Geometry, NAPX-I4-CA25 SA
U2FsdGVkX1+vOoZIfc63dUUFoEkOq41sBWmknKiQ0Ggo7PBKFiVJAJRq+GyD53gUwESIDgcQeMZCtQyNfN5HIcodtVs+nzyO5XTd/7nKvmxUKlxVaSeyxO1uv4kKsiLjg+cYMKraPS88tgImCmpVaGISNEwHJOjgfbI/HtBWsLvUSM5GT+QhS0EUQ5RVL8qDdE3RD7Z79EOEnFmbjg2c59WZPIflEd17H1bo1TZP43hmpPKseP0F+LeI0lDzCzBNhlbNzSVGngQVVq05J1fpJq3g72JcoIkC7nTC0bUZ49PYkktvF7AgZOqafyzvryOaPTcraCwvIwFkbmnBCfrYyZKGwitr55Nx2Sircx28W91YKqV41MBNiVzaNhNDlcXzgbUZ7WsYyOhRGCkiq68bnsPFrG/vrLkhCNM7l5elKqjcQB9MIdoEy9TP6sIbB5bBc4Kw4g9+Favj2OuURnxpgS88PgLV9k98kbezzZm/aoqtmYN/wSrIlSrj8ACNWVi6wv6H0rRijqmLj133w7r4Os1FLd8GobK7S9ONMeK5Oc+wAAj+2QOj5Vto64ZO9iR6ITlCZZezlXwd+l9Ypr9W1i5gcu+0MFr+bgn2ewhIm0c/Sieb4JDcOwivNAXRPuoknYwnmnIEQc+XVbvHJpgiZyt1KBoZJ3a6YpKL6kVTzSoLH4vdElq4mOkgXIWQOiQnuPNxO0gXiRb9jYgBsDy2xAG9kT//FRNw+cYtTkkKiGEARCyMD9rfUtW+ZhuJJEC6dk4p96V9MjqP8agFDIuzowM8gJp4i3IAkWOkaEClyA9HFragKwRjusY2QHCYb422sXRrr/mAPbDMLpZIcKOb6Q9pgEFVMi4SRyhwgQ/4D7IU1Kju2jLsoJaDFTYGFKWHtxVs6Czw86jb2GHbBzcmo87WbGFmxh90taaWcZSHjQFUX6f9ino42B4L8EeOa1kNSFyhdvi7k98lmcBblOzU6Gz1rzqhHqGKRtTdpRkHgARlSqbeWytWot5+ZumtYU4ogGwwK3PKT8IdR5ddBPiA2vvmik04YUgOstvNqM2M1D11W6TK4gpJSujK3aAH/7QUWdALFizlPG+ebCgeXKIDJrkpV83x0xUpKTPPUVL9cHpmdsqm7bCR2202GRManvveiJVEGLOb+JhMJFJ8dFBr5xLFvsYmcYVVluV9E1YNuf8BiU7VvAezhA5M1d2A0lcmIXONqP32aDLL3fvwqlRCnhcHwd8Iwq8tuHuLHg0hQHXFEJJXEO2lOmqsJlrtIk5J/xmsJLAMLLHX088iMLbyha7ug470fQ0iVaFi4roKWMGLyO9iTtjhUCA7Y+2TzAkFNSekhkytww90ohEQ3e2d9Qjv2QmaLhQJ61620PN/de6t5+oRGooUvKuc30r2PeDOHBX04nAqVsMbfZFiyOHGSsE2Wa+0va/YBA7MELtCAU2NUioNKywPLhcYbtGWZgD4Tz2g+I1aWhS6h+3uGBfpZZiDYNStAc5CxDCf+N6t15694Or2erV//AWQkXBPOrSCtfKsHnwUdGONvbEtTFEg1YX6sKuM172HBGQPac420Is0zf+WL49dJL8nXiud6LDo9+QYXk9l2zXfdMIUDFsTeSSOFP1Z06AI6m/hmKSxG20TVjaZAZvCRWSvFOdFKskkqCYeaTA5YvRsPcVhgIQeeIi/7lHG7ydg+Ghc3iX75Vt7Cik/dKqTR/UCpeOrtTuan/lYFjQRpZ4jajM9yHWsW682nB0+qthBxBDzEprdQ4oycPz0SjWQqsH6HSvcI+BAOfcInNSscxBSD7zq85u5PsQlT8MbcvViD9EtBXfxRNUzYMRNCj7u16r9ttmNBbDJT4DJkwRdvQz1/zxbUDaqEtJ26jD3F1+YD6gEFZ66iVoKagqXiOynrxrSlMMp6DZnDcyz3LKRpuxZeSCfoYJEj5lzaN/crtNqXLGWikjr4WrEcq3ostWVNa62rmEYeSwhm8RbIKQdUjm88DSBbUIUgrso2z/Ga9ewRQg9b2aO+hqw0pikoExM2zyG7wLG117AWKdblUFycmutnfdh4KqRFGUQNRcBFiLncJyjGMUTfh1fzKgnuAR2boZ4rY3x3FMpc8bFBCclCdgj4rxR4310oTdQM7406+MCwCdIhayzNXbaICOWx2BnZEHpdAhRcAmFih4cYq2TjkhWzzDr75TwWad9CGrkIgJPFwdl4TZUjcS/cA8vy2Vdj9EEq2XK21ARW9din5XYk7rmSN3q5yHB7elRTFjQHJWTWtQYulukduP1JCWNEVYV32V7QoZyalp5uSBRCdDAHrp9Jj4zHBFvU9nsObde75L6Bync8zK8SdTyeGcXYtDqEE0ODw5Up3++aSli30UyQlbLR330Ud36aw+C1Dr43N1EvZ2PUh/HmFTQIXM4jAtZjs4heiWN/EGcrevvu6YSGnIMbiml2/J5dNW01La99v5AZRDZ12ySgznTQRSSBV9UC3xSkGQCQgJQ1A7RY5QlJD4hI4O3spVl6YOrE2IgtsI1ApCIQAjB2lA0Yll5v1nBPCW9G7yddebsGJpu7YzBC030qALL6noXSv7GuZNqxwptfk/EvJ433oBqQAN+jCxdbPZX2eYwpQmVMiNHM1yHfuOU6pqYTs79bCzFlvMhoZ7hSqb6l/Yb8OdYD5nmbIK2e8rid3gUzv1buqAZvt/V15wK8WeXqHZ5ajxIfJ556YJ7OOBf5jKhKNWdUDLkIlTpUpComeY9xr/IzxsY8Bg4MeX2fej7ey4kb0QKvxpYG+/KlyNxJgZe9WeloRHifFd/xbA3ivxvKn2dfLdSRaRVv3QH346um7cabbEJZga+DqGBa/NNATYjot/VNUL68jnrd7hXWSBWAmnIt756PTy/IORjLQFS+2UX3ae6tZXhmxqx9K7ILaw+FOMTdhIqOU41C0oNhrXzVdRMJtvGuYI7hhhzLB+KDrv4BXC0CnIgid09jKj5p28ThRkf3/OXqWraK6KmW/eqweR7oYjwCVO5S4Wogf9bRO4omEBPgliLcGDflNv3faIvnF4asRXNFcKwDhlBcgGXKn7BIdm3Nkn2fu8WACyV4T52VGQtO+QbrmaIGILIyxqNuDh3Vy9FJIWT+TvRfjZSm1jrdmt+G3bmaJ0Sx/50GnTsIlTWm2CuvRDJv6IqEbaIjR/2IhhMCmr5/dKmN+5hFQPPIjzjDPLZ/zknFjhHqIw/sjnYFiD7jV4q000ezNj39zDD/xS7dU0A1IPSZXjFEEVlalB4S8aCCy9ahGB0Orwv2C0CisGd+Ry0ARrG9nC/9k7HQWqAiO8uKxQVH3a5HyNIXSJUzno14BvV4DWlImYY48lZ+Y85XYo289rwl3eEjk/c3Pk90dgEJVX5/d/kGoKUTUEfu7dJbrCIZwdawQU0bZCBelCB3prbxkz4cuJQYTap9W3RKkFtQwsx8TVhX4pLoRNdYOLoJO9cvmaYxpfMHa9pWqP7STL2NaRuMbfgOMiaP+6DIPWEgtBC7cdkaoMLjydqx1E275LkBnxZkjzdpKYvW2ugU4UB3VuK6oTyq+/XJwOzw8kGsaWDQ2pg+lWr0HrNuLIxnFa3vExm/nmIpLndfBf/MQ4qMjwmqrTomerHk0DNvrjRjBhZHl2eDqYmXwlouzK/f+WtqbXb/VDYAEoD8DZv5FQx3zHtVLXXHJieKHBfUrHsAGZwot/q3kua76/IX1SeeZPfHUFQJWHS5xGP2NWV902F5QvMvy5nzfZV2YqMESKt4t3+mzePjUiThe0OZS3ThLp6dZnuk66BfIBeDAT7YAsJ1j5v6xJMbBUBmVxVNqoJ/Oh4rXVZ7rGAuPZ1PfyiI+oM321P8agmWq1o8r7ycX+O/xQYL2w9LMS6Lmou8ofH/+GLScGwkdXR5n6lKonsYt4PZWwATiRA9qk0xmAnIxxvp1MgXbynORaz+h224c2cPhWox1HRRnhwqFsMw334Z0XlHJ9URENVr/M2i4z3xHJxNmolo+ZrbNHJb4MBggbSl2YQrgFV7vxzwckcE9X+pb6eGwABlR4iYbyJMIth6i09RYX6q7zsnTNRNOkty1ZRSk+MzeYZVnuIKrm8aO5YU1bdsHB9tSWZdkSjRr8jYGeAPi3tM7nH7ZWdmN/7KJw0LdmJ+9XHd80eaRna/JOFw2pHkglBY1Zg/I7jv9yNKtmK8ocNBUPQckTbPYBT2GIcPo2onPJyKQtSTrPRNdHT8urKwwW4vlhRfyn8at+J777A9aZR4HyvmqslH+IDwx0m4Om5qeub75a3uPNJ8UFw/z5dPBsidP0fJENg54EjFcL3IbbwV34d8bJQk3X1gihXGSJQV8mYkeX2I76/3Evf7A+U/s1Xb6DRjRIK08S2p3k8g9XGVfF3/SAOAt6qjhjc6BZos+pRj66gDQ4lX1VEP/028OjCN0nOwqTjr99MLXIWo3WcfyJgrXPkknUxfM31xBMT0LRyQwkI/BEVJSAfw6UxgmATwJyIXuzee2/3NxdwplZ/llzOHTx9gso4KsvvVr0CJyJ4N6Sh08bRhVejlikpYJGP0vw29zCCAHxd+ps6LLBlATyFbubMNaEmxbOOT6CAiY3fyGFu5jmgvUAAgvotbHhTqQJNxeXkN603lfTlojbROlHnbhqvuPwzqBQN0SOvZjUmMpC3E3gGBTnlVWfT3p0Sk9FBJBI/Nmd7j7rjdVwWqRrhH7a95dl/+xB27RDlFhfG8MFX9DWaZoUa/F7mdKLAOJV9Ik0g0dYSXpcKW0wnlW/igdQ9v6u4NDkhjlkQVL3yRB6ZWoZfIWEOEJRVFmh8FO3kOggCEpLhXxasF/L0UosUMqQPgz/NQutyfuGpWe6uQomniyMrrPM8xOMNZAf+I9SSPiOmYoNoDipU/GAFyFRAI1rf/JiUkd8U7c/y1ElV0g0IlmZF5Pv7IiJ9SlVAPqq30v/s+9vjsG9EiUiZFRzalMWsjaRgtr45ZrZT8EhCo8xEWsD3FZ1fNU7JGj6DeV/PWyVcVndNramGTyQTeQ5qETHgIyDNkGtZxi0MhnnioDC4OOWo6+ZRJS4RfcS2q3Y4FkgCvGW1QDWTPdJrlnh7O4EkeAkh6ShiczsJOi1IRXlSxjCHjdJoYLXgGGB9emOJwnEabekdL0CEA5sJ7KB81C1MLpV5SnU6BN2FeKyIr4rnyY4U5+LelRGvgMl4mOJAnLpBu3e47w2CAObEhuKzzuCMDOamWg6EOReKxS58+ZJO3TeFndNyI4G4qt4SiqWe94IwMB5tTIkw8h9PBExDRT9cm43hmCCUXgAs4lzaLZehRGfhAb54S5jmpf22fwCtIexinOVEO+g+LwIu8EP9HXOggwM6akkn+/SCzOU1KUrFshejqfaGau3ATjH40+UkcaQFdTspI+53ztQzFo/fIp/HYtkLNZwExcWTg8fS8earWoEuOgAh+BSPaRncvfwGjgcSXTAExgkCN+bU1lTTewQpskNGlfxYo3uioept0pG2pBAE/fhetpTLfndnWyKavunCt1JWCAVbHU/B7Kf3q+qT5im+V06NOYUDCckiSTn0Q+2p9jM0ZTbGRc/OHXCq8F3n6pBtKwx+RR5X3jYlja57nNm5MdcS2DyowKdkKZWNO6pe5ArBJLH3t4qoLo6XQbu3l1agREWV9RtsHSsR7102prIvYhcCnUlZ7QZtwTaRNIfA9O2uyEyE8si0MyT2p8nl6/pSawM0d8elsQUWBFOR7b9Ik2bXBhi9cvFXdgXt0aNpyanXCaVHa2cC0cM7lV4z8njOvPlo2gNEzPWbF/DHXek7pOTpjRzhb2uB8xpAjWdBl9u9/qOiZMuIdhmrbEuNt6P1i8ikqJMAPWvhr9c+Wlj+912++RYidt/TXp7Vcw1hk7EPZapjMollMf/BuD1YSawoFYYzqXrVmtksZHwAyQ/CS0Or0zbAJTrAZiQEZUgTiLhEZllEfjdbsqp9ScnnCe3BSAjHE9ji/cA2WGnvlO3XyYFcsE6sl2K91qrBTHJeTAurbPd7R2D5cDKOpXc0e/YNPNutn6CCw/o4Eay2SP8DDM6RNm0hwm+K79I0VA0J0Cygp8BpdEAOM8VRuisxDSCsNmEgSIbRkrN/sJfZBnMV8m98wFF3PgFYNgfXN08s/M6pMLiVeFbKGZ75T7nZSBpgsp4ohdpyVYicBzo0nyXqnYaQaW/FMKDqCR/8fmaUh/Shn4WY8bZkkEJGUZvzc2AM8NO4kdiiUZDrNUmipxEhbaIqHtN5qoXTjgrtCkMMnWxurMg36o+KG3SSPh1JJf7+jAbo2076QtkrAOtCjkrmHPWStcpFaDxpGUECCXmca9TBa4bJMyWMDe2K6TB4QLRdYFZ9o8g1ejIlF/59Z6B6LZPfXl1XIQwHwGGSBerMG+g9lGvTpwe7SfgfihieqAFmRCnXpcf5VOwfAVuh5rR1LnMTJrLEGJeHPgnMMhh9nboZELfs9jP/Zkm4kPnA3JttHriOGskouRjx2zvo0AdLYi77PN1bJM0qoy/qPIuk3SFvonRMtmmCgpyXi2fVEtUR5gMq5ltvdSmrfoBtVq/l08R5j7s2B5Op+KX2mtUOMEPh8MDmLu6sjrQLLQA6+EvD81FMAhVmh3D9ewGwdIVyGpU/2lG/IhAjXNWNnE72eJWEcOWqXR66+wo3jQ==
Variant 0
DifficultyLevel
708
Question
A regular pentagon can be divided into three triangles from one vertex, as shown below.
What is the size of the internal angle x°?
Worked Solution
|
|
∴x° |
= 540 ÷ 5 |
|
= 108° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A regular pentagon can be divided into three triangles from one vertex, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/09/NAPX-I4-CA25rev.svg 160 indent3 vpad
What is the size of the internal angle $\large x$$\degree$? |
workedSolution | sm_nogap Sum of interior angles
>|||
|-|-|
||= 3 × 180|
||= 540$\degree$|
|||
|-|-|
|$\therefore \large x$$\degree$|= 540 ÷ 5|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 108 | |
U2FsdGVkX19Q97CMiHbhezj3x2avUlxIPNlMkH5mrQaQtqraqEGt0IOTNZIAljVADdkFfS4StTcpiYcwCXGKvAXrH6SUdY7SVIKOQSJmQMZfSnwiIn4yYfC9NtfubVE4+Pz6HFLl9aHFopmU7pfWHSdvIgya43sWff7QgBvI0I7h55BUpu7w1UDxQ4p4Ehg8bSoIHpYbW3iJ+3fyAd8U2EIT1sMb8WRqzJWuY/R8o5q3CJvRrl2iNgUBn00JUO6iq55fyzNN7BcAUEUW7ooZz4Q9EYiif4jmdNbucli+RJUuInnc+CcatFodBlry2/BKTb5LcfHutfAswXXJT4qBDRXsziCSNQudgkNMGajLkvaKn2utR87CVLZdcSXdMGNOQCIihX/Ypc4EcHEwTmC9Zcup2hsxObsO6lVM3K/nK5uZ1ANXBnNaY0Gt1e6rQZjSGSRZitbLuQTLKuSWPH2w20tXUPgxLZRibVf9r3JDpHyNI/71BtIfULJtraCWyGFFW5UfnSl2anLbJg/zdmHhkNfQvz9LDNAyXDdR7eMOgpZSZ9h9KLkV7eMwQFv/O2DeSeLisqc6+JIuk5ZkNdNlpH3WGMcqbung5dn7GTT6p8Ww8iHZUmCIqZndRFFSb3NtPGIJGaXCcZ/+X/gZdUMpCwIx46uhLdgz4LAYqR+IiAhIL1TKa7lxLw/FdbWQPnD3tl8nmqjkfvTkiBXuClSoA9h1xUiesAf7yC8+OYyF8qqziXAusn4gl/UItw354nPmvynHqQdxYnN4LfX41/jL2r53wieSGIJlqzEZ2fK1uRhXWKKQ3GnJLqK3B0prISFb8unsBj0y6XfyqDkKEdEIZ5eEoEefaNW+dlctjFSroUrL5oFrcMiIRw0sa6qnBUZXCSnZ5dWDq5iB2iXEUCO3enyBDUT3t7IrvJbpxClLnkHx5ltDZP/AjF22Dfuddf1HqzAqULGIC/IzDEyujaFBITitTD8MCFz3j7ZUAx+rtaVs8fPK5ukyhhbiwWO3BFAfrjAWndO/8WXBqsDiexYAsosqnmevNmWi2vZjNeYbQj/SC1bAHz7UYiRTMr5wl7YU8Jn1bXpjWJILMQ7yIpNUhD8qXvM/PliGkHKyg9iuZ2Yu9tNlF2YETRUENwn8FrJ99+OeiX5p44Xr2Ds3r15fBY/NE99qJiN72Yod8RtCGprTiNOMYP6j2Kz2wPJFLLpqku2hjrPEuM/jlIbHoIsA5JEmOc/YI5aeFevNb44x+tyNqSPuFRMNKzwU+M4ndOB4SKAycYowaS8y12FqZ1G6Gud4rwSG8hdWAulI0I5onm2lNuKrkSp77AfVAFk88d0nWOO95DxBVUhpKvFi1dzcK/2BQCm+tWEiL9XOtbiOO2zqZVFnK6UNy5i9wdoELJlim1V4hiYaD9/Fj93wqk5XG+lmSB2cKxKw269SYqYyykNJBsaiygXFPeyh/Kmfa9ZspFfIGXBy49pcmi1IGFaJLLUeVBDNG5NvTpgki1dVHt0bWuuqr3H7VvryOmp9TBWPVlIIoQVsqLeEpIWLVO68S3tw9WOZeHHwdFGGa+d5aJQ9cmQsWj4WLRQZ6DDP4ox/3R+hrBVi51yj1jGK2HJiiSJs/sViWXZGF1uA3JM9QmG/DdwfiYrrWcaCtxX0AMipyT+TrWtvdBX9CGYarFqqp9Gnvl1Gd5QUQK7t27+pBfZDi/FJGZq5rdG1PI3IJ5XUV6qeBKhuqMI2aTQUliA1w01de1rG1LtD0w+YWKI6Re/oVzG+fMA4SVNLy8U24pKoultnqAkyDNSZHYu3PI6e2lf4EOEHaYyoPNDvaAaGbWUDYnM4HRh3M/yXff842mT3APu+1ABPhr/GihTuDZeM8vAM2kHWrks+59qGIbVhe0ny0euF0jSsGGCfpzIvyEUMMqV0S0ByXX4bb9puGnus3SjJnurF0DRv80YNj9nhPn6/3C7SQfkGtmxqhYdaZ76FVwBTsSj1DSm08Y0oHCr6SmSsmGt2EQIJNklTThqEWqsjW8vw2inwiWhrvC+o5Hs5PZTFFBkOrk+E1hWDLtFk7Bd+i1W9jTo38JC5xziDKlHtJgXnp1DhSfOCjZ9wZ2MzmNAvaeLmmBnxx+twon95VI+ecdXtcKVUkMnopz3sAy/f2rggzDCZ48//6BlrKJgC4s8H4CUa6s1mipndIt+9jTP5r/BTT8is3lB7eqyXIM0BVtF4ymVMxpLaqZjpaBouoSMJylJbhmecEZM9cOW6F7w19mpOwEiCjkx47VxugfFwsMlYj+5sYmc9HfItw2YuWG7JKEGSLDG3SF0lGRdYpH1/qoCKebB5TtgI6Ihdiso5YBs6XZEstsGAbhFZuOnWBSQbySp+uWHH1kQZrqpJnIqLjRSEcI6jmx/kH+LbYbe7cg0uHSVaBkHSjadmeVswG0d/6VnWARCjKP8Aw6vCaYa0XMxt2i0I6JAz2uAFLWMQmT1PoOLWVKYQXFU9JcuYbxI3A96GRvrWyatQuaEyB9NiM9z6/SL4o55HoTMJnuuEza0ndmgCI54oPAlaEfV55IiORsW95JPji0IoZl4T4DzxhI5BQmFJ0bWbl8rsldmGgxg/aokRmN8BYe6woM0rXMUVcc5odPpX4sVAtnr+GdGFmbsj5JEe6OuKPu/thsd7/S63vZCObmZSAIB0ccf7w9Zmm9JhkqL0sZb6u+/AfVw3kYqai6w4h+8YSfVukIgjqE0+XsuMUw4IxJKuJLk+lEppaa10m5HywWzOrPs+fh0t672PKEe5oEJJyO63rncVT5H2YOVQoTPbiusrxaTvv7jsf7mmmjGY84p5i/jwGFAQRejJu7h/K/tDq/yo6zZ72sGDs8h7r9Mdkr48k9heRm+9MV5IW7X3edfjXCWyTmEB7m0+9lhOb5dzXdQaMem5ZXqrVN1cqi+FJEfuYRVuS0YPLmxiel8N3/rk8ziYpabHiSzjT36QWVaqjZBdJeB8bLPZrgQWByO1g8h6/OyXVBk2lvcpL2DBxUwcfnTD2oVDFtZ/AoGR/fKEUmOhg8ojES6rOtGidyjMv7MP8QKjpliFWx7EHR6lDrdB2D/zGxar8NWmLkbSBJeuqNGqQjWIgpAyJQlLjkW4Da/shOjixj8hF+za2xLPdP1Ca8f/8h1novoA+hy+Jgty1QQWfDjvuFkXsqeuhFFZIRBHzMkjYZKryWpZZFwcNidWIel13pxRzDfwCku8PpLEB4V29ecPGmvIUvhVqCHqBhWqWun1Wj59bryKy0Cev5kDBXZgcLAv7M4mzNlBR6MVvJSFBFb5EH/NoNPWN2VnD2x1CrBgFz8LPpYAP979bPHQMpoZzZqMsgZ4Yz1IuRAMyyT3yOvcZfSHuxHOvrm37wQxrIeLgvccoW5nJUTvisl1936vkB+YfcnWSMt3LRxh+fvyP+k7PxhiEL5myEZyEGWbGt+dK6UdpFUwB5uHmVOnn6KMffX40v/O+HvIvE2sSG5L7Ce/htsMkfkOiNe+qDWMWDAq3s8u95JYG9YgPw1zyCxWszW5q7/dDCjXG2cP0p6icIozTonHrxw2K4v711M6kEnIC8gl7bXJwHVLQycy2yBPoUuvGOguhVvalWeQ78kKXrKvqAI3tLbYJIi9+gwCt9actVc0fSAsaDeS8/tSddV7gHdp9japN3V7MGk0dXLY4YaELRNp9SKjtKtLAPvksxuVFKaOn9m2IgDubWQp9NOQRe2lEDb4jpUEDvH8bw6EesrcTBq1Q2Dc6SFsXBdGB2CaiH8aejbYzyb+ni0+OzL5GYn4NSeT8q051yo7TiOHs6Q8Ob7PjPtGibX/cnR1kKOmAej0opYofDVRkZDMv3TqPgLU106pPwXTQp4yDkUcmpwuGgjGgA7u0owonp+QY7Hjk4xEI38Mh1N1o3b2x3pbb9T168WEYJHcu+B9TrritADR+YBOJJCI6jtgBn/dL3axrhzBsrswCh9UsZ3Jbe3X8f4lof+WIsf6cod4NGahPvK1i0vD74CIjzwrSH8qXU4EslkoezzsgtmuYcAlDsYmgLh6mCt3t4DONvPVUna8yUcTHWm/2IzEt0zEOtVZR+PARwVyWPL58Az+AK8YLbvG5YafW0OI1b8xKueeXOHd7yYK7lH7ng2m0NAI7dMLfEGs6+icbj8Dfc8Zb/97RF8FJ/0DERWnusmpCoOkp9ClR9GctbvhO2WjOky8oL/ywp30nl2SNIE4UK6SFb5xRBWPs8AHzQgs6e9Sk7AdI2ZdlBWhUbqStfTOi3Fl1/xhe+P/HapxnBKTWr62mgTLhbS0O1sNpSEJ1+w4/DIAXEX5OXQ9NmlZacZtjPXh2p0YBZ0+W2DQt1xsqDFLTeNzuf8zNhUNGuzvsjMM7K7CHehepnHFuKzVgH7ShdJGB5twc3rxDNhRuu5iGD1KcC7aZMqWLtj82LYwc3PJGgsVPwvAb0LjpFnMX9hte5OJvyHQ/3tOLGhiS8xVwjd8dHlcpaeGAlsG6AIL5i8htTZpum+91J9GtsQE8rn83gspYJ9LjfqoTr48ZMtZJBD0x2pbTvuKOuwDRCDv7HlupG4icvceSdRGlWJmYY+pkPbY10zaViKtj+l6jbjV1NqjKIZMrcrb8iF6CAktEuZfJogYA7DxXFyLBZvdcgRgOHmrSFP9ZuanKQJ/k/aL/hUwiEf+HDyxzmxLvtUXpF9JhE3WG6qkY6ECMspDQ2K6fo4V1ikdtyABHZeSwv50ThsXxYbCRKXIt2qJ+xIIDxardIDSZum+rG70C0yIsGa3V15+48buNj7DUOP/eXkuC/D7JfjrzD2bNgLnllr2zoDRDtlk4OL+ggPui1XudJQx94AlyS0QrVY69QBdO6NkAHG4A6o7rlrWyMrrC0n1/FR6CoAfgfRKnfpeNJBnTx3NE1sox2PjixqutPj7S/gZl9QVOaaqR/5C7ncRxP1WPFBo0DGKCgdUaA+mwKMCjAW5WWxRFUTIGy+EBkioner+c9XN1W0LS5rFHG37YJ/Gk4S0nyxjr10y3pJcEhukCAY/5t5irArxRxYAn+S3p1mrWITNOBBJoB1kpZnnZrSC1vf+Is7sxujzY7507iOyynk8roXtNoWIZaWhoYEzIXMvMLZOeCyEtjw5tolyAEf6uRkL7TKhaXushqLyAsmi3SWCQGf9RdeCFFE4DFhklPD8VkcKMukr4+rP9sTDgLYAKbjYQmFVKHRpP1nlhB3m1IgFs3oLTZ3uV8knoV9vj6KwmrFlut9TccGyUNKYzcdSqFB32JebuMyNwx4JorvDL0l4BgGiBiwwsETzo13dJXfvGFum/O6gqmYKgdcpOXzdxenzLZoc8674uYqJSlGW91xBCF/F48UHMYXz+9aDeB+aS9ev7TRGd0As0S3YuNksH07gjSAZdkJiZ2jFVgTZnO1vbhb5NfDbVeTZNqOANWpgpYfxvOLNKmU0Nwa4UvGZs7TTeR9HO+3Wq1dmtbY06LZhbh8wHKIcrctlSiLLMP/B5OC2dRWa5/klNNk01i5RpKJIs3JyXD1fHAhAtQygPPnDfKYlrzHwojpaqth3A0yf0u/TO8VqrzWQoNW8W++8a8MROzBhJrkCEyM5MgR1NewjuPJ/A1+ZJU9nl/QQkjIuotYRTTVAfDgzgBFqGxjhzcDJzRGOcqTP/FiKywpcW3WFeU38Guh8VnfzBHz4t9dJIsheaB5jsOukBCEkRiK4T6vy/Nmr868zxLNiq3GyB9xmrLlr/U4mCUGQaRfWd37Sksg2YoapbwrakYPngH/lagDck2YYSOyybf65esDc5SmacDF/JjXubcOoRiugYmLXU4aAs+1I8ebjfeGfZg3fZOdnFRE8wr+1Q3xFgB4oTyH75rOzVerwBYb0AY8A0JDasgmfHUNGOCFeQSEpXwW9v7fJAuDX30kVQ3BXRJA6HxjcLMiAm5nrB2EtKdBjvSgfhw+CwsgSYyIxnaZ/cDnD9rz7M8aUamxtSu0wpAABwkoit99kydfUPtmkfNhYTs6Eb/zKRuIFMvU9eFwr0ZZCQ9AkngU5wa6DeIe22MJpIzz1fuZRiBh4u6d5YO5ff2f0kWkmqY2OI0WLA/J3PUvE3pdKb5DUZpqZKlh7yMHi6aVpqjeKWeJzIm6ZYCkXbOQ54WZiVrgMovKdmSsfyGjOd8jf7rJ6ta/c8CpmXaJTxyT0JYlHhitpiNqH9g+sAdN+Fqe4XbxIrfPtU/sVXUgjdbdTyu4kiy1J17GIyjJKbKBcGOO12tzLXci/hmt/KxuyrDsb927E8NbfZ5TC+xgKz0HgKemSYOBT/4ZvROBXwltn/QA/CA6A+atpMjVQ2vK9/pHtsRnGal6lio4oPpmGypw0mA4bonGY0J/npMt1tQUbjZIqdWYHK9856h5KjcySPyX7LvZYG5u3s7KrFQKFy/0y+V6yuhRKwxY2gGPy8ypLUgdCU3Xj/9zeYnD+QY7Rd7gk32Jqajv17Yg1a0j1MMD7QQi/YSQySFpz6zEGgb+FFYZf7Nua3Zs1O3/LBht4c9UbZS+jvSMgqPYsmuxHVFSyDfqcxw0K/vuGrS9GgapxJFsbPtDvWSjR0iwvCelQONmboOTm0pC2vxgz7TbzTJ0obejNyY4jReCA2Ne2uuS3kbCbfZbbJlMswFxEoJola2Vhu3gBj26FFA==
Variant 1
DifficultyLevel
708
Question
A regular hexagon can be divided into four triangles from one vertex, as shown below.
What is the size of the internal angle x°?
Worked Solution
|
|
∴x° |
= 720 ÷ 6 |
|
= 120° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A regular hexagon can be divided into four triangles from one vertex, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA25-SA_v1.svg 160 indent3 vpad
What is the size of the internal angle $\large x$$\degree$? |
workedSolution | sm_nogap Sum of interior angles
>|||
|-|-|
||= 4 × 180|
||= 720$\degree$|
|||
|-|-|
|$\therefore \large x$$\degree$|= 720 ÷ 6|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 120 | |
U2FsdGVkX1+w+zKIteU6D61un9lIoLBCfviYAz+H18drJRKgaJNHpdvXBJ1si3kybDo172ytNhjL0OkWZcY3mKEkzQ4fXvzA9AgjFa3n2gZxPGuPXA8TEdARSmf43wznWck1bt6gB4L3XPW7bZc5LAj0GodRyKW1/JFycDzn8gGxr/xYSc0wnCFI3wREEAaW6BhJCl7Zt2Ts0jAlzUJ2mSQb8JuPHuG84kHYd4EwldfV4/ooYG1CbSxLcTVsElfXzAacRCMgKPm+r8eKL1IonvMvbAg6KAJSoV/Il8oAV2+314vAWlwpMl+l78b3RrM8CdsOm4+Gp0KAE1KZDhrjr5RLJE8qANLM0aMabiU9oRH7Z4Femun+PPv66KIpPUDuYLOMKWqRCL93FZcQsPb0W2UlmFL2CN/41D/hXXDOeAjNobpvlYZhChbUCFEJeE6wQwo/NSl8PK3oRYq36rPZQLDxrm6deHaq69A8U8GFaWq/yxaWCIrR40+Bevx74ZSzd/o8AAXPAPEz+rtWaiIHP2w10RUOUh/gU5ND27o1D1qErT+dmYxg6a08r7egycte/+hPD5/OiIUtZ6DAihuqt1mLCY0pdgCi/U/ulJmqiPE2Vu58BbjHIRoaOzwSyu1ODA9hwpv70OgbyBKPIOgcaEeCuyo1Ha6WdO7xvVS/FCP4bcHKyli5RcstuxMHutjkACM/TwjW0/mjsNp2mGO++mVRsiV3w5xT8vsJ2OWpgpJdpugkrBZM7NdCyNHY0gMKaDQ2wbGVFaLKEEp3Hw3n2rjcWcLMK+rDeGkHX91i7m6ZJ7mZlXIHudcr8irKymM4w8EoghgZgUjd2CalUhbCsvX+U5pLPiBSGbGhijkTLONfu6qW7lbHTIMQC2xjxBF7CRx8DUM5ydhxMBG1BNW+g/4O0xj+M+6Vu1z9OpYiu9iu8YJYlckNy0l82XW8eSpKsA+aJNq88j84te6E+xjn3TOysHfJaJ9FVe5EENqWt1BTwKsqW6059N/sjqWiiJuSO9o45qtSpWbb1bZDVSnLYkW8T72j7zK+mE1crMeFEJjgvq2LMfkpx6UTFDN1QXTopBOuC4C4qBCt24yZXaSJNmshSwDEO/gOBv9oHG6xCqqUciNonhp1SKlTjHrx6biOFnhgr05f4XDzGh5a9C9U50MnxxnofWu4LGyIud/G6Z3CexStxeNXPQgG/pGvkPZFzICsRz/pX58YBNHc/iLQcEKqklKS3D+uIP88CucL4cUccaq6AMerSQtJywnYLJNJqWCWHgVcs6s1hXcCDuH0U+krUC8+PJ+Fnwm15mqztk3sKfHEaJk4QK9BktVsjokuOPpzyTG9N/6tel3yiOplub7ro3xPs18/5jg8sfIAuGkPtk/NF6a0gtIxlcG6FgVuSL1CQeoDXHFeL3Z3qQhXdoxGMUovmQhllJGu4chu7METYDFpKzf1nOteC8yVl8etsfHW1M0hQaNBW9LrV4o57gWnoPCt6S/4j+pCOt+aAfB6bAPYyoWX6PwZQNlsYqnZ2GBbdtb5fPu1GUf2RRvPgx/LRQUMqozrUMqdaBlREkG3otJ6y0a0IxJdXwHSCIs+KSfhmCnkdSc8cq69FHM+BvzEOdCe2QG+/1NWZjp8EB9NYBqmAlW9u0rVgXK7AJGHz7RM1s0DHu5E8ruZoxQSOO0fvRQSR6K4INZL+9NHOP4YaSaLRRVjAMxa5wmTqse8j3mwdwq3Tpmu68nOtD/n/9vzL7Hp4DRZ6PgE82If5psyKqDoCnRhWe25VN1KIC07D5F2M+zzvXQkITao7sKC07yVS8ysgE/GzkSOzmbYBvhrkYmDEHG1wJ1N5beHDrKJILgo4jYBifZNDGO+6Za/Na4aFntAn1s3vMjditN1TAiWm+bGXA1U1sk9ottEVKHB9qjwEvJuDtx69Bj8FiX/dg03PEMJSHCQQGN0m1Y59ZCHBNKCdtjcXxznNq0jKJoDaf0D8nO17Yq5lJRcPw45l0++863h3Ll7aDAMHWYUHLuXWAa9ZZFoFiGIbAw6nmNYXpDiSAGYVhebewdEcoDIBm7XgjG4PjUK+KHeLwOTnDwJpn+ulpITxlRgxwflqJN0+VMyp/QEvjw6no8SpEVcekyFbW7wzwtRfFlADFKkU4R2OD/F7sOdVXMYSY0ZlwdDNxiKV5P4RjP6MKDVkFfM06z7o5nPjFGHUrzY85/ZM1wo2u5tODmKL4B7xHXxgFLjQSX8kfnBnD5ZeNi8c9KDSqhpzFAw9QXv6lNvHKOYLlLIE8Ldru+FCw+2bla2PQMCteDS0LgJgZQZeoybH07xjnxEYXQ70bq5dvTW4iuDpeBwd9PuKpJ19/Jp8MV7inh//vvlsdqNNREKCCZpz15bOgIkVGTPysxGbfAurOQZXxb3q4nl+dzkSvv2RgMvR1zfgQ2D0alXfc6CwuwFI/4aPhyaocw9rwtqJt1U3MyLAM8H7V6Kwn+OlJzFzdATltkhrkIxSU734LIVIwBN2Ls14ai0tW8fCV07lxrm672i2LHol03fL71nobBjt7pSLcJOP/pGtVptAr+WY502d1brkTjPGyq6lyLuhHyFEg5pwjtiTRAg3cg8DzdUiW2IZRItEDqbeeqPpt+JJcpKWaciAvvholDH4tDBRpkcd1DTGPaYig9BZ7znkNe1Fp9CNKx8cV4OfS0dU+SqTXoOj7ZgiuznTN+Wro7J0EBz+KH34BLGcrGnRxNYNTBy/XVw7xxUG9Ia4dZT11o1YjftZ4+1ZO6y6AWB6VpeRAlvXl/2UVgCkawbLI1rBxQiaiOn6LICuTOpCXSr41yoU89ZY+jIRqqlOHHrY3EWQ3u20lOc1IO7kvVCA9OTdqMcKTce3qssMwVh1aoyMzQtFGIZnMQfkDxK7n1n2uMfciG1EMx+StufjL6joqD4C38QD4wVLcz7ANQ49IvZqZZ4shxPMjRvWDx6zzouTRpyFij+N7qInODzOKPQmc3PZBFeEByygDnRnqjDGnJ/jyNvaqkiZcJKyLhh+g8J1U/ns1c0oNsCn08HnMDrOAYKGQxQM2gSQ4la7QmdhgmCbAPhjNYWhPhdnbGB8HUAzLo5zkja9kjMzBsaTNAI7YsC/tFf69BI+kokLnzYS30owpzwjBY87d3/ZyjWkYkS1ofNBfexXiNZ3tzkt3Xr9jCsC8dbJWJLlJhjCnKFxXE20p38u7Ytfwkuktp3jgsiO9L3TIhRwDsPuDlFhgXQUtsQ99fLKVg95iN2YovQSPFRWutGzrKZsBD3AoJB2TJyswVveyRxpQGTnzpJHWha7o699qc3kbhpsl8vXALx9SSDRZDV/93jxkS99T+EblCGHjZQmjR4IY2cULU0a6RQyV3Y3AKo7XutsViRbbtOdHzOGsWCka0E1srsPLeGUXOcHeFuj523cRIxg1DS+j8nj8rnmVFdAHE5N7Ze/yE49vhlQAITJqz+v0RXp6KtpF/fzPOWThrZ0Gp8qOLcoNdsyRb6tyowWtneggdD68kVzbDUUsW2EcRT7qfBnkbvt0KKIZqINgHjfF3ELhq6oAjs851WWoUh3wrbBBHLA6EL51rgLWby6qRstjSZ5thrKwvcYD6G7w6qANU74zraMwkqQZMEJJ8kroP9dOtpmU4ncet3UQMhRe+4i1KYN5y8MRfDcRQrwvWxWH8eO2m4U+WtgrO5jAN29G4TWTWWG3J0rmb2QVmQlmukkoQzruLaNqi789Fen/YmZvH1etjWrVz3FTP+zebkwnTUfrf4Utt1iCxwook3Kz9FzBgCmp7/H1az19kPcgnpURFsH84S/QP2ONaR1kjiccsezhspI2+o0q/b+Ja09v96N67jASFsiSqC5x2kEQ9bMRS4H4Iz4UTtqZ7Yhu+8YgWj+pLkDSn99PesKP4wnZcXk9EvVs2SJdt7K1vewpF+mvHVgar8cpW9Y1Anl51LCDiRsktRQY3nB0HBxoDSPD7Uvdls+N++MIWyGkkLSyQimzjuklwtlv4116wfUfIaE8DLQmhsI+wg+gp8jV0jywwRyqXAdgbwM8ysOLFwgvL5ReycWMNyBPwwFNbe+LaDOVOw8HrP19hIow54PrQMgoD85VhpG/niF3nrCzwBsg8PDSzvD50QZjADnYKc9Q+j7CylXHUYhs1SCZnmhorAiUuYV/ogCkLuSvjNy+ZjnUzbk+0DOPDZybKtoLekU/8a4iq7xLDEXAGEjRL5TjVSaqrRxu2YhQqwwzh1212LiYc+dyHRF+naGSVNtA3zpaHuMM0pzdTlZs+DEqTwyySyjbZZrvh5f+wsZi1WftSIBFI19W9cS9S33wbgl24ivL+Emnssnm4t8nqaz3Ie+gGMwY/eK8/ZqJ37yvfNSBsJHt8k3rC1Y0KB85PVSbkTQSRynSeFRmuMkLFju8LS+BQLvVU+FCy/m03y3r7FTuwHAnuHNp7ElyPvm3N2okpNCVqH4cjPdGWrza3iNjINlrw/GrNICXcxLVkxOZjSrih0oe+Xsf3gMDRJeqxe5DCl+K5P4GLLZS/Bh31bFDcOya2IgDlV1gsDFeLc3N/5a+NUFGeCLh4JoaMpd2lEQovaxR/B2aEtOgKqcjaHBYiazp6tmg+MODUu8tTy/EoXx2golelIwfkyiE4IP/TDthKIrOuRFLPyy0vqAZcPIbmlOqGJAXBWdOsYaWs7XsJR9iNmFq7epuqSBbXhCBAILBWrySAMk5GLQtPnGbHYiw0EKVEC7FZo7TzbUuN3h2IKLvxYarJHLYA8FpQUUwdmufsxfLCf+Es1hQemwoRCMJG2yJj7RVM2HYSD34pH/ifSvtvI/h7I2XsrOaWNfqLeL4yeneqKnYLZlrouJtWpClnemTPaF2fhaCiUFfge9hPFMSD/EhKj5wXUsqFaakokTU7+nAAZuntTccLZvRiJhleQP61R+SqQG795fCynwBjn0MyPetvpCizESlLR/s18NxqnrlM95lX9nhWjMqczOaXy0OUXuDh1oA5dINs9dHlS37Og3ulgZYmx3tWjvC73sgtULP1ky5WoYldWCgN8JP50aarcQEUPyAD7hoc3FpWrlYQoiKUK4AzYu3EZ4D83nWiCM8nKLyp3mJGgJsI2bB6/eFweL4o2dVTrrTtGfPbFxw8XwUQ0ez+F+PFl2hJnDbiTYcwzq1ec9h7F89+FADZcYL90l+QRmIXEfym8wxwZWOjA/YiVkRslA8BV5ecb2d4Urlxp/nHp/0yR5zyKAJa4gYFao3r4YPHInREpQBbxSgLwxFp2ADbnaGYEeX3yAXD+JEtXfJY+xtwFeVwzHdrcP7aI7n+R+mJfFf/Yzo6An3MeSW9ab7KzcN2hhqiV1XRqQUYrbAAA3LqMG9hKEAzKRp7uRkQIv5b6aQqfa+HepR0lfxHcgSt3vj68ttdsT5k4L8ddFqqFfr8Fz5KZMpTICeKDHiLnhTzL0FLCBBcLHFQgJ6Ml2q865AtMbFAWC/n3I76UzChEFSYJ+QJ0wxRpRuek0ziH+rKqxFWQz1cxM4R4Jj2af/MwV1M7wdrbDY/5ENL3hXIgfj4maJLJDsSc5jYBhknPZ31Je5rsQgAmywhIU0/oB1AzI7G4AGI40cF+a8fjeKVm3Pih7dNXx7vtzv2uH8GV3G9RKZvDJaFLJezZoI1tr88q6pfX7iwf1d+q1lnoD34pS1woKAv0jG7+tPWEiHKoxxd5rdJHgrXKrCPnatmG4VuQyvsuMNclzEyRMqOULTxMsbgs0l5Gj3cr7K3RTjn431yCqrAWDooFzxV0fVDmdaSwQnRgUGl6QSBZ8xAwtlmhQht+IZ6oPwjpNdK/myJWOJYD2Lt8uLJm3XvwCfn71rMHVOvgrDb8d28Mmi0z+cb/COMY1vuz+oi6lGvd71OLUe57ZwIQJvzGk+UKuoHhNy0WUWd4nONIg5yxZFbt1q5bnbbHgZgmrDROj5TfFnKpl56tVUcDhVN/DXMkizoXk+0SkuaAI9O8ARu+NuDvYSInA7QY9zQwnUSWZAaJrQ3sBGE4t1XTh5S1V99/1pRLDP9JcCc1mx2dx/qz7E6kyp7aU0wHKFqRqrf0UNohxjMT2iB1FkAF/1UVohONMI+Oa24prOIIBYhEhRKjLB+Mc71N/Jc0HlbNqzt154XDUNBBExsmTZuIEZ/KjRG3Vjp4JWZO8jQbYb87ZWwey4d6/DZKFClMlndNcgHW+DDRv1eSIFNGXHbyCqVZIfnx+FQs3DXyQcSRDBGBlR3mCT4aXTMrGwJvA1SUyMlVBujD21NN/Zw2td9Xj6WnarMlFkIw1SnKKiKd5pxoJ6zk82CKNmHSgJoKVCN9zMQ4bnlbPk8hzaQ5xxrZ31ico+QVQqNRf8GuXq9S4bqyTXpyafJewVa+t62CQ81cSlveyCv0Jbr8YLWNpc2acMMKIrYF7cEwmzdrrD543lQfflThg/5z5OgwdwBi1Gphqf+sPiMV257EL9BZl7+0fHcM1Q4PhuTNVaw1byUxL2AHxsaYPnlwC8QsqpQ2fWW6DsTxPn9SqWQD2Nwu+H83qn2FItTUpbMqkGJ/UZBtNXVlkGPzcDrxsT0sRH8KNOIiAK3kdROd1gkUnIpAt+VeuiOSFXVScwD7qxmZ5n1yHbeZsUzpEFRFtoccwc0+Y6XUHqYGmyuylkk7lAYMJQ==
Variant 2
DifficultyLevel
711
Question
A regular octagon can be divided into six triangles from one vertex, as shown below.
What is the size of the internal angle x°?
Worked Solution
|
|
|
= 6 × 180 |
|
= 1080° |
|
|
∴x° |
= 1080 ÷ 8 |
|
= 135° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A regular octagon can be divided into six triangles from one vertex, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA25-SA_v2.svg 260 indent3 vpad
What is the size of the internal angle $\large x$$\degree$? |
workedSolution | sm_nogap Sum of interior angles
>|||
|-|-|
||= 6 × 180|
||= 1080$\degree$|
|||
|-|-|
|$\therefore \large x$$\degree$|= 1080 ÷ 8|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 135 | |
U2FsdGVkX195tjGf9jwYu1rTAiMouotbBBAYR6gGvkiJ9M1NF3KTqGc5xt+Unf8rzz8muNYiEh5Uaq14Y4ilkPLQPHZUeOIjfX15obQzrejDZGA0g3s4LHG2SuryfjR1rLQYJ3GGzSFPFvUVugalaXJJ50c7Y+xvTJQqQWvU/r8CITWJePKtL6T8HKdFT2/1bJYdAHfFbR80OCTvWf51bnQMTu6/tSF4quH6UqWWnbUCHOcOgkJW+nJFfLHYcwbhvNOkATqengA4UqJdY8QznZttMYRr1uQTGqlGBChLqqV7j2Cd74jTyW4tHwCP6ORz94RyGeeBHVdVzAQpdfMxJGKukn1NWDHp/WEVrycnZ4ire72sVCqLk2bmmgZ9XBhpA8I2tJzvUTpQ5/Z+eupCZcpJOHWh6sEM9sbO43gb9FpvadQuh/Uh6hrC1y8pBIt3Hh/1OsZjQHP8p06j2KLSeFTxHcoZdO17TaoHL8T9GA4OkI9OWyQ3nE60zW4SaNEvsy4tFGgkKGpdFJHSjTJbKDm9c7Uw2z7uS3u2xtdoDFMRVFRGV1sbVrKuP2VonkiYbYd2rQCokn+6CfzzwzyNA+BC2cavjNKMBIpz7+59JFKwRmsvIjR4HGbtBL5hS3XhJq743hJY2YwlYc+S2bJ7bKcXzPSdHLfETrYghktx9BLf/rhRZw/h40sLkphaJQDZeEGeBe6q/PO8xaFo7VfGdOo++pVJtdHt4uTasC1GiAdc5OrGpFLSNLq4FO4RTJ4EdvbYen4yhKlC5FxQB94z0LK4iAeYrZzkW0ea9AhoC6hsv9JrttIDfq6zYbbRm3uws7bTDh5opGJFs8TxJJ9i3mlpgcb9sjeYh1FffbW5V1TWPZgJQ6vgCfW0cN+IJgTPsAiJhGbaZI4ER9rvn4d5bzwpakklif9+N8JdVbLdu8LCcxZM8WwIvqQrLfUySwGBTYlCEAhrVSlenSkPDdPZz6Re55kHxEpLz73Yqa9kSt8fLDS2j9i+yVrtDn91GhVOXqrGwwWjbEVr+FMDV66qKQj1pSq/afcOqjB66xiu2xaTEVr+VFVrltIXKU5m67126K//tfxah3stIQXQ/JDenMttNaEGzY22G7kefNsPvZX+FjfYEa4DGAp4mevVh98v/tr+Bc2rTtyI4AdUlilB7o1cxKYI8lagiEEBngSbSheA5YSnjc5M8bkqKjgZ20YLC3/rM6+fo7lGY1+0i7Henh8/4C801ok2W1hOj+6U7YoTrzRxw/08K7LGUyHZcmRpmNGY7dKO288RRwzmmruqW0afKYYgjO1F9qgs+tOkksxkhadJReRbfcEPAZCyI1OxAso3zF23jPgU0vBbBxV0uaT1XJ55CBWyRVjmDRRcEFsQIAfFzQW1ghfq/DwNMDispJ8k4q5Qkz8VRHikZB3pa/3voYLXisxNh9P4v8tQqLENxo7LnNJTanZVyLXMREc3cFuuRKlDpOrzKPPbUJSg/BkT1BrXDr9xoZbHe/kmVABemUnP4dRBorGrztkvhrLm+y0kIWnkrkNKGJ8HltiBbgggHjd1Qhm41O6AaonDLc6PYZU2voyyTW8X9AVjm+r8XsoK1YT/4nHRs5WKlhlf1CoB6gC/b8TG9acr5XLjrZFuQG0K89DV3tC4A4G8+r93V7b364LqDGgpc7VnMjLCi0vPj1fTh9R6mVJ5nMnt0YANaPFSbiX4mTEpHh4Jx4s8vfficEs5BOJVbw2Q3zzDK7aGX8/xPEc3l1xBTSQNDDKTHpT4yHE5Zk9t/5R3vHZVWXFU/tPvI1RzggMiFJurztY8rHkrYWdGrhhuJfgaBhV9/Y0KjMo14CQK3UJfam/96LFo0Qb7X5wGvA2CGZtQ+RmayL6yWsMebYkBU4HSjI/Rj+m4P31ZyrrZTH/xQZsqwi64jW70yC2Yxn0R/JhLS8S9b9rtfU/hBnCO3ezdlhu9HisF+lV6nhAQ3RCnbkqRyCoaN+PIJX2FX/HoJNnfpkbKXOv0dx0wKmiuy/AD2SiPS1VvdrwZYiqkMoubxpryudWHmb5+GtcUDvRWFNf1edc6YufXUBUWeXiKYCKfvyEpQUsW9FjST+IJypXSGQKr6vAEpSQViK8qlpVPunAdhjL1LQ8SKaOUEJS8KaZWDZdwSEnKqlHG+UcHzQN2rqYXhBK8ocZHvKEpBD40ox7cVWgSBDPha2Z2J4e8SCvRZ/yPgdOyItN4tkXx5q3uA7PAsLQls/BSJEUMXw8ZQuF/bQ/DIehDHTgBH7DGZQRpcOFysqzSGP0V7XDbfTKwcvl9d9A2t5e3rnSaBTgBDywXICMMDoq9GQ1674r2Ai6W+uAqHlNef7WFWVifjbcT5eytZYggwswSs67ksiaeAe1z7wXDUwt7RYXJQ6jf4ofp2djN4DKm0Famr/Ndt9e2+Qq6xs5XnFqBDMdFxbURTnBjJYZwNTarBjNdTXkqRC7ymE8QOOj3k070gLYI6kLyHu5G77kQByFGBDxrBEK4C1rWKcnQgQ81U8x1QI97CtV+j2Qtds76DQ7nya2Ig1eeDkkladTug0bqwOaQ3cAzuK9BMjdwWf+1fqdWrga17bSQurKzinJzGcoPtsI5zzs50acSmadqomPqht0a579dhhI4nlWrz2wj2J0HbZc+h3FmpbDfjKudAoDyvYwiBrer9BhYtom0kTQbuRT5aecGnW7NsXxzJTxSj3JcO3GciCvhlLZIFtssTHX0WxBuv5wiQ96t1T/sqP1j8hHtmVa+xfJqJjHkoo7RTlvQzHIR1I0J6DO136GE8rj6xk7mj2BHwywhY78aB8SbHEacHwgRd5gV47oRpFfOEQhOOOUf6h0/EHzPT4/AGwVNCwcSHfXBX79+PfTRfzAd+aPnkW1khD/jj6v5yiPhxsl7o7f6GDgJ4WOZD4H47KTASY83TNSMLUdALfW1p3RepY6PNKeEoAXj2CThyks5j1l0h7c9b/bDROXfAqNypUhF5veY0DwZWTHGgPbEMl5KXE1bx+7MpJ7Eu3RPvr8AIeJJc/0P+vmRaF/vEuauyN0fJoFTDb3kdhI6gz6XBW6EXj5iOxpIpw7ohJK1myqkU0y/rsR7E2LLKxL0UVEbmW+3Iy6AJ+0MYVBMxSlx7rzMVdpC4JgIP5ONDryaih6WXrqVWeLze4TldtiPVpwUrFhmbkbLZzbyxfGac2nYRDHANdaFZmT29oTTcpCddAXrKYXz8Kiu09qTFUDcFAoyX7w6FiPjfhT184VRAelx6fgSI0zxThOI/i06/yHQQp04p4QmVv1bbJTDSAvh/OMid9Iw4eWynmlU4SI0JOa/LQVUGbsj/rGNvAU5qaAbNcGDHAymOD1PxlgHh+uqloTuJzmoB9pd4SCDPYjmntCSDjWRPhU7BIcMwqdVi3zQupcIh0YpulgALncDl0MxWnXpgKSc5MgiNU664EYMiEWWuL0yj1Vw4ylnHM0lXYjh0zLQa+9RGYrZ5lyoakC8cIzhnwOWX591EKuoIAx+QLdv9TdQubnKA1iZReDIfysomnN+m6uItbmOXnFtfvVjJiMc2m/LFcLLK3yp0JlQVJq8uSdW6i3eBXpFwO0uiM2VttZgzn8rRkZMAkgiGNP2d4Ck+4eefighpKjEmEBzu0fP94ZlreSNkd7doL/YUampFItOAcqEUWnzVcRPHBN5mjLm2KhFV8dfa2mfGKtuL3JbhGE+0hkMpaZII76MRgtCGf1UF15y/wMSDusSxBpTu0qKBm/Wn89ssKaxpIhPl8YtiT3I25PM00DuvwB9hTnqEY4gM7WEEnvmiwTNEN8v73+JpaPRO/nJLrfboR3hWo+CS9WNsa8T/nbzwSIvMdPuj12lTx8rTslDVg+DUIyWaMRqw6ayJtKjgd1s638jBKoWNs2fDb/MurtNt0OhUX+CcGPp05QJ+Uru+Zqm2nv5OUe9wHatZByi2cpjOFmUBOGDgdlaDC2u3K9FK7siuCoBxM3x5D3dJFQZGZrVYhwU7UdNgRcA+XsAS427vfCXkDk45JEb5S0umrudq3rBeS+FxRDZz8CQ39RYloyFG5AvLOPkqnASgJp1Ir/i3sgywF45CqQ+iJY8uziFZJdab1njqyq4hvwxgCVO/mls9Wywmb4pnRn4MDBgRIS984svldKmL6ovpxOyAtoBqaPSwALcduleB7IajAhMS8b0fE7B/XksEMPgGEtKzAyyUWijo6TZDjtd0GWzPlHSjbu+ghbeIQ+MbZve8CWzz+6uTqQ7oBa7ITpOMwBvx3VMIplJf8C8GUz6Rgv31JAMWvM5+Fvklak3KSuE924e67ViFg1LX9clbATE0zJPIyCDX2CqAcNRt3A9EvC6Ft+U09Mqmoun3vl4dWCviiSHJwuMEr84l2jxcnjjt5WLc3FFkugsKMAr8Tf22astb8rs7ewNh+WSsgPsWjbfH07lsJPi4wMy38bITbi5xrfXxJhxffV0DHoZpq28PE6GL8CUpKyPz9v9HGqJLwBUTm76pDOq+ItwYwQGu2kcUX/r9VboeVGtGCdXHAGRqF5K/PN8TGV4CCFBUhvvhAXbJ++1KRRzZG2fwTJDTUEYDMG2bWRoR1iatL1yaHHoFMclc5JfuO37zQsLIyFlgmmS1E2h8EnKIuYt7hcGn6WfURBp7lKGs7UVbmblYBj+yC1zhocghkEFgT7JTwT7WyBf1lefUCp3abbe4G76ALrDlSMutdgxgCwyA7emEYu5kTcFQw0KpyTZMVJscGYHzAXEbdgQv62rUfY3HMVt21X5aErOftn+xj7HoEREDItvPegOP10XJ+4JyaD2fjro6yUErR4kPw32oVuUrHHKtjdWrFTEgG4YLCakRJNAOKEw1+HBkRzkwaE6+51SIfZeosHq7rQIkLKPM7VLFyDtQ4/lfQGPEEV758EE8aWQ/gL9PD3pdzReD61KgR3isCmIwDZhpP8K+XNV5SnnqWsyAvzFSw/JGA9kvLo7aH8otNt1HM6VHi6yWrHagxfjCCCSfugmfAtne7P2pO5qugb33GEzvfb5pbubvPhG6/dk+qOUuuRynffN+BwBJ0sz43KrbntUsGaNL3w63SPoEasNezlJ6UfhViG5IIuAKAlK4wqtbtD0kthucqtIihKhGCHMMKh56BYABN9WxgXeqMqiRGNuvR7r/3womZnyEeJzxJYX63d4AYvIEcqUr+7zCfAxXZqOFcoiaH1IxdyFBPE27JfiQa9ufL8mQAJjO4BvZ7zaOcWdVr5R+m7WBFLWb9ZYwoYCmCuGBRi9b/Tvt78T0yFgKV6e8EVqN0V347dW7In/cHaBwXXajYBIbQ3Uk6iu6n4TLVHQiSHY7w9Y1NqPJw/kDvZbqZt1IqOlWj0/dEZhuWlusLZM+YqxssPC3KTuA8U7aQ/I9pooC9IHBksSOtl2mL5/RFYGiIFFqlnkAlAEmzIXZ63I6yODXH2d59NMj7/ReHAeMFHfKi+1xDH1YUNlTA+B0ERl7jRlVPaw9gomC1bVCzx4eWtwSJTU2X+DX7MU4ybBCbG7xoBKlXocE/03+vJA0W6FdCopSx4W+ek6c2x/tL6yn/IoFkN6THCNVhfmtpZvjywglLna3GCuX3KcweHeLiLd9XFmqZhicM09Wb6il+dtJIJbDGrFnQSMGm1+1LKchMQXah+lBPv9rsRiNEQd3anzo1bM1D2IX6KxyLPES2P/Yz3FJ5UZL5c1wVShgMNcrbXPWB7t7cnOz78LOeiv4iibORL5z1cWg/MtriS5nWZhgSTyiJftC/I2jDoAktFUEXfbk61IxONiO+ajJxZkcTYKVTJgq2o27uooAzp6HyzOufyHHDTIHev92r2RM4CMtF8/mMpPuzV7uAhe07WO15EwudIgNSjMl1fYBRcGIN4QkZlq4tjG8/42/fXxw5fD1c4CKRc/FV+9uAcrI2XYYrbpC5p13TPpN6qD8cRAESIIKjClQt+/bx1RNZTDpg8ioz1B+I58vvE+xLFMGCRlteelJbUc4bWj46trZgJVaP+KElOu5lTECw5kWrehmxUoyChYE0T2HLzrgD8Sug09Yf9P61cpnDOcLgRIra48/ZGLab+LYO2ULKAiWdgDf49V2Flmqo2eKUtXVY00CgCUxotaa35R9dPhoDZSVcZC0vkWLMI3C/NlsLDcwSXMo6hNv1gWjSFB0+KPXRMLezAoD+wDA43b6MBzGMdVCV4ivVpMUR6/iA+zexqVEXnqU6x1AXddCqf9qCRPsvPjNA00s0Tz4Fds9+t8y834gSES3ysMpJfu40BWaTG/u/6+c4eJYxy/UjziRdFMetlq89vVByjezpzoX/uDgKsub+OMZFBRwh91eqlHX5BOfbBlQ8nZeckfuYv5bDXzTsnAvIKOHcWXLkgnY/YTFW7Kl0kWzWWzyoID8LxbSXOk+NBYlT4lFm3cS+XcbpZRlGwLwJQ3URFOa6oLNGDXtuSCejYVUBEiR4vq+tHtfwUIGN2938SYOUiWLrmg/J4F0taDQFMDQpK4LVChvVlR3MKBAJstfX4OT+EyqevC1byZcZoaKsbpfhrN09Xw18vSV9rHgt22e6VQVa3gpThYRVoXjxF/gF7r7XzaEKJLDyiqLwt2UdG4uk13bOwUYS/JrM/bReWHg8yxjntZcHulqrrZvd5VxnNLd4mr1g==
Variant 3
DifficultyLevel
714
Question
A regular decagon can be divided into eight triangles from one vertex, as shown below.
What is the size of the internal angle x°?
Worked Solution
|
|
|
= 8 × 180 |
|
= 1440° |
|
|
∴x° |
= 1440 ÷ 10 |
|
= 144° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A regular decagon can be divided into eight triangles from one vertex, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA25-SA_v3.svg 260 indent3 vpad
What is the size of the internal angle $\large x$$\degree$? |
workedSolution | sm_nogap Sum of interior angles
>|||
|-|-|
||= 8 × 180|
||= 1440$\degree$|
|||
|-|-|
|$\therefore \large x$$\degree$|= 1440 ÷ 10|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 144 | |
U2FsdGVkX19K1ifZ3E3C07Ye7WZ5PcBklcOVeqsoFj2BvKkUY6DbqONBH6j7iLrBJ5OejCAGpxtiHBocSWhM2OMhrNzjcWjopmHNn7k/uOxm1BsdTh4LbZIhI7fTpVoeLvuipLaS2bBs2gAdsQ1Jm7O2BcHDyb8nmLZPhbdcwZ6bvH+MEt41kEgwyEV2FhZRdSsY+C7Y0fJNzaPVkmK+7iV+ZsHeBU2ehVHaKTwR9VcROe7hoUOY/e51MnUtGqKLQItPOGiDr83nUIveyaGQkUCXp8Y7EHM2XgaP3RtgBXDq/8n9/PJvExHdCal0TOHc7MWSrSurxvwFc9Tf32yrf051/BpZPXTTsgPlPckA/+QUGQA9b+xKV+mnJmG/lNQE+DxskHv2PQHZlE6CJKju3PNiLT8DZN7kKsA10yGDaTsvPxqufZgFL8mo/YhtdkWQfX0e3mgAaYmkMRglt2T0vCSxQXs30uR9PzXRiIDu5V8fBUV0qrdkPQBWo5ECRU0WiRJI35L0HzUJVBrywlj4UwmaXYGKilwoIuUdXwX3AF2Newv9Z47bnX/zhl9gHWj6NxXFVKihN1JtQ1ER38cZ/wqSAP1q5YhJb6oewU6Gt/LCbmlmySSKeY3bAZtmHMGEzBx4lLPe3Qf43bWh8ZpU+vNek38WSdJfyuAGh3h/QjaGNYwBHDC/f9lIzD/bqB9jB4LFsu1Zxtx5bbsF+zFrXXjj8emcsBbMmQGQtm7GqWlOIpUL0ujAyFE6fln0I9r/Ew96kMq/odDFQO8LdA14nRzxxANdWa0lzGk3KX/GPCkivzv/ySvF6mkQhXurJ2qUHDwcyXUeev0gtKtxFOiclWg1nz1ZMEW9ZIjDnJpR4rhHqgraxyl6VUHHRzSBLnVIIPU9RnGXo05v3XVqe34v+Ue/1KffUJbvgE/TloA+w2D1L9xBSYz4VSd3a69bldYXutR6mKPHS3TP/om+PdbhnJjLPT5fa9HUeIl0Mold7fBEDR4B8BDtylQg/66oE+efwwQsXn2+3DwD+XLeVyZYW/QSDwC4ZNkUEoz8wewCrAeyKKftULcon92595KzR1p3CcUPWVck+SQaNDNAf9skYCdsvmfor2HxuZHTwqyvKWhx3wrnxzavTgtl1WkWLMz66+MYtkf6aXVt7/aHz5PODvWelPaM2YsujHLMXxpTUlJmwcBgGgGSvi7jWrMr1tV5oKxfH0+tyYxr1llZEkyV4fwRtLNjDb3mJOMGtj6Fukqf+X6KxKKBITaX+pMtIviUI0R3chDibMST+kLnDEKFQoS6Lgnl3a5NMFAuEiBXKcS706/2nbj17a5hgi08in5AN4bZIY5flAawcWrUNM5/+6uHMg5RpfFnjQxsW1ksjT09O53533MVU+QJebxo3osuvQzwYziFo9z2ulRmf7NlYjgBzsAx51vNvfX+55bZN90vCbD0K3VHV9yaY73ocoEQN+qmqD4idR5T2Kx6n2Ka39ryVHiD4hjTeLhH5T3KzVWwPwJwL8zsL6ZLLomtld/fGLnvI1E3GM9idIsvwFDHdISkWHDMi+hC6lxzXLFtJTv20x42j5qUiUDvRqnM6MM7fJAIU05NlanJm1WcNY5LJBGuONJk+FNc6tbSg3W45NktcqoY2XXNewhzK4JpoTaqB6txIbvtCC7T718JvqeTG/QRNr3GQBUSC1f5wTrH9dbYmqHK1UamdAModauAVNMi78UMCwPXuyrpAlscYfR9LFNCc8HbGrYx1UiYvTK/yiTU/Fj4+w9+Z4dIoGQjepB5QDr604fTCrdsftl8i2eR4xPLMvbvslHV8aU59bUeq60M6pQFYRJnG4QPo5mGQcDXZZJCxrAZEP/k7GekFlR5Sf19i34B7Y35+WIXw8/IO8K4aVA3tkrAYtPLVcWLOe7dcXNla1Q636RIPD3+z8VaRshRWXmuiNbcn3JEMk4lgUtTocjkhCSvQ+dXzbD/cbAVuxH2OPJvjAfQOgQQIAxlBVZD218OXKTOdEapzJ7azkFFf/oNRch0mV6Sx21UnRnsPi5mZlQj0T/UD0TjmOy/bgXzgg+JNutwfqcbt0IDI75gyeLrD7v5HJOVeFB+YLTv/E+pWDJ4cQoTYcpU8JjSDABxn9YP9HQVil8/VPQXVmznDcxwWJ6WbntF1l48DgitZVLF+8w2ENF64c4fyOFY+xG7j5UgBDVL8KdFn2QvThsdo3t7WNkxJ62g9DJmFRrCos6kWJIM+P7CNKEm7XV62UXKJQ/nXPHy5BT3eZqhwingXtvuV7BH6sV+Xyi0+r3ShZVwU7I25vKOAn1K+dVaRgaVUfE/mYOLWK6i/u3tZI3BQFcQQbuUk3OTv8eo+SbIefXpwoztTO3R8FdBLQ5DtUL3KLC/Ts60SlxW0GKmC38Rj2tmCdEx6D1NV0MDQnR8WkURnaRV2dMfO9f/H8DGUGHFCoQm2iss0LD7BQHPLRxrofxFqRVuPs6jQ1jotjibb/FUUIs0DdVDwFOHdORpeftid3Xj1/scBtTCFzIWksbL3TDrOX0CC87qRyARMamwB8Dt2rBuXtMzivOQf+qdRCtz0cfHAx6+9UoOxZrw9F2ghnXNYS8gSmyhb8dVV61ljWoo7ucclyDQUXXzlvOvKquLeIEs+DfoA2x0vqjVDUgbLg4v5Gc0Na6ADXzv/53ky7qkuOzCC/P8n+931chRvHbjutNixy2BbM4V9Yh/SewRCQIC8+uvnNHxwKbrLT5cTQbjwl1f9DjzhPL4GcwP3V4aJZ7NLNQZOtfLUWCa/901t7UJSPD2m2WHU4iDmzd3EOkI8StRv3WgciEzLD5it+rJtR6Et0Hb/twpj6YGcVL0G8zfI/SvTl3TnQnjw+yWpK9Q79YRJoAlAAqLbYdHc9ZGE5bElmn+AjaF+sJVThaXqkCuvJFLcNUPiKSWy30/4WA7n2Sg5qzsWZsbbsBLT5VgIseoT7/Fu2L/X8AW0WIzfB83Ayj1/TxXOghsl3mnLpfqHNkU8hfPme1lcottJDgIUt2u/9L6J2kSn2e5npUjXB6Nb6UbBlJrw9z/LMyyrIQTf8F4NaTsZnppEY9pfvYzpddK880+V58bHFGoQvJEQEIckBOvXZPJ8IA/zyuzw6AI1IzjSf5vEozd8VHQ+ft/qzYsthiuq/h0EZmBkhgMkhNB6mmjQGkQY8HQEsBYmKSaBjVoaAdocYl4FkrtEwyWJqCBMijMha6GQ+vqYyosr6DoQp+yPEO+IjjhpxYPByQc5RDJ1yiA9ZzvYMnyJXk+jRR8xJBWDmqMDhJaBTW6WbCDuRUpE9IyHZxNhnBANGfUtYuc204QTeDxvD95HGW4JswZh67I3p0Mg2GKeAjnrSr23g0Dsww70B173JnL/sVY56SO/ghV3+JVflLZxNcGyZo0BPaYzJV84OPrYvwQB9MEfjh7gZb2loSkh9e8XApvhY5tFmfCG77cONhzAuU62penEJ5rdaEjRxWjs9Ycby8qaWW7sQ7/kr8b9kpDG+tYMR1qeSM+/9ZY9hfLQM568Xd2vDbc7rehnNuXBivm4r6erhMS7KugnN+DsKwOJJpZc2W2p7rtVv3Q4HOinStNbjvqhaCzZm54C2SXJNj41ZXgpt0q9HyBnjWoVN48D91FWNzontOh86ulofYV91rTZBkKApMZ7WAd2TG7Cbc5FTdeMRPDFpj9IuO4snE5fNr+tTiVLxUTS9whIFvGsVPbg50xjpCVKXClaYCPEKcVEEZSj+O10c5jnGHi9zvV2xWUexRPW/OzbutyWlrwgXTOoPilmt5NJWCcvtxKxtfWEudxkvLlfehuA2f0PVerjb95rhmUzGVB48DULjKGeuTaFwzUNMeiZmwLgIm0C87qZHhFCCm8EecgS2/BifjP+TKtH9iXJg6ILTmW6/tcD+ZOvng5uAUz3jCAkONqKHok84OfdctZcqp1aD6xYUgay7sDUFCdIPn8XEm3obvv58wAeFvQ5v+osW7HSFAES2UGG5dkoeIOxJqfTwMwAr/Rp7eyJlft/Hp29cHecFmUas0stmrrakMJA5ImgwpPSgoK0xeZrn1g3h0J7BWB+Mbf+vKBaF8D1A/QIDIJkbHWdq0IqbA4C12NMqQHsWoMtG4cLiHOV7TWLINYxCdWy1bNw/RihBXwBqJPEFjg/w4Pm3btAYMdiEU9YlF0xLZIKgVHOcebGcriq7NQGdaR2TzyGD3ar4QvNdvtRBUZCtYCab/AhOwkuNUPdC+n3svoxQDMG2s9UrMXL4Jk04DS88cz8OnUCaI+r0+z5sODD37orrztheme7lBQIaGa1qKuvJoPrusopuu2fDMfmMJrwLpDi6QoJKcn3TkmJXQAyv7yYiiTbueQO2xDRLefDsGhTwGWCMGpDECcmHZK7ZA5rrRALiKjmpETJQtjcLwKsYfkZLxzl8OoqZBPsseYCaKruPGgDGg5DXoJoIl5MuwnxKJ98UE7LbwzlwgLPcxD62cX8QRxqqIbdo+Aa1gb3iu1tEFpp8pOU+8RkdGjty84jT8BoaoMWKThbeTenn9RPH21BTSr/5CUkfNy6eaj6dYkjvMo7h3Aut4/v2ynQcppL25S50NoyVrUp9cTVH4HA3VS2q70RfQ1NAp2JRH73sB1lqb60Yr6n61Na5ACywk6/6udB/CK+JzeMdktKGGcbTfNfhuWnM3WoDvoDm4cK5Rb9BC2rvVf15cSMXC4B/lE4WDeUo44eOvE3e980AqFc+jZ+KKrdsOG8v61NxR6ty4pfividzD8Y8fxkkHUVGJU04FPvxSA43FiZ4NISxb4znfZKcWU5U1gR62KpM/iDWyem9WIR0M2mwq8pJaFz4CEI2Tq9xCTUbm0JE5RBPEtCMmCOj3uaHCS3QmQVUFES2QTMqY6+gRRKRih3LRBcEM7EINtgdOgFs7g9AHrqfUms8T8U2DtBkqh5fEWTeKntrjvTUp9ACcTXifMpKCnxrVX8GFFbVm47Wh4nrmqLiMLK+gCDyg42/ZzQOiwtYEXRgf7kV1hqMORIjZDAgnOan06b/GKRaIfBUprKz9IF9olxAGOXRyJ9E0qxZ/2o/RdCItzvaoZgrOCpM8nvyu2OxXWoOlYXX5RWfXwkaQ12avawxNvPkrN1G04U/wu7y6Md+rGx/NkBcQCieHD37zXHGDBCkpXNs5LshaF0DVQaYrgIlryMFrfWdSbXFfh4bv8mZnDtCwGgWEqSs2x6vQfF9Xo3PqrRsLNZ+HmYj7aBqYy+rnIX7I8EmnixgW0xRRUO6e6HUNFmHAyT6W1vukhsL2Zn+VZ42iKpMOmGG8DbwbVQ7EO6HO8G/lcQNOxhHMVschnVRc2pVP8AOiIjIoGKWVTsPz81rLLWBOLbZgjR4VD2xqZNenat/EeekURfXMew+R6jYk8D7R7tOyVCzICFp80hcO8N5og590QNie/6jciGStSkbbBqqY+hypUxZ/jnYTrTL2bDcGKGGlQlul65YywIt85QQsn49GEjYz7+SwtoocPvVzQWXJAsue9EusJ64Nuqb6g0D3c6iJlBP3OLKeXpNTB/t5PkKskFl72dyo1nSKvzK1osiJ9ZRCYP/dik8B/B0OcHCbHIsKAMqKOR842MFTbgprrIuMssNZLGjEUPHgSzgWJdBt7sWl9yN8+AFv8hVq4KZpGvRj/1VJslgT57zpk/RgGheuFh2J37CmHF4IRZDZTx52zWcBdVnIiHNew75Jmu+tpwaEbdAPCa4yWhwuuOtBo/u27TKkNoC+b9y3do/oP/wyT6ydLXlSUml0pNgR5mKqll1AZDO5ENI2oKNVGh3fpQJZyxUzPJo6UfD9x0zuIfvy5SR6DDR8PEXAoPvQjdx7Mt3hhfr+nL3uyZy4cmyst0798DI/qbR2v4v/Cpvo84VvjypUaU2GSejckOukLLGJ71tSeiGqiFz44Sjt+CfSttV3Gib7iYGtGWSPJmq1Na0qtAuddYL9t6K8qq/NnhTZLw4UQEjdR6GllsHey7baXloGRFFgKpRBg/xlPzc/cOA1nbOsIZA0kSoJPHZgl2Scqr+Fi4de6KCQYxJtiWlTfVPUIaxZSLiUwsl/Z2jxaGLKimIY2CjeCsGzYjxBQjTbXPDLqylkCoUt+2LDcdXOeTC9E6JoGNH6ZKEmiZp4djWjfZkRPDSlphwVXbSlRujPox9U4Erxdxn7qE/JlgHwRRtC+7ugYW/SIUqX8qJHuOEv89v7yyMeZeY1kxt+R59L+1XedTpKBcjoFliqIzRNgUL28dK86qgeFDKaxGrF4A4f0isLZpdUz+LsZ93z9HQLSUi7bnvfUCmVzHo3VMB3lKV9QMTjxiZdb+SnwG/YlGfqrsnrF00+yrpNCJeJwXhXl00AA/Evku4ImX9mblxWju/dliph275w7zQ87d72DDhtdert4Qb6ROFgqfX5673a9XAp1Qxh0gYBbNHvC46uyDVYd8MI2ql8Meqi7QK8XeYnG3xgpvZqwqCUEnT9Vlxin4RhbNueiEl3bl5GWrW0qww+rkxfZ6a5cwzfXjovq8xE7/+Of1uG06EPTDrsZGFWwZkvBvHjRtiywBlupOsRORwBvMRUS0pMOy3+tX34XJo/cKxclaPs6446wZWxoKoETxwORdFzU4azSZrl24t3G0teqBw/0U1ET2mYxJQ==
Variant 4
DifficultyLevel
711
Question
A regular nonagon can be divided into seven triangles from one vertex, as shown below.
What is the size of the internal angle x°?
Worked Solution
|
|
|
= 7 × 180 |
|
= 1260° |
|
|
∴x° |
= 1260 ÷ 9 |
|
= 140° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A regular nonagon can be divided into seven triangles from one vertex, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA25-SA_v4.svg 260 indent3 vpad
What is the size of the internal angle $\large x$$\degree$? |
workedSolution | sm_nogap Sum of interior angles
>|||
|-|-|
||= 7 × 180|
||= 1260$\degree$|
|||
|-|-|
|$\therefore \large x$$\degree$|= 1260 ÷ 9|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 140 | |
U2FsdGVkX1+7jTDymCMggcA6cNUOCQJv0WEbZwNPKi6pQAea7Ci47Bgb8lHe4AmL4+rwYkjJBK2NM+KE2SCleRu7wzETUfHFgGQIirQ4scrrJyQVtauuMcSGKW6G+g1RtveFCFAFKEigtGg1Wv5fCUDu8Sn3QK/VitkOgQp84JIakgPevBR0l7wLyOtgp7KUsivDQu8xX84CNDrBpjC0OLQ6MXF6EdQJD9RTxy028zWgDgBIZkJkMXQqh/kFvqiSmUOyXqkmTjK5znY53OyddXSRQGG0eq5tryuPn61RuDfgZqGqF2wCrWvobAXOLrypDO7KH5qoN1lw+e7Xc/jgRE3+8gLqzaGhC3eK9Ec86qXMNP4dqeLFw8wZKw6MZrreX0gMVpGYoPRC8u2TGpecAWLF5GB40N4XsCg1tapy1l5arfuVeUYhvKb4wDYEL+CMB1Q7zNItDPEXLyD225ZpcgS4Xl3D1yWtTufD6Q9XkxPN5GBaFoSKihfE6TsAzIDzJhFaGUiisju2/9Jkf2QSM9ueg91XMiST7D2+xrj8776rT1uen2xtFQrB+qdyA4TdoA3wlVK+VZTZWhH9m48duKpDJYzcCjwlxvuJ+iPqpJKwf5JXYaaNCLSd0+C6hSw1t4IRya6hA7zDr/Rs1u/f+myUPMyg1vOz6vbRN/IaTx1nyjWfe6JjEccrkOWAFKhLMMEjKF51mOW1dY5eZ3OHrQSsRSJP5+HYYWCpFC8q9D/hgsStF+ScHhoZWtjkPAK75hmwGGNExRB8MYBgEJHobIsEqMN34jAy+BfJcNOwzU4yeoLt1Icaix19jUHdI7fs2y5SJ6B/DqDlm4vN5hGn38Pj1F+OfBg5g8jRPGw0Z1nTuxzQe9ngF+kCVAArcldR/5xTn6RBMH1Gn82vi/41y0rRpbc5ZRNEZefv4oV+mAhiZ8t/cPYIL79fmYQI/UMSve0BXF4wzrXDM9Mz5ySJntyHip7rCWF0O+b0vIE0F58DFpev8rp0qfoVPfEAgrrGuP1piT+rs08t+EcLsIbrXiFR+1tiNnUIlFDrTqrFlpEYKWEB1IS5qzgslchIMDfXoyCEsf86wBmhI6M3miR8Sd8Q6KAJmNki5EA52L+F2XrXLz7PIDly8SLgw1H8X5UVBsetnUyrYwfaa8f6dqIHu8KTsQuvbpSPEysHu80Ov+CVutiffS4NQALrtJFx/ir4f6SxcXVOx6azQLYDEabgRREbH1iTcLYkBv6mhpepKpEOb5uEW5ogRNoCmUGY/7A5gAsj1JKyn2XfgNuGPjOe4dvL5LVV4aVD7Wsp6InwqqgwwXYXiTqCo6vWbCSKxZsAmVFES0kTgfw1PzJwDLP3aogDYAbEjuPNOs8kklLVGy/ex2CF/ba2VxHnjW9xEA8hjKqxrxsJa0fszugzbGhPzuP9hpjQ/uJSqxrTlIWey8PNhoz1zFQlqW80+vuhv23lfr0WWR/a3k7B9J8d5/NkMA/zVhKpHrmXJPkWU+QrrCaVecubU8vTY7u6B/Sqgsk531h78+5t/9VDAG+7jmkG92FhKi1e1u+ECFS9y4G15qlFEQ+eqjQ4MOT32/jfzaZn1UjTSP2JsJpWYoDDPmbPi3yXlwssCQ32rnys34IgsQp0MR2F08v3BRGz2CzbRIo56wXHleg0G0Tr6sKGJzaxLN6h9lxx14czHLlv58BswdBQ3X5c1byQ0ZGJd+W4FZqqAEGxnk9wWbsKQQTEVroT/yi7DI7at9seM77LiFU3ekimjd2vL4aVZ61IwyW6FQYc9/uZGOPpWEOr7WjyTWMCTuzGesUiDG7LJEozSYOB+cIuDV0xGLg3dVZy5axioTG3i9cSE6Vdc+gxc/3Mz9QG1J7PjGN7FDTSpXK0r7B0C1W42FQL8RT6cw6CEq7mORl/fnz+baLrJdUpNhJs1/R0NkhvW8BsdP+SRJVUAwrjY+e7N/L5v/fgqaH+0h3b5cvMmzO8TT3B4WIzARauQHXoh5ELo04BALblKmuhGv63cj9CEGESNkRoMOF6j9xaj/AHGnS0KBF1hir+bOABaW+Gptxsil6aGRGPzj2gyMSfgsGoWyhGdz0tOji+1Wotm0SEvgELsRXBv03OSGgTa1JOXBnxrW5zLFZWPiYe4xLxj5bILEpPO183tJi7fTWoCHPCwPF/AySi08LtblPTat3lznwLshmsmo1e3JU2oNhEGSEGbfVC42nfMvebo4Pc9jJUYM9o6+JAE7BTqNZybquxmdLpHw0pou56B3WGRaKzULvXPQ/IBAaSlkBNis0a1GcgbgYISOhMYKXnNJcq9sLqJSkQLuLRdzlXyL4DuZCbF4Xrx08muD0MrlOle8kUYavt6aru7gkut6/M6boSEGLCDKlwW9ZnsUdpeJFjY25MDBkdAov+qYNSM6hGAuZyRQOuIfMFr3EjCv36doLv+aekaoxCeh4wjmm1uNE9p7uDCCIXk3niDW57JFzWw+i5Ck1528CYnIcOG5hxzM8esC0gcbRHCxDzD+pa+Du997mZgZiU4ECNILyap0+OGgI26Rhjzb70KuMbF+34uJxMEMlvCgo4wW4wNkJZAuglvnERtJWjFITAYFWNydh1z3itspYJ6ATapqRlPadseFch3m4UucqDbiWIgeSG3DEsIVcckU2Ecma7h61CNty5pVT2of5bGwYxuQlKtp/4DdfFq0+uwiDqBTvyCVX6WkzyQmLx8CPbTlpgN7ef8pJzKSd00dCPlE94BJFfJD0LmvOlsZplRcST1bXtaTNT2vwMpcTWl8aJ6fQFKOUeQVNC0UPld8fkSYxQEXQax3zbQzMtz87xfozVzD9eufuqaLgKn/EPZxXLhW1oiCzzLlmYaOyTwzrcU7FrFt8DF3K/j0dyOHCFx21OB92bXlZuYFry/PfOnUsf2LrR/xaXev485UnBNi8SVA9tUxEL92MUUAqFR2EnDoOdFMQPM1MPcgicqDeQBODgDKct1n4oiLhRUx2eqvjeTa2/nEmma3pzRSqkH9UZRWk+3LDqJaObr5h7cpCgjfiC/meH6FghoOoQ52KsylO/y+MQpkDiD53WwpDkuw+L0MGVOofAL0URdDTDrVh6lc06JfBityLfkutuLTRE/NC9A14zGg81cxLB/IjxWRIdlJUhUOAfUurjS7EDBGGACpynjrcJQQiRa7XBDqQQL3dHTXpiXRy9CszUnbm/6ryqFrd34out80UmMN0rGc56afGZ9J5x2cT4D3m7oKT+eKQDruQ6ThN+eFvlwcQK+ZGPBNivA0nfmbGQ4JyCJLjsstTSwHje1MLLsUjvbs7zm6HfdNIWwiiQU2uHhk5f07+GJ8h6wUa9R9QaRRSvep2KASUehkeonIGpn4OlFJWihpSGubWGQV+44gzsYw7+6Y9Dqhvn8jxUfsQN8ip8hncN9ylaFsYPLfBOn5gNsB7ouuROnt+m1jV7jKkAMArZB//Lto3AZ9aDb86MDyghEeQvG5mmAmnqaGyl1FTSQDrrEbEHshBDxd4IH4O6HYHp4fzjzHYGec3I+Nrr1pcaayAJJvnS9EqeTQC2nZ25KFhgTV0P3QOzcG4eoDt2I2z1I8gpkBNT7Gihi3z+OMTgadlZF6+IOPx5MuxaDMAQErWOci+czzrs/RObrokVXcg6G8NMBEK3dW8MMvDK0KVv6X9yVTVJfvtk6QIYee1+UpgTMuufC34Lo5JmLtZ6Tm1eKGVUm0P1cNhfvG09mMH9FPWa02oUl1DXGniIWXwbc232lDWlRC9NtaKC3oVelRZxUpZ2NbZg/fEw5fCyBp7ppUFWpuLH5smATe/hDHSXXYzU+ZtV28CAX/DPOlJnbk0KcaDrXpZZodAXsxoZ0Bk2J7Ru1v2Jd1tParG/eqxnoQRk8qRZFoJnwUY/UYn6JwLKbpZKTn2l2LIwLCN3Q/T3Q+Kw4Y4xW681WlpxB09eZXYRnrk/YPnf9LexFUzTFngKApEEK6rvHNK2LYwhJqQM6F0u5y/atI4xZIKQ5hOTY1uhBjvDAddC7iu/q72MKKYfGmi5J/nTvQy9VGXi8AqSPKvyO31JWOia3wK0ZkYNKRz4Rnji1b0X4dFDv+2nyIPXY7LNjj138utHc/J28kNo6uhber1JAZfU3WteDYh/b1AUDU7k6CxBavgZPgo3151dtvZUX4iqx3kDJA6nU4eVc9CwM2GMB/5bggX9ei3oQECU7gihu+Wwv3KaJddyILkV20H8mYls18HZPzJ7nRvGM280YKnouUfTUVbHBpn7PbJXWVgyF5mjjJMZvF8s+QDyv3KXslX9+aa1FOhdixKCNxV3c4EkxH997/ZQYxvwpcwcOzCY8OrC5DRlLTASetn7JOJJEJ2cvOA7vVJL+FEMxd9YiQ1gUnMxUKc0BrtGWF5W2ZLhfA8gxnKgppEfTvNy3vMDmOuwbjZdFoTzpcznRnPGULNcynTPMdG1WXfZINrux9b4Xz3zBL+yzPrxMMBADIznFD2ZC8ZGxQjO5Oc82maPWMqW4eHm2UQ+Ao5kOegWwCEO9w9JTkv92zuMrjVxx74wcipDnq7ZW79oPwRNREMsGV3PGKXtFfvmDcDOCreA6Yc1sq2tJ3CXgcH6an8ysNI4P9mgZe407xgyQpv+aveQrbOuLpGXhjzSx4Hoz/Ok+Z2sIvlliSha69QFwmIwr7O3XoadmxCJyQVop8pqHzUHbOFQbuqfYYqHQq/hVvlIWhaDvyIYOcIKhrJd986MTXoP/VtsiC132o9+hCT254K1PldqIN12hHnCImxlnq26u/AfSYQAPanwcRj6n31zzg/AenpSCOIE2EBxoDuDxpFISwRNF1BzgBpbDkzXc59zPGnj3nAmUrdiFXlroFn2kV0rCohkdbOf+DrOR9hRdYsyAf3mgQVJkd7nT7Jf13vyPVRtBzSEA3wTNjvQcV/yYJbXq7Ck9EcWLcauysSOGq8TkuY8HHR34SDkJIJ9gNZXsbaKimjuN1yFgvBzViKwOnih5C76zP3ULNJKeX3G+3QqyhTLOnon6YCoLBto9DcCDTGR8W4aH4B6Sf560Oe9vW8B5QiHU/pSt+zOU4GhJr+QLMPC3xSo9jXJHSWsnLkkslnYwxZaJlUBjatsQTjsKs1pB0EpSTdY7Ye8hYZ7ST88nHWHqOYsFWbJZDu6U9PWDFEKqmquIaW7iWytdMRGK5CNFn28I5X7iDP2I7QzuRqyFftdyiQ+ussHtngoVOD0CNbSs02epoFzNiwtM7PsVCBalx9WHILkzeA77uE65SVGqJjFjCc8stw7h6DedIYWkvHTsrvto6B+gWmBkpEsqJz3TuLVUtdbx8DUYkOSgq4omUEiajdW/7S80xljwoVTcIy6eQpsP7JZnAMKh89W6o4ljLvo271DAg+n8edgt+t31YHQoWua/29r3+DJKgiNlH/TwSpRK2I2U/FV7R2ZwQ6PffQj1sTJZG12Hwbc6wfDw778MtukSgrWMQ7JhQaf8d34qiuO1EsY8XoI+BK6LsZcXujw7LmQpIafvcCAxu0QRhJjjzxRBnpVgSM5sX/ZVf398QvcqXgTIXDVmVjbxs6wI24ZFUlTRgkLEr/zPnljPQqKs6tWm3Hxmq6SQx9Hgb3VfaMMq29UXq4wJPjzQSy6zBCDCIZdy0BazrUbu7F8+MxFY7tF3ZcIgVkXW/VBtR439FbzeDHp7QgO0a5FycCfFQTUT7xFIA9QWbTboxxysiy0I0GTmzTf292EOl+8AKKak590hNZWHgkTvmx1bjRECVibSPwp7w2DPzgVRyO2//8jkFlxBDg+VGvvtiFxyRLk9KA2Lr4hQMmg9EWl9gPnG1IEJYvWOdbCWTW8NkuG56KLX3jAxbDHd+NxS3RsobdCbCTIoZubdI8B7tCRZYRZPVLAM7oTfGmtsP1OtSwJuZ5c0b5KtoD9lpfqkx4bUcMcJUYjjXwrncLE4EvFcBL9QPaRWqKtf43aFDXuh6knKicBgOB6EmvcSPHop/QXT6z04jq80p+VPMXvw/j5Jp5Ab5vaORtPs5XjN8LXezS5Is8Ziy3NMjG48Q/mNRuibq+huEC9c9wsUYf5S5EIu9FWlMXzjfOlK2ndZLwd6nqTFLAQXD9J89NV2WxwV2ozT2Md90ou2M9s94jIqKMaDeO356U2fRuR/ig+FZO8gdYSpq9jbNi3x3FjAeGlYbaVNNdygD9cT8GWSP06jtIPksrqalAbJRbbGmwkXHC24kqhmA/mTo84EP+6jvn8f466lhF6XSfCNjJejDha6/tCVKoMMh++nonpZ4L5CXfGyLg9wzBI5m//jCSQfuFeKXS0pOPZU5GiIVbqbZ6GLDXPOFx/PHtbA9fRLOOQre+Fn79EYACgkq7Wi5BPXlnir/i9efK6gnK6BaCgrY+deB1l3xaK5vi2YVhvx6/F1tWy/wF0YIklyU+n1EZNdbKvpdYBEbG9wZnwpVsuhutUtdPaQQXL+5OPS+YrMCVsWlRV5XXh+BdPZT0zzum9Mjh1KTomD8qRaS3HyFUppuOAxWsTFdxNujhquXSYNxp1mVR2EAk0EH4KBRmWd7ruV+R/fi5rqFegUYRDrirv4LW+oOGtJkQDhrMXQVmtZ8HcMuhv4Xpn6yPWRMKaQDCdBQmcdtRAFPtfMzz3qi6EcJvj+Vx/I7sPDQ==
Variant 5
DifficultyLevel
713
Question
A regular dodecagon can be divided into ten triangles from one vertex, as shown below.
What is the size of the internal angle x°?
Worked Solution
|
|
|
= 10 × 180 |
|
= 1800° |
|
|
∴x° |
= 1800 ÷ 12 |
|
= 150° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A regular dodecagon can be divided into ten triangles from one vertex, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA25-SA_v5.svg 280 indent3 vpad
What is the size of the internal angle $\large x$$\degree$? |
workedSolution | sm_nogap Sum of interior angles
>|||
|-|-|
||= 10 × 180|
||= 1800$\degree$|
|||
|-|-|
|$\therefore \large x$$\degree$|= 1800 ÷ 12|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 150 | |