50069
U2FsdGVkX19FPLSwF+RHXKFlq56Y/UoTOSQLIwt8H/UHBvGK6zeJscfTAcQyF3j4z03uBPH5qkQ6oZ6oL6CfBAe5r9u1UR1N7Y7I796K43rVFuN93XpldKOdB2ZuC2LL6xt71e/XYRqzGHzR7+1oC5Y2lnuMYd9O2uuKDmZy9pdLMkO4kKm/EkNZ5rpj8aOzluYxjSMuY5kOR3npdalhPnJ3a+Gv9z4KTqzOUUfRHguU5qtvRs6Q44jt+aDMtllh/fxnfWu0A7b5jp8YeY39xzTZAV68Iw8XuuBs3nhqbzfGCQfYDJlZC19mjM9wkjrWDGTOxsNUdZErmNfTmyTxlLCIA63lUvgomyH+I8Z3bwoP8RvFEj/9yipxu7ax+WTqXz8gJGgLNDuxU4ex2j2IRSDjOWR5tKgZP5ywIowp6FCnuI8WVI/9CdUqykGudtAg5wSQn/6+D5fxviRHi5pFXN6eDeQQ9Vem8xb1ewux61CGSgRoxlnQYbxK2EosXk9DPIrhehb93xSRjhyX1HJHhpjJMN0+qdkbEoZmQ8qiE/KbaX2cipdn3m145ftn2+HO0jTbqqqw9m3YazgG4DHOCEboGEsn8gDkmojciiX/SfkiB6NuvvyqJK6/oHY8wo3g/zV+Qig1f4nyWdxS0BYAg7Qugj+bw6L8oRf2E2G/kVcMMgea0F8xIXTRMeOgGPzQdWhMfQzc68WzKY7LIr53SOEE+m6xKLwPTBaHkpjCB1lo50Q7hkBk9EzdXOA2hbqO4M1j5U31QSLbp1CpwNdsQF6q7hcmFvPqvh8v57i8AwOUlDY6wNFXxqXTzFjjaWtkbHkVpIkfTifEtlcXLtcAaV1wd5cRUBuCsenwNWvGQ9izHSlnMQA/AdfGXfxquyAlZfKis07roWpA3Aw2TWLmzFAYa0KQla5F65iLH/zEMbxk47iR1ikYY7NlqcINoOBXibGnGzV2Upaq9O97gf4mzBKv/tCPKBHCBNzWhA6s6vSuNTdO5tdCvZLkAkpUcARngc8dIkDXgWz4Rg3QvCyVuJIBAuZs1G2hEzevxmiM/xRoqnsl2RaAXApP6bbMPUcRvMF7OuxSJynnGb4dhOdtj5nvdrWuSXjvFtFZ0u8dK2gS5PWRpAtZDhNUL0uKc8xzLdUh2TjL3TMjVQ2S9C9E1xgQ1xf4NzK09QleL0efjZISnQD64KH3Y6e6bsL0/M3aEWysIS39LKDdESCF5dqjQ4xNE0RTHpGVlqSawnYfUWSA5tJq+ogh2XNBb0HmBMNz9ARWWU1eI2xQoJ2av9dJ4PRJaUtUA30UtgvTWMDjUAAAtVnrLRToxfB0ky7VkfE1gQYxUrh2R2VwM0ollqiYcGkewvSiPzBRZKppnmLk7jC+JH1bi1obPapcYLVcFIFyvu4hsdI+Q/EFFFfPJ0o8TJ9RTC2CZEp6glGxEzLLZqaVx44mQBZEK0Nz2hV+PCDaLhA/td7zt4SMX9X9donvVGoJ9xyn3P9STuNINGXVb/VD/0GYK2NM7niErexHbVsnZl5LlKJYB+ICdXKqDnB6rmUAdPRS4U9xhDswSfr8JnxlqtrmsK/l8QBLZr3MAwac9R2SeHl2QKLZYgF92/t1isE+2rYJtBuEWamYfApuDGuP0Hhok5VEkcEFy+axauP5e3+qsEr15TE4fQ2TMjeVH6ujSgbmRL9t3wqg7Z4BWxWMlSUbly9ssdn7cbqEaheEiellj9CkSd0ukDhbPMJe45+WSYus3XQkyjOpA/nHvDh8GJCN6ljgzfLISREG7l24eYJcJSq7zp3CxYEICtKxltlZm6m4G19K1db+pP/DY8e1/SUkfkQNDrbwrIL171lFZRmSz+VNBsN8VsPgZKmr4ngk9SpeOvH9JXvVi2Zy0z3b6WMUPxa4DlsYd6KenuB3GA7lJdpa9/usksKjoyvZsSpMzmvWM0eUWB/Wl7Y+eiWa90wcsCtTy9JFO9ivh9llRxh0yICCSQVDOeUmBwyYcMAtMcJyh5XsM9X5Xrin/8l1rSLHcNM/XG0iEOc+AMlnMQl8tTF7Fqd90QpXTjp+RUMD6omFbdZlL0WBUkEzLZaIphgXzHZKQnvWSH8vvj4wl0QgilMZipRdx0QSO+tK3EaaQU+/OIb2rqPBP1QY4pkDq/Jg7wxSnWu///0jdPySNzu4AG5XiKxTjpxjU7ADsA13FNFNFmJuCIiCO5MXT46I0sxnvDhEHq0A3ALZ96tzs6Gzwxw3BaLXw/XuoP/ng0MKzkLlBKCM5cX4Dr9f8/zPhjc6ifbiip8XSXXw4ZKfy3JrUwdcZnDJ2irMw92UOo8O5bqIux6uec4r92QPvhdgJIL7sruvdJtgxM5nHdrh3K0fYZ9YM+CTpy1Tp9srUWtCJVG3OyvjUoYhyeaMPoHa3VDPABuBiTgilf45CRgKmNPkw7hN9gE5S6mcq00kKCYYZb+DOQVvc6QadhvcQ+CSjtC0XhxwdelqG2ljmt+uUMi2D3mwGTK4eCG9R9Xotb3U+eJJNTknYL6ZfxGqiygNY40MXi8W8ERx4WZvdqvsTBEzPmXMJ52iCIXNiBMa0n2zfOl/+sEYHk3BA/lv9v0KVkAUwEFNIrJMl5+xL4dY5xAtFCJ45DZvp2WOvKxERe/XbwmenMV4NrnaSTe0ZAdWkfHeF/LAk+XetHJa0XlhxRyYyj8YDkULWdNrNU8k3ASq/eG9yaFNJ1YchCBftJ208ZA7svTUCtaNKON3j1FpCehy8D4aZv4fdE9RemqToHEtskoqJ93emfgC5GdV4XNjzcymmhM7Q3vBwi3mMCCdV6vK+2smXS9Ggjtg8MtZ4zoj6sHEQ64LrjKdrrl7aLFQQesQ7cS6cvVqHV5jaNeetW9k4sZVjJFw+DgsMZ4eFo4HsCiQGpJGHrNqfzk1CvlLL0o+gRwavHmY94qvz8InpF1aSlbFy2XO0ac7QvJYhAXtsmZRhKwGG/ttjkk2lG0IQZeNaRAg8en3rGbfqSmQ+ogSm21XVGZoePOzEBF2NQVIGNqvTn1doBxlQYmWkeqkgZNub0Obcfh+Y3AaIelIHaoyVHVc9J0kqF/axhXJs/axjnAwFrv5ZuNgJEI+7ryxtHgj6cOv+QP3x7+o8VuCk7HXQWzW4c3wOqvSuxPSTjVjpuMY4HDYAYU8QtsenDa92tI4wr1W8Cd2rIkLp67rCCWNENnL+QZ5DpqY21Lf9A3OOFTen4Vjdzqw5ClIsrwMyBGx4eOhVIDRuP1sQVnyqKIXgUZ+GnWo2iV62g+QXYKpbyn5/DyRsTZ4lt/bMccmVkZtRVGd35nCXknSZxXdpvowyXgTkyy1o+tFUlAORXMPVVdF76ORcFq3yZeDtXyzbKLPebYINb4MZkeRa1STICOmqB+3w55yirShaXiniiGFVRcRnXSDiAKzHA6ET66OYZeWFzf4ZzF8ljgJwEIy4lmx+Y2xyIG6n9I3GB3rusKdNYTsTfH9lB3VJABQUXpZuqoJLy6J1jm2ER/W1vFYi8VwueodZwlGC8xQu13SKbksxVC4d6yC0u5vpcRiPP6nFEcvr73hT3ykeyhxW9zVnTekQ0sa9kcMaTuMkfkFqwwVppAhLIEwdFIZ1a7KbMv/B3k21A0+81P3o7JyVA5ggv8c2DwgrVHt/g7JaNFiQVFXlqt7D4pkP/87Xddm4MgcCuSaBmgsN/ASIbS0FBv/e5auxB0QQMA45G3lsxEhpodoNA8R7uAgQM3vP4YvMUTUjP+MLWVMN3BYKdlZP+3Hj3z8a9irJZfjD/Flu+ubchnJSUp/EwtLCVVfXdiE5/JqE61OdOmiupgzDxcU448nWso1Pb7wwzdo0DVNvNQj2bLga2pM94qgZynkO2pZ8AxxPiXtmDD0z9NkvGqWefEUscv1QMwBqLgclrRbeAA5PyMuY7q7u1ZCvWkASFGn1TFrjaGh7YwbnojO6xpbAfpsh/aU3TSlA6D1GTsAAVHUFueNhAKtOYSdB57ig+H8kFb9wswyea5M5YgGHIT5UpsFeniKyLo5tAL39qzNdm9AhiW429b0R94mOFC0uCk66T8kNP4/9r7nTvwEdz0qy3xg3ryH6noJYGxjeXJzD3pKqZqzBtRIC2IQ0cLRZgKjrW9TeZDm7SpXWtpR3Yj8sbAiGhcitou392VFEzmcWJSSFH14LrWf32bEnJMKHEQRUEjGp7aSVwdXNf6QlpjxyN+ww+3M1B7Lnq1ILH3dpuDme7CKlCYFs4wAntR/EUyxYbmCr+gnqch2OC5TQ4W4HzkejEtwvLu2EU5optvpKxEXkNiH543s+3A1ftPRw6AbSEfoaS1CjPq4R4zRVjeEyQ3IGGaAXvI9cOMYQe+dhSzwfZuZhscYBQ3naxKobV5oeEgjAfYV5OAK1a4R7WQNyuc5I+jvMKFWuZGzJieP0V6cJXFmIxgbstXYpsyZBNXGyAdJ3RWE/s7SEJBmCUC3cvwHGVJdJsLAuhd84S6kE2y2k/FDxH7spN9yYaKsPQo4JltylWJYos4S6RWCOgL8y2dxB/HwcWZvwnHLaRqynzk1ysNMU2vtLxSQSwgsnXntvfbHShgvjYrGe7qlj5O7eOO3Boh9R/jEKohE5oi9eBSBOqqLOlrvvipcVZz9sMOHdbyd6eAsg8Wy1XN7eZ/24RlMWsxfRHwuJVsGrzJchqxzkshJFMM4w8nGgimIwEs0aHSKsWzavuhb/lvJ+i+1ydXsWQWCFLlyObdpczhlssuWtFKelDx7gsCbhr7qRrSryPPCeeKdcxfXp7xpXh+hiTm4m8+ldBiooL4Ys6pxoRgdrAaOvO8rZ9rXZvsdjtnYUher+SdDSEZajVzSVkHCda0OsCcQi6py4Ff5rOK1Z0WXcADQgByurCsn7sxT2fnUU7oqR+eOicyi9fHmzDQp0fNovpwM0jjp+dL0kI2ipM7eoBGwrVrSMHvHLGuj4EXzmCpxkwZzHr9Mb5uda3gCP6dBkYTQIN6WlZeFcJc7S618Tzv+vJjtFKndrTQ2uDZXMf86wBH2aH28Hnf5NhTDXO7WA1t2wzJs3QCxpaKxuMnx31jdE4zZkoy/Tv2C6czEyYIZ25XiyhhOl1UZfIWC+6WjjWiwLPaQZjyLSZMWa5BDDV4jzyTJd/joiPnoUlqQvFaAlJcRS0imfQmRlHitpmXk4neRhthd4uqMITvHYR8ba/Z3HW9UO61moc005OfBAWLK0eQ1hj6pSFbeXjtPSEsyA6wg1ZB1thfA9ryNqSlyAmmtqCxVB55kk/T1hmw2RpKcLxHvejxuGhs8bKeku4LesehBqzTu7Ki33uEJvWCDYC8tLNWP8YHn7pqGU0IezvPM4x4yzmVcy16npRtnX8nnYDaFE7qmA8oMDw3bGbJKkt4i+YMBXfTVsAM9u6Gl6bJWvsH5XSvBUmbksXW2LgIBnjGdNu0XoZnl5kuF2KXE2h6HFRgxtiJpQuqGx2cOIz0EP2qJ67hDDWhcn8z3M2yJUqL78IQBG0ffiUpmXTBCZj0gNPNWSfrGKVRsR1VmaCMwOR6GoDvJR7uMlYCeKi9AdwgP8wtQEHBoACEj3t5xSNhMtPbFL2b1exddhMzxZoHaDJ32zNVHORMj9h28bLCQIAqDMeE0Cu1ppU1WSUdJUal/3QVyvHVFRaQSzeuw9FCXlSOOhmnKQnAWGSfmNcrhDYDOPpUbUs+VcxN2wb7adkW7bAdmAP5ubv7lDIOYDE8DqNTYIKplGvgNB5AdwcWMqxgeWyo7F5gyfxm93VUyRdOeA3+gxx/DI9qKfk7KPC4aQK5ABm020C9d02AFNM7otA2WOScMcLFZ7t4KxaM79ndciP6qkKhGBdI0A7hITu7D0g0iVRvK+Kpxkt2iLEZHAjyJyYq5VxddASiwnR8tB1a5xvtNCmVKcUZLe/Ai2e1ha3IKwjQTeqzC1WPAS9sfV4O+Tddia8YFcrE0Hek2u8DM+wz4ZtWztzZNSBO2ylkddhmkcm66Cy0OW7+8kFx5rCYkub38y+sU+ZWQKRQfEiajjmmRXaYnx5MK1J76Wth8L2EGQ0UwQV1gYbaeKYx9KpbaMf5pQ6sVaaVrTNgRypQ3JsGLHUQQbpcim3m9V0iPf2/4ISorDcpSPLAW0m5NoyakDqJNe/5MBMdO1Cm81qvx0Mi050zXSZrE4cID4K6Xai+wnTWAlzV2ADr5L6nRFH297x7hRaqNzGC8dnz2D94IGeM3mGdM3T6cOLCLOpbWON46KlMj0750bHym2sqIh/RFV7ROht/h/PUgz555hihxHhlAUKYbVNliKURM+67cyhqgg7mabrwC4v/h8RoOlsuPkNKHrsqrIn54ShC7kZ6roZzn6U+3IqlXxTLcmR7A+VXQkVGqTEGOvDp8BkdAucwiu6uOQJEDxAAzyus+hxuaiIiOcAp/MVg6fSLfCADWurUVwCbg70YOmoX8E0euiLznsCAdeynGykxDrWzIQhmuO5IRnGHnylsbjum2ibOEXMT0QBGprHjm6i3DhEYbthwPiLrCVKyxM357bBiAXZLozhEEmz6bb35aj4QER8q9pWCIIGQZFWiQy2etthwpO4fPBMRubCwVbZq6VkCOOXBiiQkOy3mV80D5kb5A0KEFavtNBQyRAbZTmEFodh/Z9xTTwvZ45auvI/+VwQi6+ufqNs2Ic6dPoI/SEDN6Um20Eax4dX4KSeT+AyQyTasxK9vNmMfJWabX/c9NWkZIHxssgiMbirWfgWOJOS02hjSBMlfH/B4+y4ChI5bRSyjV8yUzDqT08lUFXPnS53zXBb0teixCDNiDVmocnnnB7VfPIewPhI9NjEjlRN5KVB8IhKaxFJmUQfENpj8QgAHbWSos4g9hEWH6kwPPVeGLtKtrW/MvQU4bRLqaGq7Ff0l+mnUZjcb6yc7h2MtEUlLtBdqPBelAL8Yk9FBb6mAApd6pBPGIsfN3Ugg40LloA3oecKR+A3fxOsbMF32+WhQiFOM4Q+astrJCrN7415lih/CupcUEx1nYQrVtccJd8eYOrMDpG2bfzhsIUxb/fqoyprX5pTPQKFf25u3jMArl4SQSpLCDp0oTfphRmJjcm1oBMsnfb/y+qdz06Lsij1frLDfuPfgLVEoShFSh6EVUFPgf72DdmpgPPNOE1dAjURMNIEpa1uD6fnvzqR6wOBsYELlKBEWMeCTMbJ9dHEfXggT/ASiVRXdIWzY2OsrHBQy5DCl01lonWD0igRKI/JX6UaoILqdz+gJ53DDpCZ1bPSxu8IH8wL9upJDxXPh5NZVkCbeeV21JPn6xCGY+AJSIyZKGCcieFbfxPHI+UJKPROaUKz9Di+Ua1AksfzwwlC7cxcxJKrlKb0qZuq9uSOkiXLZoG5x43sJ4NgkTKdahSkx/6JmhhigabDaIrO5XddkCb1e6P7bwvSzj1HzqClsalD6uwZwJKWI21W/vjSr/pGTq5Gx3tZ8EkozlDFLJbQDYRgfWTv2S6xOfFKcXMJrU3Gs65VPYnl+IqCiAPVzc7+o1nGhmtsXz5d7ksWlbN/sqhq9vj2ChDnIk2DymwbREHMut0yXGFou2Jse5rOVoazQ7dXNCsUfnAlmqP204Wz0AiSE1YLDJWEuVW0KyLtUZHmTIkEf/+jin8GW1yzL0QyMXK/sl+mMe5Qhc5VE2rCXBV3GbObxFQRYj8vnN82rVORKwfAgfZI4yjf4+TmPjoVotavce7RRLZ/lVwqg23mFyUxDk5DRAUgadWWhffWeRSA==
Variant 0
DifficultyLevel
611
Question
Which of the angles in this shape is closest to 150° ?
Worked Solution
By inspection:
Angles b and d are both acute (less than 90°)
Angle c is close to 100°.
∴ Angle a ≈ 150°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-G3-CA17.svg 257 indent3 vpad
Which of the angles in this shape is closest to 150° ?
|
workedSolution | By inspection:
Angles $\large b$ and $\large d$ are both acute (less than 90°)
Angle $\large c$ is close to 100°.
$\therefore$ Angle {{{correctAnswer}}} ≈ 150° |
correctAnswer | |
Answers
U2FsdGVkX19bpKY6F1hTEh+ceFlAV6reXZNnk1d7x1UC1VZmOFN/llxDlWEdbiFmybzhtYVCeFaERufXkABhm1peFC2PYUxaHFEonvzYRQ912iA7D2kNReoENwMCAz8xhRVZrwTWa1uQIbH9LShZ12L24UnmjvomxC7xXtqlAsDtwfSvw6QaioS/bTQ05EMH8MJlaqDNYSAZiB1Br8+qEf351q1uKcgfCMOhn9StOf640eswfReBY3voPrM6icWCP5HWKPFiT0gceeMhigvSCVvGcUDpo9oxmlUqKTmS542G5f7zG/wIDbEL+vJ1yuKZtxrjqG7DLroQfqeIVov8Rz1sllC+4Y8d9TYXo3qp1o02245fFLLKMBVxaH5iHskzYXNZ4uhHufGeib2h2OArfJ1ehtutWlCzOhZqEiH21q9gXaaX/l+i/h0kBj7x+qdDXpfl5d6zqeLtmTd4T7EqxNhnBgKybtHoulBFtadzOdxGq7JAFj5Lm+X2OfV3ZuodTebG7cx+jt6DIsuL1gjqqxrr5aOadNDJMMgI5fYpw4dwnXpJ348Sq8yObnsv/2YkhZRPaEJc9UoCABRD61WXhjIrWRsdqXvNcpUEdryQfZ2JKAYEpe0w0Puao+8QecCowphL7LKlQCodCz6cCAGNtG/2UKNQHUvpccjgzzphOtVdtwbzaYjkQhjN10qKeVvbhnkutboTcQVa8xyk18Ih70VdgelrM7tyz0xfpkOxNYropxXGJC9E0++pbeEcp9JU8Mny3c+N5PWeEpwefHEs8mxOV/EojS7vLSJ9WA8HTB8FSgyPfDFDyUSFZFj82mBsgzc8ZE/yCyVpJuudm5ULtLL1qpKmMA3B03+cMQD4AqTL/Xf15z/VcwHrt2SNAQ6Kfy1nG5a+7WyuCxLumZ86l7XMwPw9irEkdZIAPf1x5/LKRhDx5bxOtM+ugbI9JASGIIgteMK+htM3yUJ9F/sM1+zOAWUgu1iZKNCBaRUgMVcGMQvo9Ftfl38IR5ur60ZtJ/wIWD4WnqvyvNyisc0MmS/EmRUMHTgLnoqpcAYtazTZoCYKrEInClSGpbETInBBu37I072zFEl72lST2cEzzDFywJag2ZUywFTRWaw67V+yIkG18fQ/do2klM/JGrq6ofKfm6XHeVebpzVYOqpu2xGvB/sAzl69OL3OZIWzg2G2YQVVfXMCXXMoFVH03/wEWnd8FvWNlkuCQF9NE1uyQU2E95QWdyK6AmwmVP6pLX/53bSt4uMl8yB0gch+JKr1KcYxpdZj1rV5ylwVd5HqmE0jd+TYnLQsQLDbmpcwpwvh91StX7PIwPPRKz9UWpi0+6ufgsoDMKSMe/IussWVRAncPlPTv2EuZHAdfak9dTY3ykwVG97bmnWPpydOs36oZjwxCZ6KOvSFk9tApxTAa/YduaS99eDVLV8ZCvMhDQ/lj67KbhnA1e8a6c4g2rn7+QIuQ29FAVhX4Lmhm4XZAJ6YIk5SvECOdJ9lzvdw8eZtYtKcOtCNVKx9CEJu7F2yFgDeAo76jnPFDiq9BF4932L86tjb4ikeqpLnFVwrLJ+h/d34xFO1LJqvlbCiMtBD+gpZHd1t01SXacfObffSkn8o3LeyKJWXABkbHfnRjHzlXyCwgMDl40Rhuf6ubP+/JFLr/ol7PVO+Zy73gjgM/ThII3Bw60JX6KFFiSdlQj5RkgxgOisGUWffH+wc2IXLDXpBpxHkcj9YM1QGmzfQmMWZcpp0YilfpXQYjfZUw9kaQnzs8Ka90e6cDdXen5dPkQxLQ7nOhjDtYzZGVR4krixF/PeoICiE2ESTY8xECvyGLL6VkF57abPGTsP0RPJrJpTCg2Etm657KauOo4L1sNtXe/FirbCgNlmENSDzCIcnjENw3Sn6cCIMNXrM7sMXqvK3T/xJP9xhmcqxCBVbOuC2poW6LMLXTJMFjW5YAlaerHzT7Ro7+t6sqQZN7luDGtxOLgw+ZnGWjMw1j/nUVy2rlub/Oy5Nx86bUA36WOhpTNuj9eCnW7RaSLxrh58dmp4d+JbeLqsk1O+jLGYG2Fnf1nqr+mjpEK7e2UorIwuc3lYpB1K3PA2kpn9k/Dh05r506hCBLtvWHTlhk0esqpBAooo9lt0Ko01ncP0gmTQC9H3qC7uI9l3kp+I2I4chd7jSvEvLlxFiap9YQRBWTfZvzeKvetstdh9sZAgpumXPtLGQNDoDo4mmJOpX57Cti+ZyNHuC21ypPMiD1dh33+ALt9Ceqqid3wFdTdbV9myRZlIMSjE5CFTUIrSqQZdSPbYa7vXs/umTGq7N6oC/A8q+yCUlj1fvfu53rj1l8YMZFiWFlEkzczpivaXQnj9uJE+/JS8nHsW91G1Jk0N0smtUQ/9vLDkDnJpRVtVNRHzoQyLvOhDLIn5Ig1Aj1ugtVR/IjvwvmTkGcEjVzyJ9CVQLpljP2W/xIqfgw9VguDo6VtcUgqGqSw9itwja9QMcT8L/FBb21iuOE6Y5BXU7yH8NI9rsC2+gXIOVOLqbIVqC6+P5u5krjxQBZPGKJhskbXFXmP0rP+jinFPT72L2CUy1jdZM2nQfizKHh/Wgadas7gMTMj/05oVRPpWsiDFHYyVLxMzLvSRQw03+agmtvUgtknyTOwVcmzp8wDrWHMXmi2MYY45Xq3HyY8Co/CVB6JI5v3k3go7cd6kII2kBUcuKF1nbllAD0DzYJMxsIYEiHF43YqY2syduYjpzoPF1pAIQ6PmDKee9YIicfbblBXEcpcUPeBkpLp2IBhND4ja//odYuw2FapAPqx5ZbnozP79kMjx1CjcwrfileBXOTwwt7f/vB68BtmRcqhaTOnpqBkAJO5j/DPTcd50Fl6RNGR59PsMA9x+MQPsFE30MWfjdveCJsBR9DwkNGb+E+MJHOZaLr0lDz77OY3pBhs2fABl0E4TiT5E8m6yuKe6FBKprAd1IPoxMTiM2v6vJVDvdlj9Uqa8ze2rnFJcomu+0uGZXGUhxKujSQBiEHyFvOrycEoMTxDRt417LTcw5o5ZhSXL4skEHrPJsT7WV24pFERAu0uJP4jdbDBkIUz8JahGabW+10D9oFlB3NpOOPJB0SvKbPjL2Rpxfkkdvefs24mFRm7jZUf/Bl+5/0pR48KzDwOVHCcgjZnqtVwAaMYLUgTAL0b/dxif1yD2slmPtNH7exPH3I9oRAGS3OIcasW/VpnqUDJgTNwxsE0bhj+iCU75S5o2pK+FZw8dNU4WW7zMLjZx49cDxFaBG/Shqhy1t87WUjJCA+om14zegjFsLO4g8DyOzAC8OYMTn+r/EKlCrLkDIa2XJ1onhJHxaTY+2CVyDjqi6Bsds+WDrSjxKryTHqp7OR/+L8I+YzUyDe6+M7/AhlSXX5J2eDfRJlH7j4KP5xcvN3NNXnjsj8Dm0zPcNRR/hsILaxK1GpRTyvQy+cJqUjd83hOTBHZEhmC4A68r4fXDwAArTg6Cx/vyc63BP7Zl4vvdLEiC/fBOrO5EgtMTGOHlrYtGKW5eNHxOPkjKNMeozd770u+4hOUya7a5ZSDs7JwN9CZm7l0A4iAmLojdF4sx+d3npLaaUFwcZNTb3Qs7vfVc/JVEN01xSkXNPRek5XgbRkDiX3esd9rk5unu/P1xyzETzoYRbygL8qUWMUNqeqIiDeAV8OMHzbj+Rc3XAim4jg5GRbGAHHy20p692BmypjRV/IKWGG9Caj3BGDYocg+BHp9F5iUfQrVKwAYxqTCP8hvta56s/LGpfYt1JuDtSwidjijk9ptaFpNC3gxQhSQCla0gDZG6dGwX7JLV5JNK7iiEwPxU1sr4oHVX+d3jytPxxs1c2YM/G9GvYAGsnOpg3HdVgELjlWNAUnjtiStqmWU7Hrq2lUGdDz3h4WvuGkwBcFzOkBXCl2zTIjbJJ9BTb+b6pfDUUyDhOxcIJIVt+QwxFLeaNsfso/DAnyBKKxMmTyHxnrEuO4aGi2xRCEajqroM+2JpyAiO4vT7/upSf2akjvVHHObEiL4evIuTZrWFnMrm7cMZrxc4y8brsm5UThV0ZEVUQhXV75ynb1VRnaZLqr1QH4Rk2Mo/ZbZNtd2CRkjNeLNwO4zuv7azMLttDtiFhCqxRfJFmEOO981nnXnJKZm+tBVgjK8LwCZDopJejY6pqzgKwY1xyxAEOuy1BcnahV/EjWJF8mPeIURwfT9XZiiX2+t5xFq/citrq6RHs48B/9U9L0rLkT/OxpsxY9YYwAH/ZzZqW0ULSj1dSOfImxRBJX+hZ8ejdRhT6RtnqSBOe/jjGJ/sJnRHIKmpK7GlaHIy8MVsRNWxwbT/n4FZFztmwjd37RJas164YbvYPuSe2TFIvRMObUrxFKZmNL3Kj1r3fTaH5AFWItynIVqHS2MvO7aVbxQNoL3FfADwGWbBMTV7cW5fxb2HGnt07BdaJalzBEIDU2pd4QnMsFz4EXAY1Ci/5EMucnvuhD/CGCXzG5DcXIUwBEZM59IkA5aGrtElWPVK2kh5aXglZZ79bfAbxpnOLcTHLDGkWRBcTCjsd4XrzT9X/llb/ZTmpfqYU964qYAveKWVtAaxtij7vz1zJ88eaOuLCdRHgxKq81rOR7EJUaYJbICrYWEJnH/AzFLlVZIpDLJhgj26K+JyyFCvdjuno/iKRC9/C71LVl9bVfYR7S4ZIziKydV6LU20Gxo0beH/HGJDot6OAiux1qZiMkoVQ/z3YtuxX0H+q+eeU2el1MZWtEVVPDh4kBjVG8VPGgCJyx6QJ2KWbDrJBbQ/F/apK8JALoInili5k7gXzTne7ch45BXWdTpnLMME6s/iTPE4E8vr1LonIbjeiDYAo2DMk+Zwg1qjQfIM6eBfi0VltPTOmpX5+5bXaMWyKJfUYwQhkUNe1RCcK2thVx2QC9dSneN0RKpZa/O8pxG9dA5LHsyZQ7QbVQORlVbkvMf76jB+kmSIeoMtxQl92hqhQ9xyw75Lrw8L0cDPnPqnHvI+2iLACRfJjCwqtvnSx5wltBIAK/0akv0AcBVwvEk2anrBKpaKjEgj/RV3w5ZksYorEVUzMohXMxL+ZSOzoMEt+eDsTTVf5A5rxyaBNywz1AXvLxluxhh2WLxjE7nJx2H9qHQ/9eaj1P2XRAfB01t8JWY91eQx6zMUwO4LJcE5naOWZqwcpeVU95dFvpH/BKj2hJ2yjTRp61OI7sTUQfr7T7mHBY725a8QIdzR6VffVUNeCFGFwyjVGtQZQUTrjJC6dPCr8uLHpei+piPEfOIqn+vdOQDmhb8qOES7quGvXyUQbgQj1MdgVL16yfZzD+tUgVR3+2suIwaUg79JQLXV8cq5jwLtWK2CNi03sib72PYWY3ti4MKaAiQoVp3kd8f0VCieqhk44IHPDybHe0HMNXnQlcNFokiB0B9f5Bi6QSnPoP45Rsu9XW+r690g17yPVL2/MZNo7oIuer4/O6uNdSwdcBCOqCE2Vz6TLcPwXIsR+ACwxjGa4jKUFTG6ekG2zKq38Uo3PLy/z11jj2mtXrl84U6YfrO+5MpluXCFdSNF6K7aJlgi5SPOmhcb25EvU4kcys2Ym+QuwZXK7mFAROkCEiCGxQ7LzQDnmCvOTm1yt6EMX09iWq0iRdd8xeeAy56+6FNDjhpA0zW15Rmg0fYMyclUdIZYP4Q5S55dYy+rfNHpq7VpiYTM+FLtH2xZjgfDo2L5YZckKbb1vqjnuHPkfH7mFPL6p0pjAtmtxueCeqmvkb+jueZi51dwxCqmOzem/wzeE7D1AvjaS8uaFyCqV5tog4VBgpRrxITHJUuTLd7PRK3NiT6bkuApktQcibUQieLSOsp2cp3yw6W58sR00ACpxryfwz8ACbseDKAhHnFLOCncPx5spU7f8TLjozlYZ2iIGq6yAIhXTDYpV/ejZpNiY+yg875AIM17Yy+468a7n4eqyWwaokQDYkNVCVBvIPOzg9PC/QD01GV70LFkKXss/Z68f0R0oSMw11VIrazKZBxUV8j6OO4XvOG6qi5hXinsISFo6Mt6cJw4QWdJfdceU48nD99aAd4m0w1+ZjWpHVeoDRcmAHwv3R65MwKHKv7W2nyI38OFm6P8IHvW5Mavu0YBpdyAq3UgDm+HhiF6Ma2Lm1Rj4X8j7Ga2aHpLv4qbIgiLxAnlxLk+4GYklpinRMF5UIieuW3BcBSpyPjDWL3KfyFtBYFfvEOvwhESodWO7sf8iiH/dH1kC1w0uAZqhxXzHpUeN62j9TzD77LBZvML/c9H2jZKzkhjwlH6s8eYU97uncI9pk7/LwmLcpVPJ441nZEtxKthmcHlasFwgWGXEXAPWzhdQA2qmNpEwAZWqv61rvjfjvGk2u1H2AewwH6laowwWzXvAXiUKIeDZVm2An2oJ5FHg2tyaNvPShCRe4966CUpSSxtMkU7kuzsJprBDEHARG0pzPlohrq+AsUcNl2gUsIPUoCMgUfANgeMaYq3jjxI91R2a9Z0frnvlbAbpbSo0Rx63F16cjdRl1R9Qk5KgP+h7CD0zPjp6vquQH+859z7Siujd3WAZal4fYerBYfxd/7AasH2Y6w3oxXh1ROW67jVXpMbNZUBuU+m05PQ9AeLk5FmTAthGvIa6wZ6XhPrjP++ECg91U1zizXS0TcxyHClz8auEQ6PTEzbNNn80HyG8Lzf/l5ke+1cYJDlPmwdylSghzZQiM4qmaO7G6l1tDVIYeuoIwHrY2erxnSfsoayTEGqyswLqC0tzeJ09UQrMDN6zwt8ULbOtYqchIWLVZvrC5uKn4rAhcZM3LH1IYCno5mI9iZZkZA3Arri2UvdBnS37uloioR4/tYfwtx/N7QtG9+na1o+crSSvMsVNNJrdsFLhuC2yFKYBGv7SAM30dhjU6GE+fuamRKmnn+vOg3/mrbQA/mFLqu7kiGZAumH+ZbBxROO1qkvGAtHv+CaVMAZrKxWb9lgQUhObIplRSmVYZv3GYBnzctmKVfgkjKIc7n+hoT6gDdpsqapVE/Kt3ViomYc9TAIDtUBT67DgsHgwYawywETv4Am6+iiUD9ojeXrV1ke850fsnT0isL+vOyDYaaTIjnqy5fXr0KxS6n1cbVRFwlNrb5hKSJabSdVar4zFPOpRhSHlBosqLPsZjVeofr13DJ/YB95jUqNZBF7QOiBBpU0EuBgpf6GU+5WzhD5/uIuO0oRxH9tNXyv71HoYgSCLGXGctD4FOR2b5pjXokQbg8p1RFf4CaeTGqkqgn23frjzdx1tK8S0jHTKVcr4/jqtiindgAyuIdP9DEm5N4o+W0FYA75FNtWgf6cqb0Ei2wcySSHHtzqGy8opCi5ht8T08GZvOJZWjpyBiH9YKqPUfCMv7sUITDvPH0JTjHDnIiva0GWn4Ct2OkyTzqMYG00LlZbt9vsp3+T/+N1mOZfoVwb+n0vRknyQG5uokm7rZKlsbGwG+q1mLc3QZA4VI467lCeSUvFtYgHEesvVEMbvaFEDpfBiGi1m27He2QHl2fwbwpHZVXYDwWDOhUnNrkpeBgtxcN1we0XKnxtBiRWNh94FUX0O6ECWQXcI9Kk1aiqN8r9isb/I4c8+Rqa8Un6LgfV1gkNi9JtqZclqcotzqS9eeMk5KsulOKWeMR+1znCitQQFQlA69vC8q6+y3dp/DRtN8ATnzwvTg/T9INeRm3lEYnBritkKPMA1/C15EUYxPI44Jp7LmwNAY/VeYIdBDMvnLACkpCD7Su7L8Q==
Variant 1
DifficultyLevel
609
Question
Which of the angles in this shape is closest to 100° ?
Worked Solution
By inspection:
Angles b and c are both acute (less than 90°)
Angle d is close to 135°.
∴ Angle a ≈ 100°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50069_v4.svg 210 indent2 vpad
Which of the angles in this shape is closest to 100° ?
|
workedSolution | By inspection:
Angles $\large b$ and $\large c$ are both acute (less than 90°)
Angle $\large d$ is close to 135°.
$\therefore$ Angle {{{correctAnswer}}} ≈ 100° |
correctAnswer | |
Answers
U2FsdGVkX199maYU+xwkTUVWG/wcWXeTXbLkwfroYT/s/a/n+Seo0f1EMVNQBeQLttlsQML2spVU5nHYPrYF6zHYkfNv2t+fgKxGcjz956bLjCrv25adonW2MAXP6KYm03MLBTwQ2C/4t6ZB0AsQpP7+1IxXotikWOHJCrYJjiIWJHwrbHkhIouXd5LaW/4CrwpcU5kwapoAnDVDVAIFc2bDmmfRrvNB5OHdh+4XWl9mnBomhER4oEKnHA/2CD48S6u+MqGiTcv2NvR7ZtcBUmV36hLiit3n9b/EcD+a7cXDLHAq5mpLikbmd91xkuRu5fC2/RRJR8blJ7T28XW5lsCRmwm5q12/od0w8OyLuGH6HqjZm1wWIwmJJ+71sgpmgvAV5THeZBODlLD1fqvX95aDf+rq2ir1fDOaV0vq8adJCCuFOu8NiUCZmR7Dz6rplYqQXKh2UJzENtMT2aG3sogi/RGuet8xNdwfNuz2KKIk6XUddXgAzZ1EoB2zRuymEOxz40x6mYxmK2QPIZ0vTQsejPbi01FML0SHfMCZNr1stcYiOY7YjpEY+9XUmoEhVQGH51QxF0GtdQUvLCOamv+HTQkwTqg8P6bX0g3Ym9HYbZ6IpYXZcSn8rpuSQt2bHum+XtKf3k10YJ8XNk0P/evwrIHlXJH5Z5H34YqLduzLGDd4TdzVjETeP335Q4icsE2wAtGNWTKT1pswzl5rh1BSnv9NOdmR6WpL1TksZZKTiJKZNlbasxu9fmE1SkE+P/dvI44FD4MrGcyb8/4UIn6CwJdHpey32kZyXUa4cIVbuSeBjY04OXNJSKbw4nPS24jcf2JPMXK/P/Hqqv4QreBZwdizIBE0ftZJ6PiAle4XlI0lvDwbt4MTtEYmPp+NTvyP6o9HCjE536fDIHhDHXQ7ayeNpq8zeYpsWVz/SJAqLW4xAN6jlf3UgQ9jMa/689I0XGm5MbKc0ZRXmWm8HCKefvpVmQqv/GFmi+A0+4GX52G0UPhHUrGwx5gl7f9RIsk0308pC7GONb7BOhu3zo4bd4i6EJnDU9GNNuFGoRhyw037DAulY/Wtxyvb7ALK2QLWbMzgvNT4gEfo8UoNEQUV12YH8XbVDRD7m83gdR1JVpuqQwamHFZZR3oIqZu+BlYePyL+oEzkqZgvhz7YRz64c4IDesy3B9K0+H15lpnE9CdETpD2fGdIfqfiylfnYiGgoVYAZVz6q3giGaVqs4vmWaO2ODAbttg1iuO+9wGxBnlzILRBbkJVNK80eL5il684DJuYUrwFsQPMwiAARSd4Bo87YuLURYDDPfsriY3D7C0zvIHGOSPmuODsu8utCe0dedA78CDtjRVRqm22u3kjFTD3yuAPUvJIupK+93nNOb5Uu54+57fBriPYbLIdl5JBV1PvBq8HPFBb69jRuacNMAm4+bzrUEJEhMmPYMexnmmdvDLIIdkjZ4IloJtRP0TJtY1froRfD1KLRZZxJ7GngLo2/azU35nDm6+7uVYt98eGuMMGnW8LSqoru7wkshdS1pdX8yvJLZTLNGQUSaVM3i89Hu+1FJuW+naocHm3bApXdf8THT2kKYn43qMB/VB9FeETZgVOKOzlXPjpLXsaICaBj+PIXUBCb0mklML7BhqCJE7abd52zb4yMMw9VvpBXjahCgb2yYdN5AllmiyBsntHpu5IxfL8J/ouCpA9E0S2Zhr18Gem9JcpfxiwJ7DsisBf+2aLX9bi0JOpfbFQdEN/LOYAnBILPPKjscIoAZ3sLwMN7Vp7NHTmqrUvn++7UO/KiWu5A99j8cXC6srJhb808c4WDX2eRf69IXwrBsm76gim1o3nNzZkzw7vMEmWEM85zwyA7J8pauhOGSUiLK6Kl5/2qhkDQnWnV3SofLgMAvU9c8bQiFWKq/G5h8JWhmxXnAMboUgRKOM31HZ8J4FieEY+IWQgkFtuJoHkkAPdvHuRwJ7gTU0qY/IJn6m2I30bxd7qo2Cmi+1xmYMB/YJKQosaD58qT3twVtTpxGJRMrQqK9gudQpSinafsbnYlwurp6GmNvYWhwFX0D7enIMYzfUtUGHZoYb8Y9UuAvkLLACGkT65Oy9Eq/K8WIjffYYcZe8yTpOuFZGSrylOSdLyfv62/zRY7bui/IeqZVEC4jg6SZiH/8irDCwa1G87tSVLVlVPqD6sivpwmwZuzD+8H41wL8WSt5LMrvUGese/SOHzs9DHtaR8S3OD2FTGBKKim4/x8kqTdWMgfES+JT6jP7bfjMY8ZIFRAu5reS6tw9g1OEoI4+rR+unv+Pq19m0aYfz5BivE+M14Wzc7K/f9g6koXxmSGhX0qxcsANvZnDLf1YrCdPj3lIToErf9SXTBb/YhGXnT9lOF6GEI9TyoDwRoOsc9NkFzW4h/PDirjbtOWL5uEIeYkyWl5YfufoA+bWjpwdwKnmHG2+bu8mLw5Cluz0m1jt9E7nqAKkcN7IaQlffUX8KjiB1vGf1j8NSr0pGK1foVa6KRT+QF/KD1qBKcYHgEzSrfDg3zqQrfP2kV/dCoRya4TS4bfItwoMHCKsqXLsTDCW2M8d+P/bkQAYuAWRnixBv8B9vDcWBn9zIx8yUdnCSaZMIKSE6TroWBCdc8XPhxYPjE6gWUE0effWiXtbNZHlyVpgpehiHjinkDWToU8uI8l1kUoS0gY7Yc39nPvOVb3x9NcPpT2mgy1DOvAbddVl+gaF1nlB54nwmG9BCE/JiYOeM/tGOnikjBRUDtuOZucjuUOfpvgOShjtj90CLeD/ulk/4SVVTl43wV1eL1uW03/JkLSc18eRP3mvh+gGovLYmnTjPUn2vNOCG7v0i1QXI4r/fGnNRFthJIjU3E2Z8MwOhktePmYomwkuImFjJvzLxV+SGqicJYbQFUk2bOPrIbda3R/uNBh1XvfbJnHcBeWOvF1gpR0J9szKoMGwOBBogFO1L9MLemJExC8nba4jo/LwIefur0r50PEMh0x9iF+kX/MnQaxM7gsUW5XLm9FXkyyPjKN/J2aw5GHphg5F+6KKfz2jxecGoo2P5dp+b5qdOVtai+Jn1ZG121S4dC8LD+frqjwppIE8Fzgn9/t5T4qRiBzxHfnkSjde1fAUBRV7QGt71zpc2fwEfFNXxBMz+ncQMWk0WrnuPOAxOCh/4FVnnNDn3QJkKCCrgb+AN2dM9ss/Qa016P60LWJAcC6j2skUZbti2mmjuH2NeU05Ai3kL+VQK4vpABlXKlos2qbFPI+imFgRdhGrMKBXvvStgN9TcHlqm1r3AOBGwy6/G98n+If8fyFk6FUso6iOhshS7JmHFXRDAAaiFtr4HEIEGVpGCHNPkcL/NrQClfM8kyPdvWtS9nvpl20UXXeC3GOOh+E7gJ6g6zcuClKHWDBex4ov7cl7mpgjWuiqujsz0sJqTPggu4uV4SNYAODV888Vk7z57PVGJndC65V0Mj+nkJFAOjVjIxqRErJrqfMvLxCHqCSzLEILZ7Dpu9grmHvVfhftJcHe/5thltoHI9MOEDGRMcPwbom3M3126rwuJM9YHoogixZMaHBKnOAoL534RqPR93UsEly3odvTcp7xD6g55EKoiOdrKWzLlBGvEQCIGvdV1HnOxY2FPV177jPfeZ8CWDRAwRETfuhkBcGk57AuUTEcHtsvYHBhS5xTgLDlK89AQV1ao4f4z2jiv1YONLbwBdvoEK8zrvqrUUnp+I/S5dZw6q3kGwYfQ8LeJKzMiI913sjKlnDrp31W9HooIswWdcufEXY3XOZGRqNfEBpLxbJDnz/cZ4UDhsxv9VuuLfA7eDhe7w9Nc4QJDrBAAxVh9Ho2bhBQX3+hbjbPU5YpW3BUkl68xly21pVXc+2c0yJSDe65zOuZHzz+GBZX5DjVN0EXe7ih/FMCZtocjghFH6457hlreB6FnXhrQpKaVsMo/1Al1tjKWukx0Wt+ROZ+jF7VhkeNgUJquL/jXZZPjgCcwypUYtafEdScPMUyUL3iI18BLO++Pd8ss+8Rfp7rwLAtjcI0RwBGTVtNizWeHlIheAo5OBpcCVzIVAUqCwoZC6gECN7g4eX56zlZL2UVZPnLUosXy68UXVD7SAu+IBDshz2u8N/FZ6XSBYZsFabKusQtIyYBFK7Q0okwiUjyM/Ck9y7S1s62aq95byWuXQBK8g9NOz7lDrsiRPdk+HVnnPQLUcaaMw1Jut6SKOSCKFuU1XdNAovOEG5Tw0J3O+kJz/de+iYXC0IVMcx6DYPoRRBLLcVKt/KGRG1iaRbkRjWi6D74FJ9Iic7FB2XP6ykFMgtMREGNAPKFlA3TnqU5Q63vyjm4xAKqlM3b6XJvs/oLhTMuvqeDJReGNs0Jpsov+IR+ntr25ZJj+7h7Xpf8V/mJj1xAAuqyvi9wa5sLBGCzOt1em7IpvG3MDEFo25TFXua9nJVS0TFvGuw76NoBp+jlBkVYgAomI9wWXH/deYIwGNPVg+ZPYCoSqW1NZkdxGP+qQ7QNF9BP4M20/HChSAxswtlg31IksEG27MqLj/xX5rZKuyuMbfO4+OK4+MBk7lu0xI7eSZIGu93XVjQPSLsGvgJJsDBR/7f7pUimI7EEqoMqQ5q9tzERg8wONyLsmpVXQKifnpf8wXSWFmaOTv++QVsiU+fJ9Zz3Njgtb3PkSivvgdsPf4IlAXwhBTJiq/9zxSPgTnBy8cgtiqw95ovMbNrtAU3WWbdKFUy2QZNDb5JBwIlhYN/nPyExXNyvMkKZsApLbfzgBF3ayPww0teIBuGdMP0UnzW/ZBKqyjQUnyWkFAis51rq9JCEYixastJcS5FXE7K2AYEEyt04RHAU1y6eeI+Cq/tuxQYrGoJph7LhKhd8TVcGYYnHGkVVXDnXfPg7ajzZEpg8p0DwWJ0sJuKp4QbcLgP2R73tuovtCkSrSaLopXDPgFpo4D7ZRMWmfdidKkRAzphTuhdYPFnyECYKW2jfskRmAB/KVOtZ4GB7qiZPNGaeabOTcVGk3iAEwwn/03qv5gzQ8pmyJ7kDAuJ15XcjrBLOZKU0E6NCxAkWalZyFEuARTMl4fH4k6lJD7gwqubt6keznG4hCqKsOnje03sCtrEDDiBsiCQQx8QKCc5plwM0gs/K48+c3Tz+aM1R8oGkBBZIqUuTRgDGWLIPbL+JzR5qtENEzo88Bmb1dTqT2naGhqOQ9Fk5CI27DmIRfHwNx2ZFBHNjKE83oCrryjgYGGu3tt+dm6pTAlSyOocSUIpLyMIq+pq/Tj0qUCON+kjCpZNkow9apZkrblgZQ35TtblWSMwfwSVZaXZizA4+cCO5sbMeBvQwxFT0oH4Ku1BsVKS//ivnWgR96DXHEJaIMZTvzIwPCygDnAktHAv2tYHppd5ifLORsn4xjaL9jIoTGvsU6a/0u+tjSY5dM9EK+GfNvNjmj3qNCbmCspGU0OF7lj2bLoUBhnUCelmmyY9JZXu/QfgBp+zPV65DQM16lm/iD38t0GEcyLMPBEEQssfLQBONueUOwRDtQnIcVYWlxth02LmpOT/Ty6JQqlsiPNpy8+M/5WJ3B6lIAwDpvG5X8jfpnOL95eSLHfVURy0SV03nG/ITYqf0rN3H8NbdyKLE/KxuhPoVvt7TPZyoWtAOOiOKLk0SV+GYU+Xt4QG+k41lyC8l+KPsyb+WyYqFILcRMPNDgT+J+FHGjQF2TnLghzGYHaiMobc5kSm4qjEM/BvyX3GBc88kFU3nQAnzMRhNZx2sSB1+CBTu/dtwVnAgKAiRcqc7/6E66s4zThy7hs47KpeWfbvrNl66GXg38hs95lm/5YnRCJ+wsenmwEWSlXgoPsinCH3xZeKE2q7fCvYagyUC4fKYpzHLjr8ye8GZ3xPFkWZv+hUcfByawyeAwOi4je7w8a4Y/goiOTS2rdXBFvmjHKhqbCYphNUy4YJD67IvIRgs7gB7p/8ejyGDKQ3WYzrHRB/Jnn+QTBK06fOvAT7PlvGaSkCvFE3mm16QpoWhBVrfh525LzoLbZTzO1BvZ5xwMKZptejiVLhIxsZgEl51OAjZmMLa2v1XBwc92/aNMra+dRluTeSz10iRDUxFo9uLsVSpzHbzbitEA8GCCCV394UV2tlRwQOfum9jA8GoahZOvJCxWVHaWfl8AgYLef/jppaXg9KSv+j39qHpQQgJaMhvmxrGidoEnwh32wEdD3oH0JDaa2arHkGXg5WoND57SbLcNVdxNJrXBWPLiTrHaWi0Vp6EO3bIf5SxsVmjnZ8ZZtouUvBeyYtzfvxoali1ORyfw8NlIvaqndj2MTomb1ihUGCBdzPSPjvg3tay5XkqAwSaWEMxb+adj5PfCO8YkxZ+izZEx4Fq7rCjwQJF+EGEG2/WDfnG1j56mnFhAaM36WCEMpXkkkpPbNti/ASdMIC5I4t8p4cPqUglmE4E/hjK7aoWUwaf76EnyEpaMf+5IB/wh3C6jcn/MGsK/fUB+W7D6yaVxbi4rzw5r0F/DIgEwoycGSYeP2SJ1/dsj60I5N6Jje8Tl110kx9rrRW8zuLTDCWPSIgi856v42OIu5hVzTw7US++G8ySVYQ4wmTxKDoSddauA5vs7ViHIsGrl9Rj/kV+/eEj+3f2nZhKM4Uy6aUOZjpXrExPhw4wHsv5oW/A/KjjoEEzCatp0887OZEvL0kFbeBY+Uyq3hvBoiHavQ2DHphNjinCxeohtcifNg2Lfy5E5fqxizJ1fE9Rht/AO4PxpRxqiKh4sudN0oBUze33jYt2bbu3NbFUmfI1Txncd4Xb1p4un0sf2cNRmv6zcQBX4ZKkkaFtTfG7HvMg1mpGC0HQZpKirUWxhBq+pmTA9qU6yBdPpitCZVUkFUOkY9BO4sG9DQVgDHANsL4ZHOq60+vo9KnzQPJkM1goNsumvoB7Le9AdfGIXXOfYtFVaye3pYUXtdcejgmeApL4L7JzlPkPnKTRRSYUmD8GH4jSU3VIxlbPhBRtcNHYyuVQyheHmDtLZS8SqwzXV+vFjubLno30HvNDucd4IKIftY+ewz9rxBEBz7jkj2+lbKiVfoeVKnvyCBLr8IobD2HkChwQqmnGoDNYn/tCydF70KQTkTtA3eqt7tjRP9w7t6jgFngeLE+MWFrEfEKDY8gaqFSvzPrtdzfp0MuckepChC5yBTvQ5wlrw6W4+lzgi7YI1+OCV6rP6hbjOQE+uNca53LNM9Kskg1eGMkut+gPe8oODlrRHjVVd67mOWxSY/qhUDBC3+w5KINE2qqOofLRJ7un6wtq3jRtg0VWmjgBxGqXfvdx23e+c5trKOth9b7fOU7yRZBhn4UgruFIbG9JZUZR1N+6wtcHHgV8pg8HUZT81DLetIWnYiGIFLqaseUwAAh2i42uSb2W3KRHeSbD5S03Y1D996htaLETkrySYtUhvdYe6UnhDu6o8koMh3A6RniwrP16Z8DowfTCBzZUN/Mj0NUMXyK5fbhzBS1m/fNxUbBxJWhNcQFJipR+OpfTefpDjSqE0EtrmOUBr8AtRcgluxBbSBSplSLYbRKd+TMKrOZaToJliIj9i8Uik9ZK1YhbHzWXr2ofed1lZZrudRYehW5hqqnYzkZ0OSkrkUQLJ2Br2Rz9TC/p2cnos5T7O93dvl1HK/tKUDX5kg1VVaG0NlI6kmS+ll65sEXcMsDSw2d6lvLij3y33wHxWOyrXLFBun5EYtNB1WrfoofFp1/MHPFxTbUswgFzneQ/CVcA22ozph0NAzUA==
Variant 2
DifficultyLevel
607
Question
Which of the angles in this shape is closest to 140° ?
Worked Solution
By inspection:
Angles b and c are both acute (less than 90°)
Angle a is close to 90°.
∴ Angle d ≈ 140°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50069_v4.svg 210 indent2 vpad
Which of the angles in this shape is closest to 140° ?
|
workedSolution | By inspection:
Angles $\large b$ and $\large c$ are both acute (less than 90°)
Angle $\large a$ is close to 90°.
$\therefore$ Angle {{{correctAnswer}}} ≈ 140° |
correctAnswer | |
Answers