8u/wli09JLGge6PgG/koCUOrzy0/pz8SPTgKyGE4l72YdbXIsqVk7L75w+UEN2lzEqP6hL7A5rMV/nYw+LEW0HcnByHeAA6QjrPTRfX9tf+trwD/e2HqXVRbUJe87guDdI806ROlyuFC3rqaTmAhuVGh2WiduVve03wVG7UxKUN5XKwqJVrdu8m1dX1kg80z5IMkXhAD5z/OFW+OhIj2icUkceBbzPdREX//XoEVJKdlE2T/i0CqzVEy8Z4lIEHOliw+TMjTPJ29T/r0jp6ccawG2Oid8K6AdzAM4VCTz0/3L7v9M0Yer71kUQbKRpADp/p0tiqKj/aBL8MeV147HMtMOg0n6nFOnDI9+eWlrpr3vWuHOv5BgWLS1d18uQTNbrLaoBohHFSEHJL+IWOOIExEGgAwTshv63TYm9d+cmMq9J373cezmClY54k8lHFYzenVK6WLPA7WMxTBFqWjtljB4Yu3863WllXw6ljceVWk3RMHPX6EAC22PE5TTE8tk4aXEeKtG8EpZw+JDZzdu7ZW8Oscd5nJxHnh8uTwrTEv5tsWyAHCYq6rKn9pkAsk/ySa53YCm0xxCUnhcoaUfrXoQT8Irp8wjzOn9OTPjBmtwspYdKg8QUrV4t8efKXswD/Np2aMsTdToh6TPXrPBiO59s9gjHMFoTVy7vagIpAen1ZjUZZjFZo9D2kh/b++z/79s1OAgF+srpZxSZlNwLKAaoh6oQzsvFEVvjHADV90bIrCZY90/m4GW6p1oJF/l9g7Fk14E1t979Vl5RBJfRVPAIoYd1zk4ToBfuUfnANylxcOYha/JzHIoQfEpjnqC68AywJ3/DUKITWORAsDILLcUD1XSuJXbtWXy1TT45fPP8tvZ7YHKi3bXQcWrnCqOvg0ok8gk/NIdRUYXkF+uRp4aXQt/PbgGxcbQwue7srEFoCooo1FRP9rFZkghZDT1Kz9lkt9FBpWJYADx8cdbxYWB2rHQrXk4c6cHIBRqyskL1tGGQ4I+L2OOOnNWrP0tQ2fAUEalljIlZf1/84X+uNEIxkjssZYe6N6LF669Z0+DRNH4Rjs+UeHJHTvUUbFFqFoFue84j/GE0qv8LXBQedIqXkiQQycR18YzDtnjcuI5wiY7BBTFjM9PsKuA0OrCb39WAq/UuoOg6AErEX9DvlAQXqIkNMuS1rh3dEzU8NcpgmObT6ll4MNF+kMF8zJHK4ECFGlzuwNqHKC/5pG1nWPBFwlgfl4iDMULMlxaAX6IHadwWx5eajhJxe6cWV/bKJp6E7Nm+t047qK9tA8XodhazHT3+5mKBAmqoP6WSSU9qhfk1SMvXyTmwNSjUnoZDPATWgBbcDtsLOhYf14imISF5YaPI0sfVcJpm8dMzajHTX5ciXmESN5ZRamdA7Lp8Ol7kqgLdrQ7y+bP/FhCK41EYkFCLbwJwyCWvTPkc1Z9NoCSG8a+MZB6Jm4nvvyJjjeszmsXiIK1DCyo/7HzkcWsIuXIQkHyE1q/b9tq1LdIVUAtwsnDegjLpmWQJPPJnI9h5sfQeaIjt8IqD8pXJXO6t5PXXwLfBSh+em67HpGu0tqeBR1Asdjiq8exCpODQGqTqhJl13uCnXA2tRCpeXBfOyYaOWb5gin30neVRG/ey/nW1npIViwUJ+WkQEwevj9TgJYoJIKvLUDDz2jGPf408qWX6ShH4x6uhGCB7/Qr228DkyyXKXato8oCH6LgkcBOTVgeq9J1LDcll4jjIW9csy8X2Gdx19V/4Hi55XdGWkm46xkjaAdpGdKYm7Og2isg4koCbH9R3PGqFvWBU7Zv4zNCrtIHz5hV58RM1NCDxxRT0KZ3XrGIt4ozU4VgixS3xbV3hugq1CjKJADUmXpZLyekmlsQ+h++EpzcNTdpl0M1XcTwDse4iDPHJh8OyJT5SjwdIfdxSoNh0EmiP2pR0Rkt6eEkzhphy8onO4MjrOXRjAxW/4Wt7oABJ2OC9aVv661y4Qn4f19YPBLUm0tcywRieMlvGXBdCcU4A5KRlJ/2RSP4MaCL8xtNnqp694mZlGEXXZg95lK/7y879zYINBh1aPjZ23xjCdNR+xTXRuORcfLU4QrEiYXpp7Rw/mbGKhl0+KrhdTlIKMZYOAJUpXNyD7lczCUOHq2OFWlSUbrBQB6rensmytwFOF8rEmUlfDa9AePBNOvUUJUruPFIZbOlEmbBGgrGX1KXYvlorNeaYa90KC9v/kNVekFoZM/BVT3++nkVQrmJf96t5c+VBDLt+pNLh+FB2RVIdlM4O4+RpAASdxdlKi5dX9iYNMIJyVKlNbSH5m9NCtDKnpYxwkT4ID/wsfs3zW8cIbVmoE9BoY01kMTkAaMjlajcqAj/b+DEyqdxCWQKvUCC7YLsLlSzbPzvIrb0rg8qBIHIR/jdQB62vAjaSbMPAT6mJp+Qm4n2DvwY9/ZQBcsF2jl4nvnBQYfCXlaW/UMQGU41fSDl2/cermYxst7yrPzXvjWD2byznymMvaxW/dy9c8WrziPEwcAAUZF8wJvD9sohqcPy2mYnrpb0MaDn8PMl6YregcjKNGcVj4QpHv4WZCIMPnD+vsUiGTQwin7U4P0oKANo2B1mYn62DHwCTOP2tg8WfpJP+wuRs3vWI3+mDGJ5Vpgcp4KH0xC6Bi8HERzV6Z1O8R8BjB98aN/hRJEME8E0bdDhFbTCHYzdcKHNiwBN+BE8zPgDfR2bg0DUCOfsAM6ynSoVokzS9iHGwS28MkHaZFG3MXz+VTm/rYTBb+n3IPlAC4z9sV8c6NkhIdtcZeeeIymNoGKnGFAx2lHLtxFd4RPWhg+2iPorYKgNmejOgCo61T/39TK1Z0nR2m+QpWcs7eC7ecxLJ/QFnAZBBpZpXkgd+QN8mkC3knH8f1lmydoGIxgJGoSn/G8oYVrn39KNTkfHnX06gJsI44qc5a9UK/daZn301nI/K8DWooupkdyLdtI0zhYnuPfHWnHKRqPskgPly0lrRSZ+Zgir2dVj4OHXluuV6GTuqH87T4vTOgKvp6IUGygm/TJGT1oMZa8fTWyKXYnQbNNOnAXI9ZXTgS/x32IVifPIteac6M7E7zDzgb6xVSMCAyHium2Rx+E71a0IEFxj/x1Sm7Yp0wcRRNBsSOpS3zVmRQRV5JrhFAdo9ncSTTILllDxINnmPLdEYlZrXGL8ZkE4UhFfBYB7OgQhTsdmTrmiHXwaM/gG23wFwZC+Rq7StJFmarn6PsdzExSv8HDTeaU6942Bb80rUAtHw940lutOz+BeqkCV+Y6OtJCMTIffot9SAPj6EEQFVv7VZt1jw6NIQNSw3kOAGJQS3JuQ8uDEtc0P9zq7exwHDfY/LGV4cBQfyDdQ0aqxiL+x9ZXHNHeD/29batXSs9lVmhZ3ukYVaF/SfFU8rqtKxQBQbqjhl2DdT5V24ZkdrDEX5cyyGgGqtBExmve1ojQ+KaFw9J09oodlXV8lEcO6LVKExiC1BB/noPV0mg1pljUt71AX/3mFMSIZk4fgbr4VfzYwKVWFGLdvHQsVHVYRm7xIE5C4voXFVJwGAlV2dJw9kJ1RKaMsGzI66FpFaJCTzcWI4X7ME3TJjNZrdvy9zP+2OE5cN+7kbmNDgGBMYHKWRX6txlT/RQO5VYIr6F9BSkIb9wAHwn+c4eWm6TWakilTg9DoHV6IjC0rO+S5ECC55QioZbBfKq9ln0+VwIHgx018EMbcoT7rVW2C8GTt/OAzz0VpWVlWZpbNWdm18Qv1k4hG68y8dJk/9Cr3bX9Ofrxeo+MVU+nYDcQzX3ygGhd2eInu/bTpAZQQzY1q/sjAQofXX0/AuE+ruJbKAPpKrq3BiBBAVIe3Glr7Kl1gn0GPNjKqYOT52ChVfAgFHsNiUn3eaJ2h3/A+OjmqPZIqbCnXTfRUFTkpIVc6YCKsqNMGKrqyTe8v1+wpS3jmH9y5FC0oyZ+Ht9MEN4ZWRgExWNNj7+nvJPNuxFhlLu9x6gNgfseVVsUpionfmVLotktbkPrMaid5efTf2bwfn1EzeUh9/jpmnlM5VRL2QD0Pmz3fNgERRpdgEiPbE4yL/SRWqK4Wob7D4kV8QEFECX+Ctm6OHod+3Ml+hYGr1i7bFUky5iVaqqNzxwXwQmHNcw4uYl4YVyYU+ZNVSAl6gHvyJEHTfmqlYGHm8tiJ0O79imZS/zuTQw/C6OlmWGrQqR6TJGlO+yz166s0tD6opMXvMhpmNxGKGbdNVA==
Variant 5
DifficultyLevel
519
Question
At midday the temperature is 10°C.
At sunset the temperature is −6°C.
Which one of these calculations can be used to work out how many degrees warmer it is at midday than at sunset?
Worked Solution
= 10 −(−6)
= 10 + 6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | At midday the temperature is $10$°C.
At sunset the temperature is $-6$°C.
Which one of these calculations can be used to work out how many degrees warmer it is at midday than at sunset? |
workedSolution | sm_nogap Degrees warmer
>>= $10$ $- (-6)$
>>= {{{correctAnswer}}}
|
correctAnswer | |
Answers