20356
Question
A wallet contains only ${{note1}} and ${{note2}} notes in the ratio {{ratio}}.
If there is a total of {{number1}} notes, how much money is in the wallet?
Worked Solution
Ratio = {{ratio}}
${{note1}} notes = {{frac1}} × {{number1}} = {{total1}}
${{note2}} notes = {{frac2}} × {{number1}} = {{total2}}
|
|
∴ Total |
= {{total1}} × {{note1}} + {{total2}} × {{note2}} |
|
= {{sum1}} + {{sum2}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX196D7Ki4vsS9PujGz+Dhfaw9uTj7StAq+O2j4mWC2Y1orn4Ad4eAttXdDJxYkYd8A6JEli1jypXe0J8zCp9SK9Bp4/hKxRn62jWwch3C6aUVj0PWZHlgBu8454xzuxNJIE4dZxWnQOYSUXv6n2zLsj/C1vtIzlr5a6r1vj+MYYekmxCEMKGRdTYo49SVVinGLd2lsfLynJ3ADHsRFspY1PVQroHnYxEZ7BSC28FknQfIjmzWBiEUslGqcpz/4JDjj871ujk4nEOOx8Ofnw4vuNYB5TvrmWsI+BqNm+Gebh92YY8sr/n+nT2JaFxysE+kpQqHjN3Jsq8Q4STdGU2kJQToFbZ0yCjLYRwFuJTnG/DRv8b7MkGytHkMFtGIwATpsWhmcU9EXS+HxZZ2DhWEuc9I8QF3XNSjpb5iRCRiDwhO49lGkbqHpjf9zj3Ki/VKDMfLGgS7M6NnM2SBBLrJcfXEWXLwFD3qknxUF2Ok868QdFFsO74kI5DG6NCZobFQmkf0YMtDyGwSW5Ggkw8pp9YmGouEbhsNugM3r06Pn6hS+3guKoumfsi/MeXdzCS/9czLOH6SrSaNFBJfRSGOGeGAEsEGAS3UHhTTz2xqRa7DNMRMD2C462TZNa12AgbrS+SSUsCgHYmXP0WNr7fr/dO4p05ioFih18R21JkqIB+H1wO+5SzVKMePz0RSNz6BRfpgn+LUhIJ592mh63qsRS2ns7azpSCVK8pdiIoKImH5+IRWjnB2+Oy9rIBNMPKRcXpYOA1LXjOk5ZNHab1esj5wjXH8BXBGyEc6ahpwj5ZvGVefl1Z5op+ARoQc2zSfX0rD2ApDvpULosjfFhc0YtQvoya2FUQPe01W1jtKWPohtA1kcTF1Bc6/ZJvnbXlxmpaE1SvtUqWcUHH0vVVkGzzf4HA0pGtjsmgSZctETIyE3gIalrhfF+NXyrUExe7R1VevmyadJhrZXrH6jFe6+NJ5xCkll2l7JffNf+ABNHPhj/GnGmJV+WSA1a/vWz+WvvJfpwss0pfB7+MfzDtXo6xJJMIX9UO5fbn800LypOOlO9Z4saZvAsFSyblOvphui9fOA9i9XpmgrAF8j0J+3qZeZZzIOIcZP6ZQvp4mp0ascZNjy11HVvRqgOoF7H80iAciQFarMFjMmPKh84+vfrZx3Yq0GnJUIMXr0VVN54IkU2Q1cGt7EEbOS+YQxGTxdclPyZQuvTjrYwMkXA9slrx3u9sjTUAlYL1qcB/OAmZ9q2JjEtrDjA8zPyPDHUBZ5dBiDho1JNP+y+aTUtNCZwRnq7PDZ0Dekm68Dw/oUmD7nCiCAQZmKUjR9YAIiNMIk7vsKMp/1N1BBdXQG5sFcryA/JydVc+zzrmfh3Q5r7Aw12gNPcFKXn0+VLRAhhFkYJD02JdepfpT1L9rpCRE8qSr+SyqlJ+n24ns/xnpCaDi5sibgQAk5DNCJuMdX5DAkjVWyB5Bse9yofUzu9EY9eWG53WA7VKNyb02lA5Wvm2MIpI5ORvvGFLFatB5r8wfcfoIZB/4DSimLa6jOFgeUqeD+YXxysKgF92IyXaX8KGK1iZl2TwVqj3JnU44AIIfkCcXALxWLC/dDFLIEB9NPVK8DcMMs1Y/PlbFnJQB0eMUKBG/CVyqO52dI3tP75yUxhmhjgTOwtMwDKbW4wy8AAgOyYK6xTlMXl197m1bQbDbj+XhN9WpqtXWpSLAvqBPrD/YgPYIdro31MTybriowb0ArOkYPon1bAM/CbJyDxUrfwDaQDfZ8xFALx1hBVE35DbQ2emOZ9+2GLiTVZdCVvWRGI2a0jIXLILNsrogdmMsLWDklRkWYOHkH8fNRRcHzkfv/3ucUfGfRBuuC200glRO7Ko8S+AZTWoXvUwZGRhBoOd8tkLkAGv/YAAti0G048npIf+3jK5q/gbUYZkByjLSuHA/QF+gJ0dJW7HVgV/0xC3xSQWvTWXVWQahPmGt7dozbSBAK3YGtXkMs6FB9T2CVYObBb+60PMhEsD900AhRX6eo8hgKxUI4iT9qjcnLuS1G06BsEUlEROrowTNCvktjZdZvY5l/mdl2Gs/c8X47n581DFx5ktVbBLEEIHURkLwtYcFsBQWQALzfDBmSMQHcnXccUpdAuGMFPiMouNw4T6qbPcOrAlwkriUS/BR/IMLppdTbzfhgHPPTQeGUpoFJp8O/F6oxh3Gfx+/sthPh/HJmJJeRKGJ2z43Bll5pfsu1BQ2CAjR9c6uFdVEvCLFCGIplzFs/n5t9XsK0I9/3kXqdY8zGy3xSDxjVS5iZewmzk1EyRNev/3WwRXizIRMsK94+l2Yt/DZFpXd8/oGsu0CXUCLmXYf9iVo+Lkq565mP9vXKM/pw/poLbrUWkrxpQHmz5qYioHEkcldkrLH+yr0UYRhKVYP1ZKF+I3zp/R7KYkX0Sf8kQz6/9LxXmOdCynKBgaJAz864+mURaBNd7O9WopCbOV0bm1bpBVhv+jlp06NFfgJYtLnQQ/3TC1PX3xAEMmEx/1LjTVanmGWF31ace7GUyr8+88C0Wg68qIkuQbhtaimBRThUXAosU3nEFlsoDBo0KCe3HeHsMNstuu243ncXm2e4ytoBytbwjwxx9WOI4Q6KW1TsqW17tvrz1L7yzC+fWNf4qK13aYKPDIayumbkm4nbGjuU9yS/MZuFbbAxaiqcl/HsdAN+4dzQs0MIFiFjyPiV7f6iHDioeTLeuBtObUzT9kbsMDT9TERV3KBsLD1zsnMXoZktfNgIr5alz/BpCKxZ/t7geOjHXpDJsUqQ5d4FFHJTmb8ANYXkJ9lCw/dMTtXbgI40jGPnZb1ecj/Un54iDnOr5UvW2SqzfotTOoNYzjXiKhKnruDJeUKVzIB7XedStmnjr3tADG0iI3MoY+7p3uqhvrfVt6G34cpL5YF3fxHkPZ/R+0Y4Sc4U6ZZkTKfG4F897clBrMReuG94UOciko2ISehefjLMLte6CLtlEEbVLHXC9RlkapEPfWsYtG15BJB8P1dBuF0t3pCfnpBr94sTdq6tMCGyFJYeFDYVdQye+yFXPtIarDYTtlikCSdrmpa7WqJ9uNSXfaevc102V6relE6py460cl+SYLb2Qzl8qu1Y5Av4c6U3QBF5nExomPiAAeWpAj7kbm9DQYO2geiV0hB1IGQV/HdwaopyhtsAN/Z5uOyGbZPf8bf0hZTihlR2WJgnPliBlAUddf64R9hAC7DdrdKZMSK2bCh8TJptaBRKZNdugvVsV45w4I0EcuEsnfvxAtZs4m5ifFQX+foy1cgz3HZQhJY+vLe1aAldQ99mltyA9V2A3c+04cuyY44WzFDdpFV0Rmm5VZ+x5d/7NM9MMnBMgeDJ81dXOQu3f3hMUHYTTx5YAjE7Ol3e3tgyIrcNoP2ZktsX5llLX5q1HUyjKiVUMhXr/tkNQpcodASp79VjOBbMmFk5RSOQWeDTafEwDCpTYjsuplB2+lBxO5A93GRs30BZHlS3eYlqilTFyzTFWZ4RK+nvppYHHCrATYgI3yOgDJ2ZXIkDWsDjRD++kwriBv8Vwms1ezxTfTfEcYdehXCMe+9Fx9mnJAw+iZhoBggEVaxEsuwTjUPvuwU+YBVZ02nWnulwqpgr2l8AHaXEHmVKIXeWywXgLDNePXup8VmfibWyJql0EHfHscFb/UmNEEBJoSrrUBPdCxGLlTb7Wf8Aytv6QjV3lGWT7joV0ldO6Pt8r677Pu6IhSmTK6te0FJt5wf/S3fsIa217fSUueWJNBwCl/9DogO3gLlDEopY5+RDtpb48hqcPKsvkJAsSf7NfnE1M8oKVOZezbqTC4m77cFRvJxuDU6G7AUdqt4f+unDBJyWtx7WUxuqwIliZLyPvPQ5DRxthV9Tz4DzJSUcU22UpKI6x2KbV04hHx4ZP/BvR4+5q187gouJvIrQIZ/NUHciFyfHUjfYdcCyfNJ35LmOQ+pFAYyng0LPJl2M9juLgLmwptNZxTgAK5M9iCAIGCNWYbuEfzQQ+jHGWqc8SMmOfDIFIHJdvnp/JSKywM+6nvwR9S8QF0OeKOIaDMgk172DIZb/x2+sWZLv5crmEt9PH4IB3Th5J+Qf7QU0SyLZ2B9vIvRa6wD4qqHvAhjU4Fzc9mt8bx6+0jXYMo97YK27798CEp+LgRVqzvglP6wqqbFkVc9x68IUqnLNvUDhBMfstLO6YHsaWyVeK1cOy1hpZ2FlyOXQksNEPEl3L76qrsoptnEYtPNw1lwAzYyoS/6p3LeDgMesYNVgmeo0LorcHoZMK2FD1f6NpQkkff0JNspupikqvp6J1/TfyvCnY4UfhekkLi0J/0bhE/+EeS2WeKQTEDMrrAYmKSTuwNz9bLhQDcjamL7qknpOvu1/0rMnFkb04Tu5JTYyYE619ciqy15x2uGxj+k6em9hznU/tt8oaCbSNgj3HYGgtvYZ3qkorLNh7xIGeN7k4Z1ocG8MStQWS8fp73WVgvq0S1ZYKrIvFZr5GtO/a52OWMGNW51cXbTLizBRsNvMXWwvDYLfcFKxdsu+HJFE4wAK/FYkWaDwr/HIG2JfZp87rHEbXyqg9xYBgS9sIKz46aGDNpjS9wP2T7Izc2PKhF6OX3d/9RRmodUzzvyYO+IfKFFN4HB9Tb65aCsmuafYph2kapfehfn0qr6JuyldJQk7/O9m0XUc0y1L2Y86wbrkVB6RGSF9+GYTAy+qMLu5gShUxVUJCiJVENRmYP3/HMi6tfJO2NOZJv0RdDfpuicLCMUAu41vc5Rqsygkgm0mXxyUqW7xqoH1bEzScd2Uw83SJ7HAEtN1mWQL9CTxekguu9IQvwJdtw3w6M+BgYKhTP9hp3g5SYGYlHoeOcbYtfHb20gHq+8bQ9IDhbl4A9Stzh/mbAU8JQImx9JKZfOJXzhP9K1CKLiKf3K/+4q0MwkV3SaKABvVhQjNim70afJ8lzUbrYcBG9xT7ZWFTuvw1zQA0WzDcUPUiYgSpFSXc5wV2xUM27VT5gAi5KzkTOHuVQLe3Cd5wdjDsyHt12bNyUjopQkXAZ4bhNYcfxunaZgwPsXwJYQNk9VQkNDUoE1K85LZVGAs7EYgYtwqAXMmhWybVeVjRe4Mq+T6K2rHGWBdL/B3cIoMPDtmDfTfSB2mSkBz+9V4Gddfjo/tr+PpKvz+PpGN2tPmFqKpvFmkmL1iuaYgfV5cQflALGF2kvb1IRPEsFge+em4xk4Uz2s3bATEhCbyCK3lFamuCbQxZkPwlxzynbIRrfbSKygoLEE4rlvTUAuACgK0q3v8khk/pFXCACGBOC9WzOyNeU2oh1/+QvkW1ozSsFxZ61u+IDen/hs0fOQHmfqNA9Q/P1/u9tRvYTmwThMIeg3/F9i3w6Z7IT62Ti9kCYDKWZdctBinYxuWvwJfC8o9SAV5FwCtWH+BlkG7TtuRs/QtCn59tRtCNypwQCzRgpGaA0EAM11pa1/4yYnrMXfT55OnsvYq5BNXi+xuG+3NJkLfkdChe7DVl9rcPk9SfO9/dLg0KTy5HWqVajX5ngYGzvgZAWnjoxrbjgQ7hqpZmT2Ye6ST0/jN3gfTT47h6v44/ea86X+R6llDBHaLtyBJto6q6q7dSG/kZTv/faHFeGv0khNxeSONz6O800f0PXgmSHFTJi5EhED/S22W9zT/nGPJRKmAhLWCAbDeGSXteJg5D+48X8rdDzFE34/6NK3swpSuFPBhb/Vl0u3CNYfdDuyxGdnejTmftNyVjx5NzoPE1MtTgTmzIoIyhxAJ7vOD0og0QQm6hkogpTAgEApOYP4Um8zlU/s+jGynRH4wawHQiHGpA6BkBu5aK9I5pBNRDP0CJl08tidkD19RKmVR8FwWchNsxZk0E0GtKS6SXJT+mpFv+7X8NgNJB9ineP9+8hcb07UlXmazkMe8H//Nwgc2ja63mDnL7yz2Wb3DP04evd7FEjG0U6uoLKKJojjfUVqdTN2PntNwZ2hgpTFUrbdQRQfcZZJ1v3JwSgAGx0jQgrHbsi47LyZQ5rAEFUBg+eriRvMo+GRk4U6O8Osehe2f1ptGCdjTyLo6O1v6RF1qUqaFaezR0CZGFrOiHHOY6AXHdfLWeGiFs4zeyNOg/LHbJBszEM7bqxPQCr/0RKY8lqj22Q98mLeRhPySvTknTVefznn2rpnxNQrCp+BsPDpHjO9D4J81GuX7t2FLEwwdvrjW6DGDeu1jFNeBocHAEKSgKaZNNZ/4JtsHJDHTEx0iMna8RNfyFa89k3BvLnkSgFuYBfWHRUsSvnMN48PHKk2wCmHR2L2r93rjHSQrIVRyolYmMKiCEHHA/0l8ilgB2EsiF8NwjVJjwWjGpLdLLJk+UenhsyuGrZaXV9NQx9jCSEzVVM/j+xRMTSHUXmZt0VKD/piYKq08BXoDKVR2ZA/ngBIC50a4Uk46vHzQjYxkYLJTIZb2Mql9BL49+UmKHSYs626MdlbpPrTmWDYuDJ9KGxh9w3fWNFrWGOT8RCafUMZ778rubMLUNIYTiW62qYw8vBLEbvlQtb+s7yAppXI++4Ga1QRtxFPGfwVzUkMSJJpefi+hdPOvFOeXsh1+8BKH2GsHD7V6xfAnTbXI9TgOZ1CXlp3StsiPoxhSNJvVFWi8egmbgElwqC5yN/ypdtdwDBU8oKr54AmQOoqfB7BZOd6k41z7OeVHLu/cXllYqk7e3JicArzzzTrDREx9wFlvUegsmt3NLHEk7wCTQ59FwxVWDn1958avITEbBDQXmdbM6ovnLBE5UEbfyaiuWlhxwIIHjOrzI8ZSX7r/7OlrUEULv/pqttJCrhx6J/S2WZIrCCd4f508wrSP6D8VOPUtkWt5FoaCqyU1Qtn9n8PACkLribALhOQSgxWFPXSlF8XInergDxiyNuCRYiWT3QghJxrBgjZRvszpQT6WfcRlFXEZYbnEK7lTnyaJrmBp6tUC4BAeihyBGJRhE1SxCYYE2iNdfsaqcK5yr0NE1CkvRhY6STDhl9IdkSqgNgLh/DwfysLfyf1Avvi77OpwxsuPVE2N2oZKcQ0gV2f7zigN5sv01vvNq2FiBQnanF1al6jDPtk3EAmnLsgLQTB7SxDtT015hI/1OOBoPOYbDQZe/rvSXR1+uCfcYv28FHEc1FH0gAEbR87NXFBhaQ8cv4FOWgwyTmjfvDviPiknrO2IJ8ldTSO9XknBlQfVdgLWa2LTIg/rGAD4do7IhR4HxifwDuiJEVJV7tNF/KAzL1IrpMpnprdgb9mhGtLMdcruSqgvUxiHZq7PdgWSH3/kJZ0CZc5ZBGl4HtjLzzVR8N9K+TQIOHoozztGTUlWNwNHiOoDQCxWrcGGxIZQsh5frGHsTzrgGuynKeR+alez7vqmkFaZwR7TVFSeIsadZ3jSBLfPTs89V7u1FoDtDOTHFPNQERKd5vzswNvEUHfmeS4OEwCfrEg8WDvPVVryySFXOugCW4dq6cgVXALL3GPNqT4v8UjkhILwoCxw5phAQvsPKD0aEebWqi1FGUrOVmaOSnQWLLVn5YfaSsXOmUZ1r+v5A2Baxh0LOLGV+fpPgipE+a/HHwp493wweOyxpiZmABSLuyJkB1JQk8t8Q+bqu0J8UXfEo5gZXi8qFdpCW6VdaxCZydzQlaDpmkinMWG3LsCtlNmueQJIiX6n8DEusfSXAEbh8QeFRJBFXZbWW4bOVrfX5DzsZrF/+QZUSx6rY1rNKdCP1N/OASygkJxmTNe5db5PRNEBKp5BKFTcrjJfW0d8h9g/u0sV5EjIigQGpiNcLc8NcKFqfjCQ0tll/6ylNTe+h8/iAjdSZDJgrgVw0nbP3+L7pcThrtSc/AkxECz1wTErNHkH2dn17Qkf2oAGdmJHUXUpArD13txghfKSFSQoDVtNCdwhvfFW/6vSP18nGAkdITKPJs+sLlXU5+UIZK6UBh/UGExPpdnizjT1HBenVLiN3GrZ818GgHQOMSopVoNK4lAv9WjwfQfhLgBZOrf4HGgDthobn4bcCT+12bRO7Eno6F9sU6VhHFzZwo/VqP9ce64XjH6NEjhSZRWDCnOe4mywddyAfjHbCrRHHaXX868/YFX6gXR2AQGfFYOzyntUN//FoBjZBmt/KV2S4Do8x3odIpuevX6sNbn3qemY5gXiaGzUkEaNVMjVpfsXp7LTIae7NhghKr96WmsywABzSxSg2IX248feArGgfTuJ+06juMWpecei/ihf60lMtir/mP6w==
Variant 0
DifficultyLevel
605
Question
A wallet contains only $10 and $20 notes in the ratio 3 : 1.
If there is a total of 12 notes, how much money is in the wallet?
Worked Solution
Ratio = 3 : 1
$10 notes = 43 × 12 = 9
$20 notes = 41 × 12 = 3
|
|
∴ Total |
= 9 × 10 + 3 × 20 |
|
= 90 + 60 |
|
= $150 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
note1 | |
note2 | |
ratio | |
number1 | |
frac1 | |
total1 | |
frac2 | |
total2 | |
sum1 | |
sum2 | |
correctAnswer | |
Answers
U2FsdGVkX19UG2kbxbaxzaZRnO46iWUmsKGLY4nL/Df/DMLm1L/rr6NmexKG0+eclOh6kHYOJh07DNKYyP2icmqZPMy0fQO7y9MTpdmdqoeWp5/WrY/aPkIHcppWUMzOJ/TVphsJU5N4Qo7TnbvwxeLk9CxU2QTZVeKMiZ07Xtx9ZwDmmz/9RdiiOWkj5BX5429m7ObhS7BMJQ7RUH6p8wWFkEhTigqFqraJSNbM2t33QxGSq/l4gS0HYyNQm5cNPmkpqXRN4AprZ4UsgyaF+Ih+zyEsoQqj5bsT3et7KRQtjsPjX6zDpl5RsAj/jQ09lde1TFwwAdBuDUYBnK2XuqnGabHf5ZEhsXOiRclC5QQsP1RO7L0hADPV73ezVPWllbHZ/HVdW2cpZ7tRZW+G2UVuLfPD8+GUIsKkBmZqMZEtL43WocIqnz3quZls+Vsw4eEdfBF6kdNAMpQKRAmWVE19aryx4p8H950RNFLrSwfZodNw0Mb1sMvy5I3g/pTHVCZukP+PAwPwRtBBamaSjKddgIlg2hh+bcdUfiRxH/Zhwt52CftrB6qW+uqI+l/H7yJqOsOPeF03n/S3urrj1sw4V7dN6ZDBAjwzFPfqva7ov57cHrf9WwBNwLogyyp5l8YzAzjiIQBi9w1Bb1M4UvvXW3dJABhYGGdSDUiwQKbVmDxlGY9HJeQZSdLTX1pXFSApfzABSSXYWkSzaemW+UuIZlKBjsAuVLBx9nMPI6PGy9Lf7e5ZdLYFLt1Kprqi4P+W1fqR1W+PyXXKlDsF2S1k074b7VxTMExtCjQ6oKNaFyOyM6c81kvF08y/VmPeC/L7DoSBMYYDM4CDeb3dkslsRISP3maUBBTN9ukO/33Cp7MjtUU3yVIcGQMQI37ttQz/rOUyh1esEE/SgEn6KXaCxIY6TsPOOHc5y3hM1s9W8TXTGqSnk4OsyQM6K14lBBz1wYzF6IdB1xefXEUPGYjJGnnvuZN18VtizP6ltbCnOQsZrbcqHffkBbwbTuWl0D6NF3ZOU6WZTvTRM1nEr46T0DLxLlXkM+8HQWJrd5NepRQQxUkpXw6IR1ACqYFsd46GLhT7tFwhvc1WvkxiApdduoGGOcxt3c8wn5+4t6Kk7oJm/VaG1MLBKL8RccPz1lpyYyIFP8jKmXOPeIpsGUNSxiADwYWAAo+3PeUozVVOXhXUaGPeqmCVN6QbIpPo/hpqBezpQIfTz7leinSvhlm8H9B3KBQuGWNvGwgdYGp/7wEC1TyQukbVr/KVpl5e/YvteArtoUj4rSnSF05fitU8uLdHEiQsYDD4gT6HjYO7zzMh7oqK+qEoZDXE0dw87RcM5k89DxdFEwWPyHlmkQMe1MzfZOkAHKbxkz2J/AnRJh3cZqdyGsPksEdsI2zXmsU3t1Bc82FEIcjFRkLVnlNvpkgrNdSbkcsFsWTuyMzN8gFWujkxiL/fHAtD2F8JJXdLn3UkBv4vwlK6z947cn1+Q60kPLun2Xtw3xc8Rr26sn5dRwTXUi4y8LH6CM8uUsGBydeQisCUS5MvQYtpuXBdGaGC/iV63EuzwlhQSc9jOW2zaSzae9lpypUOYl5ltENi0i6yr+cIUi6UwkMPkNHMdmWeC59aydFyfuSsLAIGFI7ATPJ+QFKFYniS5MjYdaDahJMwE20kWoozC47eDslqK14cB53MZfqwaXj2mUnk+wAgWZXMa7ABZCH5NGOM11UkMhVsri9SrmVoJIbmerp3QQgvSxD9gQmoM6Jgzw6IQUZ2jXg7iUtLUn9GW5I4UxXacNc29za2ZPiQhQ4rQOVsGfiO8uds6PHXZ/AnFzvaNQQDdLhGN+JVoO9DyjJLvIBU2VHYh6y8Km+wvpaGbA79AlUQiZRV7wJIjMSKMd+04LVjQVTtzEmwto61umsl9/d6CYfUD6+nZrb4qbM0lNvGsISxXivvGqTyZAO7MlfGcKpPIQIqkxlGyOoKFcxN/kRGYHBbMJWwzJ0OKRjqAef3mr5HksjxnqWVIn+0ughh27oEqmq0QGyQur/fq0yTMvnp1qeWaKtVxloc8rW65Qrf4btprAcjLuEfBStzjxmYq2Qx5hfUGdmT5wWsvAQjyY1TKTeW/abIAXZnFOI46+0TZ85CztZZZx47BrjOIUoL0l56nck13SUrHIXQ3z6R1E4O5jOTEQJdoby6Nqb1+PIiXlUesb3gMHOdAMBnwI5FoFhiyBc3SF3aXnyPifTHhdLHZ+i290/qAG4FXnVWQUkHHlfouqlbYGN2OVdPY8XL4MjQXiPFv7Gsbb4Ts1GYekpSM9tKEBxL4ySiqIb/HmsobQt5dGdYYtnfNc0vM4WN5pE8m8ltoyRheSe3+ReL7b6BhpsWg35HmqRjSpM2pT+ayt+ly7XdXGoOajKUHBWWUtuUY4inHwSeS+6CVWx1HJX3buEtsCWxmUttms+L1UvPA1JxNFc0Y/Fdehh5KamVYGzSYdxqFqJEAq5rh5MQ9010prFxq2nC1BpuL0sQ5VSLlMqbDE011ULQBdm7XI2I0ursM/MVoe8dsiDl3E4TpCUk0WpDmDZ9Qc2YwzQR/EaucrmAPTERParJdquHyAW6UVvFgg5nGybsb2nYmQlwpOFsl6vZwlG6JGPNO1XQoDy1JBX4Nq+gJNnLHAt1JLo3QPLYaTMnb2wdv1evRV8PS8NUTd8zbsdno6BBsRxxqiIT56vP9nDKlOrqB36bQ3Ip/XTM7HQ2py6NA4krC3kFlAqSCjQf352Jvg+Nn1Xrj1KXzmT/NvcnCszJXcU+nLp+KwzMqDaj0VDM91Q8Moeq8jjbKgK7Vl80k7h3yYpNbD3s6O8o2v0jc8bhTFX3d13u5vvP6sWutXBlPWORHtLPdA7SEzQEsMvHp3BdT4r1FMd7FXG0IrBoAoC7jl4UtXAgVu/X1PDlGULQL3qHRi+P23an8nDVl2ttFRf+t38KwwM5vgvJd70Lp8JaWHZa0wahaAy6gGZsNBvWTsPgfx+tkJAZt5qeLcqvJP/DqqQJFOaPnmPQvlY1enYFy/DlYwbTtXe9d2c+1X9j+GhCqx3eUsS50lXuFGJkX1W2jnagNbaIbuZolFqkUa9f+pcVf7+N10y/f1EqY+atgGM9+jYfBvyepYJrfms8a30mUgcwg/Z/FcEyRxMzeRIa/qof+eBxFVJlD3HzSn0XzFt7ChpDdm1rB99nghIOkiPZb/ds+HYS8jxCL4fnX47cNW4LnLzyEm7E8TxKjteUKQkUirNN3EBMdjeO65TSgwGmKJO5pb0yT8dQmdWiTkPqicVUW439zYFDG5LRnikBm7zqVawZDNw8p4g6FxIrh3zQATFh9xvmyK6b0Do5mCKiXZET8fcROwu/TTlM0vDEWU/QZSTHKnwvUP1elwoHVjq1Lvub5pNa8qnu6OXvjtC6ArwepMHy3dAOCLmbRm/kajNDKYx7X7zGTysH/ZZJOOB+h5RW0SeXT1P0WVoMJnkzHNKV+9if+b9Z5HhRbyb1DvjFvQ3Kcrm+vURq6Htl3jR8wSD0yKcrdau/Tf/boLZB8OzgULTVF6vJHgsVJuQFfPrpCIkrnmJAueLlJ1mThHYleBwP7vkPd+nP3On9q52Hqp3/UI0K4XTbvyh17zpx7noqxkZpPO7u92VyxpqUDcjjPhpX1VqPcOB9CqqFIieoI4DzsknpOqbeMO4+ogA7DAcbGuMVShf9+Jtyvt5+n/780B6dIzv9GCUq7csv7VDfposWlPJfgxDASSavThMdF2fKGe0WCZQ/ffMa9gGOX/XLUXO6VAF5VEAwWrrye1/Ro1K2NiPHYYNkbU2d4Rgc0gv/oq8GhgvBGuzedEskoo53HTzu/zZfNiQG5n/weWPaBRsFjPCOzuBYawSlhmarD1B/GvlmYOYeo3UDcm2geBEyduNC8ebx+KugriN8mgZuunWNtbf+jFkKzVOy6JZQG29OzOTUPkhfRJneOVENHShRKcWUf3G5v3ArK/jxGPAfNCV630AsH71nURA7PvAVTKRrA68bJP3O36SozhJr5F0YJ2fg/o4KlkRMHW5QIuLxJz5pviMlFzFjfcnMmvpOovFW0Sb+XMrFxWH/ExwSwEbEICZy6PHBrJ5a7fzd06mempTAxm5hpIbpnHmXZAVDalIzzZhuyasaf3rego1rSS7FpLinnyIfvd3SYdJXtUtoo43jcX6neD/Idecq8Nj84U/WlZV9Wj+XMFHQi1pA4cvKDd/aXUmcPIyPForgV64PBKKQ2Zl2erGTNnmQynGfIQlp0mAdlJZqqg8eI1TRVGpcKwlgTlZuLSXUGSHbMfmjgTWRu1cwAABQBO2+T3uWko3WDVf/sWPkQRhHW+Qcldv5qViqgnb51DKoRp3dmoV2vGOdsgz4BxlSESghpL4pubukPWRFXTQHsatDemDyqTs2Ue27QhGYNLPgBSpLvNOLeZiKrsuXSbzmg2jB8ZXz+RSoXk5j1T31fk1DBVORpeO6BhbT6a4B2i8YekCJWJaUwfY6z0gglnOtjYNWv7PgBGBUzl8DudOUcKH5h1LHQVi1wwW5XKNjLlpQooPe8akz6VUbjECBW1JhU+rH4gGH3eURiFvoIUh1XSXhY42PbvNnH2BTy+r/IhVdeJpGZUzPvVeC072rg57UfzbNC16XrXVg5f7zYcC1kQV8O41icbbbfCuyzecsrlcyrr9huUa2lr9STzjLX2FXtpCfek55jya/MchrjTWvj6InEOmVxYVerBvaLj1UT30LU0M3vtPlj1inh2432t7xaR1VuQtlJNzCDRjMwCUDT6zgMEOcuVcinAyNlgyiYzqpo0Xvo1npKwmZgxMutwRZI863Y68gj+1wIS7jVqEW1X1acOBUYpeOUBsoStRXEnmqHAlRni0H1MlbnsQwdBapQbEYtak0ZFmuYqixX2NNYCETjsf6kVLMLlUDzmF/8Cdkl2Qq5FN6veIX8jnhvNE7Quf0mCxOUjbZ4Sg233Jf/YIG5PSu62niTORjswxEME7XYwtpqDHbNkkc5xUqEnpKCuNvXlYR81HJb4GwuW43fWMjGJFnwLR8srQ8Lry17bsHp6Yo+V3s+qJ6FIOV9HCarpqvARjxvRnqJMaUUwWfIK9GP1ho13qPWX8rTrdrL5/Kd1wtU/RT+1EnpVMG6OtSb5cPQ0DydO14aiHmsPmmnLSMN9yS82TmKVbH9OSW0HLyJQnxjoaP/VIt9Lhe7nRz586tJSUJusEWMH5c9nFBpae8l9xkSD4R9UIxlaNmE3rB+WmFX3ApkqbF9mSXpyQzmfh2ANe2xrMzylZ9KYcJTXz6wSdnv1myIJcWK37GJ7lsIY2et+AwYD/CrDGXYX/QfzN1z040VtEMhjUOHlth61ejUlJg6IweV8JF2NXJhZmwLd+eM8ZSDd/eE1ny3VcYUfcsXmBRsPJZLhJcLCArz7IjPk7ZrgWs2I+4/kaarvNgJlSDVSdI8XUD2UkyA222DgG+OVBQoDhK3NER0uRxNhiUFt7sjn/guG/O7NXy+UVyjSMiyJzp2jVoOMEYBys/gczTCUy/fFIEe+S/ReplJSsFSUvyzsZDV1cejwlgXXJL5pgvbEc+bAI7fZXPETN44I9/B+FcxnyjkuVFgqWranQglNHQ1cerJgWIpnLuLFmbgUHCxgG7mMNOofsxkoB+wqRpPRY1MXh5ykMI1oOkc7vgLzWroa/juGEL9y14pUO+yyBvLsuwKM8oE4CUZ3dly1uJDZ59zx0N5qh5DoriKDcdtuslp+kRvi7j2LY+sOBMGIIqsqEaTG/5PEv67OQ2gd7v1E9fMTDlqWmsTmpvz8AK0MUo7oRvBtaj80EKHR29VW5WPbwgGR/PVqKr9fqWm0eBk37oS+w+wX/eHl0TWFGPtZaUh3oXRyNMLKLBeFL4kD8/DEWWTW9oTcr5n47offNqcbejt7PrX4Owg16qp7dmHSZUrir0uu04v6rVhCFvREBDlvPCIvE4iS+vEF82BuGX2X5S380AlSLHnQC/m5jwX6rJePovnzsDKhhKQWGK9CMpQBi2BqLzoMUQnmoWx8uzvpD4bQONM9NC54npohkBTyOSmSGeVz2lptWzoxWnvz7A/3h2kyMvW2zL0GHpwUY3OFju0gzabqj+aev9pmOu9JeztHx2h9HrGMZIlKMGYUPxd7eqScvAK2mcx1rd8vstjZyJQEqMxzsaFVgNApUywiSLMSBlS+ONcoCRmCkLi3mL2r6jOUgHwLvyEdsIJ+qY+D8mnFWFJZEQZz3dLDEyxBGf69OWtI23fxLH0kTB1IFDmuaGShSyYwtOKUFmbP/0uFCXt6y5BdBwQafAJhVOQKCZclHJOTXfKbyTxCQkzDJXto1UM48NRuRhbpQIBaWI8siDSahQ1bm60Y59f5SSQUqkOyh3siGWCj+zP2chrfWk5+Y+fuKIVb6ExgZrQngNYDQ06nZeTVJHH6i8MVP91+R/v8kGZJfVAnRVMjr/a4PypAzS0FAIqzYz3kgZm5p3gDTfOpJjtvL+RHUdwSSgg2VERbg6JQ/A5crpup8MadtfXp0VXHWU3je53cL1zB3czswHAU2Bum0werMi9bPcRQUDdUQNfTxnFUQ4CdpWqhYEengAt2r3HqUAqtKSzSnZeUBXzPNgy9ypc/Fx3i4bFUX+/eQDvrN/wT0HLYeSoAztyD31HbUhfkGsaLzjknieBNwtuxSre4VMV1B1HOkXk4/Wfwr3UnkLKTDrbgkv26S69oRqnP2dozgsQr1COll4D9hH3yleih3cPji+b0IM/rRqukwhjjR1qvzIKp2lvCoTvgVpSzh7NZ/bHFSsNdqUpF1v23ufbhm90ZyEMC3dNULvXh35c53BFYGVGf3nXF/xQqdLaunoF5Jv2XbCOvi2ThOBYxcUeeBRcT3Ljuuq9X6VxMfwIVS/X0PrcrJpMB/J4hA15mO6knu+XwX19qmUlp7mckMYTdJETXJV/Qu4vajaccj3Z4sybwD3FWiL3gdDX3LenpL26OEFl/DI0RDfrUuuAe6B0aZHMYLkcFfWROyDjTGwX2qNRR42aTFEVzwIBMSReHF13zm6FckbqpdECGHl+TxjtRYGwS5yhPZMMBSjRDs1U5tt93dGUD0UD1om8lEFFm9RbzBHSh7haivKceqzHMwZGIb+rDMphe+ejmNduINM+52iPkYrKV3y/tgAK6gwoj5rd68RgF6uh3eTGDbu11JXw1gqDOl7dWiykGhbGVlPOvEY//JhphgfWCBDXw3KaWNXCW8T+FXU/ZxlGCJK1pSaPfVwF2t7odUCBlgSYXwkB/WeqaPnJokEUj5g9K/oqJ1D4gqeEn8S0CZin/c+2bC4jv49hNSQsRBaSDDHCi+orDdZ+RbFQs5FOwMRqCMQFvMW7vE3twYN3RBEKOk2F2c/W55MaPiNcKBfmGkP2VV7lX2Z/oxAqLOwYvz+LI3wLi/47K4uZfGVbBzeeG8fJ4kRFEePjG0o7uheq1Gj004hKdCXnmYVODT7u6s4wfgjEpkBg5gQ3OsoD+jcIRTU9gbkkL6zhsmH5H0MsgjCMP7ueOvT/1mcZqUFfmWotyU/SGSSx+kqG8254ObqzyFKKgvvNdHZ9HFpNM3F45tHWKQYlUeoorNyfPPVQ9s/TqjZnnCmihUBBX1zOctZUWYx+u778ghHuRCCpgAdZ8P78y5L8V4Xhh+YJgo+oM+D5jBrSB8SE78oK7PzfvOIxcE64AeG8Sqhh1jYan5LSSZBWIJpeadAi7hnQG+M8E8QdNgW8Prt2AzWoKDNkHUEQ/ZWDUL+aXg6hXd/ECRWLeUccatzqIfnsNb3iNUb4DuAYBlfoqqPcnIVR1h+11Iu2bVLBZpcWcwFPvcVsf4O3+eYQxCrwsDsYU81XXCJYfN3tN0b9cnpsiHGMBnKSMDYNnRmcOUt3jBNVuFev9HESsbI+57PmDmimdMcQOvmQS9hBbx0UXv3+Wq0Rki58IhoP6PQ8/O9SyheLhfkncNHxsB50u2AEs2Vp8GrE2my6a1nZpFA4pIs6bFQB8/AAxpe3jM1K165Kpar0gUS13sfuDUBwDYJ7wWce865mzjS/fNxQbGKi558ZS5mw3U5KMCl0hDJgifgcs3HL8dx48wRyqqr4OLvLVgFgREYKwtqNyqylicegH0lEfC7KEAooetbbh9WMNfmWfgJGGq4esg1oy4AWrFOvn7hUPBc6K/cG82xZSjtX7H/DEvABFQfMj4JBJR6VveqaFOtj7opozZpeTu685HZMfj+KQ==
Variant 1
DifficultyLevel
608
Question
A wallet contains only $5 and $20 notes in the ratio 2 : 3.
If there is a total of 15 notes, how much money is in the wallet?
Worked Solution
Ratio = 2 : 3
$5 notes = 52 × 15 = 6
$20 notes = 53 × 15 = 9
|
|
∴ Total |
= 6 × 5 + 9 × 20 |
|
= 30 + 180 |
|
= $210 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
note1 | |
note2 | |
ratio | |
number1 | |
frac1 | |
total1 | |
frac2 | |
total2 | |
sum1 | |
sum2 | |
correctAnswer | |
Answers
U2FsdGVkX19OWhw0/UxR7+4iyAQrkhrcv3WcGGPxtQsQisAVwMsVBVdLimWJJGGb0MFEb5S6niYBiKPEuN/4ZKYbX8AqATPYsccHozxO+4V8Jlcrxp8F04d9na8zA3zK1rLjU1Cykab7ShKfrZ4niMF5JTwsuBgwIhCblUkMKrEcUqrVpg+qZMwHZOW+9j+blCpr2FqASEQk5rSDuP/9ydIF7KGLKof0mc/B8qm6gtR3gTV3RuhQ4yOgC2FeQJTi5uLoduvszWD3fPFoVYu6IgObiSuSQgMvbPWfkQAZN9ydRnqjXOvSO+d7Aen9qBxaT2/WQwMrEiKwhbusQPgMi1E44pgpa0+k4pPvTGKtH4F/lVja8Ch9Uj0bA5OHn+qu4NMONRMvN/27hTjJ0FmET4DC//3GO6R58PM1aCI6g8Wq0LHo0Zg45ikERpNu9YzmjZXejhLOhKJY96PkYfVznfQsKIOPwDZSGMp5fiBEchX9e9hbWF5hf8gDcrrS4cGfzrkWXJmzHXfQAtQXbQ9Fu1/MT2FlRMB2Dshfp9yrucLTxdJPgEQgWPi/ObKeXzxG5GereIiP+tark2/6WTruQMpzn6gVsS2AtoLVw4Q5H5L7EQlGLFAmRrzQj1++fc1kXfvAUxPeNnXQpKQSJexkK0I5G47cku6yLjpnPgklbCJYfEt6ztVVY0pMTBL61vPkdLkdCNoSKS+ZJzb20vDjDTIyp1lZcb6TH3vf8dUETKNSYlh355G1HSu6sYaBAqw2cNsDSpDSkModZXNrB0Vn5gwGiWNMxU2OJRAfapUS09eHnH3Jv4EFNJx6Ul1VeD5uSFFGvMWwOIpFvnwnWvMLQ+blyQAO7B8pTxXilvhX9fePelmpwMsIbO/YcjxGkGfY/rhcVo0obXxqEKWE/F4YU2jF30y9H6xAjDN5BGVq5jADPka/GnZcTPLiarTJtaqPRhO49KmPFrxZaOtRfesVR931iPyIGumxSItriuO/WPZt5Qw1NlTC68S4PjY+cMGIFudojSMeWLKOGu7/Kc7oM5w/466y1baWbpip0VDNCabL4lJDXOIc1XjyzCvVYx7RE1J6R0f0DHZvPBK0GwGugxlEFlqY84vADRfExuhukgc9DG9HqbjBT9T7chPPPwiCEN70/QPOBeLRbdYdV3b+4tRPAP6X4whsspuf2VOU1N7GRV9O2mH6G8XPmHQNq3PTYu7V5cOCCwQwosV1BnmNx3zRDMRZ0PtlCQbS4roTdqlS68fIXHbrWXMyB3Umz0c6a2sYBP9aXxitxJ9DmUF5dr2LrKi7tw6vGV7BgX0g+DmAEpPoaV7aeK/2JpOsuk2HLHyg1+1pWj6OIqKhN93Hs5ymceLlyU0PVZvZVh9nd8QQ2YG2LFwJ9BoD51bdIDxrvLl0WZqDQbg5vUSIVqToTL1gfgiYlt099oBViXktuPdlEry5J8vQVLD9sDusMGO1edr6pIM+I0I2Rg1/+tuxKkKKZhkeLnA4huW4qM0+haK1b4KXGgzr556xXImp6oiJzMru+UIFdrhsS1BHyJdXapOOZzcc6ingIR+04nxJjbjNTwIZn1Hx8V52F6IqaO4UoeRppUZBP+kdzepyqpxUyJHScv/GNgjr5WTGE7uKsTqZlr78SrfQ2qp3pLgiI+3PcNgggKICmuxlJnh00LVI3xMwuk5p1JVZ9VWVOVBG5p79GqXirHBlFPRFxEOBdyQ3G3YlmeC6NcOxCC4+tVxS1JrOsLEHTdySiHTd4EsACipP6yL1C7lHnXjJlfPu1fDtb+NBC0J6k62xW1nFhQNAq473rgoychy4OssNkK5kX8fMf88K/yTgij37y1EdqlGTXBwgBT5eDYKj9ruUVjo/mO/55t+CrDT0EiPPg0g1VVdloCmpvuG9ud3vGsGrbxxn+YpMjrvsJdAlzpBn+ioaH3qqlZpTWT9uGLpjSvmdhUQ1BTVt5K74Do+WBitnb5ozizfaorfQzwWuzc3p7AZQb/jwVXd00tcEiH/WpAcuC8cGKcqWqVJGB5VV5qICKp62Uj+cOG3KPePTW2Kd5K6843MWeQdnhXZntwko6EyQ62cnVyUbGXdY0Uas4+Zha57cfyhXMos+kGNC0JcUBtP8RevnCEGNb7IasoyR4CaCpnFQalHdfI9F2ICcYydfsYQVT+gzlkNKcTK1178NB8ZgR2YO9QICg2JNQu8eQeuDZehqQ6ica9PAf7MtsR0Miw13woNSqT9i9HNTm4XeAOimAu/pl28x9+4RbB8w6DNUF57sUPmgxDOfOwoksHHoPSo+Ic3TpITaWtoQNf4vpieFP/LtVfkrBfL6UjfhEGd5d5sjMobJEhhxxKvOqdbDRl5agZWCz/OQxdvmgM804IZ28zvXYuOBS6BRPVVAPVf/1qPgGYPLd35n7af3LpVdiNR57DzM+5n2KXfBLfkGMbXI0EWsD6G6vo/CW8icVpnu2ja1mr6EUWHFu+upkX8xYB2AIb7mEWs9qXVeHnqDvWyEoq3dODFHo5tEpaLA5+xO4YyJklbbl+d3YXeXAyaPRdAiQywhHEneiIs0FZ2rTxAeosoiIUfpTVitNeTsPGiZh7E0E4xs4IElqgK27/r8d90RrqPVkfJlhkFjm1fcIR/ZoHlp9fPkwqMntraHbzzPN9lKJCPM21TzO3rhjc3pGSZf5vX3eLECFwVFTQma53JbauZXBGWE2ULkmRqeXO7KvTyrVzgKJMhof1dFeB+IoN6UMaFcfg2l1dJMFGcp+m4MVTXZ0iGwy6P8MF/WKhFpSyEICKvEVdi3LRNdBW/6LYOKk3c2cfjmawEpYyORl31a0RKenxDDSU0VJpHZqFWRne1EWI+xfiFTxX3w6ciJbTz7OOiw7ZLL1sqcm5VKfDrHUvtons2T2nKb9mm5VSAGmdcmXq5UBR8fVYAgx1s6muui/vR9kVw3d/2zGvRoCz7IBDFbzLESMs2wypPPGEjQ4aYsDkaBsDaiNch3xyMYwNMLmdkAqfj2XQS3hRX/gHEdpoTWja0XXMVieDfFWwD5jnJ7LZcmHrWqnonLlV3114DGx/f/zK6NhOiUIk4cz2P8FYYXctY186PeyA2WQx+K/VjxcGgmGzg7QV36L5N1fwUOl23ujovZIPitGaIX3qGjGOZU+Xq3+rm7eWm0qhBhJUe6nZ4y9X214LYkAlzz7UL/aTmFsRGb9wnInAV0jGxf19jFtqgKO/uMADilG0vwcf1M58OwX8ZP8kjplS7g1KWS4GBUvPkv+0/GOWZP2FUrlxT+gjoxdCmWe1WtN11NEIFEZkdSybaBqqPEr22xEUT+xJr8nUdGj4pVfzcnIj41Dej0eMZfTfsEA568Vyog6md5+PSNDlAld0ujyKRMCC2FpHu/lxWGfhmcZhNHYhZKJqecVKOF7qYj5HshtfYnIwbMRy0J/PM5Xi38p0iSnhyGnCke78X+KkQsbMnPynGPTa7nLfMNIeXFCkc1YD0HAMeulS3pHvrGrh14RlSDL+bjtmURMQ/3OJvvmya2xPXDt46fUBSdrBrirZJjFYsQh4jbdoxFSzP+FKYmI39fav+xFblHVJLpsi1D/38c6HBo/QCIDdESXNglqiFKtBoHiPgR4cIQC+dnhxHNlx3jEza0e1qpSN3SMExvnkprE5RMQCZKB31ABFs6XiV8SNalkdF6JNXzFPOa9P4ieSfeG4cQpZAq9dvDHAdu0I/4fkaVavL4/uUCfZXb4kmq+Fv3GYPpenE0+Pj9hVEGQOTy0eZ+NUwr05GjXQat2Df37rWcUAoYJAmCB9T0vOD5Mh4WV8RKl50XYaeyfiu/Xj5gREQBLV8dTv+kNz+JWmDeqFU90tzsLHN02Zg7iFZVQXLLiKVkbW9Bv2WyQ4uh2B/1/0ympY8jfJ8R3hhf6Llw3RCj9Brs5NRn+sL1fUSPcQVASpLxg3qbZK4B5cy4sa5+3oRmBb+YTpVZrhMHzTTkcdrx0qhN2zqKTX52zt0WbeRk+fCxHW0CVM8OP8n7Am1oQOP9PjHIdnLytDsVmIgLnnzS3TVpKRD4Vp234TvjmOJB06fSuoR5WynYWNij2ONZJ5vhcZ2VKssjz+wR08X6AzjSBO9TMK/M2A5701nxYaQvkGAiXSpBIQnmFcEOriroyFESBG+AssYWMzrE7sUMnlStSVvlf/zo4wPcCDCSIk1YhSVKQ5XS0WqgA8FQMXhQ/aw89o7zt+FUqahqfwaT4hsIlRaXKn980q74XkJ/vTlE5VrGmDKIHiS4yKzlvl2uY2AosP/RVJAla5+BioqyiojAHBZBda8affxIYReaGBxc+MSn33FUoiNREnYngScO97sCktTHTUaF+kC1thWM4F7oy159FdWm9CKcmbkV8svoxEEA9vBrMoZSKWtjZzG/bi1YPj8NLQTJ1jDywnnpO5zf1kN6KKzh3Ev9nAoImxIEyhAuPIQXDmiDcy98ooNgkei6D2APd3CThkMZzgbAj/S3MHMW92Ptkb53nIFb8HTHXGXQWyNsuo3LJUpE4LbkuAlI6J81zJHGmaDo9LCS+ejTv5gQG4aOcvVLkxwwyJCr1Mxt3lFgGcFOLe/z9bmDg6cRHhiqOJyvBJ+M/UDXlmzoBUAnJun/NFzubKRfbGxpwfZ+t7ALEnsVcZSSCJOAKNh1t7qMJ5MQdXDuKjzHQRuqMRfQ5QxCKT8mMjWhHCP2znwah1Q+0ae5qNn1D4482shgtXPZFJPuWVfgMbpveyE7O8zRJZAFPHTfMtlrKSplsZ6F/zXAR/kUrHRhJjJttajZ0Mhm2qnhoJTVXYsYabqBzL2NAVw4BIhaTTsE2ZvooFmHrjDiUQNEj6GMoZogFx/aF6Il74gOFzOkk7nE4ArAGSr1sisF/aV8uxzQr1JpC8HLvsPXuW/7B6qfVDRZzFqYaAy5oAGFCcjVSBCVmkah+QZpbKM0KGakWCt5L7Kb8dAUF3yo+T9DKvVxS2il+IAMKFLRC28LDX4fBKkKX0zSYsH8L3iYDNrAPXUKmUijXRP+oMjoqjSCFc/+l7GtDtACjMEeP8UCdvzmj7ngcTT+04NdEps3/gK0KijCEtxHnpohqrIpYad4BjNKOmtukzeoffwY7Js+jUT2k2wOgYoc1i1mb0K9dzOTlM29yNu1i5GgCwkzC+mWVpWjFBjbqUm6/nOS6+nxi7Uad6tOzXJU9m2NqcpVmm8B/0GvslO5zXInJeR4q9diPIEMDiiUWLxXeoKfHxU+19aGoWHStZ9gfmevZZWQSNkdGybQu4k8tJe52NpYkhRn0U7IeV/KBAwa18eVdcUA+aWo4HW3d0MyIlenAXC+4KSxAOSekoEZolmxid7DyE22ncRQiYJik+5Rn7T7vAQZ87a2aysGOkCj2yFBrwl3fiW+62OsxRj0Q+n5tn1VB3QfXFzExBfzZRoBF8mt0YyvxOQZSjLgHP7cxdH7nxwlLj7Bgh6EVmfNHxZd20ryaX4tq/xTOGJXk/iGCZd4fHzPTJsW4Iu60FPwKy55+PIj8mQOAdhTVLwAehMvLA1KqzMEt2Qs/Q4pvCiwGqLeAXSLJOm+8JN9UskroTuipAsVD/VqpD5lw+v+UyeQY2Ey5P+lwD5JqxPnUKwP4M2U6l1tQl+yEhIJLpXuh5LJ9leMk3PZIWX6sAbm8EJa9VOxLlXjaHN9oEGFdBBEeRtYqat+v4Zl3bNfm1IHRjCvp9aoobqOcfUNHhQY243yPYS/Mjt991j2tqJT376jBaSdf29ZggfZwE8sSkQsuBwKJpsKGgcSytXAXSxL9R1pkrlQ6hfss2HtuA+K+h92sBC5+PrWrVTe5p9EsJNCl/Gr308H13OmpR1GQeNxmwQwtwGkjVg5GylD+YrJErN7DGf/PkNUSXssHduo/IKwbCRGENUzjUF4jApWKQ2Be+Q8x8DtngY6jn+qje8eGkCp885TrLFml5qPXPKKyophxZJWc5DR9UV1Gl0SBhXTSgUSF5qJBsBJtIZNJQpcCUwCBAvpMTScx0GZBioaY0JgfKlZrHU3HuoMtD/cWVA+aO0VlBcwmmOWhExacX37+78HBc4nLMiLX3rPDz0UkHuYgX+g38ZHHZ7kY86UmMhr6jhxKOrxvheRv5X5o/AEPM2h8UqdrH9+k1U8tIBIieb3VEZ76QRS8zXk2/CTe8j+6fgFsEfRXut/d1ez7o0xpAd/2iHjUzlKlQVJKMA5+4wP0hmi3DjMLXQg7pRZQRzzIOQlwMmyHXPNqOvcAGISdLpzWV8oRaech3pLpC35Hv3/Ra6Pl6X+1ybBT6l7CSsZIDPzJTunoP32eceTi6x/mm9VqvMshWQHEMkogOz0uelJYBau02gBBvLCuctl3H6PhCLHZKQpbuh3htpJuvPL4DJo8SnfTcBwz0+Aqtny3QvvKed2W/PRRzuwyKg+EcOwIcA6TNJSdaPaXSRRtteLlhdPPg4IHYkmJs9Ick1ge947HaWCxs8gPSV/Y8qXuQcOG3975i1rh60Z1LPo+Gdc6n9k4dK54drHW9Q2T19ViQ4IUAcqyElhu0XVQG4uEoAI6N8t+1zgETl1JAzTdNqVnHNSsrjDwW42lxxi04T4YTp7++t8tLVyYHeZvNLPJ8i8KkFXnSGW83gCDq1BzxdwamnwGXUobPB9BKETBgyk88mmrGkrBx7o5Le4Y4XgDc7uCKtmaOtLvrvO9s+l3am67YlfqoG+GJ1RheSPZDq+Xxw/9j9hmMZ8njVJKKIiMXNSd+cZHFcbh2BffyTsn+zFNtEPo4hFzW7N8b5k3EVzi31OwKXOsLlK+rWBkpfaZpTcF+8WEe5p4o9cB790jwuOhpuv9gOJMzOJ+eiPVWqpgJYdfmB5L3cqbLJsLKyDtXVWuWdD3lKpnumyDi9mKsVsRx3IM13mFcCfyc2KaxWJOX6Dsno7Q6X9CjHBnk97NJJcMPwh51AHrKjYeF1HSLQomnAgDkTJtPyAEa1bv1yRDbKV/PpNVonLYGE2dmYzEgoSmUSFqJzSrQlWFnOsfxRKTJ1ZvMqyznf2Q9yzQe1yo5B81AseUu2JcqbAvYIay19haWGpcS5i2F3Yyvs/ua+uB9/+UFuqzmDk94DBrqhjfb02doQD5C//lwEivp48vym9Vhe0PwPxx05uH9Dv2jM883nISb7dKvHGeh43g7VwUkt3zoCFjWOad8QMCGVfp9jvl+w6TBhAbKmR8VZ+YZuyxpUUmhY4DCM+eLA9abUFHk7vFwKzzlsuPkzEaSsiTkOmKyI399APSZMSoigkPYcDZdj+9uiKAN2/SLRS2qxofT10cuYIkQ0/GCuL30Yk5QlEQSe5hKmK3CFydHGk1mdk0OgeKP05HoPCDTcrrx7N5Y1SWnj/J0PvyAgDhtAdN2+3moW8gYTf4zHduf8up7rtNXWhkpDCTcAX7aTCg+kLtvuxNlPmET0KwabWEpwhh4k5EVHzC/oJcWnvdheQV4c/m5jbC/uIOdhNQlVzyoSiG5AL2SqBQpUrdOD68OoLvvDwH4rwDffRsr9pJleJsduyJyAZpznmdcon85/okGDEqwTzkzEzVI8fmchkv/OAMkXinFHJDOtdDqytDrAyOKErQxbhC9ovY1QyK1GdeOl+s0UxcMZQb1PQw84gftMkUGjwyWQqDy7tqyflFasBCeLc1SB+8lmqqW/VpK3FdsPmV2SZEhUu21BvC+PnNP2GXCqz3oiiRLfGHz088otrXIbFtz4MBhoAU9k3X5FwnjjwrVtr6rcBmOnf4ihn9Gi6m9UtYm4DmWiE9vdL178Sn6tor/as5zR2IPKU7dwuvuchplN3hTkai/WckL4ruvWslCFaMYp5YCFDGDcGwh0c1zzu5uOj74Jmx0KTB3ebsyppEuLEh/+14T4iy2dWFDUGT1NPoZYfODkskeLj8Aj/QsfxOJmkSTJfFyJ4FxtjCCVYyefp3U1I86aWXZmRdI3jdEP1bR8uqJW5CLKBOJUDgvzLXze+eleIo+coSaezT9+xdQN7GZSDSWG1er4oQOMUd6YushaTzaag9Vck2RG6zmrdWA8NpIIwhO0qRNIxzllujpCzARxGiEWDstQvyoHCBPr9USrE6JIIgFoKM5iTKo0ZtLR28wIBcSgPwxKzZ6VA/ZC15yYmbvNyl6GeC/VaXKIv2FGZSc9XeNe6HzhU1YgcDt8eJMlNPkTABdPON1QdOIcpYZGOAa384MSalsgqmD9JHvymgHzKLiX2x1X/eSWDS4PRyPA2sAGlP5e0u/qPmvjNRg==
Variant 2
DifficultyLevel
610
Question
A wallet contains only $10 and $5 notes in the ratio 5 : 1.
If there is a total of 18 notes, how much money is in the wallet?
Worked Solution
Ratio = 5 : 1
$10 notes = 65 × 18 = 15
$5 notes = 61 × 18 = 3
|
|
∴ Total |
= 15 × 10 + 3 × 5 |
|
= 150 + 15 |
|
= $165 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
note1 | |
note2 | |
ratio | |
number1 | |
frac1 | |
total1 | |
frac2 | |
total2 | |
sum1 | |
sum2 | |
correctAnswer | |
Answers
U2FsdGVkX19uwyL9aFRRSDzJxnk5gXbS1zX6EbPRZfQKoL0sojJ2cZhqSXgl+GJAX5N/fYy+vAUVWpiICr/eYDBRyhSDVxkO5W7r/2VimdSsE4PyvEAqTFX3gF3jYfXcv7oINzhZEHmcyWjBywDL1yEcQvK1ZWn/DoGUwJZ+2QYcxBjV4e1HhYY6ufZqEFjUhXI/ljW0lBKAKnyh5XQol1sw/VtvnR48ssKE8EDMG/7xXdRUYSZ/0dblFXLsIFd7H/M+QYObpE/MQ6XytWlwTvwZMsq17d42ZAIYP2zXXyjCbcSjXnpM6TMhHD3UVITZradnE8Qd2NL6vjuLOrsAwr1swSuYY0okH+AZbv5bL8YtTJ4qL8JMOLtiUI3M/LdAHZ/A+/5RmOVKIOtjsHhYQSnU3flZ0Aba/HKrGhVT8n7uMFVop3Tn74FlC6rBJwnI0yVK6PrVwcQ/qP21vWS3emXbAFxJAU6es5MyOMa8hn6SE3YHhDqng0Qnau12XehDv7qcKt9FoArnxnxe5njunbIWXCA4jdjHBXoIh7XyUx8IudUih5CHU9Ed+l866w0vPNqyykvW4smbLbNnAEMPvdsSMnBDu7Jqn4d2yNXZ56QOEymzfJWS/mPKD17s5vIW99I+NmtJgdvZT/yO3DG5w5X6P4hiUb+rEp04xzgtHTiGhze8/NmRi6Z48plq8ixe0aAzPpdnz+anqx2MOMsyHcFEiKZ8WzpHb60P2wnoKqZrg3KBZIq8nzmQjwNevhIJ1GN92qEFp2UvlN6l8QCmW4qlUEuZbeWs53ntEN/mgtRs1Dc5OmV8l0u80L2ZIQRqYWo/itPqV1dhhUbV6OzAxrjoV0bWtUsaXCIfh8cKwXcbl8FRZwbCX9x11u4tBZZYXnOfl43jIVWZduYYC++HZ+YM4vTcELMJ+7HlprmpP4LPhV5TN2MLEuOa/QJ40EDKPz/bHnpOai3TMgmtLWkjeLUkhfE/jw8uww9QUiyGDjHRmOZK/5hVqDZCtQApBFtkKyqiwWoqEZ8xthpaNcUjvW5V1Ikr1N3uElgEh0Aq+39bERccR4p9P4C7Y9ZhWu6Ym8LR+Ac1is7tl4PJiIgEOqkQD12ufwydE5mr81TjytetPLmq2GrBJ9IQG3VB6slGV4UXus3dc+WRvWAGw7GSKWViQgtAmTT13avSF2Aih8gyZ8+1LwcKWyMK/WkvqAs00yzaLt4irtOKxT8GbeTEmWMGYMlGdO3UTIasSfaMatosBelFRuNyAo8bGjlZNcJmgrEJwTo3cwRh2I8jtp7Q7EAmwywkcdwm1uHMDDFdVIs/jBgnyI1YcbnHc948kNjhef9+dL58Ej8wkusXu49GEKOtAUbxxWRAndijcnsBQwWTt0gSHCS1WhFr0ncBhIZJ0/KaJufJQOEZQC99amN3JEQH9YhcUiJ+1vlENfLvK4+/hechCRqJVdlkWtWtkve1eYyAwXTe6sV0q/33PDx//0Z4G4gW7d/Gxwd+/vPw36xeKPuyK3L8D/Zi52n4bSuBKofMusJhOZi+oLcsTsX4h8pAap6hFCmtsTu+yg/335Xyl61nz7x6g4tgdeG8l5iHzqBftOJ8JCbQfHoqg17vhclAgECybgt3LWyCKq93TJbKHu4+a2H3WkRfSMbDn8mE39YCzJKC0PvXhffzlP5HO/vlLUhLOdqTGzykjTliYRqmDFfgmbUYr04n217Ei/UlFtIogHKrue6IrLhRmWGL9iWkBqWAevXDDJLZm106A2HqqKWKEEGI6cG8k7qpMejInTPZTI4ZlnXLKxSwr2Dy4EUwJBSYUCmG0PJscC2iBWh6yinRufgpXTgIfd4nAmoiYd2uzsa8GmbACOTBbxytOz0rdnRiir5njb9kWUF1syY0J/YOOmGD39Meh89s2XBFvshSqiOkMyx2aUR4dYdLXlZvNvpWlHn2vSrCVQwiELSiQmvFD9sFWv7Iv3uwZV/pbroEK2q7O++7II/JkYnix6ba+UY6I7oVGD5jShoZWy/9PUahx5qars7STgexdYEA60rjBEDGM44JAFXAIXw+HaxYCgn67TdQjo1udbGmkCKQsYAZwFZdaLndDLLBaEVFMNPwjVDVxEtjZKQ3VqLLShu6DgDS5Rd3V+O12h+4dVOoabQQ4clIEIvU/uP+xqq624g0zFvoZl2EQNwQ0tCup7AByGVuQ0twTvVMKSxl1ixPorPcF1mQ2C235AUwCKhwgYu/uHaH9AxfP5dqEzG4qqjRsFE/iLStfoihkP+FLs4dUWAbdgC6waS/eNnH8eoIJvfl07seTIpQYacq7zUNZFjTIGiAIzQx7P8CdN7AxmZz8tMBKGCG3WUbxPMVtZuWxH+2HAI9BvHhNrJW0RO/ev9EGBFYhJ0EPAsR75oXT2PsP3fAgnLOWmChDz6VTsSMzt7KeN0+mnVRwnpLIvwJjTiierI4AkW/R2KwY5LQtdxTfnhtdq7h5A8bBs8HDDkLKnvKCNG6NfGup2tMWGGpgI7NFoRk3Wk2sJp4Vm2QfiyttHNAe9rFQQZIbOcQGGKQYYtU+5gx3PVejJc86VXlqSlwjKVrZDwjxth4UhQMOP5+tyLXIN3HlXWGmhbUnJeZ0Uau64PGqjZQR9JNWXr/CB/PBUn9EyGMs2AC4oIM1ZXBOyA8EAGESfiVJ4uVL+8OWM17oboL51zFXPvPto4aDP1GemQ76kPmwVZKr+mEGLE+bAwftHWbcLWftkGscFuzY8PiLM2gKRuXfpmHmllyYTYoY1FfchzlRE+WVeJ8eC1CN99dFIg6npJVOfQeBtGKrtcYNwvmNBnr5joRnP66Lw81/aEgM+chhJZnDeDqZ0w6L+MGpyxOAnLfpkaz1PU8XmqIgP70Ww5l4R4i6H9Dp8C8Qr+6AbRSByIkQBmGTpIDbmbtWP2jhSFGapWZwjjrVz6MMmbWpVcn0e/uWTiC9oqzkl04PtPrcM5svSAGH8SZfZSwwuGMkpNMJaLy8VwdO/tzUFayIhvFD+R/0a/57LPTcaCHH5fHpgleSqxJd09LTO7IrPB2K6SKSjqc5m0ryfuT8ZvK5C0301BRvC8HksCRpSo/OCnG2NKVjR3XZ1Zr/SjTTr1jSZ34SxhupBtp6EDvKvB6ZMEnXUXe/7B3ywpPt+R6sjroMamKD11MzKiFJ5U+Wan9SqL9zU21asIQyr4fWt5BEgV8iXcUtOjZHDbfgBFWxc/BVPN5rIA7ssWqJYoG98QOzz5sk+fYOH5iVHkqYMaAOn6h3yFvDxHM0NHcUkyUVilAcgeNXe7HdmIefrXQoM/07e4i8birX6sj89q08pFXW/BFfkm+VPvzhITzNZWqmRwYY9JjxbH+1jrj8cBVZ0QzrARO56irW08BSCBK4DCEwXM9v/6n7uQPT7QEisodrPc7V/0PJ/0gMHst/UOWqmECTkRej+9mLUNWfb7fn6E2HZjYSUmDkVqtjZQ5tFscDTeKZd43H5T6q6Ng9/4RTz+8fVQIdmBSjnG+puQ4Eqp+CICsSgNcgf7aLKRSZ6nXfvXNMVzBOnvNzbumwH2ahUSuZUTRk572tfkCjyny/L78xOfI1FH1tye8JZbqh7naRwegiQyHkGniuS3H4s9OaBMg6XQSv7s4yx5YPtR/Sova8dDjCqfHBclVdD8S8l2UkA2tlG9mOvWiZbnKR2OEJyXQrRTC4PwIsmEKa5RbDhn1FUIkvfZdSxGew5XM06n6L3kDkB4DwM64WP/ixMabZJIoyk8WW2n8f+FwFkcKDObuBsfT9gpNDFyWDY4WU6AO3Z88qdcH3UbkD7N34tg94QmMoAyZ7AUpm6he6J2Aqj01L0CED6Hud946/sQBAIa6Hi9kBZLwiZ31JbOV1Ztg0PMUTYMzFG5YmDh1/AXgiuuk3cu/PW+n0p2UrzGn0XdRgZfmf2cZxb2sy7CSYxiL3wmpxs4SEo/Vt0zBxXb5rs0Mj+n0Zc4m4TizYcWE9gyX5QZlcBjp8Qw7m66nLqas/mz+048zHndDcD0ldQTUYnOouEnOi6cNeWf3nFY+/14yjQxuOxK73HX9ifDao6jyWEtCo9Gu7jCBRTHdejxYT72bjI+JorVl79saMv/jbLpkiIV9hrqaPLEjArOME/Nza8ORAk0PPDBvLhG09WzPhlyuyBUW8ekjkmRbHeBmnSJy4/JlXuAIg/v4CAqsHR2fbF2BnM0gwUYOIDWi01fdptgAp4XlIY2eukiGacFJzhEcCQhzvOlCamytaPqihSnXotOsHs72sHO8lJCQmyXsyR7BzqENekqCRDtl5KLDIFssio9+rFU9MAMEE2i7gaPyS28wAMJfaoZCxWDYtP+yIDYAFCB2ge7nvj4p7a6kO21hoz7sCUOlbKY8gc8+HWaeXnSqDFeaAjAPGtVoNGnA7rsfND3eUazMfiaL9EBm49/pKAIaV+9NVl0BS+VnenpYI/ov1QdnyD4d519us8MA4urPJYQ2vP7eGZZftr6wQvoQfJjGR9bjGNU/4i5E7/UJxntfVDZUx7mCTithg0GGWQ4cOPDTCUjGShCu00PZrjc+7KJZ38LM4KontvhomkZj8LwsmqTBP3Q8tSMsgo7jo3cF89UjBh4gCyRpa2UKlU3+VkPAkKjIoPmz6lf0G9HEJq8F8ERJLN6eLtdGjxzmERdRvC8THsrDFMj+MxcioSvePyn5PshauNWrFRzGFxLBRpkzkeyZa41A0AZ9zNk0a2fGoavMjAJqbSTTwe2RM4w/8Ccq03alc0DnF5DPNXAE/QfRqNp4HUHq1SoMImwWo0AT9rB9bZs1+zwLlzvtu1vXZljsMf/knqcxZOo65NcCHwJ9Jl9pRVPljbxfXc0VdlW7dgqY85QJg3/2CL/QEM2FqtFKwgu5pfQziGKkPJLOPFM+5LRTA996siG2pp9BL+EgUq7LN+O2qbiSw52K3J8X0qYqa3VAO4vZT7/mGQsHzWH+RdGtGJDA/I2Iz5iyucTfHsiUEBfKoXwakPRfAqESouN0aXkgfyYU4OlAZlZHuTCvotlW1RkhwiuzsKcnoTbMQLGWg6sXaMi4QjowslvXMK4eCSipR2pJeb4aJuQUtsFPyOYlxjsbD4J4xvyCHVfn8zWURwc81gTAEfrNs5DVfwCIgz254ZfS9QzhZZTgCQC3bf8Q1mJENHn2+MoLLdgvkkJVHk3wYUYMuZ7edEfT1URl6WKigugQeuQwggNNsgDnb8PrsnRx93dPIsS1BvvdH3ACD3I+reSLNl8QX55Rlxu/fkMkr4eyEa8I/8EdxKzUsjdojAK39L2vMNYCeMQho/D6db6O3uMRV5EpN2d8HLa/0HLsOaUMwzs6bZ9bvsGXvZZuSKvgM4v+NxhiW6tPWLWAHXFedDG++MRHngHhsrCSoKgmCThEtiVka2nX3+1koB7wkyXtjtDERDnQvNdvYFa+fJQXcLCVnKUIbdvTjlc0RciWXI9i9OTgOe49icLSgM3E8LKnnFAviaNehZjL45cjVpnwHsnebezEjxn3vdW/SYnOl3eh5hmCQpfUGncx0QEoYcs1GGj5uiCAcu6GBj0C7p/rBD8Uns8KxUQHh0bCkjx9ghCwbyK2Iau3PykGXgMLj+akrFW/JJndQ2UnRC/Eh0GIaXOhdX6vYl0zW1JmtdZk2SmJIXD+INwXeoLrLCnb51dXW3BolkniuWJ2+5sT7+5Lunh07L3oqW3j0D3lN9+J6xb8btp2evzrQk4LJ0wtmWMYpMhhjG6MUH3DhUlnAD1boef9BTknaGPSNCxh6dTTAgK5HB7bbwuYlW05yVfmXK8/AGZ22PUfDJbiuzoH+hEBv877L/ujEO4l+KKvcGN6OyNVgCyZsHVwmffKNmqgvThEs4WW1QWc4JtN9+F6/Qg7ennR9VvV+VHYa8rkr/6CoLHT3HoRA5cZ+jEmZh68TmSVBiHLDS8233rgikcW5WWQcBZePmAE2ZUPxd8UmNT18u5dDDMf1Nvq9fqoe4UXzxj/vA6zdLFQYsaSaPuuW4BnZ2GPFzJPhILmNqirjSgVS75oP8J30ys+ldZsAXB1QWkk1Cbb1qfLSu6OfQWYldplWOBWpOf9Dg466aKFhi9mCPBEXsz4B0ijCOkPgHZwipF+f2pkunBcL4TJk8njli8TBuxXTDUC7AL37IjVCRAmclGlJRXAHRHzrk2LwKlI85A4tpe+5ID6ExkNhmW2maERwc2TGqboSiFic1JreYnVP5ObeUQD28cMh8fuqPwKF9FyM9G/ek/xs0I4f1/5VDyUhtAQx+Dxi76BYUj8z5RJbiQmE+KN7zeohkAxrUG9rn5bUoJGBMWswCAoknJwl0Y9WCGHWPlJJ1V6MgQ2TMk74hNQJTP7gUOciVlxg5mzlA6QrFqFm4hX6J8+8yChw/FiO1bouyyvpMaPjCDwYmjYGX63q6tu9EzGKsg/hy7WNbi/aoR7qnBGhaxdKO7q5I9LWxdcpdNGdKEfmmZuEmMr/xSY/BOtgfc0Rn+Bf4+Rfrtgg1W2CBUXKw3xBwWotGx6JdNFRn/PjzpL351XsOm/XcNU3Fv992c+PL1mLIsoOtKYiKFpJztQ0FwAcmlBIl/iqfhP+a9+yHrP6EfWDyVCTsqrtssDgQKvDFdEdQiHhg2CuFGeE9ZmWvZoEVAQ0fbsaUEwJwdqV9++5aoQa2nBbZWVANEhPDQCjM1nhnSF4EOaK6Xtqq8JxIDvSLTUO/xgcMpzYkMv9pjseb5kifEcXa9iGLHXE2GqoH9yqo36IGI0jN07hyXTELhAj0zA0YMB+ZWt09LIyzq7I/Q44kxRapJrOjkQtqIsa2Fi7UMaPAxhs+EIdKDo1GP70CXF+xTfaAjMGA71ZpC8PGcKv9+2dn/mlgwsgIWz2CrvrUsCe8sPD04BKWCo5TScYq9lwgqtAF3snZ6s0HHLI1yZxgxqQO2tWdWNABw5fHw6wuFkOXvVdlfVtAwJJ/sOokmsnNSO0Eo+4JjTPTI29NoCOpF1gXq48/0LfwHCeXraA79FyFWOWvVZ+hLpYLOx2BcpHEb2zC0CSc0METqLLTRrjffQkxJovDKn4zjzqBTPsot+jneABkF3edN1VGXHxxnd/W1YALf3xJiQp6lXXyIViV7AFwH4Ptfk0D56+OyZ1HDdIc/schvIOZvkG4nmwvvXWpippVYocD228HHXglrzWE/AtaT67npGBnYwGpoUb9eMU5QMXyN2TNrC17rnmCk4Q7AK70AdvRM2wiQNykVsmS+2QFNPTuztOe1Olx+Nn3MMkA+9d76HWajozJDc7FwxePw+DQP4UCmJJnFKk87oy5CpCfK+R2NyyfK6H62DhSzyJNqcGAopDt7yDkmIYmkWjPuU5fj4NF91IC3kZaDNeQJaHEyLREXm2IPKvzXZbeItjRQ++RkGgjqlOJM8Lv6LcBsIn3y99jIcKW5wVXCr0Y+l0aFwQ8HDPCjI0S6j26htKQyr4glub/EvTCaBONAR8e+nrTAicgRrBPttwHdYqigqJ4+9sO8UY1KcqmCSK9vBjIy/iFZ70QWXX3OfwLhKo7dsTXv2DH6B85jpQLJ/qnlnoNM1IyL9mAX1KVXZZD7wKzaeD59v14eAXUiPj+dQrUyQ8zRSEXaRiGXaA3Hk3XMgi3rjIF/Huq9Uubapvzr0Knr98yEwsKBAJzsEECba/hyhPywcP3gn0grNi/6aSGtPhULfJPfUkpk3r1+JgTHeAHtCyX5fmz4bLRzdjfi1/BeIPEFOOygdsd0aI0vD5v/W8I/CWEaGmjV3KXMLhhUQvy5cK6N/d2f4ETq9ssy/X1xUHSb6gjZDdm5gXtnwUN5caUJR4CQjqSxICtkla1KqKGqU4sLNlCHUY0KR7g+U/FvJKBOCz5gtHE97H8eZRq5D971CBZb3K5xqYT2F+IaBJI1PO1fU9iCCfiI+5f3PTWv19K9PDViQ24tBUfdsuaSVZxRkpSGpmFBue1iIliaUrSr06xZVbP/8sl+7ZAn+aK60RLSKHxMvOzRvIJ+NkSk49n3UGSQjZxfFX5EL0Dm240X+1uJnFoBKLSo0tKiJruKnYDaCkrM0m8x29OhKZAVSl2vBCiRJUd12744igYVKE8URR5fE310wlzc+9ANnleWHDOF0wqZix1wAAtTdlKHtdNaTi30wCPPBBNH/wNplAjXPWrDwlutBI9/g6+dNiHDNYszeYB5n9sH/tCaJLP1p0zujM+avIr1345kmGdSzahe3r5VU2vz2EtkYjkiVGwn6f/GYCQ==
Variant 3
DifficultyLevel
605
Question
A wallet contains only $20 and $10 notes in the ratio 2 : 1.
If there is a total of 12 notes, how much money is in the wallet?
Worked Solution
Ratio = 2 : 1
$20 notes = 32 × 12 = 8
$10 notes = 31 × 12 = 4
|
|
∴ Total |
= 8 × 20 + 4 × 10 |
|
= 160 + 40 |
|
= $200 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
note1 | |
note2 | |
ratio | |
number1 | |
frac1 | |
total1 | |
frac2 | |
total2 | |
sum1 | |
total2 | |
sum2 | |
correctAnswer | |
Answers
U2FsdGVkX1/ZqRvKJgAs1Mj75CEOc+ix+p54l8escNSXgkQJqhzzBDsMZtAFzLuFYurw3U5OpHacMFFlv8XkHKlvOnzwsvqYErOMI+rQmAXhtenTJRNKg6Dk6FHWBv6bJ6uFUyvFIXHIKZew/aVcI3v7ICT67sTXLHyHTZNz95/dLSh2Z9IzGWuF8qzHjgsY0K+R9n2h+ZU06yW5XS2zykz9z8HOs+CyMufsLygqRRr+JosXdHsGnTYu45Aml+7ZzjE+VyHwLMP9Ld8147q33yoAn+IilHDGZ+DnLr7m1ymmMyjHyJ5/vCXDGU+JT98/E2UkDDlis74PixLEqQy5l5IPLxIgcfovXUr8epMXxmb7lF8oZCo3GjW4saLj+BN/27JvPwvayG/+UULj+rhMR5fqDiVVbnsN9gPWSI3czv9Gs2a8ipIBUBKYxk02vYTFk0XUZBUozUk6CVcKgswA03RRCnRYfQj1M6OT1IDN8Rl+nn0968L376CgahsYS6vt2CwHomWTzzpgQT4mH+BlQjxel0oAysnnWSbN0dKBYZi7UqZV5yK6n/MQizDv/bLzOvXT45KJj1yHlLhbuwuJweaH74snqPELsel7YF/oGVc+At7zOuOUbuYajLL+ypAfmsJ7u7gxC8JQS8/orodc8BXS1DnTnJjkcRoclxpUEH87MJB6sWCUZFtaD+Tlg1VE0Oo0MuDyURqjVJJ4LQSdsd9O8xhPiwioxbGVgxqdmyc4GsA5kRItWYv3O+33rQXUzL7FJDcwZ/6TCYZs57tz3ceWK0eJk6Z32f19L51EvsQGV/dyRccmNuvmpAy7yGiZECZBkHCWF6cec39170PncHXN0ngp7FRco7hfdTn15NmhhYwE5VKHLcgtrrMxPvhyUOJhasMtLFxg2r2yK/FJDpOjs03KjCNiNt0GfWn/CqrcPa145RgbgwxKdO4pYkeyJxxO4fOpiQDS9eOhSdOuf/poP6KhwWaBI5QUumwIzYbiptuLcggKo+k0Aaw2XUedN32WV8Perij69Kqfz5rdEKDXNMyho6lSsP4hF6DJo+rNXpAV5bSdiPaLt9HkbsgqZx4ff2UNje+VBScQMIoghhBxR/iP1ZjET9EJ+T6ZnFWuV6pwcD7H8xjx+7f1BbK0i6LXBbKlXSmplSYwsM5smrEhzKAP7QHgH9zGLoFp4pfa+yr4cP7VE8gpJz0SZY3pSvdkwCfOmzpyyrPX/VoiWn9VlrxYfu736956SA6JVfOagQP0OqpX5O1id4nFp1eC8LiOK10rl68EJYhsw/fgL4mxUxrEHOlR5V8CmD5QDiQbHzb8lUQTHOa2UAP/tg7AosEcvWfCatXFoljLoTgdtvlOyceMdrgYYN8BUJOcG72NhwC45ATC6FdCPl/LEjzWXvaGZn0afRk4KhW9xZGNxS0YaLC9nESso7HwJ0cOS3OTJzZn5fChFvwNNbfmdaXM0DjFmOXG7CIVDXJTWQ8AmKcpGRDvrKykQyBK/Keh6AZwuNmacXfVERd4EqbdJGkZUiBIsY3KJhPM4sb3nOis9c39O3foU0Ce9nT2CPBbjxbMCHDjLvLQ/bPOHRXTeA+lSOaJkIJyu/SfBzQkhXElFfI2u9KpMnhEQDQtoHGlE2BeQfHT9fcWo4kjKwQQjY/Lsa8QP77OJ7Z3kzSUOShduUNf0NJYDElqdg74JEQ7J7BtkzDxuLQDzuespaWW+Wv+TXv8wWirGWJ8M8E+0CJrQszaFiAlBUZEAz+KfL1WbiH0o9zMZaMlfS5adDMO8MsDT3rnNWBELREz3XCCWs0mC6o1PTyUBhClp/FanGzE492XZZfKISGElh5mltJsRX0363ZoBR0cowQD7+IhTh+1cvaroxcuJFFQToIoehVF7dNERyXM/6kTWHf+R/RFHV85qSfwTDoJWIO4dzwFN0mzN/bN6oFBFWJzxCHbk6vmr2FxZZveMNPrWhM+uqedpAJyYbaYEHsYEsd0FlaLmpGkCagYOmKgZmI3hiHTf3+IJpNFlyWHnslOx8Oe70jjPUtrw3+4zz9/z2ToLcZl7G1xAlesyl4kPoxrAqK2BoGSlmLuy85iPPAqkptwURmWNat+ixhCKaDudQPG1vA63FYmqQIbZX8KfhKQCyAKaELzCPEQVCfe99kkK6EFC/XAgZNFS/w7m986eWlEpzTqkR4zIEB/SeIj42zM/2XLW+rsXe6cOKtWgBlfI+askv5tyNIyTXFVoOrA7SyMkAJZ4NYMnPU4/+hyhzhlq5pBm/QyEKi2is7Mcq3dJZviDOTkfj/e0jH79ts7BRRA3EM2ui8S6Px0EUOS9OmCbcLI62JeNErVVi5RZIXy61c/1oPHyozndJUVEXWhEWwfsW5V+4J8Hn3HatpW+xiASxO05C1+oS4XFGWdaulsZTJ5Np4MkX9ag06Punl5nvgawcpXijPP5vnO1Hz7PKsqxRHx0PKzuSMj8WYg/0s76lggLKP4Vyxx/F5wkjI0dUlP8Q76/DE5iyo0I7HjI8dy2E241X6ZqpTVB/rR8kLyk57WjTJMh9sq0KlutkYC+aHT++OqMvXnjdGjK8nRiTYHVpauErTA7XvoQdOnuOVa5lv5b62uGQleJ8uIwjlpg8cEQrgRa+UGMx6okTbiQl5+KvsaV46bNGK70gq8YVv+nly6y0LHT0X3BKXXgklzNffwmHTAJVaVxEiMJALoCm9xRDcEd0JHVpyLmobQApWe9PWkyyNhrP/lm3+VrO407XHivU4sedclowburFOMwL5ec4dTPY1+4x14Ga2uHKgVg5KeOTQY6VoGNKayhiPOPsVT0QVewirqW7luMVS1ey/VNuVt9I39ed+tr/z7GwQsVmrnXVqeGp8fQL968gBe64Mr6n7XP8jbohYqZiYt2nnLqXGKJEGoN0SMOzAljWV8S7VfxXH20/vY7+QEn+8p0ndFd5Cbp8vMPysWbP4AQ0R2K+wRcLERiOq1KMXXk27nbE83RYEgzpV6CAXJK419r9UqCLWTsEzAc2wiBbPgVHPgV764bPANAzJgerHrev/O8seX2JM3CJc03maXgxlHJE+Mn+t1TXZR4ejBNHst4eRFrF7lY0PVGk90cvua8BQOhQIvTE3EaHgTWljYt+FzPZdc7F3g0nukufD1Z92wn2e1g46idAtHTp7RBoB8KAT3sE2ecfvb+rUb1G1vogpCygqeNC8ctYhANaUjcvhCeJAd5cgkzBFJNuxC8L2RCaB7Vc+uX6Guwv7O+kwAHWBxwn/swfXeQdLtQmSPwgke5/xxUc3g2DFavFw6fR6bdojbZxgpSpl/DtEWFbpw2VlV/uXHftBXmVnVtIC+8f2GpCMSqz2sSPnDq0O23+tgpsU58jhb2ENj8qyndYu5l41NsvfJ9EQ9g82V/TTJ+4++uryRZo8up5GKyIbdE2fXQDP3KgrbdLdF/foS84ciFifcyX6qrDQQepB4mlvBddXwL3VjQnr3WjLrw+hOUAX/r57g7znyoddqaLVrOQcsdwqq5TZlaDA63SzjiXgf9zC9b6CnRw7MW/vd1uppqGlRpUZeoEQ1dvVIYRxIJOHOs6XtYnEcVJrS6EPtIOGjxLXGi+G6+J28uVJS5DNTLp15iwYoznl7D/nu6dWqv+Z6gu/N3zKcF9tPpBk0uuoBlI/WmijNDKOaiNZ+0eMeXDHTwUa58Gx1wxyZ2aaTwDRuSbtie4BYwTh8XRjQI4ThK2sD7wlEhgyXMkYZpLZnGkcJ4kM8Tg7X8bf/bVlTzKPuiw9FFOzAWAU+kOl3XrQSHQlVsEzU9HmMJ1DNvKtIKatnCGK4fwpONC+QRtw7eSo02vmPXqFOnYlsO8Y3DBtdC67MQw42w6F36xdTJXv5TcMZjktmueOZYAh8O3i94AkjREl9XsJoEwX4ZuD1vxrx5BGYZaMa7rZInR0yNFtautdUnlUok2bZnGI2ZA+fsY0c+WXFG7jQNwkQIPk4JYfzoFMJPHn0JaX/ecrUSRGqXL+FjFwu9G2OdLRErPUW52304lQPKT5LJOy+2o0eiegy19d/w2ZsRPj7TnDvIw+zfoI7HEzolSG5jOlbMaXmLwKNmpdiIC+0m0V7VAlA8zw7/GiHrZ3eXgbPZoP5rIUGVlHEt0t22wzOS13vPt1Rx3ymg8EP7Btg3V3ElXfRgMwoq8+C7Q1Ox6HbgQiYevLW07WcbvYkqYtQVV4DpKoyk8VYM774G6TPL6bolFOI8AGHJpaWX7kRZLJIbEorAyPmK+Ka1FRjK2VB6kPIBkz/Rra/u85oHy/UuFNuFPoxglXWqgpBXx5P1qLufc74kgwbHQ8+/nUexZG2FbAFwrquy19C2J+RniV75lRWnAyzDqXzY9Yn5gy4qna0tI1x6WWz3uX18FJWB+6VHSqamq0xtR9YPuZTfUUemc7bBGwuSaYWoL7rn3VMCZkoRx/xxd7r3ng3FBt2O/O7OuMJbBIvTFZn8o/IBcokTnnAkmZfQN+9L8sYYZwdenmBW6mNkXiKGXfO84ExzrNQ/W6BpR0dw7rJb+tY8JVsdXvUSuZiRUCFHGMRy/trrNwQTX0f5QqEndxs+jApxYnZF/clQrcL10VftbvdsCRVZ6frgAANlDuP8BrZbZaCrha5U5fvV2uRrVxpLEN7pcEziISoupnaShVqBGsQMBizrXCtGL6GZcaPN4KftByPtYHuL1TRfyHNMvef1/5vZGkai67RlI4bu8eISM9yE5WRTFJrNtDSJ7+KZYQ2XyVLplv17jf4+Tfkon7wiR3zRANsGiGrQanBv+RqP61SBtnz1qTMeelD5O2pSSJ88WKyEjiBV+YKZGinHYi7XQxf/0yGbOnBH0eXvzXk82D85PqIxsHNNqh7wgSiExEbku5TBbugmPMhdsPeDUkDDG+MOQ6a8inTf526Dw+HH3DmclBvV8SFP+rmnW1JuFN05oYx/IwS/BE6aI4ptiFfEK6m6Hbdd7H+OBrKujhSq+eCL4n3pyR1nAvbfhrl4XXOfE1Reght9veFduN83QOsYk1TVVpIIPvMzN08Ef2CJo9jx1nnMDvKRsSCx3IU2wB0msW0qqm5oYkO3vfP9LI8rWcYJhjD6/Dj+jEDgr0V7qX3x+4deFxR6zBg0HSNHiTr2rhjtK3vxZ/NTCGBTTLcJOY2ilmq0/AgG+q7XHVIorGmtT8a1d6toO7EQLn+cwpgT11vMBqXsWb97cWZHMt2lwSUnTGn6M7swcRdUhBiZP5ryiQLHnXyfDwr79eHLPtHWfVWFljah6ByASC76jycTfiYuQ5l8hKKs3ZsW4unQyW/qiCnvDt8aEqLtlDJStwq0j4GfLWYn2MWqUtNm65EHU4eVDkkk5AFzYhoqUSEhmNhd11BwxkJaeQBHOfUTJq7tfOEzwp+Y0CHNUVHZuiAxyysSX7OGyxt+wtMOSekODEYlE03+HZ58yFFhSwO8l8n++bED8ZuLh9aLmanqwB7kr9hsr8el8/t4cbmlTPhUgtKMqPi0kVuMEn98wrkWBRkF0SJ3DYR5oRier+9WXOHvo+wxlgW65eyIg8ekLyhOTnkvryW6QO65D7sEKPGgQrjidMKBL7vbE9AZhEVhRDhBdgvCT7IV8Z6HhpKgJ4/nTlkJrY8tKPVBXG//29Dt2jWpVohmonYy/yJ568iTsZS6y0TwqI2eeMcw0vVkO6U9SeLQ7PNr6k7i402q+4IOXsOczW6bKa8wBigFXn0txWena6GGFjPtIb7gaSXuraS5wADmwGCb6k7CbQhPfuQ7bWsUH7HM3u0pSIxKchZR5c6bLITbSK+rHRhtO/3H4jMFxtFyaIl/AV9QSjaRXGkb0d9s4WHQFEvX7R1CyI9UZuiQs8IC0iAZ5hlW5vy8P/es3D7gubSivmHtu5eKnqBTI+wbi4f7gYR3Del06LkF7oPcZniVnTkE5HKnPMfHwE5XwfbJxevpXhut40KFZ+OLZv7wAr+bbtmHpTrTDezJtqN/yd0V/dt6v+1hGAJfq4i4eE60WxVvR4UHsRb/UX6MmmXJAcFQkAMcs3OvlzpmUgAHpFM6LDZBk2nq+6kdg/KvYNYYToOCGzx5sKCv2K61Vt2X8M5ZOaI24czrUpO5adkhG1sqnUUV+67NqUr7XYCgl2DQMIdkHJ61+2hSA0lAxS+c2sZCMqArhwxiMfKVvp8TJBeoAgrKwRYKGofa9lv1pJJZe3IFHHOxUvEhnouOvUlGU0QCamkNUiHtVc3vLoj0SgdgzvKEEkfSDCBCrlGyPTRk55DsUnT7l1hdJJLJFM3V/JX+YjrylsZeBXlwMS/uRDF2sx0IKK5VcjkxWLXT8BYQuOioLFkWQRQMSkEk+f6jeohMuXip6PX5cNq28q/Xh2PAUVQ1OBgs0ykG+BH8Oxyr+KO4Y0oR2PdlLmbGCZeYaoH6mAQU9ZDyTuHS7G9xX4wKvc3X9nG+wesboSxfEsjQTcf2ChONkR9LOuaOfwybEFdqEygbgpe2jG8Ww0NgpKk4OYTmYEwad2/L6dgOrNSlcV83E4rQ4oXhw/XefvINNssYDWaR0CJrPuSHK72sD4SPzM0A5rmkiOOT8BH2XMXLMT4KwXcWIE1G3gIOy9U0ge1inZA0BBpY+/gXkIid3aDBlS9XIsZ0B8upk+b76mn+Y3+QY17UlA4kzRIl2n5xBQwQ93fWAdG++qkrxs9gmJzVnzBKXylpOSp7wFfiN3EXYKSnaZ2mMwOVH7irRJ4nx/35+rsje8JipaC7LFvp8agAtuu0KZC8KEgLN/1TgU1ysVWUSLi4wzdjSdOkOZKQyDwJ5O4HpYGrw1zrYBHgMTfWHs9qePmt/F6anX6mi833Drwu2K4dARFEIKuuVUUw+2RWzblLxceNGU3UL0HaDnJUzR3J4jr4RbScqM4WfvCwsBj9hGvJxODCpbv8jD68zkAMa0UD6TNF567QQ8jYE3S5yUtxcazP/2uZrr0GHjyUiF4UU66vzHZpJe0hSE+zCUvGNKtEgKCgBqNnyvDaA8Psk6r+JzPj+YJCnGkALQ+egVRou3QLcI8IvfHIg3LlzUDLsGBKzoDP/Ta3EqjSWC5rFDlfNptWMG18p3J81dapcgZhsgm6tJDFOlabF0CGTiujZUSNbDuv1/P9Dq26pDHyHTCMwFM+unluaFrR04ImUoKRxWbpEnvPx3pRoK8Wlsi3OBHMV6Qsqe3uvk04jp70RTqoc0yTVaigWRgYxo2vnuiidYJP3RdOsg6A2IKgn9vXOO62oTWE6E7aVwbJDanBsSnWDQP1eGbTCNO+CsAH0/C0LkLPjuA6w0OaUXp7MFVlfhgcFHoy0PlhkH32w8lrEn2orVeye1zf7P2nEPULwh63KSWYAmuRu9tlklrplVwlj2AJSTDXvvX969ulN7qpUO98C90uIyPTkQYpATOzmEbJl8vbs1K/cQQ0fWRyyGcTwiOp2JXoIxEYyoXFlLOA57VJf1vFyIJw+dzgPjiQ24AhXwRKbcRrJpMrrVO8IP472YngPw8KCm/fhvyOHMX52EX7SXOkSqr078PYoMj/zugWCzcKTvNBm7p/XbltWx4Q1RTqqwvZu5SP4rcTGVOxtNRgJfhE7s1fXp53eE8v9szuReBbuHTxk4NO/4H4gl5hwpJF8zg+RrT+r8+DJjucCNEP0mk3NRtxHhbtP5vvIEtNK57dDHhYUBn1sTWjokLRcr8oC42T5WYF+6cXruxj/Anrt8UbvyOeLCgbKEEA7CzLtIbG/PsTzCAU61DH2IOp+c1bHSzooFnFfN0+DqsuBxKIItFmehpI0OIi04Xhph/oGecPYIoJgwkZJakqye/5DIPwy3SY4D6YX5Bzow4AqQ9/E5/TQ4uNVie4Pfm/g6oV+dBRrdQCODT8u2rEFXOfxQpv1UfbBVtagm33Ijo6Oy97z8ljzvxT8B4LZenCrMIOBo0JAY0V8ksu2eXWoi8YvAkK5w0LkFl5pMVF3BUkpepNFvq7aQKMUwefvivFH/9w6sdgmg/vcuOyFDHvnvcK0HkyKb3NOp3cXfr1y4fa8VZE3NcbYgygk8MTPGUznFxZYH+pIwUL5UIikIKM733FkdKQvqjvJSJWY9OkgzLEM5v1Ve66Zrko7hRJ3d1Ih4LVo5jI9VJvMjDzwcc4WUtwxfdXnmxxVAz7OZ3R0iMNSlocgnOp0Z0a/YnkloET7BgC/3aDugEDwUcavPTp92id/m7ZkcJvtIOgLv6tm1D3luKq8PLXR30jJZiwDKfKNtyNpPdKDUL0HHflXd4toz0U10RBRQzYnE=
Variant 4
DifficultyLevel
575
Question
A wallet contains only $50 and $20 notes in the ratio 1 : 3.
If there is a total of 16 notes, how much money is in the wallet?
Worked Solution
Ratio = 1 : 3
$50 notes = 41 × 16 = 4
$20 notes = 43 × 16 = 12
|
|
∴ Total |
= 4 × 50 + 12 × 20 |
|
= 200 + 240 |
|
= $440 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
note1 | |
note2 | |
ratio | |
number1 | |
frac1 | |
total1 | |
frac2 | |
total2 | |
sum1 | |
sum2 | |
correctAnswer | |
Answers