60000
U2FsdGVkX1+gedFPksW13/3SyJYMsIz+UWyrYVwxb+PD9NdCwjnzTZChp+6/aeHGQnVpaaC0lEPdRZUYEP/xJ2YKB86sIh0Ob6Zq5oEOUVLbB+XQ3ydcUlGvACUSSPRlHeBerD/AuzrI6eBT17bbwwMRmr9u7Xbrd+Y2tAIWYcFnL+Hz7Kj2hG0puedyFrpbhbNVsaRmMU5YGI8OhSp9qB0F95LP0r7uIBBN6yvK7B78RT/5V/khKeEoi5M5N2mR2XrAyhRh+3hsUMISgDBz8jccl7chhUrgPT/JNd+w+w70rOB6MnWVmdEzYAZNyDtfwGS8hUmGgq/rqFtSmEoE5DI7oPgsNNMSMKUR0hLBFjkkb0/FQsED5aCTyOCzvNNYhDUG6oa07qzaNhSD+YFWGyhk1PK+reNBhL2p5QswOAt/VTG2F9oaZFpsJ/E/78qfgrR2d9XWd1PXY8eovaJx1wl5/sb4dhtWB6/0IP7AN7yI9zT+eghuzzMR+W3P/ldYOzZp+3JBoy0rPHNLp5oj0k8hS9nvWNp/sOWaZRsrQH9NR/6/DKeY+GjP75bkQmSpnrUxNlYxt9nDxJjdZF3hrIzBS5JbAIoc/jJTHd3eRNhJjS1yJ/GHWcO+vpkdIta4opy/OD+bzHv3Q5+UsdEp3aGphzKKvvYoW9CxNy5luTEw7jdVQxMOCF2B/gmH1yegi9WxOQzk16dbeASBFYpppNXx9h1sD3FtE5abK/j0bEFvVnRNYx1mBJ3cFk8+hGbJ1kFqZ5vNk2a5JMXXaMLTtrUoe7vG6CM8n90BycftnsRQFCj24qMCIZMbzsLLzThgyGaopO2kKonjcZ3hn6lLPmJJXn/tRLPtvyspENUoIk5/EcM2dY0lJhbLnvdDhh+ly90PuqLpSu6cb203hmrGTapXRbuyPl/XMiR7/S7uxUANtli0zrijVTcKr2XmIzmLuRb7CIhOE3odx04JvmEspMReUi9bx0593EHffcw8Wlv965p6AeqP8vqVkMellMfkmAPJM+2jTthG9U6xCxdS47pzXyldBjS5gbruINPH9u9YqEedDKLbvTjGv/MtA8u8GY6+F5VshYZsZ4CpEahStcHOUVDZ6ARoXf6Z43jNcwH5/HyKKvN+sUBbipPJgmxLT+ZotdjAH5uIAU9il0zp6s/vcfGPAjIfgCcN8e1YmxigHWl0s6vqHr5JAn0FDZYQxSKyhCge/ySlR3ND/kn7tpjMdqv8VKL5tJTtsJPXA0tK8LJscSpxFQGJ8m/xpSZ3YSZlmbwEz4zwDNO0tISSAQQGxkvnHrKXfEXgnI2TBi+b37HH9StHQnUaVXf2xhHErv/qoc9V8eCCE02foX3SSrKz37lPoyK+SwQAlMj8Sw71r1TpmjvcEhqJfCHGadELKP84Qxd3fhxMXJlotJKs7qd48Wfg2nrVC9uWteTZk5ZGrAbQOyM8yjVBYid5h6aZF1iaClIa4ZqtFeQGaJ6DIHkp5eroqJR6KGyXrbeEhmoMpSsxDae2oJMUgPpuAsrPcxW+O5NUJwFBqoyveY/2sOZwYmHM8ZpDcoTPvEu92s49VDlfARdBsDDl1U8/FUS1grb4jm6La96J/5gzXeaqAR2Hmbt7WCf82Sx5sMv43YCdXgY4yQz+C3QSAzHoN5vAHPsC5aF9c6JG+UHyb5jaoQ176bBRk+nwogyrtIKukbwC6dVYfVPWwMR8/ck+cljr34y/n4+MmGdOWa++fCVG+x7i2/j+q3rdDPABOAO7M/XOh5Av+NLmjbuzOMgSVSbELI23kZlw0EhxNMCf+/aEgtHVM44y9mzAABJ0biNsFizlNbae663zGTQvJ+OEoSWedfqqvjYRfMpqFmb19bsoiqLedH7hFzrzFTmhpMINnjSiv5i/KTr6BaOD3zCrXzAQDfpbjXy59T08CEdsKLwRmxpQClZsWZHJsjE/wI3fu2lvRd/0nNl1dyo5r4rDrdt0kViuA4xq9r6bYK9cfpaxpl1q0AZMsSr3tKkzF71X4vdapWYvF7iCDODRP0o945MvNZ1MpkerH5kw6uHdpBiW1SjuWTH9ibCXp63ipJoF9cXi5IC8z415tEeWTQvogx+0EF+pvBnSuyvzUvcbQYJEBz7jTkvMsCHcJthMSUg0VubVmGSpIMjWUqQ6TNQLXJnxsZN5851ci+/TkLPBcwu/YvIMGA5g5sOFmeIEbQmXk8YBaVlc+toLQaIoPy9mDbS6iNIQO+ajxpGVylYX4YOOfaCZFYZ6X3pM/yAW6O5L30eJeHmPDDO4B6+sUglUb2XfL1Nwn4OKqA0toPMb+1eI2jHx+TnPsudZiRQqPmUpgn0QdZJgQl5RUWsS8n/oH3jvYRBXFb1QkfA7ZypIujB7grbZzTfe3GVPf33RBPRhQeOFrejEdL9GgJxkCTTHj/vcyElPyGvxWjAS1tUN6VmNHDZ/KcGLb9Z/qS3FqCGa11pUr6+5BskPp1wJ922otbuuu5k1gkujVgRFK65pDg/Xolxvd5znazZQp5EqJtNOEEePBUmpMVFx5RJ6fJe3OtI1gOJcdQigbfbEd4z3KtilgZIswy3KuLcai0Wd6F5TzEU8+qxKNkJf58bTls27INqnTWV/RBqT+M4wZmZ/7J/m0wWLl4mrYJZazSVTjlfaKDmgIxulHPEILzCoaB0cUF7/yyLMHxn1AWHyo7O08wCJO7q6nDCN0uNGagznjHUIUiKQfQXSIjy0XUmpoIF8qssDJxNzPDA+HfwxcT4BS6a808EocDZTjKvs1Vvc64XikMiAli/5bOX+cuL0Xd2VcoBXneoK0gGMcX9iF18mIsBvbNG16X6s6HAOKXl5pZNDmirW4XJOEOELQBWKRIIqbrlwC9xikIQbX99LaVn7wkBYNLpDxuSFR5RzNC6MxhSOR2xaVT9TTBDj65Vk/UFAwT+/uqdbsjYx6d6JniZjcvSILD7z9XkG003YdnimjLguLLbByMsC6Q1tVnjXkyuiysjXQYRNmNsjipz163XEZppgsURTkSW2NlyAmwz0KZSaBQhkaxMo06ijRikDlqE4Xh2BXP56pjXbWlhFa1mLh+vL9tTSFcGiWpx4MKaUuTktNZA7E9qgnXjHmHXY7SGkZQL7MPIItyE6m6a1yloiA9jW3utJpAp1KiMXVXfhl4z0IeBaOUCfDbfvbQ/V7cBOaT1xAN5iLdznwVXxONLjcr3QheOKFH4zkwSLdBmu5qcZmiOPpV3BNa/y0Yg+bnoabQj1w6j3OrKALzURGIpyQ8SbMMV/WwZk0QnEtlvuT3IpZTMLDuyZcPDnBl+CKHphSmDjjY1RafPxwFS9WjvZIWLAv1+CZn7BF3mYpT1z5VIJfJutjWYoqBG2Ae9QCYJ9+B8+MC1uDHffSBkrFfNwfmV+w0B9dG8Z+Jy68qR6LHkRxEH1N9ht2gz+8nGiecVIwP7O3iOcX6LmUyU6QL+MSrdmJuiJPMgtf8/FMFlE7CJxuLL4GXMhfB/45S0r24DX35ur90tpyT+uBIoahakueN3GCi7qIYDtgU4qkrSGsY15T4kXQ7ZIOr1BEU3z05TYPLNnMO1PBWalFbNTeEeGInAOUrIN1zV6T0XPp0EE9Eq2m2D3tQdki4aTSlVfT9wsAMIsbrvFPlUdqnEVkBirEHU2up7vVpmqD+AtRC8bhoesZO0srcOwmiwVE/PYdNaJ7yG8nIFGhtPXp47RrMyBwH7VjVaFzyWf3Xn3O8h+jV24xZY+a5r+PCOZ3KkrxL7NZpha+nemPaMqcCWGPQfI/0UtgHa5ktfdttjmM0VActT3g9OaORutMPbQvKT/BJDeyfgRnWCautgxYmmWNA44IMo8ciYsrivze7Tgt0eB5DN9v0ygepoinkqR3jFD8Gc5P8hvlBaGYOF+8mly6SzJi5OPtzhbGJlfcqpV8T2GalkomxQmevOduzhx1ZK6mjdwl+iYKAb2IHfmBdEy5jW/qPyFuc0uK0/UsdPPS1f6D0xFY3tjsB/FbV9O3+mrWgZBn0/BvWTreGmrUHBrOCfjfchMr74BdR3n6Por89w/EJnJ4QwY18GnpXdeceOuroreopisNymzlaiWdtCj8pwcAdsLGGF83UF0tr44N/AivtsfcjY9qLGb5wwxsGMNaq1c924LM/MYmjtzmdMBLSG6F0TLGeT1rhaJD7UZedvumdoBi32rmz8DAgNz8Bls/EkuC0j25y/miPX2MSNI0lWogpFsC8EnYcqrdPieEEdy7GAZnP1ZmO3qx1wFp9fzkeka8SY8C9Op1zJ3T4ONg4v+KDeYnXbld+3ONh3XoifMSDcNwKxZa4XDcs6sPr+LDVknlpDQbhD/sveJDnUCvGJPnXj5oxMsyIP7NRzX8EGdrQspZdqisLtQwqgGwaacUy1EXfS4IGH6eSiwRu4i3qsUUtPs2j9DkA6c5+OJ+MzO+cg/Bo7zIkwN1mE2+i0H4016Grj6+IuS7yFDhq0EoOK/Ov1KfcamPkP72o98hRDhtae5GXi5yefQ5dCSUbS9KrIu79eak2dZSneiMnT71RN/Nx1p1knI1Tw2M42vGEewUFyLM1xvyytYEc0JwsF3V2aJ9WyeCuCHIiwBJefJDt3Za1NQ7GdrCpo736kN7TKvZR/3zVkdZgQsqXCYqVUstVYqUjegf/+gsHZsFSyrB5W1OcyzHEbLN5twhz7lMsqh/IpwWWgdjTrjFzWlDeNshiB9jFISyzAY4X523173V4HilgCtuDLaFl/EA+53rDUe+tuibWYaKeVMt38300yxQ1+hhjIYN/qAQw+OEsVcUaHPKkbQloQDpQ8AInZRQZ4TUQaknZQnx5efyqrrefbTNpsJblmjqkloRFruPCN9SZ0PKXkML0376xFkfYD/TL9IoEkMUBejBg6cxV4YBsfUTYGbRDWm3g+o3bxOhrTA2MMP5pBWx6KuyzKxjDItk0wS0IW94K4ajzmZniVA24GxfnWq/Bdl6guxs7yOyMtFy7gMaLzG6ijD5pxqX0LD1m+fudj6yNDmIesEK2hsV96Hk8NweM0rVAM2fqnOP/96j1s7JdPK8PKHyPkQLYHsh9Sc7ZDs1df3fT9XvnipVNw42l+h2GqeuicfK5FvCs3/4jcFMeXv3Nhn7pRaD4NjXo74LCTCSyJC9a7uEX5BiZYy3UtNJAI06WZ0vc0GKI/U1g7kf3GHr3Nl4woS9haVIER8XcGwaKQ1hQvM62A9MbYZZwgjZGBMOyV3nJACeh/SzvSoXH+KWTErh1vOdmJJeK54WkgqsirlmUK9UwsBtfkR91R0vn83IcDRJcz4qzxj7JoGMgnh3PYf9kUjZJ3EdPirQA+DxHR+0xmEGFiziNL77Wl3kMMlzvVT6anpzPqdA35M/s0BDLLvUG+1LHCQhyz2nSGbBTXYh8hkiCoKAeo974vqZw5KtghI43V1/W0uOraGmtfiZTxqRVqem+k6NkOHWI2IKu5ljQ3MEqQm67WdZo/d+0/BuxYFRzBF7faDTSN61IbzWS/gQgWSV6HyMQrLgS7/kFDkDxwJBOuFR2Do0CpjZ/8CEAVZRETY/xdbPg/mkbzwZNBCU9S1eEb95tbnvX9FffmoYQmLI9Zu7hj1fDZCv8UQykFZZuZpUQmc8dIhQe4rkm3b9x4XFblHhHdNIQHb8dqDIm5aUN+eQeW5Hcgm5aGvdhlqQle7+AVjTxhGjBjLooa/IgelVvga5RaaBTF3srevAgfMlXVz4jYjI7aPmEDCPUEjech95pCtNltzi5gOlA232nmCSMtsRAZ6kHy/i7W0OGInhaPIGND9xKSKRhmfrP9bgE0FaFRMVWBKNVU6XejmwptCwcS87wdKc1X9iWJQtfCuXVamhEiX23mraiF7zGm6yfk7WIDFxaGS4d5Hk1OIwRufR3XuvOwmPi/Z+x3gLm5pVonyXxE2RnJeEy9KOVt59+mEnqlWoaeMrLkM2aspJkO3X+G2uB6+dnNflfjCw+dyWa+HukCwIrPbTTt2fav+tYFRMzcQ8Lt0b6ysSedlXUKtStT7mVYUD2qhr8cAE6hUiitPWYgRPPm4GQboEpuc5gtSObg9Z6vtjW+PI3jfjLKM0S5s6zOud15U73/9h76jAxeqRLFbHIQCkQz6S6325aahqxOMcKSzN0gESe1pKQ8Cu9EqXLTPDduHqzbPHaS90Dun4Yb+FDnGbptIKktKPvkxC2b2+SgwppMfFtgqSccYf+Dg2DP8flI9JSGDqgVV56SB7HUuhNEPebA+PNbstjRwgc6tl/bCsSVXjHnoViHJMlVD9pOfAz/NccnB/Rb8mhAPpCS7rcbgktkU2RBQrtUvYO6QldaFYtOYW5r73mgb78AoPRHVZ7KZqY8VpD5Q4d6SvBbvZVP4KKOWWgpdlzwIbt1ZyvRVTjWJkkigb9g4irRcyPKwjowUX1DwaNnwsZS9GGvRhy5Mypb5rfs3OGGoS9sHbkMhQXJlxZrDSlwFkr0cxqSxj3wWgR4CPRHBHiJzx8Un2hsSmRuaYVyMdKwxRlFlEruVYa2GW5RM+L01UqG6Y/ukBdxsVih6361RGWKphQsOdofOkM2r5S0L2sWb4BGWM1K98b3Lk+Evul2C45y3a4U3YwZdY/7JqKoYO0PE1pSpyGTGKixZqYipkHA3g4zuFwj+nOhtg2gwK22O835arZgv9hDW4OwZSyzD+KTOSu14z3qrfHYrgaTS6rgOZx7tlCGlCJWZvDF2VDyijxBj7lFA0yb2CznJZC/kBXap0/P806c1uOTsBBr0BkV9il19fdcFgBaqY+Stly4s54HAr0wWv2vJ7dCuq+QFn9MRoQ6eJVksqXltIzpqFsM3ErfElkt79iSqGh/lT6BsNoR7DvRAcJ+FligZKT/fhyoprMg3apzMqb+Dv1pB3ozyA2zZRTA9/48c5Fv+NwKFefP/f+ly2u6fddUUml2/Zn6J4BifJgRxv4heHdQySX8P/VMrXztk5sXhSTlE05wJJ2G1E6VzH0T8YFMAjsJZZVGl+0WA3NhlsQaDOSRL2MxL86GfsMI+cKoC1D7IuOveloT2KqaHEnZOxRd8lJZVyLSRl6QHNREtZ5imJhzLh2wD3DLgCV/hTH9UhIBlu9vVOPf3vALb/7LLf0RaVMYxf8waFoHSsr/1ZrlH64HSXLLiBZXyCJz7yJzwvP6A9aJTajOEveXWHALBPaSbxZlEhVYQqxPRSnhpQjqj2FE1fXoGhceBPqlr0oXXW9ARkfjAgjecGnvl71AzbKCDtv0bd/icNovm0w8aG9gTmMxU4m5TseIM+yr0iyks0qyW4ABr47FsJj9P/lGodZ7oH5TZKGkuKPH2datalWVE0f/cMGn+V8v91VeCDuD5xvFEeDyFoHRgpYqZ50ZYitLZSh8mP35BeUIOBbyQSNYrnUgTYMDWOUrJoQKTWcwWov8GF2TZkMrphYmwDHx1wQv7+0jU9YB3ob+C8w1mvvpADWfLpvWBfo5phHSWZ9c+Obk6eW8XC2mELhRnakasNNJ6jXF7Cz1ef2og+CrRhnLFxVYGDCBbVIPpk9lnzsR1z1qEuJc2oUmyuXr6+EEgKWV0UmcT1OAEUzWd0IxdzZZwucFWNDEsSdaLTmvGfQfhyWnDK6wuAJImdGNqy97BGUkT+ZYHmLEQ+4mK/ATHKc+9zhLb7Uq0ioEQfAP6s7i4jWKsGVlJsQERMGjG8MjY2N4R1iPDPMj+Jpee81tOc3fG3VyfkovnHDQoPwN2p9Vw1S9Pojt5S0lXmDoh1GQZpk0KBxOFGq/UhIggnuwawQWlYI0VcjIQ60ULs1pdm8eiNitBbXcNaBi+od2P7oFqvF89o0Bzq8WdJlGdS38UyDRC//64WoBD0Fo7ghO3qWDTupYvpn3AJ1Ltmd8ekplVemJT0jnzfy2k1du1cq/xbqkAbqP5K1eYL4IgEe8kPG1lN2SP7mFm/8Pxmegr/nAIXMTiytrZQoQ+454fzgyfexofXzXISsj9ag0VnqtGgOrx/0JTBG/GfULgcg362v9ijCJnwQHh75JVmgFyD2NXW2MU17bFoXZKGZsq+HUerqAdRJ69hjaXdV+dIKBGj16kotRctYErwd4+mM3iHpiV37xKlKfqFYCsYenFstHAhFNtL96ompmFh4JtjpJU8IsrN0y8NjhtSPEtKOZK8CVC3lrqryS4zsl6PAeyXCVh12TUZrQ0HfiUmiqnGlmL5s7iQBPEyimTqTCCjbUAAqYmMpypkvBb+80kToQTpxqlGqIYuN8CBl/qeIvnlFKLmWwFz96bYxXNYAZnwngGLhkXJkd+VXX5eWueRM+EvdUjNDvJ/8Wna/EY9ez4WGHwOEKXrHKrmlfPgEbC6/FKd1eoqSBr
Variant 0
DifficultyLevel
497
Question
In one year, 103 of the puppies that a dog breeder sells are ridgebacks.
What is 103 as percentage?
Worked Solution
103=10030 = 30%
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In one year, $\dfrac{3}{10}$ of the puppies that a dog breeder sells are ridgebacks.
What is $\dfrac{3}{10}$ as percentage?
|
workedSolution | $\dfrac{3}{10} = \dfrac{30}{100}$ = 30% |
correctAnswer | |
Answers
U2FsdGVkX19gSKejP25v7JNKS/3PSayj6PLE88C3qPZHQ60BUo4sbYDbRgAUuD9qb1HB4e4g4qnV+Hsgl8F2512h7ltVXNJFUHVPdrNipAd+EJRoxhlY+T8jOhF1SBa8/A73c6Hba2rizSRDQoHKd8JKyO/8ndfbkDk2PU6crIM2LOUplN0s17p+8l4qZG6277jES4HFl+6aULQ2Ge9LPKbLLFd6qGzBD3fZvJWf3EKMMOd4OaV8CmAXkU+olTCG36GVeCj7e2rH0D9dd8gM3g+DcKVyzXIXQ88ygJ7I1lwoLAyWXLciq9xcutN05RXr/OS1K4BR8gqfRsOf5n9J7vAZmPZatzESWflmQZMVGVo483blfUxGWhVon4eQENHIZhT9VaUbv919GkFiQOgk9Ui+t6/0BpELFRD8jamYanMFECNuwm8u1CbonlkWIG5Ny6qMkxc+1gpOq/XJktXQlgSujPsnRXPEfbWtrdx/S+L+Yctm7YJQxEGllqKidHTcYNbUun8W8OEaZuZOWObq4hAqNfdwL6bxPzqgD4/gwlklNNdZ7oHh8VvTeo/VfIumWi7Bmhh+k1WX05adPUPGpSNOU1aJwQfQD7NoPX88N3O55HsIs8aw5+unQ6Q6Pykz3Sr+t9cUfntwg2g++T0XA4WoQHkOHC5hmWVxJy/Zjg0F0zrRcGh3FPLRfJLXFVp5wNzepNdc+q5FVcNFBCUd6HBH1BWjvfGxglnVwKLzFAEe5l9S+iRPaRkICWKEJfQTdiWfGFAFViWfJqwGQ/4hs7rNvEEt2NVu9bDBKgt1ns+TFRnw+G8jI1T6PksnHHRrApxPJntw5nRs3vcpKSaMc6HachEzmgj5Bov/8m5gjmU5Ybd+8pa6KU5x2J1ySLNUKa257iSVT7H8MxnH5eLU/7Luk1F0IPY/GpQ/T2iZKUpI7GGi4MgplPO8yjOszOMphrN+LtQEEW8zCQ++2845Y77ZZ2h+EUNdHLaGvr8sVVosQ29fWu2znQ40fd1ZxQClwDzxpXZyLXT8nVsgWIv4UvzDrVgk3W7SOo5WWb8JJx+W7pQtn+NfSbn1beCHWT/o50WMYj/EEuG9km02QB5pKOeY1AIspiByc6J2fTdqMlBi1A9KxTx/rYkRI5JkzA0hIlQXD3uAOmEqySaLFeKAiqCvWPWoLOJdiGd6kXDS4+nth/teu5QHDbBHHdlr65arxjFFMSeT0Gg/dv0EIFW796V5iqd+VT6VvJgBwnW3wBanc00HHsPDWqPKuL5XD1algSu1Dw6y22eQ1pMepAo1U+ySzQ3hVRy6ZDSg0ZGilab2FBynorqk5HPPHDiMP3SjGnJ44eck4CxmTjZqvCKznW144EfMIlffONJ8wbkK+yLDbZVhn0IKKJ7EUO2I9Rz1spLoozCnlOzo/cg0JnRTwNWqlpB7DcISHhyRRSDXvyOa+OqZTBBliaIw58paXMJd9ry3Z0JMnt1wVUopwbIP0vRbzRF8qMMDJyO6vSZfB3KwkXrpGTqMmpsQw1k/IUs1Xae6W3czaYUR5feY6wX+g4Y7dFBL4MNxr9DEH/Fm/0OuZQMZPM1BRNJKjILA2CXIEK0g1CK2JDcEGKBl9lTCO3HJ33WHqMce2BLtc/WXp74iWYOP+zc3Je4F/EpTN2c+yqNeCMfvERK732DZRYKv36KufbBlmU2OtGqYPLiSqBalosorEoDyBhmA3mndD4tSSWPBkC0VL1dSwfSpkwSsRY1Eut6+hnO0CLV4D1gZDcqlTZLSc5+JOBtJZESDUIekXcH2o7QhGXkEpMX+q5gEjWlx+RU8u9GSNqA1K0JMJUR2HMAybv8+9FB9LxQRjG8eePolG3jFKHCbbVy8Cycb1YebB7W/S5Xh2zkRVxiVwv1fYjfIjmy7QH96lGlKbUdnmosJvGHL/QV+PMl1Y/6tp3dbE9UqZ54qTKzeTDiZqXT9wgjZ+uyq9Ke7bYvrvIaZ7zRrDlql0uGVRXtGyxY7I1lmU12kIN/0Zj2fJAbOafijmFDcTnRFkRLlgk4lGiFpxednWQ7JwHLEMKZoA2OW2S5LdqUxCBbhQUjOlrqpdSg1Z6oWOijrMDrkPotwuqMu26JJ78hIOIvfVJ/Grikpm8ZFgzFdeMtIdID0MrNMOg941TNVmkZgfo5rLAkamm2qODZHrqPHQeEtsCH3dydPR1f1wNyLec36k9N+9Nd2YEjQ3EF1ZbJW0OyguB417ub3dXNJF4UzxDWrYvtDNEgGAv+/quIIWeLigIFQflOgmEF77toBPE+IOOBqAK3Sgk5fCnWrTZAFgPvrX8EKXhF4SaKJlinZorJbcO4djnK6W0vBB7wj1NXbZ7Ci2k6amQjR4QekDioek4JTIleqHkn7NVVzM7M8K97zfC/QMbEKS0T+M3K4UE5omsWOrpc4ftPId/FTMwo2Yymr1X7HdbVUIATKFT52PSqArzWF4yj+841txQQ8pvBz+7S1TyKACbJY+5wXd2AihPRkslKMs15bSTKSbr+t2wubmnnLjjdBFdv8qH1wtxZCVVjFeGTIKuC8HJzgcTOI+tzxAdEWPgUvSYSmpWlQrBExWK53BnL/SSWr30spUkAAFe2HY9kCXi+F1zpBGsiqZh+5oDhAit5+CqjDomrx6R331dv4/1zJhkvAP6DkaqDbJrc/tjCGNhzV3Bs+7CI+N691s+UZi8k5yp5ThU9fGH04bLm3PpSDbtMVzd5b85mFmCBHm40chRls6M+jSp1GEzqVdjLqG7bRFeyoYQ7OI0cBqkPYFt+N9biYAuGVCaoiYm7Ohlkuy2EwIrIssoCyJCdObQJRX0pKiRaSIe9mu6DRgvhWe6sUbpWBRDqo2NKULSg/5FH3H3XobaJOLgOXiYGU7M5hMXygKvzn76+8Re9oL5Z/etJjN1oNS8SHBI9gSvAUDMgZU+K9l10zLO5f104n/3c3tHNz7Ut6OSiZqEodcmz0UYczdd74yqL4XgusP2SVfJiw4A0fIo7OZaNijeSAKtZnO+ik6J/4qhsRe03S4CzkkUza0ytsmX6r6r1Yr63GNcD9fSQx7CTyqpN+D0ZqRYHLO2YQSqa5wG1h43Qj4s6kzWdYOLZWf4tq1emOTuSJM+iDOvl5T2CK10kBz2x69gqOUOgishFI5/fjO02AZBh30Pkny/CkA2qNsDwL6oWVraru1TdgnqGtf0HClVd1HArSwAf7/c2Lukh7x7CwEjDlC6Vh6CsZaTRgTL/FehrIDcCI9F+Ad/O9aow05vSXG5LL+SIrmK+cEbOv4fodL1OmOlcd5XLigZwJxYiljfze5pLlKWxf20pD/m/gcS1OJDXRrjUpOHaKo4F5IE6Pdj2KBuU4gFRVdKsjWxb565a5nIMFp5uXxdi2XkgPso2Y9sDzUmP0v7/ESbMQbInl3InLpOJa3lDpcsvp0nE+7FOLMMbK9py9iGTkchALPJZTNe0FrOgGLcF7QSV10wK2FQXi3jaCjEFwQ5n6sSNEnLXIL7qwaKN9Ms7mdLsLqZBllyknzAkQtj6o+YcZCtbyYfRYPWSQR/RfP8jvtde3Yf+8T55V/7c6HnM+HXNqDmucrQ2V8IzySpJ3iwgZj2McfrgKGJZ+5sX2zu6mQ6OqNX8MDYM74jvbupLIZG6I1BskJIR+edCnwtXiqoEUyXRS5yfPe591yI9QQYsOxasM7fS6mWdvjOeClqh+6SHpuiqpYFMICFUs2bl0UHxjNQgoYqZTZ7KkIKXDPwk1dQBW7R9FsPJExFvbox3JLtwILznapzPbVXf3lio8hDaKBE9k6SxkAXaaHUYFge9b3Z2kXu4zgPts+09u7rTZSfzKY2pAHa5cCg6Ub3eDXD3vBHWuaxLrWQPWkxuUBgd30GoTlalsk7TSa12g3kwKSXbVqZfVhD7VKoqKF8N1o/kgGu+Bxdr4ThQ1FfAdNvdYhRkyMTc9h74TZ++DUgMIePqDX2rgDtJBO9JW+u1eLgyAxkwHppHt3ALP0zuXJk6U8NMbKu20vDw/0O8A/hSb8FNsRpkw/+3Wrn4/auGFstcOcpzeIOlWoBesxp+weDFmWRQR3Tly4n+x8qQ7PwEMNNFEYDFUuhccRn1ptnCqWTrLYefr90RnVtdGQs0N5SkLpuaH0gYLZNm7pfSEJHGBEu3IHOb4iopRvJzY2QNSwDBu59ojD5u8LjRVzWvkOFryOAadTU8GFpjQA0wIRwNzJZPBDAQLUHu8IoAZlEkZQ1Iqs3G4mKIGtuu0YLg8n4JJCmsuQArbmxL7X+XA9ZcpvAynuXSERD+fSgOLO97QagXEBwNkdyS3XUeYXJaOh6rw7ycQm/Oom+/k3TyeVXa2S3u2eR/IetrOCiIoBoHYs5w3Y5Cjo4XjaAEalMgG28Z41e3Y/+Bdz9ghn5f7t2Al4fktGRtz9KGAuTd5vanZAZCG3SBAcO2FqSVlKxZVZsu6KHwet+FoYjo5jOb0ejLRtZ/E5OlXMQrRtpEkuTCepI/UaBxEEdvFHLJdcK5W175BYzKICYXTjIiCe1jfiMIeK1+2NJTXlcmvXmEsSA1FkKEVbImp4q22kDFFXW+2gjwgZrY/fbfzwEeqeObNSi7/ByMy0wqcPGqPTZa6jfjIB1vyDYKoI1yBexiNwNS1DrgdVjLv2lu+3vwnNwb3Q3v38zG7uNqhb+txp1Mj3JIxPuuj9HGakblmwPpXLCSG8KE1++yYDRnoAC8mVTtKJu9Cc8e+5JKbwyg/uHpqj2kYqzV8C+ExC1K858xRnjLo1rfENaxnoppXpJiR2tyz3WRcwQ9z0ooYGJUNvNKbq/Dwv6zAcFRgWdPPigTrheAYgFFSM7MCrf5kCJyVCb6rWn2G0i/8Z/lhIH60bFe4dW2Fqe6d4spcxZrJaD25r0FiV5GpAABUn57BOwiPoo8BjPlCYvUxaEU/hyDYtGUTvbEmE7K6Sv46iH0931NgmX7LCMGzb/phr+Y7r9ujsgGjB4zvR0l0JAnHOyiknCf6vVFhkFiUx4IIWMTtlv/L94KrUzdyMytbUcItLr36RVrsxoFqtWXWKG9y5Qo9Zjn6VOGTzQ1GcTeTyvKAlcJgDrIefxcZ/Iq8nc/KbVb0hmH2Q1JbcHXpoyL/E6W2m42RSj3hOLYGSPsXcvOTDDrtTo0Qq2sqKgs5+z38geXirxcqAELWJYImzq7byoHrWeAOnYZXYoCqXDKtvFOXcY9L6HLdRLz+022tNqVhsRekhEWBURXeD0AUyw0w1yxc3S3pXtH9RY7aWQ0Neid/zdKLtNVbKLIzJTa5CkKdIz5uwRbKBxIWnTbZj3mq6uVBmtMbPtjJ8aLgM3eaHwz8gqp56dcPUD0jO2HdVDf3wmi50p+siuvrhE2CdyxtFyhQ6Ub26y9metiA4grosyemUG6AN19vPXzyE1E6rH411FRdCHe0Yl8bJ/OLRKP3s7bTxpvCwlYuhUt8JdQAG4OlJuvkcCRSPAew4OldJFNxxxCSag9Zj2qsYqIGzFXS76x+nw55WZNQ+0P1/Nrg8Gs8I4kOlFXowXz1ONk1364zUs3F0duEqPEHTy4SREHsVP0dKAAA9CzPlJDvqOO2yA46x38KypGIdEGcYEzehALvuQhQGK58t1ySFn2W/iGlIfsQRtTzcGjQymW9VUte+vP0mFjKB4g0IhzBxkj/IkLLnW68mcWEFCrQOrVql+7OU/tsc2YbskpLQL0zNskCc1M+Chzhk5Zx4RNBFx/WchpLl7z76pZO2pz57mTiYx3fV2oAr4RKMpbGHZOOSnGOtCvSuO40Z2hQtPCRuE7kBOE4LiQtXbgLhH2L13gKQ+4xfV7vH38OVv0uWleADpsgMMw4T7Hp3OQL0luCYTiavRuH7yoUI5Xkr1sbMg0C/acOSF1udlYFPQ8DZ3CaWC5tVYLnZRgeV0tRz9DNS+8hSM6BYIwHoATKMf6txfUnNzVlpz3HZY97t7rWAe3GQIXNlT0sFkPRnqNIMfKP2QQ7zwJmKihUmiMyN37iitYiaBzJxgMMF9DUTUHtM+hbna2tWzRtXGEprGAGvuEtn3iBlaBAL0Nh7TZ0gPjYY0UnsGR4nm48Aq0z+HevYmpLDIwn1ORHSo1RioJ1Ha+4vj5qD8UcYjvt/77oUSxFRlPWvcwSjhZk/XE/mIzeJKItgDhJ/sD5L3RbLZ0QCvNB3MoqVJWCTlZTOtAoNwmOvTGxeW1dMLtj2UF26fXyNGGgzj7kTs5Ga6KopAZIaNL2qxFamGZ9z1bsyMVR7qOz542x26bPtbtowI9Vn+fYveX2LXbrGS1HkQpbFvOojqCG5JYIXJ2yM27pMAGOKslhx6/Vo6ow7LjmtLBuaUGGuTb7ABGhA7U2TRSNNhi51fWtqRY0kWFGy5uJwJ9DAbhSC6fk/J82s74i6eMW6TDl0ZtHBCkox7n+GPbncDjGZFF8FcchduhMeJ+oE2AVx72mlt4KqkkWJs7068vPy9maTsCkGtjDADoD7r/c8WPz0ljEnBfCf9+PUl7Scmdiyx1PXBz/uAd/6MgRBYnlCbhc0h/hlT4zzEDPu3ECyRJCDrCHkvLPxcqIhcvidFLHmwbIFJqRVFS7gM0VSuBXFrWoq3SJimNf2sNmQAmJvOqT0CZ1cDto4VJlCh6OeWhSR2yJs0Q6ItgVS5vbuAf5HTpiecpHH+RmZSeGnvcTFAPILfaGCM2Uf2EwMf6Rj4wN1SbWX9B7O0g+nMlkHYTfWjPnKuRMRj4M8n+2pJNE20Bk5U7nqdWiQRO/O3IM2QUywxAb7ezz5RLY+Kyo+eoYgiTT4doDzw6x7tjv3EiPanPZljiBqGHPR/1EomtI7ydkB8WwnjocJXl/87kt/6i3DJgVQpKtERk/Ngn8UAj5gmxW/3CLi/lsxauj6blJ9Vu3KHnpdBr8b9DGci1Oi4B68l72tUOklfffALu3hyPn+cCPUuwiawU8yRVWVrxGk6yEGGt49xc+UxingkB4JQtWz6ZiT+vxujzDGOBOs6msXQ287gjZf1MrxV0fWgaNvfYrrevjdnnnAkW221GJ79XWcllmlDLH1s6nAoK2s4TqLYrosXOU3VIl21AYdr4NH/YGp80XNqcvr2NtrMwj7Xqau5/B3tx6DEKjKp4xfEEN+HOfE1N2Dq8ukECKn2vorHmkBrpCKgvLL1wK8mkAvMo3BnfqUJbOw0ymlcVqUEuTus3aLgE/5dAxaXL4Glv+WcjLjrrGwCD+oRaRAppf8Og0HIAB+BRMgKQDg7JBnqZj3a6RqXiqJWe1vM9Fvo6WVCmqprYGmo6CQCMHy7aLDraFQ1noZJW5yVCVh+V8RvFGuugk6G0ZKFPUcUl8o875J7vjZtiMhx1XtULc5+IO9BQLuDkK8MEU7v9sa8yNjlP8ektb/pq50iFpMUQhYr2n7WU7jwyQ+2S3wlDZZqkh/Pk9IJJZV04ykH9U0xG9kl0DeXwOAhjRufmVqZwfcO6zKAiNRr4xMMSguAOittWqyszslCubxHxuQdSDhlBvhM/hUNoOhSQXTNtFt44i+7XJup7FdT3jHi5Mza/3+VZVW2SjrgPjyre6AEOTgeLiVaUeYiG1cmYAThml7n2lUdsmTHztYrECgLrkxNYN88H/89bChoZhuMb0kQjgOH8Q/ff8BeK8N4m1j4hpGa4XHX505pTqcGnmj2NYK88OR2jrIFNhhNzQu9lZ8kHBWalhzT745TQPuqGHX6S0CtJ5aCsI3iywqYyV2R8qR/EBGgGZD0kctW/rtvpAcqcRRNuDxhaS95gvIs+MXtpv5uZ1thgtX4t0ejv+agPzvK9sjh+GpbW+wQVS/04GDDSME6nvGlLJByt1IRO5FEqIs8c9zarxsbHmlHY5nqMPreoDQZGFGV9BPDzsCfk39yN6ft1Z8BJqWRr2/57AVSV5jAH2PvoQ3qVt3Exa+tdaWExTJmI6wlsqwyiNP7ZgslnCeGQtJs4HMscMhuJZskFJrvIuxy2eo+2qFIryaoWKmAKR0E0yvNj2BL+vNu5RmlJCo5jV050wv+YPXtW/pFqVk3VykcpPPMgdkQex5UBNNQY8X6uMkKeV8E5AhOU/aET6gaWsocB+Zn5jLkMALUL8aSwu2w8My9KEsZHICBWN2nRvXeb3cN76iEjN+5xC+gwD9LIFY3kLxoTyNRd+geS/y9k2clFwJsYozC1btffRL+1Fr/hWvRbvS2zERrFLVg+ZX0/Ov8lyrepY+b00zDjBa7beixxmV4ppTxiIHGYsOlxyuoxBMRnmgMA6jtvTpPRj91/2MdGN8h1YuXhBFL8xbaU2XnGkcOZCpwZ1372qnHR8OkhF0M3hnx/7AkDDSBSJiFdwA/XwEDxwH4cb19X3mNJlEeCIvNvk
Variant 1
DifficultyLevel
497
Question
In one term, 107 of students in a school had at least 1 day off sick.
What is 107 as percentage?
Worked Solution
107=10070 = 70%
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In one term, $\dfrac{7}{10}$ of students in a school had at least 1 day off sick.
What is $\dfrac{7}{10}$ as percentage?
|
workedSolution | $\dfrac{7}{10} = \dfrac{70}{100}$ = 70% |
correctAnswer | |
Answers