30241
Question
Which number is exactly halfway between {{frac1}} and {{frac2}} ?
Worked Solution
|
|
Halfway |
= ( {{frac1}} + {{frac2}} ) ÷ 2 |
|
= {{frac3}} ÷ 2 |
|
= {{{correctAnswer}}} |
U2FsdGVkX193KPAcS9WsQUPIauiefUhlnUnQbdng9/0xNyv4GuaMeQAUw6Xc1938d+k34L1NxpZBoHRHDqZ7SAZ9GTgEuoi7NiOZevgfDCDjpEpzKXyPOGBcch9xsq+YUsD0pRrRjDghCBsIzoKSYeMASFyoGccH9Cy16Ez5nLfZekJ3Xzw7Gcnf0er6Rpn/ETWSgNeMVlwD1UQNL8tjgvsgAFumFh1dtTxHSS3BUrAFiaeM/OJTgqo33yROuxmA63Wy1UTBcdX8t3Byfsqxe4eTM0q190X+eH3/L6w6PRuXM2Jg76ENZ5o8zQuk5VpU7bTg+AkMrvYHxK+fhcSzbSNCLMhMUUAX5i1qIDvIMxJdk1y9qYIS+zXl7tosWHzrqqeA46M9pXCI0baUG/3OEFvyM4MoE36hzEPkCg5sZoxxCUTgn1z07ILChthVoVl4rLKoUaQSUVB6ekcNCg7dgVdr6EhVn/FinsWeerVJ5CNn1uEkqJGHItoVrUCC2qg8JdzfOBvQk5ADIDzDuTcacb5JwuATvFQ7qZa6ceo/OvTj53aQcurrnPwPhc0/EHYgp/qiVU1v3GYS8p3jBuvXaKaUdupcthBIpWVnmBA4IeFRffrdmI7zrfOs01nvxphzqLwxQTfes+tkf4LyqXufOSZ0SRyujgiUORjgFu0tklzkQanozqJkRLD2Xp/MsIDn4pSvci79QqKsISKNiGNeUCgxlGe/AUaXS++NpNr4ytj85WoAqB5PPwZUTiB5T5lQAzTB+19aOsbE9bXnjyGg6hK3NUj9Uwpvlq9Wynoye1Zq6ks0iM4zozatufPooPhu8A5+VuBwq9qBpknkUoClxC8cVUx5j9Ut3A8GWII2wdg+zTm41q4/aH50CDshRV4qjpHthgMSS+2c1oGMkfsE8dbnXkpYKna850Gc5txElvT+ysNNIkQ9q1kmopW48Ohltd3f/NGXRWJ3TbRFYGCOuCE5pTLWGXEjuM2vRskZWqDBerx/HVDxVlBzOrNcUcD6O+IsggYnGhfxKSd3nNq7Y6TMtIRbL72CcMmBPUNjs5FfYhuCuNAZneam5vyYE3CYgq/XNH1r9A3ZDso1bmmbwETYhqP55/wq5mNwL0DFqg1mGfGMbtjM9eYfHVj8kqcsl0B86cwT9Yt+OsGmnBKYMz/2OAFE8E59x3BFiFv994/ZW0zVcENt6jxpZjpA+D3HEursLOMtPpCami9+Kck0ZexHbLP0vVo9dJ4luh2nXFVjwwt+spv29XJolyWJDf3GB9RM9vdCX0EEA3Mtm51KTmWTTBBJvQB24zhqBtUkruIBTJ4P3G6GjAVJ0bN1FeTXHMvPRy5kYpMROy2oopEjl7U79aQYB16FPNgjLgaHTMA0rW4fkGv7zC6rKVg0QIV52iy8VOvggwbjF/TtQ84o7PHDYF1TW/WcObMCnWGuvV01qtDsv+844ebiberhnezI3BWQGatx8X/YEtZHL1ib9oqooYXPHIEH5Pn/yG7CwRByvZQDH02ORld+4Gr9zVk7jVQIAb5YV7tngqClqIreac4+3HN+umYMKQrA7DbKLp7WSIk2GMhMYtKKTNcbY5KWgz+rkjfFVIzINbz+4Ums3z68v1LwANKLm5q7yh28BtGdsa6zEVwfVqL/GsUzBFAm32KTGLbdIqbmT4p/UMbvnQIhWEg80htkLl93J12EQ6vGM7QcZpQiKnwmECCfdkt/065mqNOSMej+GVJwcuflopiVIB5kOQIGFHz3Q9nj2WfiAG8jVClHinhQ1jLIFSI5EQ2OJ8LzgcAzcNgWmBQfop5IEHyn1hhfymT0B+Mymt5OSBf43N+ISya03nJmV26sWNwtwMIfMqPU2yy2Iq7VV1AAeC+J2vxnKGZWSHyiFZHty+ZEdNauzhosH2HX37NB13qQumJ89gpDL9sWlAbCSuzSvRE2ZdlWCcXhi07aXYzEW4MYiMkTvgk2MyTJfzIh1snfQtDkplQaIH/sY3Lz6KpePd5H8MXoZggSi553ikENSYBveC3g0RJbfF2+imFLcxpMeLBUYdUKWzwrCp1tLP0on75IbpYGrBx2ZiJzI4IXyD4IdCqrsxfQmHk6wFCdIo4RNCzny3lVqvi9GoNTwPQEGP77NbGM9o10zRqfcIaM/7Ld+BJTDQXeGNLmTg9IL76sReSfC4cWTNLw3r0Gtfyn0ki11HexfxevmXlkw91U1ZY9rBBukRPw+vNYkEi8UEbx6scNzk+D6o6H0hP0TgRYyXlG9glVtG4QAXRrljZqQLik2rXDGAeMjT5pTTulpeklYfrWQKVSnicK9ZBAr5nq9TIefbdZtGQrd7npcXSFxijqbilZZ78KK9MMgxo0aJ6rz17jsuK+mh4idWmqtZPzaXfV80HultZImOBBNYJ3pHQTZwXqKasMa1VT4jR7A54w/HN84Qhe6FX3cXubgLCGrXuAaiLzyrlBMufUVJovtwoHY4ky9zYheECDj7Ljjdqs9s3UMcWH6Db7mQsJ1bgjqjR4IGfx6ojIU9fjDhMZEqLDz7Bu+BFxTJg42nh+w8uYUlTBbuukXlX8h4kbRp2sw/umFeAOsL5g+KjwOcMsRwRfTV4HKUK7j5gUNSljDJmlFST+gNJnWkjBoOJvZKMMM/RvyyLgTkoDmtU6pFg/xWA1BCVn2YDI1Q9WjgjM2B1nogIvUoTsbVtc2fd6XlCDBu640lS7BtOf1kNuDh2XhLQWhff5FtEhcu4i0ZsA8EnuJlZInKcEx/f9mJwkRbAtDMg9Vp1N7fvdh2Uv8XulJzmle//jUaZEdV88eJa5nL/NS3iU0ur4Ww7v214baMO4M/4Ac2TgAq20DZxzbq1+7l3eN1C45NNhovjddVZBGu4c+30nY2tFHK4lCtMCFicZ2c/LpjrI3RxPxWhQnh6R7XFbrhmR3KD0FqmngwNED/UXzIIrbRPRCjI3XDWmf5T3eWGuiAnvAC61R+NPYJeW8/0hLmq3R56ljbvFrGaxOE07qvRRFKigpzSdBhzbWgbFxL/LwF0UHJMuyzJwHIoKuEeBTF5TqaDw89K8YeOWxnKi/EeD1GfpgDLLq3/pIXXE8sk2fyGOHlDXXofXle7/NrxA6SfelWGhuvDCTCrB0FbGfcjlbhbdn2RhcZ/H4N7Ci5MkuYw4bIvQTv/NNxBQ3ZdnY3tk8D4ZyQfKWEjd6SgGETrz5w00azDoQKE41ZzFjeZO515zwPunKoI7pI5MEoLC0z1JQNnlUjnDEpEXxQiXCEf7J/KzX8az5o4KL4EXfJ5ZOC/wDcXIUnsLIr8CUGYOnm5l4N6JSIfGLqD9n6cRnrSKcvjEeTZV1mCGkvyOY1NSPR3KDKPMEERtBZTTyj66Q1CnIs4LTvrH2tHlytETro9e+yQXeow6wB7eMJfiXPhb0uHBIQHI+mQRB4TAecPPudovFmD3u1KIYaFYKjb+BriRZcOin8dTLcFlhjIY3L2AnelQFTe0n5EQitqvhr4Wtsjw+caVia+GJ04OlShNmtvxg36KEzcD+8N+XtjVQYABKlCgw4Ici+fo+Q7SCe0QveLFRDyv+jRtmobTw8W85ngjc2Vem6pqWjy2TUKm+pkXoBeP/HO9R0qjLMfJKiBu5+Vq9Yw9Y1QuavTyZ4tKJV6AMWUB1bjwv7+KaA4VnUPaO4k6adfzgY0L0FZpise9vHDT6Ryxq+xq2GFJKO6WqV8Vctb8N8acIUofJ5yocH1RpEab6dBn3l6qsOzH6RNfn49IZKUguU8+CMmiOA45WTeR4nwqn014Rfaee4jM7WmVYQ3WfHuGZPHp3rh6AT46Xv7qpF2/yAUv+CG4QlQxROI2ZkPK3ikbDSj+uljUml3YGjP4+L8QdwdBhS7cmcaTXDZpbbP5d1Vs09u8ov5jmeYIvpI85+W5hKgQGPhrV9CG28jbLBPv+nBklJ5kYQ5VUKxknc/80kJJiUbrqFWpj8ALc8zfYivUny9P3GYjsN8ZnWTBRCTcXnopXeFA4RmcUo2o8BEzqXsvkKTF6vhBEIuXQJL0L7Sz+X2Vljv07zHCRKCaS3FWsZazIv/+9z4cGiSWStxwMnrJnZVaP6iUSPoh0tWImwc+qXeT7rEtzmcBv2fj1vLOVcHXf/bthcXHk4KhdUYFJS/NSwJADiLoTEEtcDBLh/rGJNVDPUnwY7Zh1kAwCfh4bPGZQOowMrb0nsW8ckPoQ4od2EN7w/HRKLTUJR3O7Xsxw6mf2uOwA0ttemiCLxv8dUMT7ea5vv68q/cvQuf8Vg1BINqFHnve1Z6U/p/S1CFcXOKZ3P26TRoBXL7kacxby+xAxaPOTVQtnis68n4OTCe/RHpZ+FPzVoV1wnCNaG5GP3+A8MbcBd4unGwXzSlZ1KqMqp6oyN11zmjRRpJpaovpKYJpNccae2j8ZwUitSGCnrgTpRVxOCYLLuDk9ZAOOGPMGH7+533a5TAbZPm92LPPjPKiQFCfwY8Z5W2Os7tBCA/M0cKkVwgvJX+2p0vAFyDln2c2F+raXUJrYCAoBeHwQS82TIxchmrE0rKchlu5+2Fpz/8qZcbCnt91SG27mC/iAScr5NTcygsucHu85GgA4KajrhYdcffjF64QroTo2hE38km5qNxSdnlsCIw8OQaZe/KOzszLo4+4uXGG62fGoPG4pF817uqXxeRgROXKuaIf8qK439za6W/BgRg9UbruPExA0LFkkcqZiNtcEfesm+PgoQDRIYnDAVgm9dqckU7ZYV4JKuG9LZe6YLFSQi4TqqguSww70RxiQ6l/MB7O2jtRY6p2fsnO8q0JUKk8UWTIHp2N0qQNxL+MmhZ6B8kquoQTlv1Vu0cthej86CcHyQYrNO4XTPuU6l5t95S2sPNPcF/AT4cP6D9CuseMW5rATBs8cw9lJU76+jv3wGQ2VMHr2uRHNcIqAOmvBwtsiV05muvcjzVehRLS4rve5ErAf3SgcghL9OEvfMnZjT3422uDB4xgdwSq++jcFp/rsZrz+ATdu91asslwJ8653TDuXUEZ8bsBNQFCQzY4H7qn7d4HJp/HZQmh5L3/2B2bOnOrRPmO/+haC3C9JGzyOYJAQSgyy9rWVfb8Ur8metGskySPX2Ukbm6esU9OwzUh0Qde8g3FuBBMt0bmkswLJDZH4bVQdm9iDDibDUKJ5Iv1Z8gyjiSBAz/nZCuf0F5QK0iuHmPjUblJnQ93WYPEQD9BBD6UMGa0COtU+4x7ZYl3RkTvinCf/I4mYW5/kF6P0/YNThfVwOHYWlw8r8jaseZK0AK/cvaQFHor3zANboebOO2ZL4Vgn2ib5UgjS0F6Oil/f7mWeWmzkaGDX4IyJnURzCN16DBnIf44wqTXTFugb29in71YIjhNkcQrs29EH7MxRcKl+auu/j0nPKoaaar6eyp5blAZpfxAo0l7UIDEBqeRvCXr8tKgbap9GeyRSwI3rd0MExgSbfYg160Y2LnooQPY7e+P1KDDWJQq+hmGIvogNHbKVEXzEllzWr/+u4llPsUI1Wg9w7J2oxVNnB5u1sU4O6Vhh9TsReB89qggsE+rjsFY/iWyvo5+Ye5wI032JGHZU7394hrVLS6QsjWql55vxqJfAIhSKg12IFic6TxdJfCxqjVq2iaA1yBpJCN3UaRSnx7nlo4jwcnGicySrPlAjhdo/k2pozaEQojpQFJafwCvCRK/eDfrfn2bfImyEcu9EjZCGpv1mIG7r0VGibtH1bbjH548sp9B4so0+3GRR5bKnEaajyqWjOqggW45xtSEBHPysovueL7pGgdOOlAFF8lQ/6hZ8lEjoWgp7TETDw48OT2LymqAqRyIMEnQaVa34da6geGrlVVqrdLAfLWRi4VSX/SAf7+FcwwPnEy19Q6Bk+j8sHgglU314u7qUh7CvDGmywTLyxWUm3SOjSHU+YZBUda05l4Q6I7rk2lTzvdBKRW+4HItmkSNDpUdg2VeqXV1kQDmeCNAH48XMuNWwIyAFyYDNUoO/+2VU12Fa0829YfVW7/bAbBuOA4Gzmd46eGpeKZgOaHVRpjme34CS9URBVofrNwZU+khwREQdrZTj61E5XS0kp20GeWBtwh4FZdKs1JqW5hokDWf4L/5K0xWHELfx9CjW5lDXsQSenZHu8o5Y4Gu5OA+7PjhMdnmckM0+yW0ArTxEokuIEbLVRRjw/jOT8G8lKngDRezl8vHU6vsFm4FX+3/N+vUiqEXdR4zpINvZIycb/dP9rZqIItIHrPD/CJf15ULl88XGHjZBJDVrcryZA49U1n6NXQ+6iQEp9/5jgkhdPB+HNooIuy4ME7+Nq92psCHi7amfK34R6Ifo3RBXZP4thnJsSUasptRMmKzbqke3VvpD6yPmIy11rJUUzDUtM9RC19slEd1dryGmjsZTiuNhXpAztfReevVwFHdWCiXf2SPbVpQ7RpQcHsGsGLiK4Rul5Vua9qlCPygew6YZ0NW1La9+JV4L4lHjOrQQCC/jufW4KsIsdxrex+xpSaexayCsTUpQeEcfQeWV5ivhJLHdZdHbhxNYqbN4OhaHL2p9th8RsgnwrQ+IXXV63pKu0ARWLhJ+fp8J4y4+01L/UapFNOBZhahEmbcnvbz12b3VMogeyMoNuDDNDfuvL7D8O57jON3/pbj6sQ9/+O6tRdMPQQWOue4jrxKgOjuD2iZqb/vW5MpV5JBaQHcxty72a9LxYkBN85woIw0pUCOaub/0SVaxpe0LRoVlqI13knLhRRsmxvrQnyuSACcPIOJvx/u/QQUEMcBmUeLzdUPlkTyhawtv1wefoaaxca13dyqJQPfbhpQkRWFbPmhgtp8MDK5RIlvs1Um4NOWjZVtObVzR54vz9vuem3UI85BM7Ymho6AYW8semnqxIg8cqYRfn9uuGoM0aP6cTWW88WrO0tPiPPpf0WNfTgT9s3PgIHm9qG06QJiAmSFDLdBLGFxOqveV5KDq9sCMPiTBnctd3b8j1LrtkHeUDsWQP0xr8FH26Bf8S1dWtba3TS/4kCf0OTK1AvhrYnHyuy0BlsdFGvoArkPKKCh4InBNT1O4g5aNOj2DTyGxKncXhnxMPQvaUwgTZdZ9D7DhpSIoh6a4xjU2N5EhO7dfN6mxhdbRT3hiQxO2g71RjNpTG5lyLA249MgsFLicDVQDIUL0jFOS8Mt422vbsXkIsNelg8QyjrW8mzQqbuYNMm2mdLqI/n2iisceepxDVBYuHwqAU+rsht/zxP9/cBjZkyVx2DGUjoLf/qqv9qg+mrez32Vs7BsEmI5DT5tuBqRuuhXuDb0TB5bU6POF4YlZA3vRCz0/ZpJ1B3gE8F6dxgwvOIondoN2JayYiyPnZ3rl0Gx1T+n44ppl5hGKHVZ62jRwo1ksRfNbcmP03kbx21Ww9nhAUoZpfY3GcGNcPyIAzbCosXQaWA4qU/DrtEteqwK2XlWkg8vkUd3q5X1JzcX4Q0H4sH+wbiUd8DwgLJQLigPjnZQoF/sBL2Sl55Ocrg1LplwcbBk3CdI3S6gbjnGNrQ6ny6tUlBHrJK+S5g3TJgP6ivf3Fw0PI2KnscT6z+BNPQflcgG9tRcpUBL/TX4ua6PBieyk/ChMcipMXR3E0v5ZZ1FD7MySQeAADrRda1FY2m7EPXJxvFUcr03OFG803tQZ7KP0KQE/LUHnDd9rv8E97zm2iQ23SaDwnEHEiqBx5eGKloXXArolqZIKGFsA6nxXywRPTBJMjh8ERsF5uSy7MgugYqz1ePItvwZs8PDWxgKCk+qu6shRtAVA22h+F2WalFayT+26clWdeCCabD872KgA6bOdCids2jg9jVjjcodZvkLfF9EG/4/0Bqp6uL6/DdodhEyQAE37kzkDFzxGSFrLjiq8NrHZSZ5EDwPUPePMCD19be69wchTtOQZQqvl0vp6i6reIYvmC/Dspt3OtKDy+pz9OyorHYAQpU5y+WkZMwUdG6ooRh1iY8T2aDZ8G9xAPj5ZODLRFHJNS1gDLHJIGITnFWPkSAHidzjRlbcZsxxoe4cO7lI+Cg0iEV6Z3jlvqzLjQfHohilUTPFUOhgMV7RZ7KCwg7BT+D8+wX4DWY8VQQK6a1hN/jZI0h6rmHHuKBO98+lxHI9irFnuCqg0LKFgqwOL6afHoE1yTKx73CK2mRjUk2q0dcgp3AXflQpVALB9vlED3+Crw9rOd94Qb3Kqs9kp8D+V2OuNMFK4x75oMPS7Ni02oWgGFYfH3zAQ1LhyRqF25I3GjKiDsu9v7mdbPFpw2IefnDhbqpb9A+RMMWj6+gj3qOjkvpaRsc0JVzn9HxJEkWATryysmK5oFH7YSImC/rj2zBW7OuIY90IqG5yiLOERSch3bmk23MabJyGiSZuGNvSHknNocx3BZlDaZVqlf/5hYyZODZ5Rw75CfpIrNlct1g5SOjw6P2ImbZ/QREo1iYLMeb0DGo4wqSWfsTwvRlrPAkw2gWF5x49LoQexRkTgW2NCvNBfMPolb4Heuav1WxQA24LF+w1yNGc2UqW/dx5g2eIbqcaL3gqqOCKzl+AlA/zZiZu7qYTTkLtiSsm3CkS0ZrbdL9LBWMgZxWdzP023Duc+kFYQhrU78to6wE8kfJnc3F4Qq+e/rapo0ftLsWBN7nTRSZlOfjLlt5tqXrEDBRAiGhuWI6H3s1BT3+kb31Fr4XKO/ZvTTOw+4DARZrvt/VQlVwbj/CMgW8HZ/QsIQ8++g1lfUK2L+7465c8ZoToKx6nQInEGPQZC2b/WAI2CDX68uW/xA8hkXtztNU6HqwuEJlLIRR4YTEF6gZhmTBn8JLbCZH/YtLzrz5W/Bzhvoigf926Pie8qZPPWWXG7hxhNuX3eneOv7WZAFfnGu2qAwjN/YtWjL+DOw/PEBkaxmtL0vI69ScrrgCjGg1SxddSaRLtfGVtnF5R5YiP6Fi0gMCxNPrxn/kZ/RIPUDdnQdC4QRM4etLBpoYIodvxPA8weHPpa5r5yv7GvSiYJk55KxBbZGUJ8i22/S/Cwguv0biBc25oFDK5U+j/UN8nXpZVlxrCpi2js+5FbLF4OS3WZwtFB4NOrha8oadrkPI6jHiHJcKmci3kHQImVcKRBXzKs4R8bEWMQcfG3a5snIWVtwR+6ezyXlPUevc/k8XuoY/jSkcq/xVEW4r0o+fAklaj1o/iHexOjmvxT2Rb8x+OclmqV8BKEyJHVf+X0QlfkoFCHE2EMO9+P0O2m9z2XUMmyNVph3jYvXokATgHcDMK7ciQlVuoquEoru4yZPaVaWafGbuqwqccZgrraUEjEJjAV/XsUG82O23wgRuihV0EgKKy0GM2OnP7WoXHtrTPrAh5cnZDMz3VQTdNXfcs1yS2JJpy7M63AOaUGt5lcoNqavgL53Ng61ypl9KPCqkTOole2fAuAP8N+Pfd70efNHKuW5M09158q3P6wlgoECgBM4MwlJpUL+DQgUXFRIyM7vODDp7OES17Tbb4f9DA8+MsfxFWJ79QbiDQ1/kPaCi8sqmtR4oHJKdCXp6+BdWCRbAa32tMtdJLhoRNa7pZJpHRBGaCGFggdquhRBwh4VR6nlBdsIEuyGkWnAI6DmDyHug8ZfvjnpotQJVGQnh66M2lN0h+8Ly9TzmicNkY2g8FYcS8IrR93WFo+G7EYtSWhtlzwL0hevJxhfbziX1bW5tpHr8EN6ssliOp2kfh/rtHzZwh94/woE0AGXdgkmNK4eforikVqTq/O0P/W6MMuEfF6cJVjj4GhegahuncmbjR1GnCVEX+t2Xc+JiErtRBoItRvL1pM74BNyvnIV5MK+UbiCoRAO0ey83WtA/ExQkKX2gNqcm3nnWEWwscx+VnqYIua7fSELootCbuSwkgk66otvHPo6G+zP01fgG+Ae9eyijCczsjd2Vo2k3z6cJ9PSjDwiVEbtSs1qnJfp9Y2mQzZlv5buODZdOicmsjRpgZhxkKoS4XxXDcsq06klT2ssvMlmkHICpU44So+SpayRK0ISJ3+3oqwcugLrXcQE77plfCDqTbs5NMGRTzMB7WQwWLmEHPswlwP7CQNmJaekFyti7ipeWCZs4wru3GJUzfJns+E/Ek5Q7CQvMyrdVlhorIowDLynLKlHHW08k7RZIP63itnAv7KVjpvtZPvTEpJOpYjyekdb+HB0mOEKbaGxzM0ZxKRfAIy6vX9YCrBgvC5AjmAmxuh7yniRfRF9R9nSepPSYMtcLdnqgrVoYfnPzcQm/jLwKv1rFLuU+cfNsfRomBDDF1Z1HWzMlFIdXIrOiks6PFYl9YDeNwqZY/1yTcZdMeOBoSTMrbzObT9xDqgR3/eA6RDn48K9UWLm6gtSCkwTEt45DyUPzQ8EniNKmIOWzGVvWMCOHNv5sFGkDFYlqP4ha8V+MAcVZoNTh3j1XUAZxn8Fs7V7gBo45GqAVCQ5GSZ0UeuPJKXf3B1YLatbk37PEKrU4+GKAYaESGOxFZ+caY8j+B1Qod9134rXLohLLGVrz2DUXL6NrBzjtBmA5BIjCLPjTjFle4OiPSROUa2lCYcoYydM8SQjFAUSHmm2spCDki70L1dxocnDQ5AqLiELcH+Fn5fTD3yqKiy/uyaWwVwu3HyXSQAA0YlblTyLn+6wRmoBLNwZN11ouEXROVWxfZ3Vw+evx2+U6npMcGyQSjQDtRSCpYu15OmjCFfPtvXOevleBKAwbvl3lEeeQCjWYTtB0ZVkG1n6aqW0wDTi+L7l5WSXVvcMKF/iNxeJ49Mts65mOwvHzKbDQf7krgdujQrNtFAxSnoO9LXcdTRxdtW5JChzbdqcQ/Si7+kyNdz9ohiEIuLVRC05VqQqfYdn8nZyikHIlqOISmr2kYCjRnMUHez5eIu+oFtPeCUR+JxgtIOEpDSAlmX6/47Whp3cs/XQ5Sfu6eRj8o34f9cqED6KcARkj07AWKKua3WeOyl3A1a/VHHHQth2ya0aCjD+iexmCZ9J5S3GM3SwBa0XAVpwB1TbIQ7A529ncgMjRNY+pU9oxa+GXlgefpXymBoYW+ruXcinHvcPOHimZZjfDkOVB5pwYvdJeX7xMh/Vg4GESAQq4WDKKTMQVbEqfV2+5USed+VKOdn6VG4in4VSvmFOaR2cXh6mOAWGhROH3fMmKHPMjkPqTCbP7v/xqajpgER1g/ybtcAvy6A12vx5aTx5I07sGGKv8Ea8pXPIijLtPfTft6izPvNYI3Lc/EsxX7l8nz60TriloEsu4GagQEC4EavJw6QgZYv04R8sOnD/EWiIASFHfJ8QwQbYqs73xzbJpj5zG4X+WR9fkPgco0dfSnyfEXoS/MgJMIXAvNhScW2zqIJjxUfQzShaCaUgV6+rFhofKqlyFMkYbz2wfnPqeQG05evwop0VNPQjz8oCHmUceGtOK9ruLeN9WqKAOl0zwSxuVuYl3vPp89+6an1z/SLTZBQUyIiG0CIDvPlJfOQqghgXtDb/f7b9EalQu+hI+3fEdB+KViIXCkH1/fAnwGvGURQdRorEMOogA+VRReVkbN1HPPOzORNopnwuaGzUqqgxZ03dKNBQW6ETXsNfcUc1hgl++81p2Igfl9krjIcONJ2C+AIE/Salh02RymOLGvx81os9O4uRD67jU3tcohXUnekY3ZFEL29Sjy6Ecm0QK31aOOm6xLHyt0JwqQizausHM7fzHOqOmNHewtUMiGmwugFBQDo/5Whbxbq2LMe1TdJ+VRLBVsiiHJLfuvH1VLGNaANUKT9DQi6lUpdO+FnQxP+ZzkZ2vIoqaa+jr3PaT3CSnhYFbbuRsSseC7jSfTYyz0JxPvImiyjUiqkomlqAcph76oJzGgQ25azF+uipOgLA1mXhbWDPGxRGEbpnpWj51Xc1r6nsZCr1PdL2z5i+AE2kYie47fqDB/P0O1g7mwSC+pIQKisFZJwY4Bvt2GBVf/LFCwVHa9xQ743keZE+C7gTlKIbQPzyqAdQ7ZoixmBZr86MKn7DOCNJ3oN+PHKPPh/SrGU3Q8cogZr6owW46PQJ2wlP3Jiqo+5GDiBmuLmB5z95Z0OwZ0Q7dsaIU3PPmJSOk6ZnontgyNm92HB9PkHnD2onegTfDRvSylmnAzE9EI4cfB7KYBL/nPS2psy4yjIw3lPyRa8B8MRjMR6EvpIpu6cZLWdZOtbUdDHpQGQdnRLP7b18lSruEvvuwv0MN1FYFdFIQxWt9Bp7q8ciOl7o6410iTIklZkaYdwnF8sw7wBqyA4jb7xrr9fe2Dengc8ZQu4Nc/jwfcttWWHIud/CQUYQjHAO3y5DkuvPaQtXsF4/X3b6fg7E1Zw2RIc6e63frJyUfealilXCiwUKn1frUQaNWUKruT3rX/sMDvGsqjRCtUWTTCo7PH9uGhJH9QoiPzEVictXN2NZPbAzSRTnoGprvJqTqZM8ewNfQCONaLuRZkoU6g0x1kK24KYtg/c+UtD0rNIhXcB2I7/rj1aNcruki2I9eCs1CSKodZSOSVBO7uRpHWvZ7InI6xBHy4+efbmfQH0Vnnj/1DEVHw5LnbzIbkzRP3v5qYoc9U2cW19oX+pOxv43eENezq6X/g7XfkgyexGw3PmyRsYhrMOtPIVGeynVjjdx93LVfK9UOFtXOY7/iPxwSj9QmHccjVbQIkZ91hDzr3yKkPJGyGnrdoOburNj0kXKxvzaoVCIstbxj/NYnbncj0UvN7zYlNz7R41PlwOTJ8ZZSZBwlF6iDgZqTFURgIrzgn7PpX+SMszJflmVO9QrV8zUEyvdTQGnuG2mrv3+fXcpt2WZ9KD9DlwKZ9Xy/I7oDxXbUO4XRGjbT3ODBakkkB9/7jzEInD+Z9AdCTAufUtLBiX2V1b92RG8v0+BWD1dGat/yW7PxkpSLUpPa85N1fIF9k+H9yChh7MDcgD26em3SSLxCUOSnsgbTlcGZzZ9EpG414Jjnm9oJ2j41SdYw2sfxSZWMyFLXkq1A6jMgoPU8a/cauTI00HOHUThX43locsTyUk/qjxNaMeC/tzcaxqv4eTbq7yPmSyZQYcgYd05ir6dNzkSs4n5b3oOIYncXOGfM0DwV+GnM4+pLLhguFGc+M+zFt/ckXBcml6Q4uUJPdKWZmj5Hs9iJlF3GiKGKkqdcoghlBAaSz/f9z4jCqGb/rt+LeFtobY4PXinCvopU562OlXoKIM7b/CvcHq1/nwUZLB7FbGk9xEEM69O1cv12fS3y1EibLSRzYq2D5Ff/DD/q6XhAUK0O6njhJ4CTLLCHNqco90FYmv6W+ArD87SDYFfMs10HGN1Zhb+GzYzqH/97JVmSVlVJ/zRyEpGmDwhsOxNYeJKb6SHjC0Kdz/2yz/3RX/WaUEaFDFN8SpUAtGhIoFkNEAQrUyVqP3KajbjEIfaCnmSEjBYnfRZQuojdkCmRJ1nTw/w46TObu55kcx2hQunyERTYBo77wSwO/d3/FOL0Cq3XhJQ5i1mfIaqA0VCK0uA1EgCiLktnnE44F1+/KUO8VzgyrVOngVdzLKv5JNpydRcRmsXgxK59QXg46NP3pLDQ5vNeeSYpwMkOCeAymQX9UjMelKGSu5m3wu2VeqPGZVlQKiGTNfvayu9G4oiM0bWkEYGcBhBEvNKPSWxvtg+X0JWr4UeJWJ2nclAkIDxjBa3KRmKt+UFgH3iawXhPCkMWuZXGd5QVPMOUyceE1IlN7QyujfpkvfDcB+3xsRs+W2H+FdjfV+xe2XA/QB4S/m82g9dl5+4oYlvJfLT3Itg+e9eGC41t7ZONnSRO+53hej/9jKqwhB1S9focsRAyCn2dQa+aTLzyu78E82iU04uF/DrStzzAqtigih1zwI7rXVuMtJr9ZtV7I+WmYebJyY6Wcu890tdblNFMdJncLwtYwEjZGjEl99mcV5c/ClVroeF+1ji0Lgbawz8UfKUB/LpQPLO4TiKDW9qeRuCZ7TREgwgmPk0GCqzALdTnnIrodir8/BNchKUXQrUNY7FLoREcDYjCM3o/CZvUmtf+Xr549S9aep0TtKxUwqwpwZTlvUPqwTbXF5PMHSU+1dp8NF9hVyJP80nIs6mXSxLLgZZzR377aefDgzbLtQmScP1SUaaAQRAGLJTGpUlIs0fU9Xup3jHbonpSlKQiZZUOZGRLgrLAPsE6pSkhJB6gkqVEBmYCe8GrqRPYhcIikWLMEsJ0VUr2xojw09Ec0ARb/nOT2XtnfDpQ+MfT342/K1aFM+UmKQKX/j9X9KQMrVhPD+KHymGrT82m4DhJID801LjP8xZgoCBZyTn7iGwHE4pkK29pECqz40UWpl8+LdulNFA7eF0+uFatFNAWZLKTEwUwOSoZUL7kyzQDxdxQHzHjG5Zposh8BZl5Y6lUvbVhbekVpNB8fn14oWywRyHUbzzhGYZFtVVgBmaOqYONKAJMt8YVsE5iYRfhUt3JCQNEc1WhrF+xIdrAHfzEuqoiPua7uZ9SbTtxpuEcyxiMMrarfeKrqL78GfbC9xxUwBu6lLMJFcOFJojuujksSDGfrvWh8EQchLuXn11Dov+XKhq1nJ3gZtUczix8S81CvGYuIDx0trd+CC8lPt/FGie/P77BM/bygmkJCXGEUH60aD7+gLyAxRY8p2smoVuiDL5Q0Gxf13h+R4pC5YaqeSjJ5YikqxBxTM0IL6Lx5thq8en7CXlZtKTgH3iueownnFkq6PMdr65W07myJniaN3o/DXyxEYj+5LeeG3MouBsRwDaHMI/Wm4iiMJIQHLlJstFqmr4sl92sPBMuA6OUYPYJ/qR4GCzTO2IYITgy/2aGfhZZfxmP4ri0yPZlE4nc1zKz5MCG+YJXEqDadU+LTEsaSl1v5MmrXYkKmiy9Am4y8r+q5tQth7LnbtviiPhabOyMuRod3Zd8Jz3sVm2Q6qiM9HTIe+sN+CLEBu0UNCD1V86KKZ20N03wcjf6EfmXnFpDB/xHY0N1pvHiS6IamqYW8wnfJKxsL3a7B7EbkiuI7z/yWLMNnLxwjn2xikOHfEmxyvTEUwMz9aPVEFGV2P6rX41IoVaRhaUoFCJUo0fcBbCgtDqOl5AxvjmdQ3Tjs+Indy2hYzIvD+sDrbbu625FdQHv4WGf8ltznebJwMxz8qRBV0hj8lZOZ5r4Q+UIH32BFaYHGorWPpTT0fnXlD5tlq4C6vy/NPs7MIYQUKTsraEY4XafLXXQ5tSZyn5BpziLfELn0pGLYx9A8EzLHAeRMtz0SBlx6FRAn+52RSps0tHaDoOfRCNZpvm5HqKKTlH4ElRgJQIWRja78znH/yN3CPanZvW4LmjXhE1k9E/nWyjQhbUja5YCkebuItKwUtKVA8gFw9k/FHe4xPnYMJqCkGEK4hQsQexqfA6QC/UU2hb/bYGVo7HXHE3zinlgckAfm7Yey4PhxHgfixWPKaqi+KOu5owqBlzihw8jmK2J+0RcGrrafqiiDWmhiu4yftpTpX3b2FqvzxYQUpN5YwNqex9sr7HsQXr0c1262Pwtq7kat2KdlKt5b3Wm9dmxWvawbhTfwqt5gUvs15eFof4m7qVK9cJi3mo6P3QCiZPexhp0kyFuUMtasppEpTWn4w4u3coyi4sI1W9pfjRolWaDdtN2JgiYxHaIEbQqEfJqG5os//WEfuABfxaimeU5fTtJyULPgRvmbIRD7OsyYRqZUlpv8ON6FzMxlKfVYsW8adwadQNKQkNWBSlA1zmjy5u7crwaGTW7w99uGXrtF8VplnDzApe55dIw9ZE3awiG2Cj12FoocQIOCpQ/ULNAaj7p9KOf5LszvpmI6qMVP/+6s1N52LZ87+Hs0kIgokRo1jY5xBUSG9xTTS6CfsgUPoBNOZHE3kxKWTwYVUabcUMVixuuykBiAp7qJYhDQursz158Sl3nayfiO7fJ9TkQNTfurDHmIyFEn67f5duBUIHemABDqqh3ciyips8AjAjDQKm2VXxI6WNxS0Fz1ZERNcjhQhLsYAHT5UmCAVZXzoVSMMhMaBGqWPNsed1Cut4mV6fjwEWxVvXYUEiQkyZVYY4XFjEXUnjo8FfeTrnSKdCRwzxnfq3fvdDtSPshAmbSVQIw7Ko8ju6hLfHXgOcw61DHmF8C1Ygedclt/e/eu8013Z2SOedSGGf9cVXVtbtNEIILFhBzl6XA2gMT2yP9ozACcsTHWGJCBICJzJ1g0GHvHInmQ0Dm7JhWPS9R/4bsYZ6gtmR4mmaewJg1+sGbUIhxfNoQp9mSVwC30LdwLl3L+qApnmbRXudOr38JeW13jZGj9Ad+X4PQgosqjZ4IRE7xvKd6iueKwPXl8lrGWn4cTKS0dKhFgMlep2VuFjV5J8NVWChzlDe4qzYTSf7oAZu7dxgPBF1zdugvxZXt9Zbcx6NHkVPuh4XH6gKfl/a2RR8+mhALNob97g7Z0kgOHLTRb9zTRis7b4flo/2lajse5yGYeRP9Q0pEo8J/Ewg5+hehbZhsHWMOZ8kXfhOzoHjtPi1xmsssGyU6w8z+AMwTkAgUOg1Yc1S7GBqEUR3HzAh6RS6kwR/7caiekhAfFGhxZaP3dh7SNoRukL5hWMIX5ht21Z6eong7QFwuBQIkjbbFOrYgPN6CA8Ml5PWGhMzbEO+fKM5duqoHmB3eBWPYChVzDu5WSerqXOLuUzKYDY0Mha1VkaT9ZXkCi/mMNv/t7KjaLhsKtZX4glmXqgbxQRu3AqHETa+qsYM+AjBVZkAMeA+dqcHbKEDJ6EKe6d8JJso7jwapcTOlFDOtpR6yX6dL0cgTLVygva9HCJI86yPTpA56VlLaRpEbB+LwnVSO13iWUgF2MlKBHE9RwTDZQHw7uJdbU45lYP0ZoKrtHYFZneMxhDgwCLTnleNafbH/kXPTbZBRid8TyjRkBHxIbrzt01hSe1SdKHcwsTzROEidctNWxx6I5SGVFQr0e27hPu9WrO7aUSc8KsQUU1bf4QlHxtc+4TBnP+QqhgBvaXkTcVkKRcZI9t62WZ/8wFtW6RlD1pKF6VfoLzGVvlsgtbi9I2PdlvnkEN/IR9bVTBecJzIGdCIb/MiUS1UXOOLWWSy0E7rrhfX59tGRAhxzR9+w+tGNUyvaw8WXlq8HhpbLzdGGSdMVoPoFSKo2zwoyJQ8jBlmqFCqjxm2uj1BC4PrnPzmr743OvbMUNT8cWkv9f1JsND1vobkJ3Ln0Btx3mfEcW2u11FPPyMm1k0y63gSHPifjrkW9ebnYi9mNhk83kL4YQps5IpD+DAG/5kRKH6jV6CdCYnV1tVY/Ukf219Il1izRxWvwTTrkbJuK39HxzlQGUDBVBlkEJqNOYWfKGRCHYRzy9TRFWu2ZXxp7esuMwV3zk362/jAZDrr8vtDF7CumYUqbxCX6WrVupdD1UukCC6NtvMUu+sjNV9X7RhhNdnAmKVYjXLlH3LzOhu5IyeeeBd4uC5eFbsciwHyOY3RMxFkoWNZ63DYnhrNNdJq8sVLjLS6FGhypIlVbITa5mrHxC1/zPPoV9RJuPf+enZndCoPsvFmbiC9xzyV4BH9cLby7FfsaR+a+dl4zHFH+hCUgNU1dyj1ZXig2VsEY7QictOuwQ3E8MelAtBNYNqWbHNFKZJlxwupR/CnEyv7rPo5Qbt+YqzxMJupYFrqMm0lAgGqZQ+kMQh+CjxRNE3kOVYfE45lO2mfO46q2IEJRYLl6p1BSVc3QNwSbeNhM4J9Nl8T7LF9wzxtZf8dPHumr5J/pckuBY9aJth2Sz3lj4mE+gaf4ygR5jVADDjCnKk208eOghrytWIqEA6dB6KPBKtCrMC8H79lXQJWPMwn6/5LVa7DGgkd9us+0Q7Vb0vDO0+PsKaGVcLC5cwykA2VYH+V97L0hL4t9m2QzPpGUHJ1mloQVRyH+CI4UmNHmQotpUlavpNrhb6rg6UuyfOsI34YR0UPhQV2xK2Jkn54rFVSib9y7SCs1Kt+1vxSuPYEy+CptM5Ki9k3CT+JLQ7HjWPEhISKSjEYUKCs+EPwC9AMthzThCcNtBgFwPJnp8MIKtAihG3WvsDiHk+HDY
Variant 0
DifficultyLevel
475
Question
Which number is exactly halfway between 241 and 443 ?
Worked Solution
|
|
Halfway |
= ( 241 + 443 ) ÷ 2 |
|
= 7 ÷ 2 |
|
= 321 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
frac1 | |
frac2 | |
frac3 | |
correctAnswer | |
Answers
U2FsdGVkX18n7H33CFPGHc6TC1Xk7rOqoVJggmAQnMXAt3l1c+8wxiOvmsOwBKmU2dpVzoEpoZsGWcLaPP/Y5EvVqYaiAwnVmEyAJYXArQZvt0FMxczyz7MUo1AY0KLTj6FUb4zD2UHYZnzoE6z7M9G72ma90XD38d7Z0kdHevSaaUfmddgCF3nhVlvC01FgJbpY8FmAoWcsu2C/iwPIaqcLmaSughRCq4+QiZY2FTThzJQQVveYsK3XxXk4irUPefgu1byZwC2SoSdsIpdH2H/zpAUncH2n90a+F48vVYri+udqpn3fEsncYW7cQhBMYFPSQz2ahJ8PPDGfB7DDv8ZEGeRaLbFEen/r2X0H9hIww1vlhodgPCr2Rezd1xALAbeXVUX4Sumk93m7LkPilMB82FeSXyojUCs/7z/J81EWDuFfnZ5iCeJcGdd/wWhhv3BgXSNymVxKj2bC6FiN6yKpJTwwgLOcGJ29amk6jr9HMKMAcNZDy8r/zv1fSPOt344VTKNFBtskr4fq3NvHGRbh6cGI1blOEIFAlJZxgKpKRSOUlU7x5N8Y+xrDbLlU/Np/e6wFFcPtn2NnFeZdNB9GyjqzBZDPwCcgMMSfEXpgUB8tIkO59Qy6ETPNr09X0ln2pSBgK30pia5LiM3LYMqXVwxtDpfulGFSBoSTcMH261PlCk+2Bp3uRkL4YisB8U3gOBrpMYtQAMgQstLcVXdkgDMjj2FgAuzX8+51Zy8Q1Hu7yk54NK9QyE9Lcl14xjRjnKeCr1py0sBgxT8QjxEvPsk5RNsQwhKnc8qJzB8QiscBP3s3ddI9cRWVu/DOvTJ34NfNLtcv/s27RHE7mQphzlE4vhzpBd+BlklVPFHSAOU4WJMwBK64ZtIB9qquT4rBB8LJtyhUaAP45Ty8eqceJS1Ilz9zjceDHH6fsy7xkIGOn9YQz5JBauQQATp/7YfiqOAnnW00QuuHhh5lABfJVG/Uvm1Hw137RoP5g1eKB5AO2CE30JTolrpZeQOUU+n0Sv9SlU5RM3U/e3QmfprzrumLVPYtvHA0H8h2PqlIIYIdUo8t1iGW+YKQHGDn+TzXAwMkpiwKxKSIJO65SwakNZYfUel9wNSbAVWTldfvVgNN/PRanm3sesnfLA+b9vsjV5jCFhaDjNweM1jgjviA1Cne19TOQJQwIXeHnp2ofoV43s6V1GePP+830VPM1ry9zBeiXflaMETPISw/NcEg87ovdiXSJm9unCR2RcJ0LBsCAnyfz91uiE9rpefWHw8m0f6x71poNV3EaVsLzN7n6t3IxCSVpG8A3GBF/MQZuDL0nxW4hHkF6UXoHPKPCZdZJA3wmQ+V3VIAO7mZTw1OeRcFF9bd0uLvV7pKAfZDMPaEDM6G2bL126fctXfGiCg1aJEw681cGCGOuA1IvVTVmxcikpAK/ZNtgJfVJal1fu5JshN71M/i411jKf/a0ZLG8ojsvEJ6QpeY59Sp7WYTlqXHWfMGvwOlT9OooHofdR5/w1/1jA2flO+jer/6+c3OtZcQlEdD7X7SkWjA9ZkyZcSvczcx/ZOS8kpx8n+z0nWDgSMDPd4OuoeLoCI2i+JrMcAdu9mX8gCTphLv32sbT3c8BnbHInjWb8TEQvAgtxQiqrPhBQY6E5Y2/rY33Pa8JcpDj+goxH6VjC34yH1mKLuRtSF55z0j5tMfLrJBqiQ2JyILWYuDTwre3t3GumGr5STPFqFEonCzSe4XP5jdI43Re4uvYeGP2VHX09b6Mj10NfwZX5ttigcLV2/bYA6utbkharbIWn8EKPiH3VwLTk0VIQKNUKMmKRY/4Af2T5gPTr+hv7qXskxiQi9Ba0jhkub9fZVhsGgV1gB/FRRFsGNvmWHTURMHrjU8TztFfE3M/lUzOwlyejaiq9kqXfqKymjJ6lb2zAGpmnkdBYIyhVZQnJW45OKFqIwBmPVmBtWxEP1vWDZpa56MoUIjb5yAryw79By4WARMXh7mQIYm0kwBa4HwJM/D0rHhPBXGtm1VSFQOX3qu6QiS1gbZIucrxqg2vUqqcI+jS74YS2CG7BqZpnqIf83Ivklut87LTCqsO3cRsHB+IHzJyoTi7uwEs7AqxZ0ejbKSmK6M6RbYZtaE2Xbk7u/+xKIYKfE4PHwGpF8O8rHRNB2VUcQlz12epv6NQ8zQxRgjJSyBU4bnJn3W3KOrbeg70Aln4CekgDD3Up/ZlopiKO086KBuPzM3lKs1ND1MwcQv/cgfyPRYrctDTgvI3Iyi4vB1+rEZvvsZM7gVnR6gRC2pSzj8wumxM9OMjQi8sr1pMdv4jl4b4zJ9jUQcKYII87yPfGlJMcwD6f4LJenR+G76MIGARAZ1mevqp/P/MR1z0TuFOGk0HTe6PPpRdLXHomuF/YtTHZY2R+4ioUVMn21b1KRpQnQygLynSLlYTlUoUiXPgtleuA2iy7gA6ILFM7b9MNC9pUDuenYiYgPbpMh8LAK/Vhvbb71fie5dZaP3boaxSg74zY+cE+n1B728fKZBUu2E2wNsouMzIgx/gZKAgN6eOjPYrD05qPbl9jRzfwVhOdOj+UL8wWcDhtAnDmpswKBybOBP/6q5ktypZRDYw4ZisI0Y9yFSSWPhHFZy30v74+DluYmjCLcekpoR7fpzzCuKIizMxnGPnYuRvGxKUwvGZOpHlTgnLKdxdihzmSU1Ij5K2SKOLAg9bjOYuqXsy+K8pWoT6dwponjwVymrdoRibaez9mQ1zmJ2rHkYSg20UsJyCyrQOuR5rftJROdkmohIk9rQiGF4cBP+UlAehVmopzIEPncSGi1q7Mt7B7dKLT9QS8JGqbRozbCBTeyW8Q7N2i9Zw8qiT6y1JSdGEoyKox/9iRkf/ozA/npQ0SgXhVm3R5I3+/2cRoFs0vmsfZOZj2rJcubbty7KsyiTB8fwq2SdQZDRWFsbG+6AJGSh1nPKa5gzwBGSyxrqsMJEY6yKSqutjKpnY+n3WBf/350YUXHX7E86/GeCGG1gu86fhrwVphFD+WVjevCcZJfKvTn4EyS194R+GRc7/CdM+qufVUQdyK8OSy7QrW4mXXrbTqUwJlSzR9JPQsnICgE5VVKQ97JcE3mL2d55oNGiE0RbSApTtYbwmzadjoXUg1fP74TZfMAEoIJslxUIcIc7fJKnJdZYzwZQk1XzzDnKF35lKiLI4MJc+m0HBuw6DRaXIOqKw0yv7QqapZhqyKJDncDVCFYl6wiTb0MVaJWLgNjRFEr+M6hyLXFWP7flG8rx6RlB7i56N0LoevgO87K1SsMAMmPCkqAoQTbQpJ7LikS6qeWDjW5myRZ5BT/mXb4XuMb7uHY6F5Ay+8A84QOnWxzfvWtYcOstJAHsfI8oDd+qVv7SVTbT/dHpzVw+9lfh0bm4Oc4FN/iHlBOvaUvrAPXW7IacEVz6/KEGCJEPyZsEV7GsjZ2nXCjvsamAW0ph3Jij4mhmZxm2jzpqoMo44y84fV5pvSzhzUtKFg+FhXP6koxt74lznwqzfIg2EyKqJJ8tuyrK1TBCK8mRIMwiLUmsBTEEeL44KaqnDFcoKQuacsfGHIasfoS2tYwQQR4w0tB4JJdwMz4QFtYXfakYqtGCBj/uK+TvYvBHjYh0LHBA8BCfIoezQMWCXWYKJuOfzH8b2bTjcILQVmtQnn7kM0BhMnDvVR1v/dlRMQV8mJhzbh+T8zLmg3SsW6Jdn4Urpi1OCcPBZQG788r2KxZFS92gcpGFaPLbs77y9r/jR7MrP3tQGBzKHpnrmR0FYl+dd28sZqSQYrZRMCBpIPAAfXuNvGiIfwX+bdD/WqHfAJ2mdwtH1OuHBxY5X1+tvVtNf7XiAaKDEse7mSuH1gABQ4/yveLrx8wOKE7oKiC0HFupjUx5+baR8FEijlVAtyYuM0Q014KE3kPQQ3FctTCe3koSOcFhg0SzYHpPYiw+gsEEbpJFGnYFhYvy/Se3GGV2bpVm8TCmPES0QarGmCF1LN8mF36ATSNbiJBeO58lXi4ylgxDkvNZo/h6IPcUryBMkLn33l1veQ5+bCz0DvUkngmdHtEs3aN4zcHWs7a06r2dWLPkQvlSllHRA7pI4ov/ErvilPU1KJbOPpWO+fDghJIoai0HE/aGDrR7zQeWOabDE5YnpcVSZlGcPYbPoFJnyuDqmzNDzTMm7hxOX4nfBoC83ZccVxvzc0EF5nr/b+wxuwW1oHwq64+qenZ0vSuNkgpSFWcuPHcR45ll8j+XK+0/r/62axd898u61t7KoP0kNci6OF+cswGHp2DfYSftYvGjRKGEr0yE9n65FMpEpvbFswsOxlrVPsmq3u8HWWe+zmT7QiyziImYTFezcx5/xZeTJvuajG1cd6i94GhYNr2SPxdFBpZ6Np5A0OIgWuz7CFwGKukHLYRJJSAmms4brTr4QwfbyN2Nj+lGAfpG8Xbafk69S8M5isQsIPvs9Al6YrA7lKJSIMEFwWcHWlvcCrJU/GtN/aKnJkv7B2z9mHJsGxK0lRpq2FR2tNhIKkxAcVOEDxRdGNJ8IH8cH7dyXXtlpiG8ZgL5Mjs6Q7R4LKlcfoOx3T96LSpbbwlasmEkRulgg4F4ccyHvh4JFheI2Fp/vv1lYE2tqYjSSPk+8TLPq61XVdDrGkeVMETwVcyt3o6ndg2Z5d80SCheAc1PlaFYPLvXUfHMbjH3M2R4QfQ8RByIhTl4QVHb+SrBPKZdjnqn7XpXvnQfQhq1s+/cU4EnmufhHDa4zh8vttIFeTig5dXUqfignX+2XtiA/szZmZw3FByIYOzn288Kac6Xf2uCOArCV/Q5hS8dovAD236kcgqnwsnCqC04wjJJI4zrYnPVA3tU2MXsegg0Vi/ex4B2HMsU8+0TNkjdJEcmPZicXviVrQ2MCZXivCwsmSAFeeYjR60xuFX3+YdMQlRkUbfgcv8EScv2L13zBoo3fZ+Rs3wSMNHA0ZadKnnPI1fSIc9ycavEwkEeFvXkMruEaehWPFgEZg3rYs/vI0aLHsszi6+hpg6+tMhZCY3oQ2ifd0WmmPFShfj0bt+2dwgStcD/xIqUT/j3O1BXTImGkCVfzGw2nImTjJY8KTA4Mhv2DsekmzLnb1RnzY/+QxtZgsjFso+x3yQ3I2wlRmIldyRnQIq/DNG+6iqk84WsLIr0YPDSmtxOO+qBNIJIwt39CVAIKVVtNNpRnE/2+wppWqtQ/g9uM0c1m6vN06Vb0o1yy6YjIBMFw0xkMBBfnZmcPhp+ZgfnU5a3gCJ1Mk9sSNa90RKAa2mpGPKLdsh3T9/e4Uv1C+VyUuCz5KuVBP4O+N9yEfGrPlPEzKIvq6KGw4fGsE7zNxgjGvF27NAeUQe4iTm/VPkiIYcKA50RIYYjhCvlp+mAkcEQdu3ibY57VKN+bjwZcbEA9dEmPTrwP3Je1IDAqaRDCERFbYOdKJA/2fWPY3BeKytJf1/d7n/x2JC7NQ9zMWQJUe/fnc7ZQoKun0cXgwoo9HG6oXnRX1lTLAw1fR7PtHeJCs6wlLKaMDqrpkZrkEDtGoA/0w+7b9Qz3KW8BFy5vg3IxVrC0nC+NZdpB2ihpa19Sq0d8TNArLQ9ANv+4O9iw1tqfpJoSr/c3KYHc/4ozWc3AK1/MvPOaFv0wzEZku5Dh0TKeo0ok8LUkUjikPasLpi7H3FE70esm4VbkTuwIHSSvQvVuxSH0TWbl+TNJ5434l0clLNhxJcojPL+V7Qmx77lgcJgbkkUeig80WeSiXyK6mOSVDK9GrhOofz1auETh1LyAKgujG6cfmTQVQHTclXfmuWLhNzKrCNeWFdVIrMQlZVVy+fLkFVnzG3ZB/FogepBO8qzxW/46aRwcQsQivIArtz3DYFs34JgAmwQEGvK8cKQ3ch/jagIREgG6tUAMgyAEf4SsLSszGr7Pori2FHnO6+V4vPQ6XT8icB4HkZRNgyMDrMABqVHlHxRj2H9IHUUlrTk9Xd8+ZRY2cZpsAP+zYABkurcMMtVYUwcUED2QqNAPfg5IHRRi6r5wO3uyqS1g5jJTt2fgVd4t2UnJ6Y7VjbZYaVXY/cWcqoVcAZYwqN2g8XCih9m+DZ59URwFnWefKaGJACdlYJLfSC84e+PQetgSCfCKATPYbcdUtyjnKECUDMIKKBsWaX5KSXEEH9jDgyAGh+AxCuQS4PV5IIDqqMXo/Iv9ZhJLe2cXpS8MGzJmhs9La4aVMEYemlcOvywAgN0Sr429HTgyGEw9XjJi7tUjaIJ5iqvYDTNZHuSk13WDm2qWMH17BPG0b78GaJXN6bgM7uq77pxou1gyJDowa9j+RftJnAVu17uG8RJ7zqu01MnAVjcNU75YedVoJi9sfr3hTIkEmgMeZoyNuBxMCDj9Jus6u4ZMj98J48SqjN+s216wDdQB/JhOkgxz1Ybu4V+B6tC2etsLN42bIfMd1hwEiTQZBLzNM1g1o7/7RXN8/rWcDq8cgLsIFn+mz/4JHbD3kpG9r5o77OYJy7lFWMeQ5gEO22FdQPvY4Sj4HBqace1/Ddn3yXMhvi1/G2g2DeehtFfTfZ0tgR3zaD+s7JX3O9w04ujTPQneuiA0f3mW9Y+zxcAuEqL//WF/XQcVXYxbDGQNZk20YHN+dIXxAVsYk/i/W7UIXXsGRo4lQd2ZyoYfMG/TfEYHh2C1/ufwuiAzwK5wRD5reaSA9XTWT7T7b8Ba4wpSq6XbR50LQSd94O4t5VFDbtnOyiYN5K5xJdgqmt2U0XrXRjgKiiLPFE18XsCVtumj/9e61/W8Lz6v/X1QkZI+OmK1Z6TyyMebrmz+sSfcEvRXlCRKDKK2EYImzihtCRTrGJnZ+rSKJTaMzvHku/L5+ZrirVBszycibaKzqsbmk8z6CqmtOtSlcnWnjWYRTP3j09rBRxzEgFcU2YmXt6aWC52zV9UecJ5wi8xXoYxsQDDNCRLRqz5/xlQfl/VlsPviLihs1AlU7y9tnvNCMV///l5BZ2U4cy0fvexuCW4mBcdfQBpW1l3Dde7raWJbrRA8jTdE25xOKZL7pHWXcXtod78b9bpSfa/j9r2lnMFjXyhd0evfyIXqot8TeR/WHyiyeecps/dCeIwFOlSVt4KY4JORNgDrpRblQsU1jPzFJqlYNSOpnUw2PMqPEI0nV24pKHWlNxJggNs+rZHKMqqDwjtcRVxGljLKg+ulNTqgfz94yh8pBnJKpqXDwjdaOECmTbyfEqN+W6o21HdHaUR+7kAknvZqicvCKnd0TUjQ3zKqjJuZBwtuHCGtCeuTXmlSuzordXLwmXbzEMty/3ZxqAK9tFiVKewN8EiT0t3DVgEf57VYDUdTUrDge4/Lj+G3Vgp4+EahKk8BpPYIeAtb5Ui9cr7LK75TL6mAuWhM5/GmIvW8oKX0d97GZ2daUutqRKyuKZhdoQDYGPi8QIMK2ZF8ev4isPbpoQ8X5WD9M/+Liia8hPe+AZyJC8cVkIuBJdPnhXAoXg1JOeR9c3Gle21CIiLFPwijJHQZpU4NGb8ibIZ48QbjjbYwhSZBKXu4DXAncXQvCK207rP0khzCJ6O8KiMXmHss98f6xcrxVFFLR/lVE+I/UcbYEsSoonsBov4fcQbG6HPcce2W+QtW+U/SJA6/h/0Vd5JTfKiA6Q/x340NB91pFSDok0C5Z1fdDp0EkztekRFhOrlia9/ogtcV1qtWHbrvrsm792fHtUJ9HaowPiTaWZPkQ21SbqTGzaCk43FnHk5twE7FkBIDjROJIOtEAUkFTSsI7tflJ8D6hnLvXmfYfaAhMFWVmm4RzkGA3pJIYBZS83FOaf02F0bBOBBCtcuYL3CPDD0/TMDYdKK9Bd6OhgsZgGWLTMGhbyrd8firsQoBX1EsipCdoAhx88Ae+VurDxsgPFHdsuR5Uj0w3U0WgfVgXleeBIXwel1lZDjdCNP/MLFSJRrhfFNj47sx0aAk9j1MC/uDOStwBohg0PIEhlgrXUdwDX0vUhoIRAok6zZrkckoCDLEuodrgoXXfzyafdLVgmrmQoVj0RTxq38BtwxBKDptWJXP2b0/21+2ci04cNl3GdERUBuNa0BT+m8KZH/TQhrAJSyQ1w/9gjyCjY4xopoFF6WsOZ70/V5Fi+3kSAkFdaLCOlAmwLBSPdQGquiwqa3Nc6V93UrbEKpMB/11rHrXg1z7Ub41a1XDHHAJk3wKPpE2XOxf/uZTVNJeX/QAILfDLw1T2HtYoH3Om9+nEczqa/hU+D3LPk96bRhTxbq+k4QdbfP8tdvuwq6XMQW3bQDplfhu3uS6gDhfRKVEzlX4P3GH7g3+9EBYaCSvms8lGfQ+s4kiZtDgqHoAwvw3UdFAFPLCDeGyrDULuxf2jOB8DPgVrCfxP3CrEWHzwIcV3UY9IDHIQ/dmv4CBiNwP0IfSwb9UZM3NFxOTyleKPOlc3Zps7YryBidYiEZKC/QsWUtx06zLYPuts6oM41QOszb6uHetXY3D4pZZtsIhXzMN4VnXr+ZJmDbMt/lLsOe9TPRgk/4ZWo7ptWca4n/NgWK+xXnsJLVlohefAe8TXwYPWeum5hgXeE6NEpv/PD329B6/OapFVzvJei4Cb2gsm6teMW6LEmH9xWDg3nE4W1RgAVh5QCmkYsWG4CjRETmo1NqLSETaXrjv0aoZ2ckVtZptj7BMdwiapzTU1X5HsMpT7mP1RM/8Kj2xQll40UFbawnuXjd8yCDQoyFB0sSMz+5kGbCwHPCuoOoXDEFbd7YzlCwEiEHh7c+TjYHyaq/E44BqdYVgT5FIp85fIdvdnr9550hG6dCjju2YmP1p0sCy5xrifsNSBFRc6vFsvBZFPDilFlHu+1IR/hcrKnWIEqjksxJ8w2Tp1/yLzjG4sqoYSRGgD5WQ+IyGQ76idNdUwTEKV2nT6sCgDcau3jEDzsJwVXOZrusbA9k42q4gPUZuwH0zSekCrAd5LJf8h/SOkz/X44gE9y8ngNtEqRZFTRYaNpnpSVpy/4ocziSmcho2v6fz8Mae1w6emL9u+zQawDlpC9zuQeBJGCNsOUeDPD7wT9Y/rRsbYguTs+82Kdnr2xo1Oi/uDCEjPFzITTkBZ3D1vlODmoYd9DCHPbXVyn7EQZ+zWzWdplFyt5Y9SAYW1vMhExvHrwKiw7RdLOLPw5zrs5vFIkibIDBoYSV5Y10yz12WR+KmjGKCd6xLtM0JfjmasStx6ZZP+FkCmnaxeBWZm9IzWnN1zSF6jpdQyhdntTzQkSpg2/zgXMKEII2+zLyzc48TsYyhr4OT4Za37CNdoyczUVamyVHE6IZOjR+fbhMwYYlHfxCn5XbPhfjXJ0p1Y7VUVKoIY0e0iryj6ahJ3kk1wHgj12/10mlIYwt1rZXig/9fe/gIQX/KuVGdIPC4RNT+xzwGWEicSb9r3kPo9gVpDTtxIY7YGYEbJjxkLmE095OIUJlq7/VyV9jGlcajPGCXuV929G6TCQU3aguREZcgTJsWcT0rwVTmzWFBmUBoaICo0YJExjJYVkm24QCaphTeg3l58QNNLwE3wiTAsNIAQvnoxcYC1FCjdFjAjGf0kzIGvXJs2AzjZBeAn+qnVpuFbhZB2TV/W0nQzO5wVV8U27Od1Tm1PhexRU/WYV10bR5Pkdg7U/kxm8qi6d1QKXXkx9kwG4biJQA3Pf1quDcYG7FclFbwWFK21o7bCTmf/pA4gu1GLpMnTlVuXOjyX070i3JqGacnHZllgjJ7eJbnybVTOYv+wXskxX+JvFs5s16GdYyYG6D4JXSPjwq4QcH3iPf7T7LNsbXabvjIWg6oXVG0NtmxxlJfK2DOhCZwzvfc7e9+9FkX2ie9V94QwUa9EbeNzGhTfnPb3IDdlQb8itwhFbOkTkYs+sZZfvdSXTWie191Bsi5vMHDWT9mrnPjn6f3BpiL73pW7h2gxc+fpnFrgGe1+vEk1PS20QF6Pzw4f5ASu0y4yV51+w3iPmjwYrw3nKNGTJglMqZYb5LPD/+QmhRzge5bbugn5OIPaAIbzh/weFNZGiJSrzRou/XQFI32icrjn3g4xoe9l2uPidf3Yylr5qkHTNDLiHGkREBBdd2oJfeLMIu5izAmnfMPtFJRIxIoTdZz0mJjL5FYOsRzkR77OfBDwZHiKIbMVn7lSLmfv244MR8RmhBs0WfJif4/+SlivoFEOlaRjHz+910bv2DGpUDvCcbApr/BK/Zng4GQM043+w7DOTArsxyxEKco9tgwEljl12BLgGGi2ZwLKT2qyGHOnONVItfGkbNVNnq0esQfPskv0VDPl5Dt8LsNctBCVLDqPxcD7EpoUASS5mezQ5V4CvLZBslVPQACXmWYFTXMKDfXBrOr+yvtbSN/N+tY0ci4+bZxqRH4CfuAgu6TPPtKWPVntHGoeufDOH2gYSw/vafsPhBrGvilem4NNmDGfQ5A7Gd3WFxFKh3OPIShZ9kVI0BkuAVMCXkDvsGoa9OEKXrHHM7PIfXLMXfs3E9BLFZwj0KYUDbnfLMMWr58zA7q4GGcD0KQkA9fEn5SsGnHyBGjyLiE1+G8CKcLDNZKDhSJ/7lI/TRTej8M2eCwe7q/uKvPrLEfZ7MGrF01J3a3OXWcy5N+m1Y7w7rJBElkyxJ09wExEB5A6BHU302DtJyiv62R6QoumgBBXk4VAeu0UZSKJeQBXOJKP/NUY+sn4Bbejj4eKW5/6srDfqSwZREJKG7uOATg0c/aRrL5ojvKphllDa3nzFPWVUKdL9zhzehEpFMeSy4qR0b/UejMF1/YABWxmC1xJ1hWX078yI7+ZMqa+sS8ePmLpq20zstcltGkfuPE0oGRXGcHSq7NhUrMVOEYA+fTRSV1DZvmpu2QAmx0sOci5dvKDd3JiMOM7R8mt+3yXuuwXL++WptSsPgQSJnu8JLs2SNlXeVolZNGQ+KOO1cfEo0TWMurGEQ1VDA+AUvZnmPAhy/etwc/3r46rRsCgV4vPRk9DyZa+SFJR5C0BZts6nGl2WSH4MJNq3DImJbBm4wOh8JtQnQx5IGz1HGDev9tezEDagH4jTYNU0br57WpZlc5g0MzoxNGiQ4VIkqxjK7X2Atjcu5d8MThYuzv6lk24sxiZy+3aCEaHQwWxwkXSTQF3IE8jTEPherdbq5KCOMT+eO6n2dGU92RLumPniumuQpUmfKtF3yXhdcZJlZO9ZLQWiWUGpDFi1DWYSap/dkgLBf3o+i1vRWQM/GYQLUnksyNy0ISh3rF4ygLE5Cs+DDyiZ8AgJWkZbXbpk7z/g7FkO7IA5g1jQKtJuHQwiflHrbPo6W6APp8k12ziSqc+vPnj/42CuD4Mj/PLCGNDr9AwwgfzC+7kM6uOihb6QlNwo1eqgE6NcZcPBrkblrzwwUTlk8wjhQDnxKvOU3Wk5Vld7beBK5ihjjBcqD+gMbCnDy5xvnQrvUqiRfwN9HjH/9Juib8FR3vLCCqOqdGU7RzaYWLjwubrs/RfShDVwghcOf1DIuaetSKF3JDygwdAAUClQFmrlhdoqLI/ODyt1WQpzcxZlZNouQq2YCuW4sZgWZJiNiyeJa1w3034cal25X/SoQed7tUK1sGhHFr6IoFCWxCwSJx/qZXisMd0OFR76dpne6lI37snUDgSt2Oilt+K2G3iwAr+DZBu5JlbpeuF7eDnt6fOYYMrTZi9BS3/Mj0HrWfEcnECxXOT86mnYfR+WHoHlXh5srhDdWk9Gkk701w+Lc5S3Y28qKMDgU4DAhSCvuMAMwdt4i4wV2xieg5s9Tnlig9/S7AdoL2WChOuwYCyA4d3sKR96BhdoRYyqv1Xr9j+7udbThm4OyKE35wd7GhwdXd1cKMpbXqkOycmTgbEv85pohM8A8wAh3t47noL0U5EM2gNPENLQ/AenuyxtEVnO5YhzDpNjUMvMwRmCxAT/BRmOCGKoJDPyzwpnQzFxbs5fISY5KbjaSdyYIvfOHZNvVaqsDcET3GW5+jleXk1EbRSlykN/hsIj/P/vm/LnO8hzsGxKvkBrPCGsySdDwTAZSh/iWREn0F5S8RwwHfQ/bEgPZMZB8eLmnEyUWABzfIPu/XKZ9E39RVWMtSccKNIgTTv6la/MQFiHsqoioCFmWClZgis3V06ObhHeFA+iR3M4tSaqtz7ignbE7Ze+AbpkK3L0iAXYy0xRGRxujFJWI4u+X+Shos802CZthDy/bbchjpZvpKozhijr2w0g5es6fJku5U1CE3So6LbG9q9UXsCG2U/yjIeOf8QMR+2UJTpeJsUBkw9rwCjxD6/f1nspHom1mqRWdetLktGFNloZwIi2MdnTW2zBejjxV3t5lWeL5sxT6/zDSDv60c1T3OREs0Av6IIMKS8hZqaLqDUpxU3pPpu9MqAcClV60jbDuOirqnkN0ZUR3+Ocx98xJcBxAoUXCdY1VatzdNXwj8pimPQQBuaj/FEQsRGSWHUsHCvJbh40GgUtUUwmuEHzslW7GlDJ9QQV4Ho7GYZPyX0WSk1hgdtB5ClnlNu0yOep5UTzR6MxaHk2b3GxhsGuJ8TGd99bojf1NiwU+2J+nb+8dUW4Zff9Mf8pftNFNaWDLS/dirIjAYq8s7S6Zb8Kv97K5eOMP6QS9sO70680PmIaM4Vg1hiqd70Ig/TwpDQfmM5tCUGVZJaN+xjBiWeE/Q7gmUKTl3pn6AQ/DPa37tfESXMvvrk+qWF9pEoh/5u4SKjEUtUnm/awLT+EKvoQUks7f2/ndQQo6sifeXnQDL16S6xMTI3M16oT9ipmgunU8Z/ev0Bo+3yerdJg0mDJ5D12gjR1c6VnMCtE094OKbAqkRKf4Wi2AyuJpNJ7nkrT3CureMK8N6FuZRpLkYOr+63XbyzS8+Z5Ywuy9DrOA2zQHi+gNaTopwtszqwJxpBo9PSoQN3fIUXH98S8AQ7Z3CMz0I2id1z5gMpR11fJuQqWCZU4O9FXDYq1OXBxjE2iShbu+DM24rHWIOICnsoVeFTxvR12k7THW9nBPT6kNcTgI9vsAODq3SyGTjeEekX0rZnwa6EtOFGfmYOQ6xu7Kr8TexHPNBERw4va9AkRplGFb3uTdddZUfiCGBb1Ee721PCXS9MWE0bj/zGI+Yw0GCsMXbpGAvHfk9TlTYwywhAzwq7g0G6Zr8klQEZdt6Q0sPUUYQEKVnlw5mJT9t2COCQoBp3PuiMsSIrOGfBKUbANgFf9eCjChEAT7UxgAtcAXWKmZN3icK/G0f3sjdPaBHN7bqedPs2RAjrkA4Dq58MFHZQoTxhCgra/qIti1TlJoEsI+ntOMIeK84lAfTM8FucAwHGBfoO+jgo8Jgc2VQBAn6WqJND/PwV8eAkqCEt+oNLaSPIStMhaHpyXe62Y+lFcSpixjqmO1NLuEPh+fm2SrnqzH+fzIXIVWfzuGWZcAmxgUhtYtee1o5BPYbcHG6+uqWdIaGCqwG0XARIryPycTe9GuGv5/O357CnAH7BUKLVbZHF9oEmzMnZMy3vMtodPz9HaCRwHIJKYFnjF4rv14kVy0XBz52O28g0waf31e0Sojsx6sWFCHwha0WSc89jeFEZuyAs8/LSW2S1+3Dy3Jha0+zKVvEN3XhEDs01EaLDt+mA6dxos51PIjYGQSVGDbE7/71+Bf+zEnI7okNeIP5ua89bhFGQjU6nNplJhsfNziJKlkrpYx0sQXP+NxiGRzZfaYnaEAp2c5EvKKEfV1YTB4qnQ4+M8crFsJla676dFRnCDH9V1cab+QKV/KCGdLoJKGxlO9AvlFx51J6WE+nTPHk2ufUOUn94uJ2wo2Eig092G1AxctW4S8/yO/gjPUB/9z9IsFxHzu8Uq1jEOilTxqQS/9pe5HXK85sgtOiZSO9SWgwr6EyiiQPqb8HtANFPwWei6wBkwBKy7l2qQVRfXYsHOu/StF4To56KYICzeuWskpqZqlCZBR8FdjReIIvAwjfyobBdvYuTodkCXiN0SlMSUlyoT4WSuch7otY0yyn6XCnyozYp423HMYPi2rklhghgI3FrIPmsieT+slrBhJ2SG5xy/ZCVqJF/EQKYQ34WZxYBt1kyXP/iX2FZwv2tocUpgpaJBomAbvDh/sqY8v8TIBcmlaIwvPq6hSzvYd1lnNUOxOG0q17dfIWHeNPjuSNnuUf+Qex/gBq7EYzOalJFdWd1YnIC6GEAqcWIf+TTwLX1ms2CrAdhYHTrmcCjk7taw5Al24BwnX9MRIOxF/8PpnKimd/Puo9ANnL2jYKWdf++pvoj5Dm49PCZCeeWfqlZ+Wzft8onsykZnIzjtY7cxOzun/ncgf4Le23VAXcbEm8oHbZbjWADIj5R3omVNqNYwKGLAH5W6Mlqkgtcov15rmNXOQmPP1MugRBbBylFCK2PQFAKtn/dpCxBB8yoXVJVJmI9AAiNYBSBF2UnVDFlC6+ptv8DoJeJTXHFlWVJmoDbS/I1IGdgcDfF3HMzDwj3BDNeIeNf729dduejsjOu5ZyCiW9mzjIqQrv9lHRtUtjC2mCwCYtK99AzaM5dKKgiNREZOzagRIVyXbEDlzrOj0RXfL9XqAUYmyYAnrtq3TK5K27U0A7RKNGogM3eFObLhyml4wakLdPrOv0SlNG3TNrXYN18oL6T0dyA7XnejhwGbfmLauGzD3/eMlvcXxfOLXBSLN7V6UA7FoeHi4iPN+Ipa/R8D2LvpQBITyryNod8cTomxx1CmHVxBglVOTtnMd6MNpI06YrFxDmokfRMHeS4SJ9t8bdgj6AHHM/vQgM6PcgVkZwJp3CDcXMpplFryKSWonYbJ/FFNWUfqvxu8fGI7cgDY3IFhu/bMWJJIfgYTNrSPDqhzP2TgxAm6oUZqk99fwUeE+5wGiV812wMdwIy2wCqLX+p/Vqmlx8Nh4DjkfP2Z7az8ZuSuC9zCxXbkfav11f7aMRz/ATQ30yhnaQYX07lJmjuI+KcwINi/QSyVbXkP7An/bzBPp95GckadtJ8sUBa+JZMC8pA3vmoeyMZTpTpQG3piFOnhdtU3QAuDIoTpt8SQfXKbdzR2yfcHXH3HI8JQrTgMqLaUU/iQGrzWdmsuUT7z4jBZQ2BKGeb3Xm64qttR+rsGKWYh9lIDu1h+KTnjgXuVwNffQ9tZwZXMx75kGK9lOX/RHbN09qdt9zcNfKRjamKFFtC1/3zLBg/8AXnz7Uopg38rIpgncx1AGnYO7dZGHZwZ57YZtU9srEA2m2IBSgd+q1KnuCZnFjf/MbiutkqQO4uyLPycCnnM/qTkzLfgPnFnxn+BAcdpvW8k9TkwTBojj6AWW+7oYpCCHSHObCB3yxkTsvqbtULfvmCIosb3Mfsw1p3jncSoz294Ch+gAr7vzw+MJ653jIR5NmECdNkj10VxlFPIe9YQoAT3YXv6VMGZLh87gQ//QMguG8rANuPXf/qgch0LvBp5dLz+Cy0sv+/q4wesB8BttiIAsgjuL6hfbQAUwfwnI94eehfiEasz4fWhGpTkmFrLF/CM+n6aKpktP/ZvvRDXdgPwdonC9vK65B4mkpumXa/86mZdATZnN0mFQ5OYzTOInc3GQeNcCD1gYOlFmRJt30Ee1QfbVSas48MQQ7ef+cRNP/WxRpELubUcz2qcjSWxlXJU8Y7Gugc8Y8el/WA8ZvmIAZCH6uHlpQ2Kp6JQfmhmQI7nsQMmEcoEpTGn4LId92VA095IV+T/+8BhayYGqbzrxlCUPyBm5Is6WegVQJr1mFruL5tUtmZ+/F7CmWWT36hjv14yKGEO0/nCmAvWBW3kU9whkhC4lM47WvO1yedWfNiU6l1stUNTX7a8mJ7V6FwPLlRRWRklRSLHG19u0RvUHTHTBGWqtmcrF7M2+8IwAcihdIfgfUbdS27zG0lQ2yvak1wgG7g14C0BMIcdLBAw18mWj8FE/JRBwNVW3h3mLx8ynQxfz/YVIIIjkEcHstpUttDJuAY3R63iEdhmzvb1pgVR+bnrh6quRs2v+kKk689jTQ78/MNmP7Nc56RA89EADIp63BCMLwPINCOb/NLMv08BqjxzbdYNV4FPJoB/6TdiI8z76PdRt5QrcYpFDKof/KKVdbgN7kDjK/cNy5KVknFzGV/DY0kpWOdBjktks26Wd8Tpm1kUWWQ==
Variant 1
DifficultyLevel
475
Question
Which number is exactly halfway between 321 and 6 ?
Worked Solution
|
|
Halfway |
= ( 321 + 6 ) ÷ 2 |
|
= 921 ÷ 2 |
|
= 443 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
frac1 | |
frac2 | |
frac3 | |
correctAnswer | |
Answers
U2FsdGVkX18N7/M+/nPUgZ+yUwiXDsiMDomYKKMGAfD5KFPSaFQ0k/inb77X9DgbCAOCa7rN4+p7dQhUSw7FnNByBYwtprxft+txFRSxqRNpDWdeCJvunWpY9jgkP6Ieylv9ZByZxi9k9NWhG1rfYnqXZFTJucjSITzFpG/U9BIzy73OxWtl2zpLzijGLqY9K3XZCfRatIkR/2wqMxkx5/rQiBXUlHqcCEoN0fHrlfYjjKyHEGvVTypHqXn/tb6um4A0Npo2tTpkLVcZLtlCvj5fTau0VDS9vjMy3+2l1PvWunlCBXj9GDv9D5i7YvouUS37hY0KsHEV8U5fY/Mpsz1o73lXEj7t7FVqdRlvwKhxwJVsE7cA9WPpc78yRLjiE40cTa59o5sEYdbxMrd0sK6SNzNEAEhvXcafIZGXZDCZPu6mbHaJC3F5LQty7AQsdGaymSjIcapqT4dNg4nV7HBrvhnnP/1aNUBasj1EtCNPWMsZAjbeoK+NLjClit8HeXx4uD/BdedHGfynQLOnb4jdydnYq5QHqW7+QlY5Mbu5vWL/01lwvbXxEXos3hLXePRPvlgK6sEkTssmM8iBdVc9fTQHbkEr6YvgdYUfmhYHxrIXVQeSQGHlumphOg8dUxRL4uevi2tGKTb+WxkVeWVMfV7kxSJoJ3zqZdNRBHolNS6oBX8wPeK6nnslvAUEgsF5/Y/p2CQywuf0cZZoc+5klkNRtUZq2FZmWoCtrmf3vLfYN12Y16CM47zx1yWzbaf5znUymIFNFcxOnnwy8d10ydrhblHNAna4koOSq7kVtu3EQ7fLkWJuxYW2Q1bJkIbMvIjI5d6DU7ZLbLd649fgywTYTci0TLJ16IInfATs7KbPvN/KqTrjeVv5Jlpl4TBsQH2BmV+cpotM2oSqp73ufUFHxpHuQ42ukdSbC5oJx01j1GFM39V6T3xJQatE6ZFQRJmxBge9LBtQFeyOjJW5wlbeqkWENhOJGJMLRH4Hif1Q73NdsfxvNWb1By5TZvPvNa817aka3/mh4aBe0SV1q/7Kr/ljN5pjLyNuevsD8LRF9gh+DHibI8FHw1rwei8Ed8AI2hxHJHXSz86cv0OMEWo2yR0Xdf/3FZ2selFqfgIeIimV+Q8d4dBQ23I4Iz39j+0cyk8EpD6oMBTGbRMgVpvSYL9Hq1el0ZfHGxL7kylJb9+VMT6c7BHDzbigI/yu9N2bqGJZgXQieBpj/VKifBKjc/bTHarDDw7wNHUub646I+YrcU68nUQY4+ankHGgDIRGog733jRRAWEOlDzVIBtRR6STzcxKarMoAYX3hg14oy6GoWQfOH2PyPss3/cG/lQMZ1E63ko0Q1iB6graONcnsIFHbSb9zPT0att2YVz5Qd7Cf7oV+jTQeV16Q7ZNRqoep7FfgmXSetz3bqktOaQlqe9AV6oOE+wfnWw/pYxVL+g1bETWPlSwFLJa6QuHhBNzQ5o8zCpKpLnsIU02zGBBkydvctq1AoGUDlUcy8jEC6qZ+ycVKTcpUlj/TkjruhyoeG9wJyvv/PAyVVBgF4w6ifpg9myl7A1jarm7tuLsmwUXcmMX7nl/QVLxdBTKceest5UFzgT01OXqGFCaXHNDVCEmyqVLy6MWc8op01cYWbDoHeT6N78NrR3wKxFP3ob8j3eQi6w4q4b7qB/GZ/jIAQf2ZQ0r9WsNLrZlrOxFvpOzDOXmodVlAw356yXGCjtFfOFSFNSNYfskC95OZO3AnxSzraf9C9ralVWYz+uYfILtnQdNuaVjbPBYnpZmDOtbY4x8G+s8bpeyAI+qxfiGsgjvW2WpHIjKJjwKUNY7nusLz3hCMBX9C/9h53CiHu27H0bvtg9r6b5EPe0c/5OI5BBQ8nVEmTzdQVrSm04P1IjslBbdZNBqjKChzmdrulelQdVAktM1UBKUG+ZealFviI0Y6ww660S1TiV7FCkGcujhCvKbx0t5IpA4+Xw5eWUtD19MduEnaXWgqkmDgBamdzWLjFT8W3S7W6Un4I6+lEpFKIa6gwE+YcW5YiM1oYumuucqiI3XvZmg0q2A+MZYLOMOfxY47KliTmv96MhW8TXDIfOkW/3k4OrNSwTYz8jfkI7/j2PmBgUw8BUw6vrA7AWGlf2uFfuDwc4Wo36RneunMwt/I5PoE/sTrQQAn8/mPUsIwwf2CSzIgFEgPS8ut+Ug60AVnhMtt1cPSnuZ4Ea6rLbnrXVTX0FP8N2wZVJ2AmGTT2ljiKS2Xcg0J4V87IRwRnrCnbp3bURUeh0H2ZpP+o7y4fwebUe+SNrUQWtNZUJtpFn6kdcygqT6tPWTIoOlc+Y5euJbCZFsEmIKqjUdevqpUvUtj9Poq08BrsrKxmcMUokFUR1f01KQ+Q7ZpZ8/YhtBBgGDYz4RyVazXnJx/jvXWinYymX8WU9nfxNsbFc8qE3TWg0EIWhaDwtkYWggUn0rhfMuunhMEhDL0f41XNroHp47nD+tY/rlI/3A4juoIYJ4cWlCLp91FHGFEHMxQhfuwtX33b9dfwl5V6eUc4rG4yfbFihHVmYabpgwzeuPShNK46hfL9pdZkj5OHl4+WpHy3Vr69C7uk0CeWx59pOrQGTODKelvXITB9HYvDevlny75ORfvhtb9ykt+Vq6hBGBqmF0NVCz9iXLrYiYSAzvjy8Goeb0fT4P6Rbv0pGF8CW8/Kkp3WGEK/x8z9S8J8boSEWzmK1VMYroFQUPgOFemKhrrTUH8N7LXuFTCIZ0XmL4PWDwtVJFhSfnK5q6O7IW9D6tZK4alDbMe++YPY5tqVsixXWCJRN0ufBrpYUhXAbMW/pZF0J7c+n6b/gL7mCFNo3W9iZqB0QdtOQOyCMfKC7WgNZpS0pQ26Hjs3Rnwlz5gm9TOEBUHHY3N19xTbzZf6lf2RHI4XyLYqGq63z29ypXAHx7SO7ngm5vj2b08R0MN6wtcHwl3mgvfnkfiLNrnBOP8GKa96vzPTqzOu8TwiiMIRWc3ztb5S781z/vT5zDvRoXJhQl8G2Ef1lJoEzL4M/1ZhdWrZUKl4t0V8J8PfJZzLCdnQnOWRjyVV35BrHuJtHj/caNnZ/4A9ISCFjO9HrdcajtR21FPOvu4YsV/zXMnjicleM9ttHTFcRe1S8a3jJOSLa3cla3Hh54Io90I/plZVg/GKAm5US5gSOyaHNPmDxuPocJiobRwByS2vP9q1oTF+VZW8BIMwTURME000b39caAHnNeN4KreobpvrU71OElG8wlzKa7YkqKgNeOGfUzdXq98pSR4whYnijrb1yp+J2ZjoYXkf1dG0GVYnUgIVIjpXfU4taUi43yyIbEbtAjok2nGPcwvW7YrKoV73YGe+uVFnoZm7c8LRTy0HLL321tAQxTZTXvD5UmvIreGsEldgVROMDevGaQsaGxgzxow/tV2DzsROemoDT4NUqhs3XOBFmizfRU90iPloYFD6DCnc0YK4TAmak8jAvrk1V7utwUTn/PGsN4THvMXA4BsiiGUNMQQdt7PU59jR+9VJPF/4KzMKBkzTMWk1b2D7wEr98rSb85XqxFborVDpug24xjaxP/U2088xLsrA3Ahy7UQ8c+7PW5RPErOirV/mX/ZTSt6UPatn0UIEEMnonmf+SUgQU5vZDbgb/MCruLZ9CivEM0wcZjAoH3yV1CM0tPge7ef8eeKB3g9aQBWGs+3uuBcql0VXTZDYiS6xs2mZZLhblTCD74ftEmJzHXdu/uBRKaSe/3pixf99nkhP2cekhBaSuTfsaSFfIU0sRSoBM/U7HE8Xh1bwYQ2Zq4F0UNxIMctKtcp/uGqLOv5vp1tK1uEzkflNtZgLKU6ZBbIyeDz+vOQK50XHAe+eTdpzUx5LDuafRwIGYL22m4nNVn15sOA98UiLCEawE5h128XVlN9FWYZGf13NE1Zml2IZfNddwjSjy5nTfo1P3oHegroR0IRzEDdApeykhhYLYQklkSGr1jaDNwKC9ZHAsRKlHpZU5Frx9QEC1Oihn0UR26keJW0lpea+t2N9VXETRsjjmMbM7fnvOPsw8ok8aVok72Qjb8eykcrGMzILlk5xL+Nxe8rDH1sfO4ROIyshya5+PSzQJeaMH/bQyZ4XdS+a7yWC+cg59ZGypZFDo6BF3xiPV/rj8ps8Dh0bnLXjP2kFWoGcWG2Kdw+ecsLV1tdq3YOnq1WaQQqoURthWdkP4aUXfdA7jnFDnqSj74tx0uP237Kj7sr/NQhUHLlr8lnU7nUpie07BKRUeLZI6plWGKlA18wUa4XcG+SJaWNK43G8M56hw4L9nsP0mul1hQhVo+plUW6VpZHaSXTXXpPsIgV17tS+s42B5vDZUDoDzhx3JXhFbjxjfDUroPZ1aHw161nw/0GFQ86taYE8tX7RrfKz5DPfaEVd/Wc1/kG0P9GGKyJefYlCENX+MMpFGcdM4XP/388GccVdFS5xQqcVWJp602V4aSSzfIzV3hh/c05/zdGiqNXtniuqBlmkoxy42+pptmWc1SWk/V3frTahjItxE/rZyc9q9mpvU6tyMh21ouGPR1cDv2WCijXVCw5LAcdEovbIbh6AqHSMDV2f3IG5KiZFTL86u0DrFgKhjWC6Hs0hXMhGLioh1nmWQ/WajQR0zpp5ZWAMaPQNizD0DcV7/wJhEn/+oWOWqrBSuDS+wS46HEwZZq9kBYLc8MONC9fcMjPpdDvY04sCvESWiTDNWbzATt2sDywOCSi87EwaBxvylNRYsL1Vk7AeisHIYmci5xaXG0jJX6DV5oxvVrkUfSbwZPOHEdxMKH6nz/7J1S5c/RvYtzkmvIhPhDFP/epSwN+cYgVNz6YFl/aqJnAKJ1WSErO95bjFFtlI6TCOnOAWUa9q0iitxJJFTg31g3zGCgOiKoYFUdqxTlxqhMJZlq06Gc1valrHfjgydwHcGbPZoikZdtTYO4WEo94znIaQTcMCrafD7RWf+2fC5OyOut2qWAzXldVLoPFM/6LS5Cb/YjE3jX1psMGnwLCpmsmPsmp4n6x0yWVkbIxXoLmt13U1VlImmcZNlcWCcRtDEP0rpC6/lI092hKP0cT9ZOydZPZQkwu0Pr6JCVBuEHzKBRhguDtI5pkWcf9xdSVCo96EaBftRzg6QxhiYhkSnBGP95FZ4tDHqic90rO4myTkz4fFTbD+S2vhSjbYkXmdRnt510OqzzkBGm/wg0CI9JMX0ACpITNLerFlmqI6ofkF3jBs5Vbt8v4Zabclh1XtX6qONQXK6+denC9RKlIc++Wiy8mfszNZIyD2Fu8imodhPZRw5BeQQT63h33V3UmrdIKhl68lE4NkicaVW81Dg8kMmwNq5M30faeRnxkEJC7lD4zSgQ8rCPBGfJS2VAilpsnhcwN2XPkfjWrw2AkK5MFdEUT6krfsI8wEckufX3CwNyJzLkqvOptM8Dq+YoMgsbA1E3iMRCorUU6OLQKbwzCvZLZo6TdZHfU2Q7rfTsM8ctiiK9mM0NuwWoTp3X+9FMry1zmSQOazMjuM8SKKO/6s9usBYahf+oEnAXzYg4M1QooGeRQQ5Ke7rQkWYuAhXS8jdDLPwNo9NeZqeQs0k+J3iLwBOvb0jAVxXj4VtZSKDfr8TT71H8U78DkJzWeWeM5FA8NTqyyLOIHv8hHJRV3GBcY5ki7NIKAxFuPr3ALD4Qn9V+kOLYnxD/o6EdxbGZ3Dw0lVQ+JaYYikMsJdwrndGtLdtJkEUX7hgx/M9cStR99743SeJkOkWgwibJGEF/3ahh6DP1LJoz510uAs1dF/EC5fpdHOXjdlzwuW5A5QU/iFtsJoYRFoiX5ifq5a7GB9hPV2MB/oJ4b3vVRi/1TQdSWSoSLnQtgUiiAiNZEbGPkGyrL3iyG6KH8FB9f/8MCyCjxXpP4lbpNTIRgIsheQsJ9gV5seVySTQJzRbDKYwKDuoXsiDEaSwpChNUU0Zrs/+gd5TFbI9ovHvNw6bQIob67N0F+SBdnGIHyTZ0ZWdn7zpJHb0C+6Ml++DWFMCdDSFXrRpLnPRQCJRaAyV78gE1Hggjbyr7kCx0Cq5XOo9ULPyGcOSn9zGhFULEl12QokGV2gjpFZytQorO/kd39HZ7V7j0pkdldVl28QzZgXdIKCuQMRNg9SpAMVDqRxGC97Tu+Cx2f5i08BFO+ENGDphrxzEULmlQJWyeOPXx85G9RwARotCCxDXW0g1e0fgsb+GrZZcsQQqGzXX0HnGPI1N1C+7upDX1sd+Vgn2ahWbItTOZbgRSZ+a/ng1acNkFCbZKSfW674hcFC5bheQRj4GXP5vfOJGAvszr5e0hPM2LYPw0lxaylUnVPf20t6/RqZj0XEJLiXUemoaYsPWw4JiFD3KAO6cj4ECwiKyqvbfm+fWWt/lbtd8Y5tGmRpgwg9QuvTLex1JceVjx4mw+of1xBodHKr+HofPF3jfaRPMndon9lAm4o+RtB0FfDYsDurpTYAYGwVbP4J3Y1xRwTrDCUidY6Vcm7hcO1CLs2V4OdddPLPM8wAzt3zd99zVg5Zqd9b3fxJyLSkFLvbNztiiA3c6kMTy90/fGU0TrKbrGH1tV4xjQ5PVMjg+mEpvGX1QBJL5k81YdNHd9+n03ADlH3WdHrE6gXQVdR/1Upj2T9UxQ8+mqVePIvszreSCJvq6tsbESjF4KXSTSfboUi+YDjLoHcyoV49WQr1tlI3Gfgu/iyAUnoOBtV5O84tpgmFNlVQGmH/6UPkWg5/uFpVmK9LaE9CNSs6L7fjuAj83RacFa/6zpnb57p5h44ACZB3SQ6AD8KqxAEYrWF5m+skJ1HV+S7qUsMSsGGXrrEt5QUUBZhA4vt172IG65Fc/+C/QndNlbZ6WrVkusMt+ATFZ93RJGuj1AXTkth26eMydVQbqKGgiEvIhgH67zT+J0uhesTxW6+ltXzr3TRzErPVXet9DNOiUYWt3kdFUvY/7On6nH5Y6erXs5bYy9Rs1AjSmkrZSC5rcPtoh3tNOn1X2mMg6RHWRscjk3c15PnK/Rqf0E9OpiBxyaRPMQHElAo2ugOTwic4M6YOSh1zVCF3qhKcZCkOgWyFIyzM/qSISHUbDTiE90XGr44Cou4PWHGzjVKsXZ7eY+MrWyQzKpbrQmbRez3Xm8U9VUpY6gzK+ItZi6+IHL+THK9QTKJe+pcBTByQE6+DJpYiNQOizFqdTHRRnvonN8Ij5Tggk8+0KwvcJjkcNSYxCu1TGJwTRued6PgTqJg6okyGSwolzzgYjM5NzE0iKSsjD3YY/d+tsB4dsSKANKXlDsx5TUnNC5NOySZRkpPlPOLijEvURFdu4MgWRmYZD//ALVdgYdV3Ur/208I+P2pjC7aPs4KXtGzzy396SaZ6onc1zpqIEnodoHsZXHXcOnVvsBNZQN94DqoaOwDz/3fdOMzc2na9l9IbQiDc3o9GAesAHelNHmYu7p4Mqpl7jUjMCfjL1csnBbTgyN9j3O006TwRTAk1cfILeW3EygXgOlGTRNxciOgcuMFwX6vy4zUxA1i35ubIoRWfcRnWlvnJnVrQ7S3IpoftiRHK4uAPGVjVCEKydAz/rl6/slKIV7TK38/C4FZpI6JSKUCz8DsV1HWvHegdl22PteYKu74NXOtZRTVd+dPdMZ7ipXmmTJ28Eif7gzlB5C2+6wV6q8NgqzPeAQr8ibNoQEmrhj5aTO1cRaGCd1iaPQDe2K22fAlE9K5ZI8eaUOSjIZ/wP4jOBqFb4bhhyIwyB/SKtubE3txbu+dYmjYph7Dlg6ywq9Pp8hKSSk1+l8biV96NR+7gjmjAfMbwYH+9E8jRuthB1jsxNQAS1BUmFxY0Z95hnYeTorIS3e2xuaTR7a1Cc/ShUsUgpS/mWT6DV+aHwF/oZaltEIuUyGUVF+mdv+mV7dDqL5/RRXRAEfEgHz8oIsvfIdt8nEmXPGS4hjdJkQIx3aH7UTyBMNdskZEF72H5i5X4BEXo28D42Jr6Wcf6OWHwvIOjFmgW9TugvRpIRTpNmz0OAZXLyfvrvRGQEZ/t1PS2pUAPFq8HYsaMzlr2bnqpcddP6mstOPe4Aqzp6xfQ9WG3i+fX6gKpKYy8MMlGQO71KzohtdUGLTPr/QMqBMSY8kpmIjxOsVWPwhEjBBEkZS04z8FiN7+b9upwrKKq47XZJPtl6wII+leEpHOFq1V5MmoI8NAiY3meDzxcxNMiRjtch+vXk2aLFUXvKwdGbgvmBdNOr8+3MpU+93HLKWfTS7I6wYw+OlaHBFBIvzc3X7/nF566xa0V9OlnaZ+LlA2a9iJsQ51qeqOhjg78glFSpBdNRIL7bli4kdCjO084jNev2L0tGN+MtCpnGa+7T2whJNH2bMXO0zmWgPoFKrVeJzMVutnUhXxWcJMf7ibjF5+I8F3KF8pgpZMGfwMW8YYQr8usquYVGU4UP6Ea/aqH+G+DyaNKZcRe4Es3m2FyB81l+RyRdHjlNjmIQ7/dTS7lYRZp6FvpbgDIFe5rEiA9rT3o3a6HpiviNRUj5z9vb0kOD4LeHzpNt7yqrurKPLdPeNmZgnj3r4uEHBZnm7UcN6pX0YcG8SGZCeEsXbfeBN46MYj4rVZKxgwKJm/Kv9TQMNaw1ILwJ+RRY5HIoUr6YHjfe/5oUif2nsPiu3dxMbtp2/ScgHPrnNHwmqVdZxVAcNgk9pcliMRY3SInO8M6dbweD4pkV/C7SsWJNiNu4uhfT4cNkTdQIB5riNxOxSbl62LHKhVNk+TJXwJENxd1QuMNl2L4cHxJcq3XR3VkoHhdGHq8YPNk2KoG3H4+uoElBZlzBO+y92kFomx8n/M7canGZsXzW4W/nEA+7uiXHax0rr6Vis8flgDAVGd5kBoUKME3+ZEfBTioK6l86wTjGjp2uNg71scED9KFNDZL1+ls24FpwoPYf9rXIeZMDUHjWWBJ/2oEEhPy/u7VKliPjwDYj8+LBg4kpjjTyu4O06/5UobsF0erD+DQQXQj24roLGOA4zch/h2T5J3Ss+wTulzi2vERrNHKS7kquh1OqCiECXzqXd/tp/bQ+0ntkUQw39jVskqpFn3YjI9Nm4yjXyHj6VhIsiuFjFq+FUyz0qd9dbYCTfjkApq4+Jm6tQzZjLl1Z8Gfm18WdhpBCJeONA9LTWDZQ8YxNxST3XVDJRqZGVJ6E1fevV4CJg5d4g46keDyInp8jys5Uk8oORHnXE3/tIMelY18fcnHccqVr4rqzaquGDc3bF433lXX5hgkP1Aid1hTSFIXU06IsFD2fNk5KHa7mnAINlOOovMdWTIg6L+ChdA8UKZRwUis+aaVyp7+e05Quu4IHBc3rTwWSw5QvK70tElqBPRJJtd045eojjLNpeJ4CJnHuTDfXuHUBfQukqTwrTnlymO93mqL2B5JX75nXefJ0wkXHKtMmutt0H4TT2LHPEjbI6YWkDq5qhv42H2AvF/pw3IgF4SSsi1DXgXHfhaNjtxL42bohG6u42JGd7vZ4GahmTYbIxzHCanya4O5MFdQ32QlGFeIEOzmM4ZzQjdsqOTcuMRE8NKKjvgW48VrCoWwAy3E7k3LqxGNPSg2c8HXaB7kAbX7BcsvoOF69WddoWPYZsT1lmSZE3mlkLaJt+xZjUV3lKR2SpPvsjaZdEdIWXvCipfzFl/nHib3UWe/okgqD2Uw0xZ7BYzmj862zZpdZfjWvXTX5AqLp21KoA9NBzUged/BThK3ZXklyrQ5L/4fmwEMBQMnw6dt8fuNsK8s5GTkZGXEHn8MpXmMFIqyqrMR9hB+K913ajghwxaWmuK1KzTW4Csq4aQJb/cdB1p02fXUKTUq7t1m99EMvZKbFZs7bot+1hwT62Ase2cmM9LQG2Argo6IFfm/qnYAaEVFBCayNAFvd5j/tYiQ5M9Wu1nKbX/SyBNPt4/6iOThwUVEkehAZu+9cQ0bKGSNwmUFx5PpuvNSsYXEOKuD1tS+aqywEQ8KQcmFezC8cfxyYBJ3oPYZ556Hr/74kB0mV3Ca91YTkehOiKKVRcxv+czJUhAEZ2V/NDGfCMeXmRkoHqOwD/IJf6vE78xUbeu8UlnTcyyFghVjpRnOH8wd0GvCOSThrqGCfvI60T9WFT3CgSrKcrrnxDxTi2R8zOOnyKmbqQRN1o89K9Z3IqtmQmpAxSKHSmMPiFce+c3IOF7bwz7gWCH+TerroHQEOXHtU9oaBilVmcbg4QqZRYTDDVTQryY9QgwTc66OZBBJW9fuKgBVjBnGi/uxM/oEMwE65ss2r1k3uQnyeplPsde9Mkwd5NkQrZdTsxjpW00a2n3WUAFoqz9nc758kk6IhT+JUZTrMC613Rg/4pp9P/p0JjrN/0LHDoCaipZ2JQQZJIYUpRM+PctgGM+xAFHpPTob5Jfum7E40iRx09DBoU5Ok1c3x54stvVXVYSUhOTwOou0lkPVCAKA9sB3ylfQPpjHRUwCTVCyaiFydN9BpRaZxKXySpx/LFJqlDKHc40QvIioZDEghhI+DX5QtaALiWhjEc9ZqxMUvfC0kei+q5WDY3kIJP5QAYU8sBAs/6n47LRYAKk8mS3XECgHovT1bC21KXpNjbGEdDPJsUAXImy60XDHKBaTpxL67W2JnRRiT+1E+AExsBVCE7b0suzuVFjBvWwz0EDYSZ2bc0UCSYg4MDkvnc6Xd/mzBAnmrxGX4TuWvuxxEsZt09cJjIMz+5TSZd9p2x7KikKPbkFVMTjm7oFkYBU9tg//JjvPsUHACzJ6lLKZ+7kv/mF8L2UY2oefyJyQ4WHk93CbaXEz1lst6CnTFAaCSw9nI8i5PXdIv5jLWOgy/ZwbZCvpFx3yOj0Yvjceu2FKxCpR8fKc8W8eoWXB55qt/NPNhxrWa96YfyQur035gRQdw19tfkfqnyNsZwmxbo0IFmVtuF9uT2/yMaubPT8JGyZYdpqwcj+dopfPIQwf6wxaAl0xOkXVRsx1WyEoIVwq+rWX2dzJUD++VYUg2QEzC1RHYhkA4veT9bC/WipReMq6UUxH461cJEvvJfIbttUD9U7RenuGaL6g8I0wz8G6OuN2m8n4W5+Xes0GD5iCPm+DyMLlDorO5v7QxQN/1x08XQ7Br0f2ThzFG3mBZxXpye3NnRS97ktJr330TEc7yvxPne8fMHlA+QXiqz4jKCCiWQnuUF+Rec5M9C6FMB3AdY8lR5OJTBuxaTbv9vt2H2soTJ/6hdg2ECi/DJpdXdb3uc1NFiPjgOm24mJweOORCEX1sdb30gVGp6jmjfNh0zIATd6oik4TCRRb+d0hljlGTJ3ZqdoEBe4ReD/S1T4MzPKHYR1mgQW145jJaXbfKzxqk2HY0+DGmduuDD0k7lmq+oAcKuzDhYJyUriqITV4EaQc42BZYVKOKRL/0/W+C5kmdpqn4ixvdpFvZBZr7qYl5J4/glxVrUIzVB2EHEYUMWdAFhKh1XpQ+hqhrQjUruu12lL+lsn5SeAnWlj6yCptk0aFBwTsS/0JXAUbIXHaTM4E4X/9j1USta9T2vbBQZxBh+D9RLJgKhf29JcnoD72ghQe964yPkhxye2MAEBkyYvDWaNVkbE5Zg9s4dbB+XQU4n+PSTL/F82o0na25XUyuedreMaSQfHwf/ERQd24uvpLdTv5Sm69aKAyrSuoiBIl5debIVh/TvUY3iE2iG4skms/ZlfFPsN8s7e4T6nR4Hx2dEic1JXSB1zxNYrXVtmt32bfUOYbPqQ5G60FYWfLy+f8xUrz+MisJ3r6hMB1unhW9c1LVOq8QuKMCH0N3lXOzSr9FAgK8NIK6+oPR1Rxceqlnf+ivKsBH/bvpXIkzNsKnNjHJaRuw6pQRTPHjG/oKqgqq8TqCWE3qeCt7JBMwgBuQof4+gWEdmeoIc7JE7xTn4J/US0cNHXHz1R/wBGjQ6+OQwpOk1njwKP4kZoLHvhMvFABBzEyCbnpFyi8iZVUKc15UiP34+Y5KozVYld8AWAGpe0GluDX3Gp7PYqEQl1os0raedUtsLzndKShQlzPpXe1sdznsNLKccMEUMOASgXujfRGioqr7EAJz8KnJwR1xyX4eShMSWISJJSG51P6YaAZRq7XLj5DE1DmJ2xQLssUzCWapTFPA3OUTq2S9sgG7a811ZrqdqaV9Lv8/2GLsc+faclnHEMnwlGkhyUOkmQADfFlHpsJ1jshW6InH824gyvtCOV2S0/Lo50yv/54UZl9IJZpRnKDD+qUcMgW3WMwLRcYb0DHH4yRRv+u4y7fdQ6+zHClZ+h0uQZQTXejpZ5bSeOWdIuNNzLTAtkshbMFrFcni0DJQyAfWHkGk4LxJw5JQgIHVwWlYG5QFJ+If2L9IafNrvmh89C8roc+vkaPwwPEGdbgxC9tmhVm/AIbodqleLJWEY4w4TOj+hqa8sk54cG1gi4BRiM+hiQfrf87Xiu63aPpbAcvaz7ijEfOowbfACE3VfjF/7j9YaPk+D0OOVhu9emzK6KXHuaV2sRoGERH9YgD9SwLBJnZY/s0/VrRC7Q+aO8aNuZ9DTkOCa5w/RYJCiJDBXgfSdQ9vEmMHP4xd+Fl5kljyVHLhNhXCyRZZa5sGSC0qHEKUvCKn1oV/Qvjph1rBoamAqYfm6Xh2MMMqfgKE1QGeBvLDZ9R3JQ1Mev6NIxJbegUQUGK5tYfV4+PEn0B2gPubqQoQ4m8c/FI+jbuurD0Z28m8eWptX3f1q4q1AN58z59QX0KFsFlJH8NiuBweJ/olNzBZWUEwL5hSqFY/Vlp42+GykadEvHmIl4GwcKtS/12As7PqsW41EwifnbLJu1J2CYqTS+kdrVs/M7lxXkJRBgdihpN9cfYM8uafsSEYUEuzZmd3Bq81zDzcOF7CB4D1wQMHCVMtH8azP4OjKExuXQ7Xn6bXabxMngtEwP8M6IDOLf7GQFotLeOjQo6l8ItFaW1Vc+LZDaO6bpNljLugte51m0/+wgXm+kkaV2+WB5bEh0xMX/7xoFXRm1FucD5TsQSMk9Dir/ppz753/m3Nir8xD4dRcXKqkFp1aXZNkAli+GC/ptTFfub5HnJwwE4+/ETUA0VykTGqZchZdeTEf1TX5LCMMwEpzLpmIHS6qfs5kpFfe5BKq88Ad/MrHvBY4C/lJOlk7tOL6nuu3EkHTpAvpPg+QtwbSc6nBKHvoa7xEd0f3+oF42XqTu9PcGERNNyBv9uFvknvvINs4YptJeYZOxktDl28v2IIGbqxLm0gDLq56ttKNDtpJIWR54oOuzGHH7Auhz7zR2HrG0tAMxHIUAL2wrwb6DQKuTueAT2S3UDcaJzvhtS76zvaxBPt9LmEe9WJuM9OJyh425+xNeSsE/hJfV9+gu4svKKkOGZ29NrhRTdb9SHbViS1DbxyA1RqyqJk0vwOA798ANKnh1ko/owXs+XVPxN14XEAnsWfKxQ3FW1v9m9TZIHDlVR2VJ4CInpNvrEvh773enQbrQBUkPbTBiYVcU/GDFFa/HAIjyuXfXc8970WJmjdf1m2RMfJW4AmeLhzy4N6K1kfHiQ1DQRDRkKnZ1f2xFMnxyzj/qf/kI/ZOG49TT+dg2vZ3wthninqSVBkydaqVM9nWxGCjRedCwQvSJJsvnK8jbNfoAZoUmbLphsuJ77LjR2QJjBaZ+lbpTYxf/hUkS6+lco6HJig7g+LtQnVJPztqeeTVnQTwsqsb/MdswENc1onx+UIqweud+VlYYxnb1Vn5Zev58G3xTPsyj7S1j2L4RSJCzlhnD+tv/b9FIPHM5t+sugmtaRGL4Y7E7wNig7Hx5oRAESvzgJdjk2khrJVxZgKhUUanWxnaZhmKTjXgobTAjWBp7mZZymOVXWYp3rkpDbxy+jW7VTo/SAS0viPKCwHh3Kvbxc0TFp5wRnd4Qbv/wIHDv1ylE6hT5/cuoYX9Qc3VmQYXxSpdTKcDIaRFKHug7kIIkOxMhfG0NilAtEOGPauPnhngmCPsTzVPygPzYXzM7yMy65ZzZdGfVhGvyM6A11LnNE7TL9b3Qmcl2N8/L6UnIrs5g3aw//fs9upfuyPKW3vamvE0i+8McN6J71NVH8i8cgCr+cvaF++E91l3FKaMFOyP4e7idC9PMaAXUjyJHFH8uGiv0r1HpNI32YhA4f6QUUFdPqUoUcp+/S/3zBit5SfEFHDXizgluYKLdMZLv69KbtaIoN4wOOGgO77ppGG59iRGRyIMBRpeFpJv8sBvOcPzHYP1vIqD8sxX0y8t+n7gP/I3caaqpot+PyT1z+4G9zrvrupyq2fwfrP5GEIGpDJ+LmV1HBsu2q+Xy5S9Xx8+vibEpuDt+UE2FaUqzYXY+hMyRvhjC5XYcM2Jy4AXE6Wn2Ok5tDqPhQEhVdZNqLQuWf2VZdn6mUYq0WehnlIW4C+qC4yOs5scpZ8Q5J+9CoUQmvjFGMBLuYJUidro5qLWBdfyCqp/s4zPY0TDqhv+qQwZHMgEzIZCGf3RzktnT0z8BrjrtuKHgdG8288b3/jVnMt/dYP+WL7yXJ9NdzfdpZ4tPET22zTzuZNPb2/OFCEhcmCReOCur+EGvR2iMI2E6PpWWNjJ8kGmNHF7hbqbecwiWAEuO7r6o5oiCZL86E8UhostfacM4Tms6rBkDP3oXYeGO0eH4buk71gdhohGyuPqdcmVxuj8qij4/TMFqSR4uROtsEMu+wjzJ2jVkq29cgirVKB7NXMdhQnXOPjA4IV6Sk1kYLVAywQzaQSSLTrCd8nQNVDSQgUibtlar+XUSMafrR6dH2wGk7AFJqJNl4JUhNpY76uMX02ldxIxshtqCMvZHZ34UOek0DLVlUGHnG6eWpDEIoSFRnYwf3nt6vw0qxFCQKYw98v0vSAQPu/QeoR7ZOzFvCt+CVJk//pGl5/EJCAN3FBHxLmDP+wuLy/Zz2RwJGK1d28/avxMRnhyFTOE+bG2ACxHcBNkKS4ngKuljdQzLm/V41TYEUuaxn5H8q5DdXahNo4YjLIg3BJ5CR12nCwNTy90j+VH0rG2cV9N77Pn01q/K8SCetgYpfaUE70jWUEZ828PFp04GspmMx7/KDLgOuMOvzcqvscaJw8wXZvjOKpIAknLenmLcHL+JkKrfkrJj/2lbgQz1ocRBx75koQLqEb8Vxzsa4sGMXdW5e8/jYMsonMKxzSUM2MzGWIlNUO6593L3DwSVWgnL1B+BpL+5tIPevRIptqZ+CyJ17SP2j0xRw0kK445uBx7XbGMBZIv3NLMLLfnlfnBkE/lNA1S4HxmsTjV1Uuv3exfaY+P3XTSOkCyL84UvVT/rl1KR/SOtO01UyoPL8BNTWZtzwltGoHQyTMtEoXYUYXh62rpwkilDCv1BjF2nryAQIYZsTC43jMLI6KzYRktsemEUYJrq3gejDGaYbtFP6CpGoynFm7hbamBNe2cvDuF7Jq1Tb2Bgu0gr4a1MNe9CALSECXzJOJGaHg0qNFnKNkZEw/3RBXMdM79vVHFGhjWK0A+Jqo88y8zbW0U1hXWvGLsGTmRGy1CMXVCCeW8TlTtWx520yZgjWZ3tStQKocymZ0RaVymGJE1DnVh9N0Q7x+jQkdfTOTGXyxARm46afFDLm43LginWbL9SB2v4CDFud8aJ8Iv0WbdngtetFqPP6worVf6sqkWLCjwrrfnyAdln65iR7nsv8hBsco4NDHSSUfB3gbNtmweviDaaWm/hF3JDRmYYpwkarsjWqx1tMWCxcBGz2rSpxymT7QvxNfapavlyroie9F7yUziKYVQAmF+l23t3kypZpeOB7N92qMCTR4MCgXTs77HrFRDp88Zj58eLS53clasG2gZiTslyzrk0p8s6LzXDJlzWLi5gu5COCQGFk/iycFQ2oT3r41Ez0Zewi9FybYD5zGnDJcEVlKi6pXSN1Z/gkZALgs+vUA5+OGeyhGSukEA/G0r6f7vMHBoICQPNJNJkZwggZ5wJdod9F60+mgh+dr2IRl+ZT3NMzDyRwv3rctn8GkuFd4SumRlf3r9Sz8D2kl6cw0JUPNZOA8=
Variant 2
DifficultyLevel
475
Question
Which number is exactly halfway between 232 and 531 ?
Worked Solution
|
|
Halfway |
= ( 232 + 531 ) ÷ 2 |
|
= 8 ÷ 2 |
|
= 4 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
frac1 | |
frac2 | |
frac3 | |
correctAnswer | |
Answers
U2FsdGVkX19T9PvzDWP67Pp5I2uJqSeIBAGlV4hwzxxbOvyL9BwJ6HXxin9AsFm+zp1kSl/RBD/+21LzK3hORRnCz3GM1/gMjpkRd6KeyOlvPqi1y8jcY0zxnTedLfz72ZSRGdjKx4VBBsj8/NgOpcdWwa00C2zIvFsZT7egURk3/JsZiDmi8W9m/wG70WNvCO4iaJirtXQOafPRO8eU2xumv/YuJzvDs8nt8WjoO/L3w/Z9pV96PmFg8gA4BkRclwUN1e/CRLsDWVZGxYa7nBSTKoX/RDpWcPSXAT+8XrW7xEdBKBBz7ZtfMF15jY1pbsVZQqMNLPaI38OCuk6LJxdNUDUBLwo9U3wZi0FlBj32LegjzCrp+2KBU0V92nGcsYtkm7JeNRHPe+2JgHtbnIRYU4i8Od0rvIWYdxzJvMYQeU9f5u5/mGbU/06fhaj6DTH0yvn1/Noq/2LTNPNopikYGdsLIBI1KQK/muUrk/id8go4tMpWEji2lvoy1JcP6PpfJeXFZR45d3y2cNXXdQfKSIvNGHBGj6iqCT0vLfdIc/4YwY3w6jDuUsx8NSMKoOL6ihm2VYIdECHpsa9aD0532na2wTPcAu9PgKgNrs1fwG5TH7Z6Fd+cITbzhdPf3y5alnxrXiQ/ue48RISeRNZhJFwFejSdiT3C3QUfdYmKtNEYXYnDxBUY5HevnWb75cd5XMNELZk4L262K9DRxMLMz2NHdyKR/r5u7g7cHX9n+bbcd8vrsOpgdi6GrtdacxhGQXMRsgE4LSMzzJ1+RdL/IvWgbfOqv06aLilvp/zovhn/32IP1AmrUsGFtOAz2Xrdk/FQawNOXd86AQhGqe6RB10WbQ/D5Cq7ESy4SlkMLePk/ndWD9doMqkLgqhO+xxvQoux2HfcliemCgXqaEyGwSXYdyofeRlFhgbeo0VOJc4cIH7dmsZNa7VYCFQv528aEiHjzmXcnwN2jiPoLodK9mJ/qZz6rH4NB9hJpvnE4wq9T6mhpXj/e09sgFcZrJ0sEHk0visZ39WVw9OotV6amse2jLkPt71EeGx5dzLuLEq9MCaVh9gY3KR9blAANFnaBT0gcmPO+WWhnrUnt+hI9uVDM9XrYt/TddLh74CoXrsFDGxvA2RsKGNQkdTkEWVzJL63tAYPJBxMpnybHKWm0eSchbthcRaLvzQ2OQlaNXDzMEXzBumBXjiiEGyFUAxGRThpVnfGXVEPmf7e4+KXf2l4wbJlMye6lDHERFehcQJUhuSlCCmCSj6Vlw4WOdIiKlurL5PPRITMUvGQyeefeblsXKQ+fa+r+87dnW5T8kOD62IszOJDdB30sD+LbK5tufEDeCwCcNrLDmbMh6yyH4qooHQF4I8Ewiz1UDq24r/AMX06QCPYbXZMxdaegsYU5+YXw8zL2RdeEg4MqfUNKyujrBNGYR3T1mhJ+P3dM0FXLmqqmbIhrHxMmrb5/rjd+S910SduRZEycbLFZM2OtjAaB+Hk+VnnrxKoFj75lAztZziBVXcMxuvFaOcVjrvFO92DlWd9ZHN6C6j6KRBPvvr09cCjIoMRIvINsaXA41PIzVkeRA3tDWrsJmaAU8xqsZgQuujDIMg9t3HOvzKT68esvPL3x0X/l6hY6R42N+9k4aObYldPwOhE/wc3HcBPl/45iV0sXMYyVgcyFQiRiQmbYfuDuF8PXxutLCDn/LEiHA6+j7mvST1a0gChaGy34KuH+RE5r2OEPESpgQuNBJcqjiA1KIZbwCx2zuD61P/qx7Stk9kSEKHeJ2ZqJ85LZjfKBE0FiSr0LZCXbbxECxtu4XWlAlnRnN4M4XMGgkcI+FVnXuOzKTHLjd4lTLauQoBqiufa6mvADe+d12MR6SMxxUGyfKVbqXpAQJJSdNZPI8XgZvT3pGvsc0qZKxouS9FzKethPeF3KJ7om9JF1zH2KtPcSk47ktHhy+um/TK+kn8Kg2N7xWf3RxS1Rt42TqJKGBB/wAOceyUTewdWJAt73IfoWR9mQjTSdYTbr4ljl92SUjtW/uzhcLymXpV7aNsa7refOK8RomG6z/3drSiBIObTrENF30TLtOA8H+nUKa93opTWSv63/webkFlL84803QTpopW8frSM9G5Iro4p8r948x+WOkmjKE9RDNzgJSEEUuoVrNEkkSrMoVb3QgBNJd+RTTIXg0107Ogfgm9hLVpXKOEarnyecUBHb1TIhfkjRMTuTMdH1A141ILcXvTDvsXNFQfuJHm7lRtvitx4fp8w42K/lGJ6CupTP/nJPTQf3fRL0Sk4bfXNnFmHA4/YLhKyViVwqywEpMAiM9XcsmyxTgiysevdjmqZ8KKM31/1Z8z/M8LmemqGM72u60Q7YzJYk/VFMGz2emR4W9DLw/SYUhj29PzABnsvO5NNbTmBzkVpMUlZGINgPi+QhhZEi6XhtqLxCQvW/zrpG9Xq4RPvQrb95W2oCoWWOGG9ThRSmVyoR9lYQon0E0/4ICw76X1rDKvsnSf1njDiE4Eas4NrLOIUK27LfRAJtmk3GftZACcxDwzcfIP8YWeB51CopwIKAlt9x3POuCbOG4Wuv4DuUBNCyZMJpU1xZjK/J939rYgPfAJ07tisLKOuqD5uF/4gGAciNj5lmrf56FrDbimkKyViom2RlqotL+wJ1oEsQp8yxoMulvZjwg5PRi1q2JZ4uNiPhVug451pQQzsQARSm9Lc9B6r8emYKUhve2SrswwfZur7ElZCrkvmLQYI4YuKjTh9nLtOb4NhDW9UsYYZ0/ZUpARp9GmPI6WEyp0/3HudVIjpQ3vmI29jCDHNYNcdLSj/95aiMBze19ixfKypFRgzVCkCJVoubw8sLxYLJqJk9NiXlKdxcrzNalpjGgT25Vr1mM6wCt7yHlqbWEuz3lnicRHa21eNRaHRiN4UytCZdw+x63u5n7RNFn/mln2idzGECDFOANec9PC+9moJLIwQWb/4iZoovHZP4SihjKpdOueJZsWsAT4l7FYbLYPhe7eTNG8mDd9lDOD/KK0/C5ZndmYqwbLGAdF14ycjChr99VHIqpt8XEv1Z1suKqxFyJnRyXAStBluGXKtdgFQ70sn3lXZoqtzC3TBzZKYO8njr0QeoFTlbHL7jqnzDjAV5PbNZCdXQx0cZ6L8KIAzNaKtUDl/O/nhVsdY8Yr0vjLsJo3cldLzQmK2heU21RhkdUaXpejOvK5K0oiK8x2OmvmoXp/oAzQyKRSssgLFZAIkD5c8IWYZS0ocaWppdYsXBfXqCpiyn268ZhPzyi3UGcCkjVBsXG7E+7N4h29qf/jfoRm2Ap4Q2SqpZjcvux1Tak8AmVWae67YBlEf+WDuZM3y19KAtgPJC1pZwnDpQV+N2IW9ixxLHBELLqzFzYly/qvUujcOI61HbunCUjDYdx0yAnhz2bv3dFpNd2SALGxCBya0Eurmi1LKkUZsSLh5K+fCSBq7STChQi3DSrbezVhpYKjFz4we5tixX9HJcsXbdf4+zFwq72VV3ww6rS48dIlQXFU7bqoqduGNmPiEFkkbhglEHsZaBQynPbIUk8Zed/AkKuQk7MEoSq2xC7T0AvEtoTGssMJYk/LgR8QgYlzxEvckACFc5KLNlTyYO1fxVwCsj6vTuTxCAUYr5G5SC3kbCqaWvbBTJgdV+b1FZVSrUBlr1p5Syn4LJNseDUkA0rl3X88nmLAF2Fsvaid+tt42X/pm8Jc0IYw34ooFYBZkvF1zW0N79i0BW8nWABa3duPaoRPHbVQAXAgV4O5vsbK2z6jFbppd0VuK63WL64+v6N7pABaF4TAbBgyC0knhn24QiwjhBxgJKpo8xwEMOltHmap5/4Xy25RGO4ryJPYj2AkrlGSZmffjAKMKnPMZRdL8fr0Ckb0VsRPX4kUH7XXg5KtMREwUyHh2g0omf5I+lmp9EvFcmLMcrA5g3ei9tYgKbOChlQb8XO3YQeo+Iy+MTdW+713CYD2tyKkKN1rz9u6xIBUVU9Wo0dD1Lrc3VdJcUhBGbIXkatca2c2R30MFxoQwIqMreO4wOxVVcrgrjpXiEwNuHoStURenWzfdT9rmwrzbMdaTR8eg3Lbfp52bYRQmS4zVs7qL7NgiZbjOR73uSyXzcpCYCAIGqUnn1Eg+W28KhCemhnirdK4vEBU15sgBDG4hQmHKONEZo0CgvvVC/4FB0IJx2MaXqzANtqdiEhvtHSaj02/cUrlPoCAUa3xcU8HNhHlx3ZAuFjnPl2NMh6wi8JyPlnT9MR0ecfbWvocsh5/jdeCC5wRly3IXTqVRru2hgADS4wOYn4q8qCQmdULzISDecrD/YcfMRq0acYjLdgEEQaxbRVZD+Zs7Vdu9Mi4OpIk19EL8kYWtR8mv60vhzVdSqIVrgihrnsaqdm/eNtwkNbBdToggvoO/j1pYR+PQY6ZzgbBu/aZr2lq5nrGplFWO45xHsGyuNtJ+943/IN4gO5+7QndJUlz0+ppzxkCg4xR6zEsx68ub/HcXZueIsYfzyAW+L9C06nvT/WvY/PioVGZtsoWCPDWkiKy/wYhO2m9GMZ3lpu/XVe7OjrxKhbkn/rMlGKwBAtRQNp1Xol2HEBP6C4SnQ9bp2mV0KDiaB21ci2nezf11iENTqkbIQEE3ifSOBibQePyfH3KWGAYHKMRGLnjdBg2yF/9gn2bubpuqzUBVZCrkn8d3gU+ENH4R99EkfR7jaVGLTj4U1mQFIwR4KKTSUiF2kzOZsAtlchJklVgP2I37r5lWrQ1xaV6Xq4hAfINZ/zEVTI10KsGCKSh/sxo++qHVr3afgpYU7THUvor/mSx9NEMK6vHUGoz607TMcw0/UVwBtIKgSWORQu/anHyTbiOJRO6HI1CsHbtBHJVgi4UuY2m8v1aMKHq4GPklV6FeNhqsP6kNyPMKoQM8x76OlyMA+aH5/z4eGBOPHBFSa/3m0QesQ2kN6TD5KhyebqhAHHN5iIJyiwQgvqOoCwKE6yhA28g25i8QpsimrbUzK8taa99kKE89CwDWkUskO3s6vm99tbSHqDMsZBOECnOtVVXMma6EVxH8w2ifLRBYQhLZLx7GxOH8Lhb5AVPcz9Th7WHaJjlmxA0XXiViBJpwpJOU7TmpKkYrC5dWnJu/r1X6lIVUhffNh2PDbl1JyHFEtZqn7DbjYDfV8ULkMvVagRLwl8kOreydeIl9dMImyJXztzTxfBlyHEkVSt0QyIVHmv7W4vhWfgHLDxTu88dgEL0nImXLyZ0CBBrZ31QaMPtXkTL1KmDCwVyLrfMd1OBzdfPNJ2R/eYR7gc7Pi9RZROhGr81Zz4F88cNJRkt1l5HThXTed+vlg/mrSop5JyZl+watDErlpSY7FMkuVLhdKAdnYxFTbMhFA9mc5RJpcrMfSsGZCQ0uxv6pZXkoGp6zQu8lTXjL7YxquZOsS711pzvPvmmZmkdeYnmM8OfPDzZ0rjwDtD0u+Aw7REdXJ0Witeeu6B7FCMMv1x/WOL6vC/aKXnTxHDDdGAGM8QQ3FLZkuBH3qNftWqgG5AygEinZBKJpW2y1HgdopFLv1GowNrvJPgCdNsCd6fzCaPKjCIqsZx+usOJno+47mZe8SdgfULiCntNdzF24SnLeVb4h9gvMUC++b1zS4pxRG1eBucjSOPr3hhe6KFNnBsc1XMMmW+k0ytbBoGMq0JtRGs4Nx9qUa/C7wul8GIpMY9NR0Ntbm/itllbSagBM70pz4iCP2p+fy1H5+TccdF+ym6JVQsf7dyle3AYan0hoiSMcnKdeUw/vcDzmzpsCfvGZvKOFFOBCuFNTLSPfuEcrs4Rh55TvRwUpRUpPE/7jFtEXyntx8GPKidRXrmAoqUR1zc829zrjRsJOGmmFDaD0Kiv2G/GYY+ISsbwROQAdyGi4xVJ6tJTeQ+2HBqFIdxV/BBPXKwRJtXuiMYhSsITv1P4VmJFGabNA6dx3wkx4brCVKRmDrYE2SHV3UtG6wylwfEVnVAJQHcm2mHS0EimbXsduAmLg6w53cc86rdmpgI88NldGLZx4e9c2268Y6ZodY5KmLIFr/NZw4cKDTlM/99rXufUNsjRUwNqU4jL0okMQDsDNjb2BFHj2xbNzyuQQVHh4QCOHhFONYy9frgGaGzLRNdTwL5InYaArxPh2n1gUqpW+kN7C1SGDxQ0CkvL2q7n1OQgFaRVF46dZt8mYtCj2/a/crf3vughoiZaDXUTR6S8IsgnwZ69yJ98KXsoODdaOCd5lybPBnFrXTzr4DYGh0wIlhf2HkSMdMYdi1Zbn890uDyLopS9kx2+VkY2TqtU7MtGMOSbP1FGm2eRnKkdLc5EbVJrUJ2mzoaneyWPwCNJTqZ3XCvj/rXtxUk/0O9Yp6lLiPQZlNKx8aggdqZ6nKVK5eheodafohpkxNjPjuBVoup03qU2qBiDQbsBKM4IBD7vg7rThTbkspXiewNwbpnbbZ+P1fHYE5tXCaGSZnu9Lb4B1s4SXUiDx4g7KL4MsDg0iSqoBYMbqZYLz5S2UqPz+kdokJa5oY+nMndWmve3mA4mOaHSF6v2WpcUz3mQzcrP2xxhKW4P+PruNV9wGC+GdrJgHC3XZpCksvJi9y0aeFMzQp+bMFCYlBTGWTjt8/LF05MM0jT34xYliyiOtxPf2reH7zOIlHEm5UzYlJ2TW5FbcfGYNjBjBms77e4tjeViCl74jgGTuc79MWhFgBd+W8G4eb4iwc6ykJRzaHqQsdNJ7zB3KmflTIZvIox3MWeV0FkMGe3hkoj0Hzv38G5r+XsQuEZ+DcCMlRJvX2VF4sQxBEipOHYPRsIiLe6Efgok7+KHdsQz4icFsgagsGMdDcNN3K2GZPV3iFtfqCnYlpUpeNLZx2PaA7d+N1E+SKshR/uWUi/LK9K0Eq9a9AfdqbrtoKVu+v48iUnlSRPKe5KtH2x1wtafNQlhpKEOG8E8a79tVlITFPBTsFtmyv0Kg17OILu2Bw3VTa1yaB/D+JuBgf+CHjO6x+mEFBvNOAh9OzsGWWjkEJ0a7MUaGbtUtOABaN3JSj1h82nM+D/XpJ0rhCH/d8y0l0At6t6s0HpvikydrYgnXvBcRh2TsHpHWRpxEBMeUcgVPTSb41gWYsBilt41ieG2BIu9vAYt7AT/yIQc9N9twaZdAZKTg3WaKxOvssYzl1yrHf+V6eLKNm8jDzxi315jy0GD8ydRGoaTv6BhIzEGWusYwqq1AS6XaqdoJNiNQ4swEGnKxC86LF39xNCLes1aXaaOiynNvGSN6HKYKPGaqacUECCLR96TFuV4Ish/wb52B3h3aV7Oi+MGveLMGsXNrcHeIT6tsHSNTwbiOcL6cKzTJC5HcMzm7ahjrT/RLn0VYMgr/qByDzCaHUL84UfyXO5snCEDx130n13L7KqJeI1EvdnUMwL4x4Z3rk19ATjQpmNEuSvSNRp5dvhOKerQNKbJZ4D4PpMHbtqGHjfoT/7Jc/yiMhXzlONS8xcRcuIqUpPW4fPt1pjxPXuqXd6d52ssLo3GhBb6t61JB6sdDsvKiQYjiiLc4ZkDXL/itXEvtA1oFN/qsTWVmo0DuA0HVIhmy9g1YlRT35xky51/G7wRQxp4HM0cUZe9C+kcbuxRsHee0BcKCW7FAbk+u8qDwqtgOdV/4N5OaK574m6gZKbZ+vuIYxDP29lJFNzKdCC7Ci4cYpr5Lq3a+BjL0dxanCBIKMA06do42ZpeQTkzI46ro1xr9Yo2pxBN3ffrIEPu0K6U+TmL6KwANqn9KYBhuHdoA+ITaxDI95JTNiM4maWGknAq+8vnMMM1dg9Zo7+tEAsUV0Y6T1fBkfGNzpt2xgt9Cpqf4sKIelGtBP6N0FdE6GDokPtjeDGXmgbZHr4oiAoHzvE23ozQrcPSyfN7jIUGg/sncZE5BK8pdneTjLtj+ox9MI/cA/9Wt2NlsVrsWG3ltSDZEc099kn/CtmPI3FrTg1bItqOWX363MBYv80PFyHvEOJl5Y7EK1lxTJVBOAQsNSqoUu9zpsFXP6dvkEKz9p28dUv4V1i0plYZ1Y0tntB8nJZaO0YM4jep+IHyI95JFbRtbXbOJrGdhpurEW75nebBCNa0mWSweXcP+/8K9FUep+BijQOyNz1adSjSrvGyYn4d8aRW0oK3J9TXgMX2yafMEEKLNcNB+i+3AY5jiUxd5xPXB9L0tSdBNhX9hOtQ/Y4Z3Kfr/Faqs0X1KHqi7FINFAp08bqxvO4RDdvaT9Q3COvPv6hmI2NAnen909o4hRiBCJH15zYrk+sFvckbO7e25xMCuRsotEo15cQWcQKea9+qXaDscKa/W1Yv6JZSDZ6HZmWa+IuiIw/j3w1EEqYPMvFeBzyMGNipUkGUqXy08KAbiUoRzj1sNlrydWFQYpaC14DaZ+y6h/yz/FZ4lZ4nRTquG6ogS+QQ4uhvXvDgI8H1j9ABL8Q3gbK7EE7Dv4/gyNp62SI7MNvfErQ9lxGJxTzZh39Cfn5wF4LYIQXge4t0KYYfP4ZPWo+4GWbp/INrE9mp+6bxQNTxI+4h89/AdfcY95gu2kZwBGcFFbbTXj99IeMzpHfAWXTslEInD7DtbNHPXen+XZu7i73Gp6nToTY1fXhaL9G349iJwsmzJcofQBqkjJUm/YHvGF6abqMXe5Rzv525c0P2mDMOtXm3YgFt+cQww8wAfISi9560HG5E3E/hyoFgQtnq20UTT7noT/OIRyG54zVUYp48jqf/NHFidmn5QiufriQKUD9OzR002d0SwMt7MLyT91wadoGs0DxtYjrCK24T1VY9z8K9yx5Dmt/M8MhneawxlqZGdCtRmsvIR8DY+E2qNfsf8pymQJYtzXinhe5tYJ2aAaGKE4kysv7usT2shkRlq/DSPzzpHH6jAyW/7+BpIYTdSu2RpyrT1p4xK0ZwyJRsCw7vJdY/pb547oL6WvYgfia8aKPM5vJijjIvZUouXbaN+sD5fuLBdUoiw7RChYNdgjzKFU/LoroL2IUJTihfYuN+1fH8ebx/BS3dUtldeq7ZeKRsbLVfJtYbyZUm9wjoy23fu3TqbODx61ABI5lIiXKmmaD5vdph32slrAHqsDw+iIpWDHL6lZwS4U7ueVYpYyWImFG6TFK14/jgE6JY1UwKKmt7SqadDYzM165UgNWKQVJqP1HCteHz/1+1u8ji2bM0OOBi2SbuTW+m1p4wpe34ho/ux3mUVnXN4GSzuRv4jdkgaNwVoPCJ2SEpDQslwblmjS71RIofqz/R7mBBlOcRkVjIrBZqh/YwNbDIqyu023ijnu9BPUMHGIrVX9oTe99tPMlG/H4uEksSWOO3mSs6m+ddLGKVdY/7wOFtl4lC9LDJHhrThVirvjSX8hlsH0esCrz0Z7khdQNXsgthekVhXhPaunCm0Mxq3n0ajtFa5KIbQ3eNVWRQ28NNQccuELM3u/wkIM2y6kVwHK3GO/PWvBtPkvviOnJdeghM4WHXwEfiVplYCBwnK2yX7iOvuqGCyqqX/VjqLgv9leWmrQq6K2Bp2PAq8DbeVpn/rBXcR1kbgZbU732XLVl9wTuumnDqY8ppi+/fFD9pMMf/ZqlRL05KNfyGWqFyoREuMZmt733JVxsabwZPcwDc8Og0g+PvOhLBqsTxZJmkrjh6MXxYoRmQHd+rP0CJhoXDEK5LeA3lopAFQA+Xa/rP/LejWFHyxhpp5iooCzEIB/ysWn1WM70hoTZva29dXgbruw08ETkvvifVAG+2cyskwlHI9qhnxlPEJkK823qiUPuK6wfJXwqsZUWgsP47kvVaqY+HHWVkCxd7iPyA5EM0+o2PIo4QVd7c5VE8+zD9wUYC3PccVmb26MQkJE5bsn31accxFJr3s6KVdQSX7jspkDSq13RliM2Tq2lVZgwJp4pGO6LTxY/MAa9SIpg3S70hSN9U52U+quWYN7lASjkKv0X8m7qdE9snzXK5E/3Wc/fnjlCcoAXe3KuewFCUXAmu4U3KkaIzUuJo9kmA9Tu5mm+o4hwb46deiMj7n04oaEWLsiVBlGJJP+NUeb1+WFEAXbctpeLBkDzgTiEWhr5zxqtoHJEWqeXVF/7+OtFgcA+bhKCSUvgpN+PujzeN8VD7VzSPVI9MzELBCwajVwLY3LmZUZHW8V9Ro/wYZwSpFcydJ9Dpo2+/baINOvC+M+FztkJ1QEPHFhF3eUZjIAidJKNISSPQNWx/SbKu38Qnxp3sE0zjenRuoS//rFLSH1u2PSl7AAR6zyrm06+vXMdR7zEv27Dy4juCQ/getIFjqdps/3QhK5ehJPNLRCrgjGMSQkOfcqDrWDuYBX14KNER3Z5XqaqjrTxbJNoO+XapdZFQMcMrDwplYs4oaoAgTroD6zrNeV2RCUrx0eZ2E1t4FwW9hMKSz8H/u1IIrhwZsoGSZiE1ga2+4M3PhPcXbz1RQsB6moDqekn0yuUBhf9KIsYb7ckHdyPVL1u6ZENQVJ+rcFNxD3gW/KKa7szGIKOAXQShZPgF17w+Qv7D8fFxAnAKmFeCtD5N6dEDvcrr6v/gSVazfDvmRSnmiUPNnrHJBh3gBY9cOMW9MRDz6pchA1pWjAxBN6kqT6yCEaXRpLXeJCNf56z7GQ3RP/Bl901h7O+L6gy09erTiPvK11baMbs3t2YsWU5rY54t6VfAtnditxb0wMSCq+Oy4svi4ZToEO1K8xq+5ZYc9Bcm0/2wpYH45inV8O488C/z8BduPSHRx6PKLfisFyxyEOpPQyoI8CLl1z1SSrizdGuaMs5VG5Pzlb7XRAqx67be4+fHsuxvrDU+nBD+Fb4FjtXvDjo0Sceh/SnEVi0HyTcaZsy7Tyi4T4v9AY8syJKAxFvYX9US9VKsf2rwUzWPePlK50kZ9iKe5wPIW8inswLUKPmsKo8WYNddTpOlg/nV0loHzpmd9vaigIFhUVP8Yq56ZfWMt8XBvHU6fuCGpg3CnOs0ws2eFfExU0/MMn4YQWmZvL0kOsYNTFae978F5dZopOQUGyY1UAeYGE0e+sCU57F04q8lOSpgPJXd3xMmyo0YB4MK9/EXafD9JDwW2cT7KrGb2o5bqX2nA3fk/P0H0o5jskAdCaWgICwrLu816ylW4Ka+yovfpMZusFUaM2fj6LlpbEukMPesV965qcS4f4ejnuGJV++RspiCzTOnBv+DfCtUecHX7OfpDuCYHwtwcPa7jpQg0NmbYDILA05L4EWjYyaQ5J8O2T6UlbplFu6YNoOwSg1O/tKT9inUHys4IQ17Y2K3wx4AVv3KCpTB6O2C++eR1bJQnXgJa3auHBINDAQ6vrarrw/d34u7TsBThMn/NtyFydEmxew4fs75yONLrJdmdGfyp8SyEVaCuSl6RbDOTYIJ2V05g2/wj9aBOMoR/2tJVC2QOarSa7qCg0udV6UYlMk9KrT2cVy8IKCybRjj5G+6VPvUgvlJVEu6c8YeSDlLER7nQn7uEz9zdRbZJ5sBSGqREue48ZwKqsIBjB6Wos6GSCV4+NHCsgx0TEXdN+VXmgpWVj4pMvb2LQ0F+vF2byIv0fnBHdaGj0RLq/9Bu4O7yPWV71DtM9ByofBWl7LzaPE7A1cGDcI4srVXwOkwdC3VlJcKF1evxSFDw84aOfkwwnGOI3jXOT+lPAvtquK01lH4lbaUbV2vec58j/zBh/XE7N5QKx6RLJR8hUizaFBnbHqWSNl53fe5nCDW3t8gsRvnSUgQ5hCK6WeMwkTdl5puAnhsNo+336H/V0lmgyIAuVlvYrIfVHJQBW5MMygHyRZ40MQAOT0YRkAJStuD7nZJKthmsBdlPyX8CY88+BfTMEWD1XaOfJ1SqYxdbfe36vsEMOabLb7mt37OZrYaNy1uWkDD8BOkdJTjK971BCe+lEbElhllB2ClFXWU2MPtAgZFukj0bnQfd6AJ5yidYOe8QzJ6QzRi7uv5eMfYOQUObfMVgFtj8t8WNuth5VrcgEep6Utu/QAgEDbfvjrpro14nJ2nNMyDJVXkeRP3UZ8Q46YdpwQS7+Xu4XkdF3j5P3+cVAQCdXmXM51OCb2+4Ty8hlUxKUpXZ5cHI485uwYYJTTUb4NVBkRWIrFVEXHMP8icZw1pZr9KTAtK84HnBn6GL9YaAFpbseIHLdHQl8cUpOlALdqD0cBnCkE8KjBaiE+nyqlwOnoZctimJtEBQ19Iqmd99tXw568kcqzooLz4F2r56V9o/2c2pe7+w0PGEV6oGoZNlV7TvCVUKPwWVIB1RJEsEpLMKQEDz8vFghgSzRPp+CN2seVa7wjph4gl7/HC9NwlKwRvD18LM4reUyISIbW+vEsf/DyTizZphm+fh7xCMDFox3zdzGqHtNHXUMjL6hlxnydEtcdc/guyfgdm0qQq7c9zjYMEj6miqAhFzlLTGG12xZZeePSkrf1iIze9mOEAeR58GoFOJefFBXb8AzqpgImWOUmN9W7WHeSPVAydkrTYAJ8OT5n0XNwKBoiajUcxkM/+ehTBybI323Vj4zu+j5zCp4VVcuoUbiLABMOOiLwIf2Vf5f8wZa03T1gQU6i6fdGYzWbEovYnrpanAnCUzflfED0fGYflKUhxlJTiF6lzAfU0R5qpA4MpylheGiNXnMbNnrSwRjyCpkmpBayBPVqLc8YvvIBGPV4VcgT/a1IkUGehM3f8jQTgN0k+TcFu/A819NaQl2/X7pHIfwaRK71E8E6JjzXmVyqHMCnp0d2w4AkxXIImd/qPf1dxYC06y/YrBmroJ/lbsOqzAoZ8dlvYrToSnYUClXSypRN8bcIz6Ow+48eDdGIaq+XUGVARa7X6qoQkhkkzBn8z8VvkUAVWDK60B19BnhmUqdNjXTfeUcA4xiUef/iv7b5xar/QeMB3vYnJ8VQqVY9RcwhJ2TkJudjYRfyI+dKJrGmHi6UY5sSS38+SZ6KXoQJGUkc3mkp+lWb04Yv5vHYbz48CZKj0Q9vtRc201dzRhJeoDpZv2H4UXLGaPKJHpSCeIz+kt7dKZXEtWOTC7TGAtDw6gojwW0VTC6tdkfui6X5NqVsCBrGtNDlt8dATZ5/uqPyF5e/BItxfFIb+Q9atYosWO3iuoxM0tcFYBE3MSFTWY0vth7ATtalj8hKk+p99KF8iTB9C+scb5QYrENdxKu9Y1D6pdXLNYL6pdGNSw51PCeww8QUMd+WfBiglhV1IeIqLuKnuzSld3YBGhrxsKD8FvS8YSgIAOvgzo/YJz8c/SI5Xraf4F/Xn4XePvqOKNylFVXUdRJlqaA5c7BPQ40B0Er68ggbPA/QuMNWq1mSaHCL3i+e52JnZKGz6sUb+XUXp7LNziIPGbetkPQXPGA3oapcOYNeE6Y6i4eWv5ZvB3798VwcXOtyuumaSr6Jw5GW88bL0u98Ts/VDwZ+IUoMYlNe+MQZaNJyAs/HtwpDkUB0TsoTDT/AGSmu2tfMoYK5ylSsEHAGoc+16U4KHRD3gCqgIJschE044kFOjTq2KQsgBdSAAa+cSChMdp6xxaEa7nvDDzdRB8T0JYSLUQH9T3WFq/jtBq0fd1OXmtPV08lkRLemZHShghAHBtsickIMwZ5wR4xnbOLFIlPp426IbnOs0xA36hT6pUWbGAtfhXjW+Q90w/4w1DzQbjUB9aAE9IJpSPKpOiMQE4Qa/zYtff6qZpqcIo00LQF+f7EMbqDbTXWjOISM1SHMgEOzVcAEqDltkL6i0SLKgaDnPHIqIZNqflxTFbITviHhkt4MwVPUhqPZKiGFjG7b27JI9oocSIieI6gL6hRSbZtRqsUrIoDZksNGn310C6iKlzsnOwvlQStwUKGI3tA75V9cEakTNg14s9WcwRP55L4Jrsm9Huob0y9huIHTDjs26UyNJcqmiHd9Bd2eGaQUAn+zJWqhkSGCVtAaEXwXLK+I2ThlE3tLtLWeDqcGzOJ35q9oSO3bTB1aILd/LKp3npyn96gQnK6YTk/Oiy21VE9XA2cFGMP4/SktPpOaHNX+66sBvCN8tDgTbrkpnqhDJOcpmyH1qHJtMQaWGSTHeW5FmSZkgZfCn2yTqnNesq2IY4I6A9Jjr8awIhPm8410r1hWSXExRVnAvqzBI/YfBzUHlJXSv11V5f9/jZk5BJlYZdiAqF+/x8TytGaUxxSgl7SBlhQHiWeTpsGTymJ3feGk/UesPDhgcnSVvNsEZapDRBJ4hL7Ihk7JJmLhIBXY/K0UHfN6htjC2esxr4f6qxIVBrWQYVLCCW1rkw/nk7bEdVEEjfRzj7BR3QZiNt9EO0XkUKvDXxn9tqvTXF/12WTLturYq5GAZtlSmwgM4Jn+xmdfW4jvfisNUKWjsI/iw7TpJl+CT2k0XSPFNqtpwaLuZt+DYATOd5+lsi7MWh1zUBw4XpROcOSYjFwZ70GBlwAyfyEN/Jd3JMR1YLx30qSKSsavtxcC7jznLJi8rlyTlIh1pbsVdWQEmd6fQ0R4o90BtG3k40ogDA9+4KdMOU8Vo9K0d8UZh8YoesqgbvR0SBEKTldU5NI1Ui/QpRJmG/LnblkOPZYZjM2aja/V7k7dyd5aCeSDi27e1VI40uM6A2f+bAiy9WZglwmYVSGg9Tm8VguD8CnWXHVuP1fEr65aOeoJeu9UUxwNDV7aQV8kRuSkbK+lejUhnXFnAmCJRJ8qkRhYrmrOXUUUbYtbHgg1cKUDfPiXrLkOcnyosCl4oZuI+4rx8Mqjd5bmQL0O1JuFzdH+xWZqoUCfcPrmnXtE0ey/Z3P0NHXK76G8ML9MzNc2YvG28+Qpu5af5vGO+77dQCymOAZSZgYgu66ETRGnmPt7UTwxcyZwJsuGQr9xG+lXhTApr+E2OFRJVYatpZvZvbtqQJkUU1o5UoCKimS3+i4pR0C3wPzhY0BCzn1n2HQFweMJ6BFUspXlKZkw7ZZw1pMY1rk84b8caD5U5wTuCFffR8AjHhbCFT5Cu/vcA6/KJL4FAY70r9JPV4sC6VTKQOQR/QWgV4T/FpU3nl/2kZX90Lus2XKmvS4lnnTi4jwnxw1lkbcWv3bTkTlbE0Gxl4DAyWWdFGpCrxV0QzMx1lih9BPOVPJkxnw6V4Jb44n7zEf55bjgW0pWpyvi2e9kvh+7gGMpVmJeyKn35o9SWCxLpy6Sr8zndPZwRNPi0QI1+9sZwKW+yMVplfneX2ufCo71DTcZUyH64+N8EWlexTTsoK2sMTduDyDMtGLBbT3FYLKEIgcqjn4w4QP4oF9unj+pLjUqLh3keYAz/ekcWuL4tJ8wMfVdWRygrbpSAANB0KXo6bJ1EZNoQ+/YbCujOqODYFdlaH0dVvtjdVE7beByaRYwtUQaJo41PiOIpsnwhmY8kryaayXcgOTe2pZLm+5mNlesobqJbJuSh3hXvS5z5LN4u/P6w4eh2z6w6BJtJtfy+QMlin0Atew3MgPOvWjNxvIdksEx9hPmA73RkcFJF13SKzn3sgw84/BwyY4Ww3/2dCSs3doSHAY6vKJZptv0OfIeBtkGupyEBFL29HNurSE2Qz0tFmLFbzV8GirY6V5hazAOi/e3I2z73/KYbbUdRLX81+ACVeAffkareOm4y8OzRmKDH2f+LdoMCuqs26fRXdi7TJSHC6bNbdvcB3gytoVR5fsmxwsdYZH/q8/r+/7RAEnZebxSbiY03tURWZ/4d/EJUIzWe4LywwEUsy68cS/L0tsbfxh6F7h8EuG9Is9VgbeXv0DrcYeG2LZa9Q2fefzR76q6A+lZeLDEUDOS48BhXEHQA5STulevA6b0uN7JM/Gw+YVnCMATkXAvaDrM+HQqRELItuBwXcgw3nKwdbcTn4DJCspEvbQvNi9zpwV+lbfeik+gotTJ1akvTE7S0BSfy7vghpnR5W/ao2tGz0fNUIiMlpa5sfWLHYZPrhgPmlMzmuAHn3GIYuycPZsvunXE8KJAsYJ6B7amr2xiIJOMUav+pACqhApbGp733i7LJ/8FRtYOztolIoZ0TeZ3Uh20S33zaYyaEdlP8vG4G+qCVuMlNCPk+bYd5vEK3ngpag+GVCZ7btE+h819cg4Jn5IgvrPUJqGUOiRIxhe64ppXC/ohx9h6XyiFkkO4zXSU+sDrIATKV6Xmf7wy77NTHQer9PxzNRL6j40LoondEUx73fSy63nRBIn8/97TVpGwHpOQ9619ZFM5iI2uHfn9km3rgQRTs0pjc+dn5jm8chtAKWAgv1mgQkIoyyUosXZV36grZP9arwW29Cvxv6W7bwpnnCBuef/ySO5SDHPkWS6hPsQVZSuTbdDsVmtfAifYAtRLZUg9FudWLOe/nje5iFI2JvwJ1VUM+PmwVY3qhSjMRekBaOeXk/n3lcbuKe3qd4ywcx7KxPqIxiNLkNLTSo4IhqyfahReK0wsr80xItmAw=
Variant 3
DifficultyLevel
475
Question
Which number is exactly halfway between 1 31 and 4 32 ?
Worked Solution
|
|
Halfway |
= ( 1 31 + 4 32 ) ÷ 2 |
|
= 6 ÷ 2 |
|
= 3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
frac1 | |
frac2 | |
frac3 | |
correctAnswer | |
Answers