Algebra, NAPX-H3-CA20
U2FsdGVkX19WYAgKLCqWJagi+XkATjl7MhnRVPYsUtqXT57REDmIVRGB4PSlnejL840n1gm0FZP75Ys0UjARCGDfF0Oetbx+xZrfjs9n2JFTboVTWKI7SiT3xmzRXtHIp/+9RR4RFTf1O5kfqWz7gzn4lY8PLBBeWUp4ox+0+h3d304qwnP4jNrdgz885MAx8Wd5ptadta9pbLpJ+mJduDO3k8HroCot/T/QCD/Os3sw5HSs4G3IPZdpDp+Bed9jhC+7Q9Mc7/mLnWkL7d9O3t9jgUo1DZXV4Y4jDiu1dtZaOGQaLWk5ugrh8oL9KVGwCKVSGC/pL2FNWljVb+UIy2r/3VcvpMSD/qLml0ha2Y/0GBfxDdogXDk4bPI1aFPMnsTQqKDO2zWQznKDeKBC/rdoYT8ZJ4WvSzBO5pUaoYrI19olmSIa+RXQ/D1p3JSeuQIIqxOIqe/q1cBbRyQO+ls4fMI2sFwAjCRKzTr4azmHLb1kUZ7CbJ9e+K+uHf94CBRzmyIS6kmWDv3UM8n53SP5ZIS/lWhuynMUtqrGqTbouYP8KXcUs42kMIo8aTjiut4Be6wwxfUR8yIpRdDz4AShDsOZNgJST7o4lvcgKUYvvNaUwHunvTDZ4IZ6dseWyJWl0T4+Zh3mJ8j3cyG9382qArtgebIhY89KKypbTlwIeyW+Ht8FkVJNufKPYfDl6ELDImMhYOKunAXKhXzQwobuXYvtrHnbRG9KbZatrb6keWGHrjv4qT7zhnCahSnaoXv6lvkejJLgKauSfu2phfnhzhEA0VA/CGUMPZah4/Nv3M4PH8mw9LFSGrYtB4vqxlrJqV+rvrz4M1qlFSIKDADCLrKzKke5mdJDN11sMz7lXKoGFVJS66Gor+jOJjEorzQa3mS68sbpq1xfD8Knfa9ZfmFfgZigqkPeoglqTI+5oArgJ3oJEZGiLnMxukL0dIZdmca4RVAuD/tEPM3jRqDSonQYxxduUiaPE9CmeUcz/rLKKVbAvxJhaRQsRZrsbPbqHnhR0Jf9qoHnUMHg+q7ioTAG5fnN6pnDsgYfGF6iGKaXAE8L8wUK3AJNz5bUTIgWyCNWk4LpQaptRzNURk+OrQ/LGytYc8/3+1spOyqV2NsmtTF5EOjEP42dpsOtmUuV2dWgGgnu/+1j1qr25UL3uOmG06QcLzfeeBski2i+j1X6wdVtJkHBMwHZ4yOB8EJTREI91aY912U8yG5YXhS7RFkBQLQbWt2Ny3aWeTzawuGxHvG4pTRSNr30xZs+Lp0VNyZPLa0ijoCPEj0ecXRM3E7jIDSBuFhnqZExQxnH6/Szbkr8M4YgcJSTjwQg0X/V6xaR2QZSfJRd3QYiHsJ87UFmua3ZhQJMBfTvioihMRLRmESPjqTum86HT3WFE5/BMcurzoyNabjapeVcWM+NUj/iPf/Akbr1n5WOPERlt8TCXIhxzsQTlQtTXqJRkWa6ax4Nndq/yB1iCwhTPpjW736ioB88UlcljkptDvkMZ+Ep5X8YAqxl1jRJVL1vWUTfP0ZVFVh9+cLbzE4Yg8iC77QHdUeu77qjh1OdQgUURYQo2zwtmIdHJsgUBQSIt6pwKpZKfi8DkvVWdq/iU3q/xCiEy1pWLNbMREUg0w+DNxSrw39TLdJy3W/OVBuLk8/3ukaOHKtIVH3jtYjZPi9CvUk69NwjzPTRbAU5eubTAMyrbt74utOGNd2roioKft3l9/nLvr8pfvTHhXLXT6D0D2otpd9hFpwMLwgQlPMhCpHGeV5S8MPDWtWC1t7iKwTWgcsw984qCO0pSl9zYCKqluFf+OiiTTIAsdtYywqUuosVnwrr8HLYDTXkvLB3Tzue9Tqtpp+LDW8ZU5FyFSrB9+v8QrTSYFCulvo93uM0JpvH+UXUuLt4iRxu4YuXfXkf//OLNtMPiFFyAc1EPZrV028xWvUXwYTiDYGaPLZcfKyCFqI1dBGvP5bS/x+w204YwXvNQdw+ywQQTJ+O76mP9ZLixBVog04E1CMywXqehqZtKVr0RBnI4fx+nsWWWjiwbMoBzi3DzpErB8YgTV2Ksq1A/pHVE7Uycp7kC5wloFxAkrToH2a3mtAk7xvZngqBjdNWKNzpesaTPrEEAPmLnpSOAxYYRB1e6YjsslC0eROohNC7I5kA7HleWQeOUAi5GZnBHQartHI03fubEpW3dz47QBiAZcCq7Q8PIyig2ELTOvS+5w2PLyFZ6nUFm8/ap4BD62VP6cloKt7OY2d+n49M8r9ZlAGyMeK0h/+UiGp1hM5do0HSjftP4Dd/TxAX6TJehmz0u3NCDQYjlkpUXRblN7IinIsop8ZL90mVXfUwddBCWrx/GKg6GEcKLjq4Gq8xy6qrCcsePEts0tpeu3R1r432M2OKvsYH6EytsbQq6uDsWoPj9x/8NVcK1pMI70FRAwhT4tf3J+gNhYwKDEN0Fnh0tW72q0u1GXi1dNw6ikUISOvKsD78yqf2wwsQEbeEios2+/RJQHHkQ7Ixw+kdqI7LhoSwcZL0l1MPj6DTC7SeiEOhu/w4qHheHkQIZTGCtgCzFV/oN3XItZ9Wsae9rY6DvR2ObtC+8sRDpzPY43c5qB43fnm+MNa3BoopFs4TLuRl3WXpP2PO00wNYqpyCbrxvr6Y4RBfn+neEtP9Mkpm19CY1bqsb6DpiGm2/jq46dsjo5u6NFStglqGZEz4DAWywupKoJGsK83tAWnsAUeu/Bbid57VS/DZ6ibCpYHJ9utLvlSWx8FIZCwycj40wkx3bPz8hamunLcToxs1BWzJTaSGyvUFW0O620SK7MuXYF0hC+DwpvnUFmshlDnh4zufR9BSjlyAsq+YKLZQBoLp3PK3I71Igk4pGLrvh0chG7tCoSwDWniAcFD6O1vDOs6Czw9B6nIcIL1rCRSGrAELQd/fCRDuowwBnrKxrFqmLTMK5TDp0E1/iKPAY8ZIjF3ch0nwCTkHadOfWUn636fBF9A7i9hjYhILdhmqvq9UVgIHVTU63bYlL3xjTXCjIV6pnqk4uqrwLOByJkvz8O0jmJ0xZldZzfGgSA+gEIANidsET5iBpP+esCwbyVndFfLrs+R1EFXy3sNbLOHUlOQUMnFy8gdPo8KjsBH5dGvfUWIlDYdWeprbdlHAFtVxGHqA1jIvz4Mgu6L6GbvDtMayjPVA80JWWrL0Sb7q7KPoTwoFcC2s34S8QkTMRcP9KKEAPQdPiA2LSPE/eFkzFhWKNYPQ1Rl5DtFSLnyMZUkpGUifUkdMLtiFfKQkm1ash21U4S52CnHoynbTIaDpLwg7HJlodm8EndfyXCAmZ3Jh5qR0cMRnYY+uBVFsO0OLU3eEwercGylzQr+Lu77K1rKomAzDjw4lfq4nD9Eq+QwkfHUdgbcLjm1TkhdlASA3UvLFMPGdoy7+8yu5e5PKCWEnRdXfIlBlWImqLl1tfE/0sfdKsBOVSBheZ1/k5NCma2k0OJNCbXpE0Ax7VDiyQExculIiU8IWbtAr7e/0Tw5+ppM7inJN/5Z8h00T4/Lzc2wCxUgZEZOIw44gEJyfzyjezueHrxODqZ2lLiFKGdLAK/4KxZPlWLEk34kXAneB5/iM1U+Bxy93KnJZo/fzOF4BXuAAjffL4cjFS4Od7KlojUFlfN7QW1ZdxSbSCojU9UZXLZIVD3ed3d0zr5BrjhxQvXqq2x9fhTMppVoGy9cO9Mp66LdHtXxcWUcaSZfA8JkmMtA2xEtK+IXNHEogGIayAKbQoNIcfMVHmHa2vIxqO/e7vPDkCoY8jsGtqHQc31Tux75pMMPHne1MZ/vV7RqkivEBbzbNksfkxBOUYVye0N1kuSBFMdh3G4NREk7EFSzcSv6J27ojmiE6/TYCjzkW6q5nDqbMbV62nkuq8DGpNtxHZGr/ZL28UJzRyLWBXhAncJiKY29PARYqH5+LRMd4CwcvayfbBJbfkzC44M/+5meud+WQSCwrJHupB44+iBPnDU7v0SPNZBsynsPM8CwMpfdlGa7BCfv17aNQPba9ZDPf6NdFbhkK30zY5V1TSsBMHUUDqAUVZ00pa3Dk2yRxEk7P8zF+DqZvCrOEnefZJmhhe5/i+XEzsm9s3jIVOghP6Up7QEI8VJNWDsyuDoRMFp08wHWG1XnTbZ17M0My83ByeWwK+lsBQB5iZ7xCjqF0MEOT1nnA/yHzNcKyefikMhxQCq3bdezg/r9NmxA7FenygcVK3UmK0F2whB+XMUWD+XPHcnOoXnSKGIoi7wjFWn26x+HjlMz+KtHc3KnWLyiy7NgjNPjl0l4NvTCqN76bUeI96zl54CHZFdmiklpL3E6/gCWyJpj2pCDd5sBoprWJsjDjFyCShjYkFPTkjmOzvQqyyOI9w0CV3pCEAWDjCH7G+U5AbWSF7M6knP21DNE+ATkxV4qdlNKbRBLY18Eet+jh/DuR2+cYYXcqTCQe4lEGRBC3M3+1IpX3tSBoqV+SYnUUfaTC83xJ659XoAS1FiKINQqGpkp7i3vpSxKBYXkbV7msdxupKqawEtR2iY6TcKtmyP3mD7PQu5Wroieq9UR7x1S1qFso7IxBGUr2xFvLmkfNz2ZlspAXhtPGiwDABd4yu+ADVNHgjP9/GPkknWaYWMpxdekE6TinRhCVTyw8Uf8d1nCVy06+tHqiDSZl8g9gdd+l3SBYAgEnCfSZmokNlgDUsUF5FYUNO7PWjeypwzj3e7fuFD1N9flzolqeBGWMyUKLvWfHQRdt878yKBUnhFz37wkpmeYsEp0htMBqhMApFUYVLbRWjnrtiUE7IYZxlA9YOvHVR10v63k7h9ox7XESouj8lwUUoT/gonjRWA9seQ3/e7OmhgPn2NdriusKRkXT0Fr8Ydq7KHGLD71/6N7reQS0CK4VIYnJtZDfFJ6q7DhTfDCTNzAwNKn195V7UFlNFreHndmc4s02xUHtBnn1ZR5IEdlQEFahPA6KnXKS88MhOuIlg1MeB2Az6nYBG5GJE1MZp6u4Uq8PHMhh4dHyLwY0djlHso1xs+68GKT7vRgAOWnutWp9kfgkQycOsve7qM/J3jV8toa6lftELy+UXyP5Dmsw65DLJHPzKa3I/Duk1TAvDRkFsF8gH/O7qaIcIJR6/eiX1FIPDrTqMn1G54PK5iRCNnc63YsByLKptV1LoG9K9pGYBQ/VyIYc2CEdm2Tmrxhurj2Y8JvKzZg708m+0f31Yg9LA7AoBdrIuTmEPvogeq/kvBkQH8j5TB0V73cOBNU+/nzP9AwUoKDk2SWlcd2YkIMAdcTVkPS7Kv/mFOdQnXQDZQNXUrkx+9DVVY5yaqbKiXALD2cEh570CZHwMdTQA/E3JZOBYqmybMCoL5y/VkaL2ItYbih8ALDMpQMBgTDZqdhm7VA17dNnkuN2DbQiBMry+ga4i1eEFfQzZszA5cSFm0t1qEnNnwgQ2NpdNfPiH0EuRoPB+afCUl/eyO2ZTKwZa05gYVKEW6UKSjfUeYO2wAyrrr7SoKnBj7rEIAHwX59QXzqClIvy6eMMCUaketREkDahIY8SXkJBvjybEkux9Uy/uIAr5e7q3dNJp7Abk9sXYvp30fgAUeA3VxUdo3/IUP6jierQ1nKV3ZJWmFyMnbkH1wjpqHr0jk/eDBL87f54r6g1/dvXU25q4bQxebwZt8g+GjGMoy8LM07Gkcv5hRccOjzFK6QwH5p2B7d/7D7VLajm/6t41cEvM/LPDLvd+ljI/zT8m+kV9WV2FE8iFjAJJGCyyajKxQbAVf1H9SnkHXIxWDxDLu/OH7KWvEpJoS1Uxf3oRvAwMInVZUjs4pF1ZcYkIA9IlysUBlUHeYgQZLw04wvLObEXMEOoOT2BPK+XFifaJeFpa3IEj9Nkg+h1DQOKHEDKdqx8xBTSvAVkVHz9Pehmwx9ZmZwHnhMtSIaHIg+OkDShSNoL7WQPMvYmpYETVx/f8GvUNmmGvD6Wx/FKq/QvGEqqH5CmYqu3KtqMNSWPx965Qq3FSuJL6a0l45prSdelfcOysPLA5agNasue8sA/i4NsUyp3D/wqNNg92mG9sAUKvxQhaljwvXNjoqRLnvFsJ9CUF61mfzbDeN6M3fckDLx0VzLoew9tRhQW+GTzCf6QqsKi7jvz3AfnLfxe9LBXGJJDHImNFk8oMCpGtDYjng749NPleQ8KQ72AzdLNaGNcK1jWfD+paWnK5FtA0X+gpl0FQ6gVBHN1Ces2dLRquwDFzzDBsgxJDTBtuYWTimLxlwRv1cOmnVlFdae4jdxar59HCKuATkkIGKXMWkP6ip7Tev+834ND8LT1ABIEd2V6GgKQNn6Sh9QxT31+73D1yPZz7sEtm6+fU6ZUkeB5J8KE4aes1UdhV/WlIgNRgIKI+x+6JlwnXiA2xquL/EYJKOXeEqYwMlh6ixPnAIXBLux2r6Edtr0Syvt29zSKUVtZFF3rg8hXMKXgnWZxJxmIvhwzWIsPMP1LLYwFAy6pc4qFi0oXygp9dvWY1/vOgO+T9e91Mrx6g8TibgdhWSwLykaqbqFYjlO90yVdhw2s3etHGY3VIw4iF7eIRFs+9+9MgbCXZc0NbDU0voCQaIiaun6jU5J6p/uUqCkd2Pt5tJWFDOfa1Y1Ii/OKxVsG4IvAmlVsgHdSx/nPEIqfaWaLzjxSY/5o6P7o5V6euoujWCZ/YS8fsf+CAexAQPQFHnpa1mDIzWPUbnP7AhoZ69ngguHfwh+B/ss70mgDbvUm22W74vbPONjNr+mEmfb3Fv6nBwph6x/aCfWR+c6iWnhbnH+ygIB5MmfszfEEKAm/WxDatrkNJx2kHoyZGnFhaCP7zBuDYxkkOihGpYd6PtoO3Clj6SH+ESeOli/etUa9K7iGdDEu5o5Rati26LbW/EAlcHKTzSpagFJdVblPmlmMiyrnQa7erKgMDbUAxmWP5qqu5JhYWei0xm//UKd4HRZaDxLihHMv0alHGyMhdkH4SkJOj5dAUA3AJEpWqJ+1hRyFNk3JWHVin/joRotzpgJGGzB8u0BSK91u1viZcAnsjQTOVtkkVOW8Dg8cFwccmVdnCZ2HSV1FIlJ5g/S83yMwXqVH2Z+LuYoqV0/SIosnesg8+vhUi6uqdMVBytpS/v+ytiLmLMkZWrw7iLCPc7Whz8UEaXuquJrKQh6lLFu3a3aFZciY4zdqLgAZo7hodAn+8Qo1pM4zvigSH1GRiglbWR0sVr8gSofrRlngmlgry6YTApmaaeuDoqiIah1s8dpeUe1M0XL6NHk7kHXPX4JjL6cRLxJNRWA+7uoES7AS61IQPNDhZ6WOEdaXV6R76M1e0wd6QSFNTTbi9KpEFeAQRuCHBvha/Z1vSc2rqUdHHdH9FHuwC/gT2avxskCyvtis7imlIygpKjkNjddSb5GBQ3sPHfFLZ79Uey2sl1VPnc0HQj8t1pTCZCV8UuzRSE5iVZP1WnDNB17OyVbDhCgyY+TiNj7vdUBFCbLzrCeyznBNfE4LPNeCRgU2AD3+96IK0WqGmkVf74xqF6H3TDc2tftfptMw1KgurbdrAezRsvBy5Hb6M7GqaUUeUzAm6hkZFSUAIDVEqlCDmSaTeaqLmwwJgs4hyQpRe1iJWBOwWvhC70aUxvMCqt6djCHxNBfg34+ZXtQLeSq0ffhMpd6s6nLuqJmZs+VV+OjdjdNFrOcvUv0yDm+w95eh9FmTZKBUWPRGLFapeRt2MSQvU0T3jhUaMcnzZCJ8bp/HlxdxjwszgXuDvzM8g8VvqTonykedPhs4V6t1rd9aTF9SdQyYL6BIHqGOoGGbfk4ZY+lzqcciPydqMgekSvDabJJWRW9Dp7lXsojE/04c+S1tIqnBkB2ysoEDYgzrj4ubPTnQjMWBB5VWLbZ/MxwsDHLy52Bth3a280oZkUtKQJpHW1h5NahMSNCbFqnytbKAQoZpRg99ggraBPDhcPGLomxhLbEpsuTVMD4HKG1mxmp02/3+EM04De2EyDfNHxWP1/YBaHBWPMJ8wOaCOJEMVXhQ8tBpmPtOoBm5/0YSo0gKG2uboq0l3WFF0uL31T8Jnk+5GZR+xCHDxN6Kro9KNRQhDc86gcyBZaRk3h9dyqSCgSzUiOHRNf0j/ope/jOyRuE37zg5Oy72mgLv6faBxuw9mE74AUzy8210Xcu+VK5ip52130NIyOxwajl00uIxNKYMjH4HP9Isx1Uz2idXP0D8h7O188caZWj2pJ1bwy19zpWQlAw6Aj2zA+WmKXo4b106yAeCS0Pc652ujiOm7l1/9vFYj7SheDBo8bjFmmMy1T4zrTqEe+d+4tmggRqSe8e3InsRI3RL6SkDlSTCQRGaz1zgas0yEGMBdY36wJ6l3o1m7HK4NqV42FrhS9fn0jyFLpoqwYUXKAUIpEIPvpysbxI1+uXO+Oth2KHjIdHkn6RnMuzXFlBbEV3v4By60mt1tvtU8nxfL6xjHwju9SC1zDxShLim7PNxcCfdqd2JofNh
Variant 0
DifficultyLevel
554
Question
An unknown number is added to −3.
The result is multiplied by 2 to give an answer of 6.
Which of these is the unknown number?
Worked Solution
Strategy 1
Trial each option:
If unknown number = 6
6 − 3 = 3
2 × 3 = 6 (correct)
Strategy 2 (advanced)
Let n = unknown number
Working backwards:
3 × 2 = 6
⇒ n + (− 3) = 3
∴ n = 6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An unknown number is added to −3.
The result is multiplied by 2 to give an answer of 6.
Which of these is the unknown number? |
workedSolution | Strategy 1
Trial each option:
If unknown number = 6
>6 $-$ 3 = 3
>2 $\times$ 3 = 6 (correct)
Strategy 2 (advanced)
Let $\large n$ = unknown number
Working backwards:
>3 $\times$ 2 = 6
>$\Rightarrow\ \large n$ + ($-$ 3) = 3
$\therefore\ \large n$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+sEXKiQnQ7HOhRz6DJ7vFtzzJD9xSaqGWC169x+P2YvNrcXhS4cOsmt9s3LvSRK/iX8mc6Q8ELjmq8vJf9Pq71KgLbCzfSeFA4OSjnZ14sDPzc70NVFiTUT6/6231kqwYq4mAVPlyU8nXIg/IW1RxCUUP7CYe6xhJzU0+uAkv8jhyexYtPkuWIMKwV3Oy6avvPWjsfYB/PrgcRxKgiJobTOLCY8bLhZydcwW5VluIsEc7rFjUXnFHezeyfWn9DMukS/sCiH4XMiq1J9+NJECTeXSqsJ5m5rQSB85eydOcHjxUJtA1n4MZFiDq9hKPRRnaOC7oTRp3uRFWMP42m9ej4SO7Zrsrp0CkvDGMpr7HmlgFlD0Nr4fGqLeGG9pm6QgVSLf4sa+R1JntCzUeeuZpF+otWRfP/SpdS9ZwcS5gzKW7T3WRSd0pZU8Kct2AyT7PNnBGDw6SUlQ2u2uMD8HeWes7FJmmzKXmljKu7VYb5tlbftJCSiQF67kbCUoFke0db8Y2BYItwLn2Fk38em/0FKwdtoMCjgcoav2YxmFKXP1sj5GasD+rTigvjb30j0XBOOSQ0KiOepAXnsocrZh5JbbKZkuNh/lvVMkgBmIA/DbAX+3QSKRBt9DMVLNkYVvAHzS3tPxfxYs1nv7DjMeaueC08sqTUIfipz6L94WXcvRcZhDEWuwe0VNXpuUQuVOFRD02PYkglOAZyL45ptvFk3bS4zDFc8V49kMgDbP+ycu/KTm/Y8DmWdOzmxqy1J+5TZHRossClNqFFYf1uuxN1lhw1pyD+dEFaocxxrA+x5/zDMgN+qwvcSZCMDLxxaCr6CAzSnWx5ZolFu0qGtcQu4jJMAuWbGfNjAtWUqbEWkwpxLgBvFx2l7mvqmiSzoRpnG+qYGkTQ8Mx2mAeQyTXddfuR6e0dCdnJvANL4de/Pu/IbP7DT3j+53F6HmIkwSqkFrt6BVt/cX5WWoerfZmkPq/KTY/sho38KKmmCdOz9mK0whPeoA9SuoxjOTe2VwJTg711hAKx4DGab+DOpYxXZuM6MS51Cd+tjZSh8OaDqkDf8cwA8JzZa73sBjF1YB6QDzq3TOgdc6qZvw52Sst8FmB8tQXXX2JSUM1QNHiKlNAeAAaRShH1EHiVXZy8ar8zGEY/nLd8p6utzcio2U8O9TLnUoylcVHXw8BAsonRbnbQzpedchyoEEfKQ6a5YEwo+s9aFG6fmOB2QgXej989rQd5Y+ZfmSBB7UnW/eKXGW43TGXcwd+rdHxoIM2aKD2+6p6oYAGhL+bxY1kQHL+V4ZY6DYPbV99hliodaHag3MMc5sKXElCp4A9XF14kBSc6Adwo7GxEGYPcF8dGNztXbFLOyOUJDJmCeKpcLQhTs2ZjB420ITQPbRDabVbpOS1E1t33OLk3iH1UT80DPynKrDl8J8uutxyZT2lemmv09WnI0T6E4pweDIpRNbUsL5unGiaHvxvJLt29pxw/1qIxr+NYupn8ANiN/qCH3mch5fJiy5viTkChu5YPWHDnn6B+zwNVbfZ3suH3GMz1BYlOc5CRmvimaC190VL5bwSgtmjXkgKdUFnWZHscWkM9J/sucEQ+YrpJHQ2Q13b0rqzn38dpq6D82zcbmvCKdbW8YyqSdo2S0sO4sXZbb262Ic2639YvyA3cCS38UMvQdIs7ooSMhLGvoRqxju64XEvZnOdLyu2XETgdaHoIDhpZzDqzAor+5d84R1HpGXqS2pbbpQclaCbaX9EckmSDjcZNR8KFfOpYIun+8RiOAS/INjCPunZExQrYLMpiYdZ9W6C10rvBdqb2w61i3jnfemHf9sbLOrQrKDbvRKSb7EtFL6qH3sshHsaRbpZNW53cp7BOxkQe0lVKrBR5eEJRp8mUWMIgTp0LAk0eJtXpIYzusIj8PjMtYXaaOhoLMP6CHycGpcnSkQJe/TbKHvpJBeYqHa6JrgY+Lf8H+Y5SApX7nxoXLdWTVbN5ZliJAdLuIehWPekK30x/lzU9XEPN380NCERNyECleQTjjoqCbq7Ppe2uex/jztGwtwP7GaMTZzTzAMZJLYqukXmvr/cWx72jCBMdg2bPudci/4stuOVCFwgLIbH3heBhCxVSz5+7JN0bIONqUQ4Vmi7zWmTAeu723zlIMaNvFNgdIiiAn/l7Loybxd9Wc9WL+Bc8+amYp9xM98xWA7Lx/6qE+AAK3ugNDCLjAPqrVHCoZTTy0y4z+9O57ymce7e/Zkosy+VRn/VDMS9jAG3Qt9jbExNC7ik0UjU3zsjTGdJnpRXBMyKdGlSAQiKOm2wf9fPBXohhccAN1f4lcEUapZHsJpnknJT/bIagZbmjhouaaZu85FtnielvKNbAmil4JsCfx2sUrThWmBaxsT9kLsXaTlaNekTEVGHZc4LflZMHEYJytP7inAF4GuBwFvFCNdj9hAWP4w5AnpjtLj8ne8HDHsog32gsGWXlBb5E3JXckPd18peIhO+Wz+v+Br2tbC4LSxtgc3B+TKW0wqiv2TpsEvAj3sWhaIAhmCkldJ/o4Sc35haxxTgoVUGeDrCpFX+LxMb8RSXix1XSUtm/PcOKRDkb+mYfQp4jg3P0Rf7Fgm6cf0GJ6D4lK0baLqSajCh3VtrKmZZMcRhfZyildRURjPa2Sln0GOlKJsEljlF4aeUzG5bR74RH0PHoubo2GobYGmO4/aPftgQ1FnszouDQNqVL/lF15cbB43SKZWYweSzIdsDPbaIYa+O5pzolUhM4zazZYstSPl4MQxBk53TVVF3L6n8DiL4nAko/i7Bb+QAtlAbGq8uNzXCbkQcN3rkw6Irh00kaXMRnm0J08AQVebSrYc83bYaf3VkVMk5G5qf+u+Kaot5vwuhJZE9Ir863eOY7uLelbtUgeQsWxveYziLtnREBpHonXOLS70QVEmskSCn2e2VgLpHeaczqQxYNRNm6G2MFVfXvP76V8c9NVPr+W8B2asE1ZYn/z+TbeKOrYCUC7W0mHZhxRcVB5+473bqhDJ+2YL19ziL7tS5m+gyUpWkmt31aQC7hnBZhr2/TFBdL7COohfbLnYHRS+DiTQbZaDYQGYIfRwdAT38m1w+61eN06GjO4FCJX/PpX33qqJCYaBVVUbXlTNCL1530UtLOfI2zG18W+JhY5VSrTmxiUfHJUahMnRXv0qGAjQgieenzcTyZhHIq8FjmOCpdEciFCNUTAlhM3M1QfrUpuPQrmq6sBTDGSC1JV4GHBwh2dnk68nkvheywjngYu56GMBJGgfFCzp6j94W/Tx7DKedI2bWlUiVnR6eRmQP1E2mzk7jGhPa6D0yf3b3jM7p51xBDBQ1Pd1oXjmb9OM5R7b6IvwUWIbhfC7EfPlkjcp7W5vSJy36qhaxqAGh+19YmXzQTgadxR1Tvvm824CSyCSAg+q9QdwIQ1jPpQzK+cxsAMjATZQEjer6lxWPhuweUnvbksOjGy5SPnceWjkoV1q/RduNYG5zY8lnWbtF6ft2RFWjD+4/TV/4Vv5h9U65JuqtdVHCW+czFnS0Wk4hM46TCPjKLqBSX2EotUmPnfA3jEchZ3/GpaVSufyZ4K31lW0z2XKFF5KXinqoJY2R0ZiSKhKYLKqnADnTp2bptjjoujbPtI5cDTmsCEHP/FAb9eLk7KRbPRKMB0lvv1EU1tYsAUdvAKebyXBPW9azMiKUQbVY9tvpt2RQMmoMeG4BRHU8lsh4x5cdkKwEK5jYe8y6xKWx66XAKMt7phTkYPF1zcHwcHWq9x9nAI8SEf9V0ocwKf27t0tg3sqMpVKeqGxM6xVm4XMGr3Un1NfwVP+IBQYKa03B141cqztbM4z+Tu8MVsVpoQUDh4wvaylrJc1FjC6obTpUHU0IhcwT3Ju5Za56d+bWJ4KI4WFzPJFudZHF5bJFBDmN/j0luh3LIB/SEhefeyMuCUC3W6jP4DGcCnWdt/9Ekg6SNlo5X97s5KPWmIM7Xlx1RJA83C3TnuBrYaQRerU9uIIgln3pgnEvMQE0dqQtoGZK3vrat+oRLvylM2wJ3G/8v6wW9QSj5GX455qXO0N1n/xsR9yEeE+tNhtkE0Uy19tHkwDu9nmyKrIBBv4mMMtInE7/7EzJCQeZm4ivVEsmp+fm4IWX6Mg4tzk46N1FjAPFvnVDmoUKK9s8SQYdwgTCYXfyeR1ImWujACglcX8iiwcPuLbOIjS388SViNo7FkiC5VhrYZyf9jtzcbBxfZpx8Avg1PiiifRy4U0KYIjvCMUd96qjDaKSFejb29yQCf6S65nsc27Oendvns+Kx3ICXOm9DvKGFvX3AZbLT97v2lN0/shLxPRPb6njKq6e88lluN+X9oXRKS7/HPTscI4DrjUyA0o5RCJXWw/GfK0/rNt1EjvCPllp/UYBUz/Kt1pmzvJwANb4IN3E5gvavpsb11siQ/d62X8iEC36h45s/zhnMkRDT6J1uVJ1VtYPy9tU48phsuvAVzImY4RTz69YlNbXlQSkHC4AD67eiIZdRdt0wcSHCoUyBia6x/TUMFpi4Hx2So0bZKJjPofUYrGtp6fjOkLVbqFQmERGlUQNjUwyBEWhR993a40umCY7vHkepdHy9PzZuxAozmy37HeYiNk/BunS4PDNVG5BmQ0RzRAR2LHB5xRh7OFZmrJmRSVP9OGQ15wbx8dCKZj2OPJXnZg7aUvjQ/4KNX03+Kv7Z4yGi3UrvxSUipQeGJbMLAjNhNZLf0jE3l1MaZXFB33msvnMdrxHBaOVhNeSy9wzISOnZ/IAS4+fMVUK4pSSAo5WNHMi/DxHOEFbdOWtDMEOjhBYn8/B3LrRY/n3l401l8PS73/mP39mUSDKbfU9d/moSr6R4X3PMMyw4UBkJGJFTTkG8QyXAwo2l9S5eIydmouhiObw5E0kpYZ+YHTwjsJRoXYpSK588vvqCbnzIOG4qY56OsBJS8Al37E1PeXID2rCMMOZIfUwGKJ4vTnyO8rMq7jQa50RnDTnW9lt+mTWTOg847aQlFdyeOYQcPayuBQPsoFB+yNhnV8VRTouVUaZsN5BPm3QGJfDdXr1JnF0qi5ICqNlUZUiEK4kCXK4hF0oxoQO5S3l7/eavcPgYM/umVNgLiSAn7W5FHm+tH/1wvBiAjij08qSywVZ/Ui1IjIWdQ4/y3C/00bNxQ5KvE0bV8PINKe0USYOaFSofSoDRGSWFONjLc1TgLaL3/BJOHHfo/De0dsR5U8bUZZVfb7EKSYnjJobngUd2QffMeKRV6GGHT0LSSV2ZPkyZyTV68xQjJpO3zFt8JF74RukyJ5VWOMO06xUGHS4kGu4lml+qgAB4kOzxRa+giuYSAIfk5ScTh1L/DbJS19+AEDgy2mzPo9DLxGVKhAf7gqEol39QCJBHFWXX+r77FRr4qNQcpb3/yYom9uF+1IX488bXSG/fPXZ3T0lVbjFsvzViT/7/DENV90M0aoyvFGrESSnSpU6CkImMX4tm1D3qABPbvmx5aPftO1OvfmHa92bSBQnpHBnrYtvkTR9OxsOl8mgwmXhC/gnaTKtXXvZavRNgYjgRP2Csh/yK45P0KJghcusQoEFSjKf5Nqp9xbV2ziI8JKmo2xuKw4qKvazNf6OkvF8vbjaCk9zzsLnmECtHHe3XL97fJOD5HXJmEvQMJgV3Bkkn1/HJmse4n5cHLZ3Y0YKDg4O+Foa6IUx3G0MKsbI0G7GV8noR0EElzSK72ejEowVINyTc75YIXkLnmngIVPjdFxerPaFqYNc/BGEpj6J59p+PrNz996Z3cZnPKDipfMv9LpcZgCxaaEPg7i/yphG6ZHXwqMYKuC9OpeWz7M71igtH09CxeqUIgSYh9CyPPY+BQE6xMEXQO54HY9B9By9m52kz6DjJCLrS/1kkYGoNFevgDB/4Ec8PEWAi+VAD7QTuKCwvYD9D/3hpw24riKw+1VGW9V+wS27XIil102pGbwi2ANqPPo6nvEqLoZ8rmj3yCTmPuiIM/3GfRu2epFzUNi/yAD+TTrUfjlNWoIAfF/4D0uD6ghuBg3mbEEpbzUTBcANxZ37+1+qz0i4AzyeBgPf0woM3mmuUoem3oEJw/8MvhV/5x87n2VQ3o7r8tgfMit0drZhEQ4MITTM3NkjvrLCVHmb0xnNDEEEh+wEBTsfryVS+3MVokaj2N/+RCAlC3hEzI53Xm0KL7ZvdMsOeD/RX2vFIdkPhKp/q2Mo03KqOAP2BBsNFVe95TjixnMpy7FU8cepkikLyIDIiC0DxKnA4TJzy0UAnyaCXVOyb9yfHVBCOEC7ybOePy1faQotP6jFsawcLX2Wk+g7KhDxbe/2bukA/Zu7NA+CnVLy4klBs8mVi+jqeSI2CqhvmijvUwQ80iIjNBA3+fTccbyjpqhiAa1j3siEYgQ4YrOJ+J9eJvKfxLKfM3YxrYnsQqw6uuUmZyrDW+BRGJnfhR8CaglAoqC9UlX02JZ1ZUqzZ6JLyMiXWSXXEvzMGqzL7sDKSU1hpcXSTbjVH/y5NJQiS5LTLYUDEywSOksTnwBt9eQVxW0hdLS1yjd/y+cwLPgCA1qtMeDGZWGd+ymTauYC682uJy5dXzzplhIiaoP/Sv8voF9CVCbzaYgBw5dVkFRfJyIVbmSLmPpxA+hiwPEeQYFTu5TBD+k5y2x7KD/VA63Ez2QGynmCrBBdKOYPoVU06jv4ZT73LcpbWXMItBuVY+4jDwsUIR7m7JgXRxpLmsFfF5UZ3oasw8X9qAQ1veHILv+3lpCrimdkxgcth95b1MCxYjQIpIxamhDJZb7wc1KykEikWLyzfz4ECsQyprsB/Swazjsx2e8DAavqR6Bhazc5MQoI6GGgNTK3jRZIE0VKRgQgUP5bl2XkpV5KypO+8btRwZIPAY9EyqF+fMjuN47wINMFrCNax5Ys1O//qICNBYh97X1ShRuQS13IYYuaJw4Cy0GADo9xJvD6etT0LKwWNDR9cGTQGw98JC38EQiEiQCk/xLI9Ds+TRLLKVmLsA/ypPlCI+flkBi9gEC8T4d5lz34Ejb7ikKMJaJmqb8Vn4rU+/yRq0x8V+F33OuIQLFHjCPS5+g5U48xPzTVOya1HU0/oC9uzKVtaLEjAHDKMLQ9XcbI00KpGEjmISvkMYGcnoalekMuW0P+xkoaN4HPc8ikegWXL7/pVUJYGNo1LwlGUurq35X/lRQ4py5/BpsARxQjJi3LB/h4jpufyZ7GINHGEFB362CMJB42q6iaGvtDlaUfKZ4cNnn+RLWKMstEYsMmuIrYz3GDs0CCz4LULPA7gd4OUnwI2RNK6M+igO4bjd7fCTLKS8LRNUC9unpntjyWnBkTDBrQItswhJ/Gomgiac8hLve5HHyi71dQRHppBs09L430vC6dKJp68sPM8NucO6kS5Azxp7jOPMdiLoyTJe5YmtAMM0xRI8f+rqo1tYr3i9U8ikwqsEHzutSTBRg4g53yjkogLcjQzY5Mar+3iQWtcoWcVZqQlAaN9eNhMyrB8QjpGqTGasD8VjVifzKnV1iUWuR2SyXkhWTrwpPWLhhhekJYYInJwZx1Pr94o4BVYrI6z6hnPBkr1odzMF5cNZTQc+H7p3NbeOnYyt4hCEHV7Cnc4v8FdvPPDEJrtLT6RvbxdLDuwAY04+yOAJ3vD59NWL7PNZou+NM/qqBGhFu1zNcPkMxqPTnYY7NpNzNPQQBnkcl1hh33fxNZDmALRSMv30t+HLvzmeLntYBzlvyWf6YMeJptuLv5G0l4lAYT/IXKxRZ1FSFEfibE5p/gpsnN8hmdfCxF1jmivekfflWmX/sYW2yUcgJRTnudei1/isuJIotA604rzS6bQIUUCKq2vHn1X9iQy/0nP3rVzACfhiAk949DIukHIIX8rfIJmkzZ71aIORBYRhD6GvaXX8xVyfMXCfoWlv781XbWNOM8PORJSwGetPTTkTKrKMTjBgxWAOotlxc3+tHhsHTDQ4tmKCC1/iAX9LTNNnlF/Y1rqyRAmJrHS7suBki37ATX+M207gtbmEMUZdV5ptEa/cWBUdb/JkRkILG4vKkfJh0ttlrZ9jz+cqZr+wsT4OvCMCJWsr4AyrGEsXBsPdX9ixbdcqv/prHrPODb4ffdMVoGsaM7jMXTPMpUgG0rwVA3ClsAhzbyy0lihrSBLhiVNyV4SMUT4Uxp3dGkd+cm9xTi379qGYy2aGWXQ8mLTJXQUuP25gWuu7TYSYEEew9PJsdJrjIxi55Z5bALY6EvNwpgOM8Eid5Q5OgPhV8gBpHqbHI8KEgHutCu11oxORKwYXqhJriCHhwyHyOdzdg==
Variant 1
DifficultyLevel
552
Question
An unknown number is added to −5.
The result is multiplied by 3 to give an answer of 9.
Which of these is the unknown number?
Worked Solution
Solution 1
Trial each option:
If unknown number = 8
8 − 5 = 3
3 × 3 = 9 (correct)
Solution 2 (advanced)
Let n = unknown number
Working backwards:
3 × 3 = 9
⇒ n + (− 5) = 3
∴ n = 8
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An unknown number is added to −5.
The result is multiplied by 3 to give an answer of 9.
Which of these is the unknown number? |
workedSolution | Solution 1
Trial each option:
If unknown number = 8
8 $-$ 5 = 3
3 $\times$ 3 = 9 (correct)
Solution 2 (advanced)
Let $\large n$ = unknown number
Working backwards:
3 $\times$ 3 = 9
$\Rightarrow\ \large n$ + ($-$ 5) = 3
$\therefore\ \large n$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18K/uuY34OmpBizwnA50ZUBC/VPyOTxiOlfAlTfoDNv54y6RQLS0Gy/q1LjmhOP4kNsGAou4zJBBA7j26UqgKvENaohPHzb0PbNfkpFxTDr01rAYR3QoAfrIgv1DSDkVTmOJAyUWrHzQIHMmEdGA3/+NPSfPnZ7cJrSkIADlqp11CPrHgSXihrccVtiVOWHmIab4vxd/cmjJBdwJBz/qtp5f3zPV2SC3ahc0v0O1bMBX6VPS09RaUhm7anw/kLGafK4GN2qLi0t72rFNcYmD8r00p7pcQqDjc9jQ+9PET3zlUM+XAS1M/azJDvcyX7CDfub2Y2RTFe9fcHhijrLmqKTKs1zwfXkpaLaxfwRKL0fjw1EhQ0ueiLSbnmFIfbqybYc3BL88vv4RUDnlMIPBACDQlUvgJLNyMqRkO1kFmPeSWEwcbwpedQeHIIDk9LXd/S7MXx+CHE3p1mMMBRH20AP6f6pIM33bD0skr3h7fqpkfWBUU/shEyw6tqjtO2aWFdPDCU2lA1eCnz/f5208S6wfGEycXGnwRswLFf6SZn54cy0x3t6VJO9pZ75vcsJWFFDcT0PE0WObqRmZa9snrNg8v7DhnjBFaZVZm5Ce+epkp32hmNahOPVwwgCalv1iEkP6oXeSLbRpjCPuP1uuxT5wq9QzMINdyUMdWTGlcnGkNgsUG3d3z049hecZoJivgmSL0h69PLNOwdi+uPiwx71gQ0Gr9uFCJBLTV3iJMngPISlJROQb6ab2oQAa4GuZhTBrtCsA+1zNJVJRQDtceltezkTRJdxGgdV6cWQlXyE0FCXmBiNAl+S72YdQ3Sb/e0ey7LXR4Yh8cwfHZ9DKBl8dZlKyzGXFQCVWNkk2R7GoHQHuHHpBz5J1UHaVktNBdEl00gg3Tzwe5Mi1RE8RUHyjgBWjZArJRRKk+PS9h8l4/YbHgpA2SzIwQhRNLMihrBaJaexdsKUs+jPTw4fSF/6/VcWjh+w8NMDob0Yql8P7cyJjs93nBC1Y4qjzXUgOddKIPHcNcxcaMfD2jKbNmVRNj0jqcc7mVQCPVJzk54FI3p/kHuXNEmwbm8xOR6ybQ/JWI8EHBSYKc2AXyA3M7Ih7G8sHu1JA7kUFwTV4hJtD19qdujk26u5h7FHuVTZO9XsecoapSaP/Bb/v8OU7krhVqatDMW30VOF6EfnpCyw3ZLEIvwNx6bVKe5F+jggV5KclbKPqluBZOjL2GWQ3nz0te91Yqy/avPt/nd1Ma2rhjAAu94G3/dgvEBSLFHsQ/WIR/4vR2pljsOXZwbiH1LG2KXn4L8rShVc9KU2iqXH2XS1BztCXFWa3kpD67O+gTv4QU7K97GKmnPmbyTZblThCOVCNrxse41qqkMNLwH9nrZDi/coN/KypMjOftQP2QR/NJzHuDa6LOxOkG+y50avhBRcaY/y244zMKTmXzaPcfDjnvY0wZ4IkIel5BpJra4cfUuH3TvhXSKCzPcIOX8N0THpFSlc0TbfLvXMdQHh0sdmx56rzJjsKAi07SDLHq1havmpAsHzA2PSv6Xm1L9kISL2xWTuN/WKpB9PrfFE4bSH2z3uthYMl/l8zIK2YSSwYJkHF+230MQgKPETy9FyUkwtUWIqKdQTKaM+Q5W5bPrEEfoz/Nq4D8s/Tium+P4SyQUoBwFijGE/EXrBJkf6nVyyypbaIYDosnrGlcUkPBThl6soXXX0n7qzQgAk96Lr3/vq0IxJHTMqlOxIALGgaSheQpYHvQTAIoB4W1Elz6zIxhgu+wZWrQdt2ee7xYFxvyx9bYYf7muMVbrTI6X9xS6kRHCBO2rkBCTExSIHXR2QjZPyb61NFEg+mIKVXpVRdF67p2V++3QDIHqaNUtqs2X4t80mjOWjWDz9f8isTcLw+dlfJ1HlVEfJb+R9yDKjFTwYCB4+yfAHxKxhEs/lmfdh9/vB35erp9QkBY/8bvvhuFdgIsHT2VgDnBFH5Q/RrhXVJsWKkF3B7sykEH4rNhTvhpTR1JqbXw81ndVyPolykOC8l64s2F2hZKzLAB4ZC1KfuOaVZuUstikDkw6rk5rx+Cmt21aLv+kbZn+u/RIzymVB/zs7INGceBIG13HzTHoNxNhR1JzQuP0Vxf714s8YpLz61jHawH2rDGmCi22VtaA//FvhKxT7DkcfrtVwRbCV3lSGUhQHQsy1sDstlXL5+MQDv8h/udmLQg8eNZ57QKZw7nusw0JTd52q5bFw5zRkay8I+aS9gAP8CkKIQg3/mSQ/KhCoMEYZWoKGW12zCpf12f3kHmFjzegDr4ofkQdC5szx7ZQ1hXw/rEHX/uG2X9w1Lv0mewj+DuFZloiaYyvtpJDh9Ijpr+MsEarPcZGGFut0DEqYx+ZX+KMJss2uA4bdBN179TuTZnqO5zUg9VkaRZU/fl2R0NErmsBAmeVaPVxktI1mTMRQ132pJScBsd3SMtfqRoKfPFR5A069fzg/jchwjqYLzeqVWjhs38cHQywfxZMILWziTWyv5ED7fEK1YCEgXMIxoyI8IMuz0Q13bJhbw0Au3jHvJKSgnkx4wTrEtxorMOJYqlB/zDg1mFgqC1niP2HGhg+5U//eY1T2SgaCmbMtouhtVRz+usNkUrtN0OC4NOz4N0Vu9n/+nlZN85l3i9hDDSNj/GO15nmVQwHmle7XgFzN1a8PTWpbSKopbNeXYSVtKh0xgcI2ZingYcIkevnNmVdKBdgx2Xw5Ui5SEYkfVjrNog+nTnMrcRMdrY13Yii2dAjLxoHdu8UEr/mC34bd5RUA2PwPqEVH6dyadg7HSnHO6ME7+8qsuATRuQ/Zh0lh5g6hF0lOSy52j+l6KrZHHD6GpWB+TZneTIizbHls54rnAyTK+Paw9obhMiYQ9LFAZglrYq2/eubfxYFayuQlk3jbD62sXhcEV+NiMnbwtPbj1U9P/JCqYCdcH7xMJBPYQpmuAjgiJHKwkhQ/bVywSMxcd3QunxyCZq45iTBcQvXax0XQDbXrOJvVKgQt1mDfQuXcQ1+TYsXLoUyJKmxqOjF0AAKra5CoIueT1yBb8jSPJAu5piFCYqhlIFHqtI+f4uoZqs6MlECVwxR1frrOEJIZSdAYs+OdILrLC+9QHipss6eD6PdNgdyDvrER1Nu2LAlbydjg9xIbeBYhT7zVyB3Yt37Ml1cYmuGCinK+18znOKRKlbS3+N9jDI9Q5AZuI5J9RN18D+KfFYxuVXKnAGSDKP6OQwwBGA4UObzXdYWIbJrGc6GV7crSW/GZqhcKMdzd4vzJj7DCHaQWUDNCFpu1WL74Qdikmz1bAdsc7V2u5esEsUu8W2RL8AT/aw5nImxqNRpHITYUbEaspIWaru2DqJEDQ3FV4eJvrv/SM56uP/JCzzwXdp4VoUUtfWk/EXgybeiv2gORSDF9m7ZiNdJkX71aoQ+wXMGxa9e+Uu+zKvaeARhDwVNTjbafxHgERmQfw3gUFemfFBHE5C1oXvMJ9ZeqzM2bZzf93gVu9HuFvFDjjuAwC9IchnjPAWUIUZ1352yIsvOcv5WD+JGWN2+Ud9CqYBreb4wzjJH1gBQODYE7LLKOqYiX4y+7ib40f84UgEI/AbIBx2wIDQZBjFBtzIvgA3cOo9+Z9tC2eCnrTwv1T6ZPJf6+TnRgfpw/glVpeLgzOPpZ5t/NnHru174bikNxFm2+TvSeBwDdGh2hdH61wbo3ELxGv+pi7owUl6/lukOrp0p93KzYtiutUlFqCiQlsMDHS6AmyBCXh0dlSxYLyTGpfcfr4ITH2w8k/GTT2STyIxsGVwb/LVOCKWnNn5iPBQUK5IauK1Tec56RKhYRyvQSlla0EA1pRabEWU5CgTsbuSLJGO+jYnt6Rt5vzb4hkMJZ0HWrojQbh68Zk7xV6XuqQF55vhGYD0BT0peYGpLfIpz5SfDva/FUGWgW9v4CDJWdjbeyFtGHbcZ2YWgVIlU7n14aZO2ja/+gkomYD7/ZXaxYsn96JQXLpUILJsbuTvG/sxt9c5jQshZNinFO4Ovv6Wp93mFJIJ90xKtGvdtbaZT2rrdqXYO/F8QLa6X3Ohq4T2BxbBivH3vWygT4Lzk8euy8ZQQ3Y576TqqYR4OHbAV86f9qkjEK/JqVs545kR2qivKhrcAbFsnUvqjQJSIcsi5ER9TDkBRqww+TYZ66E5AR1x2p+oqFuVQyoZ4u2agHUhV/3zax+mkl65EfuD8G314vbCyAUYKogPANKgEoGLFr0gxTONjHoyeMJp3S3fDVjsBvlEzhCr0G+px+HrJ6qUNa63oSxOIG6sUM1SnJxE7Hbv+12COYGbCXVV4oa+qH0gRuAvZfIpGSWc9NRzY3sGXRst3XdGzFvUQGH4mD18SAkAsBVkExo6/P5V7mWFcsiAv/ieab1kkGk+vXuwFGhHOBfWx2bFy7kLlysQ9dyJ2RYe8znVkNK9CQOiYAxElWt1EnzfNvYbRhvqu7fv8YggyB8vYZ0STa5nQESA5Z9S6MvHv3HyFapWDCeOuZ1SybCVTGQccmNeftK9AAJnIhynUHpZt7BiVA1e3Pd8AhVTgOuelWdKHe0p2PjkJStzRis0ExqgRCYJzkMq4Zb5YlKHOgbowWzuxxiD/2wSxEMl+iF8u4qLOqeegm/2oJhdZeNbkIob9VccK2B73ibjUsKgL44HTXhY3KEcnrJmtYTqMcXJJaoTh6tvqhJrkCw5WSh4qT8VH5oLNrjAKfKDoq86w2Z6zPE1tuEIv7pCDuf52md5j0QPGQbWWaxcc6n7RE/Ht8tURCh+q0eSP30wQEhIHHWjfOFW8wlx+0lH39hlyczknewVqaWVVOy1rs7phPdlzjNI9kdJT171eNamm/j+WOcO8qyEX5aMaCjSEu2qGfQ6h+sO8o0AmtX9v/bNgioVQUT2HBgnoOHde2rzyjjEe4AbDEeQBjqUmu5bY6awDrvFsMfdabfcIKoqQPvWH4ui3Vq17nhB5dZ+28SMpjsxbswaFsD5mB6qFjTBy4sjbgGGRvZBwlbJ3FCHS62xr2yUKeAYmTVSbXIQteZONmM6LEINlcQXjnsXHXypYMdLFstSB8CGvQSVx1xKLb5cidjIJkQQIAFiVhJSmbxnb/e526Gx5dJJg8vXbyQ4gu/vAmMWTDsbU6caLo6T9qr5ooyqdpbBBtfzsX1Ny9v8gWGRytE5jSyqpPlQAp3nVyznf3Mg98ORhRBGCXn+1JT5QjlxW1DHOrUGOLky80+a9ZezmwVuTeThdD4quGW20xFDFopq5QNolIVUsMX6jmjNpgybt55qXDnJ7YUxFxfUsF5jP9OulFZn9LhPaMJg82aQPYjo24VTvotBUhq0OIPluGhQhOKsBqAkIszbnwWyWu7sT1VCZIKodgv0O4xD7ClXttiZkcu6YHB2ZJ+99huqh76Ab3QzdwwpEpromBxvdgMFnBMqQfz3TyYSbGPdxm/B8YnrpHpPufVCcAufT67LMNloG85+roDT/JYKTLOtbI9XPbZuu1xbGet9PX9USFGPjJFuQrAQxXljvCvf3JwDYWZOzSS9oBKiUAzXbfPIaA0QksmoPF1490YrrM5STHleV1MRZu3i+dTs/dFiGmWxW1RDJf34b67sDs1lz/7C+3EkVvFHuykb31EE7nVRRF8sJYDkIx06LeCTNNMzsicHm8ZrLcwQ0ay1pMNk+iF+eGyUZkIBNPaDXmsA8F5AxSwNJJSG+zK/nYmp0xw3fdji8Vjtqm04yWucmRiFGiBNzXN3BeqLD/ilSOVItbKHlohXqXaOU1nzCt3YX5VDzMlLGJ6d/ntftxzSmUtmZdeWkZvlWvHVw8FdXh1aTypUOrk8WpNTJ0sQLJpD0Vs6ZV6v7I9KnJsF3qy5f0buyydiWZkZ7WWo3iglpH8Dz7OCy4WcuzerwbbiK/ftVpjfEVETAm/NPVsz8m/W0DrJDhjwwvBz9DEaRouPuCfro1Q8wA+STPSv1z3QFzsQXsQITywHmu+2Hu1LM9jCwBLybqS16LnQmOlNTy4lp2bNr7w+7NE3B8Lp6d3KE1li1RXASGLeMXE0iSiGkbj93hMv3LJ0NhY+qtKxYU20FCcuUhwDqTKL25JH+r1MuOaLRBeMJqKIQmPaifeF2SWu7CMZ1Qgy90mRe5jwpz9k4wd4H9Sp7QNewMZLbv6iLQmN8Nq4qViPchw99U2mbe3ytJFaeONny5TIVsAjpZ4lsyf+uXnRcqRcWBhYRFtYj+R44kqXLTFZINYAc9BOV2mAeabFIqh9CcZHkXJ3ZOdxyPE1tQ/mLvk1hEOwi/bRUyvdYbGK3q8jvOj09dy+QmjW+VMUOBKGkYx4D9wtcEZAtLD0CdCW8dOIzxWNV8ExsLphZIGxUFc9zirTJINXVQTfIlwCFltA7j6llzJXmFdtS6TM8o9B4uWxxwOtS8jLyfBDDhlYW4ot+Tk0AAl5YeFLVPRQ4PH0nNIzmZfB9tSdtKdZu5kBAaH7X5NtLGmHywJgHyKHE9PxivygOy2xUjmAcEI1xUP/NkrkDBaC6MWNpVsk6Oq/81dZPXuJGVclcHDrFwk0mqEWKQFMnVZYee667Djt0SdBVBBy9/uW18880DrkdNyL5vnS0SaApCKGYjdrdfW7ezmC+QfvsXVI2t7YFmghS6jCdoYL+RsGRcwIrwF6golJwhSD6IcE/y2d/F/bySaUFY8fPDHNUjfa3SDLRHP9ObHFh7VW+m15bLErLzXqoI9DgXXBmz4azzxQLmJMuRp8nGbU1s8HdxQuz7iHeU7Xz3ph5LZNMJMDNHohGS+wL8/TFbXWsNN2GXg47ZH3tXseCTb4Rp0jVEzWANtlxeMQEP0QBgcd9AKWyuIEmFZVAtBqomuf8szl+pgws6TD/2p76+AqymeGXG+yvOMl4qggGT7HcnMlPua/2z8aLFuylDH2i7YeCCfq4q6RXuRlUAnCetbW3JAse/9/6MtF5q25ast5UgJHWcM24ssERJi3DEwU1Sc+aSaz86H5hZOS0mek4bK6QEdIzsvKU38/Is+XhMAJYhUO7LFvfRylchIlrp1FC7dPkF2m2s/SBloM8Sx9UZcyS+BZbJV4wQc+CinwQ1vYyIhaXh3fZyfTOa5+b3YExBJQfvjWijWpDWxyFUoLfgtYPbd6ZfrrT17cjwA1DhLqcNJ92wHhWHDELPhW0Rlg2GmeS219sE2j4p8aBseT08myWRbBiXdwVBWwpFaBDRBVPbek9WyPzl+niNdH52VpWjXPHVgk09bZ+3VIsT4LiBb4ok8XdIGpIeQNT1cc/TQORA+C8U4ui3NlLnbPoZb80WPZaMCJ1VXuwAAtoUmeiEehaBT0k0R2VZH9IdIxKWFiRaU5yDhodx3kC7mbMSTQ9wkNGV9C2sbhxTT8enCLqplfnX5uTusGJoZqR1YE/f0DpF2dvRBQpWYafkfT8ac3g2sTcjtuNJu2qn/0zLD8iMYL0WzHNwdtV8l9va7qpHh07EYxQIAjFF6UxJU96TWHiXN4uFgvYj/9qY4J7cSCoe74zKUb0rFWGQw7XKaVtn6vEgfa/MiVRW7ZRqABUYeOig9vK9iVb9j5y4Dmh14hlV+AkF9q1Cuaz0poTQu07zNVoqfsfF7o8tejApRWIjLuyY6HCtcbYCMjezGgnsFhOI2Y8YBiJoEA5MCFqkRnNQ2kGE86TxfgG/R0oyUWSgpo4uVNy5xexWFvNnn7xyp6CBLFoLortjItwWsegWqymc5q27gIxrUzNt+MgEdku5qh695s+XPVVSgox5phiJPaeo4o82/gPFbdIDuGM+VIuPjgzJksX3XFeiV2yLmgbg1JWFL73QeaLydAHb6/e1MKTtP5E/RJEEtq+Qe9Aoxo6YN1iI1Fcx59LUDaP2ucSaNcu8U6AMgeooagEt2s4TeZuYbIPi9WjSWfrCKj+UCke5vdn4DVwjziSTvqaJO3X4pnJZ8LAdjoCdU2hCbKm7bSya8kKeN29Bor+vu202QFs+4rWYxR7848RfCiJqawe7enqIDcG0Ej1y8cMDjpQdk1H6Ooqe6Les/TM/MRR/AEud5byP9nSGcPcOesGMPMVDGsNdizHKKpWtuVlptAGiOK6d9AbeExnroECnZ87Q9BlXRf5pukvEbzVQHIYMWfOm0Ly7waRsSPGLRyCRMPIh3P89F62OIjDRjbsa7yPSKLHzsl3KEuqDgbh7usgR8Cknip9sQ0jFRmIdyocJQFR9m5t1t0BGQ0vOP26axPpS8Bl5cRmbU/Y8Ni+uuDs68jKG8GSU9WL8Z+ySTK1vSapAP+rb5N1UF+MMZ/aIbC4oDIVdKz386L1YUBmyfVzmoLD7X1Tmwiw42KDXJK3XxB1QvuVrE0xSrpv0ilSb96rBI8SuzULXMx9fcVdsk+GR4KAPJdobiYxDGI/l/yNGdQmRwU+iuI2Q8N5bORsxCaAFjEdWB+gDx5xONuB/LVwQMstAtVEnZwO3VNYqhRHTOQ4Ti6MJO43kOIh6yTCqZ1tRqHkREkoQt3yYijZdqk3akU8LGMnjXNzmtFuIsA5mo473O6kIu13E/DlAR+Fa9R3xj7X96xkWt+4r8+nGEF3c3cKJ+8jWmGSdq6uqoazxUrS+h6PWl2QDReERboQ1f26VfsPxuZmlnNwxz2OCCbSFBl8KE9ry+0tR+KGNfQc3hP4RHbmg5BsmOxpGCdCKX6M3ZdqJa0Mt6DnC8nblod7gLEQdb5jX2oyv22BpWM2twPdMr/QPcwkZ1Gpx2Gl7Cg5vzoGgLjwI33jSUawW3zc9zqwQpqBOgBjuOWNrSVwKjYyVKy2/sJvs9VBcVO3si4ewf0DOmKjAIMPvsmc83S/q6gs9RUKggPQXAK1Egy3rrUGkWI4l8A/F4SRDEHnsLkbXXarR2EBEatCrMk7To+N4JckAiBzQ5P2T9WLC3mrtCwJZrbJyX0tZ131VHEPWFUJn99nIBKksKvj2IaAEIEvsyop/MX/7oZqxELJZW+wO1hzXMgrCR/+m+RUBIgVtIL8BZEwccEwRdbynkDZYA11V0YtjIcHGAl+AHsl4RSeEaj+kK/RS2RN2x1Dv+M4IPLzNw3VU/D+NEKj4JmNvEHCXJg0j9h1Oiwojd2m2ko2/ZcB3RxNwSULNOj9tQxJ0fNfprrHheGhdW9JemP2eahV8HXHtcr1MrW7hmqj6gr9Fnp8iFzO06n5PUW3kNrIk8soT/8EiO0tRGwmOgX5vOgy4MRTHLOWBRUa7hnYNtKZ6x62E0xwtt6EyCogt25oahExQ5LfbiLflkI03kNI+Sith2w8nb/szlx2J7z5+fq1HxkuvWiniZuIjLV0ENcQ18wK95KmkinWhM4reRpuKFUnrGoQb9a5WlM6epzJt+av6lEsC9UKvGuumSiRO0O4xXxZI+aCe6nSYO3eFhZ/a/JUlHpLJsJOjH2yF26PWN0jUbF99t7xdmxuDQZL0PWVmohQuDpF8JasZKsTU+PeyF1VOZy4dxa0Ud+oXzEj7BsmdG2wlgI70DQ6sUs8jjbwMwZM+gNEn3G0zBmV7UbnikVctHo4vISwP13Sqdw9ffpkqfOGOWibgVCUao9WwSd+lYxyTp0whWCTv3ym5YZ0/9n5BIbuHrHkJsP4QgMvxD72hZfVCEVfkZaHthVeTGS+mL3GNGdRT7iceb66Nw82kq6/MKdyPVlT7vDKMMIYPNWzSbvQ/2hTh3XIMcABvbwFj529l0PzhxDvD8OBUMPcHQba2zBmr2IQDGEG2usqul5TC1cW3Tp1SXlriC8qNgJcDkSZDyHTd810zcfPXVsq6dRWAbB/IBiM2rH9vtXEOBe1l50fUfBKwEIAyzW6GQ/eLmwywKGKq9cxW3/EYzOvQA1syrMxJeEUIy+iZXtKEGXAmVCDujGTHJfSyfURDCht7cV2Y/loPhnCUFcIxVSbISpM3CQBrCcN2x6FVQfFy17FyH1SzCASbtSaDQal0QqoeTJ6Y9W7gn2bEDlR1/+YMRW1mClV8gZHrkDyX71dK8TckVU0Sz/f62Iy2zpE496hRJudyOJFi4TiU+1w+5rSTq0hn0DHIPKev2A0p2b60et7EmpsyYRKmsk82O1YWF+mrW1alCS0kroARSLvqe9DIHPQiTjgsQIyII/Rw0Wppms8KkmCEDnu18I9nPgm4Di6Ak8WYUd38uI55722+1O9ADgysWp0ojKFcKyT/5Eqc2bATtu6YA45h9x59seTBNgKmLMZyWyA4MhJ5CG8NhTBRChYgKYUVFzm8i9nTqxBD0xGy219Ub3txLIXLTzbBCQMNFxyTR1cyxwmcMvJC5UqYIAZ4LfKeyfjQAL5sYFMU9j+YwTaw7dqkSdTAIwYuqwVdtHPOLgREdxRvQ6wKUfZoOEqcewW3S213MDgOCxKf8WNNpaUHXT5azjHtA1UtVHg9wRsIaTduYXYaVDm4jzDBm4ajGQbZL7axduV2BItpG15aSt8yNmhdUosLkUH1cnjp0nh0eico1QfgcAWcjYe99R/+I3sqEeO3bAEi6jAPhqp+Qr5OJEdxNY9wU3vdThuxAcfvC1PZO8KxnyA6Uqm7rC/RRGoqDbP5k17yNhlAvLXpfHxLXx6SveQhAIFsPPWRRo40EuKOtpZ1LHHrZnjdCWomZunZQ/1IfoLTq3n0WUOMqJTY422YoQNOpTR5LSTiesRDz7sdVn51IOl09/S3x9z9Mi5hKZ3LCUi1HQ1xZYCp8mH2fD28VHXGMjH0hmzmK0G9auFlkts+dDUPmVjUHmMOWoq4+MXQJjl/428dA0HT6Z3pF3Jui6lzzlgRK0zFn8VytezKRQaTMjlr36v6FqIedhUv5rwL201mkzjDc/1dQhYMD/oESSrervJV1BUU8bD6LyNHg4dv5MGsZ655aw99gCc4ptwa0zj9aNYIHC+Xz4U85ZZAL34ICvUQK/kkThv0Xm8MDRWqeyrHbqrsqKmhMXZEDJSJbVrVNTYm9jYZqEowsgYLsaEe6QCDvU5SnwQxH+45Ta7jK0QGPbBlisJ0SjuxyNaGOnmMCAsj8VR58jfZb0CL4XF/t6hAEX8t58IFHNNON/uE6ptTt7yNZRVaBDa6nmqCWdLli6BoSQcEmqWr6spQRIpEso6zYQXKrpeIg+WNvpzy8K9O7Lq+Tu2a398qogLO1T+sQKC3YC4IzSNKce3QPIJ+XOcql3FzOtouUv6Cl4fmcU88Lh4jtwSsMA1SyeW3vT57gV5oZ7DLDxijtpBDZ1FGjns+WtnMnD+a2F4GSEia9uxfvFlpMdYgcdtu8AsLcDyakUSwXQW1l3ZzKTuunQ7lNINu1U1QOG/0JVhTSlCd7xz/N5Chy9ZBtpp86vte32Ebmsx2gy+i+0v70t3XAGDSuxc8FMEAWYulr/Lmene6K5xiZB6NcxEKNK6Zj1a21Qd7R8Fy9XEbtGtEjc12+PuInMzOOx7Roa+VD8cLCJB5IsnjVTFUzWnIOvOnm/DOa2MGnm/PDqtv/gbVeT3tkVOZSvO/uSB0BjzIbHoSxbuI33+4hhJxQhCEAoURmm1K9oJA/OR2ojRzDSMoc57PkhH9Cj8awF/q0iHSSPhho+3vMGI0visiW6z0F7dV2+fMNX9EcW858kI5A5XZXwF3EIbmWDk2BxlCKIQvKvrZNgHxjHubQe0UDeRywiVlQ8oqsDkPDs5OirIQ8uMWHNApWX3ZcjtAZatd8fPKCHUD6iGg5DbicoaR0yTbZfTULijZMYCEfMw38e62ibDqRp4oP8gm2A+510X8Dgs7UDM1qsxoVzlhaUGDpncSwTbl7ZRwUDpGs5VBWKpEvXnxafHd0OCI0iOpNMva5tnEhYF6HcK2Cqza2Xz/NO8MZ+cNvoqAEDouuuBMzy97D4wyjZu8Og0mv697d6A8/WqqpV5zIBrEh8X6tasXoQRVagqTPBSIv2vBQs85w34yNzGhZGyyRbJm2KK6S/+UHc7RxC4fLuOyGx7FHg7mi1GQ9XMMAAGAFecUL5EMws+yjR2qEe3dLWLlGkzhi0iqGVAT4CvpPSxiyqaDxMU+IXn5QTEJ4s/+OwgLukwBbIvUBnhjcv67rUgHBn6npXG9LyDgi4ie/ckSRYV842oF6mUrpqs+ikgI5K0LGw9fduRT2ZZBvJ+aOyntqIgMQIgVB5TwtU5/VNoXr3vE+zL4sT1aeZhpRHCAy9blrbc7PTg2t5GWF28EN50Q15lg8cbz881RyT+acMUqFmpwrPhwh2VbjRYgkqV5ddQ2/u8v/LovdOdCkXAizcY4c0+raGvxNdJhAJus4EJCth4dbp7KnP1aK2JjrsXyq7Vt6sob++mWEWDA81AoXuEoPffOH63uHG67UNNFjUzG8Vw+jd9pw1TTWX8zHnsdxQtnv5qJKAKTH9nxpl/5+HWp+UhnUc841tsVK7x0D0gS48QLYwaceFG+uFdb11VqLnahd6Xam+SHYDb2dlYD07FD3Bt3bPk6Yn71QVQ3fkSHcqdJPqxxGDXUdNXYzfnF3QtxM/lH8Jimd3FCODify4Ak6csFO2bVlW5hLi2u4F4pPSUo+tNqYfUy+f+JykoMNihWpJ0MmKE18wNbi/R7M4FQkIxF7worEMgNbNSYqyyVsxaDGYINkX4tiJgnf7OwJouspN6NHlW2+WACTaqDcyTJZbs8V+xlHXfpo4R9qTRBwQUs+GyncAm/56Ih/txtXes/iaQIJpfbcwjFNXTkpO/0MI2/0ZxM785ApVGe0JLHmRy3eqawD+1hKrskYpMmDU8ZxeChv2Dg0gsvFIetzGPA15Gu7SU/EYAIc3PUPzrS16otayDLfwsb2K3G5Y9hdKbaq6AG2R/CwY4qYmWS0jH1atOjAWB6Lut3W3cw9rdlq1ssz7g8YeCayYXbg+VuMqsmqCcFH3hneCtRKs/nTeNKwYVyxfVk7FkyiTJKX7k2zUwAq267409wVajZzhsDAIa8rrbcLNMtm8d8xvuHr+/7mJqLwqntX5yp3UtUw3fj3LRgbfuX0fPwMTtimnpHaUiuPnyeZmF1Ody2IGobKcro/XWoTfOJBIIdiR0n3s6aI1wW9YIs/INux/IGNK32jSXKBRWlwmRrrlr9hXWAtQS/3GG50ch/ZfLV9iNuyDYkI9692E01V5ZsOcWqhrzMGHmJNvKc59hD0JHYG0AXo9/+DonpTRjR8996UyKpUqWfA8qmSryr2mh1ZrGLMnLEopWQ360iIoLeuJ85JZCoXVeWGsmVH+qnim+EwiT5cPjSI3CW0wcJQoJN8sSHkqghKkTslw7zm9ssFLY65ANi67JUs2HC
Variant 2
DifficultyLevel
560
Question
An unknown number is added to 2.
The result is multiplied by 4 to give an answer of − 4.
Which of these is the unknown number?
Worked Solution
Solution 1
Trial each option:
If unknown number = − 3
− 3 + 2 = − 1
4 × − 1 = − 4 (correct)
Solution 2 (advanced)
Let n = unknown number
Working backwards:
4 × − 1 = − 4
⇒ n + 2 = − 1
∴ n = − 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An unknown number is added to 2.
The result is multiplied by 4 to give an answer of $-$ 4.
Which of these is the unknown number? |
workedSolution | Solution 1
Trial each option:
If unknown number = $-$ 3
$-$ 3 + 2 = $-$ 1
4 $\times$ $-$ 1 = $-$ 4 (correct)
Solution 2 (advanced)
Let $\large n$ = unknown number
Working backwards:
4 $\times$ $-$ 1 = $-$ 4
$\Rightarrow\ \large n$ + 2 = $-$ 1
$\therefore\ \large n$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+eSI3pqSBher6YI0zjblNiqtprqHnU4Ckovn5GcWPxJnQJsbHsNo5CUCgK108IHcn1mdkXOgFz2X5S+/9egYFDaGjOg2J9n30UIljeo0U/0DJtLMwg1jShaVQ+bkQHTpf1IV5DWWRocX5onJB47smg4D9QhsAiGA5WDuDpKg2brOeQlYmVL42Q5NCL54ildorAwQbSV8GAEYQDFevFpLPKODch9NTjgDV3vRA0NFc2vb6JUBo2+uI8GCVpbK5MjMKP9FBDPEwub7LLMvYgB/xTYx7ze+QkHYy4bH3C5uZ7/ZJfRGZuVAVUmpgMgQoH7E/W/RKPh3zwHN8Yc0np9RPKp5Sb1bIGmi7HkYrxEk9m3+i8Kfq+taTMpNIkKUFU4W5dWvo2DpU15+FD66nAMFerzhHmZfm5Kc7h/WysLPhKvzEOC1jdifrgYj5O1KNt1vJ72MDBfQsqY/YSUZ2fpqUByRf0vjWnsb6JMf8kVQWcgeczR8Zw4giSVLmgRiTaAsFkZmDYrKFl8YL05rpe2fFZ/MNVf21pORA5bJNIj0U6jTFLq8oQEXxF3YsOSqXTyyiIxAPlxX0sTwQI0jDQMg4FI700Q/yyEVxweLAlp373q+X21Leaizi5s1f6X8Wpzvszk+4htcwVXGZoN0PjofGGCOy5Qu/uZILYRvxm/D40L2Dga92VTkWAwqBfYgs1TArGDEZAB8sLffb7xyGLgQaGkoiIn9p0ktNC3gc7cagMnMThAnCkT06/yeyZ4IDVghETJP1Xpq2+fy93JZ3LPzD411AcY4Pcm5z/tic+DR7edS/TQaJiwe5Lqi7O0lGr3P5rk1iPsYuBu2niYhXkwdilQ0YYIzcThWG7pUQCGRdywIL43nlZRi5L4hQOH9hH3aVidAReE+6MoxeKxyjc9pBqfjWlk6/HK9xmtDFeKQYRwTqp2PZaZZe7CF5Gw5yIwmG7nfuzYC7CKYeiz/XWNhhP1jyuPVwaOBnjz3NIWAnUeY7+5JuGzvndAzfvg3ZWkm/Xu/zc+25ngNTS24cPl5JJhsnqLhuSALSin/p7w4GupwAWT8zZ7+hKomctpdd5gSUuso2L4v9kixdYRFMMPMKLkSl8BGIOuIivYoR717ScpRcTNUDrEmTI4NyRj9vZArKewFWUwby4PgorFHBhJZFehxBKi2CXvyBMj1neLatJiasPI4/GR5ZjFWW8mZNF36bmRy8m9guotwfLZLVxnmfuUJ0sbl53pdr39YclQkwTF+L57bVoQ2QlM3q6u760FZz1im34uqDUlgTFtV+NbvgOfPOxcM7rkXklZkcd9ekUqmnxes65QjyvvWffJG8hlKorMORq4VNY4OGucy7lLZX+MwLmFxtghCFPUqzA7iJ5tCHuKQxUWgKhuovCBAqJOkmYFQ/ZZ0gebkal/IsR/DIo7GJkDHsprF39HDmkFbARm/3IR9fxMWbv1ZZPCAiZke9hbXCvdxp0CXS8h9dc/ptzah9VJvvRMPhKEOmLbE0Z0BtaWZ4B3y52DUQT/c2LghGmotKma/kzlhYuULgkJwGKr18adJ3y0OqtFWc7iiFZ4UKnhmmk0VSbjOi9qgPdwWg6qRKUjQMKISzQKnfK7VrZg9Sn21PmCa4CFc/X7ntDxNvJ4P8icvp37p/qyluGffNjoHUoEnzrXOsbs5tJaZ1Jwi9M6RWQNVuVEGEND0ZeFNoOJhSDz2huc9sPAEHKOiYv0aGZ5PrjO1m19GZDGTFoaDokwZ+lkRdlvf5o89m6hyALfEa3EWE/X/lDgn9EuDpCDu/7HUdwv/Ycz6/3dYusF3/OgFK3jaEXcfo5WBog20of/WhqTORIfibduk49wsUEs1JuDfhYuxqWUjQ2cAehjNb/FMIfuKiMdMuIWy7FL+3nHbHvVR9u+JaiQvD90E2sFI8pR7hy0VGms84NNKeVFOqxI6tnatipCdxJQ+wGIqGP/NnjPnL3fGiXP19D6aOYl3zg/MIbY3fjMBhuQwRJuk7SUXXSN6pBw3OyH3LMR7cURF5RGjUAM6jCqzYEopOBD51NdD1C4vyJjtoVoLWom+czTRKuZHU1kISHrlncBa9aphEn8KrXbP/ehgV9uyUHp8pCxracMtgZdb0tnlk7tcrH9QWRX+n+vQx5tRTEkDYN512WmWMjQIinmT4ZU40YBDYpJhYMSHPKy0NCYfPjyC0YkUdAeZVrhe0mxAZjr4vEsWZRMT5b0H4lkT/9RRZnaphvJa4prswGXeOEI5QHdxguD5SolY/6aaJnRXVOAoFW0gInK0TmkYVET/B43MR95oywXRX5cqsB5+2N9UkvVMLuAxeEpH4OM5BKOhQbeJGDsrxd/7DYAVE24FnCtckvoSxbvBCTfMU9yezA82glxHVBDCnkIgJ17Jt3EHtpS48/85ZtFwn/QUJaKZrcb4b+fhuJsOd9JZHbONhLXoGWz8PI/XD3mnJw+Gj1YqAUCgmiatPM4MaTrQXg1VLR4UDHxU4Xov3qLqovLM/ukKNsL/1nYYgdiNZHACI7WubdSWLpS2e1puwZUVmFuydO3UZdYTRqjtGT1x6M9NlSULYBXoUaZTuIshypW2XmBdxLzqaterSrFF415W4kVu9GBB8U4T1acbFJKgDrfUh4Cobh4gAgG8IguittWJZxywPWtrP95t020Qa9gLS3uO8zGs8AgjD4YrMj+yK/4IPMgfUiTqzj0JXWv36t2rOPOWZ/g1xdqKtxZXmlWlr6ZbdepJmgIm7PiKlqP+7vKlxaQs7ufuRuEFqCeDcExTxbAqYhvyAlKd37EqI5JOcbk8DVTTiAu87pI+5FOhTooJp9JQFjK/fP/fSz8oHBrHP9WbVkAAc+ZvofGgz7oEu3Df2pHyzkYT0evjl4qg8KK/zOmgxaWXjQOcnKIsg2XlXJQrseTrkYU6HIwF4b9AM/RDPBchmw2z1FwcudH3Vw9UpMacbtesz5wk0m/smqjutFV8oxvM5v2099wfQWB1Q/yVH8F7EzKa0wwcE3qPvm6MnMGQLbC0UIJh9H6ObmB8MtQXVXXmDnff+1Zdj0r7MyqyUerLCKov9ZZ3zTv7AHOjFFzDZaYn1FHGIWfdFv1NrwVIl8SoqcwBXyrLrkUXwaQOuV7kAWum3/m9o+q5GzK3frwLhMz6uc7DbCLveliibJgHmGaDnOaf/zSv1vNOvw9wB0YFeOs8X+a6aYkCQHj+s1wzJe4M+mDj8p87yhCdEYLpOkyh5/w/VD6rf8NNbjt+51jDfZLC1lG/o793o0Ur9XN1jLo+lkTetjVgi5GcjEuEkUYfItj1rNhu/J5hb7WxrG6gYBpcIB8uOSqMpigLMDsO4SPpWj2K+ZL2gpca2p6uNnlu3u7earByBcED9uqeYmh831VvqpOfAPXIVvXwfVJCJOrM00PXHvmuixzfXQLi7tzeRx3zPcBodPr4py6SxZFRv6pyCZa3h5uqHbBep6KNS3HBDaBtgRxoWaEeLzuux1avGejfNg+XVBT/evEm14JCba+N07tDeX3Ft6s9CUlD2zVbSs0Iar8YfbItxfQWnY9QwMnAmO/Lm7xxPNcDPMwM0HTT2nwoZl6jKISpljKmZglboj2iiY0V/bk9GQ8aQWdgeA3Pj1bPxdK3bguZ/0GAreEU5pNGFgE8aEAlHQ5h9GLEt3Wf6GvVQ/648R0zmtXlgjNyfE1ROeSMjcaizRy7mKKOY0JvtzmD1DqDjOEuU+pfkF8CDjrvMjqQFvyp3FsDW8UUQzQawp+1TGSQMjQNNcPIveTwlOpgFyT/QJuY5cDcfyg3qvK95FYSEq1Hc7A3uQntBRDuLiroe//nBc3r7vnB+bURI+GHRjrQjAGVV6wKFIcXfIqW+AEn+H9vPm4PA7dSCqOjvY4wnkEEiAM+N3f5UI/FAt67Q3St5261uMGKc5QbdUmOhxC8eLSnneBtEFDRen7YJ8vU//+DHTdcYffdEjH+hSxF1T1xJZ1T08+KkmteWs++FnjRmVmcqMm7n5/0DXdJI+aC65Wz53YVLkitJZOz8oKAoI+1UAAiC9F4zbdVF+3ITb/ZVj1Pz/wB1uOyi1TkW78NrSykAmpQ2Sdbr9xMFUj0cVhqm1Vl1hrIP77OC2KOf9KTz5VKHMCodfwOjAEulU/ciBw6xJQ8TspKU5rZCltOKvX9PtWpW2DOzf/g7PTlCRDK0eLiMJe2IYHqSaoR6mt/Kkku1zRYBb4RsaId9Oe38qjO1K3ya1zNVrU5jkbasGjqtKMXAB/J3tpwcPr+VgDWAR2AqIOFk6H+lnuGzCHT9Cg17hV2Ob0330yl656o8bYlo4VrQjzYwSI189QTY8bbXFwl2q6B1mdg6zD0JvWiaCJCTPE9vwlShL8gVtUPiKr2NYd6jY9WSqvTtYF4O/WLnUMPZoayLMdtCqxZH/Uf6bID7UkT1/yPbCmahd/pS3qOk5zD/wc8bAJW3Nv+6s968LnE7pBU8D3msTS92sjk4QmyNebsgqiycCtWg8C8xZEx+FsVRxM7yAPCTOitonQnOlozmXnoHLADJqz4m9EdwW5IwHd0gEOr4Migw5o4MOHcmx4n3y5gBSKu6ca/ZlVhUer2eSDfrkvaZgsdGk1ATNXRB8e3vV3qgSOnZdJv6GkYwcB2Qd1g3cgK+yKk+tSWF9N2U2cEpLieRwuQYDMuF1LK+B6fomwD5mzx7ahL/jrFuq8ddS84YFJNKbkpyGF45Y+hTDAxzIrlmTwDERiG46CNCgvQfqtkjx9WX0oDgYqJqZvYTT5PHC9oEebljX9HcKGrDYFMmNed/c9fQ/SJyFDbmQiLvdfkD1JspLq+aES2BcMUn4si/MuCMvlUisumsdxh2eg1ul2Fbtz4D277FyTgsGkRk4Bw/G9sieBNLp6PEgwTfVhvMvA0nkY34bhkScksDRa2POJGtZeyp4h8Qw7ffzllqPwjNFFHak2AOTnQZvscdRGWkgizd3m5ob6Jyy0HvOjLlr1IB/Ya5oYEkyoE+uiO6I0zoooUfYjci6LG+wOrKOeinlNbZ/cfhse3INQFGancEqicGTRe7mFlMexh9wxeSGpusk5aNwiRwQz7WkERmHqWs8TJqPnWaVNeauliUwcwvA5YZRwDtwT0lgS5ZUpdotGzZO9717J6j+x1pJ/UTGfqsomFCGD+pTSHv1jPaOhD9c2ApZS5drFH33ubo3AQaJ52VrtD1A0dSxOozXJDdgs2J8dTMFwjrLzrG0WdM2NqZFf6j/ioxk6oEtQCHoE2bsCF03o7LwjrcCaYwAw41WPts9YrGYZUZopcIXP279fR2PeEX7F8TZq4a3qXgFj7HCn/zJHntB+ClMG8stOkLcHfGHRaVZIQzX9WmV8R2WsNuiuw6EpOl9/tRYBfyNa+I7HB+FgIoVORWi+HOaZmYRzZypPuNJsMaFYt4Se6pQnzO6o6Hu8eE7UqhwftijzveWRWi3b0OBzadX7XAJ84XqZAGNTILv5We0ock4wZqo83b9Y+x6RfN/5WZOXW+t2wWCrshtwo9uw+I+XEe9Ekj9na9c0JL+s7XhfsSK77buDbuFVCPYqZGYejPFX7aNy3TgFQOfL4SfMZhfiaOE4kVZUZzCnam7RZacg5SprHbkfqKBc8RqoHZEdVgclfUOXlSF6EGE5SXe7tMVlKdx8vlLn2OSpcZECf0kGDidLsSY5VXgpnupLB5QlWNUit+1pjVzORHLoMv3J3lbTzeXLZtTLYgVHcJ9RuuQlLBhJO3gtRR8+V/pQkkf2pEcbYj867sMTZazLUkaAWkqt/OM5LsszYTwXiCX1+ijrzqM8mZuL2jEZgqO33TPilEUZgt+pOuLbvP+z63MyfkqhI4hzSU0POhVKrGdQGFUVaQl7642saIJC9TVg/p4/pDUtmbAPBS2ldQsTVV7pq13IJHzDeyITZgh0cjKVt83/MvnljdWSkt0kiC0hsiT8/IVDjHzLwKvsFr4YDs/XL9ArLvEOlYeJncTyWtgQU0D0wGvNn6ck6/P/MTVYuSQ63BOmSawREjNnpGThp0749wmJynZlnIM/Ctasa8NT69B/ph/+/D4vVGhegL/xuD+8cSxedVZfrmNPGRNqJRnBDuURyRkcQlDDBA/viwoYTMHdil0/vnJXG4iPvNKF751vsWuLEfE7RNQpnCf2WLpOu3Rmsy5dPXIcIUpATHbyJOQ+bUMswXfWfQMKYaEW5BfDFLC0QhJ64WOHoB2FHjvJtMODT0OEjPcxfhlMBfHjfb5nmpF4Ou1YhZJ//P6LYPRv+cOupRBZS2R6Y8LLFRdXSULnrc6/WB8Es66mhmwyDSrqe0N6f026MoWkTq7DSJs9E7K5jo6NEJnrDMMEB1fCahtshLL5aYM2P1dXy4gOVdCTsXGf7ZvCovsEL+fDK8FzX4VlOQXYNj8+fu0ke+C2qzPGWf9G5nwb0JW8J52EmMFzZTowjw6JBLDuJ2aSeV2LGI19mTNZI0em7Z2kB4zWFnx/91K50AmGD8CQEUeHSTge8nm4imxJdwB97li+Wsnm+0KkfUReYM31raSImrkAVK3i5uxKKVIomfwa520p/5cIFYslp+peImBgUEub1lojcsN3CjR9M4X7tc0k9KGo3VvyzaKbQ1aFuu/KBKqAgJpPEBwOjmF7kNTA6ioGW57QZP8EL1xCie7f0UsH8Mdn9b7KQ3wR+9C436p0R+JxeFrSgzii++OmuTkSwzM4X9Ml3UuvyF5Gyr9gK+XXQYPC6VnC90ZSJpKWaX6ub2Uj1DVKoVKMpfBzHeJaDJidG/UhyVkoDsHnRgIbEyixKA7jS0kQhxhdhj7ViUv66ZtB3ysM2ZO42oGzpiSfyEna1eE2hVhdLjB8gKLyFFzBwIxf74RfALpgbqsEnJAR1fMBSV2ZHTM+S/1lbDNdMZF6/Dq6k6Gx9RVvX3lpe5rWbHXQTuAHGF3gcA+CVdkQIXgvdWV42ut3zKckwGiR4VAhNEu368pFjxTHEbA5fCYAyC7bZLqRn5aQ7m91kS7Dkq/q3N+RMtJS6rNq4TIAZid9mlIpu1Zmk6LIeUQxxGIaGM3m38ljS/x5YWR8IzceE1aAWqk0tafsqM7eTGnhkUU+Mh7eCETiIzDQlK/lZpw3g+LMWjrR4IqMK661h6LiIu0AEFLO6GBsixec0SlL3NJFTHO8FZ4IMbnVYDAqxTu3Mb9NXetgpIqyzR3qp7sLn8es3aPyu2SWK6K5oa/pB0EyUESuRsDpioS9U4UBsfP4ul7S3a0RmA70pBKL9IPvXyD9AarofqNU6yOkmLO4fOT5a7G3zmB43XzvOmRg+SmlZJbGg/VBliycTmXszJSGxOMGZr3SQNn/SayzD8RZ+quLiJe94TKDr1JO2isxRz15+c7DXuPr//qjMl/hrKa5LlXg0KkcfmGx9foLW0gPqVmwb/kY9SBRHyKa25S8cL/p6loTfntDiVw2vyh51Oi9VmF9kVSxGimRvQ33QyYKoiFTG8le8uXSyMTkSH16ELzthzHsTdySTrNMdBD9GwtNv6fCDbcz4Q1J/OQ1/TJL1wnPf8yHDOE5b/4YIeXv6m8smVntYvuJBp7eIEW+f13dNkoOUuPPZ05Olb4D3SoiJL4e9CxYesYjr+4h8KhJ/+7Uj/jH+e15kEC8Z109eBqAYxpFjkOR/UCfqnKe7CzHzrVGAxWF963CeiynB3k7Nxlpt9VWu4UBfF6jOFBaID3Mc8rOmxp+awx6LUJn84Y8LM84askWMT5Vz4l5OGRl9u4FHuHzX2LtNw4cajpsS6yr4CBKWm9tsFIk4aO+W58Qq5eVtTLLlYkFRMT++VaTf4pJo1Bhv3xDHSpx3RB4NVwk1spGloCnuEJu4wsYIMlDdmKFUV6LwSz/u1FzkXxhOGsqnS56MPBwxob/fp+XYc1gQKVEmHxvugylB4EJzqJx5s+eL/wrP6LGitYYkmQ3va87tS49HWcA2gwT/keaIdXIczPrGG/yfXnA0z3EpIEg5O7BVyVsjaeHgrksB9P3xhg9cirg78PLgNaL/ZR9hauBPI4GJHr7JdoDn7N01WUOSQ3GQJjs+sz3HLk91xuNkTh2+XaOOZj0wGlx10eK4TluF9DA80lHTT6fpWhUMFEkZ/kVtYb7pGhBYM2sETupX+Yn07+d1ABMebWH+QpH4EybkZpreIXwZCcLzKBD9DwymkX2/cPyy6NCMG6JnEx09HdIx1CpJrugg5TVGgbk7qhCFPYWzbNW/USQcTxur4dSmSV0EL6xljfwUjzzz1oEJ1pjA3gVV3FeMPoHwGyLVg+WnlXBByS6CLbiPn1psKGu59CN4vl9rOErph5Ocg6a6AzbkNU3qhP3De8CbNoRf/23kSYTKqE9JlKhU5YzfzOy5gsR70zVsueozTBdxQUG++8kjfBT4RR59p2ANjQeqgvtXJkIbkuU1HiFC7nB0c6sP2BA1lCtIbVyQvxiT0GO3iF5fe0tAW4KAWjlgtVziDPHgcpj9qT/yEHfxr802Dw2MbAtCjOycKrNn4dnmQASHTDoUwJ6jL9qgHialwGRimM59DiS7et8A5RFHzu4nHPzTXfgQHhaGufxoX91oxz8sTPppTemOq98I28TJH4lupA5hnOxqXuKUA5s+RmmSmxdtu0peslYhkApymjo1d6OIVhbbVPA8PZZczk/pTsTjOj5dkdU5Ck8gfFl8vaHeWUZPRzaLmFTuBit4s7zJiOzy7zQH33FqVwKg9sE8WfmEl6/PUQdCTzsQw33CdtdUoXS/muemd/Zg3mF9MDB6r4Cu3ZMFvFa3g7v2F6cjPCo1R2kJQJ313nDYXZMepLE95wgR7GvYW/cwdxN0RD2Cp1+xIU3m0N3TzlboCHtOOLR1HciVbIUz84BbMVJ/k1IIrEICRKUz8vSule3Phg5/MukXewi6xCjH7KSWcuUaK/nWixTwSQpASXKfV+3dit0jOPiXxAdwMKY0Ef0nV3p//UsP1ME2EGBFvlnOviJPA/Uv2ltksQgZ/GAmeNRqF0kpqGtm1dGZctLW1y3Q2y3ykR+N87dHJibMJhr641Nua/2wrCb/2JjNzUwDaIK18UK4uk21Y2neEAPIOz/29ofX0UWYA5XyqUOZqw8wOuE5F6y/hgRM2iKHtjLMsUscefLnJCfZbYwTQrQb6UGwLlyA1ms1G7zAjrCZUe65r9zbJnqe2BJs+Ro6DgAHBwL3Z21P6tRuVPNvUCy45AZdsjYQ2kwHfkI4HOaFgHK1LOSTaZI2mGhBSEQ2IKv+wEzY6pbIri40/oMCsc2FtJjtH61BpherpLZbhSi8AcvuOYdVzvD2oXVQ87n7QrbldMB3sXQsjT47sbjARjPN3jjmKRoQPCtpH3BStj7q0QsgeGRf6fPegU5/UZm8NvK1GqRaf1yovV0NC2heomJmKlYZX8JGbiv+wH3fM5KS5i2R4q3XN07TygBc+gzJrJnw+M9JJYFlrBx27fP40s1OeucYqqwQf3X+dlZJhQ6bY0HbBcSyazZ7ATi8bXcYgawV0KK8NlcpECqUqK3bGPWmAoIgJrIe8EtsMuh/b1V3Q/4q51SOLjHX1tk6qnuCQxTP+jum3+nTIPVm4ByMzErCcPzqQoAOlu1hHB+RskTa+c29sI30wdsbNRRqr/pdCO9VOTa50wOZEY909x3lIZjN+sF4riCiORHG11VX4KmYALXXoEwU7eY9O/8khvWaXp5TIYdTkPeNMpW+p5mvSQH+DzSHUP8FVFdEAX1yqft7A8sRzKCK0Of+P2AWFZb/mYgxhW8327meW9Qgv6W6d/d906EtDWuCIQ//nCr8ZMM9fYUfudbCQq6JKt8/Pjxc/kFn5e8STytX/DRlRTbDpw43VV+3YG4ogm+C35GNx8UWsegnkZ3vdMLMoBnlbawJDPhsQnVgbsVSb6sPSUah8GnZXsRiZ2p0oxsSksUhrKCxXZF+viqB+xse2AVinrVvz9fBrwr66u1MyHiz6K1KAi9DmxBG4qEaHsYPPEWhR/LzAeaf+JF0IYXOkcwabP/0qWPPeAg9XUrWktBhtOVoEx00aPKJ4G2/vKcgb7z7I6nbxDq07DS5S0v5LRpbXEE99w7rU4sCJ7GvKRu8AgMVmdhIhhnKajqu6YHqHTUfJWThnF4RJuZPszEB6rCpWY726SKdNIfDp9p4SHbm7IDHLB6zhoP75/RaPZB9iP5wppGWOlprk/iOxMNByPfugQQodxoDtv3ncVc3SAzve+7DGbBmsFQPHcRxtmGVwKxJGrVxN//Y+OENbeHLyXF0hocwaEluRJRjHOz7CSZ05X3oDK6Zmzsd6CNgNFNAtuzv+k5PUzHiv4/eA9AB8JhKdc2EQCfWH+ogEK3KTPy08qiUqyNoOdFuMFNQx+Zt8xGcetsgDcrRf8lDwob9oqyMBcKtb3SpNZc9iBYmBu4agfMqPKAYeruhOx09zXeA7mgJnVKqB0Ai/tkLVBPBYSSB3i3jyj2mFEmlSUrg1a6J5+n0z1dETH28E+ZBRp12t4BdOJ18jzbwHQcWUQ//ldFdveynr6TtRikSHNs/DjHuS+DhXcZIbUSVSUNfGVZ9WZuvHZIuCq41zzU10fhXWZmJ9j9EP2fDNT7vgzUE6fHgE8g2kfJdbhL5NjcMkB0mYmPLDx6B5qqecy1QDFUegYO+R0tRa8azHZ5dDSHMOERyFPDRU9+ltLRM7UUi95JXUI6N9gNfQR0ARo0TCN0D7W8UVDXm95ZoXqdFjgGqMvUmiuR4ggsurn5/8DpO0PDtdZBjyxJ6rNWkmN+iv+904gPvFs7YPiRBeHVFNGOig1NpwXgGYn0QdQ9jdZrWfbPS1ylx6/F8gP7Nsp22xZV9sClJCpbarxpbKWzL7lk6OdRgZ8U0SFYWEX88MduX9B+mkQMR6qkQOvEpBHtMGlcfMidUbnSDIMGdHTmhtp/y94tTNaTUfx+im41+g4QaQwFSrCK7rSRWCCvqVSMhuHgfnkQrQUugpJJVlp8y/nYOpr0sARcVLqopqeHPsm6eGT0mHNGB15Qz83yVZBKdosszkR1Ob4djmHpxAzTLnXJtV7szmyJLQJwR+usJXknsjzgDtIo7x4B9aqrapurGnaXGitMfBYyRB89p9nFUk0xTvZ6IAldTaHYfinEWFojj4zP2HJceydbu12NUfXpRN2e5MDIHesPdCHXhNVFCd6Mb8EBDwy+PRl5mwu58u2l+0OYa1EHMEqH/q3b/CRVa3HJZgqfhjc0ZhQujWkHxplPP9mkxFAu4BRTB+myW+oRyOTCGr0W/c0oFgdKYm5UI/ilakd+3Nt7x085iaoX7jfufbxdcAQJH67QKHw51UmMDcnRwoAl+wYhvP82Z9T3VM7kqBcw1Z37qH88Unz9V1uQDpbzz9D+TQ19dokNjbv7Zw/BmBygRogqzgM19yOuwGbKKejqMpuwHtTYPGACm7Ljol4ZoZfnEGFEmJUvzGhE3UPCJ2/UCNyrMYGiLLmllTjp7mlS1g0FPI1uDWdNAvYbmcc+icNtMXIBbdqvrAt6Pv5AY5keflzN8OAjdCMQ7gZUFoj98uRCH8ipmXuKxkEg7hPOr6aUmB0JPcYJ2CCa4Hxih19+aASJgQPpeiVLI9rnsMQJP3gdRfsc6s20yNmNpVk03HLFOMqjVfRLQAsmI59pcnK0xA/UVW7TkL5NSp/I9r7lypkTuhmuLIQGtPuU+cV4fWaRXtToVCK5NAPWdLk/EPvQBPxYZHHjC6WjuNVx4rvbQVbEPxsnjXUwPtNkS68h/PbIEQPRYe5pg3XxegPxoYwkm1ikxLkjAahlje+iOskqiPyoZV4Ne6QbvfveTX/J06IWgmj1NG2a9AQgUsoiRQdVlbKblJdBr33EuehWJL7Vjt02JVBJ/hDOD8/Yf4aBUZRL90gkO2ff494/ywjqPfBeLqgoJ224/ObKBBZTNmqfMuRALLhf7Uwo1SSQMPAW1KXe/kiamN50l0mbjoRJ9xapJuPp6ljp+1CXTcD7kawVIQiEsBNTjTNw5k0LHjeRx9z3lGBTirfIIGxwmhX9y3ozFsLZ6VQ/3kG0+PbPmabtD1s9yNJetqahSQ5dX6wmnHTRH3XczK94IJwpjVMWnWtYMTX2CbFzGWvr11HZPFSWfPtlnhCLHja84zttk2uqahgjWy/Dxmmol+SWjxQjmcF4vpkpEeARZKhjKoaftoETbV4mFYDajR6t1Q5sjOG1ud1NA+S2z3qthUAez7jg7PqmrMF9TqukASNabfNCr/7p9+v2t9vQyfkAwqgg73x+QcppGbqDZmBZJHnUukm3t9vBx8hi/XHyBR+BXuFo1n1InVobE47Sk0HhQHerDw2dVi0n0fo8al6u1DkjA+aXctOFw7jpnPWlNgQuibyv35xD9X+HWtHuY6P1m/Aj5YDx0x4qtVp+2secj3e+tQoQL68wa1/4cb9DK4sYpyuVZ6yBL3IleozEZDLm61HIQSbR2F7BevdO7gdUYr1adARcoLXaRAgcTB+bvTRgDfVuYYDq3ywTpNX+7RyyJt3ywNKZTc+cBzUqBWtiB6itXQG8i7/4g1tRxoT40LjFfhpkDa8c7769kk5TJ7ULuA/1TJ13Te4E+AntFtx7WDFYt+eZ3xLPikS6DMA4QAUa+MPTJTLlL7E9ldSIi50nA7QXt+5LIhpVKah1cwpZWkWMxJRoxiA/YJ5nYUENT3FSD77bxQr7eQ0hvyp02PaKxcuGvR4PfXcu9dJ0KyJcOgnVqy4xAC0v3Jf2h8EDVJQSL87/4dUKTOfZJysbwhWbTPuwEKbhADXO5v397t+q0OoBEHAVr74qfOipZdNNN2Y/fH1/oe9vQA4aUoT4Vi7rJBKxPaWEJ1ESoo1Q0+Up2MLeiyniAvx6fRZw0cBkRXWLZl8vuwOOHEII0if1Hk5NjMQ7BX8eTaJV0seQIHWdNDnJpSQIxVZTBV4oBrg/A3v3m+izNv9CjbjCtfI0pAxntcnNmuGpL4Ux2KPaSiRsdqF22cdMc601gKSaHa430eS+PSkIs02AAQyH3cvhGvwCX/KGD48qPmLV/t61oqjCjhE4R4CElk7AoY3QLuGLANS/Med+JriYo/gaYEKYmF0oYcFxQLnFLaw57dcCucTt1XUxEzWDboutEx4N4ahgB/SLRFiPEcIqZvkWVPP8LYy7WbdU/HoHtmYIGQuvaOalQmctxuPWH3WC/EtqjhMOhjEMPZJZPzBDzrCQyz553z7Fi6zkjtih7k0tMx4G+bzaB0v5P5jAdWf+Mua5MZnYfIq6B/kLnmaJPcVaf2E
Variant 3
DifficultyLevel
556
Question
An unknown number is added to 5.
The result is multiplied by 3 to give an answer of − 6.
Which of these is the unknown number?
Worked Solution
Solution 1
Trial each option:
If unknown number = − 7
− 7 + 5 = − 2
3 × − 2 = − 6 (correct)
Solution 2 (advanced)
Let n = unknown number
Working backwards:
3 × − 2 = − 6
⇒ n + 5 = − 2
∴ n = − 7
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An unknown number is added to 5.
The result is multiplied by 3 to give an answer of $-$ 6.
Which of these is the unknown number? |
workedSolution | Solution 1
Trial each option:
If unknown number = $-$ 7
$-$ 7 + 5 = $-$ 2
3 $\times$ $-$ 2 = $-$ 6 (correct)
Solution 2 (advanced)
Let $\large n$ = unknown number
Working backwards:
3 $\times$ $-$ 2 = $-$ 6
$\Rightarrow\ \large n$ + 5 = $-$ 2
$\therefore\ \large n$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18K5mSkq5HTqjHrgSnlTvFOtjH5bnA2TCWlCedF82vCSCjD3Eso4tpTBOMyAWf6Fk/DuxuhEY5n1HP0YOifUQEODF3ahAB5AAnuVmlAIe17V9gMiISnzglf2XGhBnkEfl4oCRWujo0O8F4G+EdbR+smkW09LSjQ/Cndw99lLgbRv9jAIZkCJAjxsIIZuKuFmqZrvOFn1y+EpW4v6az9iUTeR8p2yrTRYb44nOCyU4+d+3PW74q4lfCoBfS2pkNANCkn0BPdm9Bb4y4H/0eGFiT+D7qPNtxjK8S134FezQlqCfg/Etko3PUzgSmF9YYtRRwRRZ+KnSKucdiys6LBq030hHrOq3FXizt5NR3BjLif55JDxYyoFvUg7cEJVSiTiLertdI+xt3z0dReng5+5ZbR9un3hZQUrrz8/UAwxzAtRO1tInRr9tWRWTG5yPMwWbHyYze/vce88xmOxoTOwdW/bhQhF0/OYhCB+BlFYy3mjrq19E3pVWRuQL9r7MxVAGf26frQYgLjemarN8SotyNo+HJNjEG28XYL20ewjhrRLvtumU6L4mfI1sngM/rSJYW8ISOIn+9xSMTsMd3ZEnwRoF43L0/nQ5lFyyLM4M9VAQ3xZqUFaiZE1Ml4yUCEBhEmEV7hFbqPNW0qsDX2FTRdYG7xiToBU8fn+OwBcMslyK1+ftuLtCtmVhgzBtOfib4us45rO4HOpIQBCdPSSHMelA6XdvyfccT0ria9l0phcswmqMVYDVMggqTi4eMD0V/MpYB3UWdNedFW27bylt0vEeEspHcycPEHsEv2kJoMtd00939OoIBGJIVre/i/noJ/5EaGPICWYgywdQCRMxhX1n+ffHNYfllPBRvY/roHYdTj/ozh/yNnB0z6HGYCiQ9pSK5OSMZ05hO+56CKbsfDJZaxDzF1Tqu5BY2F1H6WZ2B+IiFDDLRBOYLnO+nZMGoOSIVJ/lM/7ocXwwGNgi6mux5AEvUN2iYIJrOYA43eXVuYaFK96BwddNQvrBxWPTwsZa/4Z0Upfaz7OuOCsUzXwEwkOYT2yI3V7xKJz+HfzyI9mGffQedLnUejoiAnHsoFgwHC05gbpwzJYzVrfNNWFe7ET6vrzXdVWfg7YNGZLkhlrEsckJTPgVb6wfOoxeEun8zA+iFopRNZWy6+WgzLPIEhIUeFvjZMh2Z1PKZl76r8ZIhPenMbzjHZscZaszdk1bQEW8Xg7Pl1UiHkhEJ5OQxR7cgIOJviu5zffDpkf2Xq9CQbqnnaJHULQg2z5GLUFTyLOH1W+G7agru2UXP/xdZBcT5ZZaZM+Z0NYyUxnWb2ZccPFeTZQ1eaFeuk5kmATNRVCbN7KIP/yIpKi1CbRPzWHpNulcTpzMWQTVTvkHdpYkT1DGk75rtyyrdi0b5TrDmTOE/w+imeYZjPlNWmF4Vwo977Y3gl4Gz5hONSjdoxWMhS7SXZ+dq6eVSNUTqVGijx0pLpPOchNxrdB2gyrqO+An7Uxq8FjQFZroG6cB28TNq4TMLcDsLLZSXu+uSC8GzgyiTv7esFzJUGlmifLTbg4NRjEqw91MVXYaUbTr9LB5uf7Be9AVFYHitq5RxfiGpVqMPZMM4a0R5xpN14Qh4QefNJX18+nI7giQe/Z6WLAO1Cci2FRFR1qN6Wxd1BcovGG4rTHb+qdZBlCKGvyVkqdZ7ZwPwRDg+umCW3W7o8/cKr3PQWBdhSumsl941ix1TCj4DMrCEVfEdke6LXY63AKjRJyERF7bwIbMYlMk4F2rgOfohvcbpvbtfu3QstwTvb5tkT5QPhSHJSAvC2HbVx3m1D+caZmXheeiKYueuZzONZnp7tayEqI4u62wy1NGcYwyrASBJQdg4/39RwNBZw3BoWg+bzt67xDnqR4T2XiaHw8/ftHC/RTVCkBT3FLJQAdVbiHpY6fOFSXXreFAGsA7p//jik5fmUN6dez4daL9RwTx3p2fK7HyFSqPjGpqtFZmyHJarserNGTEO04rzibNbOePz9U2dN6gA4PomIdChmrdGtTYHjU5J+9oIqMPL9QZsk8JZvKFJC4MP39Av2Ncpc2sbrIMfoR3wYnGZwMn2E2oBbsylURa4eXoY03omYCaS7ZofgiIDQ5JzW4/CPz4owUcsAJVBDfvjeN5j+YBSJM7IJWzM8+7Ztzzefvx+hV9KXVDtb00sbmwekkNrP7J4cGuhxGwOS6rAMo+jcnneRyB6rPyx2VMc5+qvRVS920de+xtXXYjsnkr+OLIiwMmCpjVF8a20r+T5Ku3EU/zvs+j3VjWzhRj+mhjYv4foStK077ipmna5vd/nx6c8n2BAanF4B9C7//5h60cYiGmUxLuL7wgvirFo1TMDxCZ/Lu85n0ouZKGUOjxLskPBtLUdYflbkUjHruVkCHIZBvVpZjxO+1VWpYdlrLFD6egoDwOIp4CNFxO1KWr0p+3ZrFNQVyauj6ShSNjNWOpMJAX2EQ8FWGfUoXyEHylcc3eLUkzqABcPQjlRoJMEnMzc4CWArKRUGESmaeRfV31yURCzVyav5EFCqtn0Wz+W5FuKSbmiX6AWZiHIsYLv/kozhvGwWaESK/yeelVCVHsqWoOqUcY52PyCyEBxGMr91CLsj6vjID63eOequT9PT4SYNj4Bh2nV9aaMOimZBIcDaPF1Bomtaohnft409YFmIDntRMxaUck02e4gT7h0Bmy3HO7/DCYB9aJXObmjfh16nljsZ+5jFXE3w4pxuYW4uXMK3eOzCtPVlD0t8Z9dIOSAhDJAHJU/w9ljH65C9zI5+ouW6dSXuYPhVstVm/M5izeojx37Ll7gCPXQvNTs4ZZHz2gRnV2g1soilyoIXP6ekJ3luEQ+gIUn/dDD+NiH/rQRXMzzR/bES/hfWYZMFTsM+ncCLz7d6ufYz3YgQiqo3BDTqc7oftczxSbuZqeafCQEpfby/syObDJW/+PJzu3c1DU0JVVk6pOL/UjxUwOiWrcNWpI61IRbKiS1uQxu1udEBonVtVhGOjHJSrGeCa1KZR7znwgXXQkxhgeqVXxKIN08YjgeTQK218XfwHlfh7tbdFhFKXnIlqXO+y1dPh3l1KIh+2I7DDJwZ5B6Qkq4AedRMgA+FQUUsBMt0wtBGEJ7nj/NSh1WaEFWgPAxdgak9Ov+yhTUHOoBZrjlfYbX6EjumNGHrsIPLEupxn41+hlgBG6kDqdVt/CZPRQYof0N9oCEwrrsIhm8deB5jfk2rVuwR5naEyL8glF5cYneHIEigfSOH9uGjgZAez2kK0lew7ktMdb+nTlGmhGuakQj3WTFP4M3eQwoOme0N2cd7D6yGUYGSX6Yn+p9846CP+n5NdH+a6T0BzRgk8VmwKUr2kj3JGG6JmBL6PJHPlmROTo3RaDvvFWzRYwv1ArGwNWLM79SWgeEy+6eFF2RaWMfBlr3nebq7kW0Gfneq39lWfqRBSeQj+MxKSrEjfAa1zLojIbG8GlAPu0SFBffsUbuJ6OkVR0VG2Xbted4gkK5ei8xmnBAzfsPBf/7G0174JulRBpVMGDQ8MRg30jjEUNjuZcRfbDwPhXk5/IFuPhVu5WQzp7A+4EOIli9nfuQXH12Mmstz1trhtJ54eRUGbZ9ckaJ1DW8UOkv33aLQV8lTZkkpoI4FMMGeKM/ex1YfF8H1tVdIRo0jQM3p23EvQkEbjEIPcgYTmZy1Uv9QwZXJAAod/JXvBKLaeJyAa9GMUdhQk69pXWEgurmFHnfIxF5/ivTGfSzlVhMttSI9YHnpArxx/xyheOypnfq8+rt4ph+j85zl4XA9uz5CxgMatFMkUUag2zhEDDXZRAPUMGNANf8H9+7w62NwWNflTjwqZvVUF8U0JjBzLy6lKe4yKNQXnNr1TvWKHrt9Hq4Q3rBeF378kKILp2BYPaYplKSMtKRkXxwVIsQrSll2BPjKivo783xRQZUKw+8Ur+wxgefmAv/M3opwZ/AxvuIoehDSVv88jpbh8R4PDT6GvX1NNQh+VrRNaFZj7y4DHKaeYugvf6VQszGuuNvKZWXin/OWf7fyWLgZUpvAwZfzyetL3ATLun23W7iRZRsLT8hzWj2oiE14BPKBQ1OQsKMrIQNxfHqZYpLmEDjB70ArP/ROvCUsVlxu8uLwAsEK6hNjjkmUPhj/8GwpfEnj1acfeXFYYFQrspUGBkvETr6ttsBqjVEKsnrBBifWseQI5TuNbjtwfrXCJZqY39zA7GHyFPueJG6FtUAsN5RzI1SMUJj68tigd5mZlF2STKMMQTDK9j8PGuBf1ul8FBnFhoHN7rz2TdlmOXFqso8A7wOgJ3M8GelF79V8WMq1xMbTUMTKBjFI1I/ICJNbLvudNL6321LgJ1MDw8M+i8aOFb7J+U9qoBoN9a3FDAWVzQvBDbRkU5uL2wqtwuyxig554dO6qeczBWv4AasY+4zOZ+mtOb8oycwM9N3VxuZzU7+YCiyRS2SFFNpQ8m12NaZdvwyKBuJHyYOqZ9UDbbI5FqcAoK6eWKtLDgRh1ru4N2kPWnsy6MwqAvoIzM5/JAn0zbosRf4Zv33LKmjb56dPbnPrvcVAnjxMOJFqHlWddWXFyFgTnUWV5cdl5JLdYB8nHrdB55YxvVCh4wMK6XaKYeiiTcovYw8ebqqyMjjXp/W8Agw0MjS8QSV/O1JpadbUpvjDUHghAZ8CbGDX6ieAWFPTBOTo9ujoC9ITqqbfbAWgED89rV0YogZDsFv4ygHNkziiqv+pm/mePYEkQWwpGlGJSzsOwB13R5dQa/11gnV/Xu0cdbXFu+HQ6lWClyUWD1Y1ZypzPgfLaKXK8Hfm25o47Yilv0l4gI2JW2lmo5ZFa/raF4vn8/z7TkfpoMq8LAmHaz9uX00atBhuPd3SxCPCfbm7c5lxD5A4hUYcVYAQD09QW30d0Q8hOQQYbJ/DFMNXZm5M74eWm/cgkZtWt4ISVBV2IM0K8Bcq0buSxbWMc1k1+7ebpqo+4kWu618SX5mDjkboP+/zmwyxM3dhhHnXdcVqTvvc4cRFtk94RbM6OzHdWOKFHNB+iqNU7rdnHNDaiGZTBvafzMCRnmXgVLt0f3QU+knEaa3S3GDNi5IfR5VJBpNjnTlZiN536k9HV+zfPbnHIHLDtPy7FeJhqpj1gwzmC66XeNQqtserA2Zbq+KmVwVWlpXoBoKudPp3xZaxpDg539Yp/ngcAsFKZz3bwkm8uCN8CdOgosX3gI1ia2IHOGVVaVH7eSM2jXChpafOymHczZ5r6gGR/kDb8BzNZ8fh225dOcAcA6DIuH95e8PC6oqKNA2CAahwuRyyBLNczZt5WeU5dtDwZST551gVk8iKi3UycNWEV1rYuYrlKT9sflSJR7YESONjelDPjRvGf0fKCZGxni559vCtHHEU5QcoCbOe4k/LD+zj9f9voOgUsi94P+1SOxVhLVMZk8IUp9S85xVjyxftBlf37s0Aq7h6PFwIwUmeClqXUwa7uez0Me5kjpRocF70rYc4EFfzWgGYaY4Cspsx5dcbbTHLgEUZ0xpOF0CNCQi58E2slwDnlQGbYVAjBDNoYjBXaKVhvJH14qwns2VLwfTOhoex7AaRWOFCHfQ3kNgsDD5NfGa9lKMcMndTydB1st9CmN7g1yDmCmmTtEnI+Tr0UMCzMXx6tXsJ53hO156vKP2XkpBj/CTzAKsbh8sHKZnsnT1lTcjL7MmFjt8G4pT5vP8dpIFdRTohg1pFg4JL9lg9sXrHYMUbPcTCMdcOnJfHRFTxwJQL3kf7yuq7zxCMhBwPfOiFx6JbGGN/dd+aPwvcLZ6+MKpibWElCTa+b0/HJc/rlP2DuSuDlDllbfLutlqzzv/Rq0jsiqZW24L/4ck9kGefHqTT9VJF/xXYEJ3HoDwUmqGjcN1KTLovm63fiEXALxjPaxvu9Eu5Nk3nOntYwu3037UwPwXqO4w1qcQzG52ZKRe+mbN2shByQX5CyehfG6Xk8YTs0mrXKDY5OdEfUoo+hfmaxxIIOFxCs9upW1xlJmjM64/KZaRFi06t3A4/otfhJIJaPeO5aOruhHMy1guWkLWsp6I6XYv5CFxFIWjml2pSXR1E66/9U2pjZrd1dwioINUOwuALRTbGgnFpIaZ4K4Jm43G0l///VzxtB77m8osY45OPe5IcK2SWTzU+RNv4Io7Lpws7jpbBaRDhi10I7mDLAAPH1ij6GIJ1/q2Ui3Ek3xuGhZAAvsvMWWXI+h41atug3g3MYz6XocQNk77s7YlsDQbE1UNP+hgKyFwBOfV7hAIyR3orQDoLOpFR4HXkyifccKecJTRDs9B22YLvVoMmJYwTPJ95KvxNFHzXYbgsshV/l8lC+LX2gJ7PsgdrkKoE6oRpcMqOnPt6OiD/1OcS/H0NeUXTogZck0ZIa89A5hPYgIPUR3TeOvmVLutPyICZoQ73ICt5p/MxFDcqhF49FhVLkA/T3cIKGeo4W/1Q7x9OKx6h0npyWJrTOpN1WmyJQqLwErAzmgJzHLOgHnQWItBEr9yOrThYiegevgmECQUlNYeowqS7jRrSOdeYtqxJ/uweX1yGwjlV76vFrJQtuF4LHVpKLn+4nNz+rhJRg16ndtyOcb0tCYm1D+ZasYy7sHWl8wWrs8/7460BpaKoKfsxbTA2+iNo/g14bYlAJT+1Taecaz/sShIRX+HjjDYVFvQKrxHlkroZU1RgnEac690ZQ+Ipg1UroiBIN2dMi7nTY4TbkbZxbWOcd9U8amtUuwblTh2mE9FL0mBAu489//oNVUaVd/bJVVpFqHj1AKokxc+UqoZQt86nZ0e8sx9Bq94u3rgoSk8MDBgsxiEC2YScAAc+Wp2W7WBpakE+1f5x5yBdToe+CTUC+7HHC+snv4Xyn6+ox7XKC2XUohkADs03d2WKtbmroJt3CebT+2IJy4XIEOkLyP+RoHYsCR/EZ7azRcAvuXD9RbtJykVOmVT+ddo0JN4haWmy19+N6683fJlXKnTBrEcMgckDEZL2PtYyzaIKQemKBu3zXTy+RvhW8T/byG6qOewsBu9hDYboN081Ej54y1MO0Q4/zlyOZ8KO6iiYXHF3EM3HLcFFB6Cp7vxDDckyq0P1nz+mMIKcbCGdRaAIiaRQj9Z+h0/fsz6DIZA37zejZyPeJTZbJKxoaopMuyU/FXPl3QEOrSjvJDIQcWrI6k3iCVSJnB9cyEOt1p45Ohuyu5bT/HgV5l5V2ssr3kThozDRcj9OfYqzzpzCvywQBmpwSSKMah43pUaGEmivSDLLpSPfC5dU1WSHCobblN95XIRKVFdYUszLygqmvzD85oI64Gr7bSajc7hSkqY5KomFYhgi7EuT8v6PLUrgslO9UQG2n6CiGZ1neBtUqCkyMo2reDWIeNh0fs6DAJOGwecRM42WC2tYho3kiAgqNU3iz8cICjowt+e5r2Kc7K65g3Mc1PKugzOJC9edXdwgBvbUIiRKB1n1LSKRbOa043I8H9KV0zu7pAzBtrfLMOdcub19Uog9Wh0AZ8UWiTNo+wFXDTcPk8Ingj8aUZZYvkMA7SvkQ+tFVlRWQPwjyPhRhIKoRShorcUGeyN6oopnLdX8gHhi5sHMtGeq89GK3rx30RtYaY/AIja/V04i/6gqAzwIv2eboiOXpXnlk6OY1+cNnX4a9TjHy9ZiacXzXKMqh5Vg24yFS/K2Jd4Thi8xww0euDXeDcHhy/yktrBDIjEjsQIMvgMS5nmLmNDD0TcRrfxpIkP6r3UyYfdq2LN5RjyHy8+R9cBlaAm6vW814Zf5hj+xjSIT7kVGYL2I+ZUiK+jLwpiRRvX/QhLhVC061oD3RRMdZthnOFwljz8qvDeSK14PfSLtzmKZBtgCCO8n5KsJgUw0lYdb+Cn/qXudXU4drGPT3WqDhdmR6ktB+YWaRVWZZJVOazqNUVDo1Gx44ijx/ABHfbU+T1UPBk9arOoajqvcQT80qKsMNPBZ19RI/FI90Jnyujpv7+Isz8F6OSeDwUoUSrCzfyGB4pOgVmK1qd4/LEuyY4/QthkLs6QyK9Mx1xp/uJNT3wBVNqhmfomfIFxX/7po0ppy8G9fthkeIqHEzsyUt1+o+9l/e3Q9Dd9hpOWM+JqxBfqPDqUeX6/stAA9qi0Fb4+dPrnZiiF8rNiocC+2iwokxvsWTZ8WIF9lVFxIwkWUNtHItNRB7jiIOFM9NI6LBPqtH2Zs7UqjS20llbWYN0RgQUfXF4tFfhZsTdh6MWtXLurlzNC+md7kE5JSd3+n1kjGz8WrRRLAP2hJzzSFHzrkfW3DpLohr+k4ulLXPrBd2I9ANURgnnt4d8WmqMCk0yGC6UkBViSX/ocMsK4YWmD4yh+Gr03CPw0EtKbBk4fVzWtxCH4PtGyKubtZsGtZUan5x+Fa+bqCEY7+mbg3G3YSQ0WfiOVYfvxRoCpVmgdCVLKUkpAc2Lq/NHnZN9BCQDwAcYXOMIw3CQUHuweeIFeccuL+80FoQR6wCwAOiDnoKLGIU4UFoOEpkBC8mE1NiMHf5zX9RYz4FUCO0tw88ijKchQJtTjJVmQQPJhgva18vRSUr5lFzxG7PYjWJ66QETP8XBg0lnVfF3hQ45O1H0InNloEshjnLehTWgqmORO+6zmHg7yJqj0zKurTfhTxnwe9S3/G8tMziENMKltntvaH+AhwKPlCQI9lr3VxnEvLamh7KKVLrE4gRf2Py/+bLtegVh1eFcfjgSO4zZByufZVAOV2r2gcSOo9gnZW6wQ8bh5it6KXbmBccMYBWrnsO4on8lhQ//G8/7faZor2aP+4x824TGdNWNJkOUq44JnXkyYbxnzqrQV2OJAkn5JIHguyYCxxUNyAw4KPvew++6HUl7hk0hSaj0ts4yhoKIFda4CehSb9Ms2K3/qJJhLwmRudjo0GLyVvNveeqysyJHi0AciJtdbdpfKUMVp/rPtZ9DsAGIpiZ6UEatkfv2S7EEg+QGNGQZ8AFvopdG0crMlp5Sujkr6Gtm8h5RaVWfLSIf1t2L8DOgO1YCq2/QXTNHIRap7QYpY9QB1U69oTLscw4ZRnhl+sqVW1wZMWwIbZYGKVnXZKIPK6CGuwYhVXNLdnm8kzgx/npsEE1rhBVcXe1SBTTOkcGU3V/cgW4HcFTJjAMNwlJbeqCMV6aWRP7jPyj1SobPK2rM3GtDwJ8dY5ZrJ64c14JTxot20TaeORMGfTijriwRnZ1CZb8Fq0LXzk0Xg9e95UX4SnJgAicSraXjR0Ucgqtjt5R+52itjoIlw4ClwdzzjkojDE3WqfTlV1fjwXClfF5+8lh/+vZE4/TQj502bfNI5LvJyeP4PeNe+dHpgqcTp0zmK9KHCBIJtFrf9UDoUozWpjCQ1f790vTd4M6xQs6NePWBb1C/fYVMczTJ5xn8lDXvF3O08EPkZo3HMwXMbB3IHuRvA/VOA6PbFKywphcI8+oaN+XMykx9IYV+hj14VqlGWcD2WGG0cihw2hI3a1VuMfBrO5KtJ5WLTGjnAtPM1C0wcD7Xnq006lubEY3T3lB3egobCGESqQG7Vqpf4HtC7aKNtc4ovdHRja9zeptLtinuljvI+C0lSh63bh22tlh9VNSfhGvnX99qkSM6E7WfRMyD+8d78W+Qc5dpr6aqTFpuwPGTixW7gAqNmbH3Bv3zjNJHt784oHsf2GfTW6IdfFNNDKUWBGuuMo/B5t3qL2MO/Hh/K31CocN+lT/QQUT7+A2D8Wa7pAdN+k7BCrTH9bJvlgwRpwJRkvIBFKfGbiJIfddQI31q3bFQ4WJeC3FkNOWiFhe09sJqhJqmqf2dEFgxrRjkLwWoiP9kWwOyqfee0Livxk4BNlYdVRO6tqRIBUN6t/0ZeBvAFkN90pQhb1xmen2LSKgEIeASrIVYNZuXJL6lCyD06iYvCqQvWWDe6RzLvjn6FqV4sbsWR9UiQsyLKiJMLcN+Cxwaa0ch75tHQ89YvMQOs8USRmLj5triDdCJ0v6vxYNnDtctnfF5fAMczxYIxmh7DSEQ8+hZPuUZC4aK4opBmA9p9Y01bOUQL732kBNzkmPfC8DjdlTO+kRh2XeSLdFue02y0UrRPO6Q94IjVzeHC6yHr+TtNqD/J0qTeiZYTiBu0SSLph6A8chOUT+wsu2zp5N+OW0otzBA8gXbeMigwqrkmsedBCqbpN/RcD0hstFlLNbYAsWx21gAIdOgnLU7zERajpTHxgXSOrxwA5Po+zXT7+z2xPbklp6/DnINbsfW99y0EXXdeE+b1cBTc/j9YmYNkpqA7QdG4lPnEdR9de//ng4tuPeG5xJnxF3Lv8nRBOKTaG5BmEal/vFFAerCDPLZaDXRoxXS3bbmPgz7RpKO2/hovf4HYjHd9zWe8dY9EQ9QKnVDvMy0s+fQE43Mss22TdTh/TFxOfCoU8zMkrDUlt7qp83yU8bKVGUUBE2PVLc4+Mu4cyiFGw+nuD9Fzv4mGO7N/H/VAoXXEFr4lJiza+qCPWo7ObIlDRvl98lWO++uq+19PvsP7z4U4SRaIYA+L8l1hvyzUZKgjhkV69RnuULHeCxu9plBdk3iDSNTp/poaiFeZG1h9vOrl20Af+g8ar+MICvS34qiB0UY91G56esB0o1ih2zXI/j+0FkOhCsrbkqbWwX09zH9rlJJeQNJRN6F+8SzRPV1uYPZ2cPlPxcQXEKLRnoCJxd4WqU2qf9M6vSL7DRVQXPp467KM5//DrlX5QBnTO1FRrJSGjZ5IFBjKftmJANWIOMh8+ugN1K/5S9It29AbOocgQUP3Y/v0qaigdxs/LudjIYl3zeqNXKCsDvpKqSnhuNlGE6SLpc9OWbhBK1Qhnvafl6NAG2AO7IG7eHv+0jdf9VaBdQ9Y2U6Yy5/btOi/oAcEI8QDnEq5/LdRwDy68Qm4wZW7iR+XzjwfE/u2jQpoCikO412xXnp8j+dzDpgOPCDLPrHe6mi2GTipwNhtXckuSBU/t9X831ywkH3iIqwuaKcfiIuzsLWh+TWpDU5RfgIDVUGGVB+W4iX5KMZ6xjaLpJ6Pu7sll6PVZFHW0eLKStoOAcTMu6voqRT39ulkxsn/YjznwBDxllLjHENdYVuY37AurJ4k365X9F1eOS5Djadd8Q9DCvDfsG41XuYhnXxNJF9GmlaW15zXs+t4i8ZDT02ELDDhHGLhEK9fH88bMXCCLfpj1WCl+xNDEwTTAmkfS3Hwpc7pNJ93uKRj/e43EwD3IomXz45xh06w1d/3YHN7r3NECHJoQ6aSYOLf77C8LUE7Kl0+u+2LuvyCWLXMggtW9YP1kDWUVmPjWwZHRxzfbLHy/kg5MhSsMrA8BqLCKtrxFk4cWkHmgX6iYpR9yb6hsAZvIfG20bKbJ/KN62LldlaAoj/xx0d0HgwdHSjQXVSlTKhnjNekNUEWygXxe5Lr5KqAy7EmO1JEoXLjLHxne5/Fu5VYNzoxEReAhfJR3/bmDQIaWZ5cteBlmUft3DR2R4PaPAc7z9sruvDZFTWW1vVKHBfquOhaYLwX1oHX4h/r7eIyA1/xmzvBAzofZv75TrXrxhdEYR5fTNYAJX6j7MSqpSuRKkFaiDF6wH29jYPPIeHGo4MlUpAr/AO5mXclYO2FqL3Mp6e4v3VmUzx8mpAvnZn7QGxvDfCw8ZITKAZ1blrSHUnvaKrlZIX6qTzzo0Mr42yPllmjH0Rd954g2HQGp9NCaU5mHD/5dAgcWeWq2hV8t+7+xEyiMixN5kiGes888A0wqWUcSFDSr6XIim3shwwkg3J4p1o7Pi4985FYO3UKgb0WDExbGuR7VB6lhYLdLB6eNkkzdiBC2s+pAcCgozaJEVMZnxuh224RsAFpSlkIo8qwFFshLvoZ48wp0URyUz7GRJt4gOHD1bepCs2xoNRRfbXUROvfsgtDbk6RDGazA86uK6CaTQPY6GxLh4rmZHrH01UiTAFLhTe/Bj/aV0KqW+t4xuyZZwF+vO0Rh/FLR/sUXGi8h6znhIwNXu02DdO1x65oN+AlZZWn8gpe7+VgLQ8bD9lwEqTYEWVwwRD0SN0so1LfxytSHJh8vO7MTGlETIddbuxQtJZW9ksO53V0eIr1Wy4zarFtF33KoB/xWWI0IkKxCfFV+gW6LP2N8cl2/mCT1DiuwRffL9I/zLw/SZZt1/wJSNUa7r1Lu/28VG0rZBaCFwbOq/sVavbh8ucy8LxEz53UW39Pe5yM/zQNI3G2TCNkHR8tgSKXWwUXglI47rMNFEJV4g+A/xAEvgTjWBijZUTbc3A8QvtADZqKt3oz9/Ar6Z3r5WelmvFNWLTYQbUAPIaStE5CX+l00uzbicfJKWbboL+SvCLc0Oi229laC6sxP279luvl585WBqSNs93BJ/3FCi2+zTUrtyb9pJgBOZxA3BUloBSSTnz7miW+q2aURaaWZQT12eQs+Lz5W3Pe5c9O7FV6iPuv5U7/I+6tS9rObD2F4/feweBR0lSb3C5IPRiqa5Z5hc2BdlsGvPNA0231o3nZ3zafn1xX6hJPzziCicz4kQP8TYN3cwFI5GEJl59u7ib9viusDKWb1SIAqQwJJESFKNECoyr011/jldEyk3Zd/j2Qz5eFjd3TLCi0+NZMIwv1gEi3DLLX7CfMZ3QNRgEylE+fVEssszRP0Z0P2/KdBr2ZWeLAQqTF9SxegKjuFynzbaHUfHubbvpBmNo1ja2LCnlcezL8lnd2F0CgBS7nzDkPrnhklziEcHWOaYiGpD7lvVoUe9nfCatRhXSTRgv9m4snDqoOUwdFgmz2w19FD7eSkN++ZSfDvtaf300vOfV51v6N2DgAkDbV+tXKuZkcoI4UOz1ktU0j2+Qw+ymkae+BZ8o0j4qinCsHUMWOAxrJjJxshyzsKsrJcW7eK2JEBYm3+LaCAQUbwxnq8bXCM9jwYcoSezzgi7VQ5dPtKAe9y18Er4tU5ZvOyidub1r3JY2v38/5mIzP91G0YL3bDXqWc5HEp2v9qjhSAdZn6h4wMpDDx6AMMgNQkgvbWu/xsewqlUvBOXSOcgaJqtqQ40yLDafS29EkIDzPBEDkyyOfZ8/P5Tir7SSfFEH1Ak+vzLKTfwD1V1wi7F6F9ZZKV7I33TPLw+ysR70qYDf95IXxlpmfUb2WHLNk3Iyo4C0u+Vkz4zey8zBBCGUTcOS3Y0pFqKT67VdSWTEPqHM2ktr65PnyOnYdxVNdPMzBHUXGgkgQg3x8dVtF2Jp2rwbZUzTzjUWTjk2OnI4/hSsEK5i88fOfrVs4SXWtWm6rX+4trgtftrrqT3Q50v2ArUblG5POut8i3P1gdnwmspENRLE3L8MjNec4706jkvo3V3tTYQAcAhuF5bzG/Iww25IAowsMtGeBYfKqUGihrr4fXYOvF+1vk+OncatSba6xL71FGAguv17sRDJRoAlQuZjmg1Y/edeDzEb29Uuyt3Bc47SuA8TfgLcpiJ8u0t8whkeeb/xctuWk8kOySW30awv9Hb98GmguAIANbw+5RrDh90BGDdzIK+iXIInIHA1SNcZqxa8SR+lBTwX8zRIVXyvrpG4SYKX3SDyeycTrWeNuBbeutSHA+Qoy2fdDvoMhODg/oqPCA6IHtFLsW79oFzVguDPCRflBq8yKx7E+mPAkglc/1MfIAP1zxZptfvyvDRcsqeBxylS9qKSl58dEd+1A0BSWe32V6AGIBE57/jTZFLLyhbukkQHNK5tNQwgdoLODkQmCUW2kDcclSQGoSL2mY4xkK2GJbkoEMpdAlCSrWx954tTIw8bgmNxnkNoGPaOdkrU+01jxEO2p2hGWOiAtFHOp1znTykUtfS2bzMoLI0ivkBrPKrYVK0vDwO17Hf9rlRELpn4ML73zzRuSMBCOD8tbhCbFMwpS1iNTE1UPYV8A=
Variant 4
DifficultyLevel
548
Question
An unknown number is added to −1.
The result is multiplied by 2 to give an answer of −8.
Which of these is the unknown number?
Worked Solution
Solution 1
Trial each option:
If unknown number = − 3
− 3 + (− 1) = − 4
2 × − 4 = − 8 (correct)
Solution 2 (advanced)
Let n = unknown number
Working backwards:
2 × − 4 = − 8
⇒ n + (− 1) = − 4
∴ n = − 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An unknown number is added to −1.
The result is multiplied by 2 to give an answer of −8.
Which of these is the unknown number? |
workedSolution | Solution 1
Trial each option:
If unknown number = $-$ 3
$-$ 3 + ($-$ 1) = $-$ 4
2 $\times$ $-$ 4 = $-$ 8 (correct)
Solution 2 (advanced)
Let $\large n$ = unknown number
Working backwards:
2 $\times$ $-$ 4 = $-$ 8
$\Rightarrow\ \large n$ + ($-$ 1) = $-$ 4
$\therefore\ \large n$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19LhKjf3mMytk/9QUOuSL6B03qhVF1QXy029v4Xh/dlhA84YBafxUF0bqlJs5Xzc3vfUAqQvQ344xVljoNjUaQFAKz4ha0DCDb2iWhpvYh6szkCblsoZxHqd0jLu7ubRgkn+TyOYFcKDYSWfIORgIlDRhX+Y8yWh5iYuwjNHaz50KktbyiNVMBb6M2B6/RBjtpmiotel/09MYEkQ9bwdM6Uu+rVq9zaSWP9NpsRPYhX8UypAOr4aikn92vsVOoqQydbfyEDEqTP088uX/ET7VkAlpvUtxSKlROQEEoMvOlRwghjEE/aDaJbkgY2GXhxbrF1ZMnxXb4Ws1KJKqU9sbRq8k0zbgKqdfVcoj0xl7hTEbNvRqgv2vEhGwXNZgCXEPI9mg1tS+1SsW/LTbyZpQ21sp9kgv2aC9wID+mq8bsklXEPc/rsPwGowvI5iEe8hcUghSLuxd1oyoRRNdDaWHVZLFqFFlnTo1HVCee1YMhvN5vYVxPgR8VpHhw4HL1bUBp4Ee0CQH3wWoYOHahwHC8Vxi1DFUjauBfEyD76/dbd4YPJasrzuD3HCnnumuyLVSugETDFN42shvtq3lGCjZ0tg9HvQP0Y2QZOouCslBE6lQ8ATUR2QKMleJps6s0l+PRFhGRQHugnWs76v3IkuxEODwy9lILjPQoXg0kV5qYegJGhyllCJ9ag52QAb+rSZyuOJxRfJRikFYrzPTUjMcdbj7FWL7K7Ud5WR2sXZiRY9iQfU7QTdl3HumLG3bgDri99LXCzYZIJQaOt1AoZ5sRkbLoD/R/vCEysKnJadPiZJ2pYb8bjlu9uHvv5mdAIjksHGV45ZPOu0wH3DlSFDL8Op+YCHrrE5Qkr1NBbcFAyGFVz+TcHFXnndEhtKiN12mhcKLuIZ/B39X9VxiYNdJCaXTMau7B7lCc+cKyUles/bCTKm4OA7vNQz3TTPR2SVJ9mZv8YFn/U5TwDeF9hftc8pFyaVu8+dybgrRoh+wYDCblySVxwzrZTf39CYwLIxyP6XaQ9URxD4550/JKQUtZTrYMs6dbD1XxN42iqk0ugAlKvGDWL6jA2DoPg4pxe5GbXA3x4pLnRdrEcMCnClrhZpiyKYNTUDHQR1n2y8l87/u69b0wyeA4uCPOJZbOg1Vhf96eci6dLLDVZoO3vy8nrk/zRk8kr8+luW7iH8LWaLwN64xSPmntQz1x5ONPWZ0K8n5Ei310Q8WpkR5La+1Vf096Jp6x/sBhNCl6Zbsf0PEpZaaHvTjMAEf/x6fjg7KlQ+7SJY94l8Eb8Bz46EP++2LVH+gdXMuiH6GuM/nVIeoN5WVS9wM+0vza6xxstzzyY2qEzBeDurvYfD9vOI6IEW+9ATy+dSFWeE2tIPEYeXS9UH7JOwvWAd+5b3syaVr+bAEvs6uaIca+BhTjM34YW7RrTx8BJTjycX0a5IukrJK0v03pJKJw9bPfr2ai2oKusndZ+M08jklO8SVzY/yCC8FokIJKhhda6IyySqKlRp+peP0UiWlcQnrnr9L0e7tzl4GVioxycsFFXgA9rjRRsVvReU6F/QF1kCaDdqvLNLVG+OduBw8ouufbenw8ruSUgBC8cUyopVmgcMTIHxP8YVr6DuE0KNIStfuNUVt272+66Iu8amYsqNzpQHS7BypDAeTDO6OeyxgSXbxP4FzmDmNwmF85Ww/wm9EOO6E3WuT+UzXWsMCCYzBecpUFnceres3QTUOeSyNPqZQLW003z0lGlg0w1bvypdGQXBjftOWC0PhWvVoMJH24naP4JKJGr9tbp6ZrPz6HQ1hHDev1tH8MghhqoMxw80/OQkLM08ekX6zfGpc3uoLG4WEE7vJE4zkMO3lmRO/7gAn41l5VQid4kwYtqnvqdwRPR13GlUaDfyYzAtws1iCog64fCkWmB6Xp8nRoJyMfJz+d5NtsPBrN+iwpg2XAZ9eK7G+j+they2rgD1sLNsvAsJQRei9kMB0927jXTBfdpBVZbceSaoN2Vj1bd8PM2V+vP7CWvIPXsOMHe9g1+shts8QpUw+/scUdawRTqlTEgP41+ltiN/YIhMYzBUee77mZdmLxYyi8qBIhK1aq541XvcihWlEls5bfRmtJUDaQhlla7H6fmbY94Fa/QuUzGrtmJ6D2bZUJbInYx4ocKWl6DVGPjnOQ7I/OXMGOAKc2p+g4NjwVm5wnRHt6qNUqS4D7qVb7kfM+gXCd3x4SeH4vsm989yirwLG+Qvhh/99Fa7VYXgRdTAGieXLrA5P4DGDP+HPHXc4p/jDQ46vvPMh9tGpf9DajDv0saTNWPpuDvzOMhtQcbhF1Ti6/ASKAJZF6PgkvtOA6+dkauMPijfJn6syrjrDddEOE0mG3MO/xakKOXwdmfioa3b6DxAOGjyHVij9AXYzXVMK0+rsxQevHHRrBPhwx0hiQRLv77Bi/7A11ZuI1N+3Xncpz2YjwO1XJy/rKH29ph+DRRl/6K0rex5kDn43pZPTcZS7fCz4dsr/N/RPee5StVjseP+4toTfDQsLqqmI04aae7JIhQhvg5IERch2fP71CIw0rajY+qb0a8KHdn/7TewfjovfJ+9XH8wIYWj4/qpP6MnHYq7K8sjpv8gysvZoxH5L8d0hlZk7hNeR68Im/jUI4YU3riq9o7aaQvomQCj3kJL6Bltr26THF5abRcdIVqs7DZKWQ24WtDkRALDQkJDEV6+PQweWnIL1HYLUCtcAYtL3EvXG9r5rfcPN8XrKXk+EMubmWfJ9fjsYM72tt3F9VhQAwxb641juFHFVWbRaueh4IJppOYJX6ELI/Ut2TkdmNJJ4bNTMs9yO1IOzIOKWmKJStY0LPL4b7ULhTHYPv5wbo0TamIfVMkFRuQG5tP7ApuDUia+9XMVy4PpvOYHQ8BHyY7vkczG3Js08/0pMOjnmvPYiB+1iV7++LuKw8F1F6WTwD1pqMHCM5HudCCqHj2k9dd5e5zR402nFzrAbO/eCg+1mYt4QT6jqHZDI9FWVBiJ5KHQfirYTz29W9yGxPtLOfU5/EMO7gtpmSGfWjIbz4grIAz6orSBv3MNplYhimB+4IxjfpoDQM/Q2IbgA9oHUpoS3vhYzBpOMnYQ5dl/JlUHpg3n+SA376eWl6KQgy7zM+6uRBXpkzbqELTuUMYosWFVgAKNNqQ8IyoMj8wihGmQazdKFNYEJRP2SH0OkOvSFRIIfQN4Gk4JBKcX68Eyppmk21X5DK0HWqNkwlVZ0lpCTFXJvmlrB8CWddOSP55v9h7nuM7FUFmRIVyMPihU6uywZyqUqM7jnR1sc0GbZkk0Jp34Cf6WQdOkA4t22clzHHz25yWwCrk8lYPsoVTPEue6aasfHdxbiEFfsgSb/Nf07YwXXNbAvL0JWHV9FtU5mM5/ZXJhvniMIY8rGUDNqt9Am7O3k82MZph5gT3KWBjktuK2EFHyqwB7dS6dMC3woCBILBW958Qx01HC48pi3Fvj+34MbuY/97zXJDOFPjOGMR53oHKniGWbWgqVm4Cg6kPqqix3QrAcoZU9J/CvEwV4oSzPtdqGpENRPFrJVFgMwx+Ru6toQnRI7WoNoQemulvleM/agkCxXNwxzs/2N5hBNCKbX93MwNdKNS4Or2Zv4ZXcO5WVov9C5h1AUAb2BM786F0xEJjrWFTtxGlL77kf1DxKvI8yI9XOyBdB8sguLhA/I7R29tpBuI/9YzDAQWieNhu6frreUQy6oI3yDrIDzJ1wKChXuBTHl9eBnDV3wCSONxT0c7KjzZ7UKF9tyQbbXenv6eq7HNgd9BamLSo7XEW2B5iUmjB6Kda0QhgObaLwBZ4jPMGB+50xeH0RVC+lWpPrZwapkB5iqW/4qtcYtnXDPWE7v03Zn2JdKE3jy8c1HZ6J+1KmeWV2M651OHH7cN3wMJMzFU4+wUEapNt5UAFeO9X/ygxeZLOS9uzYLdkqtHdxS7trrW51pBsfBfSC/QokOnbmCVWSdm39zzAxFGjPbe9Uc/DTT2W7dKqXIOddZyBfTuzOBX7lp05N/Hl+lj4egEz6BHh3KUcd38ViBL2tpbcXlHiYvZQQpeolbweq3Qjqrp3ydTxJ+L+AhN6dJ9rk2/8ktPVvMV1blosEo608mCx5SZmAn9Vr9FZLwGQYMdKrpbjjKhihBICbNrhHzwo6nyos4aC8nvsj3A5TpkNfOCnU1QWNzPbaoUDmGSFuOmaXtGXwGTjAsBNPuHOf74tA20TqH6ZBuoDz1HaswA4jC+NeJ661H09GtlOy05IUQjgkQABD6Rj+TBf5JzXRqAq3+SJitxeW8CiwofBmtMZL2fB8LrrI7yeinQ1S3/NwYPzQTL+QjpXfJ3dd240hwuz107tPDma3/b0luIY0tPu4tKpAiyEctHDBl4W1n2+gptVbZ/VWS1YyC2kzEs+aIVAnICwbbbTrLQpMsArdlcDQ5TsO2LdynpPLgZ0BcmolT53Kxt2Eg2DVvvsQ7pYNjxzUsZ2ubQhqDw5le0a0fzRAtGLzGfuNWPDZqV9hVT+NasvSjr6mvMXl5aJU0IZfCH4Aywh1ep/KMBYWZMefqaDlHBik76vrN3kdm+RNo40n96iy8mr3LJowp21Xb0W7YHWz4ioNrmju2iQRvKF5xe9jX8u9NLTwW6PFK/IUwv3K5QnEo1Qb/GN/Ihbn2dzcxQj6cFVrAZnTVse8t1jhmGP48NMsyMLxZjpLnGIinR1lcZr4rLA3EvYr801Ky4WmwBKAPMvY7824efpMBuXIYh29SIU15K97E/YIz85QzLi8750rB+fr0hgLWC2k8lxX7yZP5aTVZqaZLUYC4lN+JDb0jLplW+YCIpnFJBtELPSRsyc+37dooSkTKCHZyzDcP1wO84P5IoHNo1AD/XrAE/ZlWBk/5tbFTR5CGxXwtn20d6ql8FyxrgqKKeNfj5PB9Btrv5tI+Il18vrjSnWxC5zqfSoVF+BRsG/lMgdzGnCXh8ONsdu7rWV8uLznm/BirkCeIts3DgDudMiG5KvrIMlGQhgukNwDHwvLOToetWrqEq9sfHuKt+ZxnOMB4b26ffiobG6tgCKzIuf1dBPGGTrWqNd2DrRqjHLoGRFpI6r3lcjoZdr/o01yMg1GJ8RjH/w7k+kdk0OwXYfmpRtys8nGQ85CTbS12Rq9MYewBLm0lSQzcv/9mXhDRHV0Y+kXtl3KC7HSq0xUcUfry01MElvlq5ZdeTospmBGjkAttmMI3epcQsp14zbaOgJsQhjacpvvUOThcqcvR5gQeV4y05gu+IwDkxN3Ay9rd20IeGF8KzxMxKImkzyrZTHQcu0lvFEHTLlk7u8hMmprXKVqd4YiV7z14T4BnGzCfemvLO3de7ArYD3K6licg4vkUumWDUlFCs1mbWagTLfioWZYLinJGMm1s6NFPVtN2TrPzkOY5rl6i+QXGK3W0WwDqx0DlLjd+Iypy0/5mIy0ZEcwnQnmJdUijpVcC6/czhhSW/SACNfYgWCiYEW85/dHVKdKpHRHVJXGCExVM0SF0gO+y4OPBn/BeCh2rBw59ObhG8lRcQKXIJ2ygNeDeiHJhFqIDPZfUAoWxFlexIGOdQnNGRz92CZwEqNmhW7eqV07mwZ3F0gfpazWmQPPnK/xCCFa8PiNpEG0nOHCTvUqJxBaB5SyLx2FZX/I6GWeh3YrhC/3iMluymMBNLyqX6x1C8jMtPv5BEyB5JfEUsWkbGUcSF5hAe2yxV+Bec2aQ++wwHTwCJmDTb44I8o4E/z3rpoSumbnR3sB1slg0RiOgCmovwwmU5/09ubv0prQKTr5FfDkeEPIFlqxRwOx+gmLUXspxOREVD/yqOlJV8P35yR39+pLYrqnxFNOmsZj+oFLmoSc9ULHb2xaqYvRLWucOoM0V3y/e38SXYR/thfvGtB2Mnk0U20IhE8s+rk+GLWao09JZ9GLXfWdzBNQNFWTyMkxfnTKjsMEekmXB98xGjgBCNR9c0ev3MFGNhTPAGk3uLfdzwiBom0R31XyHIHpVFK3tV2ITLVYS45pqCpMoOUbOQYou1NvsWa7RaE/dvG5hMzcRRjDyFSvLa/WDOLT1k82MGSdyUZVHjYii+FtqcaJfLFC4tzDiKeP/LO0SIHbhWt4e8CZTncNWalBIco87pNXTmBvvRcpXQ4Qy1geMLUwD1E2np3MFxfsqQsuUs1nnOvq4k1lRH0WQWzXAvkSq8uK76/1UCz4VTKiHqr4wjEZuG+boaxL1w/cGZ74hFLoIdOhfT7BiNhXpbA4rvuDBxk7VyovCko3iA9yncL443TSoB4cP96MbZFRQUwHTwdEoCdckMJk5NG4lPtuIfrmxLtdG4zwGwopl8RxJOlUyiu/QgxDLumobNoOkXNTy2zWIvSD8y+mDmI70dD4pgFnHh4t1JV6kCGhY4NTZ6VABcgFMdyLF8ML/GMuExy5kKvOTQlOCpIpjUnMA5j562jVfWHjR7pXEXROMroVJ3cDgOhj5S1QS1+ogUQcM9yM50rwqks2IDuW8pnmqMqCpquMxXT16L9oefKXMwcujdMIia25k87sh2eptfFU/epneoaE1vvqSdCCcPJZJNU3/Jt2h1fhdgluX4D7aiF6vp6MmiQoJrgPmtH7LZznQW4Cc+9zlR3V1cyhFCt6YumulTRbGyHTTEA5U/zu2eaopNDlTNFa+1bGtLb2lLgcwOw0t4tTqb44iB6ph9cEnL52i1fUoDWwO9V3jcFmqvhFtFA7hSVlur3jm70+vpw0AllW0xyMnFe/6asalpSY3woB5TIESphZZLWbgHXp5iMfMrjvLqlF7mrzIIxSxVPorZZQzB8C3QBOfxiQ7w0/KRWg3hFpM2XFJU3GF5YhHheRyqMuQ8XpbnvI6QqxYYCmftav+Nyp4biUXUkHolyvMH3GzyR1t0xdhqvBI3UFTjlI4Hr+6MUgISzmsLkT+dciBhYNWJXLOzAX1XRPtf3us2gD5iM6+g6FKEtWvtgqdetWWslDEb+dEIdNfsYDwL4w3LairgQvoHaOXKrEE//eLKNU3APJEFt5GvyjWfLdrnzQnuNU6s5Ee0ilj1n7t46j8k1YY3/Gi3oynrhM+3LZKL2J/pj7Ksv/bPfRtC8F5Gw3aZKTAKl3u6eQsTneCjvfU74Oj9Uhxmi3Efc4DGvTPTYtg3AQ7jUjgSUlo8za4sskbzADGs4ZWJq13012b1w5pYRnLxilHmjV0lyniRVxLgYbm3LaFJFOH4MRqgtmU7ApexCA02mcAZFLuRlTlzEmcM8eqbCU/8wy+C2A5fpu+6XTNUEisVyMBFq9Mwf55GXmMnwQKpfFjEprhXXzrUvmKXPecBu8Lt3WdI8ItY51iH9viAsAYZ8xPNOWe15Tdf4xcezEV+46GRPEuvPh0Q9rvddcUhpPezp7mSvosGKBqb3MhsNpJWJ5SjN0OlJYJssh1xYZXYHEswmely0YrYJ69aYgdfFzoegab2C+K01E+rci8tNHenwgyWsUkLOPWQaqNfj9dxv6jNiJmqAPZ4GCw1w8toDj28O/SevVNuhNS9gs0//XIxE8JEevyHSa3FoigGKrAR1KMlG2fmPcMtwOw/Q5i65ARqqlsIM30qXL0xPSbmCWNB9vs8pZBbcqqSa8hc73UeGIAo6cysD7hPitwPs4bDxu2Mpp/8IvBxL3gBaQZYeRPCe1ry3aC1ItrTvWSJE8F9U8S57X0oQXEfD0uqzV0jFtXQSKGEAD+/kGtXwhg8OYxSiyRJ/ToqqNe/KaMqEmwcBDOXwhp5Gn6KLSkHnlJ29e/6S7iaO/+L3jEdA8dqEoHEwr6iYrc4j0F3mlvTkBgQsjj/i5LrzlJzaE14NvyzvJPz/p8P61wnFljamoRIMWsO+3dGW9za0V4d3An80OgXevVyAwg/EOiA1bkC13xFexcz26L7gzAMrC7abRVIfVbxKuscR9fd0WVasHgJJlpM0Cp4/KJ3TC1+S5CNQJHhAqxW4IAzv+Nhw64Hxtvj1jTsbUMQPzmQuTT/vzPey0NA47tnI5dJQwy95LLrtUMMJf4plgzet8GeUY8pnvZEcQpr5JtdLTJQnL1it4wL/ajwEfSGedeKEpR7h2qTYreak8fNtNGkboDJGzOmN5XJ9BbwytTUKbx9f6ss/+Ix415ZXrJwVZASmmcmSw0xGWy3hbqiQ8vqc9GxMNdMzbtCgiCUWlyS/WzUIeH6E+8FewemO7AYYqEqCdelhFfZVL5W98vsORbgDCaPf6WB+fSaatP1DOJFOOmsMLXf4rqsQVlB2e96P0nXa1xRSvzpwDg8KUM1bgB0UNQMuPKwswp4zjiecbsEMtYDKjynpacKAfT0hF33qgSTtQhlICwktD7EehKG/u+9lTiXqrSZ7KZDOMd1cVKjKvMcYpQgRgmQxGAPK1dO2YEGKDA3JkeGbWfOLGT1IjXE7M1jHA+Bmwl4uZiWuckXF1p5lSZ6mARRGYdgg48ljPURPBYIUIR51s5uG04r/6q3CcT4TtNDjk+0XrQSk27xvsDdYt/IjYDop9dCjvmK/tENyGtdmzNItZY6i5x/6Q+AZPwjj+RBs4LgbQbjlOg77/tlqXtUtqAnH27VIXenu3Z23hu4kxz7+KQIG7SB2KRd5IIqiOBIIgEY0K6z0kTQEu1za0ua2mD2C6MXr8ZoaVfbm9uATzMUStD+ZLsYTctTOsMxGLV+/C6cu8lrEsNZ5Hgm8DyjfgtmLvp0apAmx0UfTWroBc64xRVt6FNa0BkEQe5Yd48ToTgTrWHyXJpau3yJJcRMXDSHE7xKRxOu/2hhRvGZ2ftkDZFMcEOAVRadO7BwjCcLYoEBvK+tGgW+cnn2cdp89pLQnd3DuCs77qQAUxb0jPGzFoYa9X33nc13qpzm2LePIBxJi0YECAwyC5wXie2GJNXYB9yDeEGGC2M5P+2J5RF2J8Le4t5yeKieYVpAURI7bswWun3AMl652yqdYNyMIq28HF9R1FNdtiWTrOJDgRB2CIiCYSNNDSQiirw40l5vr4lJsWqd99DThncfBK984rXyvpIjkVoMAsSHCP/gYBaby2odSiKKhmjloXS+4BuElYlVHWq6KjdpIy7XgXJ9iI2AkU8DLm63Ssgu7/0xUCL7qjqdrVdzV3tXBc2nW7niYBbOJoc6+sdOHP82G0EItSUoeNtzq7TKUQmE6g3dAgnl8+uTchelfMyxirS4mOH+ev8LPLJQnzhrtkSXucooxr+YkYFeQaR8TSeiFCHLrVsuNJhvp5GrinjShVSGQSXaluIhpDpEmTQ7xkeEseXeIyeQjPOTwAsOKYBrZzWqGzieJ4KNcKsbQWMjY3zIdw20fMpy3k7vu12Jkl4uEkjN1YHG2+l5vZpg/9Icywc4ayrDx0vZfVE1bhwN/v/79F7GcGz7Ck67HvpgUeDL3MU2lUT6xsLWl/RvRx8Nb9v+GPor8gGnXZd9JD2kvOodzwLuDKa4f4mz+Ud7OC2H+RVw/RLYKjZjvTLAgzL1JqWoNwUT1B1ormsovuSHQe/JjT2YZo4K1pwPn8qBOG36x5ptTuulc9qmsSWgqql1u3EJ1qHjRqBwn4jr7tOpGibH7IV+QG7lFQwLepVnghuTSfvCGF1zu66LIG1HsPqINnzQbvR3A0Gr1zqTp+u2b7Bw1Pazbx2lKcRZOhrqcwb5IHvnhzmFQv6G89HwkevSMcdLaz9sFCkm9S7dqVsPtWvwhRukNgPszrJXlbw3VJZ33J5OKjM2ct96ndHpmwCygpoigUDuReb+rhko4Y61cbv8O7YHpylBvyUd+3PDfA8dqV7KZ0cNeCNU1f8QQ5BMZEB0C9hE/Jm/hDYxmB0BFFXuNz2xL9a7pFxD0j1UJaG0G6NrqOKF4NazyyZ82fXqsd+294TPWBPIY/qb4SsrpAYruFXitBnS8YAMAMdLsm5w1julqyxgleB3cKkhIg2UYbFm0JcZfk1t5+IQfphbiQjTiAvzpRa52Qk2mMfkN42mRAW6SyWAclOIMU754BhBdXr9qGYfhWFBXDsh3glmE/jCp6R9RN+e2kssDS4vA2Y3qmcLbu8jYsMNRF+Sh9Evaj/1GQeWnY2C2G6VSYs+L7n0Y/CkOkpHenHHYCzdSInFm02afatRoCgBxsWlhgJ6BQMKs9CXWgyGksI1HsyDvENaAQpWzgd7p1MZmD7+k6TmrNjSk7oKeLUzy3YLl24A/yMwoYVcbeuvv/sewHU+qwFUgjJUT8gY1O4m3dnI7VbdRVOOnCfWn7epJ9IdpiQKKLAO2oMdt/rKks0FqKt822Y7G5EZXlY4VJGpyLoIiYS5wtSNqjyrytdm5s+BV67Zjhi1l6WDDLLPXE1tELU6fe/NuDQ48HUn9uaMT0xJAaHfqCJQ2CKAubLZP9gE1ELhtAwZehcqca4kK+FL7Mubw13MeL/zspqjUI4YXXQDjDrU2i25cAroFkoxqw8A9MvmEH3TQPZp5Q/OtZDvZph50jmYoD8xjzntiH+vNNy6phiY4HRm5zaTRpMhFryeGJPUoGejNEMG3mbzppfvAak5F5hS5Rfz5AH+Aj45YlVxz2Cdn5r1HQT4gimi10+ti4CUR0plTcw3HtuIz2+gaPkqwZzpgFj4vN+YUtBm2kzNws4XYsJvtN3QPZAAeAbRJjDLOpJl2NWNmx3JAEDXSWQi7rB1sdbQFQvvutZW9k+JJyWvbncTswKD/pRT7NCEMnWdSy6OnRut0aZjwV2cUg3fch1i36DuBISefdvig1fyHX+dKhCGXPKr7iM/CWlLdLCsovfW3Cqd7bsGBKw5yuKSDgFlXtFON1rbcw3ZGSmTCe50GM3PWrRy+BCXF5bGEDyLz3/8RaF6O9A+nCrwh5hvZs0MYWad9f9IIEoWa9clCaiDBPR/LDFogBKKeFcp52oFV5NLZEmZmhv2Zv3qE2yqZYi4JwftovB+J8Qs1Js34LkxUlkFbyksYWZJXD9hLsGW3L0hv2IiB1y7qv77bYbBZLrUsT4rlXsDg7RfuJ8v7AW3RARAKcEgmOEx2VUWJUx5PueLYAXBnBeHJnq5QCZB+pBzCK2fBXRYr7QIg1xJ5EtpiEpjK8K+mIadF5/CnQjABNuj823axfEWJFHLGxgDWDyvbBwB8crUFYvtUazOShY7GwUVcEkeQNquVVRCc86PCp4e6jeA6DkXEiHm4ScZ8pOW0CXZvV9dIVTBBQOem+KMYcVrZbtT93dNgGU3wyRPr/A4335BiotWEu9AXDeE17ZR9PGFjVtZVsGKmr3KiTUe4sEhEuQbyrsyGQwcDvXsyNus4S7i3lT/Yi3o5dhleBmhcpJiN/hdeOwCtnXStjqX4WnBAsCIb0BaXtllc38JK8wUf4oTf5DEjcGkGXqFcqlzEOJQKSTmiLnGa/MRumKTyJfUIWpIh0M57McpNZJGpSTS7Y8GAZkpi3X+mVuWKRYCwKWmeUuf7cCrGXOTHcIV7kLgNQabz0rcKBZe7Qo9UdTMHZk+WOF5Y1a8kT6p5Hmq0pmf647ekXnownTVZXHwlb/2Xhz/aTE/2pRYKHMFot0gk061GPnB2Q3TQSfB3jUKa89khUslUek44GPo/VRZewR4N82l/ZwMpm9ZDmLp18zJy28marciSl2fCl4eV/lmNuKCSUEGHD4D6ysEVQW0fYHRMZxQaMrxSrvdD9PzxyXxrdNQAZLvfFx9BOkglSjs380lKfVWHxGdc4oDDnBJrLUL0ZiAv9/OP2HC1Owq1ew7iZWouMe+Jb3gonpma1voGom2u0PON/w3ewK+AbxU3NeM/q3Vu6gx/zfT7c5RpcdZgSkJpMBctQUL1Xpl0QWWRvxhLSn3bBuk0pM3a3jVrqkRbepliHEOnfyDUHWZVJ6df27Y9qxqWKs3kgNZyFx+3zWPd+NoVBASP/UGLYcidVCN/eVT7KosP1rAm98kHmvhYwTU/RJ/e+oHkRDOZyXKMSCyGwiazvU7+4rTcK509T35o0ssZQsN9caZkh4ffuSBqeznXtTwT08Ya0ulnnaXaA2aJudqqh4vhriXsPPLIRYLWdUn35xAYYJ1SevTowUKvvhcsa3SaDhXeOtJgMIPw3BXpil2Ldd9LGEfrmY2HmjGWHai+r/QqghIKlvP+r/0BX88v4s/KN2R/exDgBjR4eursLTEM7EeuQRxLXoQB9blaYgm9gEt+7dkS1M+Qkx9quwreOrRPmTfoscaKMP6WLZLxROzrHUK4bPkrBoIZAoxdUsCTsP15Bnae3TPtqnsxTF7k6aXPH1TqA+nmXZEKLjfImDL3mzJ9HQT+vlab2Ct99bc+b44vFK8RxlhT4oEm4olHC2u29T8bY/WisQSNm44T4wnhxFvrZ2Djgpdpej2D03yCg4OR7VSjK0f0TjOjYxPaIcmO/Pl9NtDZIk7B7N/cGVAzLYvh74AlyLhnM8BqasvOhxIlg4fR4X6D9qQPJfz9clSqfxh0Ys39F+/SEJszAd19VUDXnzugF9l6Ecrgm7tYc3qH9HRA3/bgBUnV+0GaHfgmFIfY3lAAWURCl2SCpb4QNnR+kq9RuFeQa7GXM7120o5SdLcuc6nZ3B2+saN+AC7LnlXTCFqptnd/12K9HpLmkhRahmMQzq2AQwB+Tp4/hAjmoVzfgYw13Ckjl5lch/vzhYpM8nz5DElMna1YsIkeV5MiqPFokyVlBhUn1Kpr7afCJQJfyCRxPhcqtXjVwgrb9rXp+srd5kTVnpGUbrN650KK67oWrBsm+LiXkb6vyzfH9NGTT39bZHnDErAvChWrVZTVawKlVZVOjnUcJpi1p+SAuFRGSyqB78IaIkwITs9GIXks6wiKRDKXJmxUxDM9uOgrYn6HckBcN2iqPyvGaztLMVN3+7fzR8m+179OXnLmdq9KKVpsz0cr3havl3fwDO1U8dMb7W+RsPxHyzJUaAkw+pKuggWIS/c60JlBJJOCdlOYEE6IcxenIEfNKhBcinP0lb5gjRUmoZ06KbmxPPcoJT7IeRz7QadQgpuSRoFqY3YdEnzlnuhHMlu4MHdo2A5vlUxemizFOF1YmV+mb1mkLdsfKflFTO/TRu/W5YBLECMltRyWQIIdtAVR7HSZVv5eJ6jFrgIhPlSs1vBHBmw7VqjSeQuH8QyTQwg2+wWAikw5RCqvG2Y68sMPUcwJPWWwbSr9mtUM5ggAQWMjh7dDeZbNigE7oNrl0UUD7/7smK8u8BE6n2iVErqzX1LiKi+X7RDQoG9fwR0XucTvXe0e4m2r5NTUxmyvGwKeRO3NvWe5cb0Sw3+YodEuqtZkY0WODZ9ZpZM2RdBA2TT5jtRt2zjH9vfxNgQsY4VzRlcSIj1CzEMKMnusJpLNHZ4yZAz35ZCuGqsPFxL2S6YRkNEdDv7RZU6zLW8Z1WT7N5iIwi5VFe3EhqQWDHlD99Df8q3YBhxVyowMJe/Dkm9HqDyHigII1eqDBhcL4aokjXnSYuuHQQ+UdFL/aoq9o++q2n4327u9FrzobNC8Ky7i17pzPUasf2wq4MhnoCOUX2S7+nW3b5o+cvpCkY1hsA/LdFw90B5NG85rDfgtLatZzTlU2AAoKP1kanzMMQBC4hW/LdxVsoyyK1rKkJTj1bgGKHDfpRrU1MjMiLss4Mmw93VnzbBwN/obeboXKvwgDHkXQkr6tIRRtmb/JKQqKkbLtmNEtCnZV2uFbK5Mz2lHhmMwki713T3g4b+QUV2RT9tR2TywBGYZBlMNYHLwpRCVcnV1NK1Ef6szJW0J9tjZLBO8ru6XgHhIlgBbWupnW/cC1V1ls39HS00vyGeL0PnfxOa/SrbNkClr3FhrSPSx73rtSJxUdIih7UWTDKyrjwpi8r3w6nT2m/AfnAmXhqzRST9COtwZjRzXSltIZqJFnbjXZ1CkVKjqbUzmtUt16N+BZbT26qEwCdomDA8V7M8gMDe31nux1k7Oi01aMNQbVYGwirY3s5bi4ORUO9Wu/jPZBXkn/PY4+IapY/9wVdwFj7xzNGl43RmOh4yWGIrvWENrFx6SHB4llUL9zwqXnlHxHal9ynnUSbPleK3xeLCjchYiRy1pxuL6QKiRLtfKIaTjZZZMhiUT4zCd4LoCZEB7egEdggp7UQLJkUiSSBn7XQZm1dQOXBjqIty7Tk2FQPhliE2rRVB/MDGNk5F2cMbIG8e4L1XdG6xhZKTT3AobTG1+1knCjjG6gWg1BzNEuJhLOEHCnPO39izv+LoPJhU5Zfzc3nP51VbOci0/k1ZgAGSHwVDC3E+yqoW7n6Zh2b/89HbBFmQAupiFR2odIMWVzSKw5ZaM9MJ2SWyTVXz+FCmZMm5pm+FiZ4Agde/o9Tmipd8b4GC2Pi4WwYYj8S6nX6H0JUI65wT/p8KWBgE8q+Reb0QUsjD6ou5oy2Sk43W4xzxF/KHh6yeXYinnt35i0jmaTDkSggWa0ZpMZg4+hUY8+9XMKw6E6ZykGk9+YGyZKJFwAfpONI4wVk59KdlYFLg/qDs1al+Un6uQkgU1Nr/mCD4HlxRFAlaYiZYXg53kTvG4meTJnh5Wi6/vLuIkBT3Tlokj2r/QKytHDdCn//IaC0VGNaEYOw5ljkJp2UmHlGbsNYbmgsU2/2LgkJ+mpGrRWO8RhDVFcQC5G0NE4SwAkWMGp1+YRT2Ta7eRAX+ed15oblKrJ1f8NFEIr6LSefywoDqAvGDCB4+Jkr1RjyIaPznfismGAV2xwZ+4axu9nz2oF6FWLRTLp/KWpcos8vfTEDysYYQ9qy1XbgeDB4CJYwiEt6JvBq0iywpefa4jVTNvJMsXVpNir+j3yxazxQrh68PvH9sslEKks2Hl53Zm2D7tA7tUnuxvVZbX5dQLcH1wPrUbWfU5lNXx77GUoR7q5z2M5VsZPdL51tU4Omp5WaH2Mhpqv9jof7/7yuvTFjSg6cUdQJOD78Pum2fiR1gMa8kCD5tZh+d/mDz+to8zOvWfw76g99MPk9v2QiJtwZNxiUK4uP3Moo8Tl/t/qupVc40Jv05wtlf67XxPnHBTSCk1RLCopSkqycdmP56tExzM9QJ9VFQRkFTn6/RUwfWeAtIykm7QS06kc9uAX7GShXQotDRIgTTEkFAt2vMaTM2SDOzTAyk8syj2XvkPpckSIKTxqv2U7yWynqqmMaHzBGH33D5vRJjl4RKVjI3+nhoWKpk9GTA1E7cKq2oIybCNiQ4eeh7wde9yPXKcRBpRWGzUQ113/GVfrUpptikLJW6TB9NIBVnmvXo/01nljodlaFfsN4olURvqwkdz5oZ7I9iXgH07QPS9fNaHjUx9ko9HaxbuxmJvPEjPX8xB+ZGRote66W98Aq0VHc6s87t3itnMJLH8drh/06BkD6vZGWA2CpQvjzBEd2c7Xw5gNcQrhM537JFYh3amRr1WKxbsbEbprJcAOlS08aIi0jyXP8fKCFfWw7gxbqluVB4q272SioS/93Z+LXjx84PKmcTbAS9NTXvbItWPebw/FWGBmA2uLjZue9aT3U1ZSrGK8DhhhtYCRWpO5sW9JDVRT41H5Ut9J+8cZO4v63dqW+T3XKX7/q3qj/wVIZdjFsKJl6UnGsWtdHvX4gz6u3a785bdqpcF5obBXt7MkSJA6YJ4+i/ute1zWL0cgaI/+MWZQzakug9zrr55aAzLhJ9kurn3hDUOOmqYgWS+laEfXoNFPnjAwwNaOm73JsMLrvVq6FeUSJMU44NgZZYyYT6s0CCZDifAg+lcJSTJuvfgnn6xceSTRt5W5gz2rcrMJNC5jlSHIVqEoQOKNyo5z0LzHLqTkHFEsrHN6SfxeAQ/sPsVwREWDmyVVI3B2HRkBpq6K4K1ZyGg5VdOWfZhVAPFITktznavav4sP/rX56MSgHSqqY9oLPD0P8V0rw+56hiviZb46Wzk+U+gJUpm/bKVcfqOWKsKUUuH6fqROBzBoQ313vnTfTzur2KiMWdkB6qVQwPa4dr1V2ZzdKMehCha4bi4+9teMQwOy90NoLKFFQIUOlNknfb1JG9wEBrasWtESZyxm3jNIcUJiL0thHeQ9eSBp606XftFYbEhfCMeUTyCAsf0nfI4+jD9H0xmN50OLP5AYjmt8eEMfu1IFIgsNKe/Nfo+ZVUGjTPlmrE1dyUmt4Oou7vquBKy+bw+Ay+Sx/kAaasUATcO7eqz52UFwXnwjF9TapRa3AcHpYa8kDxGxx5dSRaHqWe50NMybGRNeb0Iuudq8tcIT1AKYqAm3ajCrZCt0MdyPU66pqZMDry5+RHOJWoIrexp2CQM5U3lY6R28yDJkGtGZD+pGSYiGAye9H8U1E6nlKvMZRfR2AmquaSBUqZ7/ZvkKOTKdDeuikZO0KidILp3S22C1/89u0v6E3fcJE7viCSDRD6Q3M8/TJE3jzTA72q/wIwOB+qbK02EgkpAb2XzwQD3b0suozqKRaynj6wSmI0wvml6ZW/x2XW0mBEbaNGTu520r9pM1QalNYmN5RXQhL9NO+uka6k0FZmjJK6GUG837SI8f3x9C+4nRaNWokhQ/zkg6n/gYTFNB0moCKP3bIZtO5dLAkXbvmNeCti+nvFHhfvacrOcdv1lWPfa9O9qOzSbAanhnd66iWUBNmW6UQFD0GIXZqwS3JEF3Yzadd1IU3u9lKnQ6C1OGYqLiYtNoRjmBUEyqReFdh2gYudFNr1o4Evbzu1rhGyy5Lzjjpxi0yikp0yRMGwme5AF+QTBvt7fMTejm3TMYnAa0A6h2Pvb4lcAdnCPJqrlP9C2Aai56b+w7eC/X5Of0YU2QJBwZSvTzEoA30ZMZ7fI4UXsyi13rASXlzMRJXvpdJo+vzfAHxXkJPFdy1VFB4DsQB+q2oIAZ0kN5jVbkpc5XANUM+xXf09K+PZmsZ1EC+8k1zSnz32sZRnSPHDbuA30hCUq1FLPfU9LHSxvJDgVzNxBmGltb/WeBkSB0cl8uEg3HOpRFuf8VA5IZFkuYcGoIvz8i4QOKkb4Ugp8rr/peFQ6gdPk4zoJhhuVkoLIoKllWNPWNNBWUZtPnCdgbrJKJsP/IIcA+uZK5BRMHyI7mPS5XiU23A2VEQimgds6F01dpyDsVPr6pVLNloajhmtnc9kLN0+mCX37mZMJj8OcPt3ld2IAhEkh8G2hdisSehYroQlJsp+uUuUfNfsixAjxTSyfz6nRpNo6gc6hmqJsmrTa7Nqn+qtqZQI7Szy7XE6BxEBVdT/ZtZoQM1jllReslqgqzgHmfhvsrbqXPKIplTp/aCQbMFvs15od37W1gHySGokFJxKfDLfcP13R3jq6hospBUasj5dikIcjJbTui0hhEezPOYr1rcK7dmcw2X3gu4dLAmcuSQxp2oksStcbyZ/dUHZP7UHlX0gX8pgV3/PC/hipeXQksKzRV9PJfS7e8DmTomPAivrBTNcXlwXxVXOFd2ki5vWZI0Mp0R6V5ExUGKvrGAjnM/3kfw2VWiBQdLjc8WxBy+mvMVHPJq1bQlqg4D6ZATIupIbiIWThzn0+SSHSW+wmpis6kAjBwGhao9F8xIbZyf62FwCheYDNaO7w7CrKc83qTebdGLoxtptCsJvqH2mKHt4eGW5rUP0fNaGcmZd6cEPwAKuk0l70L7EO+l7IWD9S6THA4M9z+1r0bu+8zb4/WAzO8nB8KgLyHJLPVbrAJZWXQmr6+ZKZI4/OgmaSsJoDsug36OJdhwhtVFmujmjEszTr3r4D4UFoOQa7fv7KKdUl0JQXZpnrlWv4vLNUnws73aIK3CRXhxMnCFZGtTGk6C1OFa5fYAIBTkMAh1kZGnuPfI0BcEUGvxD+eORGhXHNMtifWFEfpjkyZG7OJGCUCMFMfw9NWIY4tZyB7QDDZ0egCCRH1nYPsed8sm/bq7f0NT3m+6KTA+3hWqYapNAnyGmjH8rYmuiFcLjgXJj2PG1M5GxylQu5hmxjRwpUkSPeT8rrk+2HveZBRwBA+fRO0i/A17qKZlyLkXvKOE2F5MLDEh6WwvGVAR1lMelJSci457NDOIAMkDGKkFK0nkifmH2wLUk5HjMXZDxLVglCP9uHrIQk/7pywerZ1P97ES3VB0uu7CIdl83c7kCasbYSo0nbG+ay+l1lPaH1xURhFTwdtMxO05V9ijDa5zQRoHQaAx/yxYEFBdRHE6MYG2yuZvNfVRp0IHkhLNWAzoQ4srv63EG1ngn6bP2MiX9byngcmnV/ZPr+1OAAcwA1HySOEjmSf6wv4iMhy6xsM5NrLvC7ONeJK2nSbueXH3CXIKFqCSUOpHkkCxtlTTtS6Pv+B6pKEvV0KFwpa3hJz4q2KMX3MG4VjkId0M0m/qwexFeYvQjqSXWVrsnttKKZMj4uqJHx7/eX4j6ndA2uPwN6VgAeJz7PfhEoMe1UpqczwILkcjVBgTe/ji8kcVQzGO3DMRJCBqhvc3ddw+LiX5e++5GLa81oCH7CyS+2zqsiTIyrfGBHRwLPEs3/u5IfsiCCv/eEQprLZhFPm6Ll2/Lx25696C0tr/+5sWX7404VR4wKDdfyIDRq/RkM9IAZpfDyF0xGWYFwraQaYd6qKD+zprcBrckEc1SpkICR0iFTrCGLqjHQhDUIAtqdm3u0pObe66ZQtm+e/GUqwRWdcE8dBZVbODqbz6n518W19SITmBTy/R7urQhH3QLmk1JF3UXKa5GWwOFGDabwojoRSzi6vQT3KL3ee5NB82O6JlFw7+o4pV/Myn6RHbamQRlj8387ZN7lnSxbjVsSBDKdfAgyZI5eOq1hWhHYTPwAaBp8wg1ss475jXQ/30eSccCthB7Ai/0GWq1CE7BqnRrfDtbUbB6i0lzQE53XeLadYdaReSPXjGBm794hitVGQlyxFGgZpR281dFWcYkPloANeAWti86XsVcX6nkq/eVeH9jmFczPKofpbKbuzIlvGxswd1cApXwkEkcdtwKmGCShizLfwJeI3av47724Y1XcitirLjQDLmDKzMq11LSf4bj3khV4la9k5cASiHb5JWn9BY8HmGHlI4YVAgP0f1wi29zHNEZk0UBcTeSU1US5U4JXuq/RvP75bm6wkAPcw4RgcSX0sQO4n/YSaO5BkLuppfID8IH2cHXLnBX/z5UZlMFDYy4qtoui34FQd1Br0wWaeFt6su/2zCf10XmhHhluOuaowwfDyEUieQqceSocqcJSg36nuaa1jGt4cR079wz5oeXZcDS9pBZWrbwQKV35lMN1obFRjCDySp7FE5yrIGaCJAL4no/WSvQd/yzGNcoZQNyspNdZtNFPXwRAGHgi+Qa2voiPYRk+nNH1GqqteSbSze+FDJGEe2gc92VePKMyPvG6UABrSlS9GDGcn0obJ4x4v9TQFaIpVtyxTIIuhNjNKQpL/b1DmspL4Ld/POy/CwREFjQq77PqE4GEGtV+0PcWLWS3UhiDtCqBYPorl10eSdmrAK3E+0tv7ldtkAj54XJ617K81+3t2yXEn7KpeAP4cmD59FfMT61QdzVbaHwK77AgKu1q11hrzu3l1myLT57Gc0YVUnKYUDplotcpp1tZ60bKOY+TbzyIbrkXJIOnMYYoDiJJBhRoWP1BSHlcMW5dqrUF771Xfr6lySUJ5ryvI8UUALU1lfhHELQ7rgwkzsJADfeMozlF1pNPIi5xbA5MmE9IfLjZBNbjyC9T5KcmzemucxWTNORfOtDFtYkDgKsB09e4Z4qi4JMqF6LfUJYNL0n3KTUcuUTppnZJhXsNeQBysF2ayG46IRGV4ZbkA+L8hJ6NSlqfqfwtGOJOzfRfABRh6K7lWoCkft61rJsEg/y/3tkHlt+YTOD7l32Ah4jEEi616+/b7cvVp4maYb8DNk/K6gMRF7nA2JZIsiFWi48Z+wYmMQCw4ENl8+6i6SNdON4Lrz9LGAW2Hd9p16CNJfuY61hX4ecJpFgOfr6cJ1nyhMzC8Q056MizdWI612N7BNLk8ba0UH/ymSRGt7dUQxhJgxqYMQCl2kDvR0m24g644M3FXj6NDPDTA+Ne0h4obZ8Wh0WUw2HGe+m29fLtDNclhe9Zc8pjeWEoSpJJEcogIlYJMWOtI32XTgtbStb16SUgpi5A3AfKFtCQkNMfZA5QKJndjjVE7p2v1CxwvhGsGNrEpGhuFSfE2Au9FbIkVrERgbMQvLBRzqpTJZ64+lW71DkTM/2So1NtWAjocUuiIU46ZYaLYjAcS8d8YAe4lG4H+MZkOno0N84/oyQct1MrTEFQc5LNGeiqao4ChkwIGzZWZSpm5mvPTTONWvLNYLcg3lITTaZDxAvG2eMKsBE4WPcHZgekr04ztGDbN+B2vUo1auP6T51kOjYHG9n3jaWqKJ14rWIAk61pmkDugNKBEM270VKsWnsyVIgkgscKD263Ka96YI9miUjko6d549gdcBICEFH6F05pqqieeOjWxteESsBMah6eNB9NHP/pYjAkyDUm6nUVL8EzueLuKy0kJAmFOIir8Ecm+ENbDfEo+GSxPNze12LcR0aZwA/esOBp3sxp1gd+PwGihQgOu1IHCLo3utXazfG4birE1ZENxIbl9l6dxalr5PgELC4jUFPsmv3PMu0gvdLkfr0OYH29ylX9b74/pUosGpI8yJHGtrFnKK/R8PA132fdINOFUnSYSEtLmQANRaT8IBrTmAaLZvkAep3DAMpiimXEAxVIswSq0mAP4i49kn2NBCWLzICvCCGlP5sqN4sUWXeN/rWL7So6VKfSw02QEk23FrR5jQCkPfmsKeIp3DU7vriO4yNxmIWBVeXzdIFwfKn20Vl6UXHgCPBH70mPCWe7frcfnRRmLRYeYN+tYXWJR31fTDj87NMYIEO1966X2MhvvPou29G+1D2LsMuPCsTO8grlFXQobNgoC36XAs5LLvT4NEh4CaLEseHon2CN/7w5MNhSWRfe2q2duFce6iu3HKV182/hwrqZ9FL/uI+sfdr6cfSBesF4k892KXzh8nWUsm/yMr+j14+nThwLergYrAm5qMjEHv8nwdOQ5Mv8S5UuuQ2UCRXxzCsmkQeq1JTmdHSlydXiR3plRuuzWSky9vtbXrnOcUNttwIIAE49Wrn/92uIQfCiOscoS5Bgel5dIURInAJ/UkY9FukFNEfiDwTB4nVS78NqtzbCMzg/mM06NjNFX1mBGda+EmOjyvwZ/Ldxx7TUI7RXR3izx0dlISWOEokGj03c0VnhX3MzKPQ3o2FJx04BCTvkBukUpftzqMc1BJ/Nd2E3MnuESHdfp7PdWZ+HtJEM+V21huq+wG5VI8eQgNcOLqaRhl+r9edDddfcU2izGnOjXCHtw4UXphItNVpTsbt2zJZzj7TJystk99WuByW3fIi5CXh3CLYIS9XGK+kOkTvMVfV6kiIgX7paZivjFAgN+cUSN1qXs9T2VPr0hU+SbE+k5MsMbp24rtfxlzZjz1Xa0EoihCgDzQN+QiEiZsWU3HayBft8PgddSbnAbq0OsPEck2Xvzls+IcuZXwBmzTY+XAhazgZDk0CDvYuXh1VVh8u5YytdXgog9T6djq56nCyjjghayqo5qk58my/hoH6Y7C7wc5NwgMPxbz3VIwCARziivOsyoIfDgTsv5koYiVDK2atAPu3R4XdvM5truQDPlq1+i0UAHkgzN2Iae56akZOg/olPoQW61W+PBpukQoBdmu4UITEbLNSa345JFllBduUXm5TT2OjMmTUxbIJKOnbyw43MMhgViy/hOE+/15esQbqDJefaTl8YNyq5rzfCgNqcWXfTyfRbEIULYL0rf+03Puq/HMAoV7fDSXhkx4e6h1bU+QjZ3EGfDsDE/249xTaM2BNbdGW2qctXb/HD3GvE96SpkdxR8ip1jQnmr47t1EMJ0k5yPyMGA3yw9MUnqKR7bGapUtJfBU+uzFICsLxLid03Oe3zt8NnSOprvhAW2bfbCk8P3Fzj21zmzWRZbJ0vlm4dE/FbPMrqBygi/qH26mWhjwkLUCR4xr4JqMCFmswYugX70OtpQr7mAuEMryItvrX6yAANoAWDQe6+b3sfKwlTnPiJ04+tTHzHDsStN78knz2E0yKQvRBOea6DgwaVWWdzzpN32Vo/4E9JmVUbpdSB46LNLuxPaQpZNa3DtGaOwhDxlBaTekpgof/SqRyU9fjHUXOQWhk7Wrw9g3pjWrmqhL850/TAczzwPDXFZrgoSbSxjXxuimGPybJBzs4JhJzM1IFCz6JF7Yoz4qaOtIqliGtWflEAlIGYHwJEDdiVIB2Q2mpbwrU/pBw6sU17HCbIjhz9tqOS7aQmQaX4b7pn6v+FXNt74ANTervaxeMrPUf0/wsV35IGVoFO+WtU+vqe2g3Q+Ayqpty/LrPkisE2afGa/hkU8xXjeX7urjsfny+iUIBZQuNbDylRoEU+eQRI3VxwUKcDEzUHlRTIscJ5qD4CC/dbqEwz2qSGKGkn2ufssjsaLzreGU0d+GAgxdf88xsaZYGgg4mCZZ7hbS9e5u5O8maSI7Sywak3c5iVMpCQMu6MS8UCPatLCXr6dXIbO4iVIvWLo56+swJ/IQceNRqrLF7gqbiVL9FeEjo9Up3WvQJA7L4pIpLjIEpg/uDvPmCUO1+VZO66vBwKk4W/edrv3InUV/t/cNgQMetkhQezKSv5MBuRtfbBatZTt+BoUuKYwagnrVS+0gom/Np60SGby+tpTIJKWmzloO/colk0G2YUgMzavpaX43KXVJFH0IYvYNWiWcvKAZzBxBG0nQp5T1VA4+ye8ksqAz0dJGhFcm4GTAA7uF05cBvbpKuq9Iax/vrICCypCDLDFc2/NqBEb+fIXg4ZIv6scRlXbB+5THS+kR/YHdXwzH+aF1Drs5PXbni2zuoeyQX/RrSIickpJ+eE/g0Od4JqNaOEatTBPJNwLk/EgLkhQDSda9TzJXGsUkMI1Xt5xGtuSRQ8tgSog3rzQDyv3a1M5gm0MN3iHr/QLGLRi4LnAkdSrZ+e2PJvpsxAg0u8EKE75WLCgqWR/7voCjHyjxx2wHokix45C12q1u/THgTjWZc0QZNBNRg2wtmRxnk9ojj/l+7/TpXl+/psLSarsmfj30lVxMdiH6lDdiipSWrCF5o3nihRfE0UzOVMIYvQKyfBL7YfS4TJqJ0E7AQNdA2tgBEtWg9I3LwpbmHy54x2jf1RiUpwM5MNs/1J0oBts5JlHBKaiQWV1RmKXciRyOc0jUL1HZQNnWXufiqZu5uInDmijxRhbOWL+5WhwGxJR4mFYw6zPcUrvU/vXz9fU5jamaeabFoyibVcp/hLUoREPHecG7EwlT471ZJvQzolHyXdQvMm4JTeZnaI0IIH1HgKiPQc2e4ytTFwbJVT1GoAv34C+Cb7k7GLGYhwAAgmtQXC7JOHMngBQu9udkQQCXskW5ofZwlmPgBxV/YekFkfUBgmsEVqxMHCMQAw0nOQa2J4zqWbNUW8smFqmpySMTwhpZ8g50SLRz4M4ajLW47yFseT9qzS8YFhxrvRF0NYVUVLKt0oOE8JErNBraOALyj7y3ujUshj32yoaHkaTyhRz+6FPIEfEHy4fqhD/gyQlnMjXOZmoVyW1vFJwPvLQCkj3MtBM8c5E+Y0qc9emz2VlhOyue/f1UM0Ioym2EfSz+K8HeK+gPAHwBchQKue7jIPfjo51cIfWIRDZy1RB809XX4AbSSblrqVy/s8EQJ2loeK9ctHljK+j4fJLPtwgg3vjm0UeQ2Y2gl+pIDhg3e3xdwgb4rhDTt2jBibXp8UIjtHz421+z8flpgllDTNKtqrSSK2sctiJjJcV/hB39F2nr3xwiVjuLt2Vi5cc3MvIYt/5CzymHWHT+kYRlHjRrQ7Wn8gkrhcfW09Xd3e+hbqoi5NYgRBeYcEgPkGxSvag0EMida13JaJyBYrQuQ53oeaJ3B7cY6+0GT0HSgaXQRkSkJX9w1hxIdghgxxw1gXsOvGBgoSHaCckDZf5jMBJO60U71VnmAYB7GuMaxDnaNV5H/bmJzicHiFZGHNmM9xrSQetgpQy6/ly72FiBhUwdTFtmmQq4wutrYxJSOAh+Y3Ym9oQlNJ1hNV4ZMiOQDKzoS3RcqbXmy4JM+9a1VExO2A5nrcksDJkByLQi0HeFOzPbqrgNSoxoJ7sXZhljOAzGhwo2jMSgQCqx+wUk8eG72wTXk9H4HHN8XMHvJfrgLD43xsgBLADXo2h1UxttL0hczStS7FoxvfDN4/NnQqlHwa2zwQeNnGBJvmq+5aIqke/au1xknLHjJywCLny8KJuLMRF3+NKrXZQUyfPbuOdcwvm5mha9V/XjPMKI2i+TR9PoqYysa5MwmV+qAb4PCw2kRdz8NPym4KHrWnK0U/MUqC+w5/0Ywq7c11yVlG16+nwYTNPaAdso/e2eFdt4jdgUDzda7ubQwywlO06X0Lbv0Ig59vH/arNeJXaApLIPG0Db+bG8GjwIVBlU/MObAkPL5+X/hv8C07bfN+4w27CpC3Wum72JJR2jgyqCPwPLT+wMQloJu17sHvgQn2xsHg6jzfIeWUqmOo5RkS+SnplvoNsjJcxvIgPVA7TE/aucAPDpSR+hMYeGblM/YJOmZmKcu6sDmK8AYuAfsqGE6+Bc+/8kc55pwEa9Jme06w2bjs7Woi6x3aBFFtPmT2aAIZvRVc7oYdLJCCFIXjDOE+DOGLykUbtWdx2YgBFnTumoCR/lqIi+s+PaMLLpiiRbTalMwq8xoThvbx1XcRFbjmOD8SzETDyNM/7PKmh6UzSlPlWJkIL93AHyrILS8tXMBIGmgOLPzhEcV5fgj7DTrPUteqEnCVIaH10s0M3NOJewBTsJmsMSNuo6M1HxWowQcJXtymDsPdfDwEzcsgWHZdtBLRMFgKWxfe7AhixrS2lX4CApbKz/Wnhb1kEn3u3IY71XY1JZNlMHIFok0aX95rE0aTlJTQDBb4xdvxUB9f6hBruCr8SlApsJmo2S3GSULB1gvkKxHnH8EKugBDEiQZ0QK+0Z+D1u7nHPytAyZg2z28W0hfe6xEbT2RtpBwnCCPkytgsggrdTjwoUVwjo0NbvaxIsFiL0gwidF+3uVcFXlkcVYpMWjtzTcAqg8nCqylUnPTY6JBeE6o+nHRMr7of+rSVs9s7u4uNGxaNOQxZusOT94r1aZrJ6rca2u7awqNGg4NCievACm3hKtd+4i5mLIJ8djiXsFM3Y5NLXfKLxTLb9oWi+eKkZDpt7DKPSQmdzpqUxN54fCsrzuTqV84//ynpzlVCDuatHslaWwLN96zOrGAo0IlJ1MbQSD9CjyenvDNDxETXAButhZux5BstVoI3ktjglsu60siMU9oegZp/dM5awToTPvx7ZITN9ggmsl8bLQ1AgWpmOESL70yiNTaAz3POnBssz+g2lkH1Q2OiCTIxUac9LlphNzGge+q1IgRGv0x4hxAK2TJqDuoArDitFoPerthwWacI8rjbLyn4aSSG18Amoq58TWQTYo3y+eNTLWCro5I0ZjtVANhawPeQgWyBe2qo4XiWlvfq/e6E1nfciM3QyPyyquefKjhbt7V/ZMqwuA5si2aAEj16ghB4gr5vVi2MRRsH40xL2UXf8kVOdhM2QkFp8Uc6xXM77+36bdRItvMEeuuusrE8AX3pW5DxcjC3tLxsnrynaLlhZoiDlOt7b9Or+qszIXeBajebTTmL7owvS49Fc38+kuWDvoLeKxNN2MnH9xrOWUBHOjV1Klou0Kg0ZbQP4JzhkaR9Acd5jySZlNccT8nXC+c0RFg1mlle/Hq+125A8a1xlP0v5xk9FDXO1RJNLIz451palsaHHj/6N5FS0MfabATBOYKo8pDZTfw4hQbCZQSzuVKFVjb1KUpDD3eMe5ypu0Ihl2gifxmdgrhHRmFShqpX/veRoCxrc6L4s50Q2sNL82sbKzBNefopxlWic16qelUT75NJ0aIv4yL60ZhRMTgf+UOy11dA8fS1+RvhPX6JFQPkF0SfzNzAT0nusqYR6wdZpIIjfQo8iMyC8t4aWDqreeiM6tQ+iENhOIbZyP0Lxct7jfgf2hq0X9vwqSzSo/wQr1IPoWm6u83D7r2equuf83Ukd59nacbW3aeih15hi83rDlwvHXWvfKUFB1mXSd+fPA15g8Bvv1u26dO9uFP8yNiO5cvETMGZ4TV4n6ECWy0hVzU+7HsjltcpOj7l/XUHiSZ0DQ/qQRqD4jChWGK/w7gWmyGbsZyRIhdCXd9bykNhfM85womTv/n6QkuEFmcfZ/T+z/7Yu9/BSks8xQahfHHGO0YOJyUJ+XK0gzos2UEOUyNBynOeVn5wxwXAC+vfCZyAF+SwS2N+64zB51t+990xPxRJme6PZqZ1HV/dYK0wkKWGSogXUglKj1tBVQN2ByLdm1HZ2tfVRATHfZ/18zpSGZZINzxZvI9yGFo+jOJCWgVW57lUfnQJrUGpv2Ta2naNup0lbfu6USrbNjbSnS82u2SfeBu38vD9eFzA08kTc+0Ahk0XqdmFZh/scerMNlriiXpKgnTAGwhwYLj3YBBfesGsjjF60V8Ritx2qizYPNI9aIRv9YhyOC0MHtNW9PPZw42wHl9uBAH0fOm2pEsB3ukI6pF+b3l8B17xgT2NKP8UcRNnmGKAYmxMVCh2V1FjnwycyPA8W3aP16ksVTWOfAvCJ6ZY4XdUSOV8F/m5pSwEHHDXYDePI28axH9LYiUntNeZY/6pMHs660byEQ6CWiRmSDxl2vTCLcGJTWWF4miZK7SeIG1kKO0O+hDHdzK6HDP55D4Mz+JHwYSQBazDoEgYm3O+98isMWkXvrUtdhqp5iwQZtpR+NFu1/Dimf/MWbuDBXfSbGL0kL2qCpANmJq2hdTfwszh8ar6oGKGLVMqp/V/BCu5Qi0Y7OFFCLnhRhUt8MD1o6eX+Lw9BwtFI7f2D5UrWpeLfMY6DoF/1d5qElgLdrZNeyzk+OPX97r3BCezJgddcrR6STNvWcwh4d2drM5NzdyDC0OksJJuzCDiHPpH3FUHqzPVJ2LbR9jNFfMetFHTQiNV8YXTfIfmHoosMR2heRRKaQ2VRsOO1RV/+H0UWteYK/EiTb7eor0d+YNISYwTyqgTbK+t5W4vnUy6KLWBI71MoGAvyViUwmgwVT7+3wtWhgFfmiZj6dHO+Tww23AE8yuSjKn0QuLMizHDOZ4cDBfu5OeoxEQFviVp+VtYRlbFRc+SLa6SNdL8PWkmBqX89GVJTpLxvkM8w3zWPQBeN10O5k7OfB34BaWFEr34V3D3WWBiikn4UbzZpPEgyQE6yQstSOgV6NbggvyfKNhI8ZAHFUwpOsR8Wb6xx1F2Rip6yWbcuXtq3dlsFiOjFuQ3eYWVFx2ufKlEuBYot7swUcwvCHrmnAwT6NIsdGZCm3z0Qfrr/nft8hkYmOc/srnLWkWhT5HaieTzKyA5dn/Mdj2gxsERzXNITeogDS/TrdiWfmgCqKd7U5Kr4UZX0mcATBB4fddE9e1KFHf5j6OX+pHGw45cWHYLzUvi2ctzW3RsVeQo75ZuaS4n2UQalW+juc0DMAtuAr2Bx20oSzj9/tKe84n+eiMrJO0qloJesa/su2P25NbD9PUQ0MUEXzPnyzD/9HC4zeFvAKs9HUqwlfuroLQHvZUt0RuHSEsCviTkfe4zW0KE04B6yokAJP6dGbgkAP+QmEnCXO+S0P96MaYPTcH9QvnXD9OzEJnz8Cfn2LsLJR9BbW+ULZRfBuRi0PKHzhnnAyJP55tJDS7TS/q3PkYBmIROx266MyX2u4hPGKhlQbROZcqykDOfnHsugiLMXX8wN9z79sNl3iq59Ke8geAODTk+x+KVYA5W27UnXkcV9EucsgE+XzbuE2yCtGAWODPw0GwGAw5Fdrhr1uuR1c+xF/sMDI/NfaKBah+M4UD1diBCuZAs5+pF1tzYsaJAOpL3OhD4y0msDs8FAPd2U8ixgRjOza0OsnYBBX0nlY8BOv6PiJGBBj4qjCWb6i+AKhI9Xdrht+CwfMa6bMVuKK6HR+okGDbnXXZ1U/1tQDuzBMniwygPHg2uGvUoHJrxsG9cRDsJMZdJVivQCsTsdRXIaqQRHTDKFzgE8iPznRqDppPhE2glWkleia9rNxrwtng8xEI1GbdWi++qTBmG+D5xvGyS+ClA0ydxhpb8o9RjxtcKfpsF/hQOPCL9rmNBdXTtzfyTjlChkBpd86VhkGTPgiKGsTiSFjyAoX11OxDA8wic3nwlKKdmoxlNGXwe18LmayJKx8wV1FKT3XfebiqPa6bU4Z0jNghIBRpzUWYZSmg6CSyQE4VBTrMd4sUFt9eawd8oA2BwPvpo+EoolXyaMVxNIzn4yyYqgizvugZuHPr29Fji3ztFzZM9N0ymLulAYGT+cID9ZQcFVmbF8sPU0Ks5qH05LIFXauRvWQOClHJyXvKFBo3BXYlLixSiTqtAovrk89A6mD5Azn28d3RwslLayy91InnBzA1b+gzDcNVdbZ/QNBV49dlKuN9HwuD/YXDsr37HM7F4DTC+XQ/T8OVdy/TQj8GYo5GAE5XuFOMkV9cHHuAJ/HwX4pXjDrC47kP5omGLZuzImf1GXuAGVqvjRkKzNkq5O6jDxCJnqFaFlFXNcau7+Ub4u4A9n9ROZ0umGmqE5mPFDrGn5Mj3HAEx+pFKn6wTqZl6At4xP5PoTh0SdS04FK7pl+HAPHMLEy1ilD0GOYyRNGEyzGgrOK9mJtQOiDHtI5bUXqPcnFnrFi16RahYFMqxWT9yWdww9okpffCs+jf482CxSxd+BpGNA8bimegoTcijulkqOEXfF/ua0BDV8tk9kyjFMhtE9K7MPr7YpY/ARuPjn5uf67bOtVOyAiU23UnAkijxhPiqGIDfRGZIfxodjXx6f9BNuj3xAYxj8yZzMtuIq9P3fFgOo8xLwbIaCB4UvZtVda7fyngdwU6E6bOni0Z5VpYdJ4qZXk33N69a2lOdkd6+/OZfR1eKoZKMbsl3x5tFANdHwrg8oERgN6lMHnOO4PUibxmXpc7X4St1Rz716oh4q9mR1wU+zrGdruILqQbRkFwHWs9R7mS1wnxK3X+3uIewBWq4vensfNBJvGAkp5iEOpIcrDHTbWndvhHTGdK7iIzJwJDIGFr+Rg1cM8DYR8I1ReeEqW8+mN6Yxip7hseZwg9HO0IM+89a3Wpk6zJ4DfOJPD6pOpwvPQsi0T2u+nZnwrhwlPTs4uXH/TZxaWsytYu1iDVZ/535jVm+2VbRIqGSV0GkFl6KN5w3is2SobrrxHPZLJ45SsjbcWcQyJ+bRAV6K5abUkev0milIc7hk4K3+5aHAYEd82Jk6I4cLc5uQ+GvYO/tqWh/BB7gTdwUgFEt8vKPt7uesM4tMrssX0/YhknhRdQ4oYGuG3wm2DQEyABYT+EPvN8ZNZUNl28CBAKDuteorR8y7iyNCGGKmDo/B8SCaE5Bwzyl7FWBzSnIAMj7zX7wprtT+uG0RliRj/ZIttfZ7spCCUEUmPF1G340L/mvcl0w/BjvBPUpIZEgyJgSR4x/ig4lvpWQcz9HNFi+N1DTMxQLJdTLmjQNRt/18L22y0VIy3FwkJ+r7HGW3inLNSQ4VAyLwiNyV7cx3X+HxMj8yYmSYQ1IdUj8nJr5X/2Wg3n29sM6279uOD0K8H0YGM/7k5cixf7UkBgpVZ0MMaYBivjTMifCtM0kDB4p6TsmYM1IrRpFuhJaaYUN04er+HZMoonbwZWobziW+juyAVogd6I17SD2MBZ+CMK4R5QWHyAnwtF4BLqCuffMaSIpn3X4YvmIGBzVItcClrgYbiezCPKqeCPhOGs9o4QPEuACnxdc1kLXpVgitZ0YsyE9Es9pSr/TN4xqDv3hCqAYvjmxQDYM9YbvET2dxI4gLqnLnf/Ir7A+CHCgUev3LDx2Nz7TvMjllFKsJqnPaveEdexQygn4TYzRf0ahi4lmzKW9fZjYy2LAA8UkubMKpib9LB7YVw5H+xxxMksm8a8WXhYkTIDi98CScI4N7AULnOjiKubrKvL0FcVQ54vfh/YZwQsvNAo0qq7sZPtu7LqUXf56s3IVEtPD/zUGtdppsjT57pL9BLLt3uBSCWyqMwv9IdbbFBji+JLHWgeJo/C3YN76UbY0xdPHRQbkCOQrlUF2GZ48trGRuUECCk4KTRXnXeiRDYvTnCl4Q4PTIKLNbcUev6SxiN1UgsqvLu/chertsg6dGHoel20y9DipOdXagdN3Ppzw4sH4a6XXVd6siMiYFb5+vZEYmgrEsoatzyHX4stZ/jfk9oSysYl00WOj34jFsHIn7GXUwbCJQtXFeELvFYOYiDaP/jEtGyQeLDe90GF7zLjorPWjuwr6pSdA4EYQrc3g2esMnOZpY06OlHh5BPxUHL02QPC7aXphDPOIdn3lDC0UgCVcZfnpsv6jJfttnkyW37dZ7E5Xc+a9U/6iq/MmXNPVvAWMhFQ7+BBajafvSJ3s8k2KzAY8PAsq8ahWS8hgMTVx/0bL1h5a8TtUTlL5mnDAqFdd5EVZl7xseDrMfAzGKFt+3v3nnHE60s6ZY4EeS1jmh0TSfDdyBQICtJ4Ui9c2O+PesP9u/5ZCh5/HMeoHOBoyfLHXk+HHfF6C3CqbbFmZQM/tVzxDRC2E+Y6XTkd394hbMqN8VLtM/SSYetYXRySePEyXhqVb9CI0Azymg1KV4iXpEBQdiRKUOET/14MAo8VbzQFnTjve0RE1R+pw3o7ZWsJu1Xw9IXc
Variant 5
DifficultyLevel
562
Question
An unknown number is added to −2.
The result is multiplied by 4 to give an answer of − 6.
Which of these is the unknown number?
Worked Solution
Solution 1
Trial each option:
If unknown number = 21
− 2 + 21 = − 121
4 × − 121 = − 6 (correct)
Solution 2 (advanced)
Let n = unknown number
Working backwards:
4 × − 121 = − 86
⇒ n + (− 2) = − 121
∴ n = 21
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An unknown number is added to −2.
The result is multiplied by 4 to give an answer of $-$ 6.
Which of these is the unknown number? |
workedSolution | Solution 1
Trial each option:
If unknown number = $\dfrac{1}{2}$
$-$ 2 + $\dfrac{1}{2}$ = $-$ $1\dfrac{1}{2}$
4 $\times$ $-$ $1\dfrac{1}{2}$ = $-$ 6 (correct)
Solution 2 (advanced)
Let $\large n$ = unknown number
Working backwards:
4 $\times$ $-$ $1\dfrac{1}{2}$ = $-$ 86
$\Rightarrow\ \large n$ + ($-$ 2) = $-$ $1\dfrac{1}{2}$
$\therefore\ \large n$ = {{{correctAnswer}}} |
correctAnswer | |
Answers