30036
U2FsdGVkX19/CFI1OoQaZOU+ss3C2UFRt1cGCcqLKE23Zv8Exen54M2m08ET+bO014SDlty/wG5L2JQlI6gGfgc3MU1nPh7SVjwG8WDtASBiPRM+U/5qYyT4kawe6vv1DRT09AL1DK9ORekg9ICNz+qen8t5/PzhgIG7EgcxkIRGCWL1qgh9aery9/6SnpThzyk4XF3TRchFesoqC3PBvhK8dXRb9cjtl25ih+O/+lm2nSrqAvsAIcR2BiQ/zkW6X8+9LEV+X0z9uDmdbpFfK6avtrfYjpxEkGW0lsNzMaWkAlkRctTks/W0LRmWs5xl3jIE40ve7646UyPfdg0RGDodAT0DRiygAIc5MUGNtbxpLT+NLekVFNkk4FeaoNlINDtyO8cONho3rsd32RQGZsIgMogIvwXV82Gar2j3M4Iw10yKU+P9hHQvrjYyBC8v6+67XMxSjWSU6h0bkQScKVCdfEE6yQWazn2b3EOjZ/9Z+auFxwSU3cEIS7XIvAmWJ8yVLkZN5J6OTHL2601DobAsXXLbuhXn0tSUz6WE/pui7rFzhW4RNDYWIhaq4oKEK4SLtV7PS155W4BdvXSPuQkkepufAxfBAE/L4RAC/0J3PbYK7b84DoCwgETQ5a942wYWAodXK5W7Miy2cNQRNCIUEISfy8mDa1TTMmqOuX3VtxXHR1zpfMuPprcK8A+eSkwKCoRJJLVkQgM3QUcCrS//MMkyud+3J7WPLkbLlV8Zyt+qts0OcCHcRXHxD0D88zrAotA/oSJt72vFI4PqqWx7nXiCBfr3v5AWnbTxMg7Xs6/i/L/yj0ICJytDo5u4QVNAV3wgJF49M6pZBIMb5itRrlXdjIp9UEt7R8m/hexS1xv0+qjJoPx8yFlcnI7RZADepqh+3dLHy5N8XJmhEFpthlwr2kJoUdgyihgZ5dHJfd9UHwxzVOzFuIL5uetR9Qu887C5coJfgTC8UV46g+lhQoQIyDBMJgUn29u/lQUUUu3Kns1BqOa/I+Wj37zHRwr+gAjidWPgShwdkQ8kn3IcAuOz3RT6HvQH1kULwXoLUQqfK+RJp3wRFXnLtLS0VOkrQZ50u20Iyis2WVNYPhvag1JR0aQV0FDD4L9VoEX8hqjFK4E8uhXnOzXbMbGgAeoHc8/DqCNcdgORTDk4kBxLO2gViH46ZFVs9ONGFdIzIxRpmwz56VSok72QWgAxuaodCW16IbIydyAttKOpnAhMH1InAJaB+xeaHiiG/50uqaQm9qX9zLdg9gaYJRHPdcvh1ND/tYRcW8jMkbA5Gi3reCsU7zsoEsGWP0oe7z28p29E9R/6k7yRHGl2nlsNp2hw5Sqn/VS7de7iNjNEXfqyi8NQ3Gtsa/ajIJtBNM9lr68jvUDBKpiLmJjFu3Hg0crtkC22o7mVWkkY0ggyP/gQELl2p9CY4aPTiTHoyCgAprzwuDJk26IaeowVaq2wvWi/DHQ45LSSZAOnH9rWyhzAwoFD138/Z0ANocIcpa/8EGCS3RV2RB4SMWBRVOCsL3pXQClxD9rfql6EFKTrriR4bKrXK2j2rHDS8SBnYGy8eFKBRCXm3YwMxsh3kyTxmrgJDhBD9FIbNNZtPHAFO5JaXJDLKDLH9jU4C6wa4RVGe9aVu2VddH+Ns+dHpV2zI+sm5xV9RCtQx3u/+BhIfsid3JRBwYPFMRWGaLIHLDE5SALJ0KUaTDwi1+vjCutK8T65vDV10Bh7Rx8yUdOVVOOYErrpw9DIIwFGdavlWR50rJ/Wakf8hq6hnsWSc8MIai09xktkeB0xmD81/meLUX1lHAV/MEytCwM8AxlEZnv8imFTmuzZ/TonUxcXrOOFHyKPfqADRhhVtGlICcmrrAryGgt9Qcipf6/s/Q8SVrNRItBcHsxRgknTK/FdG+7xzHuxFUTl9KFXDOSzJrUC42cUjewrWmgSWMTmV/Q2WKhLkvdNqyC6zronWnB2P8c64yMc7vZNGFtvJNJbXebCyqooXqu7q3oSQX6A3gkp8MzXLaS3wSk92XliJvbafaXzmfT6r0HRVeDqDdVIeVqGC2R3ZtNFdoylQHnOK+BcxMYXozZ2scNhD2gN2aw9OSGeNHdvnVDXVsJ5wqOyK2+WiAaIR5IlSrdi+3IQRvEREFWR4QDs+f6tmqqkY3NAruPhTR+whkledDBU8eeQde2Hy0Ix61IP2PY4E9F3FJczP9H0+eKhP87ezCp6g8SoJgaDoK0jZ1eRLH16rDp30JF+jqm1HaOI5F45lhATfGvcibF7GARFtBi+eQM9uIoJ8UFNHR68zUnoqpnCYwLlDLGjpj8fHp+szOslcijTPRQDK69Y1+tzXsLrZrPL9zFmVCjjcx0+wApCD+V4M8kADuTYTfb1zlrI+rARa0ix8bs6PIKWnwNTXl3Fhikz+7l/xwBZWzs+gtD1s2qQBRalZQ0IHiWpPjKZbww1VWUAJTck/+PG7g5wIte1ORQyOl8u3YIAgAVm0ZpM2U8kJFzmqyxxqq2oIsTCV5TXMIRM8EZkVEtdzu0OItfSQ8ZpbqYoFIbiMJVT8vD9UCFiLGyFNLMB6Z0Bth1SuudMip7PLyZOR6m1+JU1vBTP7mGCyFRhKnJO/n+zALPu01KzU91XRCJMxkzVDXYvnud7iZtypD0J2dLw92byO1CF1vGZwehuyUe5gGfLGgqmkPAOoAUs98BzdQ0txrbcAxhw3GWpUwGRTMAxKaxhBCgToNr0u2cojWtpyrp0XTlidPoxx4iLCdu2H0ymlnYi2WdkdiiRA1REOGuMuJxV89y7RyULCWpjsFSxZAT4iCVuL0XxdjAG+8u4axM9eT9oO96Uu2jYx1WXPyFl3K9k+qTbsa+zdcrAF0z6WZpx6QYKyTE4/bhvHf3gpqkZM016MMN7wE4j9kB5ltZXPjrUG/9RhnsyTM+0s3HA9RsnBNvffx8EBgoTc8BzY6Mtm5C7D8ERIYFH3XSzm8MTeXVy/y4e3uuaH6ttCVRmN+iTppfpiYbmX+Kvf+C2ASZ7au2Q/RkN9YiZeHefjQC4jjt7EpMj/HHNtOJ47P+Mc25bdMXIhpyLLnzwoBT+Ojne7m3UcI4b+KJNGbjhBmAlh1Hr5z+o8sQvyHwZhmuPRhd48RpcjEWnXI0cGUCQLqsp7881nxkc5m1t8loiLDQN38QXFOestfoZVPVBqR8VT4cE9r5RiD0QveuB1Ih6STmNgLAVM8ZwH4OoHucFRPvJCnb8u8jjWSeSe8EHJFyJo7kEODjI+42BdQJ85k2ocPzdvfpzAqQHmLoUpV5SLO3j9Penewoh9v35qyCQpXU8aHxhTupOPYB3b2QFfiRpIMHwjBYEav4iwx371dfl7HImh52ltAkpFrg02Ik5MErSaXCELbED4Y3HHcAlS6ZV6UPQ9rXUP0PlR1grzlZzhsu0iQx/JoYT+qzwmixNVWyVbUcL36OFUhqflrwa+FinzgO1KmVMC0q5pooTnqqAV+KT5KzzKzhi52Sy+VcfyK/i+Q3h0cm6gKjPk+y+p0xe5Wh7IJkfnxVUSo7izom8WIp6+jDn5wFTBvANrzbKC/ogcrAjqX/taAgGMuMM0dBVVKwDDUnpnt+GyueBflPVvMorPllx/5NLAr6S74we/cleUR0szyo9+Hxg7iOShppDZdWPC05awBk0D72Ew8afAYMvubm3dxNSlFkqNXr8WyFLM0DIvhVeTUYvUmxCk+vjPipjkElv81Gz3SCyvWzp5iJ9g2Rac+7FIWjHVBFHYKZZ9PoOU23DJdpTx2Up22Qa3jDbTwsCibkgF/ud9IahM4k1hDEWMx236FWITKvCFCixrUdk4Upd7pyYPcXUCDexaLSXLXpVjwmeuCdnUUaiqNLPhjVYQrn5ZaNuY5DhImHAbC9d5Dd3PrJUkp9mEjit98v/SDIwvdTvNAlR5gZbZbkmYjcbwgq/EqBWJU+GRofNiZjLxKFbszQA9PSgMHrLPMqmc8GrSJm3y6lVtjo42sPLvhPwdljl6NHhFs5UEw73oiPRkshworol2+LG6Ry/adgvOM8D7B0wBbSk6oPCn9rvyByYHPhLzr+JuGWHxjNDYzWoWSGs03lB/uw2vRn8GFT7e0nMLHIrN8D5RZrGwboaZ/AywU/czIXqiy7Xm7HQgJh071efJB84NByB3Yr+6w+gLne0mmz39mxEG1TBOvRzzpYVNxDZ4Xd2HSfNO5JTyAC398roqJUilC+VpzxtEz2tYte7V4a8iujMSqXsC0xERqmL2ufT35vQp0bCaMxJAQ+4WCNcU+VjhtkpytWhueEq7izF/9dux9Dk8SnwBSlN4oz4dXsOW4XSy3cjEQhO9QUUCcAFvoq38rjVz03Hp8Jtlh1+OM5THLeBgn07qFCJ/u02LCZibGVqhoILsmdIkHQzjjyaLQ4vBLQkl8sb65NRZVfa9VAARZ2CZhsYYTYhB9eE16myuRKA5jwJtwjkMgWmjsUnM14kndK1/VOEDcPi+/XY0x8Fhku5c/2iUgLTGeorIAPvRqyv5YwYpyB5N9n58xrgVz7iXKS6eTSRZ0X0tHZUIpooYDr4j1GJDPWq5o8YJKNGcIuuyrnEeTuE9DA4SKfIxT+40AKwSnrf3y8626ESjsYnU0Ul0K0ahQU1cAar+2BVTbkw5hlLaAX8vuo609TnbpmYX0pg7nR5kiW6VGYOr3T3xL8mvGzx4WmfCWOCIdsim1k3BMoRRxXpnQ3RY0TojHf6KIdeAdMKoButpE8FvZitnOFUvbHxOTTXGJwTqXSap5jX0mFVoPJmxA0kvyAPi8BFY+z+4ex2nQf+RaIiSYbf86WX7GRc5xFfjV5aCGMcO53BJK3fE/oflXMB247bDEMn6pF2gPSRzOjGYRrX3gTwx3puX+2pANcQh+wwC5itVN+2eWViWObYVJvo6XhNk+tVAmcU3FJZi0tEkg5D310jtH/QDdbOCk9T1dbU2BWTs9i3cdcpbNziVJJAw4QqJytGsyBHz6SwnWFliMIDC3ct/z0Vjy1Cmk+i92PnKHamCLNDqxe3FSaDEXs1zSd4SHqqn8o1xLY58Z4u7czSpj4nlf5pq+kaN/X4P9vm7ks3ZFSMkjPWMU0lPXIIty/znY9vbteRFM7rHlisAna5RFoEsaiJq/AVmlKK+2wftESHvR+neBEp5PUeK12/DRo4/on9XUzDcJK5VQaxIOiJApLDbceoJDKnmrasL/cQxw68BqP5NJ22SeTEHbtx+SFyu5K8yqCQzGayiPrXXu0Sa4Vov89lO7f/sPxUOYoPsZB4P5+0VHP6JIRARjuCQX3eULGiLLGr7ryGmw==
Variant 0
DifficultyLevel
518
Question
A giant earthworm measures 2.1 metres.
How long is it in centimetres?
Worked Solution
Length=2.1×100=210 cm
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A giant earthworm measures 2.1 metres.
How long is it in centimetres? |
workedSolution | $\begin{aligned}
\text{Length} &= 2.1 \times 100 \\
&= 210 \ \text{cm}
\end{aligned}$ |
correctAnswer | |
Answers
U2FsdGVkX18+fCen86rLoVsd7fQ1iU4HGZSGJmiPzAJfZgmsPRCGT3DJ+RawktP1SZX9S9tZfbGYJS4FoCUt5RuMyPpNfKCO9GlNBkxZJSpMHj7/1yfmaL9gqoM3o3Kui3EB+jaG6A03V05LzJrSHnVDr/JaQGKtpG0kJWzUmHoHDs4cCFZ63TxERXK9mxPhqFQIlnO4uQpv/wNr+lyeX6kMW+aFi9nuAlihjqK/Yt31pnFzQBVTlyktWB9Wg/3Ktsi2grBkoweSLBSnpe4WE0UTiwaDLU10PCvF4zJ2O9iiBiixwPEKTJCjqqTJiYbQ5sQKPE3pAxBTCoAqkynVFZIQEIDucLILFkN5voB8tmNeLcurantPclZWnoXvuVDnk3KuNQO/Wo48gi/FJEprbVi2upzur2ah5YWfnIpAkSxAmeEr9YDDKoTs4hZJ4ds+C/crk7ABa4IP0j3Ig2P3T4eqplyJMWKcH4R3p7L+T02tI3sl8mwt51mZ2S+2RPXZjubOp+NJYLYPzQBjta3YlJ0Yp8jCG38cusuVcHdx9hL/KdeGVaNVrGt6Irs6bLgwHdNs4vK+B5c4Z7LhzA4wiaaxCbQauZC/HH0F7mKaVMFvNSbLbRHYSrDoaBqNW683gFwAuGBCfHu9ceH4f/L6qJCX34VCUIaOpUIIcB4TnVzBf+HgzeJCCwt9ugMrB4oN22PeFsNyjMWOC7y3zruvfOeDqSt/S1jhuWUSggHCnp9MeI1MiuWxuoC8+JemnNHPVpIt9yNxyhZkq4meT4KCTnu/Mv5iEGYB/fSPIrwoZm1Wnzf6UtTGu/Da//rbLvXOrRk8yhpQfct/1K49ddNpIM9ZW08BdEE9Auv/7znQoepx7T1cd89rw1tcyqRC+sivHv2Zny59tNMkx/nKqi4JgDZ4zG97LQ/Uv3UbtY0vn0mIDyopeJFwxBeqlFOz4apWolYnGF2Os2bLEfsYsn/KSjE9arq19j9fknpml1m6rswRK4HBXOeFHXr3NWYrEwcdEU8AsRV9L3SxsqguEyQX2gWFXhSQ3RVY/rWD3FWYf1D9jWKtpnnTk3+8TnRMuIh3YtY2+WpFubjzEW93TlUROx5tjBpozzaJ2xQCpgYFID2lgw1DHTV2QOweTmMIQWskk0hqTlqgS+6PWi2QlidWx/RaKtAMk0pAf1y/e0CGWFia3Rlm9KoK9K8xnq2qfSQEg4Vn+GbKd9Ia6VPl4ookljxvHaqAlmUsg/BFsURV2EpUP+N/KlCFT1wZ0a/t5388hV48Sw5Kucp97FCSqG3fks6e72onr2XvHeGQI/xm2mRrv5ybka3u5j1NavYFy1pHOeWmtfX0wJUvvJmKOBpnF2rAXT3n5bpjGFkRz6XPSSKDoOvc0tnWzYu+r2ufBltzz27fY+v0DUyj92FZn04GegmLwT6LNopCJ1tEjS4Ec+Qi4aUlxTEVkbIyK/8IrwLOYDL2T3wrWfAyhEh/BzA182rWC/Qq66E3jCJMV/27iZDDf1OTIl7ri/z9qNa4elL2ICrsA9U63en1k1uPZmS3lbzr3a1MzSMCnSJ2wmS7XSWTNMxxNzLsTMEXqV6c00jdtwjuvAjmWHCdUGxyRLGRD/8isSOqMlwrCDnRbjFWq1rSkqxdwFc4QxxKMs3yjiAd/Y4PgXNDYWZKd1YCUU+Ie3kxnm1DN9Sio/Q81Fnt7bnmgIVmPSPIEU4QiIRC3uk8pyik1hkTPU+z7GVfBgl/FcrZbcoKyiAW3qvuLZIaXkLVe8STcQQ5SgaKj6OtVw94+5D3cpIezHNUX+k4zmgd5s65uFkKA8JkizS6o3nxYeTlG3aOwVJ7wYK06ZjvG2Zegehehzd9vgi5qt0B8g11cUoBLKoHlTxRseaVk1g9xVWPnhjbQi8u8wW/FunFJZ9oJGSEqtUSB/VeVouEiU+PIq3gIdxWDNbPTZSc7iHHzQP/Huc5LJaitTPQwFG7jt+DPIsE4Re1KbPCA9sfGum41w2i5Fis6KtuAttbNWLMKvOczMxIpqMN+iE5MVFxArUblD65PRmOSYZmTib/dQyEkaC4VEW+9EQni/gCaJb1iF5q3Q10G2EyHoboOkzbr4vLrvunpIPsZlmDZuwfSIHDmKnyLxPgoNz9ENUWDlEFlGSFgpAQZSLDRbFkJZtEwtVvEmGTYEocHtSh5s8K4kQrrfB286j1dxgL/4a72MizNkpR27L/pNrQQ6pP0uD2L+nCcrp6GdaMamniJ2evBBdKsCD23dfcgzch+Wq1rA8iUI5ihtEVZ5i/pc964QyraDPVcMpSUnONHBVwzVFXkMJ5WFSkrPiG0aSVuCqr+hxrNDrlu3Wt/WsRR7f4ytqJsl4LqelCbjVURmGRHmxs/qExV/8IoFuNtv+o00rDLE3Z8PyDXvw6lk9HIoVOHBLhHfFI41vk/XmMhy9AicFMrj2TqmUwYfVmQ1C2Pg6ZrcrfsgL3fFSl1UuSGk2s4hullIucEBMe1IMEW8UhzPldUiVFn6gcRO3TO9rFSvKj4gra62nAEsNAPACdyQTj9D4f1nd8otSdZx9mw6VycIkVdnR44z1AC4BRam/wO6jsoD4Tc482JlxbO770NgbCv591EFp8sxNsvZWkIE104MEfJvccH37lT+xDpzQBx+6xlTvE1Z8lJgNXPm2MyQQHP7EMjL/ZdB6ObIaI1LkDcNXqY03gLMD3CtQ15zCWKWK3jKnLLMkhh/sPhpgr2vBwdDd0qvrxSuo2dtoN878P2CCLo8Bpe0R2uvfZD/QugJvipUVHzvN5Sgm/gOL2WHqPt7gJa/6DOEu1/O4ObcScQ1Oc72780q/VB8FTYEOw7YJxH6ld3gVIc+xuOb0H7zqoA9KZd8oaV8h8T9rGmWlpfNhVHUHWytFfkZMwp15sJ1w0WdBL7jlgqvL0DLXUjBwa33qQCoHO9zYmCt+WcBlwbcn81Y3VlIBxtPhjL5UiNcOTf7Oas8VTqzwghWegnXzqZTbOcWs4d1X0Ygc0wRQWV9A35ZK/FpXkNFAruC/OMhW9Cyy2K0w6EEp6k4mYLVO8ccliqT/Mp94MY3Xf1myW+bBy/iIVeSFnWgU5ftea91AIxblYEe1tTbdsTOeJWzJnH1SgnU8H9qC2XVFYGNaqfPMbImHSvScgnUt2yfBsqxp+0jABogidIKLUDnTt1tJSJbZVz0skjgjLve/zSnQL6tBeNxu9woHhLbDmQ8XaGhxKP7+9TvFmNvMGj3OBkZO4RfzIOYw1joP5QmbZvV+IeRiNI+OPz99GE32MDe5COpEEqCEVl1hcIXzmOsncChSTdHM4N7J4J9dlx+YVlG8mqBg1L5jkNsx/MAoch4fC1ApB2gWLrV5wtUdRDukwVaJoUxhqJglLUdr/p7RnYbJPBhbjziLxGfukH2/w10ageADWRXlMZOOOf729phT2JMHAlo6SrJlvl19ezP8jLp60UWXXuHDlqWngmFSM0uYhhkbMFvndqtPNtf57lmGQpx0LCudsyY/Tz9qX5O3ccnaZOZAOQdNx+cuwyGfuSos9pGzn3sp9LUDv38ZN9yUfR7kaPQl8gr2HefXJcvTGgEKYwmxCj9Ie3u2La4wErHwgGJZqWJVy7gVVB6EdmocUpGgVIk8emHw6zdFOapfpwT3PWTATLvkaW9KLitP02Ai7zNxRMKGvfAq9EVXLHmD/oXdoQyzrgY9HYNDYpG0oXCIa8Asz9Ok87iKgAZW/0MYg/Ikb2S0TGLVBchajj8+ZlwrpagbJjUYAXj7GrEYfWQ++50JmgtQk76p3IE7BNJuz9ujhfehwkprd4G+UQqf0MY4OoEHSLYZol4EF79LchIcG7ZiyfE20+9To95Sy7imetUmZNQP+ri4aZRhQ2RaW8uLWJJQq8yrVabFyqhIXxNTyNtB+2+71aQEobCeIGh4CX9nt6GNMnzdqJVoalHc97GpXDDeMkf0YBEiQEGtoagsnx+F+tQYyJ/P2Mkdjfgapn/qKAUaC2Q0XlvoNXcNiMUa4Fcs9VmmarHCwNSsjUnQM/bLsMwGEqkui++wlP/JtVqW+/40fjeISytTEBS6D3uTdLV0LXcG18K5uV43jF2PSi8NZOZeQCizkvJL/DcGcXgJ0NPcViNhgURmRQaaf5aqCuM0QkiDN6DsvrKmyLzO//v7IXLY8SFkxJ6hfw8QbTzpxtY5TgPAI+jNeq5qfyPjK1qbkBRUXbGZoBWozj78KWh+RTGv1SMWActHyEBc2Vm9YNGUK32EeDOA36sEcwPq+pGbK7Ov9MyhJS11YZTBhuVNA8SDg3gVLZKfU786L8N0wbYxE2+NDGHSPDxizzwpi6wBs65diLlKTqp86yw0ww84kNiqlRUPOa5u9tcfvzBry5WoiEMcur0UT99dJFEZhkYDB6GQgSV5NGbhEMnBuKyE6c8/HBshl3RMgQ5OypObtz/072IOnc0jp4qcRdOJfAGHODWa9XT1iiiia03g2xIx+7Y1vdkUG+9sNFkj0fFf96J+JD3asHUxtzCzTDBPRVJibI4HhBQ9lwxZ1Uc9ActTaF/NFz8dqhbQcyLFwq4MmEB7EzF4LOyeZHEra0cbij26kaHYLv8A51S0+AWUYWyfHEe4RzK2H5P8SlYQtB3B7DbUQkD9HgK9fLe/bYAfNdON98jIq0em6U9konXn0ZqHmTC8ouBj6Ux245FFnD4g+vNl3i77In+vOAk5DCu5Vmm3zmR1B5ClOEca7d1Jx8V9L3iUs/n6Ga9EuZJyM338h5Q+IKMIhwqPMx3uy+xTFNpme6j/po9UFecb7ZQlmQVBbRLfEW61q4UbjsrMgk+JaOzfhSTA8RiNG5mJmYXRT4GxDxQ1ZmnAdWQAbIIEMokQ2L67GVIEjL8LA/SJFpXzJ8u4HUndCwTZ6ivD9iLNs0ZTEAi6Yz2tI8xHFxhY466TFdbnLR2jtgDKkNEMvp2v+xOKU0b+c21Iu9iz0s0VSreMXM1vTOzn8ptP51Iy8nXRQD7eIOklGjo8RY1C8OaU9GXkFut2QnaixzX9QG1Rs9efVzFVn09mM27mVrzSBtGmcSqXPt69PSkVR9OdTg3Ogipb6TPJkKByzvEFgTkvQWskx4AKE2meLudWhQDHdCvD5Dvj5lgNS69gQ6kavUNaL5YmC1TzmtevAp4hcBr2oBU6DWj0ir0oBO8kN7WTfDZcAscpvrZmXmG4EB6YWrPeZmutCZTG3u3+J6qMTVepNUVdaR9jFOL9ChCpYHCIhGDdxbX/7mvvwxuQjrIWXJ9+mQqtn6QIlH5Bw8/p0eaKAOqO4JZw2PDSaAgtwo1370LU1rLRUK4EeIasMYrXFQMHXJY+yDTYwEND2D9pVGX5w9YAPEmtA
Variant 1
DifficultyLevel
519
Question
A great white shark measures 5.7 metres.
How long is it in centimetres?
Worked Solution
Length=5.7×100=570 cm
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A great white shark measures 5.7 metres.
How long is it in centimetres? |
workedSolution | $\begin{aligned}
\text{Length} &= 5.7 \times 100 \\
&= {{{correctAnswer}}} \ \text{cm}
\end{aligned}$ |
correctAnswer | |
Answers
U2FsdGVkX181yzBgNGqB5ojpLBTXGhDtLdfez9Sv8Lnrg3NR28Rp8+HvgDkQjm/qbTCZF9+HzSnu93CdHxlMdNJGZw7MAUk63vCBj/FgAGYDouMRzHbeiprJqP8MiSHreOADYs8DWQz78mLr4WyUh/4a5RU5Ch3GTnLwGwMgSqsafYuDokxVwE772ed387C9dc5ELaG+J4szMszQB2pnb34uNbcFn1wJhcT3uiKxWSiN+djpEDac8Pn7AJFEHBfd/JRlUaKdMXhX+oSqukKYpvlvDhR41qOIbbFmZySPL9DoOrKhZQYmn59ysxrtNeQsMWltrIJauS2iXHAlUhAmQYzJ/mC1OsKEq2t/Z5rZl/ciLawVpMaEuwpYA6uVIXrFYgyvVuvMaQFMxRYgwkr0opcFEr2cGY5fyGqBmda5CIe3gq5nbX0YyC9jh0riIzrC4akh4BvaSbd1SNNgE3pypa5t9QDnXcqlWoPi/9Z3tSmxihZAQIvj2wwE+cAeqvjTW8k6SodrASLHSvKCqhRfAoqeaNxiw20jrff72kmVJXk+/Lp2LKRUD+Zz9jhNvo1UyGgugE4mhvf8cv1quLGst0PiXvorQpFDuyWlFy2Tp8LvC3P+KsI1DDhrTRjdZCXDLd9zQ9LtwEsAv6bYlx2TC+SMeKylh8vaJwd4q10C17EaVtC0tXlB6mzcsrNRadWBtBa/CRJw4JW2yaJn0a+owOhR94dbYJXvv+D6JDqiYUQjPFprXSH/r8iGw0rGxqjlTS+KWFXRTDM9PtqNVpPebmZmAR/7JwOcfU+baQuU9vZMKqyjzUdgcllLquqh37xquSbwoV3Dcqv/CvKZodU4529xpFWF6wfyLGouLkNZCa6MSaKsBLuZVNsokwJeID/P9Kz047mj+AY3K7fqu2uY8QTfXEuDZwfVgQSDvG2cWVE0da2MVPwMiBoVVzHJwnCxZQ1xrzbD+B3gg1ddo6jOZ2ztcovNI2e5Dk35zFFGoA7sStT3w3x/tDBdVFzgMH2dB4Vjwx0pTAdpkKf/dl+6vgfGHMLQwdE5HeDKHeOW2Z7Bb90ZZT1k3O+rGoj0ySfnVXCxy7uJS2gDVF41QbMj6HlYyvdZOb2LvLk8/dY0VGVe0oPRnp8crrRhFprV8GtqvcrwxH4B92DFxx/dPNiz0IhJqJBrtRkJZN+EB2ojaLiJzE3ehxW9H60URK3pCwFofNCpfRAnYjA404aXi0D0EWOUJhKd2OWs47Y862QJMWS5RJ86YJCV12SHItBzH1QlJHXCKFso/enMAsQi/CnooIGSRqEzEeXp/ZG//b+fLJ+qNgpMfexf+cHjZq2vwEGUzMfjC66ggolM5xbho1BkTPe4e1EAmCnHo9TgoNG/TvaVGaPUG5Q6FgZOiqNREYqGcc20JL7slTLzp4ZlDG1na6/qrFWLsui9BgIV2DheFIA+GtY4ZWtuC2sFFSRBhjDZH5vH1wkpPY5r159UaMT+st9KjEbZntMo5/OraLve7IGxkJhsZqTTK4LsYAOEPQL+8qSegxAJSCZ+jid++nXuLYIoBYltE9Ce3uM/8zxOSUegFRAZG+QjdqdAkpdH+qvTSdk77bR+nZrBADN5IwsIIZLz75sFWQZHbpxINOXA+3+rCO6+Fj3xQibdqyYtihzZBQEhhF8wcZ57drO7FX292ylgtnQ9hsewgOolaxr/OhKecDwhuImOlFRnTVAceFAlfawsRdq7k2EraNTbWuTcfx33mLKhO5LM1R2MP6lON/0GOumi1EvRua8OtxnLORbYzTRm1kIl9rw+8l7F6OyLVPia8DgrOxU9Ok6m8cXC2xdsvk4HVnWppD/2GaFgDFgDHeAa7/YlKQRCAhUZFF4THiTca8fm9FUSlF2LttrCG5zgmq0pIzOwm2Y9X3r84xO0BAtgSl5FILo+zInCXoxVRVb/HdOxGZNEs4P3RpKQt5GK33d71G62P/IslxQ6FbB7rf2PgIieHdsvcNbfbsbH7OGfVjNekNImK+i5Ih38GSThpvRUUZYb+2YdeHdfDkTUScfvr5veJnpMVY3awNdG1cyadoBK1LB7lIoG4N4WYfbvUz8IGyR6Ld0tm9I4UkY8gjkQMuAXOFL3dNsuSLqkww0DarLFqG6os+h77qP4/ch5VFbI54UKO0X+9xDZtnxRClXF5rDQfm4QSy0Vk4rVok6mTwHSq8MejLIDJYUayq2KmwxSDQ6x/sBRzTSolDiQ8tb2m3OaGfD6hD0Zymv4tsY+m6N0HEA8Ui/JifSaXhyKaXadYTnJRRSIDkXTfWecZ2KuA9n/pM47+aiOifNRx5tsmcPHhjG2wgI7YTxJBC0r00aG9RxaDAHdqI4/9bzX1aYLD2KdDM89pMFxqa9xxlzv3uOBjH0Zb0a+j7PHGL9gRTXSSI+0psBqg83Zz6fMkzwxknxjS7nRLqFzXf3tQp4LY7PC07d2z5OeUGBdLpH6k5I401t6g1cnW1yK5m+M1fm0QGbUKHwF1FuhXplKPcM9rohscyH0xsPqjjh2c2NFL9pFAtKK67KHWwdQJ/JSauuTn9jgywWfUiRS8sMW604u7O2GokOAgzpU0tTkZXIRBTQ5dxwR6eJZh2BqakyWUVy0hwPHBl0OF0LBX1Tt2FMocUGDipuklYLuybQrQgptp10imUPsOANJFh2Dp9BADfMuWze+TqyQjXw+rMZ/Ub0rXX0TeyetZ3IxJqK8DATH1M2A5qdVQB8n027EmOSar2hbgwCqfZcAP8gkREc2emjSfPv1fsYyilTdMmA3w8M0S83RxZ2OXdeUIlbVMZ7SX8aMSyAKQhTuHUhaiGVK37scMmf3gBSbg3DiRpnanB1kzFYVfgS1ACVfRCiyc5kzZ/jmV9LAtlDTjgwYIZp6gtFOp+DlatTRGUdjtE2NJyA0yNFf2RKs6Ctgr/ejik1UopdWNLxhigAnYkt2zJdqimzluauZRj5StSU68sh+UGfCB0hWbTCLt3ZvHoc6ydCLhxT+8n+2YDLutQhQqOHtaKDQRy+Uqt/MqWew7pJrkJ6Dw8NAfYGSJLITaABmEfWX5fbQlTJSeFxBDHJlgr5DttImR5KneJcaxDnzng7UFQk+9f6VPCL+rY0IIVlnJNEnfcurBui843w2tq6Kdg/gEexTH571KcPG5w0fFe8pGsOzpz8vee88rVzwH3X/YEemJ+A2pZeyPW9oeKV5WOMfbRXN41NlbDDmY+0vfKu7xtVoaskNeRLqLSJUePjd+dzg2SlJCz033hBM1B+rfZi8jjmJJnSognA/ThxfTraQwF+Zk8Y0wpEBdLfBpS6zILXw8JwlXDmP9gfQMhbs4msfCUDRl4iC7PJsOcBzZOKTuJlzAUUa9bUEgJeSH6ySq7p5LxgzqHW5wUisfC3wKSyEY3TSWsWxG8224kMF1dNAv0GdJgrNmKzApCqR9qtoh9VSslr1g65CFs+McO6A9MhZtv+LiuXcu3pGnVLEnfzh0nr1jQxoNdzpiPHmZJnoyy2J/RZZuytypcDkRgk7ER1dJaKrJ0PBp9EPdLpxxYSbWbj9v7MuyLNtQqIud7AzHoOb4dgHw5KB9w8NYkfW2RYd1ttzE7uBH6SjYV4qLCM00V6zXgb9b+hp3LwIhErnTciqkkMYC/aXwj9+Vo5m0ATUv01uDKyTVrD8aQV0EuTJeo+euTzauYP6tYCvRpivYo3Ad1cWd6LLtHbxVE10fR2T3Z+KOSe3vV+I1v10ZKrTUYE+S8nvA7quu6Us1x9en9IGg3jwZ0mYDjapWnykzxHAWT+Nu3Xm8MXvtg159KPHCG7/IfQ/zLklFxQ7ot/A+uRikAuIUDODd0zQv2yv7iHW1pTetfVACSAEtrNDd/mpjrd0KsX2KDbAmaw/9knL4Bcy2dNqgytyX8OfQBLMQwwPG7OEsfGm+Q3PykkhzT9fYVeIFYQsdnp+rSfG768yCPHqkSr3jH6lzXwOPDuIZ2xi6tnKHhTZQPTQHyaBGQzUyCD65QQg59FfkfUBkAo7zRyJJX7oltU32AOiBm4GnyTfrEvxj2qM4aNoN7s/CPUeAsJZRc1eMiNxyyOktKz2lZsEyxlxztORW1CNb0XMFNfcjJgfeHOsxVvmaz32YOLELGsj7kiJ0iatk3SjXKIg8s8VA6X8/vqq5KKvbd4ve9IldLmyjmtCqJNFbmT4MRDsGVyzaWQzVrgqU9r8vS9YrmzcafTYtnZQciqb6Mt6giyF6VUgfbnGl3rxjBCqidwGP+vsY2rN6KGc9ISv/0efEYoPFBU1m4cMJX5C390cHRwNRcTfQe4DAFjFgNOXbUUukYtjo+JiECCy8f7iHoH2Ppxm1eYaqnkWC9s6gYqFZue17WtAvdR3DiRQNc+TpQKVCYAlFucwUUGqUoCmPG1A/zVv1fuSpLqxCo4/tmltmeGS+wkCPn8sS97ytjjwx4pm/gI1bTG/Nl3ob+mxDRn5b6dunc1avL+hIx6rv0Li1HmW2iDi59Ef6daa2td2Bv3BtiHWJ6fAzgSh/t/qPrP0QZ6jkOSbF0+0nNaMluQY7lEbtBOUJB7z/rfg9XrklqaBhtBMyi/cDScstAlPrlIDUGr+nGlHg5gmA6wLAHUj/Q13iYZ3XP49/qnpSR7/U0nSZ/d/RAmMTRNdqFE0BFR0F7Q9EyX6jSu/RC9wZ3r4osbkEHGrACe7mI3Ntq00ODm+EkPok6o9Nau/4HJlubPzzFzq5aY972q6FCaLB9lhRF727nsXfTLB5ptSBPIHgubWc8HiExMQtopvkVD4+ZqRuJzDmbM97N5Vvpd+J2mUitWhNMRcCyF066amhQlgNiao82MwW1SpfuOI0znDxrkmKKU2HAhdEqSKd2r9m8N9jOLj7A87016BWbK7ctbLUOIc0EzEc2KGBYj10ws++2Ml3nKG83Gzho2UGvv7f0i1VbzMyYfNLcgAAAF5BcWLrSyEQVlRdkc/cy7RVqN0+nHrcVpvJZD+B/qytg9/zm77Ug4CK/37aLQlGxoCNsw1a71TJg8RW81hN04h5/KU0RxxlV3kR8UXXxanDDZLGMepUTuqg4wxxfRhNAKNCYc9ihbT6VrYCN+22AL6Gst3izIbN9Pi264ihvuZp+B2REQ1faIPiq5byWrkR/vjdiKxxqXA1JYdxOfnAabn0yP+odOtMURkB/h8ogFl8+LYdfjApQ9oD/NSlQNIaba5JgM305Bf76BdeunLKcKpHd2mplATD5MSl6hMKcnqdvPWWHYAY3mW/hWiu3RLITeg0+Zg8qqLfg87qeitHF1eJmO1HsryZqtkjtHy7xlt4bou/HOD9PkUcdprDG+z1OczoHCicsfa8AYZAsUMnOU+Desj0+cxxGruwdXoNM9UF4PeBZgmkjS2rg==
Variant 2
DifficultyLevel
520
Question
The wingspan of an albatross measures 3.3 metres.
How long is it in centimetres?
Worked Solution
Length=3.3×100=330 cm
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The wingspan of an albatross measures 3.3 metres.
How long is it in centimetres? |
workedSolution | $\begin{aligned}
\text{Length} &= 3.3 \times 100 \\
&= {{{correctAnswer}}}\
\text{cm}
\end{aligned}$ |
correctAnswer | |
Answers