20189
Question
Worked Solution
By long division:
{{solution}}
∴ Correct answer is {{{correctAnswer}}}
U2FsdGVkX1+J8gEItNZ8i7hjkwMrdBcX/S5whCQuWqXFoZo9tpynxG8N35OstFrhSc6H/gqTyEVhPABPdGzy19YLgyrYE+N64k3FxuxJLSVyV2JuzuhjClpmiCRL2tdE/btyXLWA7Z4ddVWITiNPkaQoD+hSTVB6F8GcJlB/fq01VNin4kCvnBY31sIJX6y8VH0D2TVRCFpy5v/dqMhX9ZD1Muhz8ZlXkyrfZ/JyqOMOUlB/CAg6Fc8EAQA+lsZCGdLutHulCyHYdAhBDG1CteCDU7sFsFSLvMq2aZfP518k5+zJ8xQDX9ppc52iFw6/emLixXI8ElYyK1G7kV+5GEkHAX72ejsNtMPNoaGWEw4avJGbfUyhlvpCZI1xVBgZeRH4BTFMvPixAP1R+XCpzCnW0bsvvNehW/wL+n3yeQLXzTpSnTYlzZD/enG5iQdtjQl6/pJwY28X4XsTHQAfK2KpG7Sl19tp2+TVPig2ewz2D2pPoCExlJAVXoadsXkz/UrWx5IuCLn21beJRaBB/yokgkDuXAkfLjvAFQ/G718TNTDRNne0XgDwDS6Hgaq2EAId4Io69S5PNn9LCcmCyyILiO3yZOX7zssPTNcBjE2MT06eD5oNw2Yo6fyajyDMmI+SYU9cusAYgSmL8wZeKq7eGfZ/DF+ViVFMxyUuaGZ+RJai6sYLtDn17ZRISiZlqI3ZNkuOJKmkrAhskMOIcjasajT2Ti+sotkvq2ngO3qbzzyClne5JNKDJP3SHUCauS/GVo22/mUF+89rFN6jDtukDU2uC84yxGtZL9OcSwm/CJ0mg4i9ee0ITzxFWHtEjz63NeiI3/cu05oIFH+OTPJhAoYlsJElKGE81JjPNWtaKkWvQf+7Vv3pCI1Tl4wdvf8moYfHBeL3F+6eg1EenVTB3E+RRm1d3h8uUqLuozjxaptGdjd6erIhR46+sLJH+6D6x8oZbILpU8ADgI2INdAxkmBWkwy/T4jLLYA4Yr0uO77se/Fz0zjwMZdaDgLz9ByeXeXtqJgoOxHH8TEJ+CdZ5WK6tqZwFCaRlSqColALbBawHBJTimT7Q7UBVuSsql01cbGXojcuJtieHmd9HzDV/49ixCZ8cac4gu4dICRPSz6FgYK+yTrn/V+z+8BDlJXaPV1NHI1LOXxo/9vyV8gmCCh89dIAR4zM6RpJ+lcRHmynKgDxpROr5tcuvWRwcnF901ffAeW77Y2ViofrsdOevbQwaZCrO+xdn9W1p2Mnx3TU3FuHte0246cXwXNeamTG7RcK49+N86ZUCKAqw5LNtgqww34pmPEcH76TJ3CS7OoLXgDv4GYDQUtkopOqXtordOEuCDr5OT/DR7o1VpxUhjZ42KLwPcgm0conKCp3s0sqvE0FRrj79j+IsEqScnq7vvdG7d21zEo1yZefzD3l8OZm1KwvRJ9iy+mQdialeBLU7bp2B2+KJNrMLIA/IG3xSuyk45asGhLLXw6jgOGqJDrMZBhGYufxKQnu5LCbsJLa81RT42zP5ZzBQI+O/ITl+Ei0AVSwNUuIeucOCtppMefKembTPUzp8fDHdDq2AqAsecmcDpakuIgOObELNB+a6sSqV2rW1BukLeSVsiUdslPrZXSDULkT9NDjOMNTfaxfj1HEEPH/4pEaXLu7w/dh4X85F+MeNQqE/pgmfcrEizUXG/ejl5FnOq9iW3bJlnRMhG+XmPz0ov/6pxpQjLRGCbBUhMZcl+q70ZbgNEZPqr12CVriJNCC1wfnDI24WbMAUUl3bbB43zi5OFspFOhS5DYiF8H+99FvGVtisXdfy+Dsfj4i3EL6vniKhTq1WqciRMCjX/wj6U6wUCtMhzYoq+2Np9MGELABXvTK0Ar2LCbIY+bYMggL0orMOMJVyxxtCnhS4JN1wgP13oUantztuR+XRCsHmyZjFXbyKLRZ3l0Qzhbqoc/aKFwwAoPviXUIdI/inSvg5fTzmi0I6OwC7lyaySGaGzVy9JpKdR7SV9BDG3eHgci0yZlw3OVtolv54zQNXyLFRSQL1Bw/H3JZ3aCdsmn/4bVoj7cLBqBlwpgLYA7m/96O/eJmiIBYK4zAJFOverTtfBTEBIlxk4FNLJA18S/Oa8RcXy48WYk3Z6njqURKENPebWNp7YF6p3pY9+n2AH6OCG8N3MkMW7z+wMeVbUgqCohL+dW6LxchEaWeBNdcXtPmydTbO3Bnu5jL0+D+dXZdeDZOQ8cAs/5Za5Yb9IiaA5TF4WlDdu9aiAyPijqoFOsawtij3G2zGk2KtZ+JTY6uKLNKKly6XVLLvHXD+Mer2RVlHZhKQwLPEGheTCGvWdlmhJp7BV+l8a2K4cI8BI+KReoSmxjiDq4pfRGF8/O7+jLLrCy1OW4cDp4fA0xaU3PBV4O/BM0t9jmg0Nthphi0JVz9MU6vYkaORJoZtC4vwFH+1S9uT0dyB7hgVS0jegdZ3EDkFSURXdunBqw6o/ZYNTvcepVSnd6tGPJWaQbAAA7C78T8tjc7KcqoiSaVvvhzrcL9QBUsbTkNjZzJHogP601OJWo2zDamfR9I9aKfGS4Axmhvel5xv+Wmg+s3cNDj4FLn6Hu7/+x3a5aVy6H3Cg3bh5bDUHSYHmiXvhokbTMXvfd+VKtTjrsJcw95hd+DPFbpb/rEoVjpgD3krFvaD5utWRelQYJYUarEEp3CaSMMeewl3J4PI9RmoNM3pzKK4nMJoji88L4jzh1N9TIg6vTLoZmO625l6zEDjD4wjnN21tYUbe43UKR7BOoHc4M5KGrnMPlSEAiZmluTfH05V5n/uAfHPPz1aSSe4gn7JCNUJZejcmwIvpNhd32w0WEvrL3Pyyj/9jFtUXRnWd7G86hDWzlAZa1IWyrCEI2r93eqOrGN2CQNgVjm+X7tNxuvZfdPY0p7YIZW54tmupcSVS6yIYoVF0QGFifyHEbXmJku2nrRhOsg+XUld8kxa7Rjt55vqRqFtxO1YWgBnDRfDkgPDDrWKm73SswXPZemt/hqO/M+Ed0x4qTcM1zGGwBn9q/2G2PXhPlX/mD/V39DX4cl8SOgeWNtmK8UvE5udZMEsW35cB6dSFqAfrKoHC09QaiLE0qWEX6QSYmc28q4w1tjzBuRsgy69OimcqbQqHWmHTmROnJnanJCgf1EIzFyGvoOIKqpH6IHMgfrFOWzjTXGzlU6LJ2UVRr2sPmF89uhiXnJ91KggqbSbPcrXFHd1f3vksRkiuH5RpFxmATxrrN52tCjBRwzbUJ7fom+jk7f0Qj3zlRoJ8XrTIJpOM7aKHO2RpHdDRJlbnpgyR5XyCgmtBUY0H6rw4pAvC/ZKtC7E+FhIXGVuCBFQO1nyXKSw7rifXfPsAHubdmkucdUt7X3Yb6y1pAtqfJQ5ftSBNe+Jw2SZssYzymLpdAP1u4ALjjTzSfpcvFhvy/QNU76/HqOzRprE/v7zFY8JQmFvms50LgkT8ErPhtJX43OhO7eojYyQ2plkoeFJhakmzH5yHEk5CXap6e+HYaOKfMiAUdfkG2jqwlNcJTRTSbMmDVHlEGME/HFGvOjCdFE6FoPyyX82eDW/2gn5ev5vXX8a3OyVTmDyD9hHnKe9he3T7v7iA2EXss/Jf77A441CCP/roGmRUSUGthGBznrOX6+gHdKFzVDfn9S8/Qbjgc9o0NOSgB5Uh+DUxNddBusrJf6EK1vbSf22pPcfjF8Ypa4Vmi5YpwXzj9tDxT1u4Gt7r2FPX1oDBy3hDJ0zFNYrMziYiQRyc9dubetZbrT8bLSLssc1siO2Xoex1QfvavJMzegzgOAwDzW+RQtL8qliJJS56JVuA0xWAFW6TstJjWabEXbrVpfzQDpl7F7BQuoaV/5PTovaqqhcy+FgzKboQJ2wcMK0xgIuP84akSnvEP2cFkRyui4m20WNE1v2LzclU6CdguTW6Y2Ury/Zmb1pIdJn/ksu4BVv9M2dU/YUOPhHqsaDTDrimoNE5Z7Uz/ngSZQ5uQ60CGnZrQFWDjN8sIiAzYzI5SEGyczbmCI14vk2XEABQ/cB2XQRu22HXq5Q9rYWj3IkyT89QcHU4meyrbqGBaldkgGJa93UupxXJOxjzzY5AUKugId49Kwz9OVFXaKHjNut46b71qULgT5mi7V9p1i3xcOqLlYJ6VKvhIRAamyMF8OD8QVmBtMZq81vSmIdbjowBggW38oLDLTvHK7KaPUEJM3w7AzzHnGO5UjIhAFEEulbq2kW0YuQAkTr7YeO43Cvzo+bZe71FIuSrMNtGTOeUoMoDRJXlGxXmLaYtBUYliOTZr0bcemva9Iej8q+FnXChmP4llBVbA8eW22HH1Ryssk89SHuDugVuvUQiwv9j8hUrxqO405+kNG1wZ68WVzxLFO3yBbgKHxuKUOJs27x67NwSpR1CkBOEyhaHnw9bUEzhRLCyuZlFH89nd0H9IeFtbR3V/n1fUm8r8IrBELHOTwjwT5Vr7JqXs3Df3nTeZGC3t2ZfJcRYL6w6RPK7AzTbI+c1qSaWHc3rDFELNkEUxMwkkJnWHMSaRz8YUmsM9hgYUw5ip6sS/UD3oiT/+croGWobix8hGGVkViqC3gBtPcJf9PU1C0ZWttFyDVqsnydIXyAxtbn4WRRTGwTwcOptIc6tGbHu4IH9W+lOYe3o3zr2Abkxtk4tJWhZpQRMA7EDgG8UiOIso+ytck1BG/W1BwOCyBykTdN3rD1L/IQQDhR+CmEod54DBT1upUENFM1rZsNwEIIuu4r6PHqrAi4zVaRy8j64+vv9nqK0mjYzC6WIWFAdytLoPUr1APyk48xwQkkX6kNKZ6FBe7PThw7mkl9haPJWzIwa6a66Z8XClCHYVXJvbB/3UX9YZiPG37Fo6TU0EcnUHJBY55Fnwu4rNwi9v0fp4Hrn/RQX4M25jchT3eX3a40XJkGKjRQ9VwnvprbD+tBqil6EoPCjMD1UvCRTZFC5JgQfx9dV9bH2GJ7I+JkUYBrCeQpcSf4s76a5KL/GODpKMKzPHCEjQQIjuO8PERcCVWl30CZMN7a6xf0wAZLEzNKivL+tp7NUvUIUSbgUJri1yZP7HrKgxtrVluweSfzlYoGMYPj7w8fu0gUBV/mOa5rjILJRy8jOmLZBYCDZ2tex7nJCKLAYUgeGwvNZxCV+Zj2a6EjscOOA+etQtJXLsyWCUP2sfcc4ncLHTtVGaKXOPMjhMie2hignPaEV2JRSFWlboXkoxpU4/eD4sYPVEWRkvbIuY+ek0cG7gSvBo+/W9CjRGfQxrfS+G66UO+LHMgGRHoiCNchfkqSH/LTqYmQxm8SwcQH+6PAzsN5bMPeCK3EQ7u1pE2IsYvkBhs45PLZGYwirTIo6AtruSyOJ6Ijx5gsXVh7zXRcLNTvS7H4xl0ecRC2fFcjEIlaiFaXdvJ5hOQWLRQ96Wy3THeI8SSzok5uqjCo5c8iEpfdD8zccMnN1XwV42wILWi6YCS/S2qwTGXz9UXh761txxytziOkzXh5jvj3vnyqVV/DklH7CprBADSaD6AfGww53rBvlr/vO02bVefUB4APUuSBh1pYqNiBK4Yci3ZhN75s/8u+AWTfs7KpJiuFPP7SyZtuB2JKytS1ZPvcgljUvdDzr14g0PWxYEaKr//DvyZYfhoUXqrccYQ8K21B5oa7lgW11suXQv7YnmbF9Do7QiT3KTu9/EoqfNo/G2h0qOu6XLo9hB2okgrfkGCJok8/1dwVqy5HHoVWq4sZWLoE7AHyqJmziiXEek+OSfVKYyifi5YFKsdWxr8cCNc6TKxDYKlcDlnVPCG9/JP1HEiHuRcT00C0eh0qNEy0TeD6XHhC84pyvI15+Ew6asG/HuHCZGaNqjtwXln2E8uqoaoRwgSRi7Nqky7KBAFarRel161SoO55E9feJmFkvclUdXOpG/b8oHB/sSSwbAqAGvwSNM0T4hV21zs5IeG6dzNOVVxgqWRZxG3/VP3NRrOLkMz721h4UF80XPC3LUy+Lq2ZocMUHXc3VX7+9AXegjkbni8SNPul8gTeTHicsqh7YCOH/k2Xbel1RzmmdQ9HOjMTA9ULQL/j2p3V03qfrVeITilBQlUcNE/OpIPiYibv1l7LhZv09R14lD7r9RFynxvYhORZXJ/2ueibZ/M6x0J8SaczMVPi/4yNKgBPiHta8n8+7i0Rqw90GxDg0e5N6zgw980NyUapZ4vaZD/6dXld8IxkU8yF14U3wCf5huvfiHodQjTn6GcsT7IrwQRRz2yYYc0iqoF6Bv5NQmugwsvsFBJFo6vqaw7ouH+MiuiU3eVkyowTblF4P6YH/vdCTAySecXLXoas8JsxP4r97u8/FL+QVLZlNZolrmNjMCpdzgFojgm1ztS9NSUZaZflECutR9BI7M8lde+kjX4dl/VO60Oic55WdRSiD3wzH0pIDErNI0XFZiN2BkJq8mpXYeTdlRYZbGFlfdCUpsbmHFXzVqPhxKvVPOMkQ7oN9UOPt5u3uYW30Q2E3Z245m2laRi5i22oCJNMMnYJXJpMZFh/RG5OQLzOz8DnU99uf9JJyoiwPI498rVbrhv205qg/z1iVOl+rrWbH1D3zbWikYPEz/Ks5SvIHlh/Luca+m9BDoXEnfPWBXFnHCJFMl8+wvzxhmQx/saJ62BlvXHWd/M/pwcSAALHJKNQcfY7a+9FIk2YAOQgPDqBmaaKutArXdz7CzGQl3ZclDlQgKKgozXWHtqIo8EgcDMrTt60b+mKIdKj2k1ALE4jxqyCthabBxzz8TdL35+22pCKPF0jYGwjS+nrRVimaceLC0uZ9hg74n7PUF+4iMTFT77rOKuP1TU3u9Hi4mHQuSgV4e5RJTlazQIBwsqtG5IOe3GI2U+BvVdGI8P7PhABL18sEKT7pYalAOBvc/+STG6537cxnSYmByMq4xbdYNffefIKU8qIsJDG1S7p33hdZLzCQsOcATez1kfTGhbxSHJpOLWP8qhkOwz24JEfRyriXknA/msolc/A7xtNSdyC8bGC1xIEVsInnJxwXEAEQ0AGydgLslens0awk1rsc5An6yb7/bfTaBxCPMVS/Uhh0MCZ1rz/u0mjvz0SuglOETrknz2lAsqrgYaJ8raAjpohuA+49J8SOOs4I6Q1fVLNDILBwuSQ3lr3Dnws2WXdRDF3Jak0hr3vgJtibOpSvDOl3xBGRY/7PPaAB+5Fca77C4Td5y+ZbHgL9TFhd67AyRUQ1/T1WOwEZzX/HfL0OmcU91DIXw19O4eUchFw2X8BBZrjXdFZpndJC2b3nYbB+uXObLMMvXaz8J9mZ9AC/Mx7FnY8N0vpRJ3uWC+Qk2ZhTxgSB/uqFFAJR+C2LdxvTqvk0UOK2mrIIIABWLvJ+stHNOju715suzSbWE3+vrpdJtplXcXrj72KYnOCGBSQsgUDFXyM64RKLJAgow2iXceQ4KUTMXLWevV6HuKclkdokO7L3DzQHvi606tCCscM45az1VnlRty8QGK50ceTZEk+HRqZLS7BeqohsTHRFbtsNICZ4MeZgGnCJ7CmJODVlFj5kE8KgWI5K2bVL7oUSAvH9JRLYKLrCH+Y44EWFQnrBFJcJjCAqBYS/0esQYEL1+vt5+ECwAQgBUniO5cYIJJILab+H7Y2WS9+urkXQrpOqHIGQjIFGcsOjJvyrm0ezpI8viF5lfpky7kBoJZP651jRR3VfbYhTe0FI5M2ysDQq0Rc0wQKXd55ExLJcH8Q5KoSRlQKZ+mTaf0U38loBzmVHZMNYHFoegb+xpRroyatmwl5l27LyBnh1ZzXUmDz8PnloLdjPHaqh/Mq95zOseJhLWGGSkmFP+p/lHIW63W0sbJxGgs2byF+DBEUgVCFBxK/uYsgqBSVB95AnpZmUB52jqEJx32Y6FC/RIhkwCsCHZ035/glFghgur83LyctF8do8ceOXlP5kqlN37+i/mpdXbt9arikoZoJNIwOpQkOT+IJHdv9/09fmtlwqgiuOymTSV6liZa1tpYJrn8Bzgz9Z3Zn3C5yySTWIY1Z+K1dwjPfl8M+crpjtE6D2M8uCKW0/gdTzikwSvd/TeXv9oSUtk4jtqeSH1YyfgrjwKBOOQjX1MJ3VHQfgTiJsR0jQUo7uKvohpdZtT3tkgR7ou4nY/HYqWOA2/EDPhqVt9BaOxztZ0Q/CiDT6PB2Rx4G8F561I0kcZiC5sXMkNJGieyEHukwiNmHfxFN3nbiAsbLTuFf3rmB5/7/DOTCtpuGpiuDZjrXaS/X/eMrozArmLJUmhtFLCnNp2xBZToZTvg2KWQyDuOPGqwZlDpg6J2oKi/o4TuIs0awfuREHwYVde899A3eG/A3OymBfi2rt51ACxoiJQjRsloJgNjZEXyWRUqjukw+PqwI012l/933oSnBZYNUBnF7oTEVKG7N7J6xGQC0JWkesjeAiibWKnEPro57smeGjaE3w5blmP66e6z7n+SWmQA6wT9+XIj145D7jeKGh+AzApvQ5oIAvej6L+0Askea8IwP1sav4bITohLkEBwjuDhyopsDF6a3Ob7mjTMmfO8KVElHNtY32Q9oVv2vl4G9j70ijwmTNsZEbHcTh5V9BlmHxx6z0DYJVjcu3/hbSR5nTq9mkQZ9+7WsOW4ejtylGrZu+Tln35P//UcnLrse+Gt1VRfAFfosOSWh1RTKEjPABpGFdOIDpK2C4EGHjQqaaq4LHK6q+LhAFndBn/dbWfkQo3hpB36psyzWAh7Q7z3uQ2D50FrIkwzTwVp7Q7AcxCqvTiRU8nDQ5psoz6OGd4Gps7ECvgIys9V4iEAGVLyKaQhxBqQQtRiWTuIboOUE9vctvdpglG0pr58/nWMc+aVuCZUd3CSy/NXKzlHvl2h3k+Nfe5RrzMBwHucMNm4iLhR3IhP1wJicBQ+1+a/gNDjMfA1zB+2sEyQozldMTS5GcsZd2AIxu3utIZHpbujH4rq89jM7pICNG+gOTbODioGEjeQLjQQwGdKS5U/JIfodmD48FTefi9iT3SKuOPDD14UNUl19oaUhZII0ush9GCvHN0T6SG35W+gE+zniZrg4y+tS9jkPOPfyfq5BWCJVNLLhqnhQPmUO7zbo3N4UCm43Sx4WEv9CUiI1idyjRK0eJER2l7jdXtpbjPwFSz5Ls78rPvlRmm4RPqgcfIGoEulktggjyJH7ug9HNy64dKiIHr+kCNPoPoiOScRCYw7SSJzM0kMDe8Sa1ueXsTVQvUa2cRAQcNAbrwAIhGXc54S6aoGB93ZS4gItjfzAyf3CV27cy73RjbVC/DP/ABxo2X0ZuJOztXklyg8P6yPTLHs4mP7rdbrRrtTgY/Cwi+qUN8uC3JcVL2RDESxORj6CkXPnxaq//DCef2R/ZNQwXy5KIXoTGY7fdwVL1UYGEt/TKdEZKql32hRYjtXkjc9xXZ4DaWkEPzKXlHoc89Y2teeS35n+rwyXrazFGhrPs0zUMLEWvSfLesV0N4/jinjt8XXx9TIYzDN4GqqgD14J0CW/m0zU4QWXOI6JqRCHQXu4VqSJDs8rQ/TCn1Ydqo7idgBY2LUxPM8P76Qirx26Ez51TDzk8axeDbItxISPUajkstRJmWqT8By2m5mUat0rlDjkYOtZdRBBL28+almly1lvbfxs2WaEQMet8hhrMO+FhQCDZ3W/CAB85T0mNinThtw5sKSoGFJg2WmaQ6+oDLdLM0eQy1WsCJsuiQHkRo1WvaOKIgLPhh6NroNFLrWCUkNT78L1GOO3DcLxuO0BVjnSn+947Sh6VOKaKfo6r+/KiqFD/lYt1lAB/lEC4qBEpYof470ZA1nB1PipZuRtUQZNOr2YGp0/srfUFybc7zC0rI0+TL5Qj2hcMER2PYhuaKF2bm7oeYF8UtRkqQJYH/vRnyK/yfN12txGwxMHi4ny2Stgl/pQ12aQEYO1XbjRDxEuXaVsf1eLUdLUEuSdZANYPJscqsoXvCdK9EI+3h08WpHtzKzGSe5zzr9JFz8S1z/HFRyr0BtvvgSlnxRV7Yb0TpDGLnEwRZL+ZB24rlGSXBm1c1ip+ZNYWRMigftf1XorsLpC5bQjIwzHN+azdiJ/aVzj91uKs90rZiXhmmnV1FrD+559YMpWCN9jBCyEDwuE2FFzW3fbkR20g/aWo5N5l3UgXB2a2uHY5OtHG4ltS/EmHMENSY7/VrnyUnuVSNJfnETNtiMx0nzNCiBByL9JcCxgh87wPbIDO99GvU1Yo8tdg2yQombIJFcu5C+n2+5Ju7773UasmwtTUCuKHq1PsO1RIbLDbnMOrUdS1gj9bXHnK1eI4pqdEQ8YPxIqlNbvEhlM/RjpB7WVZqLSiCsHqXqZncwc88dsMOAvQFOn3uExWs9OBP/uAGy5Zro4rDXsqTuuGN6JCCwQG3U7RLWh6UbyG/8PU7/7cr4n9G1XL7clZNPBc0BgbDbbruR0UYgnhNNTUpNYxn9FiTEt30oazsCFK5hVi/0zKJtlD73h0dwHs+DllbF3JTcJb7JtPtyAQ1jevCW0+AT8x4sb8XQSl0CrtWyXJrUv6C3za729K7Ewruu7c9J0z+EpiEoxScjt8JrVCgPdvYgBgx4CbMByKKB4WwDcpqY5yQ6ik4TXKO7hBRQbhsAWZMhzilY630ZtuktpmfOoJ/mqJLijJiU8sHkDjNrZ/jFLtAReiqFUZ3dTXYY8wZazglqEAHKwtOZlKSj91iX3/2lPk2KtJDTVmI9TicgT+tQgdG1xyyGw5t9mTJTkxrPyq37Lxdrgtag0muKxkXguvsAvLc9WuiFzKKeqphkyEy3vzcFHg7BTtn0f3FRi+Pqdn2YvZ2I2FtYW6TKElwK5KeLjcFBlxECWrSDS3hOSnmiFLeFDdSqFTN7l+yiQmOpeovFciiVMoYk6BnbEUOGaUTpuV4x9Fm0nRyJC6KgcKZpuNTGW1AiTrO3hn/tvavUJrbtMzTPYxH2qCul/Zdm2roJkCRi4rcojDwvDk+8+nrqFKvtdUqTC16YtH+zTvfREInl/RbtcR0Zf9Dp8CaEztjOIYYC5ihI6aCUW5zd3Dc4xfK+UTqsrPpF5fPp2CaAoi939LD44KcM7mIIdBcRXC3hrQVBWGew9d3Nk3jDMVwaf1bfc6MivjeuTzbLqvxvaHIE41r3VRqA7fVT+KqgkFNWh3TDzCIscjSSnGynLDka364XVNvR0eT0ABiOWu8LHErct08CkAdC5KQzXy1KecdBRyMWUJ6w+1aA7id6+Hsvh2pzYNhNoSCTVVi1XZEbqIeravXPIaHehUp6RJ1OVRyRGWnStANHq81FdKxvnWtfA6rRuKIwDpjy81+b/lsz66kadPeGHL5g/FkfncF256UdRCQ04Asc91R5TFQhIotwOaleurLlgODjJXQfNR16mdVp83QBR/LBUtK+ABcjuZOwZ7PdQtmGgdRU5w5wohWwGmFYKzzTvDz1bB0KMQSVkOJT1bX9hf8QBM8VGk2bHI9Htn+exrlNIItfA+7XgswZyk2SJ3sybUfK/pbm09gOgzyZOMQyMI3vJtVxrYOcQReg8lIhdLe9BUt3/K9NSxOZMLLy2rGDo2j2aZBuWjaAUUDanq+gQ6DaS78wXyKOTf73yWlQl2VC9kch58x0XV5ekxxYGfpK9L3rgo1T9fU6IQC+fZJOu9gYUQwaSzxYLc/LkuViPyz3rQTFbfJgzo13iKTstMACcxMteCFP2erdpwdasokwi7m7cqFobajY5dBah2omEpsxmzk9YBXcclOME5al2qq2oqs/O1ujqWuOT/CkSfMN1hrVawzCSqGEG5IIgIZHhihVciD+8u+6JUGBpDEhll1XxSygEG3F59bNb8Tze1w9btpFKIwzP+cc8ran6pUrBl6jfFCwZm2RDRlJKXzuNy41BHp7fDaybH0A7WcHWRnHoW/gd5lZzrvUTj7uuZYB0cook0sKhQgTWisL5ZKWAI1vvW3aU0DFN6yoZp0ZwQ1n3+t2a8O4vfIjYggow8ZseP4h4feBzTF//1jUi+Vk3wbT0kytkzHGiVVZmnJZi5+KIgPhYxV3/DgreOlPO+RntEvCYyeqh1f/9tEGAGKRkkqYZyHKCDIPfsXX6IPcALUn/XYKS0v/kbeZu68Xj93HqMqu69eq+m+AQ1qAAKoL9Gg3WFUJgK+WxZiyRymocVesRdFKAwoHmygKtCqcMf3+c+9LlunISc60lykH1sie3/o/8E6JeewqBha6N/QfOc32sohF6W5PapAfSBr3Sf74lmaK8rSiRDw1YcGJ89mXFovwA6osrrkJFYsJdgfFbPk70qFBZBN4Txv9+cLb+K5HHQiFpvdiY6TQxY5uiBsKK39nXNDQ+LHqbBbwUQ1YEjJxkrRzSxz88gpy/kEbXIEHBWko0kS1Zh1izHDVxVMAPLTyt+khDHnajmxInC9bpE/PRXkA4CBogxmcOiIsUtbIgb9XgYNnrDZWx9+7NdJYfEk87MRcdJXjYr9/KzRQLJ1wGB+kQeXvAOINbhPOds6/k7YYt3Dp2lUdsNx2IyRbhr9xzH0rzqbmLzL6+oWjeeSjaK7Lo7FPDHIR6CxVgW4B3uwKu448xqDRoxtHX6UZbh/LS+kj5w==
Variant 0
DifficultyLevel
568
Question
Worked Solution
By long division:
—————- 0.0405 8 |0.324 ————0.320 0.0040 ————–0.0040 0
∴ Correct answer is 0.0405
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
1 | |
2 | |
solution | $\begin{array}{ccccccccccc} \ \ \ \ \underset{\text{\ \ \ \ \ ----------------}}{\ \ \ \ \ \ \ 0.0405\ \ \ \ } \\ 8\ \text{\textbar} 0.324 \\ \ \ \ \ \underset{\text{------------}}{0.320} \\ \ \ \ \ \ \ \ {0.0040} \\ \ \ \ \ \ \ \ \underset{\text{--------------}}{0.0040} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {0} \\ \end{array}$
|
correctAnswer | |
Answers
U2FsdGVkX18PfmIcJze43kQYLfZapy80xGBFmMhoGkxLl+tHlBk3eMBh/4rBGnu+n74clxAOwDCNiRPy87q67n8sITKMrLvpDPSktg9BJbsPtiPnW+7HGE7SUUghbuwzVd+9y811jsMDjCnxJCl7A46yhqSpmMDvpBiF4K79frjXmu9pC050cXTbv+RxyzMqDc6qzqqy42AYfzJHCf3EWxWGm4azBNQ5lzguKlGEqT1gvU0mlT3HbIBafBld9LQsHg2md1L/oC2hh6J6Glm5MYTw24hwRSI4S2gDkawpMByj/TVeonGIDP/ndf3PQ9zaGTbSBo14M/c0ZpdIlUdxHnNRzXc88UHKo2vT0heCriZMUdlLmvFiJ9nRtcdNLPUhOcwuDOnatSmtUpEp0tx5+WxYN5okc/t8pjsF4N0R3/8hTOr9EmciY0bcyoaaR07j6aAn8RcpypEbw+cCoUmy82fXKXTWJN1RmJL5JN1yoFJgTRaKOheOJX3xCym493WlMfKdwN/0siT1doimBeEtUMtK+gmSoUo7R0AXynGX1ve/BIpxjs5t9KQmSWpU/DEC6stdhcVZ6YddH9oj7zQGaUiwSiulkrFYRIfs7+FJfWcIpV331Mx1LHkzpJgwlugz37j4MiBJhR7oPhidOLpg84UxfX+Oqxj92gvkATX3UcPkWwRpgDQqSL6g2WCgtzVF8UMC0EWWVVYKPRywH5P3xz25ysMRkdRPBQqkUVXIeyulxAV2PjktpRgulOqnCar6P99GrhPbxZF5feE8aYa4HiAM2jDVO6kXjin9KMeF/1MxX8DRwnx8DTYbKBwCOSGePcWlB9EuTqYvcGaWKayaTEe5NdfkbSVAp0oeOpfb9jq3nDh2WOR8UqEf4hVSCdp8XwP+pmhjRBQp/059+wMyR2yGFbn4p2upXrDD4NrPDRii90Y9UV6ZUwm+/u6mgZVbiM2NZPGjIzwIZlJZtko73FcYqH2YUwIP2+TVVF+gNb6P7QVWnrEJP91PfivzKmW4t4Yw4J2EEo8YVYmpmmudB218ApRM4GTlHM0qpIXAYLBTvjrGQ/rA/8XTFRGtkKm26cGz6OHprSMnwa9DuZfSz4no/0XaZIJzNrb/wnLO59LadfpvOTgpees9ZzwzFT+c7rE/vUUlEvIPEqzrxYVlYYPe1/Aaa2stacIhKP3uTjzDEhlOvGju2ncFIZyou48EVsTyUVBeDL5elpjbaxHhc8q/8MuqZPQ7e9npeJRWIGd6UN5mL0a/xxhKPte6rng8OF8FJFAgzuaguJN6jNWMJDueZpke2nt0wPavBKzqTuBZlxOu26CNJpOP4JXIJA8AZZJ9yHXpgMQl5ieiqXmvxsPyV9a1ClZMsHFZJvQK0cvzGe5EwTXBDCz89frnZ+zf+hFl4Pfeoy8IBObdE4TcdBfdx8sdrYhd70vvFpvURilJwGfmXpHiUoGg8iOGZ0zZ6lZLJcYxmhLjcSgy1p7euO/YztU9YIBHONwlXJ2P302vZOWcFn5ORFJR8Efz55x7ACHYVWHR1XyjmxsY2Av+KUniCZ5PDpP5c4AkqwelqZqYKKhoDGRUzVBdgbJoEkV105wZ75wcSwIyyWe0l3Y/6E1Nf8TLzeavNhyqAaSGB7+OJC0r2/tqCdCwFHO49qqX+5WePvMx3T20x1RWz3VaKP7yLHOWEuEB6XNXIl5dhVjtSqvLlhZvrVWOyi5XGN+jS+8qt86NoXxSeTZIGhHwGgY2CWj4cPJ8kbcCLJFIuzlnDnxJvCPdErh7Q8fCFCahn7kFMBpK2BaYkdQCUh1GY5TlsaBARCDpanPkSlABa1u1riUnr5rXV2oaA95RF6g7tSGC54gQtCrnXse3YjdA/O/93Jc+vouNG26nkza66sz5I0bJK+lE8Va7FQPNA0lQxBaIZNSEb5OGSk1spmVKYIVzJp9p6VOF8FPFJMjgBrlw4HbuGiwlQw5fkUB3lw28Dl2zOr2/QbBO4wMVum4Ui4CNRbQfF/vYvm9rGtEQ++DFIhJrL90vjZIXU9TftcMGOHMgczFNOwoYkDmhgqaxLdE6BQv/8Mf3nDDulKzxppy28pINxCRKxeUIZZPQm1CS1TxAWhaBWJ6YVVKe2+LNyS4ykf0ZwW/8IeTMwyLZ9FN6l9CvvNepLz8fZ7OaN8UyYhDsD/Dy5LIsTMe2iR6LsHhXwTcadC+8330Im/bG6M9nykppHzJu/i/lwVOc3E8inFZbY+f1S7zKm+fCRLJe80sKhXbz1lklTi9vMGAomlf4LXrekHxNwc2xW0cunLbvk/c3H+R43iOBjL3av+JCWm1sdaY/V263XQ14rGkvDRLbzeB7In4d/ObwnT5/55/ipGcRZo4kZTlUg2E42KqjBC+q0ESC0/lyNP4qcXda4lbo1gaIdAxc6SuUYzqUEf7SBDbdwb6PQhiGdKuTBgncMYHcZrLeRDru0W7TqBYJroAWDfR9YLEgm6PZ8XVgwqY3p9zGc2hZhhrOKEgS/HveGd4EwnPuYmppd94mYgIBr2wsk4bW+VqzbDVOFQNF+7M555n8h6SKy9XOtNrEueLKVFwAsB6MYReadGGILbeZmRemzxPEqRJuXZUTH1x7RSsAoljGqBNMf/zOyy3JW+PJXtaCjTLLoaFn9EWowtS2iEG8J4CR+TnIeVzPodkKgqHmvgBmTBLclA0/TaHVbE8mmHOcU14V14BD0dPnKEpij+Dgr6H9rWnLq5VE8qWmFfAUDsPfRKlCVt3qfGvhuVhKyDs5NVYkdF4ElH1//GxvylSKeYPfWB5wwmTOqGCNzxcYPEN9cs0gGuthvYMp0UfrdIVOBNnDjElTc2A+wunWE+Hd0g7xGAU42anffWDKlpJG/8BwUKU//8C+JndG0Utf1wTRIJ0CeJMZS6kkIYLRs5LTTGff31I7Dig44eFEmIrz+hmrC2h2UANAyE5/kMplH7KPBsNkDOWrETrlJuxDMNDKEhJlnke/cPhaxGHUT8rHmqhluaax4uhkubhkG8o396rLUhS3nFLftAp0HmFUDb2mBHSl/uglIX4InXfA/E7R0vRy0hsPCUBuK0reXkewzA5TszUqlQOf8va6IuiJ2ZEaZJozVnEwJWVsjGBdHmR2DzvCv8TSoF+FPdQSoTkJQGtvCU6FEiP3a4vW1N0nmxTTvmbubyWPYSeQCJhTfziAU0H5ge6RMqI3eeJveygR+kqjMmVHV5XCUEa/hfIPR3xJYJpxWTDEwXoQMDYR6SKDFq1EavKnAzOQo7vWkE/v/nABmdqK6yf7XZ0Z4mPGD07q4OQbA46p4I5yReTXeOyILN3Aflc8IP+WALKq4Tx9avOgmp6q9huyucoXnpLp1oCImTotXzmtYS9P1mK47ROyH8WYNLaukI+DW07TbPbqGIuK5sBcf2+s6+3r++13v4aIstVoiNnWiIQx8otYDRXT8dWxhiDS1qUGhdjuW8mfCkV33zJcYwjDuswUf8sYCwlqnVTwd2BeMbDYwq4VMYhYoNeeW/BzV2oC+66VFadvC9F3MfelvqUV5Uc29udl13QHT0d9HV2QWh1nqnlGu/Lbl3ciguElx9xylYfriZv1He2qfft5dn3dyCp9GJ5eZB7xMZYCFbspPjLLEj/dj8HHqXHWRGcx7Zc89hxUT8jTxSXzYXlwzWs6fwh60tjn2kWDjbz2vUGZaF6IKpCdlQdQSaOo1DzYpJFp+ixxCAgR8BmM5QXRlXp23zt0gk11Yvi2NQCyuEJ/9Kr8G9PDMI0g9fNajN3EeiAZ/r51jndBenEAxOkOAPnrtpjcxALh3F54hUql/mMPh7y8m7362KwTDu6C8AHFAa1GAEDrJUWA+/r/JYpz2Z60TdTCLRucC4uOEVMbFDQG1wKgDMLZyE2Q94VKQlVhS6YIMVVaVZHikoH7FB7rPG8KS2TFScllK7jNfvrWcD2Z6BwOYHDVHrse9V7Np80uHlhv4EUhaP10UyCu81yyMcUagsUWpct8VcSwYdy5sTiWiG5bV/9IiyRDa3SbV0OAkIHiMpkRKaSyZGtpSXDnVzFULtuAvGtx4FJL12zXbxzc31rrTOQdQadSzrcAXRa3RriyilVlReRQ2tUfp0De3HtFS+KWR03NJYAqBzLlPcVGmlZlF9/Oh2fvH4Ogq9DHqdtlNu6KOc9VLJB6/gYygk/5EM87vsHVCRYkC3xmNCp27U0HciaMWdQDSsWV00Y2pAgFaEcQ1AU5lTnxG3q6SeJWrKzt3rBvIDgrfAjXBjOpCFFSgoz4+o7026o2ehzNsecckCWViTNIM6LTE6pJZ42scUM0JqRZN/Yel0GqrB6GaCTpIknTVT69psQdFvCUdVrttOpUVcZEx7Qi7xmbI3mLoLMobBRyxxIKKiJNcieGkmV0zZeK152itXiDKr6bq8advu/ZXcl2DrbfTvMb/1NFl/Vt6b7ZpFYiV47k7VSDJ5qee9F2CZlXzF4tc8hUBjSP/SEN1AKjMuE0Wp60/nyqGeSIxIoOl71WBBp3pOm6xZ7mxz9cevRjIavB0IxCtC4hhT88LBoQhepODX41zwpqX6h611et80fjXmBTPqyAWlG3I4Vd03csaijqj7obPigRDQg2kGPFAhHZ3s2Tc+GB4HwMcgAbG3Tx7auFvG4yHxBkMz7Znr9FntqXMqgocPPyLgoxHYk88KzP2dlJZ62raLTMRbjST5HNDQOltNLuffXMN+YhOAVxT9N4aH7yvUIliv1ifRCt/gzkTs3qTyaAEggJ/b1BzPy8oz8WsKWBUHQx3wVMphDrrDG1ss6yWTjA34EvK+jAp0l14/Xo72HTpWymxnNcYw8XvFrTMo1EYlZVe2WLanh0AT2zhlvB3BS1qb/K5Y5bn0hakWPrcVDpslDtQzoBcNIpyLCVMuQH3oCmYU8vZmD6Su9FL0KkvUF8hXKuIZOlVGpOkyQR0r20KFp2HmVgozWkoN3I8fa8PMdYZsCm9MgcAHiW8l8P7igRn1eitUyhIumQExFzpaE0K1yNiz5KQjmPJR4DRaDW6vFV2c9h8WlHn5zTn0ULToKeXwL/orL7UlG/40ne+oMRfu8N/8wMYINotaKLLZE1x8hyLJ3NCTpaV6wZ18NzhIdAmgBfAfZ1ZzJH/XrENGf7Ea9tNrBwoSh1UyggqMjfT5DomYKt5HQumTdZ098YpEFtYrIcdowAoX+3QktAgMI5Fi66k007DRYzwlrA+w3Wn+VWxPQFwUNuGMcnbdS2n1m5npmAmQh0I2pHN/+ZlsmoEbfhf5PnJJgB0CpFejh9WASVcfm29PK/rtMdpmwm2+6MUwndXw4SKjPWUvIWmi3q0+hWafIV7INyLuEd889/o1/s0h4o3nWtyCAa6xjEYMS8RTaCkNyCgB36/zjQ1X0f5qYCn9um7TSwRMB1YFOuLcimQzPObOco1Olu6tD7wGnr8FWn0h5tmB1qLiSaQm9zyoiAIDmm4QXQ6AXpxrDyrbtBxtsfwMTyH7/2U4tBr4NwWZ40Nfq0CyKP87iYk4N4eIirrUnWIqFgHxv5RR/J+ab2qKi2ti3Wb8Ws/ylcz0igVGz7u1kDOgs7UpoZW6sKqPQvHoxY95tbhbgeckBPdKI6gsGzSUWY+/5xDjV/4QUZjz7A9mxHrxHhGQgctMj8ETXMgo3uGME/+oD9MgC7pm3VFHEEnkolQ38T9dgAkbFIUZEHPnu3bUoK3KPCNM+6bNDBGSjfwHRube+HIvhAmBxEp9sanJL5tWztRDjRsSRc87IzbYD0FredOy2EdGJ51LFdkk3AmcOfDXy8pU4Cd8tXTlLhDP9cXnlOM6wguTY9aXXDemzv0i23cc3q7JAhHOA1+8r25IqIholLxLOJF4RlOZyJk1cpqLZdGuKfUoPINCh9u+NtQhDggvh6cRzdoa2Gp2Z6p+xad/vV6ML3YvHWWCnQz94PYyWqgPYUXxWAsbFa4xvYqn5QsQhaUxKDo2Sk4mk1wuWwc5qsZMjuq1rC58OrJTnVKmpOO/4IAswfeaXFhmrhVvy23SkQVTnVG+Lad2hc/gFMjZdKM1/78tVuZHBXBku6cGxd7Q2R6oPQyFG25G3+5rzdy2Ec6gN+iLbyA4UZZO437i186Ubbf05XRBZzpeiBsYZOLXCxEByTzY+QVjne/nxM6FrDWUWW48UrPJlBI/2JeAgAIUFllpdnhJlS389RV3k6uP99DIUcv3qt3w1ab5XTRs47xPJecJxxU2csD8WCheV8Tzb0Ou1PWIAPPIY1rrnNpiItDrQolv2eXv3CurlCwCyfB3KXX50v3h53l/lQ8W8UvIeotU97QLLDbcNcwTGsPQuiD3BRxvh9Sx7dBw+buT5/ahYTbP6g95znIYlBYYr4dPlE8f7J6ief3170I1+TFADqrULTK5u1zvyx2tjjELtyDwCwe7PCHX4hFov6JV0SyTt6Ox5rhazbFr7I/FO6TvLLEzZnE7T6P54bqvG+d2OGOj5Lim+crn4W1s583MZLfu40CagLhxF6MvGoj+awuCwuxIGa8aMf9qh/9SbM8mzfJ6uL/ypY3aIxgJwRHOQHmlK/qA2eWDh8R3DErFDZP9bTHONIkldBTr5w8G6XuqoJx2k6EeZMNVgMwDKQmS4VRYRcwQcA5/ryKyZcVcjSxynU2y2gJloJuxq+FUUrar7Y3Pdu4a8MwWYrholsx+wsuG6ID6M+4WvwKY5kt2k6JyGMq9TnNkz92/E1emVFkKc4N7f0/VpVBBLspalgDMZcMmocaoB9pglCXIFSsMhAQjGTxq180/NfAzaL2+GJVoGNjMhlCah7mexbRipfxPn0lZsjTak7qh1mjXdEGJSwmF1OrgukO1Z3orbnRJQkcjqn0H4VsizETU1rIewEQa+jDe9QSMOTBldtBcEBlaAFwekmYO1O39YC48NQhjT2JKJHk8ly+h8JuhPiGq3EEpGsGM86IANdpfgvBOq686Umr2+9q8UIP20bf2+SpmccbQzkbIQc4yRGAlbxrsT37725S383BW8DWI6ViOOba//2R8zj4VZGhDqUXrkpuzwTUJUTop6VN+rD03WHmN5w9woOyhPVY+7+K3K3feQnc7dmjT8iXvu+V6C4QzoBOHgKceMtDY28/yDfdEP57hkFyEFcZ1o13Y2jTG+JZwNuCU2XV+Lb2enQOhXdEMd4KMdttXUVR+w+a3ALxedMa4hbgH6BgDb6NrJRgxUjC1fIB15dDEV9AJaBF91Z482FhKRD/pijgQKh/OJlHAyUh80X0i/jCxBdVZFO59WMnJ5HO06SR/tFrumN/0CytXYhIduVjJ2nBaIOw8uhcYSy/+hHP57ATjbZK8Ug+u0s+Z1P3Kqe3Wte9Qx+IQLzTX0/zMHW6eXCrewTby4BShJgkT3kxl2j2rWiRnNqgeW1jFy8cIxQl+oi0NSYybtcO2Ogigxaw+SJJMydBmFcF6468owPW1gLAPGN3uJV2b33AJtGV/QVFatXFUpvn+tFbSahFDazT2Sh4a7tkbgXIO+lWzcTa80i4a0fVFPL2K7Xxqz+AnM9A5SjPTNaE5L+NOstHw/5d/+3/j/n2IZRxPYJxkqipocJM53z+0ncVHiC11nSlbqCH6seoNFS9EzuS7QL8ubWyl2VoVOCTrouIJ9B1KdFSpBzF3+85VZjhNEYxnh03epZdeHvPf1Zn2NH43iFS6OA52JbhNZwWv7cUCBM416Vyly56fN148T1cFRSoYDyVXcVLl5BFQu05QQkSW0+ZrFTI/XpAbtCuvm5THFNno4tS0QM2jxgBct3Mr4MN4gutuIDegj3a68sjr/7l3BXRIWvma7BUvK+sK4pduz4Bq4saO7zlmCBCDRpaTj4GAfzzBdtQvUE9+MEdTTTmktgwFgFjNxwAJy3NUrXfXJdlDzOSAvZ7oNoYhQWNNFYYsqC17ZbnR1hziC5jjo9FYC0e3uF1IEKAn07VFnFJGCC8hM4jZJ8pl1mrktnmgcf5AQ1BvWhAbi5SxcYthHneYqSaLPflScj/szPsrm9IXvdO+ZW0+79ZAmhnfW/+kddhTZHUMzFl2NGwC879EnWz85ntvRureOd6vgG13mVz2w8lhDMDwlMbsVJ7hSbRdn4amNMr31pJEmb/76v1f7cl9bjSHkoDOwUmZ7080AFCFv7wBlLpHKirOukkCsBiMReAbSy1RVbSpk0XtT6aJQzuwUx7nTtacHHuFsKxTqRj1e3ylUvLWOc1Giu9/IOz85V5HxKdDv9loi9Dpd4Ton7X3O7m9vrmSH3h0INJ77PcNT/4fpubWnwRi0MEbgvHAcPnFxMdzUFMiInw31vw3690RlCD7nfcD/xkACGcaPXc8+gr4fIi+worV+cT0zy/q09YlCOyH4RL4OpC3tQLK3dtZ3Sb4JCjkIuK31+VKzcWoMjXo7ktqzDzdPHxbXQk5R/IdHk92gCOcusjTSSF0hbjumhXenaiVXAJUnHDaYB8Q3ZDXZy/+bncN5eGZzbgthnv3JIXVbAgeAiqMS4HxHr9ObmLO51FkjmCgLVNlEKpPqKdJR9g+ujwlqcB/D1lFf2uLIVNIftwa9B6+ivgTe9VlpRbkAz5MbE5ofCOZ4ZDabj57V3Lrt2XhUKYfU1v3H7dYKQgSGf8Iz1VQ2zF1SM9/KdZyJwHsTPK9i7gt2ANRIkVsbmWSTE4swOw5fS0uBvdtLwQC9EOzveNmvpDU+Abh/SlnrS3TB7QznWP5rOJfWJtvmoNT/tMdrm+EndkTHb5hTZFRuAB6Z3C8GlBGj5XrZgSIWPA59eSist/cISty8TtxI7iukvEl/z7NXyCvLsE/7WLY/p5G940Q2fQEsvImzfVA9xK0jnKSPVCNyMZbTrYhEaGgGZ5Een0TD0qAChbcWiJcj3kNd7SLd3BU9v5PuLtwJnlBFR+rKwjVyDQzPcHl4bVUmhyWXxwkkCAJfhHcbDOUUZK4B6bC4SSzG97w/RxAf94KBQFzrDerMZy5MBjut5s0FKfJF6TEKfbLEmJdnoPtfi+oR5Q4aAixEzbg1HBIZ3QTuYKsZcgKW3QfoSgSkImHulbHOknEiXIaIEcLJDm6uGPBf95oatpiXxo41124CVyeZ+Ncq9IrqEsb1D+BEIPKRiBEyKxfFvqBPpsxuwdh42GwCAA02Z13glo19tUnHrmUp7kzQPK/bplPVuBpK31xV7VMm3qeLrwY7hkGF85EilTNbvkc5OOOvAGQT9pXzrW2pqW9hsqxEmDjLuWIDMagRqaCzgcWmyJkiDpbXq6qUr5QciIs7Zi3GNug/USRgZ2lNsRQ/SpW9d3j+cW/N6MRnVVqGQnD+K52BFNGpgW6YZHVhbXhR19HQ2o7/8jWcw34IREgGZZgGlGgOZAXaFTx2w76STtGso1RDuXjK7YWjy08mHh/T44LamDANJI/rNBVjWZSBjMu784YLI9znr7PWk8zMfSbKGrDy6e4/kgHuYgmy1TCczNfVcGn/Hc5tzq2dvdKQQ6Bov8+OekBo3D2srI75PkUMxZ7GyxKwAYJwKmjMjoaCvFHEvMGcjGt48GQzNR77eniIwR2ZWbLYGbxRWkNK/TDRH/0dNQ6Ri+ELFEBzbV6c53To/ADGcjSBe14dwybZ7Ij78R+Sm+MLgiX57kpvUZAh/Atm7/goPUmmqvd5bnzdjh6LNkbOeTznL9PSc7L794MfISqRPrdAP89tlmB2lxu0vW0x4/egt7HEK+rP8E1eoShWL9noYLPg0ifGoSSFFkGcpY7V0cq09tDRsTKSxbPYe/V/YnBQywSuiAPPWobYKvU0WkSIkt/KbM7HXNth/e0+dGxMuZuiUoTfIhRFrMUX+K7c3A/mpxihjKPS9G8mIRKsoMljY+8G8LrYJ49dDzT+Hzs4Xtii/tKxHXMuQxhPgS0fXoRE2vLPpVHDGXi0xYTe+CHwHTg2/AoBnEHuRew2FbunI4gF07eH+mJF7u4VTul+RlIr29oai0QIPWNML1W19CgGc+lYSfVvUqk9PXRsaHkvlTgzAScq2mY3vzEaP8k6RbK4nsGWrZE36MbNWq9k4ddPeQHGKK1E8kFuXt8ll1lnZD1j7K+/EoldOxVCJFplcuY3GbBOHQHcSAiDROnqHX7L9/OZJishBfiNJhTDTApioNy8sMTXVQjo2FofQ9TNrEbUXVRjXKjlnPGCYzZ6owbWNA30WiMbCyhXz9ImD6VIC255/TDNSEOasEPT86Sj9hv26rPgYSJNDUEs1dFsh0mTmNFwJMOZP7BPu8yDYBj8k0H3WeTebkfBkLxWOHysb+hlF9Z+A9qL3HbOyacwxT+qPajnbuZ2ErJL8jDT5DTnqbI+BLgaqLceQKrjOuEk4cMpvTE7tWYa4zO0lvrbcobuCP5I8ymc9CgawHjfYReQHR/fpzwezM2Z7oyP0bWoeIxxJZJwAIcNd19jt9kTFP+0QVvsTH1SDIuku8XevH8VhYLsGYgwWxh5sIygsidyvWE4AkJksxAR+Mt7djAXj/CAVPzxN/skafgDpQ/hiKumfIUZxerJTujFFZEkWOvnmrnwRpSBRgQJex8eanpWT2NI1TKS1wIxbE87SY8QzbKsu1wOdHtMhDS+xg5ZsO1zmSTXGS7IKr6NBSIkuH7DXg1+RrA+4Nblvlx3PrBh/f+VZ0Z/kBqqf5xTaXMog6GgXmR+csrQjATGTXRPuYBHg7ag/mzIL/jtjy6VJKQVvpte+NvvJL69RM/KUdX77GPcjToimdenGFZfW6QbDyte+waS7zSMpXCmRuNTmJM2qpNxTuZ2fLl9bFAaRAzPSzx5mOPyfEGFoVYNT/3V0uNkeadlBGDaSI+vPMKhIFUvvGkDECFes21R+90pelgpoBPqfc3l0JDSE0eGmhPIbxzR65rWblvSy02iktDmYHzzZlWOiiwTgbwua/pw1i5d/hw+2k+Jk7GfOEClPnXddBUd5L/uQcefu2kKntcY4guYRlFuYf+skplxDCWj6EJD6kPmSqyDSgoE8WQahzpxyTU4xGmNqpUwhBqFy7m/bPa4edStH/wXlZpwDHRASrf2hh7VkqJdsYn65v97lWQwTAv5H4ce4MMTnLPBjHZ/qzcNsnkrhKZ9GAbSQEGXcQdVzjwHZpgHXZUHFRDzXaTxnyefDDW/f9vLp5BZYG+dpZDh7qSHyh4nltMQ3Fc3F70YT9Pagp1O7qgpTC+qNf/Rtdm5w9JfHrMSVSSQnIsqaMaakgTziHnTo62Zeq6vzIv+/B5/lktmgYKlQjGDkq7nkI9qL+B/rGsZAMK3zF3lmNJrxFbJgQC2VbAmaGx2z4p+8kmBS9UM3Gpk0S3tK98L32arExiucIHeyToem8wZU6+t7IsfCpnT5rqzyosq5f11nHRI7vHE/yFhbH7+ROcj5J29ApF2yWsRJZbBkeenD5rwB6uDIyeIrI8lrJ6LaqsiVlKaSGA31jpaTWVx5wZUJpqfNwYpfrUEjnlhlAPkH630thxrNmRrnu9BctiWWILde+R9m6kouV2zb4gYv7h5bhJJMZLkbUwWkNJq5xxDX8k8uSVj1nCvfL+yvZJjS1g03RNPix/vN+8pMNOrO2O78QLDW+atjNi1SUlWo1NGqEHqDXcxQZ1A/WEkMmfObPQEfDndz+DpFHFrWDZyrVMAWxma39nCoH6ikGai5kTQCEZm2ouWbS1bFfjygWsnBHu0oNF99egL0VDiVAWuQ1Eck9E5I+SjS1TcridLHVZse7FSvqlRjExpFyOZ981J3hB7htteQFDmGYaypieJEzmmpAqCSehbkw1b4QeAYNzVe4yy7Xbc0J6M6TkpMaFVW3qE5IA4sahKdxnhnHAd37llNz05rI1iofSYgX8Ah826dEdQqRx3PA2jEx9GM/zG7cLrCJj5bKOM0Q7/HeoMKDpE2fOv7KSu/aenot2RA8lIi2TQdd782UaEK3k8rT3vBE2LIf8cRGdMOMuFKdFNFS9nNa3V8IhBVLWVjE54uQhxqtW3c6HA7iMBbktl/fl4wkssE03XFi1EANOthgVQIVaeXUfuxbQbBF9pMzTkG09RSMrp2W7UwYdBC3/1GfnNb20ezykVz0nBiIcs/HDtZ1bqSeS9MskI+msbRQw4ejqyRBoE5QvFepjICDVx4e3WdpMKfylMunfQGhLBfJhKt3P5vl5R+NZWLL7MyfATBrJm2sFoOI0Gy3OeIJP/D6qTc7zfBCjEvVD4kHGnL3JF05U+XoPxIob43+8TpKlkZs7aRq7C4Px4soYjZxjA4RmXgepWtCZHt7PNW29p4NSFnDkNdflnySMCH5wUV/qNojDpjJ5cLXwFdjPfKxCU/CyAq1eWGJdpoYSxIFAkTA5PcELPE7JToDmdpcUzkXldR4jvR4idIVQEwVVpHwEAERnlHa43n+LHCIOFyYufnnRiWY6WdxjxbmexGzsEebqIJ2ZJ6tWHY4bSgL9oHyLrlLhkw6r9s28WQC3bdEJjxHn8hlZtkpxgKgGnBWAeGbVMqhl4uZ5B0M/2VM25ZfGDV1KdODaQkv66rOStFX+vJ1AOvIaWOzseLsnbd0BfqJHcLXywDfMHgk0H3ZNE7LeyQZUaMbpQ4K05ZMy0QrI98x8CPQ8s5VOBVie3qhg==
Variant 1
DifficultyLevel
570
Question
Worked Solution
By long division:
—————- 0.0204 5 |0.102 ————0.100 0.0020 ————–0.0020 0
∴ Correct answer is 0.0204
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
1 | |
2 | |
solution | $\begin{array}{ccccccccccc}
\ \ \ \ \underset{\text{\ \ \ \ \ ----------------}}{\ \ \ \ \ \ \ 0.0204\ \ \ \ } \\
5\ \text{\textbar} 0.102 \\
\ \ \ \ \underset{\text{------------}}{0.100} \\
\ \ \ \ \ \ \ {0.0020} \\
\ \ \ \ \ \ \ \underset{\text{--------------}}{0.0020} \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {0} \\
\end{array}$
|
correctAnswer | |
Answers
U2FsdGVkX18ZSPijlcXQO6X2gBD4Bt8AORqkLZ2GK+A6PMig7MoQtapfe6pfsrlX9N1uSYDJ/a9ymJY9TMlIGqQ9vkB+gw+4SfKokuVGizVhmaBcoD46Zf6wdY/mm8uFF4O06EXGkNEk9dkfKoafM4BPe46/iZaUd/QPozCAUb/QnpphZJYFPTryJjKDXjKcyj7834qCNrjsaxYvhltWZ+DxZoL8trxp0t0VKa5hXr6b5DevlzPRmdziNsfzT1OJS48Ntj8bcue5bUBK3xn+fpy01+B5CMxsVXF06P3kgMfTysjzZQrBzgCt1yXH8mW5saAmAWi+oQkE+S78vqJO0XwWg6bcMza2dYFkm5RD94l2kVBH6cwg5AZANY/CCyMTNQM30BCxB8YKjazcV9os/J4dMM8d8q6b3cu1hO+o50N/cibyVPmnAci/EciJB0NSIIS2tAPLEtYZp+0PejIImq/OwbrvIkf1Rg9vESSdwbuorBZ7YzeSZdDB6xBKikAca+meeWI4Uh1sT3tNcxaQRME4eQk2k15d+y41wPAJu+zfS8j+5WI0qCEtudsNtjOMQ/XuUCCnZqYObkfqdlZ0UdsycdsOHsNGH1MURiAPM57cvVZYkFBE1v62sq1iBuxjimii3kbfMYoQBl9KIKl2bITy6ujkn/fMNzeKBIdkcC8Lo5Ba1/DjIy2Aw51Mgvp8OOyMxTgorVF5+VtXXalXPxi6uTzt/ushmVDgBrYe9SFH+hYi0pXULMeqCqZ+QsAw+lm99TfMte14cvbjdm5wgifsz1PtY/Z2r88cWTeGIXrF4ODpYd2Qcnlcw0myrW7HCZ1em4kphf1YXA6DLsO+YuTtzJ4wXMHuRZ+7gMy722Mjlse+vMs+IXCil+fQQzRjyNF0b04PpElXejhGdhoUku0l0bTNMB4htMHrb43KGTxBj3i4RLMgsorfNTkQtv0AIvZYQi7Fj6N2/Dz65GlE6E8e1s0Flq03f1XK6FIXRQl5Ja0ujaxXA5Q7SCCSsnr7VKZNhhgNPiPmSqnhh5l/YGAQhiUmM90uwozY6yrir6Fdj6mHriiwnNql3MkAv7FaYIlox0NmmZzyM9TzYjEPnPcL/dSpyfY+0hjM28B4QayBCAF7mO7Nb64nWgZ3uMz3yJODocfXyaP8E9Xn3RDvGZiBJ164iP7OxQq8Dl8Ah3n5JLO5G17cNr8vsQJBsLdR3BmcJfCXKuOOq5G7jF5H70YI0Ezj8PxTmjf6Jy2fdS3l56WkLNe+lVuXRAk1wiwZuzXwsheitnVa69OXzKrdWwHnVaY5kuU63l8kGij3g4BED3t5rGIKB79oukvFaeOn12C/ZL3iY+Jx1L56UurG785gOWfB9b9kkz+r42IG+QwaQqK50nFdCId8kHJ0Ju7hY08IBDk30io9ap3xVUv+loWK1+WE0q8l7rZulgfKiKG7rRleSYzqoipeButFt7+9xc4uQYJdTY3ucaPY9P28uboQzAkRAGh91SC+qGYt9O5ajzK+r5CZOA0Rtbcx3fRdevtJc4f4tpTv4AEeFoeUD8Pt3vD+t0uyyJCjNcegeBJmOCuIEd6IPpcX52GVX9QEgVRGv+bxS1IcvsVQKuXbg2bB6HQRjo9spiQn0zJ1fUuiYuMC6brFaIweDPXg7SbkPkn7BhhecqrqY++mCXMEQTXf3JeCBC8EgUprkmu/QH7gFSB9fLm2evJuusBxdXwgVi9EnwHU3Myngr3pS35P4XS4CuP3PClSELYvaVlxn458pV6vknmEUyVZ0GgpIenRVO+7i/2T85vfjWnOHiQ8eY+q/v1q5h33OU1uYbTNNSd4MvpUvzatRQVW7OFPRsoBpoURl2pezDEaBlF+gElbVpQxOQDJI2DSXDVyc3A+8sx1LZTO397nQLKZE+joLEthIRGfZAiRU/dxsxm8tr/2jACZYDEA65sQ/kIWGYBbO9v1u9gG4W2nV5bcnerfDYs2cjqNx0tPzKJ24yORaeWJgb43Cr9FLY14pLdvN5fp3ejIDHE+fM0SEOedE9xYPfaL8J5prrCMJrsI/Cjc1FJxEAbIAgSXStnBnWqvOnzP45Ly0LY/pGCYR/ojesiiHN3uleyJCAB79CK5LVWwecWFSuuU8MNulxbKj2L4C6/bweBZvtn2dDkKlg5TWisAiJlOhqCWuNoDxVJX7JTwlirZy7SkFoJf/eEGtVNdcjmGtnDwv8fXKsp2zEZAQPaW95Pa7jDAR+W4uJNr/CUdh3gos9FzBYU7mH1i7vCOa2CQxSV1a9Z30uq0zfUOeGS1o6Mr3osnLYPqUO8NAHsdpB390PIcfOopQsW9McmolsRmIMpw66QuuDEn6LE7Egkyv+2pCTdljybPg0P5Q83UegVJXMk9Ze99CAF9siue98E15c4XyYcAZrksdK/zpEgt6rUiGpflbBy40QyXoi/aJ0yeUQlavTKow8hEW8z3FdaoGEbbNRmm8e4BXnLMcRKvUp7Utvwbm7ay+IguDqSrLQkvkBjbtGFwVb0wDH0WOWUTeWj+dEhmQmmplm5VcuCZ5F61Z5Vk0gvX4g+rHEgKP3iYEaaBaI2WE/6rU1hK0jizmB9T0QVjlWn/CUjMY4B13x0NpryfoQ+lbjVMK+69bOUIgqqq7/cI1Tb2rj2/w2GMXwLrdijgXyqym9CKu4evjTWORpfPZae/dsAUldWfcMUVtotQx5vnhvLvzluehFEk1mZArf2ABn9ukaeS8beL3s/MMJ4GDebqv4G1+eGIUbvUqVsLEHtE2Xxs4N0K1Juhz20sqh/khCHx3mTg8JNE9pqRZu6vm5Qhz4zdpjj/Gqu9xUw250qYWXp4Cei38caEHMoe9nwCrYf2lNKhm2vsDwXKaJLd1ovsE0G+K+mmn8ynKdG92T9vlceoryE5Fvbl5HeSrgdah4QYNUWWWzwbyk8tgFleq/kFxPp8kCBrDTCSn5RqCON8g3/tQi4vZRbOm/i8HjZKT6kA7qMRD2RpUZC4kumJBS94C51Fbe0zJSj1W/BcHo5nzwH3Rr4rBRIK/ZuXyP14Nm6Vy0Ml8eynwYbrudANDLs9h7igyySesIv7Tv+4o+SZ9wQ70U+AtpLzfTxWPbwWC9iWtbpVdhtu1pVXxtS0VIf+Vf49xr/l8/d9nEbzZ/ufsnixzWgk+CbY4I35E3y17Z8BqJ7a0ByfWlqnx6VQJBNporR9+aT+o9IL7VM7uvUtOCgx/RPc71wx/zkwJPyEoBK/jDv77+WsRKVCO9YKfv+yH0+F3Jt5Sr8lmq8fs8AljTO7C2Ggt6ezN8kqqCBYNXz1PToBgIWw3wiwFJmIFKNFF44lTMHpg299ggMPqLrurxPOQeB99gdI9QoH4cKK1hEEhF98uIjGQ5eheD1ixjd/imvaHuDNUut7qEGm9bKRwqKS1ar3VLM6h2XlydZh0IGKlRF5PsJyaI+d0AQoBWex04iyyhJIAdftxruqyyInos2evpK1SgsicXIgpI739ZBb1fUS9e2PrkEYue/gw4uI6bFaACTNmvHKf/6oeJNO6src8x6TdReeIuqIdr72bTauITOffWStXElNZBPE6dHsJuJgz+yEVMrfAyO1W6C3EWNkvAzjpNT8RASlTzmluwMMe3SLSORDE2RUX+DRJH0Sgoun+aAfY08yowFDzHzW55LBbWEKkp2p4j1RN5X9Hes5zJXz7jcPJ72exb/WhFQ+z8f9wcl+6JejD7GOfBRptg9+QBfbQU1kWJ+zcWOFcUDSHXsf/GEjooTOPklk4Sw2hXQEdk+oLA1uw2NOs4yDQyPLF5D7AlUUGV9itNFXDQXCDBIINPeFC4vSxkwSeuT4H7eyeDUf+9SXv0xUtCvko1xW17qDFRevpEpvx7CB0RLYDfx+Pka+hSY3LWjcY4cVR8Az7nN7K3HmfE7KUT6AL8l8I7ZxvDDq7Bk7RIrdm8W+OqSyqVWoTfWWRc7xQd7zT4yS6Yj4RZtrih7XOXl0qxevXVzitfsWQrLj4B38DFRcFnzm3vWJh6nQMQBEJS8IsEaa42FMmAu19bDi5OZB3Q1SCPSzfUgRj8YlKpNL4q506mO8kwoueJoHJDNV0C3h8CEKeW84rhdPNZE04hTpXJ8g1LPINo/cceVQ4b17cFYxAX8NFm3/lbQdQh8G9YtP4bdiqTWtKoDh2+GK/i0jPe8jMs7oRPVsaMmcdyYbTpiHzybzayWpp3KH1KZT0spZZtSVxj0wZzvy/eVDyj/x3zj816LjVCWg2i+5HjSLvp6G+lxs9XUE4ypirbOpuCTGvcmAAIMekbwTm9bYJBb6VvmmR8GP8q4lZ0QRHchhvWmS7gDFqYL4nf1z7f603NAtGcLDexnRbsw+im19TRMlAUiXUdHFrcJODKBCtnqCUyqihz9bOnHjwlNLdgIZhTw+v81Hmo4edXmmixb5QqEGDTTaofyHz2gx5cUIj1hCZy7bCU6I9A4QHcHT5NcFfLMlW6xNL6GwDygHuQ4QmolyFYpXz4yhHLZsQGb/XTg2bu/o6PjQypkfjPJxhD7JGNzNwJIuZiaSwxegvVCjT4vtJ4p1VvRoup3pPM5YyuVb+uWMlBgsLXKG53j5IZbR7z3byk2fYa+l0HPJY59KyI9nxa9FgKalv+FTKIKcd6dm/amU5pEdfqy0M4H2dcgonwW9JvvY6t+yexTGClHI4t88hkYhiYHN3OHwWpn3ghtRfz21YfE7lqmYIoBVbWTr2z5xh72t0gM6KYY+TZK8bzGOMHcG/WNnQxi8jczSsA+JNe/nodxsRd2/4fRknLlwCw22bFB/wDZJDxhkhqLLQxDfOOingKk8Zbjwr5We53tymW9n6j4Xx8ikv6oNTl4cDsYbYqPHwfSc50lZ5ACs0+aC3VCkve8q3hy8IM78V5v5G7GPJjPm+6HRLJs5RdMyGIl8tyn+j2s7QPwCyO5Hk4kHmoh1BDXvP5wAKRFirFgr1XGzzx/SRiTicWaQbkPUJJUDmZvsfHRKBLjtCmZjivqqaWGJrOVv/cz1jd1IynUxlLXw0KKqmzs39ULsd3bKchRNHCaZxZKfM9RJuHnIH58vcfLSrxBTOmVA2gExp1fejNzsA5D5v4oaV48ME4TuTlCVXRa1mpvA4M5MXWMpYb1D8Yufl2PWQ/a5nJCTSK87g07QPyq8kos3LS3CMHuopoQbPpJSa90Bhna5BSgUSVSGL4GZgG6m7USkEzvO8HCmnhTJenjOI/i6W7VizQx76sWlMrraEmdXbnzBPykCdZjJwshdkKhzrTO431IW0aLb2sCJ9JlacL1yIQiW/MmZ3oODa+W5RgpkXdBD5WZKihucu5G2JV0c4aKJFl3026bx3fZlRpX0FCBlyS5dxFU2vAXnb1LgF0dNRyfo4RmeJBvw7+wdtX/lMLyginw/kkyAbUZWt74+65ylxP/SVhDKWgedSXBHpEVUKg4pe3NC/MhGdWCVkuwD8naoJoL3DAORbsoTJqm7zF/MLSexoyTgob+/9KNcBzIb1bv1uYyNQbRohFsv+3JAl0UsVWdOC4ba3PB+oN3rnqJAnwWEeYNiAYGkQWz5QCPpL0lLE5BLCjpq23IbA9sQzuoj7mpkpVxA/8a/KxckrWaX+uu9PBPpGjPe/VQl+8xrbtBa5aBIft5YIRlYlODlHdQIIv4Kab0Z+KASbMuEeM/orlfuMhJmpsr8ohXYTSkCc2ZFaKCabTvdfhurgxtX5NIfkJWVBxV8KRNiiQpeHfSxK8ZroIGWCviZIRzTfBCmW0j4nB1+Xr0vW779jYbCXPnyuGX8zs+SewDL5Hn6H2fzO1MMKaQC+UwBTork5yIWGLv+XcOS3JAHsbbPfKnZfCM19ADA9K145vLhsJUl6aqgyR2F5GGLrSifPxuzGDDI5ofKCff78Us9Bn9KPCpkEicg4aS34GF48kTeJxb9LRwFM5H44CA3RkKrYViyn4YKE1ee9NxPoAIX5fUbWFjpVz8POfBugNiq3woabjASCUpLkP0rUgaj5hkUUp9X9LWDc3jdiXl9M47TAC2mD4iuH/7pEzFfuUoOYvfzV6v0/1B/ypIyS6j3n8sUSNmdgqdxGqfoQJiNBL8SEOEio+cxnAmuvI6vrjUT8VyYrL3Yz1vBb5VvKO5lhbpkRD7sBkSH+oN8R+G2hZpvlBgiMmBoxmVrTNZllwR9oBrNMHq9rvXshXF/avlwx9N075/vdtLpRP3p+zKyF9pv80KleDyVw1kG9L0dQUscNLfoIGQ5QiunWuv73nZwMBuFCbHwh3J/sCF/CYd9OELDCMyGRXAhM8lQpBc/xQKyS05MPru4y4p/XwqyDuHxlIh55i+EZEtcX/PXBcn6leWrNkeGBQpJEfcK/HBoWM7Yj8NUNx8Jos5zaxCDdh7XHAeIrlK2nj4wYVMcy9fFIxnK0XhMl8O9N2OnXDUyiMeoPgeGWK848tB6YhqGV1YSon+kpNG/fRXVqsYDI7+qruZ1lFOI1VyZa0FJewIQfF2K7COTUKIvfPcx908790Qm66Boa2iNpA7V8iRq4xt6l7ACPs9cx9M256oZqG9VKrhuuQQfUHHPHp0hqtC2f+Mc9+Ax7PKk2Mqsh039SvkqX5Q1BIyw+PjDi7/LrcYBWdgDF/YN2MZptSLoGRvhBPRs/O7VNbFTdigRrii6Dr0XvRERVk3KuMqfGLpKpxu65I0jFL4fPQ3QjONnI6rpj4Kxd+5KsqckO5ftqMIZZozG5pg0P+lcExv3KuEQjM4jQzZts3pWnHEg0PgDnF2A7sVPBk8d6qlWDZGIAtYAnc1QmP/Ju3y2Gzmv4KbHDM+3EH12f2DYZJX0HUYK4PPgi2HkZgHT0cUvfjGZddrBAX7II0vBeuXSk+YMeQSB+Sz2Tj5xZzsIM9xqEuW7nWq4bNnRNFvG9fzoMf6Xwk5IbcY8EdNEaMaaLr2QmbTHaoSQlpbQmSSGNp3UAOwO8uaoLQz8avtclZLnEGzSB5sqrygOCWhg/hLMa8yQZ5kX65SGjTx6yDkNKOzWvVQtojsa20KqMmL5sj9vAVz+W+I8l2L/JeSUNGjzBMZ7p0TJXWnB7+/Ymmof2tGf0PFPyxhN8gGrX0WwSrYjk5VyOcs8NspdVnpzUlx4ykWTncT0UeMFLjg5HWFe0RDBix5wD7g4Plqjr+r7PT1zUfU3mCY2nAkLOt/QKTqEJFmOoueQ5CD5Ye8BPiVj2Ivob0nFTbnlcLuoXjwXyHijRkysKM8bjGMAllDXXvv1byj7uOIz22gGcaW5r2cbHPkNjj8UOOMs/MDAu1x3EQ0KrTXqMFU/T1Xj6Ufj5jpdQf7FL/VMu2c6unmqj/ymw/+Pzsfs0LSw01I9SPaN0/iTS7tR3elxDCVRfayJRZTEkycqjZWSM5/keT1rX+AMBFpVTe+lcXJiVW0tc9X5KZC7EyZWfpg87n6gIr5QNUanmtUmgZL21OV32Du94F3I02uI99vD675OXyCtVDFI67rHJX+X/jmE+sKMvYDpkB52ush7nc+Ad1ivEaLGOjVfeUooi+IQaaclbP2KKMe+u3lMJ+VrQyAKzZKiAoulnTB840Z7JA7susJWNVsnBVrHGoqE0qaNg9enN6C0Jm48nHfgpSHWevgJ5U/ErENLubC7Q0KbURR98ry+fAyFs7asRmR+tRAStMBpMi1/1Cy9uNvnbEksBGZANmmVoo7bly3GAqG06mk4wlYVh17v174uUhfgZMH051hzzi4cd1U8LDSIiMiapYmO2EKiwq27VOq+8d1WSLsxRQza0Cd5MgQvGqc67LI++A7VAzSqV+1ZQ6wpYJdqSWV7Vw30R8cZz0Gfo4h2FnzRtlJJzHzwgX7ubfdSylY8NxsGY4sTYFl16duKDktnQJr5mTAHY7I0acbfMJjzhWv0WiDowNM3khQTS+SFEdUXUdHmETdc/RqRXncrASbw39rkZY9J2xA2le4pd4h/jJileJP6GHisuMq+VY9miZvYeCFdlnCpnJ6+PU9qC6crOA8OP9pJTkVTcN9MRi+EgmwFdS3+Gk9dmlxiS7wNjD95fRdNQglZE9CAMtuDK0F8J72iqTWUwSIXv4H6dYcBGS4wrNPzCSWdzQzzBNZuxw8rxWZ33w4WG5pFJNGBCFJN/Xvs/nalrOGSzxHMA5aNdC4fHjty305W2AswlUwUgeZhcFR8B2pZVT6ZKIOeABbjxbnikJdVoMHUfW9XexKU/QNY+MAaFQ0z/OloiIQM/b74SMHzcXDFO12kXmFbGeYZNruJjLSqwghWa9uQuJpJUv+9gicHKQ17iosbsmsuCGho5UmJ1gu9Q6Q+8e2zjwV5z/vOGSdUoDh3N4tAZiudKzQtxnwsAzYnQD0I+yAxUqQj3Qp3GCBJ6kVXmtDhz/0j2w7nq9Yc8qZSSBV7hbtAdWJlzFxWSz9CsmHlgFYR6//JcVxzIVWIcvnRBKmsxahs7OGx7CkwG6180mdofTQc0FfmcaynQ+J8NDwfr5PS75kGY8rIfBNUbieao79i+6o0oesJrTW82pfhnmhBjui9HN3fZWHA/apGkkenCe/Gh7jTTBzvwL2z90/8enACOAWIkp1TjSeTPqXUU1y8dh6PsaI1jUFvNJlph4ng6jl9CgvJRvuSTN1Ma4F7EplAfU2gOVikfGMVU/CL7mCZpJaZj4OZdALXx8ycijUoqrFxJH087gl9Ed8UW9hGp+BE/VOogebQe1c56Bq5xssI6bN3EvVw/WUzs5rpS6YQrc2UL3jJaDIs8DQ4ZSmWKa4uIP0hjOvvZgOEtNnBbZxLCzk8SQ1Yfme4pKBpa3TfUMUCQza45gvzQrTFMxeBWdmYiZZ9tmMDkQjAs9FVwiuIn2XvENpegDRs7W9uActwWzOfXeMqN59zgCArt/F2q3PgWdykklc3TKt0/dCbAhg700TDGcdyBOD0EWcKLHKEViGRYl5YHwXtr0B9oOrV3rPHZAzhHIvPcZzYJ044vxIN4Wje1bhI684zsNuEuRrk7y/xsVVRr7GMtrxbCYNRWrzeNRTgHuybkvu34lOnbOOV+R5EqCjm6b6uQ+dk7t7qEFVzxIdnkmZEefEfbxrSq/93pJcyd6XiMkH06MDjZVqzf9sWRBFtqpJjSX3PvreDGCyH9LXyy4VD9MMvENLVb/BvMsiMgfzaRVrjSCrsfhNH0T07XdOel0e24hhlmLQhdbiy/5KXK1CPCO+Oc+MqT1efEXwQbQIroXyYIlymicX5Xl/Sm5qY/Fp+fRxWRAUd233U/QIwlzmbj+eNgbc3WJyHwIWTnNCntXxrK1wKrYK9SOe69HZEmetBF2PoRSHj+XpNkFLo+QaYMK8nfE1TNK8UCR/u4VDO2rFBDY8lbSswcCNWYt2aeZJNvgNFp+h/pUgJhYZPu7OQN1KZFEPSnBhZC/unaiXCHPH6NrChF/htjm13JvqPJREhCGqcmvuG14iUa8VP5zs4Tz6V6ge0c0hwlKU/D92XvJsJEDeWI9BRznMS2jyaze2m28fWVQqdUFHiv6Vhs4Uis3yMXUnhXZizJsKWPVYbSfY8cFmqSIVZ1/9l/t0x1EasIgJN7yQFf6gpFkWh4WzWnsrF6qZfd7R9SY/40672YPINkYnCthh2D6R9pJ9bs7J2r1kiOmBCY7cSSiabKOphafIp8voWthDomAGVcmeSGo7hymNBhcL4K1Zu0LxwDV18/7qdMSWX4aB5U7qNY8u9R5m6xTRbBuNiElw0GQjFTS3YnjpCkWHqdY1sxzsnE91kafHDOQUNUzWklMUZtkXf9UMMr+gAm9T57L3i2GSG0Ot06GAEkS+iY9klZ1tQiBIv9t3o+wjOGM/bZfYZhzOe21aPxH0QzpR95dyYD0wyejosXqNRs1gi2TZZTMnWL8rPyUG736JTjWaUwlTgV6VpZC4YGZmt8nRJ7IprYR/JEdc/UjCddZ7QnXoxEop1uqn/YUVs5MRq4gMWkX0VRJHHKjKoKna8fdKBHkU+eQjxRYXl7jtfg0zY7FifISP7ENFxtJwFEaRxkD+WeB4V6TbGJ/rjoPZDggf7RFesWY6o2sQrUGVyTqqs1+paQPZc69/WMgIU3PirZVhx2gCMhgh0atPoa+dOoQOLZvMBnBOnbF+rszbn0lZSsQtzaWGWPNUJ/vlL69fdSkIJdv2MUJWpo3AmeNPgx6qTHlDS2tLXrfLnclhpwJkgqzL/927HY3A3BMBqcf28KhrpCqK+IgP1zrFP4nDN7SeNbBmJCVuca19sgsMuK/wY1e7wn3IQmFTkza2Lfc4VRBColkEKmLiivCIx4clNO2brfti5xsjJlEYIY6+PxC9jRJb0z+qVnps1m1IFqbp9u1bN3O5tMR5PJrQeTx6ecsYPrZAtH14H13nHjfHwc4OWd4rV24qzVMLoH9k336/zfHu4CL/kYOWQY6D7Wu5InS7mEKXfiNy35i9wWeIA8GV1oE3OKFFGfy8WOgmjPonJIT01wdufmQ18wlUCZwdjdtMzWXpODgZ3mw8W3OA0l5iR73ZCDuVJdEr9gx/MjjmtIdUNXyZ4WbRHgAvkvs1t3vG6H7BxnQa+0lFF0ac4dfoPyGtDUKexdXoFTMycJeZPhHk7f1xGKqIhcEAXJNSnrkRJGvg+RUZEE7vvM1RPl53fFL3nwmzOUxfsLbA8GMiRGKg+SHCP1qfwkpKnds+nOtltqaKBI85yGppJgDYAers/sjhj+j4DTZsz4F+48yNXywelO6JKIrqhrcjgREzLzbm4j9QULR0792e4hnFTSbGiP8JvMG3mN0E22DwbZ0DSqvuYeoRc/QejnperajPPmeCXJ2hsN3QFQJqdKIaa6nz3tItJHBNB1r6ngB0kNsEVMY74qdDtxPn2IMnUzrFDsf2475Modir5s92t9APmgTjnYiylFglrrmo/yqq6gCFsMpsUGKI7fDFMCnPPpwLWVJbqfFdw1KKd4ZlbTvePv5KZk8oHiQUg8bazMQAx4TsjzcBoW1Wg/40v+chiLIvOXpebPhJCYlSC5ODvOiIlVerI1JgHL/uGjZ3rRUGFXK7807Uj5N5vcENqRFBzey5MJDYGPI/jWQYTC7IzThjpWBYzIXJzyjMZwlfzBrHnDwp+k/LdV0+py6Qv47vFMYr8SgG9VAGpevKaW4hfaPJfE8TBv4hx5LneyQA7rjLtBl5w0/bjxnIFekz2tvf5nJvoqCogQ7m/lifv0CzE9w1adojmJ7NxUL8G1Hq1JpjYXcnGlveBj9nwRslq2PKGw0aj8kD4PaCDypjLC387e+lFf+71XOB0YWX4TN4ZMRniw9rVZQm734VCcGWC1JeydNWlb4CSg/Ome9+VKvVtp9yxRkl5Y8md5Ot8c58e+QlQfpL0cRHW7xM9hHzCX/C/SvOystj5eMlUqBMfq42msGAaW/7PX4VaozjvWFt354xV5yHKQ7k2H114QsomGXbAHQMycZrlt0LhwzczOGSnz97OVDEhFy6D7dVEZXRNlmgbal5KEeuB3JRoD3nhCksHbS8EH4QEroAadD7OO7cTzoy3dCy9YamR1p9YnnDlphxXmxkRzh6KdqMmsLxE9WcmXBqgeNDJFDaFOUf4nxbJfliRkuodPvCzFNBcO/ASPFSogNYCeu9lhgU3uHhpCYI3Ks5JtRKIZlLL67azYp5OlY4uIYTxvIf3Qx9Lm6GTBUOvWYY51M1tKMSNQNO/xY3mbWkRFgggH7plSJMreaBG2jkmDI4xMspr3W+TH7b/4ndrdjHMTRvogdxzYR+yt9oZVaLqzhRh8TOONBn14cflwAQMSGzzNp0+68Opw1RtDc22wfIHMX4XGQDLgIwtNWBQ4h9/cSc58CjHCkwV1MT0RgEa6gJ5xMaP/WqDxwiNHc1QRF0UTZBES9kjfv9pS75XTuqrgr35ZcbO3AFHXI0qmHCVgayAcT3XI56FJCVq+gZMWGm741xgqsG19sUJa5FpcomPoQ/QgWwRWAPHVFkcKXnU9FsWkcz/gToDIV51w0qV76IwC4JqqVjB1Rsq5s+4RyH2YWzblRW8UgaB++GjVRYMyZMUJOLLli4ya08Dc0kCKCT3k89h8ZX49BPGaHZACffrsOIzkgYlOtH7IoRruFfQWv/e0Q3VJw6hZrOqazHs+yTUheoY9EXKiYWpeH78Do+3fXjGDIzuJ3nLu75M/b9JIijitvHYP3prK0QsbsR1Dw8Cv05gjgRYV8yqQn7sVCeK6b/qG2LBDZTR1zEGGG8sooXJY3C+BrfKZ4ibT/1exj/c0lQnRwsReCYkwWKhIJ3vY1is+BEwZ5aHwmrRUjYKwS9QunV8qrjBXm6e7roPHXq7Ydra1hMq6rxfHSEBkfbBZRt6vQhCeQMwsCA+y4WcKk3W0rXWnoMhBaLgj6Kv8ZubR/ZPOnzIPSyHHh7SPf/veJR+8U+gLlgO1D+l+qb2a9NBQ3tShefdAckt3jhRFPso10gGsscjuWmDYYQ1pXPkXURCppF8C27gATlC9aEfrNdpeGQ1UZ2uDEo=
Variant 2
DifficultyLevel
571
Question
Worked Solution
By long division:
—————- 0.0905 6 |0.543 ————0.540 0.0030 ————–0.0030 0
∴ Correct answer is 0.0905
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
1 | |
2 | |
solution | $\begin{array}{ccccccccccc}
\ \ \ \underset{\text{\ \ \ \ \ ----------------}}{\ \ \ \ \ \ \ 0.0905\ \ \ } \\
6\ \text{\textbar} 0.543 \\
\ \ \ \ \underset{\text{------------}}{0.540} \\
\ \ \ \ \ \ \ {0.0030} \\
\ \ \ \ \ \ \ \underset{\text{--------------}}{0.0030} \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {0} \\
\end{array}$
|
correctAnswer | |
Answers
U2FsdGVkX180OsGOgrHQWUscsgoF7AXn5g413Ef2CpmQsaoT29ar7XgDuFquuIPEX15lCop2rk8QMcnRIfxd+ERBhTzZe7FnMVvCZjfEMwryfAbWsAs2pM3gt9sTT6jUz2nXf/dEliNyHypPf+ZBAwvaogvDQ0AbzFb+ZrCvZko7Katxj6yJdMEETstX3EVnrVbFMtZL2mw7+qhTY9ingIz48sCDmG9DXzEH3JCIhuXBzF6/MloR6URiTIilAChiYEiuXLipvW27ov7B8T2VIiKv6QSA2aZIsRtbnpJ95KMygTfRsiUPmcpVsr8QezfF+EHKnnMJvqOuMYUvzN8t6GeT7f2Nn4ZYXL4jDgDLKc+f4boprcCLxQOWR67t0h8/MvcJKshG8fMM0FPPhuWc8ukvU1B/vmFAtjZi00wja6U6a7+YpefKJ3cdHAPL/aQP7ihHpb5Nph24Tf1zY5w0o1lDtXIvtP/FejEa+9YJb11pU3CPYzVZBYPNH0yhbWkPn/l/ocQGjAEmkVZgW3EExJyK2gDfvOVOBMAdbHXHo4wzmnEe9p1ieTCeKhgw+F+qP/V00sWgk0iTPwXjWpqGFlmfoj0jRfrqO/XsBHFKYgYBneFWRTYeMJeor65Z4JkhYpzuwAum6YnZZf+dd6OEeGeIbblBGkB6QHZ9xutx7TcTQKTkyNaSEBTRv38VK6NVD5R88f1wrh5QPtMOeIqJ9sJioQmVDmFDdP7M8q4NPV4ubFxIhiiSMwbxW9ILsuJGbexTomO5eF3/aC0Octo6ACGFnIkmG0f+CQv0AaXEaIxWgpfJIoDPSwowhKJus9M16Gj13fiiqxMz7fwOQfYbxpXKfSSyXNy8iyCqmneczxX6vekj1hU/gtGwzmWE8PQvTG3A6+kR0zxXNu6d521L3BZqQsaVioGQa1yAC3wgI7brb1kFaKhxH7uk7Y3EkogyrP8X41Hjs36s8NV0/zyfvxg2sM5czhLfHxGPcRcF3tu+g7vd1pLjfUCWX86y/E3NG/ST7DVbyPg5kHovidHzX+5Foyn4x4bigo1jc6Bk1Hq+RgA9CCGWh+6EhsDBQe1Up0K83DS8PSvpmnPCEEFtC6NOdpuwPTykcHU6q/FCKOUJhQlHh7p4vHvX8Zp/GSWU7BSH/abcli+e6r+ognx4D7Zjx3QhQ1AKaH+L3oEWcHMRYETRae6QP4MRafS1nkVbnBOPWCo8aQ7KZNk06wWUOcKPBfzMRNJVZow60OBMKP+DZQHRxSj9yyDIjZJcHMaq72niVmoHEDErdxmMgvT3SC8hE4tqEuowzZJwTWTpPNBsVKTXIxXdkoC4WuuM0+WBQy7LN5cyl51V8iYwFxAenXEJ9IkHJ6I8ymiruRbPsQ1RbRo9myCvuFhy7Km8V/hdPRbW+oY0kS/Mk0GFKmHOwJidSOkNLz3Y6qyc7eGUQJFzwFZJ9JD1hQjOqqrnfHEPDGjp04r8r+OFGP/JraCahCMTbmOiIt0snbOzooEQFVlfrgiLRiJaToa0+W5kTuq5TgSjrHp4LYofID+uPnMlInRFW7WwvyzQ7tb1eXp5fp9lpfYGqa5TynHdQ/8/AtyZjamGuhUiEEv1CfCKuSmDpHV44nNi4lPlro+UI6axkATYoBLN/F1dN3P0aARpei4sD06VSZjYuIzTVupyE7u6FfXrx2qnCGfUAqY/Wm6prUmCx/+lxKjFVAPRuUvfHcwFyKRyiC1BdmK/HaFKr3i85iRQihzzeuzo2DcZWYxE8J93K9IOnuYmfAm6NF46X6GdxCEK2Nn0lNdd/jZAB5ELqDbfjwdaK4l/PBqPHE1MyIbSMGjT1gnAWzgJELl3qXDeMLM3faGV/o3M1dZnl8aSfiWFI5ETcNF99sSJHa1oPAF4q8hATRX2Uu+FPXFFKYKaQgIBfm8FfkPAymejWUEgH587M5JPfRfITI3fVaZhVY6WVDDai/c4CKchF7TpzV28o49vdzAfr9QvVae2TUq/T1NrO3PQjZcHj1b7DKb4At0bfyYa5rJJa+YNVCnjp84p7DPxMrxf8squSyBQqnGIHN45F6XxaMX9RBtWxjesOadQ+XE8Ymr7dIR8fXsGVG7ubyyl6BkbYZDXmN9YtsVHDds8VHVesnntkpkCTd1zBgzOpU4YVIYwtBIXwBnX1RfTin2wFndDFhdrByC1S2aagEAqcc1p6bU6b/nU40qGmUqkIDWTug1rItM6NDzvFBTHUgUdbJ8vXlMicGu3/IUq4alapec2nxh/+y9ZOHaEblzN/ls8dDoslFJImPq1YfXV5P8hYHIhQmHRYicT0mvivbcr5G5lAb0DEMHFVR5wmeF+xT6uYRgHEbj4dV3yyAYqcl6R3mNq3bAZ4sf/GZH0pcytGQIRV7uALAi1Xy8pOdQh5wgcHRasreSowUmwsCkgJQy53O1ye7+hKQhpIqItANSb/exBNrRs6V9cgHvQ9rWtgmgujY/KyCo+7gAxrmjflMhe7FsiT+E0Ekd2I4xicFMhZsVzTJL2PrlUtsKRTLDbIFUNeDTzrmEyb2N4pl+2al5nObwLZRfB8Jubaec5W0x5SVPOx1jpPMCooYlPh2frKaKzNfqz59cXsWAEQhmmyeUVnGbPwUO520cTqA5sm65qZFtGyzg4eclmuQi9VfaTtp8r6pPbbwfs20kC6Ta3ekEr2xSKxtxY/oeH2HJg+8Yo7NNSWtnWhd+lSfQjyxaEqYHKp028pOt9kjQK8+NpjmKDjsMuril70MtGMfRm+mroFvVMF6UJYzOY6z2bOa9JXAjcOB/UBcs7hz4C/k3Lf9+dPWQNATUTF1rrGZutiXFdKJXsuDSdkzDOWDT8WDatCknt2/OD9k74pK0tkYfe64+JzlfO3nKKehlAxzkGCbxzkD8MXC0d8H40GBCmBDNw7EFi59V+n+8N+J3jM8i4U83IahGxl2G2Jbz8Mb/v8x3UTalOKNfh+oHMmTu9ZtN9hYwjfp+LwUFKpk7q3ocDlNF1fOEjDxK0lyZzEK9RD9kRwftMfPsYkW4JMdckMK6vDLF1FK9EY66hEACpM2wHiEPf3Nbt2S8aD/7QcZ3/fuCD/7cBw/7dQPlwKoBNkCUZyPZoU/kV2OFpwwdQ8S+D9pQJ5d7FoT2HPZiK6D5n6cA2OIdmtSVMov9ECz03E8c/LfAeSz2FRf52MC1hf6mZCa48idD61ELLpEYOnSTfFpbgRWCFHpgzM14GKAvzxA/nloPBm/KqnEWq1h9YD3MxmS3WAG+UzU7ArZxW47KpPwqBCv5doZ1tNUP8KYYcTZGfgzWpAiJLv0m/gvAQ4sd7z3iy+/z282EENN2Wmxbg2clY6XaaqE9ZucEe0RT7bRi8CkO8iNZOAfjVPPyUc3E7reW5WHhbXNa3CPAKZAs4BoZomqxiPdU1DsDky/TdGreP2ViWD43hr6XtsFL+IYnW2jStiy3T9zbNr1NOm/esO5iYUSWZloFabY+sfmpL/skKYjQ2vcL+/xIzpbCdnNNOAumNtfj+QxMnSuCRgXwi6U4fyIODQW4YWo+IZFjI2zbMlI2PxKB8VAUr6TRXSxSzOhzPp/8yi62vIxjHs9K7PTPVuRTbpgaRPYcPg4ko8NKAnGsJ0ysVgLtiIiC2CVMAWgbfVtnUKOuqvI67fKvJ3FYGSPlocvpeDaSFnU9JQzK+ytLhQ3bX5p8vDzMh1S6BynmXXPE2hNRQ90ZjN3+sycmGDw31gji+2iBtMfoBNb4cEcibnHPjyYwQnAsCSk145grS9sCLPt3B2JZh360RZE0x7PoTlXPqMeu32gILd8O+WK9gf1HKcqsQVaO52CN2XSWoZ9nDgC3tJqcdij+vByk2duX61kJj+uu2H4hTIKXYopy82PNijK6vAWWKTQB1uLAosfAKY/IkP8zQipEwRkfKBdsy6QvZyFMY4uNeoNYpQZtmlWlfJnPzyHyoF8dnFYtzOinggXBVdHx481q8ZilWUI8Kf147SorP5iO7a4SNRE/EuaXX9P7ZMc2DOeFGwmpH4db7pIWpercJH8CXbUdSBqxXSdU7bWTJ0rIolOweJKJjroo4ecUEv2231ByFs+KONkdwnwHvoE9y392lHYj7rdAdtsx9TuGHDfMuycCfNqVUcUzY3uFtkJnLOckk4SaDYbSijzlKGQFobMTJYYG9vfIf/eXzRYujpXyvM9srbtSngAazfHwYSC0SCLO8LGKkO/0hSHePrK4hZlihngGeV/YES6ihfr5PdHPOP79azdQopv1u0gh4Rz1J9e6nNi6z9uBFYvRkDArhKTQhqaS0ClfxBayyKrWIzGAxkCbwMh3ZTypUFS7YTqgjawTd//XdLkm0sikGd4uKRmD7Z1gWIt2AypG9/ZlnlZSkzupSorwxzLYhyvu16ZTvARSGapElXYbV1rIxRpXOCDVLay9+Qd2mzA5xrP5u3bhibemFTBTbVE0nNqqMI29oiz+8bsweoapsgDAQgLX0o0czzz/B1kGdIHp/lCAqQyApMrPMFDbac5VVuopglVQs9tZIiGzINVdY3AOjahus+29HiqbqfJLaCO6Y+ofF8tuLU+CuJ0pfd8AVAX48t9xDBuXpVJOrlfy3DURgZ+4bUgh32viKNGy7eJG6DxL2l2zI9Gfgb2r+JvF4MP3cjESTBxNLeWWq58tK3jv04UTlUJH4V+MMoiXXlYarHZkHbXfwJXQXPaNgWsix3elqDbzIvfWyjSpZerXSiT9aWZQBV+6DC9kZzKUVf6GQCOVt6TI8INFkGDP2d2PofBovdafzpVRoRzNfHhb+j1IypG5EZkGGeAf6CEJ2FDBuWaQHeiDSfTl3pMBlBzlTDhZ+f+LQNvA2Y0BiaO9l5r+hCh8zGHEUjnz0eFj7PgDRZp950D4rVrGSILrgQj+sCA6tw8ufq0fT9gP/1tcxb2+gRSdGBYeNu1l7jOx4srca+PE2eNvMDyxiUtcVP2saluc13PPfVl3zmbRVtx+q1JivM/yPqz5+hLKeEjNGmMvk/xWYuQC+NCVMpu32PxcX7iDnMZvlvXkpFF7qV94WsCs+zNPz+Mog7iLSSqNt3jujnQx4v+Nd+F7dVNtn1qFpzzYTjw+2Cm4tUPV0UZ4ZvIklO7X5eBMJ7qyGmhvNLf7EVks10PrCxxPC/LQIskVGdKQtcIBLrnhMpIcW5fc2Xflio0iyaDLEau/soihW8S9orsBklZlCoEX09FIYI4wP74MzXl6tXj2XrH9B6SLMRUpMP+KED9AukE51D+CBXcq9tTiZjlfFqfkPpNEayM+Jrp/bmC/di+OnXYAsga/edUMVuqJkgHx3ukSscIJt98ZCTTABVE/vIq3x+fK2RHXbWobA3miyVTo2wEutZGapoKFK6h7GK70DcdaRbZdLs3TUD+zXcOtgA4pK7U1nsSRu86YiwkBtpJwhBXt8JBK6S6pv9JFlRa+QPSfeLI5UBJ7MSSe9v88Sbcu77qemXkigidtZwuDcycbGz+WLru3ptvdpwbcc9pyz5LgZPxFEmKOPSwTR1xag7bAKxNQW78q6DVqWZ85omS8irgJ97I5NthJ2rYadvOsnvjifXbkcNIn00QNv7Kz8PXVls2ZiTYEhcxvZA3C7GPgLdZwx25h7OJUN6l4UsxGpeXVUWKQxXscEqhVoOa+oe7MqBBPwg9Esdq5Tj1ejJFmjHAjP3AQt/QemF9fUVgfGk/+x1oJ4kiZo8xkHoT+rEYES7FLO+IGwywgk65UcAfiRtD611bVDgPLg8OF+GeSnnM0m0SDQMpJQ/UswnK1gtUe1tyt1xndIhqF86PFIQDtdFlGHDKlL2YTCqZDSYpII9alnTpFp7T6B7/omWOfXHRHRCDtNBr3+5B6ghmh/vAv7f72GgySVVXdzxpEZoN6kDnNLTYoRbfonDahL5mVLIyRMXp/jhXLqg9+1E6YcZI4aMVKOSmaYbwnoTgij3L337Fp6TlmNu6+3sfvc4dCD+BCWjqwUP4vOakQGY/9F22IuUR5ybX2tqx3hNZWrg8o0IDQ9pu0N4XaMuE147OId3hMv09I0RFngBeOso8ruVhJnxPBZ9LG+w6hLvPtRmDOoXdQAbyBkvmScQTGTwLOidwbulZtngHC8a19r78Ps9IqBOxsgqI4962CmnxM0r/wQLVjmEufVErR53txYfH+VTHOC31Zla3IMYUY83hY78sVRA2Xf4/0G8CUKh8hZoJuJSs/6HbAMNpo66Ea11F0n4lOix19Cz1oIdFSwLBnLpqtz0JE5MBJW4m92VQ8+1BThvkUECRpsg7jajCk4kQtz0KoI6MVWjp4zHXCru9brFyBa72AKfNR0VcQ4jVJB5khil4vZeXAH4hG5TS06RZn2jwnHl1hWXdn/KxySnLmuMdI77aslhU+Ym74oPkmFkwpFiKD1XURbevKRqNq+dKvWIsPYpZ1li3kYhAxvBdyKScLjE2vwKHodY38CohFbuVWy2K8ByO188ZnDxeyBYvV6ow/9MhPrtx1vMgqFaMK8HZ7uzxi0tl96WvZf82XXKQHW8IX4usAi9dijzE7av23ZuzvkfKqoJna36rxgrX44jNEx2lKd82AtOaDgexmfOmgQ6bxhr5P/b8bmSd/KKhuaHhsWi/fcrLTp+w/vhiYhr7QelW9XHNuY/YKNKajVxU5GnLYM9VknGnd6jakREtPsst+Fq+FeUH/3ZztQ93Iy+z189YSQCMBTBFDoj7JJcbXG71IDP+FqZvTovxeZNkRBiIDkmQgyFfDta3Doc5Y9x2D2f0m1WXy58kWUFUcAFWa3LVIS7/0TUk4y1UGhrR2TjX6m1D7t57Hhc2DwLEAV7v05ZYkB0BRi3oEGniJqxpJBqNh9kz42pUYSFV60Bqd0C+K0gs7mbsR1/8f0ODZd78dmnyHUVSR2r5QPcRjH8rxbAiOCK1yLBKLsrU4NTq9owc4ADfFRSQ0+UUbOhDd0XRMXYTUM4lcLM1dDMlwwluPkZLFr6Pk2k7dJAddo23Vesft3KwPlqy1Ejb8GCv4f0H4DLef4MulwwzGPMJrIQVIsxiYP66vZtJrFUhBIFXgyE+qJG4FKjkOnJRxSFoN7OFoQJa02Fr83hDT05BVUrsMhZ0EKwUE3TQaf0kBuliAPQ/NrBIdVuxqsp1kz2ER9lCOpTnDdMVfqg48GfPLro9r65Q2Bu2hI3Lh+Ik6ef331TMdJ4a1kouyqkiFOGNSviLpdYrhGBtVdB1Gxw/lARFUZoh5fBRngauu+VES219NpqHSu64vvJ5RhFIQuRWJACBtg7c75WzUSoMx4WE7mCArTBs+NlmDsuoVb1dwBz33emzQJG2Ry5eyyOYCxlZMs/mjd1re3ZuB7KC5o6yR1VTcyUwlNLK7r1Q8S0C1iRxnUPOf677lVtx+YyHcW08hh8wKzGaaDHFchdx46VBc8KUFxYZrIZVsynEN+cdBgjLS3kRsjPojiJK70Io3A1nNjv2Ipq1nSWXWIeGTU2At4jCAVf4RVe3YhJ8Pi1vq8/aArwsTb9FX4OhmGb5kWkBgaYOQt1n5p7/heyh2M3KrrKYxgYzv8kXKzrM+/7lndlo1DQoQ6nTDLVj3jGZaVR4sO+61xuZptIr5Va3euU8QtWrAN7hBDwCPmRL6wVOsn+l2H44ePsmcQNbz65NWH3YPzpmkh4e8Xz4nw8vqvOtm1BEt3So9R/0Y6e4pJ2UvngXofQDjDPAK139l1W+x9hc/yEAdDyJ9CBXmZmVo410pf3z9e6Pfgj4fDtglJXTN4B3pHFWH9hRaJcDf1K2BeaRqlnVT6OR4oNzVfX1x1wdHXyVsrKQpKvQpJuHjpM5VfZ+7zmhtVKBB1wyYMlRIEQfjtjD3pHQs8KZZS+gGlGUwyInQAr1gCZs2lGAUXqFunXiiR10bnS7kFCizZM2T5G4uWBlk+V3Vu9qfVp8JEUpeJ372rVaUQwD1pUHwaxMTz4Q/JkeebDIz9ReGa/zfZG+IzQwCUUy2jx5fDsrRe9YGHmTFkOJfVAc5/0I7DOLnsA+l5/HziUflIxfc7HTFdaqrPy8mrNnrbeXHQstk67hyw35CLlJlK7zneU6/JPhecFLO8PFC2z4OhBzD09gp+I9w7i8QubjsHKoVbzpN5LItCcFZj46BUb8FLvlU7UVkkKKUPx25aUUbIykSmJCU0PLgwndxOvXCsfR45bkB9O/TNmic/9QrcykSXTLaC86Q9h1odIGdwJKBpTOK3x51xbvo30eLw2H+AOY+8SGiwapR2iKfvv0iCJE8ahFszLCzv9OKXqpz80bfNQ/5w4mOxSut1BrjXhfRcl7nhDx9gIOE+qHiJN0IQCp/Tviim95xAHH4o9NBCnsGxNaRH0LvuUSGh15ED7MWn9KnFCbb2a+7SxunH8yl17ZMmJUdUZjzP/fWTZVYCxdGPkqUVD9QFwDFXIhJyzUZqXqGZdJ3yxvqijgpZbxdxwNOjAAdpokdJi2T0EXxKXhkeGQ7hG9i67hdEvqCLvYOWjXzgFj0/Ut50pcMdAwimZfew7B/ICmq49wdkR1O/YJc/+g6S19ULjv34AdiL4lhlqe3fA35uS7CAkcKYnt2gzUAAM34GEfIqqz2/NO3/BcOzRBUcMKREhQUea8yb2L5WslxCK2b9T+Z8chS7hemDCAIsvD42SfqTDuJivDnJTaWEorKdm72Xk4XiOvJjGdwvStthoiKSmhjOZyFHILbIVptiRdWP7pmYBU5mggvRjI5L4G5qla4pu+B9RgTw21qO3O52PtF1efqB+hbBQh6lcVGbe8p0PNMsuCMSI8HHdoE3o/3qL5fr7evzTThXT+HHt5D/6aqDu+yPrLXWmPtbhGmb5S8DkAZ0I3vRPJFTQvUaiY8EXKM1OvyeJ6+vpkalXfYwp8fOIDyHte1JIC5tr518o9zXcH8sK7QdQhvTX5OUBxeutfDaBH3Cz981eSXp16q5G3dRJbu/RrWnj+xb9TbONcl+FqbSgKnR01LAyDPWQ9k+THVvwY3mWvWpGSD+h2eaIrIJb7lk0clacjNtBihfw2a8BXiGRhJlTLjhLCSPw7wJkpHI/WRWNGLGJMcgQVzQNEbUDsBbt+Usrp54uAuUbC4X3AsVLQEhXUGLkdQ2oX223abYgGZpWu79QsTd2BvscPeFM1K8+TzRA75BSXXYlGsup1vT6rveiA4gpJ1+kxf57lGoym/Ml2NlNhkEbqbbH58Mrwfy/Zjf8fvmtWQmw21VjkR6NfNZgM4/mEr9LQ52aRi3G8UghUPSxSTTEZqRBB/7yCLM+txm7pMcb2t64cVB3CltEctGJT1MWFEEPaBHElkWriuMlpmXNvB8VvY3XiVV+rwEXASxLHIohFxdl/wYwGmmNZk3H3/x7N4cdTGPXYg3jiMIC/2ZAqla9hMEi11FWtGvVZCBGi9G4K33S3CDiCPeeZc9H0jJYymyc0DOyMGZZcbvNGqE4qxafkU7hyyyq1vOMIiEiUkgbvTQOtldxEe+RaSLn8ONVqdanFoONTn+tmJ9Tq9Ouc5IIe+KsQOAmjxtqXCkdjS90Ti2DKk5n77swxgMvwMkwK2yau7/Bcr5qkzazJud054omabk5sn8uRCAa2wB691Yw+UrgmGV3ayysWIoifVHXukxrNxMljD61IVfFOSpK2MGftWpsSsFJ+2KdW7y3PBgfFTf03ZVAm0ZuF4pJsx2p+1Ev48Xw/X9oZ1DieY2CSh55IszbSu2WqPFhjsaKjtrkTNMV/qnaHKoeAWgIBS1+6ZozkUKhDxDIt948oNe3tG7Z3/TdW4RLIF5bTqTi4oBqomsrEttM7KwvFYdEGk34t3RXTAuUqVuBSfnTxFC0scVIkUuPcEFwQU6kEAL15ZPgRroeI9iTDKSxunfl7sTKS+pjxNnRslVAg3XhS6FmSSihTh3KDYUmIgT2IEVrzJsP1XLeDsQdq0yIaKO7JX9iDZwMyZiwLmi1X4eARxvgRN6KFsBYXg+ax6u2sCO6oxtUVMWFeBgSCxfKKzmgOyY6wc/XpEn66mbKaZz+06OH3NOwDPipYateZIQjhhJxLiyDTwxCuTNJFaqPc7QcjOs+C9/Bzd3MMeritlfxmCXnc0H6eWVsXBCmo/TnCqzFGVmo6cLXUgebxitmcw1doE50OdFetSPep1f2s/ko5AOz070cYkKEuD4FhEUTDB1Y/iP4BF5tIM4agWOU0Kwgza85nldH7UGNK6IAnln/9UtS/8h3CeDUt7KW8A6IcwqXkzc+Y4ds5r8ZBZ5/m7snNdxufJMEsWATDRtkOmIM/uDHc3AOc5UhtTy2xg9E6MA9QmZEWKMUlrkG4fbDEHhdVcczx/b/LgzEytBrpr2tQB2Fxa/hSbSC2u+UkdHbWRnPQmjyzs8651ZarqXMREWEAILwSybkpHJZhA1HVVZPye/F57fL4dQ3imEXvLRSKvsKvhSasMt0TNVI5s+DCEzRn9zgr/CvGlXUSi7zGaRYnrZfVwOzPKly+uO9AD1GBxqmrdSLyZqzxqUIvvayClLUsaPNby8VOghmi9pm1JY6Ofzwwf2ZnoOqq/mB1Mwuk6XAyQLjshY02qJWZEkTTXlrWvq1NtlRif/mYZwM7R7bEejpN0cxEeDmJAuFogaosjzKKH4jz7EgR+RVWcaYRKrGvhVjIorFfnkF+9rYcfQ8W9YUsyHYJWufcNhdFRw+dsCQv0Iuu/FS03AizXMhCA9+rFU2GTrUJfnxYMdMRspqTSB4v894nryxIq/vNyfbWSsnOl0Atfhh08RCfY3qZ9cT5ISyCgr/bVtXNsZwe3YFfBq1f9jzRPu+wbLku5txD0VQTMuMnrIMsSdiHUWLc99Ipt/+cqJcruaocI9ABnZdRGsbKjRv2cBVo48qi5pYz6yTDhtUCydSHzpwsw+meV+NINASAvscx3eAsiFV1gBseR03NaNX42oKDIPLJ7vphRJ+zovrt/N3vxPjIC016PB2Pq2n1NP2Zx/0CxoRsTmI+G4iqvf1QA9YF0riFssDBEaUwcn3zUPZbCyPoC1YgukhA0JpWovtO0lMfLQLreZXUf2m4Kh6i6vHAAqVXJANSSWWk95rbLZM08hJ3+wMmvbtzg4oZscWRrvaNBqS7LXpwSFgvKbddO8di8pMHsxbN3m7ZlW9SFIwd/tPMTALsSTbz6EAllQKPTAO31EYg3dLnjsZN42G/5anGGAwijXgmxc+48T+ijObnLjwns29Lu/XuP3Oc/JOXwNlgoOkGo++VuaXtcouXSIAMBH4/sv6blJfod0J0onwEw8FhGKGtYN0vQW7X5NUvNNADltgmAkmfny7bYLLrzy8fFl7BrzTvMDlAJyHqi8TLsRQ/Pu7EjIQUmjwF8TQHyo/IHKsHHzqeeMSDIj+Xs8BhTu9LB+zf1ZFSe9jk+7crfyCdntSh8Hu1By2VJdI0xnBOfG4BE3eS2r+4Pfto4tzvMLEPWYMMe9ZCAhl4f297sCJBj/rU9gzI01KdiXUVwHCev7NEtJIz5yl7iYx8yn0DwwP7rXEncvykybRqd8/Gnw9IOam3njiR0YTtrHsCh7L2sahBxgKoWJuNHsM9pmDXG0R2lgdkKqf4U/+2egzCz1vdrB7Zw9YIG+BZmbze+zYiSbzXBILGb3WqCslHF09+/jkVGReA282Tupdn/xU722UEhJ/L8dV9e3kgfjzVkSpPos5UvMxsePfQUoj15yh42wSA+G5Gj9X37YrlqD4Ov2hYlHTSsGKLAwgpRHK6CrFxHtJ4RwaHj73VpCzH+PVEMdbA+StL63QbAH/XCLTaY1K7Thua9HtZEnjhHxrcappCV+ySAyP9r3UwGhZ1ip/TosYSF82nC3uzoQCE0x+K+HEltfeQmk7O2uzplTJqf0VlxrKXstqYWONh1tTOX016QTDJGnG7NjmIIDj9QcSOUsOyP62O0t2Ixhqk7pnWVXhGLQ57zdFXeI02uE9ihWaTRSg5tJRCer69zolnBpjk1tuuDJK3UW5QfP+o5MWvLvdrPoXkut8im5ffHBZcT+WZw5V6Itd4lqz2UWoXq6QjyWl3gF4a3ku+WQwLC4neJxRwwvO66cIwmieJSm+tmIAvG5hc3tZTHWbQ==
Variant 3
DifficultyLevel
569
Question
Worked Solution
By long division:
—————- 0.082 3 |0.246 ————0.240 0.006 ————–0.006 0
∴ Correct answer is 0.082
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
1 | |
2 | |
solution | $\begin{array}{ccccccccccc}
\ \ \ \underset{\text{\ \ \ \ \ ----------------}}{\ \ \ \ 0.082\ \ \ } \\
3\ \text{\textbar} 0.246 \\
\ \ \ \ \underset{\text{------------}}{0.240} \\
\ \ \ \ \ {0.006} \\
\ \ \ \ \ \underset{\text{--------------}}{0.006} \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {0} \\
\end{array}$
|
correctAnswer | |
Answers
U2FsdGVkX1/VZZDEUaR6kf9Fc9JT5rgGrLxV3vq0P6hfJqMXOVjtudES8s9hZMToYv4b5HaOLYQH0nWVMpufwG1naz83sD/f5lNuKjJYUlIK9U/H/egeRMIua8eNL5/HgKtrf4wY4CjUw1vG+suBb0/Yp9kQsgFWim9LqKa28nPwGmaaddYXR1C/ivEpDC8X1ynvgskLP8I4b6GDYetLjXZ2maM+fDUE8DGE6TophK825NaUX/sGPWSvcmNftMq5WMTIV1j/c0+y9M4oNGeKdarACxmKj3GJOp9x8rS6vak1L2Gd+YrhDAJdWxtkodRpbDfsKdVmijrMFzE3WfBzClo+uQT7/uzvp4bNA6JXcL3YXUlo/JuHkyugYd2bFNsUq5TH5uqYx83OwaDB9GMWmfoSKGEdynV168m3Af+nffVLMdYhRYfokkXeGKKnhl/1PWvCDZW+E9Qugt3ORzHTVDn2Qyc7jVlHnD3IBN1N01N5XRsMA+ETY0C5/d0gjOs+7GE9O+l96GNsDURRKYjpp79vG4zZNHKhjA831ePNmC4Sd7hpU/bWy2bn5+wRL4T/UfL930NthEEJZf25UohiPSC9gk0OIEMYFsmCXEapz+3peeTFOnqKKEOppl3BS5SeH6PLAhSalbtpl4srKOUwZI06TXiUh1fj9FJkZ8N2lYuYs5HKFlO15As1Ark1gl8exjrR+gFKqJzCK37KzJuX/4qBlRwJimKtcSxa3mLF+JJgEpjTPsOCJ3STKic6dLob2W4SOMhSXfQisR7h3u2cSA1ZHX2CIHx3YP/nkJRsD5KW+S+bxVR2Iipfkw+uQ13yF0o7HWVNznwHwEBa4FjGd5LGtEeMl7txIxNpjgGFtVzy83RN/i0NpTH5On5zsso/nAZVA29YU1S62Zd2or2NqlYKRdUNdPkCbuH74Pbxmm3+Fuu42e5lnRWYkovtAYrCTfsm6UW4PpFmcV1jZvy+yj9s6L8/eRLRRZ8vnhKKf8UYpVLHkgMr9i6tO81YP8oBsDolOoSs2savTiQk/PB1tLW+PPYW+QNhxKxIdjMVBvPRKj2PL5w3Mx50UuExf6tzUhq4kw27o0xOHlyGntaByZ3xNcdzFfVI/tJEbJHoawIap7twUcSV+eWmUMfc7zKiS/BcJThJcRAhsDf74cYuITUpvpzqr4/NPNqHcB2b20RSasZM2AXmabEXupLNRlZAdfZEQJ0tb0w25ndRUD+oxWb8orcopayKD1ds5mcqcF42xmqJKRa7dBMCuMInwtzzm4o46BK0MX9wX/ChUXjuvXbVkZzm0ya6ZLoAllxFzfNhV1F80W4oF6nBamohSxOT3YlSO0s7cRuWxc0YItaiXNWzY1Qk6cdlqOiDDax3s3+nGhEH3n8PbxgTdLwe7HWpcGiL1vdtUjQ9I0/D+6hgNEeGvc83/MsKio+sRFAlWktey/4yXuqhElO/g/By1Gv/LVXjn2w7MZx+0gBxezY9KLnGW1Ody3Ol4XBskdMzrFFqeJy99kn8DDqqM7XlbiKJVQr+atgnyWIcZqy0gQrHpjH30tEY9Io4FoNqPkLWl0VTRLgLphL2VisnQivjgSFFQBmF7ZN6tuZkiG5yCOjSGR3VKC/BGBfs58zptEYwIUebEMmL6J75243qMkbpOA7+hStIbrhe9Sa1xL5ExEaUY2DxGjUMo++Ewt7X1s7kuHI/Yuo7vEqLZCZocUWOl7LNl4aJQE8AF5j354XC9lmyZcOH5HUYI38qBMmgmirDlEhTAk71AO2+7+JHBG543gUG/ftMekkUsNBjbvSG3E395UA9xq7OPebOrYNUkQI7Bue50QPacWoNgu2CMVZjNSJWTTpHFvZTifwqpNdrLLSRjS5sjHQwAhkYGB7sk30hK968IIWEb/scj2dPJiAIWSUig+nfRpdcEVXCNmX9Xw5jDAMQSum0U8h4DAw5ZGoOrr2EGoAujOQOxERqeFF2o5B4R3BjOL45WINMlkuaflzhst4Vfn5DV8UrziiJNov3pkXF8qlfMU5FRIW4vpGjFzv2g3b4uznMJ82DqaB6h+3Pg4395uhT1l697wJI9IPBoY2JMvqd1ccG2o7LquC5bKujIKnhZNygALBgEJkhHMuQLNCxt2sEv+jjJksupWBhhtzPdf9zw9ad6NP4uhUQAy0OYleagAt2NuUqLLriv4lTYAU3GqjFRNMy392VGzE0oD9Xi6TD9crP/gplTNArkP/1TklZK9yOvYM+If+dndRkN5KVjmN72ifQJeo7rMzVAMAAaxNiJBqVM6KXMOjhuOItVk5N/aJU0T8ePDBNFrlL3by8uyIo2NTmtmSZAooTaXRZrYNiSN03U2RSIWEQ77uuPHQg59dSUYFDLb9rmactjssJYiLtaQN8ALrSD9UAkZMmwsdsjAPOF5aH/AYXd3vOaT++3eh+tITpstWlhQ50BKTlU2oJxKd4KcbyeFohEMQqzuxkkVnnyjlUkLCUkNcdFSuMDhh5lXwLZobLqPI2w4dGmcUVO/ABM5gdu+k4jkvon6gKlBYsmkHY8Nb/QIFiRjDkScAKEznaZ3CW6Nq2MaX8+MD0VDp1F8rOEAu5j0+sNIeAUF++7s5Zx8qHzJzjoC5wBW8goXOOT6/4k6EN+Qg+jfdajKnsobs/iWUyHMqgogUcq34STKsIvImk2FwH69ys3XM9fwH5CgTwa4wJhMkYmGmCjsXde9yQaGOK2msWNAR8MhFZaFIVFO/gfRpMmhe3kNLm3oc2740yu2sfqdl+ylCg8NJSxYv12uO+XxFv64HFOac6kCCMomMKvCZweOTxplvRQ9E9mTImiY5bANONAYirdCu6jORrEJb96Ss3ex4jKykuHCrAwnAmdb8YiKy6C2Tss1urntff7AwrfW2kwErasHSEi5tjMQwr8ClZtKPGWkU2YgwkeGlQktCW4pWzMo7ClMZRj8GaPBo2iGmmBQTJn8KHNOFza+ki7X+P0HIfbPOBz6zEbj/tXu0wMesumQgl2aqCi3RHdvzEt/S9aiHmaZZ/aWCyj/BOYuq0oAYrCJs4zZKUOwPsXYfh2dg1wYnlfV5OBPvHafMMuYQEGoDUv4x/6Q0ltbKtr8w/i2cupi0tKNXd7xz2UjVQ8utb0mgcbMqsFrF4kv9AGj5vnmKA+uAwUoxoJbbIbAn/3Bc5WTzue0RXN51wSkT9EnO2Pl5Cn+xHrPO0NJpJcnDF5jBq3xyNSZJmwimH8yACqU7dwE1ut623U78ts68rADSGSbEQirb2gb2RcaX7PoU8XmzDmNV1c3kENUZ4DLTPuy2WmepXz/UtUSf90za1flIodeD1ZUoN0yApLNUvd78FiacNsxQ/ro0su9j9dSPdnLYxcpAj1mZ9qwQumKd5JWubpY2ETx2JCPW1oCios0n2hFkF55tAHRpjDhz4CBFf4zulbtxm10pnNRtwdGQnpb3IO7aYlgJbezg6eFnDMuCRP1oFdJTB917meefMbpKH+qgH0HYT8/DPUXdZ9CLcc2i6lJDVwc0w6ifb/yxd4b2pIV1VMAnk3ACNnxMpo2Q9uK9EwD/JI1hmtHgOurmbDa9wGgS1jIgs4kBWiwG8S6zV0UqN4PnqjdTNazwmaBU/4M5PiIO1X876Nq+mtDPRTTGO9D65AOBkICnSyvx5BNSQ/tTHYi/1rGxJy+6ck37i6hva4Oyzvaz0PXBfPisB2hJkLSzesfszlDRaiFTzI7bIsPLdVy+R5WkrvPOlZaO44Fan3YY8FKKkC4qJNMyJDar1ug1MlIWAi/mq2pdKjuEN10fl+nQRfjeBS87SPogzi3ZEedpsU+1xsDRIX2a8xh7FPQ2MTQONlg7vS0mAPkY2XlOdJaqLw3sy77hWGD6MgM0PrlXbTMQjWiO0xZob0QHm5TDVFiSvqQobsYVxkm0hZMLus/SbF8GpEZVSGDMfqw6Guda8K65ImK2lqoBtOqFoskS/B72SNrhKlVcTf+mYdnSINoTq+7Sp5da+eex/o2uAuT6Qbmr6sKD27d3xzz3JVkGCPc5gIeSYne+S9mpMURaG2/dwNkojrwHw0H1tuwwtsJKFPcNAd1CbUnGNUFAf9i0iVQp4Xgv1qRprHz8ZeP7M+INA3rSvGko2fQD/YZeL4pWlBJvVJzqckpC2Paj3suvOSspJ26mBMSRWp0OgguzMQtB/s5nNqt0Id/E5SaeM91GkMzwyb68zILXLBkGhaEjad3IotRHcQi5/KbJbe9CiPgCdmtWXBPNisJGrlJavTlcSCOdfKQCsBpqT4S6ub9CVsH+HO4tjgdvN4d6m1TUcoIVhIIr25L6KBHuPfrIF6OkV7jrbBqBDVJMoJVQ54cZg3/+auyIs6K+GULrc0i2374ABNCsxZ3OldcGdchbuX500obkivGEX3rIGPcoVxuBhrtEsqQgMKYQaQgM2Rw956tL+CwFyxnLanhKv4n01jGX76z/1YOH3KQrmlpDqvh2SWjbvxJGgX7+xZfOX1uBuyPbVFGzohb1LeqYglLJuHJZqPA9PY40zePUrcToIDwACe0VgXKmKBmKQ7kIDS+kIHgoUjScYxhj6kmnX7c9rM0m5h5pXPTYH1kDDL1nk8e3OvegQL+cWyzHxwahIdyuFi7Gn5MTotcSnSy5iDt2jflecwNKlHYfGBaiw4NnxN9i/dNyYSvWvpgnujae4GZ4DSaPycqHtEON+izH9JWbCkQ0IpvToS4opKVjX4n10f+XxYF/6aVWkDYPQLL/JrpPU7KL/Tmo0wFMzWygRSvkGh/NSdWflpjRFyK88UtY0XtZfHcNIPjiOnF7hRSa3oKp93MPUEDrmJB1f9aFVC+E2tUmuNzir/bPzlCpfWNAq6luqYNlbutg3FH8USxUUcMHDBqbvDalM6LFlaHpYy8xyjPYaNynW3QTuSWHsPSzNrAf0oZXPal7sy0LZYq+6f2TaKUdgrcf4+CUY33MtLlPfGvUkAQZiAJ/ucjqOjXF4PALBwV815x+u28+Cv5TrNZP9vk8HZeOT/lRzLo1WczCxr+oFrO34FT6CPG3vnVWSb5oEVn/L140iV9gnzBHDJGFvqjEsh4qdTXdtAcgPKwpeGqWIKBF9Qc7nG2YQnM3EASvEJymRrWl9bFp3yeAbCKGru+pV8rKZpD/yxn4fYe7foF+j1gaSDYG07YJQZ3OBf6fh67/306Yc/ozvgHzCYA2hds8zIF14X9rCRCkwftSFTmNcLK1x9mVZjMdUW412jsTpVJFkeqJVvOssxJ/iuvJ4azQ67Z/Jp7N8xVJCU57DdeMqrFPG0iyNxZ7vXOsTExtR5hc2w6hKKoVmxRZ0dmgAP64QNFHNUFivgFt81dLjJs/XAJDhBc9YSuVeFu4O1KLGU0E36bsdGSolcgHjfjbblVLtc/q/RobT6oKbT6mjK9Oos9qvEiwOh6EQAHsZfmiyYIXNv8cPS2Am3e/q9UH/B26LVw4xso0JJ6naVdvP8TVgq8vnI/dOhUrZkItoRXtgEVdW/ST/CtyS/u/NkwpLUCq0Wm4VV2jvVESd6y32KnINSMxoTLrEUoFpOFMBt/qsx8LYmFWOjPz+4YMPFPyU+c0dkH8rMh7+tLz7d3qLKvyEW+edV/qttfcd/5VEXAQVupZsMHjq5sCAtWmBn+kjs1wj5WjEDvoS5yCXtGOSgr6gVuTlsnkoBLkINAq1NrhFQyycIpQSZPrVGI3T52T1ucgzPOramhWw+ZxXdBX/uSOTNXDj3S2lHoANKvJXYoP0fbxyNPBhvNdgURYgQbkJ6FM1oEw4+mt1dI0pGfdFVeSRNAJQD2XhNl1ClkcpI3NLygvG60LQDO0cAsIuFbzNwtUzEma+dB0J8BVWHYLv+zGc0IFEc5VFaW9IgWiYL1EOk3VKC9+DA5wA/y4rEmkmay9e/Q8RRnsZv7cUCvNjEAGz28BaxGqJ5F2VN78YJ1gPRAGLGhvfqWcvZru0R3oAvncg9d26QhawCoLAka52HpL4ix/5H3PI7IYPGHNvSDhNl0goCyouTyh0pmn6o6JqAp+TPTGHRR/SKQ+80OwivxuSf+mLqVRpiMoURw4cGEPvCUYhHP4azRXKPA+uzOlGWKb9Ebq92PnuYNewmOlpzekYE90HUUxRgsBH0PSgOCZ9KZLquD1MUBJ5p5nzyZ6zuit3Pxls/9ktE++NCQ6gli1ydTDBUzXLcaplGnqKiVFsLCNpLTgjDauQQCjTE6k+e1RSlcoeRrqzHvAFx4r7ic+aIL0l3eY+w6Va2dMo5xaaFkXFvLU3Q5PKwTZtIAPWCxNxAbCtSdiD+4NdiIL7Itnk51rsWtoNmKcGOL7BhkZta4hvTBARX3K9FUBWg97jz5MiHWagJ5IK60aUowYVSPlW0zhDJBZk6Mb0GXcQN+AbrQkcekgt8TBwwgjmt6UdUkPTZhMS2Tja+sxUD7ga9aG2iAqFcK+5+27gqFFR+Irn44Ue7jleDKRB1lwuMynC1QZED4Q05BEJ9ki7GhR9JNESLAzssfqIyl3liGfYdOBJR/V+71KpcSPV5WSfCehfYBU4NNHS8ctX6EHw+GikR67ClyXILVMvYFHHgW4i0dcc2KU8g3TTaj5Nhgi6XuGvVRak03gu/lsqXoumR0PkVKk90PD/mveBpO7Yx+z5TdOGNpl1N3K2hIU3KAIeZvAw35+diLCK7FWRfYOwXtFaBaozUHHNjTn8QQlSNdlavEJmINgM49Yk1V/0w0ZfrSVxFedVaXCuYRkzGdgPeZe+O9ERN+Wov7/J7Gz0kqklGOBwavPAExXdP/IOXso1QEt79ii7wkPImj4zPAxiT0Htxq3kN+JgWzNjKL9aBsf1mihqh+1ofRIwEK2GUjzUyWlF1v0qS/qWz90mn5Ler5u3emf3EGQHhp2lKUoRVjhheUpDVjXzli/VKm4u46jeycJyYFybMR+H1rC3oVZYj1QOeqgJnvJIqNWITNpo/mMZ9sTKWeBE7tiCCQ0HmzLQmbCyHF//NvB81E+rBuf3orBHXTO5kMWJ03ap8ErvQvATvqvxO4XY29KVmhzHatcYJuDmKs3amrEDzXT+6oRCG3EZim6dREhRHiaJSq+d/Us8zk7U2NHlrgu2qPRU+itWFKljVStbKM3Do2l3riRz+k7O94qwcjixf9+NwTnVzW1F4kOt0cRzqZE2JWRRf4StS7pJc8lnSLruLmKVXa+B9iv0ZzgxT29KPVHLoCXXBOeELqBjARjcTIsuh2rKfRHQJZ0xH0A7RpNROEamjb91kq2vsWYyDpjUy0a/zMMhHHfB8CX9Pur3BQDMz++FmiDsH5ldBonWLPrT6ZAp8QhNZoFPo45VSjsq0RXXiHPS3104vEjjUvNfgEzSgfrYiG6DIfK3VmdxnvwRgq50EafjkoFwbd8iacodW1UfJEsO7XCEO2m4cMpIbj9mqcZIb2LrAiig2Wip8dpYRU9evV8wJHfUcOd1qMIphOc5jPE9Om5BHU/OYFvorkqxnr50/+kmS4ZUsQIgbG2FHGidO08pnmcAeU9Vd78H55Vc7ruyZjWEHIBoVgx6cbCYGtDVJYxJqtO9JJLXfSCP6dNwrNnJp79IsUsEDNA9c6ICJNLSiAUgYKJJ/M+QMsd5M48eSBLfR4xUKAXBP18scyFy0dN4RVlj34xwGIe8Ig+jEuUUuHuyYjhC3bZALAqyVhDWe2BApCpER/lAg6gypboP92ZopfF7++kyrJjHrSBxgYIsT+zqOCRzZANpXKIxgwtv4pUBDUpa5ejWaBfPV4Ol9qmNBmidNpLsrcgTmuw3o+VOEFhkTMJYE+LckiVC9CZqMDD8g3lsINnyjTzcvCRgSjJZrpMak4rDqT1os+RbX9zA0FUFnCuimKn3+7nIjtWobOjIcL2f7gLGFMXhVf69dF3H82Bh3bNRHOQXE0BFM1ostFbseew6fxEDCXaX/9Y9QrVvovKrbFiXeJ4cxcSLT3kXvLKTvE+OKEjHtsjXNj8qzf5S1kBCgr1vRWoC9B36QbjGxaYrIkzb9Komv2m85sJzs4h1h44OSdFZEMvzgD6DCDVGEeUNyhl2xZS4xOxhsWwnPMDIhDuP7IkW6dN2EMZZRyI3I176mlCuLgCd5Jf2HTkfcH9zZYbD9h6e9/cMNyqTjtCBsAAspPoypl4B63PJonGX1oHyHtcApuVPqb+cXtRvD+KEf9G6NBRGtwdsZjeooKygiNKW/7GwqdavYBXWZfriAXCoqrKA9DkrP+qeB1fGC0dLLmNTy4aZKEgv8Pol+OHhEhBBEDRdiQ4TvgYCBh1aEqijQl/gzw/PKqO13/mZZ/pyTBX1AlmMvkSG3PzA81VhHYRAoUft9N1i+T7RV6bshiKvsk8b9dpgVd0/pkPgeuRzkzUlsgI2w7hK9VmylePes5FPzOxMc6GVySm7X77+KVOx7qQkKf7zxMn7fWwjYscd2FpLAC3tihdEMX+Ki1nQE0Bq38lGDP1nRzVDGf8PeVxQgVseaPbkbMJ8sLL3v8o30+jy+f3aJobOOQequYxjmk0xwKyQgdzyPhNH8+Wn5p5BoYebKLIJpK+vq9WOLo3rdfkxixc6t8kPR519LChOLJHNRlvzFxHnBNIU7mh/kaeWxh9AkFK4nlN/zqgEndsbJ5ubyqr93veaUdodTcPlB/3sdGeeRonVR8gDRNMvt3exyzhwAFNWzmbvgukoJttL8retycWRzxe73uaRqgtiY2vBVQgTnE+6wAMb+6V8x8XweUnDWzhTX02ykpICznfTt10jpnZPCk77nK1zlF7kIiU9uE4gAMUdTs+zu+3UB4xQH43lPV98BU07WdEa7EnqPFxp7e9k8lacEudPbSFBZLocZLhdR+R0pilSYlWIBNLso/Hv/IqQYvVp3R2TrLLXJFQwnLAZPP4UZoVtQy76isrgj6jxziia7ym/3dFpS1Xx+5Ii0ExRS311u+ZDEQ6gqnfZqv4NwRPY6aZqK9AjpKcrrBcdqGHXW8sJV/LAtojbcHmZ5zg7fnJLM13kRz/JQawqcxkSXpkjhXHcea5mkFZRwaWiOAsHDTrkYdTLWpM9arESoxfx9buRniAbnn3bVVjvfElSt0K8cTC7bbsBR1kBI6rZGBUla+KA3iZiVPi3rJI0C1l/QhMeQOsYNxm9uMAp1MC2pD1WhzuIbWH7b70V+IeZCXyQOhZ5WItZ2Wnv2vsKpMD+7JdyYAKjWt/TzIpsB8qhdaUyjX1zr4bmxf8urONH78Z6t6tM1/P9f6cmw9w098QB8R1M0Y6GiPyH5b+1wVnxpu4xaEZOUdJ/i3i80SdJpLUyzsc/ZC8uofXOnahQhcSuNps7BfoCF52UJiQpUokX6Z4rcha+gkOjXya9uXRqQVZPt5HfZZ577HklnqGWt80k3dWMOOtowf23x2rUmYgCR0Q1FN8QWKAogPVoZH9bZ+Gx4pCITxGVxJSkmDYR5fL4oRePrUhZyrwscXUO2LO5KAinf+0CxgFj79RXVCNvnnGma2Uxes8f5Q7GS9vpbqwEfbkIdcygtXNXnyaFNtkOe4lBOwH33gmkWZnA5VnsEcKLCpIIrN1KuuhMkBsxUJFOGb/38xtJvtldKtOqb0Ro89cEzKMWr1MEq+Wq/9mSr6ZxEjtCW509LEhbiVNIlSGoIF62PnJHehonkf8e4kY5ctqmc54tg72zRzvrXrUrn8R4hHwawfBwhNLp6ZoAEC/VojMspsoXKMCpKRJMYY6zSeuPzMk+BCHO6dXT5K+mrs1zzNkJ1DsRe6+cGLxtWmKT3K5CvCstXtJxZpqdil/uVB7LDOb3DqrR2w90KYAU0IQzEZBHnrjMm3LXp1FURwe0M/TOE1UJPf2d1HhqXxKBBGJ/UOgsi5bfMmqfVw+iHxSKcEQKFanJRRvb/mbK0VHLZluljalhdt98ZAuYxpmDN63TZXFsk5LXFxHIHApDbBtSVP1p8PjyXVWYhfuT+LVY7+vHSupWHYsefYZ0Ld6BOohQihLvd+cjEqS+MtYGfqGf1gNww7GqJHD/4PxheZdN+PZSeqfkj1KfdXXkB2fZ30q1Xga8GF0LIHRr697wiFX73MK7SF1/fqvLo8frLTMi+ZoLxymNUrd4FqtuXo3g28qzgvC6iORqnzK+mOrNVzna9MyNkCisCbZ0laR1SE6fa+VvaAC0mMA5fhhUIyobvo4Mp2ZfuexxIemGbY09W2+jW6qV06T56NBPuTPwgaIKptextW0g4L5+0ERn1ZR9ZHtAf/qY0vsrkFvkSrxEZFRnLOY1QpY3HsW52SCLtIbUd2RCQYJfC/S77UIotVzgDfUytM3zCeBUyaM7/JOvCgidQeqKLmxakbSzO10lai/9nAcwpc/Auwrqd+Au8+NKQvFwi+77WEmkt0Jq0o2uGlLe4qfSd5Zpm+bWAZcWOu9RcNtIdBHTin2lRH7F++Z3wkGgFkOjv8aClMHRPToDoQPALKk09jPmbav8jw2eunbLHDXN+5f4l7k5iRA2Y4CzaiI0OfnRWMoR/X3CE/UOUZ2wbCnTEFIZCpXx4+DT2L+iYOuL+69RiByD4AqluIxuhoTZ0E8IvckWuBtFLEIhzviDq3kAJ6PsjkrBuGPnvCcDSRtJNjMQKfAJTe/P7kilr0OL4t4C1rL0MWvec312Wn2vR1vQoK9VuEokO1AogXB5teB5EDKtyE3JvSlCzpTCrqsfpKPAQ79wzzwNHL7gMT2RIyBklRG6gPjLa+Ri+bzkEpbO1w2U5UhGus+jYISGroc2Rt1mJTgsCJ5PGSugt/AelhbKfkHikXNCMtCXv0EtadAWNOAo3s6MfgbjQxyx9dmNmTze3alZsTJcqYJWAedM+27ZHKQ6BtXDGMP+xC1WsoR/0jZFhpDe8vLy9MBzkWUSpK7TF6WBXGh9a/fb2LQI4J5ml7wVNhzXUd+6qBlkvtgk7RtawTz9x1SsOIqOZvw2mT1hap7TqgqW6UwksqdjxFNRd7h+j00q3Et6ZlQu30tVVEa7Ira2vLeoYtMMbxa86dOtGuZW4fiCeGrkJsDVRpSQztCYsymvkTmVndUo2o25bTNHGrLt3yXnNK8vb1gajB1o8USB61gQzxQk5fbyfueUe3L8KK5TtQEEnucu4ysC14emt6OtaUrQvwQYf/gDSKZMIJ1HKPD32ny9+CMX7lCuCtzduhYmex2A/KJgHcT8BCz4ildIBq5c4H+fFo6L3QhlEZgV/OsxNj5Ypb5X9H3QxyXSc14KTawMxDdq/H5Yn6UwipjoXsks8Mc20XdIc6NrMPHi5YCFb5QDtY0oS84O5D8PQHniFpJBn6E0a4B6aAcXaISBwRfrN7JJY55BMNVQ7TN6Vx3LRpnarUS5jKwqVJKt0URSDTN3KlpYi1gUaBCEOBvkaaO7eFOpWrdXXdPuOMY00Lz5ZrNTgqxoR28Dg7+lrIGvNz4vaNqL092VLmWTKJxq/FEMs3QuJD0kof/Ddr3xCz+wogmXrnjkaZqjGl6dnB3E2aPAqcsLqvFn5dy5k0PeXng59HcE/qoE4TN8KdFYv9SYUbj18ydKCqA51jXrkn+0wllzXvcG/t/J1HPBCPnHlyH//IMYA7IGcJ7mYi4NBe3/Sh2/fUt6FfSrLFdypfK4wkIoLZwoPDLy/cuVnYAtF6fIIh9fTwOjmVpUzzgrkuIU7ihw8APlS88tGodCxDFo8s9FJYb4zpPGm3tqrhS8tBvLlpx+HS737B5pq1ctC9P9XpT4CL9277N1rWz6oqFTiTszXkS+BHkjOLKEWVku7s8tLCEj6ZD6LmBlMrOLvclUykd6i8h8i2hGM45mOPCTwdYgWfiZ0AFQHKCjT/aBbxZhXP/sVbALfBk9OFN6e4m4Mu9VxQL0+RTq4Cc1MnNboUEkGKd0TqG0H3tUXbEvKVNahmrZCzMATYjeTCbzGoqo/IkBT7sXlfaP/7DFzzh8Pv9qx5/TTshfLMy2noKxe+v1k3UJbb9zf1uhYaQmGuOceH3vZH1hl4ZPu9bZsLfiY66rB1L7l0QeFwlH/ayFIXcsxpQpR4vjCHXBU6MXRE4xMLGoXr85z+cx3Elt1ITU47CvrR5YfwJRIYL0zW5iPXXOuU+7sZ0axfzuGpvkbeni7+ha+AjF0mGf4ULBc+bwvqcMfgJGxtk0FxYGRT8v+xe+0UwviDtJdozzbymhNz7ue8W0vsl0275EmZtyxVXzoxQRujQXm5e4KmeLWk0CuxorxexTlwTK1iKvnBDqRtsjD5j5yuJJg+Uwo7ubNjp97SUxv1TwYS0nKmJJe4BXMZdl1VaxYQDlA0HF2rHioBvk76oE/8sIaS+blJuNxlUt4LJfJvTyMF6wq8YRtwGujKp8kOGxBPit/YZT2cexwYs3Ikmx/fGxKhj+2U2BrV6lxcsy7w0QnrVghcXZ2KvhmC2qHrRPtopO979x6QhuGRv1aKPoMUEM794sjWj1GICqrS0ZdCDOdu4b1MBnzWdBTlVf/PW+7QONrj4PXicNkcPnSR0MeYhGsW0=
Variant 4
DifficultyLevel
572
Question
Worked Solution
By long division:
—————- 0.0905 8 |0.724 ————0.720 0.0040 ————–0.0040 0
∴ Correct answer is 0.0905
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
1 | |
2 | |
solution | $\begin{array}{ccccccccccc}
\ \ \ \underset{\text{\ \ \ \ \ ----------------}}{\ \ \ \ \ \ \ 0.0905\ \ \ } \\
8\ \text{\textbar} 0.724 \\
\ \ \ \ \underset{\text{------------}}{0.720} \\
\ \ \ \ \ \ \ {0.0040} \\
\ \ \ \ \ \ \ \underset{\text{--------------}}{0.0040} \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {0} \\
\end{array}$
|
correctAnswer | |
Answers