20223
U2FsdGVkX1/zjiCDD/Tm/Bu04Yuec4PA9TzN9EmlV8MHKWfG6Uvre+nCo7GZKtBTYo9PsHrxEjIVZW1vu5Tq9gosJstW1spVKhV0oSnzgThLQfTuv478A9ns9Tyv65Dr6UnvMHLG145XQNQlNHNgCT//2YuwZwf9xO4pfzxF57RBa8Wy9SoHr3MKBTN/P7XKcJbB7gGsBB6DUv2qE7CotBizzXBn6CbBum0vp7VC2jpMSAcQu4uBJGF3aG13rkCQDk6/fCrIveYmwgzNnQO3F8xuyG4dSPAHZW9bp53Y7Fabl7qoRm+in0OR0aqJP8cNUVZQdmG1mxvzWI70uoXHXaOidVz3rVwscH+GNRMosUl/dKOt2uKCAYAKQlTFN3t7XV2YNHsVEQfneljUmnksyXh2JhyHXTWWLZpNhtnDbsZ0X+ez63hDutdZYBF1C+boMJmGTBAkla/5+HTlREw/IW5NHbGPDJxloJ9fTMoc7o4B3BcBzP3elsgZpXlWAjlHwofdf7Rea2hm8QFDH98LsI1r78a1OXETzyGw37zvOhn4IKPb1AP2gcx2ui0EIOY5cy8RX6gAYDTGXxObhlGfjvM6ZtkHQ3xf87Rt3CZHeSUw5enoyx2lg7zpgkHexahYtvQyp2ZcX5YKvXtANsFHIWGep3thHqY4W/XaacfBs2E8CKICYcMaM4mgQZ+BItUWAJjyFWZ/DUccIZkWdBvODrhsotvi6rpvLwqEujKshQCxGX5gW8QgWPZszJ8PvEvrSihWIcn7dWHkDFhro9xmZRAYPArZ81cDCZ1pnnMxZazGjq7FNbI+EJyP/XEgSbO5IoSY7SxPo0dPd94b8Qa4Ph9QHoxDOUdxZSxrxL5pJ9u+pZAaGfyG3NR73EIlS73crUBT8ImDq6PCQMwJVMQzDC6A1JVW4mmzekLsmCxu/1ckJ58swTS5WbrlOQGFkWC/cK5BA6exLe+A0yJx3Lz9ipxyJWE7pSI9B2H595A+zxD23m+cE82gyIVSpRNzYTYGrsW7HguhFdlZpCQuObVR6w8cKibj7w2N4mgc2bkNRYzRUVlELQu+yf7bTuE9Gj/IJ+7PtcEeas0hPcknz7sR8I+pgyIwa7FqjlXAIsFtClB1vLnhsqF+xjSnOzWZDJ5HghHFg5pgOQ1aTDw95dS+3RfkVTJ03aOJZfBYWJdQb5ijSxxJlJCWn0l98hV5GmZqwLRApL/Z6zPCw626SwPTi4/c8IccYGp88HQNlFFELeI7cjfIH1zj1TLp/R6RGYmkVpZXpPFT0ivE3XD0+zpeLQQo4eWhEDQsVI8lrVs8UHjtDtoTyw9DnusdSiTan/tgBtr1sZtTiB7+U7f6sAYpsEqdZX6aBOEU279cP1jpq7K+UPGjA2ngFbZYGvuS10Rv5JDRfci+D4d2qIXI8yPsWdhktg8szsoIlRp0KlUzFAMlGtIGgoF/1FATZEtYBNsTMXx3EwgQUgEgEX+Nx3EeM2tkNQI4jVEPX0d48IBC8QB4fbul6mwRdAvcAvO6weEa/CcP+s42SlONQZiDlAlSoZEXS+2Pf+pEF5XFTxrFgYcszcVJAvrAJOIZZYD1sFnIehgFRvqfoRf55PYT1rWc4TbTBeqXFE0+poJVGX6MlwCDPd14HGwqiUyqDB33Nnm7f11AwwL4Ab084KsvE0IP4YZxXz1Yus2Z3ccp3aQqt8MN2dyv7bv1I0YhTFsy6Xefso9evhBZOwK5sN5ZWDpNget8LplJjR/U4EWYr5Ki0nq8l5FO9sqPFjQB/NQ1PJepytbaY1Wj7jirHPgPjmjUabWDPWnvEL+rQziEb81GMyvjvNCd29Q30FqVw+/m7Rdt48MKcoaLVqmWJZdSEIVWcQnGZi3F2w29xYPOWaRFpBBfJAWIqbtnUYsgGeq0pPn6ABqfJaAZmvjkc+apbsfRvCkM5CKpdG7EDtoVe79kOYil1IUzXkZAqKpdbZr22aJ5cjq5cK5Vw9qUwZSdLLam3juczKwehMCieNvTCdZlTSKrk5SZ6y86LHdJ9R95TvohyCVb5AhPTWL4N2iGxxB2EBwm76gFQ7zmMeSOAH3NSUGMsVugd9V3T6DbAuuI2hb7l+lpUih8fWEoX4rzOQHiFXjD0AOvY1Lw/uaHQcr1GUkssnhSiS5y3xcvka7Y74wz3QovBODc6Ez+scas1z0KvfI76eQjLOclgrorPwuHp7A4nZzbn/xFwtrbxjXgmX0BVe9r6CsQyv25rHjmN6ZVBdiLFpABfQpjIRxK4+S7retp69TJ1UEkn3e18CrZ+rWojES49BNrS3XEppMlQEhylgJr2+GDU3S8cUDaIlXUtQCpSETMKHbYQQzurKcQXDacKMjHoiCo+YP1O+qkP9SkTP1EwVZw+TGoEMpYJvL2Z67pWpNbk0kI3WK09bgkXdp2kbDx/VI11BZKXUriWkI2v4ViLuoCqQcVutdCGwaD7h0v45nAxt69SwGAZ1uUshcDY9mXhYr3Q+b5jP+LPNLcgvCMCsQ0VPM+UvoEipovrOCLxYAXMZgHpjV9XAc+Vazfec5VMh0VqkcnqV4vqoZnd+edkd/Tm/SA3wfbvlXMaQhHO2hQIle51pZOW+PmG6Pge2PbpaxLZoHRZcItINVh2bDcbIFSNbvsDtn7Y4kctZmpA0WGb3UGNvx4dsUCudYXS4k7fKt9Zy6qt1mHbf5ctB8qxsDFEGI21Xxo5LgKVdWn+cJYL44Jv5Ymt3bFZgVMX5WORRP8LhaTbV2b5T2jQuhVdFGaEQETipXtEl/7OQWV6mqz6UQyAdjnO49rtQJfM36LmZBr2fCmvyaI9ZfJcd94wq9AcNAd3eNW7IfgAowRgxMSkkkGZxS+nRWovcTmGajOoFu2RFmBGsiukCIPqcfOjviZr8b/EFofHlgCoq3p7UnDZhR9cBgdL3pEcx2XNnz3SdyMW2/KSGjfyfHWzwQAxkt4ZnyvRcdAz6/uTAF2Jh6ed/2n0sRyljR/6pKFHtUIKCgbRTx0FVj2VYjoZToHaUYUZ2Da+wsWGD+5+AmGVDWSFZdZMd1RuDywo08d2rp8q7bOyB1K1P5ZX4vSTgSUqzJ0/uX4vGfSMPMzvWtgFJL38qCqVKVf5NKX54l47wCUh6hHqvaZzVZ7HRgAHjY+dbV2qfaVpDCRzcPSjY7y2ouNJwZ3ORwwSl1vBUCgEoHafHehXv/xyeuGH1bMH8jqs8lbdMQG069YqKXBtACvdS3Kx2vh9Wc9zqkWOOZcpsVxeWuWvy8LqJSu5TsBAVKhNsznwKXJSjRrxot0TZgtS6rodpO53NNj/QDhFw77+ovYRkGp2aXWMGDML5e47KMhx2N9h1kJqTNGaxb40E+Xx3bgLIGa3zZ4ygcUHp81rnOJ2hIBGQ+jbCZSJY3w86V3F2KMN4bFIkn/MH6bzJyRj8aQFwS6oDQ3K44PN2nUJl8SUwzLM2vmVJq6jrrDhJikuSJ4r6OrtF3V5OjyekWycxor5g1MGCAhgPMPMS9Kz/BdsBSjJ33ui7J+YMFMX+ynG0prDBNXzeet2EoXesEFnhoV785Q1NyfpJ+Hrr0GkRnAoolWErF26/YDpO3N0gxRukyukrRf/6vZyVqdK3JyUzHIIoN0baJcaJ4fxLAC/Z5kl4VHnTxnwTFp1hQ3QJG9eOTT3GRm71eQE1UcyrAw4OckDI93SdlzDpEDsYWdt9agXFmN7wM52jQgE/6hWEyFf9nbGgtIzCwist5oZb19NyILpO7ZzTXDCMCO6EqCJGGuHJfmt8z7By9IWz2tpF2+k4PQNnfoRLcUE0Yc+yQEfzcXdZKRx7Zz5FX+AN8yjDnQOIqf74lAp3CjG5CtSsWuojg3PfpTUUZAZAolJIFVoTrUafZgkTXtS+0Q80mGY8+OkIRYglyuiLcerp6Jv9wca+7O2yxm6awt5CNWe9QkC2bApryGkx6qcDxgEadqlWkj6rloXIdJcYsPwKfmFH5+1+wB8F8huzwZy5j/OSTjyWR7lenHoiGoDBS4K5eqq18wotYy/35WlHkM82Q4/k1in8OhnSNJP/C7cu+dZIa77CDiHbMsRC7/HjzoiYRNGpCvuP46PB/juyyPcfs/ZUqL7R94fWQXe9MWScJRQ5fjiA/TTLcyayrl7PyBP6o4sQShs43DRxYSv3ITqfc0vm+Ku59cNIx8q5SBU7N871RcpxLcHltY47zvKUt2vzSIDwVn/Z4T1xaAQtAkRfWllJv/dIgShiYmpGLB0Z02DYHTN9279SSWoXA2g4hShCwM+U0KfDTRW5kNhTfSlEOIC1EbPLjI1s1iDxiXQoojisBLwQYNm9K3u90xBUvf6y5OShAkCyZyUeEtgpmHxZrZ008kEfJHm/arkBpioTNGl3Hpo0XR9yrRcHxf7nxlLaUcome5lKiTu3lC9p7Imbylsq9DTiNvncKvq7iqokWmRMdvPsW79k1brL4fU3q/3djENl8W3YPl5Vz3aPjebNoKq+M0x2EuBq7mk5T2cQ2dKF6F+xZ9kDTWw7Uh9qLEym0OTRAVSeKMtXp54MvZoUD+BJHFxZQfY2d/q28h5BqHS3rTOeZnR/2rZTMk7IqUuFXJ35AkgG++I6xIoLEQNofnyblY33q4Wxp6llFSnO1cyki+4f/c45UdSvuHEWLPf7YEzwBMW76AJXsZ+sjiceLxXWON/Z0mPnkotk+frSLz3QTuR2pcAPU8zcffug6tFHt99YIuSk9Wcdje4OpKl0udLIxxWTjKwHeDkGITonzUcgzJZxhv/jQ/C7GGe0g6hxSniJtMLegQyyOnIO17zU1NC2zWq3zGMrIMBxI77SL16u9o/KS/SfocYY7aro15faACnfb50BOyPeHsoGaPAC61KHPRSimk8vMnzJwltVNghrw6y/KNhe0qOfgyS5y3wK9ufsQmEr3jLRQFUtHh4AieNzJTLobIM2UC50VaQr2qOL00oeNEFxR7qGtSzZbGYMp/les29qPnfOYnx4wx++13BK12ZKR82bXGvmTUwRqE5u3MhhSgIstRD9XvEuTfBznKo+VMoJ96mj9wCeN/mWwJAyR+nah+YvjI+QKz3Jsl9e4kJ6FQ3Uc01+jfK1ioO2DmI05ilRvEfo1a3ZXU95qtRiOTdhpri7hZmNeFVesJI9buOQ7jD0cIxrNkUKuS1Nq3mK6znWbet86cPN+mFmYsTFnu4D3EhARK0zZU6V7glcb59zyU90fjdlylM//1jDKcAJTnqmZrKOafSbjnv++dhZFB/0soFxbtwlAW2aSUlCqWZLJUdIobODaBM4ZFiqKt+HvFl2K5mR8+0DlGk5T6wIqynV8Nqj2yiXv7pGmIAmOdxRB9GJ1etKrEh4kHro3DuGPM+jTooKlmRytSWQ7Pwa0uTTlOpMGn92Ght68Bv/UUgXUqtq8yJZVXD7O2JNTrFKsBJEymmE3m82hBqUYRWffziBwTE01ojh/D0YshNrU2SsIBDAS000plfzSnyjQkKn7bJ3mSEEdXq0qSyZKtOttGEEiaMYNwi+XW8ts90mkVn4LQHc+Ep8GzUJJ7Y9hU2ZZ3JyyRdGisQDo051JnpwZZn+1R1Szr15YkCrcxEJJOaHaT4EyAVU4zusyG7VG7YZ+xNcIeajvIiNWz+65uD7Pde2DZ90/b/9+rWEjcH1ZP+cKhHar+zJLUzUKGE1QHuKfA6ykjDCX87W+dkiq5m1L0j2DuY756dS4FUXOigNEB9ZVWXVpSgBhXURLvldTMc+uoHXGxRhK2CkhP81s6WRY6mFT+j2Iwp6/Dlb3NbRyTzv7l0EmKl9B/R2slyekZ9qPsuQklwKJ4Oqy15v6/tukjtIm49ZBBiYsquJiwBCk2fDxj3xJLc/843sZ4eFtfR7D4rgF+LpX90mgu+2qoE9m6HOoI6pUOQfxAI3WsLqtSMEK4rpn+hQnnSepyEFwbSserqg3zcHNGgoqAj4epDosSyID6EezFc8hC3mEhuHGgCQBbpBbYHpdVQq+K1ga0BL1dIgGknNppDlVSwDuhlcpYRO3arO8o4W5O4HbShLmUTCblE5v6lLB8t3ghvvBZ/NMP7wR7nSMt8n5+gt4xg+gpd9jbZCivpcYOa0Uz70tpJvIACctMg7a8cx0V2q4N32rLTZIsT5vm0LH4OQqvhRuRSXyoheQICSlXl/83+Us3dyPnqZL4KP5gCcm3RlbddgJ1OjgmTJXaze6mXhTHHpiZ36j4MFdbMeWvJQNuZiNONfvT7Tj2dM8J6TLxOdCfLMv29Q5fbj7vwPDCpPRNhFrXLX4vBSPQNqV1OsisuuHfYPs9Rbt0PCZU0Ojr7/r2WCX4CKgKaP9sKxt7ifz0gb5wmss+MKzPpW5/MzpBZu0BTuMooP/FlUv9K7cas/9B4u4MeKydX6wp3iHNKq9IX69bWDkjO+ma2eBYCfHcqZFLtWfBHYtly8xoqovBz5RFsPtEi2z8xv2i6WFEhcZPPWtBFa85Yr0+y627TFsNTUd/3dUWGa5UqIC6Www9HELiIfwYdU3JeOb7riAWIlkI7l60nMspCUr3kYX2M0L/R7dtfgICdupNBzGMG8lLqGyEoj1+czxLE1j8Dp8Yzd+mHuvBys2+bH/7Itbyxs/a+Ac857ByvjFwBiSgmadIxM4CZPv0Ti3/A/4CNsMpUauS40e5Z7E2sYMQvl9yDExVzfRoPO1ZSxgNJ6dfosk0kxwscDUlZJEQRnDaBtQ+Ey5vcWqtJfFaRMvkT3Y351twwrsjGV83FBtc2qMNsRooPZFz9Ik7oU08gf1vvnzt20KKli5eAiFBM5HtNY304Z0wtvdsCRz0N44ec4WvZQS6VJkEuuqtaDxqDy7QmHX9+WWLTwWHW9JBupY3F3fiduUOqiMmTVlwfGeVU7p3bAJgb26HgMoSeyUecaefD+POY2V2eK7VPj4OVxcy31zMC3IZiPwN3W4aZC0F9Yr/80Im4OIchcKv3Pl6ivIpnLD7dsNvLlAVuD5N9eWC01vKDsIPSDJ0XTFqOgxbNEhP1Mp3UEWC5E9l/iYrvuFlnRYDgYve2ESmM/IpYmJlgavn/XNYDYpGpSgR2wRvCGONM/kjGLO60Zfk1UI/cNxND2fgiLt3PCG92v8JXXRm4Y7RmVkMvTehpMy+sWyKAxc/pSf9gwwilYGKU/P0gkkk3MvNbPhNDxSz4Bk8tsfwdEGRmeK4uyiKGxcSw5iggKGhnkfL7Cr4/H/hFADOi3Dnj3zkeYDuD5CLIZFK1P8DxQ2jJxKCfyQivVcZ42hPI6QEGUTdYkvRMItCllo/vHwHGMxf1C2aCP9YC2G12DBmyJibgWeKuHyVt2Bnwn5hkyRJ0nGv5v3Y+XVNgtCiyRBGzMkBZUEI5ub6ACvqpUCF2FFXnH9z69HE3ZX1kIecSQGUohaQRBHXgYcj26MK6yQS6/mnfG1hVgBSanNxCDE7hqYQIs1GARokLQDymaeZogNltfulI+E84Ji5U4LYHv2oSSSZgM6zEEOyf8oPoHYUFuMojvVOXksLPMAJ/m6P9V6GzEjZ7WJNaR7M+TvA98VYwbq+zkryYO1g9aS3vn15tJsSCZDMyaFXg9kich/O/MhoJvzjvFJGkp/k63iQtlNDHrlQ50lxdWlZ57+ckMVzbYepUL7d4ebOQH0hXQdh7qkBFkz53FYesD8TUcKkmZV1rC9Q6+ytbNwTZCA8pFrkhnVFRaiAi1KLust2Flh3IaJZjEyang7/5Egq1WY9DkkvLBMT+aRlXli0wbs53IyVmazKQkVCPyk+7fjPsBmJJq4ai52uKh7aPojKNckMpFc0zs75P2iBU3zuaRFE5oWxtss9rsfMY9NEsZ6C2YHQDLwVrYaJ2Dk1M+EN1gWP79TTU7CRuKjWn/Y1uygeCdaMoGmQpGWNodlJwPdnKPzqlIqZCuK6HP/d1BFeuqiIZzKlyCAmylG/OFEUk4wXuckjIPniII6mxBYaSUcudMN0yfgMoQjPlNHpzfl9xbLDhHaxYo+w1jyvj8eseX8oT1JjCERduVIuNEM71mPZn6obaqkJ4+lNfdE45tZs03vkR2mOnsRHhx/dp/4CbHuR/LXhqce1YEGs3vTMxMd0/FKkj7Ip6CunZQMK2jWs6I3SfS3QMy6grTMF6kUb81d1IC9JYLWol+90GAmS0Nvk4cKHkz7FhL34p1wen48Niy1fluIcZ17ajvpXDRhzStBmYyR3Dt3onk/3qdNHuJ9U1TjpuoY3MPfNEzJSTpsuWZ9pZN+alUTxQDOBnidpfdChoKJd5JKGUjDaMV7JE9UDH9OWrlUjnAb2cpnlv43HhwuCLRN4uQ9lYX6LjPFa6xcmY47wR3RqOM75FiDx0agdKLI8ghHnJDNR6U1WK7lFozbE8oCWo5E0TvIWUg5xSNGjlauZ7TvhRjIoTXOlkc9mMhKBNxvQ/hs9WYRg1HXYggAdKTojInvgglWwhMeUWMM2VJQ53g6T4T7M736Jnmo419wr+fzm+i8JYlO7C2oJ4xIVLOor9tM6VPjb557NlRxYqeyfEs5dx1nOc1wdgG61TjhD+56c9TC0i+R5P/vd6uC4spw0G4VmeqpdcTzZqlkzDBvHZjpGcTdDZhL7EyE8LDUX1jceKH/BuqTLcyas2tcLH5jNNGvceRSrzCPS5ifAyU3qFnxudwtg+z6RVr/6mkCuxfwyZeeZ8/ZGdxN/97qyd9rOMA2yQ3DiGEhfEvmXm1Eou1SZJek8h1FyPHU0ggbltzue30wX7/htt/E25Gu/EnEEKFrxwlSbFz2HWecF2kOTdM3tHbYq3uV8loxr3p8lYTQvj8w/kHy23EJoq+eIFkgC2ZCQdETlh6x7pxZrS1TrLKlF+gy8D/r8MlTlK48opGugyx8aaKb1HWfRaTR+AWI4SVUxXh6hlg0xeAk6gQNOmkKWIuKAbQj0xPtLCYT48a0z+TbaBJ0RgiH113Qn911H8qj1SLbTVY7eeo5C4WrNEp6TT1Ykud1FDBX41RIda7rjPtfEGqmBZhGxxf/2GATm1q9BxOisvqogHjJ0ZTCrbVqkE81gEhEoUe2PcIgt1GcrAyEUyBW5
Variant 0
DifficultyLevel
594
Question
The table below lists the original price and the amount of discount of a pair of jeans at four different shops.
JEANS SALE
Shop |
Original Price |
Discount |
A |
$20 |
25% |
B |
$21 |
31 |
C |
$18 |
20% |
D |
$17 |
$2 off |
Which shop has the lowest sale price for the jeans?
Worked Solution
Consider the sale price at each shop:
A = 20 − (25% × 20) = $15
B = 21 − (31 ×21) = $14
C = 18 − (20% × 18) = $14.40
D = 17 − 2 = $15
∴ Shop B has the lowest sale price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table below lists the original price and the amount of discount of a pair of jeans at four different shops.
>>JEANS SALE
>>| Shop | Original Price | Discount|
|:-:|:-:|:-:|
| A | $20 |25%|
| B | $21 |$\dfrac{1}{3}$|
| C | $18|20%|
| D | $17|$2 off|
Which shop has the lowest sale price for the jeans?
|
workedSolution | Consider the sale price at each shop:
A = 20 − (25\% $\times$ 20) = \$15
B = 21 − $\bigg( \dfrac{1}{3}\ \times 21 \bigg)$ = \$14
C = 18 − (20\% $\times$ 18) = \$14.40
D = 17 − 2 = \$15
$\therefore$ Shop {{{correctAnswer}}} has the lowest sale price. |
correctAnswer | |
Answers
U2FsdGVkX1+84zWmJSrgCNBspniPj4mOCI7d6IxqbWHHo9431aMVhEQH7mLP1Ftq7oXKMjCt/QdbRDGLHt+x+3+WVFHbR4wwNlQOSpQDwkiXxs4b+kRIWgVk6dwJoRuHK3arZubPF2j2P/qHoF/UgZhVVegZSTMC1BurKEjZ6cxZ0PyV96YjvVkh+XlMFvvxjcaNyRO8KW3ktXQ1PJFWOqgvGMDF1x4mKNr5nhJRB5PCSaxptCPYyhetftW6ipUoMH8LXfqyn3uNseVmmOXUkp85nLogYysUjOxj81eNW8//JZ5Ijgx9vM200PkVyuyXQnXpLDhhrG0hBchMLArdFOll0EUI+8nE9oq0EPW8z8ZCSj4+pOSza1wljJ22Nh3/FvQSA0LxL1xuTo5TlBRFRnblJJoslbGnjj/RjfIl1OTrJOq9KUd14MntTT/niX70qLGAtbX6LzyqQS+rKsDdixKhmF6jpcbGrpJ1/P6b3HqAQnqYK7fIWdwPNSZeFzk3lLwT4M4DOPpdUvoCRfDQTJV+YlrWYT+aU2nucREkePEwfLYtxDoxAB+MbxW++HWzRrjhmOrmX2fnpSWxucr3tbgIDPUUOic+3t89cM3oZ3aB4dTGZDgdc/zTkZNU91Nd0I0g66gcxvDqZ8w3W3ETkCVEe7Ovjdtbi+oyfA/ttlukx7wDTYB6sVr9AFF3gxhQfYDDK4/pJrQrYWu0FdoypHpkFPlG9tx1OvHhdMfIvQKoDphOQlD3AvuXDmTVfuQuZh4AESaZOwDz7g+U5TO/7qO7ndfNYPiRncWs8Au/xJW13rXTLMQY0pFg4nSrdjhvZNJrTb4Dt57a65B4xkg/eQkqlZeN2IIcqckR9aKtuqRHfbLU9KMzuQg20kLqcJN3XsKvMcciiTJP0pIZuwM9/CzX58X/k5iQNywTh3jBujSksHsvF2nAIW3w3/QV/W6OfRj9dM3gC0WWCBy3qhgiiMPtILSS0175rRl7X57czs+j/NcRLqWIjYBPLtK30hLY3qS1fiKTon16QwXWxUPTYGxi63vyXocJZCRz/15EbcW3ASMLJn41NyAVxtMgLFIhrxv1P5Chd1LDmJwMazMD0ejdbMoZKWuiWc5FNoXCejzSci3AeN90kDnFBA+EUGzlofSs6xCoq2Vm6OIr6k77SWYJqn0m/UPZ6sKjRTSxbT6TvYiZSCCCrrqPRzeTfVEv534KE2z2FWtR4b7LdfN4EKfTehATFoxs+DVLLMkJ5xEiRODIIsBAR4Fq0fYqYhaszppizMzjZpLNHBHj12niiimBbC36k6Yq/u+YulCdgT01to2ouCpdFlUzOhqsYARToDnpcxrqLaVsMX6ouJbTTG5+1mM6dfNdrrdBccupYAoI19rdATv+6rfwLXF3NaGe4KCxV4m8XxGRllKuVGq73L8+k68dG8utsfpSBlDOS2c0FfUbVmTw9NDijn2Wjan9bACmwFaKTQoT07rNrIuVATpP1NogIEQkoJdD4tkuER+ocEvcY1OaHdvH1eDnErpE1NkJpDQlhGunvLsjKopNfXs57J6DAbZk5AsWftKeEDDK4/4GUaUQGw+OTDbJUZfoWWHX6cRAgv5VCBDdTjl5m5hUcQPe3QE9M+8X1t6lLSSsI85iIEZwG4Qf4tAckaYHX8piIiPPev00op1Sfg1mqVAlx0WJAGDMWn9X3Fg0si19FzltHxBd/icr9H4UZ3Ua7KLEPLVvJ1mPiSM/a3ha+0xGCFyYQXtlKHvC4jSCQLlH64KCuunVjCPANLYlVo1ZXbnDwzs9l+kdJRhCIcxNBy6mezzChPx4EGt49U0HlYFjEtf9TCaGBBww7551xVH3U8nlTlbf8tP/u9FU2J0qW/quHCMHP+tyqTJHPTmI9TgAHZzkHKF/H+n4zEPVSju6SG4ludo4GebuRGRp5hv+gJI9Q9LB5mVPvseB5PChB0tSd9f3A6luUBYFcWewT8etzH0Nux/+utympaUAh1f8hzx/iw+6ljy5EmaMvuzSHcsNmflph6SWaMhSi/cMO5uzgUludzr586d0wrjV4DsqVKGaO3hlXxXmwEFi4gp2Zo0B0Wfw2AVRXyn5XFcmOmg7NdsUhChnOuks+d8dcDSyAIalIqElrQNqtdvvsx9KgMFdm9b4dvmqLZpa8EmGAJXBmlJrQhUCMRQcKKAmkGgn89UfmlLyR1t8bF7NaMvwkVMxupJPFWRy36+5VOl5yQ71mcrqP8GiFalrV9KgMEkDTiBjLvYe9mRRifRgWGf7OLO7vXoxvFTHGqONuWJFBd/D08R5s7n2K16ADr5e8iCPabbzxnDFYegpKzlCJ8JhIGOIPvfGzogaD+ZtnGjGayZAnvcoleNiflBjce+nteTZ0G3yWDC91bj6ilUpbXHz61NkmHo8Ha6FtBcqTSemldSvx6BB1QmCsEuQocUS4lvHpfFiXl4fMsCueDsGQ9lByIOlRNt1t5N7Vk0wGafPvFtS3Ka57b6shogYbEmiko9Devg47AOPllRH6jiAoujNrQQFhQFjLfUhjhpsCTCeCSSUgjxQJjcgFq4s1i7Lpznpd6/H9ByNouEof99OySzr7xCjrlMu97z81gT0JqgaEZSBuu5HEWnDp/C1YTBQxaHZrUUAIApxVB2NTzgcjTN9zsx4q2jKc/RFzSz289tM/bAbprCVsRxP2tnpqFtmgV/PiAxIh9HlHgntypiyu3q/YeBKjI3zmnOaU03sFzV1Md9b9mA+RJZ6njDWvD4MKd/k0e7YsZFe5+WY1dpJol7gwfFs3NtxpVhHoNqt9gSxPYjQjWDq8RmIBmNSGy+pha8ksAdP9PtO4TW2aI1l4lSer1p4Nz1D08BZFxfEgdGWZolpHnQpLQ5+IPB9ECNHAv9uJ+KT4wlSkgMbAa8rBijx3ZGB8Db0otitm4eH3Sw+ZjvXZLSxT45v2xT36agL3YmuEEH40DfuYVC5HmRnx6kOtNcxMC5p8ezD6UHv3r0ZYmy1YUM6u57m99Mpmv4nZn7U7auE6aJG+q7VJLGeLmqSPNhNOKcleXsFgXSsqSYA2+3x8+2vSf1YU18x9/XeWeGEoftC7sOU/lQXjqu6o9Z/2GGPX7Ji796CKfVdWslYrsGXld3Za+IBPQAraYi/KE1uW0jpBoJ3CY1B/AUjNoM4UaqSXYT8f7IVEwF3iyHfzH7iHv1Ut/fcHsky4HgRgzueTv8OZ6ckEag+osr92PWGqG5tlhq4spY+QZwWDeB55qzT7ECqEvaV3R8uY7s7XIDoN4wotqI/jVPGPTb/powNhh0dabcr+ltB3fpuUXsyv/xVUeHP0CkgM6OsAhddePEP86oVI9ZlhoowG6+dGXl2+OyXZLUwFenE5I14DPyCAbWaXRIWddTj50hzZxOCwqO4Uma0go2BXeQCXSkvQq5d1eH5GG6d2NBM4k19+GYWlrtqSDQDqJCkNMDcEzyaYDPS1RI75OZqN48XRPxVqyy2s1UTreDmCvdhUlExVazrxnvogZ9KratC/1tgJnJ9tUkIOIu8GRFjOBc2iSq464/k1MRPkpR10LD2zYafu/xEu++gR0rNaNizCfb0HyWAxGSMo2L9OexfnEqcjXHNaiTxqvhmu7bCa7/d9eJwO6OxFWMO/pwIEXP3LPC+dFezXQIZMFwkyEeCt2R6tu3bDnaFqrtHm3qehZvaHB+3wT3Lsvnrgho6UXcA5cnaH0hYzoV6o4zK3Mo23SHGoRgOk/zzT3Md1Wo/vH04Og5oe1iNKXxVLUkFNi3gXFDXvPvcTNtZ0tizdAcNUr5tnI1VrJ3UdfwsjjkTOUBWU3pzgAfy50MoJ4huv2+4YMpqDJxsqqKQeu0gpj9e5he84nt/qiVGBZ7nRxceKB3+Nq4VhpRfCoKJutSD8rGAJYxEiZufitrDY9pTS3H2uXl2d6H9hNVm2tPK72JB1rbsGspXpL2e/cnigIUfAsBqyfiTNn03xTiEF1f4fSAbFd3Txl33kLJfeta4R+OQIqO85zXcAIJQuHi6+Scfqs7GnsB0OkXPZDFlyn588lm7qHUmALdG7MkkSzGMeDuApBTs+BpELsJ4P9l3T9CDLdDB0K4YQyzpfb3Ey0qJB6fzFRFq9u2sWWlstebd7RFs37ZqNTpZgCCh1KA7ySeGuUUEikDuGZS30ljWc5UikO1kJeP107TH08pk8PSRCY2UtpfVmoy6hELEkr/oM7ir11kPqPeQq9it8KS7Pedsdg4rHDO16jyMSwxccDfRQB1c9UNYpMRKfsr15+9A2aHtirTulpQEoaHpWes/EyksktnDIHXyc9BcSIRa5PW22CQ8htvTwH0iQaZtXp3P16dga+gkFFTTvoBJWSYQC4Z793QWAM9IMpwbXcNF5+gtkIxE0/UqNZDCxJ38XwM/G0AuUHqTrLdfpLSSF6bTbIH7Y0lED/etaa8rxBQuJN2BUShslbFtaxyA8OELEx8HjcUmVcbLGBMw9brJdpP7Dayh2KJ+Z+ojNT8ez4k/D/WO/5yTHRK4JacmVMAbyRNv7EeNhjvJixciEkENKBbsjJD1Xb7+gOKBgBdyamO4QMPFNAGejGQXKmiA75ba5HhyUSxIRYjcNXTU8PwDisznMZ4KPGtRifCrYSclU8+UNspTLxNObzMJw6q6Sn91GSGSq8V8OTkAw2M5N+7+cqbHK5E36B6KjKbm/FcZe9zzt3SUFysKWHoSkjD7mLuZC7ycUCLPhzrHFMp4v0f2vuXtTmRguSPqtuCCiZ1LTnlYHY1VriBROUX/7uOAXb9d8HvSqE6dORJLXTu4ck/EYXUitQb49RCoCzxXOoNPQ4UrHxuuIConVrwY3uLw5bwiLuk0ti2M7LzBL52+Uq7gr6Vp2ea+svckCesWCSDWaxZe+mHU3ntLyyGQRY2DTrc048gPZP1tZBwNZiHros8shCDhajInoYDZDWuj/VBwCxpTwNZp/RTL8lizTTlRbWDrvE70ktet7RLVgE/P3L9ezL5sPvVXR4EG68B8QA8ux2nd5PHw58/B0VhddPeZGiHYGsi85qEdznGsvUeOltkPWtghh0nVnh/zlV1ADLYSrO/TUYpZlMOURBJCgGjqlJAd60tAj6L0qYHdmSAHNXHg5UgoNyjV4i6GYSBe1Qf+pG6npzCUq1aHdiksrQA+iSaO9qmzwfOmAkN0oCG5a7Ayh4S8J5HoTPO7MSDTx4mtBEsawSomtBwbWySDIOx322sq/S92wGt3AZztTm3IFlX19Z/Ch0/cmWGOPi4o5TpET3mBJGKHCIyHocsyyWcRCS/+jgrgZLNmF4dWi8fW38VJ20hQUFkJNZfKZwQcjmuUP9CBG7ufNsTrxpZpiSOsuEqI/c8dvPaHX2NK199QDD47CaaUyXbPIHMsW4BybAdkf/zJng38hk9/c5K6iaGis8+HwFiUsPo7dfxNkoYamyXwWTol1Y4jvygbzoyAW0J/WoDcXNhXIWy+2eRO00pTrzBlpZDBHgYwW4eq3F+emHMxPo1y6P9S6bdAM02AvHk0lnggZnqcJuyyuBA7TsAvSEEu1JOo3VO2NmASvUzMI39WJxN/+54C3nMK/EtuyQf01nA7W1G2IQX3LdiprDu5yu6Xl1ELwuGH72n/B16F8Tl2DljwguiyXo5xPaF1FZcNhC52C1cTEW1KCFGA+hPM/bBUqUdqMJ53s3RxJJ4rtE1qhoYomclKTm5kVVZeGAYPqkBIjugktXvfiPP9530dxdFoKv4Hq8ZznycafuRNotLx5F+6/YcIHN3MnNmDmZMMH0E0J+RcIFNHB5szvausQacO6Ezaq1zWfR94Y8a3Cbyum4yUCzK/ti+QGmRuoKMSD0FCeycZO5a+AOB/2FQnpgNRZfxKJhBk2ksHTE/Iy5TtJv9ZAIMNyyJUUTuCkZV8qBis2AZYIWs6Uh0J1W2k9gcARL+eRoeFpBq02E3TzB6FBcbpW9W7cFgFy3UaMJCG4/8NTB86CJ1ess5R8nLpyUusxT9wEeEtWRA9G4VvL/uJJo/rXiCWvsIedbbKvW2ZXaymMsCsq6f/kGrfXxdWLF6Y1vuf/KSubcRFgqto2iS0C3unmGSRHruTo/kcu/hEI5ZIU7CX0ZhzAhN0wdSNOz/7YrSgYqfObimJaH6VlAAOjfsrBQZlguHqsRzpJzKUF2hokOlGk/G/8w7txcRXMcJQpWMsqefs4pLef5rX3Y1cOaluU5JQgwIO+J9encncW9uf7u+Ls4Fu1+3GxLdNd3CdbWOf+g7ivkyenzAUKZhZQd+T78oDjJmzKPe28ifkfCecduF/poEUS4iGasq4vocsUFJ/cBSJcbowmcrw03PCMghX991TlbexcHSsM8G9kXNaCWDVdyro7Jp9Y9ifAX+9WoGyYMjFZchnlSmadiUime6UZb84XjIiF5fhs+7FLF858zH2pm6tjxq5gu8xLKB3llfDbcYFlSM6kazXb+pgcq3A3Fbhs4/a9zVoV3IuRGEnESqdAiZTBl+EirkEP41vz+shfASCf3CsZfSIYhCJRneuLHvPwUku3gNrb6g2A9l6avF3PMTMHOL1QpNO9O+/yYVITrqL2X+fn6z6Hiusdu2pcQs2RgRRj1yvB17nIzKN9zY8mUkn8CxTstD7CtYed3Zn9yUwtQIsWbXdpFMyEP9smCgtogldnlcaZ3ZX6m9QPCcWUQ8AIPCS7IX26LdtU9Ftf2F8eOPAngFCv6BBcFadk/r2dHBHB9Bvh8mK8eGsdXZ2jy2klTYQWQy6AE+j/091rWePv13Pwnbc5Xv9IXFnDfXuFzbA8B1HkVRtVP3YysyPWFwNXY02A0GNtLMk1S2YUCOK5LzwHvGsDe4rMJlJaNJ0vtI3tIc42Uq1qDWdLfx20hQxy9hH0xqFTOnH//IxyICTuY6IgWE10WIhmbU94xFvc3kmqz3hy8LfQLPW1GhOajKRXsFBJUA1LT/1f/RRg3OC5TX40gzPWwnc5UpFoaMJLTp06esUQIMtEK2vx3LmE6Zkmz3biKuecnkCpAhEWZwHIk3Wphlj8fYMRFHVIU/jVD76dWR1IP6rf/bHBypq0kNr4WnCaJDxswBI6YzMZVGzaVTIgLjp3X4g2+uzYsMgzHCvsQ/ZADeJwODSqYnhk7fOsnnsnqKK3/etgvvRr+1hZx9OmPY/ZAQf9gMqge48aaL9jz74DjzMTYmzQkM5IUXVO1spXtH+u6pvwDjBhkHfPolRLdN6nWBognyt67V4JmmcMZnjgdm6Its1pdeabX5IDY50n7664HUPY90R8hs/X68HIArV3/XrFHi1AjBrfgQaSYDoBc5M0iRlopZljAMX1z5zD3L+yvBg+1D945I6eJRMmCts0Kk3ljiiN/NHMEg0TGsYc1QaAYgrfZmCY7l5cNo6saJmfesOmcvtqtsBjxV831a1EXURWPrjZKf2tor4RLIOFT7oD7N5OwAzquPjA1Ssy5D1ZZBKULuxAWqRJwVWq1407v/FFU+ZbmgzVs5H5HvAYQGdmu7BzvRVutKO4q5ZYXESiZWYmFtzTuxV4QXahHnc7y4uOpp+nP50yTM1kbKTzPD9/7GK1zwfgMMo45ALXYSbMUG/ObpsngAuFu8bGaYfvfYNFrtpQDF6eMq2hytQxHS5argpc74Ns5ptM8OPOTfF9zhEprZAErBhuZ+BDQrVYghGAwGKq4is1wXrylJ2iTljvBJw0ffFQUyv6LFTbs/8TKuntxWijGCtUAXB57NLxCh6kNBwmUPiPRRD3J/9uyMeR64elo5OQgnfkYW2wMmX4ihOlWNH62YM/3xg7VGvDG20c64LdGTXrJIhddswywvT+aJYy+xDBxItqtIidxW0UL5j5GIxXjtCPgoywwvX+C21iN4s6yLhP/OTsq1clYewyoJjcZATPV26QUepDW2T8GAhWyVLrJhI0V+lqhfvZBuokgqTwtQkB2PMZEQE92226NaprWFXEG1nL16ZXfmPaSEK4gpNZU2TZ+P4pTrgrbK4RLl+Lm2ty/tNwAleOzP7ZHvPEgw173Tqs0EP3PhJXUXq4esUWg10TBv6JugpeoZSVnXhUhbGjEkT41nsD0Th37qXNfaEetSV9Z9uhbJ72oiEBucVRxPz2msbu09+dTUfRZjh7YaWozT1QrqxwDe7B3m5Fk55HSmX2bX7CN7UJHsibm8s0wyePoRziqTozo+7CuCP4P0cLcnLLHQ5yVJhT7j6bjQkCZHoCYKjWDuRXPIl8lBGSmm4KfYtMX5R2bGnU/9k+gdyVtm/TiWq7anaoiP8umY52MxbDwpAsJPqSVR0lcD8zlX7MfytMFam4S6CwbI3zfJa0RCE4fxMN1tVgSt/uoJC43tX81+jVKtOEf5hALrk07xAnam1oQSUfkO+5YVrZu7qJAGqynaP4gNq352UULrYT+AYhrqsu9qI6W+nzm9SDTOoxKB97gXpDy0cXQCnaClN/tsFFDGQ3q67/T17bUNraRSwNLzgNKY/d5Dc6rVro+a0xcliop5U7FhK0e+3y/v/6F5qQcWcD/wT5hNYW0Ngy5jPZZttf8dc+eAWwdMNThQsWYpSwVBJ5UxRC5GDn4luUeev3EfkzHSkdywpJ0cblxhAW64qUXjK0mAOeIH7k/l3O4LXTHMle+Hw2l4SVXofIBp/oznod7uEao2ltsDbGQCO6FGr7oTQP7ANyHB7QK/wAJn/0QDpWdTecQaSyn+A/Rlfj9Ez5WKIpChy6gm5rdr/nwBeWTRN8l/RA14zWn+Ln1GigUAySjKTzc98PQwW4Fkii/KF4J5x5wFWQInLgqZYvSNyRE8InW+ydHTs9vd6Q7Af/Q/fJ90g4tHc+jcy1T1L0JXo6tezpBIrmG/d78/PStuzXxL6HHtM4Q8fv+AYxT3PEwdAEkvUv4Ihwtg+zxTa0dEopSMRrjs9KD76i7KsL9j7WLdpl4KMHvd+Q71AiSk789D6g0qDWrpGiXuAdtcf9QxVSo2XR1VxGpp4a3AG2KjpZ0iifHpjSsk2DBAgdhnPw9Q7OQGKL2mKzqbi9EMCWVnrp67nEm66vErL1HdRBtJcyeH7BmEABJC3DM0AV1l2vqNRGsga+rODYHaLCg5Eal1uCuIZwCY7HoyTQgblt4qMujCZZpqCzloQJ3g/JbpJvXdS5Nlts2cCdE1G8kWTlJ37IKXGwCjt3jqBaFgutGAa3HXvLNU+mPaLQdsgITkYISMtmcf9ZJuQyzMNwoM66+kXHVCCwx3sI0CYFI5VdSHKC6alZGwCV0XeQ4mvGpwKRMnuQ4aQHSNfQWpmHAbiXQr0SEdV1rPpAeRGHe/XLCgQGzURsdocIQIYZSfgpm2Zps+RKPZet9r7naEolJOCTNAxodHX58+seB2ICJArS/IIyKoxfkiuZdX6Oyy/GI7WNxyM6Rbx7TX1ErMcmMV/ydWOGl7idlqfHCHAxaMbEd+Hy9NO7wOJz1w7f/lMu50t07jQqdhNgmM2vJPnx6kA5Z9OrrnMHNQ3cg+0bCayXZFxyD8GFObWanFZ7+eVxHTzmjgcpHZnIvxIz9ODdWmnOFS2xKHrUanZQfgdK0OM49DnxYsu2RZ2h4zhUuvPKcG255Wgc2GxV7724YWWcqeR11gUqeSoDmEHna+uzTqPxlDoJTXyRNKexvvMTkgoyYTayxheQuJLrzm6kVW6fyLaQtFdpO3xNoiOUUNfC+pFXn5mqP/Av9iqU/kHQiT3fakS8hk1Ws5KaXFHtwj+IhnwxUEy19ukeNOlr8t6lX7qNZd4EXgj1uKpkTRTvFoizxszhx+bU3li9zr/0+OOzCzMfR8tX2xIcePDKI2VsxalHyr07yuiFYm6DgQiYB99fvLY4nrUghaBcCuHU80M6JkazHBXuvmsIaQn+CM9bGwMojwPdo+Em3QO0vcerg/CQMtxPtxYnttbv5XcgQEvo5Qw76yb8bD0ga9rRON8gWYq0r4Ltr5+htd3IEL+p1Wb3rf+j5HYfjLPtv+rg9H7NC3FpWTvkNiABiaz8AAi0s4Ip7J6Oa0c1kdkTTRnhx0aHG6MFoa+iWOAAt2IzZ4GHjbQVykxfRgg2mxbROSoKHH4abKMHCJo3PndAQpf74EzM3uC8cI0qWIqBg/M+RkmwGx+TG68I9htjr352UezSjLRlnk4uoLj2/PVij3d6OKCxVakLCRljsJOFXlCmIPWGOp25MA/fa55AGHlVRnR10V6lG73RFTwujVfjUwXP2+YowguK7La6HFnvmEIGZeGUN//+qiVDu71m262eq12Y7XdTW7dLTXmgAoVY+CtnCIl3DGNzSzxUVhgQ26FQwfYs5exqpKeM8BgNjlm/PxqR9bLWLhRF2eGXnHDwAtHK4fVHjqrunvRG11DY1JkBRTWcj2GL63v6L/8MJ012PKthQy59kh4O9SMiMKwNvWZWzYwAqWEQXjay3RHQAMqXi4EyqTIf6R5ftCWY/s6IsOqnbs26G8vJjrMVTvneNpTYwsb/7ZEnjFUSD1WHqI9khCC5px/s+3r9r5xrs9wQAnZnpdrNz70II0ifY6eeOBCxP5MJFIHX2CwsCEMK+CJOhel3jPE7sfowW8mKgqA4eAoa5OCxnrXg05TkrJojgQ1x+horLfbqzg86BIZhNTzMxdnKEykqTS60BlDZB5yGFk3GrcOcT2PgQX0XZwUMyaFLZkHoYhZrPKnDmfzVUynhW36n05vz4ougld4198qqOf3uLma4tmT36WbxyAVL6fjja1Kj7vFxc5NYOHfuhasb+Zq+QoFQB3grvD86doSv2KUqGxfzJnR3zeZo2d3PtkFQYZRmtFslcEmSgSx4WNq/UQQVJYys1eG07CKtcKrvqZkUUJw3oj1KqfJDS/V/6pwgs9mlo6Z/eLSraXP4MhImMxbT1DyJf4mwENErza9blmGjCNp/a6ZapEmicYxC/d4i292LJuHlANF9dhFy5X0pbw18Gafk7m/N0IWkirOirA=
Variant 1
DifficultyLevel
599
Question
The table below lists the original price and the amount of discount on beach towels at four different shops.
BEACH TOWEL SALE
Shop |
Original Price |
Discount |
A |
$25 |
$7 off |
B |
$24 |
31 |
C |
$18 |
10% |
D |
$20 |
25% |
Which shop has the lowest sale price for a beach towel?
Worked Solution
Consider the sale price at each shop:
A = 25 - 7 = $18
B = 24 − (31 ×24) = 24 − 8 = $16
C = 18 − (10% × 18) = 18 − 1.80 = $16.20
D = 20 − (25% × 20) = 20 − 5 = $15
∴ Shop D has the lowest sale price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table below lists the original price and the amount of discount on beach towels at four different shops.
>>BEACH TOWEL SALE
>>| Shop | Original Price | Discount|
|:-:|:-:|:-:|
| A | $25 |$7 off|
| B | $24 |$\dfrac{1}{3}$|
| C | $18|10%|
| D | $20|25%|
Which shop has the lowest sale price for a beach towel? |
workedSolution | Consider the sale price at each shop:
A = 25 - 7 = $18
B = 24 − $\bigg( \dfrac{1}{3}\ \times 24 \bigg)$ = 24 $-$ 8 = \$16
C = 18 − (10\% $\times$ 18) = 18 $-$ 1.80 = \$16.20
D = 20 − (25\% $\times$ 20) = 20 $-$ 5 = \$15
$\therefore$ Shop {{{correctAnswer}}} has the lowest sale price. |
correctAnswer | |
Answers
U2FsdGVkX19iw5zxvTPrBolXdGAKSH0ZpuByU2h/QdLGisChDlHk+7NQrAszvABN2FAtxt289rAEKFo73kV2THbENDq34AGB+8ywKn+TZF3vlbF/Qxn3MS5W5mtLBUFB8Fu4FP9Syob3WUU5cYhPdOH54EDXxXrrN3ohFveHSwnW80UfElJHyLzJCrovj8uYaXA1aXRoweht3+MidC01RKg40nefzGxJQLQdBjligpfLH9XQOPoeTEBSauXwAZaYAajQN75hmndET+YJJRnxz9a/Bcsfs8R6zOzIq16hWe+TkFclYWzkoS6aPUdBir8A1+cnFJtghOa0Fr+2Gr3BdPytl5PqvBiJEsywt3S1N+20vQw0PLsVmwmSxWWJh/tWy2gOFtWt3bGj2glI9Lt89s0+czpDEx+t4c8RUQbQKIyChycDNxtknYqkyaEMHgu+7g79R4qEIzIiSCQxsd3F1kXHTzhBcEKkh1AClotjAP8CFE1cVPqT1o3qoZjhiyMxXSPeqcyBnCOusGwKoDNtMdiO7SdYgj62eol/TC4ygdmhjUxB5+kFTAzkQXqpnM/ICY0gyB0MPgg9l5dM/feHzcpfzZeFSxeVNbgGOjcXp2WTGcV2+CpT48tdntetVJJIltPbJBxLjvkttQt2vWIiFnn97owBHcDCce7K9h5s5CirufGAPavdJsXMCtgUGik9WjlFNImf/6xbnfWzSbW8He8NkX2UMntyjVwGBTE1KeXN1dk1fs2ei9VgFnGqxUR/vi7GBpIQCRqp7Ywv0cRpmUzAtkCSRl5+2PNqP03FzKch1kFmbKFBIQRbQ96e/AqIPYDLJtLZZVIYbq4xasyAo5QD3vP0rnyoRiOy/xCN3VEOvbGNyEmPIqFOPupSW0Yyn2JdPY8xOgdkJ+eWq4jjF0oDSlTNycRqeYz2ZzzxVsVFuf3wqqZmwlrX0ZbscfVI4g9msSff960hEhLu01TmCBliFBiXS+n9Xowq30Cgg+u4nDvgeoCHMjIImWtZfPukyeMXB/SdN1KGzAjlUI1kRyXcZS5+GTFoa2TMW+B2kMn2XqqGoxiKwBVkB2ow20m+LQVjONq7vzvmVU4v73B+EV/7s8kMzC585TdHQnU3cUUFjHsF04QkOdpAvQvvFrEfVfrgLd4ULicd8h9K9WcHaxBHLGQyf4yS03DQXcfJSB5kI3iF/FYlo7P/nnjnPAFOKRtiZ9XIwgpLDok6C4HR4r8qlmqAY+jaMmcd+hct3nlieIBIc27/Ze3tMkS3RZ7irEFAaLYIAEOzgbe6RptKw7cXx4BtF8Oq64sM3tm3kriG/IiJr8hZLdviZvPtGUqw7V2113qLjGn7ju7DXkfP4I8MddONOZLMny5Sa4AqntEM6oTWG0xBpQOshIrDuT9ppG9enz/I0toupZWFu3A0LEUhiyfD9stPOBqCD+S+ixJcsUjC6F/0oCaYeMZB7lGjWCsrqwaT4njrvs3zBvcZev5XSZ2rWEGNu3ONwKg/wKDlFUP6hon4Pub1Z6258WldRZ0e4ongp++wOvXFYcpisPREJwdFRl1v6ifqvAWNA5PaQ3YN97L0ArGFNHMd3InVoufHiaA6O9Wjur1NeF2aPNV01ogjWFQQr3Gmf47AKHAo+PScWNBTmI9ORZdPiCXmLjRNfTK+/D6UVy/7i82pRprhmuZ/yRMa/oN+2n/aI6Fzv1p9BpziPWDHQ0ksXYyeBYIZDcRIArni9BLv+bkH9r1pEBrSEzMrfJzwsFkh8Gdi9KvEavSCT6JKRgG8c3oIjgS/xRJZofqol80Py2se+pLIvZ4x7FR6PvybZfpLPBHvdfatGJBC916GAmVPUhQyXzWZndQ1VUTuSzh+0S2NB42RUxqRPQHuDPoADX7AN1eXjoF7Kajh+DYn+4XvVliY6f5AtGYivJ5EYMSMlQqn/sXCVYboKzL3Adx/cwslb0AH0tWt6jqtc7YUoS7lpq30yeUE8DOfiA76sX2OR2DiNU1MUKkrzEyOq+l4TOA7i8n9WioGs1zWA3xeqSpEHCAzfAML2cryG67dQJBJ8d6W3m7By7/xRtYgSobCKZYX4F1Ed/VWIOWpYxJcGPqZOZ4kwMxr1CvoD/leICcv0nfNVbjHi8jCCg/knDFxL3vd800fd2ANQwv3nyCxlhinxR8eC39lpQ+FKB+8Ulzo26++JHYE5AxkWGVmd3rvHq+lQZTX8YWRriBmJGsYNkV7x5fJtQXgJFCHI2eyVit/uafJPtRplV+XkJEJrJycqBE/TTMMoH8ZcxmiBRgJIiRdqATzwsHr9DXtXVj4D8KKe5l+NM3FDlWyIxGMB/wUdTPMMES3+rHMWEY6aTI9UAyxN1frE6gHa9cZTg+nlPJjU76QQZMcDWG7wf2gO3tEsRJ8fszCjzYZ/wDl+4Ebxu85Gh45kDgbHu5kJJn3265vbinLx/tE2nKdDG6dUhmoTukWI/WO3wabXX3RgMGaJNaUwuIicfjHltPLtNPihYyE6OYy2rKZHUUiFojL2IlLQyDWMiONlTY4KIucOLKoERH08u3r9E/Ap3vV2KRVcOUTBF15Mifyoi+4SpK+lS0nWRlxLdFB58oEDMzXCTpajjMANwaEY6syfJxl0Kga6W2NPnsEIZyP5gXlAwKlLpL37m2O3KwftV9z765HI+1BupiskGp7kaqzWvi9pS+0UoxaVnCi2pC3FocEbvCME6ctG86Jgr5b/XiT/RnO9xzMZjQHRvHReROMKal4N8bVx/ZJloDCvGlEhclbP3/5UsBuow7FLNYNjNc46a0kn9yjgaRTJ6Aaf9hyOlRx0hOc3snWsrSKafwMQKdY/ugyY6D6jluxh5lnUHtlKbFBAxhqiCF2tXtvLXOHraOrQNZSoVv1DeVjYAKz2pEdFDwEdmp6sZ6rHdxgUe+Nw4cHQ+3kJBMi6zUM2PyE13AoLxoZsaPPXcYR/54XbcdlN7jrIvLlgPGix0Hi/jqCLHSyWDPZfzf6eDsI6021xAxyUXuwWeBOnq/mfp/C1aDAsEHPZeyE/5mxN9vZ/T0+6Z65LqRfX5UUrnLi+4BnZckfM3To6b/13drsW8LvydrHkaqCHVFdF631myk9/N/CyxK8WXvC87Kd9sJzN6gX2S1mPJot5gn2lJSoAihDPsdNpC3cTOYSZqTk8A3Ky34bJpEXo7aowpM7MwHfWyjmVGw8EOAlEFKYPZW5YSh6a6c+MAMGVQ2Eern4dWt9cNXjlZo2Qc1IcFliEqOhacoU2nJ6NeYlLgS5mRDbAklIZcBR2+tyi268tLNulXufTHOtuPp6R1t3uW82/JC8Ld3qhKS3v+VR8fxwqy+pS0FhWL9XtSH+n4yHaCi9ANOt2e++gSb3tKIEpFTyKap2elCHovuLuBTha25ercqSeqehWUZYwCFWJuDmSy0CbJTikMgN9YvhnhrhD5McCDEKmn8s+vpYlIUXChWF0guGThFK/QVSLxuDR/zA5L2c6/OFcbbFXO42em5fO08vJUyrpu0UyTKsD1PRkmyY/y9OV0NXncGbIAMJsrcwkANmMH3uW97x1xysN0ZDXabWkX7bcCkl8Sh2BlATJ54YLbHQAm1TBncNXf8cSFqagffintRk7VN5dTOVhBKbYseHRLNCfTvbEsQ5AQnDuOrbaG8lrybHT+n6pusXQJX9sMFyfUJmXVOAKVbLCRqWiNbkTpHDYpNFFWiNPVhe7MvM0uyjusEDaQmLkj4z43mFkpqgRSct/PneiQUvbtBm5weLo6qU1UTJEMSuRRWMl7duQEMhCpvQ5wBP563zHsU6VsCZ7IJgCvz6SSsfK4/1/GnebovGk/NH+FUeUMtWUzb8u36sEYZ4gd3kc7zmvLztBYa2weCbyoQyf2I2IktBvXS3srGXcasBCOAKd3CRkKtWb53O1bFdH8ZGbP/KXfAqlehcSd+o9X7GI8RltFnP+LlZ0hHoXQrjOoMm7/zk9wOP/ClDq1b5LD1t9zJQxARpS06aR7xh176b5p+w3mgVHI8FV6d+njumClABPNA1vnKOei/Dw9TSwn/EwgamTuEHaKP7pCaRGOaoOQgCecsV1TM51GIC+GWaIhAXTvH50q8XfmjiVqqk71JaglHasZlLH57BdkcQ/NqeKqZIv8XJuZZMWvZLcnaXLWhp+a7y7kE9K3an4IyNUwST6VkCJzb+iOsd6hVV8jeKIurv7OOd6dGuyCvUGrPSYQcZNcF7uCyV5Kb8oBmryTagvDMaIIq3u2vu9tWGH8knYluyy0Q9TMQWgPib/O4RGFnGpOR6Dp+e3dfv2dD201lyYoGsmtyneddVjbFHrl6BQJ2wjeAHmJVW8rqYOtQt5UShkAIKtbrN5uQZYw/J9iR9JXDgJkgx7qrmBa+ru+cCIJsPdCFOam2d7hM8uxPnaylMvRKpQyuqGpgHqeY2ocYStw11JB6AOYi8y2E25X2HQEKqkaf60LHQebuD/jXy5zRbmCfwyftD3yg1P9VTNrYjM3X+HNaBa+fIXVLhvJ5FORh5xZIsKSFrT2UDcC3ZBYMdpqhFn/G6Jg5cF7gumMxldD6VZa3Rwzc20X9XpQRZ9BZeebFegBxYO+ysvNkuAleXrH0X45njMw3OT+SllyuwWtir9RV/uT/nYS+CLX9qGoHUHstCL8JvMtd+CfWwBR/KhmfE9FubzkydOBwRdAtFUcB/h2DZiZddR6G5mrAsTLI0NyKX3+Yw14yBI38khV0H/hsFZKMsujZ/jFECsALdjY5p1Iw/Kj84Aqrq83ZG4cCR9cD4s+4RsrcDYdhi10BnRO4y8gQORY0uF5EZ6Adu2XsuvPni82yF/JQwe0cLsXlKLGdxoS6u9kkZ60kQ3PIhGwfAys7bhm5njtX+7wHfRnlpJXe9qy8CBEd94nBH8VnAx+0UDaSEONsahTAxFyAeQAfQRYKcr6xGR8HPr1cUrt/fxKYNu9iUfgfGm0wADovYxHAoCRW9bP5nCgqM+Qcou+wMmxMt29WMWKPUTPQe6nkD0S2WEmX6lHdQXmzZEPES50zs+lMnulUeKpz5tZEOSER79zMlkL1Z72pNvIMmbz+MyL6zNhy7fR1+SfdCIF9VN8akJyo8AilV6ZCK9znHJjMvE6TVPaPS+G1TTAb2pzTQ2pHSr3kqT3AAS7GZD/ddw3xd34OmPvILwWwBO9dLIgzGeaDTZYaqawLpK/sXSRLDqX8rWvstYGTtI2Yaoznaz6LU6kHBE+gYk7gJoXG1MUtfmVnQjVDbTwYRjrqsiKZemwVf6jiUjZCiXv1Nxrra3+ozaXhfUlypXJ6Ig+Y5M8MhnNq7VMyyL9hH53yP3xLeQwc2RIsn7lw5xU5SkpUEkaH8rJBA6VOiEg04tXwKyqZUW2ocDEoCIxu7UBN0Tq1XVkQwAtnEzxhvyMXBvYS4QLIj87nxUchIc7CJ3kV0fhHVPlDpVclHGNQgpMCDuPRXXEwhSp7V+5zRBHiwDQ7SDmrQO7eOPVzWNZCJ/HVCv7jm9AZ0k+rg1ArEqGiUCMuyWRnPYz6/YzjwAZlFplaohOrUgWZYdyU8ozO97uJWPh2cxIwLLUMaVUc1woCwsylV3nNVmiVF+oYZXM8Y4RYk4Hp/7gjkeeMgeX0jSwM8tbnLrxTd73B9NfGGbfX0ImnVSHuZlrCByq9gTWpI3ck9WA0ITQkSS/pRK/n9CPRL6DIF5xRstz1muG5Siq+2BPkrhXIQx2oyHOgQyPBW8Um6fhkwvT+JPtG8LpRCuBYvhFbvqJx9NmiG5t6+wiCNQeWdjug9EsAQOQpS8O4zY9EDqOuUIIL1NDdpQRANRkeprT7BpRqNqcrim5tAmdZ0PO3q28Uyjhcy9AmubsN76B3/5mi2//UuM0bJliHmPWEl36wDgDUJm7PhfK6dUAV5p/UwqylUvrBhPTw8LHMpCcKLT9WFROynti/MGbvpp7ruJND+UUyniVbTrrXS2uDkm1hxu5i3wpvPxTpSGhuhy55H/ldYn8N4ZWG15jcYc3kQVqSCDTHXoAydGz3YxVgRhMEpK1VyTU63L3jq6vfq7mADl8xIbOPEZlixu8NJGarIlLgsZkVdS2NCXzU87Hv1e8cN9g9WwxYZCDeAHX6ZU8OsngAjlkRuANsSxqs5eSGtwb7jmftNgozpcb2aiN08ysi/aWMbD2sYZWFuysF6Gf6MYoe3+VyIrcDIXzQ4QkCPNA4WndShTJdxLdDDJ+e3/kqIjlg3EDoLAJCgrbz2fkqtAukQ+Jklvv5ke17KuHI2f5QZh5x5Lc3A940iRA76uH8ccUlq2I6N5Wrxs5CjWaO3FW13ge5bHDKY9Br9DjuG4K6f2+rORAPiccR3LNDbHrvdCMTG42hQ4yfYG6vvWEfYrG3WFnBfPD6xKfI+14hPdS8K0WNwObU9LWnC8sOBsRJ49mPze5cq6dHzAQb/dg7c/wT/ieElEcsFDXZbKITc7KOEf0nZdn1557iAHR2cPJWlHKx834KBnh9+Gi+4XqFF+ZVgh9oMQxRkKVLlwMhGemqI7LDPLE1fBnqdSdJ8m7RA4yXB6ENxGADak8BnVMI7gBEpKUVMNfw3hHSy4Rf3SjIenACOZcm1bBmfcn3DQAyhOxaCkeIzvLxxSBcWsZ4lJAHJZMWFetnsSMFg0zKZYej4cArgIqEBom9hZlMpnVy0HwJ/WJl/nfQV5+vuWarP2A01+PLarq1h+vI/Cq9w2c6tqW42spqufScjOzuydGwzDTe3I7qdgu14sFrARA3KS2ZVPWuYo+3nXCfslDXM1KltLg+DCvXQxuQeXOxEWpBSy4ftbL0FZkkzZE4w4zFoSeXy6U3I5H5ZgiyyRG5P9EacKdetv/tk8+TJVQtEAV17NQhcE30lPwHLjzAmn74wALDJUpncRick26HmCBJtJ3ruWNXOkhpyLAWatlISq3J1Za8i9GskSlN7Ms4KkAW0Zyuj6p+gfN+sRdmRKtQ+qXK+2bitwz7VMxOWxoQZc1D78Ib44ibNIU73nZOVKvPOM9JrDAr1WjSbu4FZ9InVg81zYthgE1ipobBdh9P+ekJO/hHtQFp4JjZkdhOSgQ5H1Av32ZDoJDUeuf3aJI5A0C6LICNjCGq2bHq4m0bR9R2wJKwcR//BEdKt16eA8LzRCuelYIEMMS2MEmOJ3HdUOJ6cOzcZWAqiTeumD7206gwfLDZbQI7JC/ZjPsXSuh7qMcR7NhzpHio4aYeKy90m2cLwF0CgJAOKtg9OQxp2rhMVMDwf/kj+XoD3T2r3LFD6adv8aXIl3BlHv8Hxd+SL2Ug+ayvWPz/0Hqume1ZERD9k6TUnUafBwD5A3vndfo48WQ3okivI3+ytzxryeQ7DZmrIUTEAnGKdglc8Pd7pV+D+t7iWj7TA5LvOzvOD0cRo7eq7FEmnYSDNPAsiKnypGuMN8JKkdtvCiV+Qyht7dQfNLM/LnQ7ULMkrk1he1992l/Jt3WP+/1CLDHbHPCdjgKH8WBqulJ5oW6dIK/P4C0vkBHgiFUSpewOJs8SC51s0LpOP/m7QXhUYWP/J19ahSIo4ITXSYZSE998aqRA7kahRhQwi5GX8m0aeosKyio23nEBt18U5Y1dg4SBdtVlo1VXZv4dQv+lC5FD43x+fKhEm+C0kGSYUXy1mHr4euHigNFqkiOn6gddp3/pAmZFKQjrCUAx7OiqlO2eko3EQI1EmJy9qwyUnivRPeijfmCP/2DJ/NbPMC0nUKyNwFy8OHoT82DjsLl8QB45SNdMeOGpRLXqNJ8IFg5d/sk0xG6sBRvy+eG77BGDk2355tIk8/rqGi2VR3fbDi9B0alG7tSHd/ket7dwzxJ6DwMwvkdr+6Q3Gk759bdFfBuOU8KkkKb6s3il/ESBu7mtLynNFG6BTw51590TLiJH9eqTpknUkfTHk/xOreRLKKOAMmEHIifSGUliaRvUhRTmsy+BvDkucVgAGQWqhmbRI+NkML2wrSwoQETZB9YPNdL3CaUoc2teYtKvXyWZW20bYsI6/n5ZEa8t4ue5wMlX3xz+dg9LhuCmuiCQ6PMkfAC3SvPJh50BJwb75HGs0AOqoIuEg5KbVYKaNTb2pwX8suElWzjFPQweR0L7c9SpuO212zzm+8in8I2//MrRxWs1GPBjvZLiJ7kC4KmmmBe0Xt92xDCI7u+Hkmr2KDheuHExbrctF7f7KYhsAXi5D9+OGHKepZVsS9HuoPaBwF05KDIx7/n/RR4/vCfa08aodTjBL25yXbAF9ooBJNkF4MMVR/l504PIc5qIdFe3YxRlvxYDLn8lQJ+DVgal2irUrdHNbdjKw/Jb0+oRZgVHmbZkmK75We0adQYIT/pPnujT3ZLmPs7zFjTCX70Db0/bxs45QJ5C4bc+oF/RltbzKVaPbh1hqHRDUG+vYMUfkgjZY3t2d0c9YwcwF2Re0M5sEL6LMzZCbNIah2e5c0vepQ0SbGwgMzL1CLgRB/5BvzQ2vw1KuL2pfTc1R4qfFxOEYzYFGfNR6lLf+mcH0OQOWjnTfx4eN8Hp24bOPUjaw1yGGTH7KJDKEKYmQqUr0dPngBFUVOa78K0/IL3mshKpKnhtCAczeLMOTvX0bbGHC53YicuRrBep/si50IJuN8CvS5+moXDoF4KpuV+zm7YqI5y3wAWR4IO5wTUKUv6aoHp7Igks2/knAHo70ocRmY8cahCsI307epMh3L5Pvk7Ono6X2AdKP4UpoIu2OVjz3zBNQzjQkhyW9kLC9d8keu+9o28L58jnGAbnYEy5BVjoHfkXWmFYdkuHTN1K3xktYA2j2j7bQW20fP+A/462V3Mdr4U0EESZAZHjN5Z8D3mImCPOf7vDbMs9HkjSgDHcAUVr9qynrQE3FVRAtaVIyCpfjPqbYqYBkyCUPVz829/0aBzeKG19iCaa0uWeHkTieo0rlWa/+b9yZC96j3sImMg4aivdg7BnL8nN963Kn/2UFJxIYos8g1Vvoi6DrHJQBp2Frc2VUJUR3kL6jlOjQXu5LCPWTfPe+uYg4ChovLV3dEQ0/9kYZZkvtdxhyOZyxcYgDaaBCh+BCwC/4Cw6po/AI7Lg9pZqWkFi0jcrK4quzF4bdYxAImW1v+Yo4Fz8NukmPh2mf/wV+FMVZsSRfmmqSFmbYO+M7B+vZJIf7H4m/BFvwk09SMRNlCtGM1adRhzH2uTuOJhTlLUomg9RMzxu+OEfboWT3OXuvPcWVOUMVkHneV5Q8436kCJ9E5LxVhngc8wGMtw1l1Ubk0eyeKCuTPsze/qaERuj78bZh8lLD7xcxClh87pCYsrPfhY4arqhS6rzR0D9R5PbucKmJtLtiLYlsVo3FpvnA1Ulus4W+MstMoyC/01+aFywSjrYmfg/+amgp932rhVxb5hXNHafRRJsCmkyASfly8j7DSmdtakhHYFNouIedI5dG/0CeB556El/wVatpxfFzdeebNFGvDwdTjExJyI1WZtoM7ZhNk1oO2m8hkqkGJo2XGEguqJHBSqThDwOJoyHAdqGtRN0HdSsdel0DiWUpbvag77uel4aIWLzZqk2yeVtqebETnQCeuPEUxd2lJszxHDZJ/tADwrQb2ky5jhocKNS7xqNSy1WGL6ooLD81DGFiIC6Iu6s7HwmS9915eBFIcWdGmKwYeOkqyT+VGOcmF0fmfyZBB8xK2l6njnFfdxYSSNt5v8rPXMJm3eZbiR+fHqODvNVQHGJzYeNmLkj2xrIV7jbXKNVa3DvScalu+DpDmMzgAho9Pg2c66IEJRq2S3UtG8wOCb5mv+9sKUZsu14dbciSM4has3ICFQ3+7DlTPVbzoKbUmO8LvoGmvcdoXWJHOtkUag4FjNPur+MkWo5PMo0ogAs+rjmNOY9++grMrOe6czPTRuO2/4bZhT2u0UQ5MhfleX4/GoU/5dl9wvIVnVk7pRuGo92/QiAHEfZcQVukeLbSLyfxmWxMyyUZfPfnfgdokh+HdGMUW1tXiYeYywvmQrHRubc6lI0g0RCJy+WVHT3dyFEEOks9M2UDyUiHWSIyevM90mjuVFxoohrDfhnBEw8IeZN89SZ6UviuIMyApFgyx9NWzraaD2yPkInzkXwg6KezCqfQmxBG1MLFUNF7ba27UJg6ZLVuwjvmpQuVJTzxQvRXxfDoUF25It8HtdlsliV9eZk6s/wFADlq8G9A7Fo8qgZ3LDMUOBdsmsjBSL28GnhSn+qMRh3L5Dc3m7rjv+UEGByZB/hzvBWNCbZ1KULFQAp3yurY1QiWsjo92g8Z35BUDGbJF2ZGvn7Bjn9u36p3OIngwDJzeYzV+lhNAYN4QM4aZbEnoLNfZZGxDeWlaq7zhoe04iaOWPxZIqWb9Inbksyt0iikipn68xViF2+2vZnWalBDVPqB4qqEYmYIMhFBtzeUHn/hef9Lqsl2bgprfOvAbQKZuOJHG9UMg0JalSeIr4yKi9IDuP7Tzs/ASS9QnO/eIFk0tRVY+a1c8B6h2VW8020k1YgiquEZfgNLXGsQ5YJDXcQgBeql/REeFtEf1YFadGOKDVVE8ybqC08IWG9Ivny3J21vxwucnmr7AQ5XxjIjb/9qxb0AwQi4Adb2hwnzNHnIZUSHlozH5Rfmf7Ui+NCrGj0zx1s490M6Vu1y6zqaxre7fHrTZ4/XJkgG0LSwPqTFNgI/EEF/YsQticYU1rCMoS/Kc9g+LnLArd7yLf86kBR2C8RCw9JmUh3QiEjmaLi3IUD07n8xN5metlpas+SxZDGd/YIj2LIHETtzGbqoi8vQWCyMVpbtVrytvTFQIotKVRwdsWqcVagfDoIIGWeML2WevNhhiKF1TXXZf0KBvS3sf67G59fdPU0X1Kd2jtCWSO2fkdwcKpw7RYvExSSmSxU6c763ILXFRSt/cDSVYYxcspQycodPynYvkiCCVgj9VNWdQEcozKjSwcxRylcRxEkPeN8CnvP9J0vPJnArh90fskSlIue+zpfrlbWkU1ENEmdWJY5PiapJQPEU1e1zAmHEBGS6tkrASvbZ1lAuSanojN5xSpgbnoYrc5NOwJy/DLl++GCE3WLNTAHh8NlgRZBDpgefiUjKjlwWSkjrisYoZ9dGAqdELgIW/GkpfLVr7t8t9hNLM6oYJgs9X2JgRArZenYrC1Uc8OZed+4sS0piVGHaByOSm9uLyQLgcdXtWUsj3FOLECvoSRMt57JRH5ZOAmoGo9brLEK32qG25zsmYtCs6fncLSHr1vYdn2vVFwjbqIGPBSWQIHGKfiCi/D2IrhLZCV9OohiMHixC9ZdRSpQSFo2HElRFhngjcVkGdzvWBdq4hHa/54qg+n1zrY8aiahOIejcpdvFJ4AkWKlYRI8CT7mvdUrXl260C/Y4fauer3UGEPj00PjoZyK6D1KevdwjJq4H03xL/47rCM1EAE3OqAbaZgmFIYZ4p+gBSKhczG6P2iOv0ctBBzwn02fNBnNfR+A0hQaUsvwzgv6YKp0BicFX5rTegXO3Sjuo44Q6B1S5s6KYFGUKKdn3FbCcg2jbNmRxMB/taRHE7NX3fR2TF3mX601C9GDJAtGRO8dXZfAp
Variant 2
DifficultyLevel
597
Question
The table below lists the original price and the amount of discount on sandshoes at four different shops.
SANDSHOE SALE
Shop |
Original Price |
Discount |
A |
$27 |
$6 off |
B |
$33 |
31 |
C |
$30 |
20% |
D |
$36 |
25% |
Which shop has the lowest sale price for the sandshoes?
Worked Solution
Consider the sale price at each shop:
A = 27 − 6 = $21
B = 33 − (31 ×33) = 33 − 11 = $22
C = 30 − (20% × 30) = 30 − 6 = $24
D = 36 − (25% × 36) = 36 − 9 = $27
∴ Shop A has the lowest sale price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table below lists the original price and the amount of discount on sandshoes at four different shops.
>>SANDSHOE SALE
>>| Shop | Original Price | Discount|
|:-:|:-:|:-:|
| A | $27 |$6 off|
| B | $33 |$\dfrac{1}{3}$|
| C | $30|20%|
| D | $36|25%|
Which shop has the lowest sale price for the sandshoes? |
workedSolution | Consider the sale price at each shop:
A = 27 $-$ 6 = $21
B = 33 − $\bigg( \dfrac{1}{3}\ \times 33 \bigg)$ = 33 $-$ 11 = \$22
C = 30 − (20\% $\times$ 30) = 30 $-$ 6 = \$24
D = 36 − (25\% $\times$ 36) = 36 $-$ 9 = \$27
$\therefore$ Shop {{{correctAnswer}}} has the lowest sale price. |
correctAnswer | |
Answers
U2FsdGVkX18kQyZ7c6Xo8EA5aRfbj2Sa4TSDzXH6NYyXFG8sdePjcDCshBwixdH8y2+/54cOCkYI2IneMpUlNUDmWT3B/dxWvOjpvBlBlmEo5RW15zaMu0ICKB+DESES56TtGiJfgQRWG6IdOn4rui0BCDVoDDlM2agd04fTseGVxRNAbGUIPuTXbiiW3VFC5Lffk+m1LTDUuzwnI+yhTA7rc/puimUF39ORYVshM+owoQCAqqx3ag2aAbXJd3jrkD1wBDmbJN0gHcBr1IBFab51/izQILTrb1DIrfyD2iP3rYtBLGhgcwfHmN9jpR1YCGuNdOmQWtIOY85JlsU27sIFQOsBen+1tVjXbCqrjQU6nlU89ypXlLUGdAqE/Q1HDhsLe092Tr9QpZR2LX3kMoo1CEqza7FaTDat6jHr2o5q1gd6t4XnNCJhlI2nkEm4TJiPenRR4+On85FTXeLui6Y7LwHdEnp5C0ofwQD0ZvhzO8U28y0xH8GgPf4VCKX2T6MwBXehrzta8WSVg34StJ4n/XMH0katkTX3cKdwb23c5ERp+L7uuzZ30h3kmuf43ubIqQYp9UTkclBmyKVKqF/h0esBbc4UbzqLrA5mZ4w1y6jR2V1IyzojckTtNIJjdTrQl9POt1aA93IdxuELOhAsvGxsTbR99C4tAoLkDgNurLh9rjn1TiMYMbYbIzrJTzaI4bHstBM9YgIy5yYvnyJ0q/95chWfY+vF/tSkmi6alSh6FzeosvnD+U2S1TYZoU/j3hRW6d+NI8SkfXUb8g7ccjtc263knuPC4VW33g/IG8Mk8eXL14lVuKHYPwXXi97UI5MU/VkIEebyXleyG89gO8HneVnFmRejOzLEGn11yp1FEyZsAVMIk5bPzQc4lfi7skfdZKAjqStb3pxZ6ujTue0Hm9lOwEMgqzvB23bOns6notO30AO5KPtqHLyBsLeAG6QGSxGYo7K6v9UomwK2VVoyXEq1DSHaPhPfIBXGJ/Z85OqDaaD/RXXolis8xbP6Gd0aYjBmr0CUb/6O/b+/F5kuKa/6SzcS7ZdXSAHiZux+4nZ6OWm/KWdTC7FO1MMsRQziZKwUIrdCmgT0hyB+uYwnxNbEIRQrkf3fRJG9Cf1xPj4Kj8wDeM/4HC+3cjc5s0Vpqwv2hnawSfmJ/2h3pGgfm7a0iieQdFOYBDFnSeYsdECKESy1Et26II3e98ldzsOxthgExsV2istC0IzRIsPJbSWZPDrWXzaJZ/8cQfJfc+LjXVaqQhnCdYSOaANiOguoRa8JhReFgH9IvjaCXuUkZjsbskjT9JZmHVzB0Pq6jF5vi+rKF6lTXl324ybZILNE8P+Y0awUnNMuiTKzkgJbK3xF0s5R6eF++e3YMbXeeJsMeilmO2/HX6Gc2UVK4va4wNChHcYcmqoWztQ5LGC7BdMcDYGvX8oly5xsQK8KH9sxU95bZoXIYpfbIbJufF8WKZYuiSp9SMMPNvLz9gSsyai2JeYRyOf642OeIRloHbKh0HbG9z+oqA5dbWIKrThgRfQE2Mt4fdj4mdP2qMJmVZ9Pymk4jBc12AQergaqWkSznLCzDMIcwZxJzBcqtRA9xrdq96QIT8i5nooUtb48OQcvLazquArT8BgzTYS7wTUWT5xdDuYDTaaxsKG1NgH2coCf34/pQbDKL0rzyYRTCmCHOC0UEA4vq62KTt/63Yk2m6zltT3jQVtdNjCvRWZsOInmqgZlsXkSn5nfC4TARG5uyKbn24uCiF1+yURC94R4etl5FxFJBM5g2uwLbzK6houXh00qZ8+mPfYMXUe3kI7AIhJv26zPrCSofiAnxWgMV1mAkGNQ8lfyUKDqEM/6tDJa61oQ/eLxEapRbEvs2KyfsbVu1TpaqugmOUOuUzM4f+b9i55/S0PkihXtznmCKFGyJyRl9/Rj/9T+ytC/UZ5qnrAY1g9cIGP/Q0ADZFXIwrHNiPxou5mmeLgVP8rJBAKKP3k/P2qUxbeOlgL2BGyqyT+UQYP3vw+LmEM5DbsHMird1yrieDSwtanDV8ghbUyUCC2gRdpLsbOLOPVwlUhoFNlEIRF1g3d/G/Q5KWV9HDB4HvqNQNp8ggtaap46yzQP11CsgLcmldoiwAvt3LLjnRx5NNQOyVVeLm+y1UETElkuA3DIMAhXh1R9sxVdJ/iuuJ2+3pTPiueGx+8fYtSJ97/HYVqcE0yGWaXd6X0b6BppHesVjB9JQlgku8uDsZH6ZxSb4BCu6HgWbX6pq7BRFzeOMkt8b131w01OQz1Tr5wMOuTCF12+sQbxv7K86QjL9f2l+2qR3dAM8i72pYrMI5E01DnPoyuk3bnV2WlnKFvt2939kALr6vfPg8WdvkUEoSdqewHvVTgstVSyzJdvhbEHE8KaN3hcoQwGtQoUAj3BdT5ezm/16q5udtsq+HkHDDhHBvSe+xSVoR7KqWPlB7F7o98/MYr5C0Q5imwLnhwEVwxcAFav1p7pPERegGlagpSJpHuv1ZgC5zlzTJdMXl5tMII5ZdSN/Tx3bCNKmZDnX98/MIStUDStyaV7aPg0bW6AMe6mwQPfP8ekSGL7rU0ahkpL01aTGMllblAs+YrBBJNPcDbAiPhaBYVB30M4mQ9jeE4PMIvc8AYe/jLaMGKaln7AQg2EQm1a8Q1P3hoJLnr9K2MRBFp3L12H7ex9OF+GBVPQcrsyKsF8opMFwrJW4YD57aTIeF6jrBTABP3yt6S2injGKxjEOqqodExe3CWPSkdwOqw26u5Tl3b2jywLHot1g+ssRuwJWoS/fzANsDOW7W5sZLFjdvSsTJQGyoGrK98J3m2z8WJDdjQehAzWf/NI9VEhfYChNygWOkyPjHNDhvUitJz2YYaeEz12adtJRAfoZROkj1qwcIk/HCVR8wGpvbLg1o90/h2vRlM8G8vegpti0LRvdACZTU9IhRksx46OzGIGHSSSB+3f5Vwh4h+x6ljWnAKZm+/KdYj5gia7NZCa/2zVvTRVZ/DTYpu6anT1I1ZNjKi0Sj/IVW+7GuLJaN1xZJ99EJz9Se8iKo2CGBokIPIyeehvv1WyWJrtjuABY4MT5VES9gvC2iBzjV0Y+7BANBJ4zh+mABFDpt9J+Ranzr+lA3+SbJKIERskw7ZRb4fYqIPgTJXC1t7KT+3AVBf2OIUM7VFPYKegmNEbfF/SiVeJQE0H1TrZjLyLl3Gi23wwMh9fhTsM3xJvl4oWLwdh3UtshyfSYlider2Oscs8miDQSL9Wt32jwsg3oVpa8m0ozCYP9lx40H6GLqt7lpVXQOmNMBLLZVVQ2Le/MWwG4mWLw62m7G5/NSX9OZP/jLkxS+ZKA8FPbwHntKRMve/OQzyb5yGM31bBrsGTW+vfHL7itLW/Jj+qDBY/sKtSySd3Ar4WgIqIe6HSufb6HCOqUlV/6DSmqZhwh8nCyabP9RtFOjOeYRoROV617pYKhxWcBdl7h++FCDqYxW16djKs5oNk7f/JDucTUv3KHa+rEahYobC55Ko1+I00ash+m7g4bBOEAOX9kh/5DtNVTJzm/ej6DT9AE+BVFv69NUbqmnSp241JySRGTvTL1d1TYlqn04KfH2mv23GCdbCa19dWeLmS2CCKCe4H5WpsAdQpHP9cDeGk6wEAwBYEWRfoZQnXB+Rb0nsCSc+EnjknR/Y4OSly5kyZK/NCvkhO6kLtLC94XIXh236L5AhHeKQXK9TOmoMx5vU2w42rpVSA4hL6F3fOpSpJ+TQs2Ix3Av8LpDNMPnoayXy5OcgjYdYYvzsg4HT6+etkrOK8l6hj8PSaFY1bvmuTfi0LA9Cl8NZKGl+kF528GBUR95Jerr2yTVEKwr2+mG+oa5QQLf1IqBT+sx8c+B+8khfG1BD1SU8yJCaY411CxlikGqRFHiA57UKine5uUZpcxzt9a0M/hSm2RQnW41AgdurvZKySLCLbYQNRkdMbS+/U63/Hua2Gma/P9NM1bTKj0Xe9v+SEB5K1Jdqx9O5RSiSMGubmb1XQOfZRloFLOwcwlJHBeu2wLZ4RElgBo50+S7H280uGU12Fh0XtUz9oxEcZjTnzjLdYaLCSG+mX8LIm7yg4lulxes26nd6El46V600UQl7RCiYaTQXzl1tJ6cxWvnfKAeyEOeTCY9AgN2/Mbz1rV0vUxZ5Pd6fcwXpMNp+TkySZKoGgzryxzJRBIYnQq28OvQDSNjzlB9G3NL69JcWsQ5C8koURduzM3JqyOlXpYBcodKefvyQWuJAu+30Lif8Hgpk6HLutazIbDUXQsdjqloKk57ygr4MC/aTcZpTgVYFYyQApKfsmYrPDZqyS0i9RqyHkkV/yt8jHfca0J8Zs9PeD9LwUJdJ/qpQsOrCdJujAFV1MXGUVUOkl0ek9Lpg3/Cqev/pmEy5sEmPb185JzMyKg4PC7FuQjP9CH2l5eIZF/waZoVLnbe+l90Lq3B6Oloc6PxkYEpEXG2WxjAhlrvLe/2FxyRnOmL9uT+OcQWHqXIzwVNFgv19i09nC0cr2dkvdXMCqD62JVXjTmWd1Z+c6BRA0JqTc5X59ur6QYNZXhUbpqfR1LXzaXI9//7GT6+GgcwXSD9rLixDbzPCQl+MuhmcKTS6dJgJ7CVQ1ZLBN50O+NOr92v4v6h2WwJcrkRKshBzF5nPNql8cwkbAMbtC/sswFLtEwx3zQ0XeGX4l/NQ4wu392cJet79op7S+f22EbOhs1JI5sUeXCRqO6FnCXrckkFOa+0liCibRlgJ1cfVf3qyFCfjOuh2anWAZy9kSQk7qTLSpcLxoK32asFKoDiy2u6cR8XMUkpQ1HmSEJ4MBK9Dfr9fWrfQh+GEvJZeW/R2HqfFtVXHv92mnfHH9UAhLrFAiiRerKB0J9pqfJktviUi8NJjjhNJt7nDgBphJ+wlwyJXcXwBJH7yzHAuxkdb0tZpDyqo6rzCGn9Far6+5nRiUd/jQuaX6Qw+1gO2j3UNPxE/prRRtHyrkfemYwdQiQ2mt8oDTxVFfy+TBPkEx+QJ3oooBuHBFYjW2REppWWuhHhuMYIBgIx/DZ8hm8twdVirtd/mERLdHOE+zmGDFK1PyiWLC+DwsEW5fxxpBypaDL7a/+bKKMl4RcLO1eag3FhnZYegx1DlalPIbVkzxfuxHC3OURAxqEvKsAXtleXS8VHlT9ECkHQQDOa9TI6Y/fh/fLGtudHd7aLH5FHrHqtAFZS4/zEs4hU325xqHOCSPgY5wQ209BWFecx/M5/aHEdWgAZL9gX437hwBXg3nzZ3UHHr8uJHXfjFFyyTD5fjFGRlUBIPrCdLoT5buBPQa0kpgLQQ4UVNQxQVQb/G7xcEc34h6Kay0U7KQf6MlJ5a06aXE1q4lTWG70d1AP7dKvr1I7euOrPqT0xh6c22H/I5gHC+7+Q3KYewVBTZC6YU9E3d/5SHOro0M7IC5jEXBkzWRWvBqxxST/gQQQkuaJzA+h+rIGjR2POTxiuGbKonVUTSamQDN5HHrwPmOFUefvEfS20GtkqLVlr5cRiegx5cnrKqW+KgtwA2r4lxXzpbVaHGQadsOCUgZD0/tKFsqVxuEskiNSox+KdwSm8Zot8Y5l4fQH9Eu3a91rnQoQl66WzCPEaSusJ2H3rAYPMCXFh92X+H3+9TxrrHipp7TqhoMjPZu4ULkCVPyWxvi99XwW/nPKeLOtmyvCmq4F/p2lyRdAZ0Qjd2hTyWokhGJwIrFxdzivJKqFRHBmVuniPzGLu52VK8pMUqabeR4JWlvmuQz8OgL+29BAnfwTXaerSChSqeLhhDHrzwcUxt66sAQS8RXNrNV+/OyfKDGdD2VOnL9BiJstTvUDPh8Hou4VnCQSUp+qZn0bVrF3iKCxfJRtpg6xD7SlFxIKmiIhdmepoccKy6W6EH++RqFEv0BwaRaBzlCNnx84/uCdeCZxjdjGW6Nselv+KjWBJVbqvmlOTSjjdMYqrg/zcGnZbi5KAD1kWd3qb2GdZQ34Rw/Y+hYopznDgBu745iibJ6g4Z6a7K8JXiPIM383nqvum6UPmf66iWPqYKCa8PyU7tJ2Wy3ZFIy7R5wWGfXaqTODPTETVeOpT3SqLMRFHa/4gf1o855hrs8jRYQCwuiDhiKHLeHXqDi5qsb6Rdgrz0foOCtBLkvFEzKk6HOT3f/+GSFW5esX9odo1irmK9efF7F1hthk2bM//TgRh3lX9CYrFb/9J+0+mB6uDnuw68XJg7McBdmJFvOfKRtvFJxQMzbAj2zYnQkOrEOaooLXQ4VjlDSfSlWg2r5LJf7m9G0VnPxgwzGP4ljqTX0Q0P06IGBC6wLlXcKjpZdrBYQThith+H55JQ7kq96jLTgzdYiJrXJYM3CDHOXj0oM7YBZxNliXgOVAZlA1pkL+stx02n2+pNjyyZqceOY9NFRwz26zZMgxiquF22QFB3JqjT+nPBmMW9rFhaVEKFu954JUqX7RJjhNtmY2jMS5Px969/84DifaosZy8dCE+Re/A1wPADcwx5yWChOW01Xhypp3yZwox4m9wMvq5MG6wr6savgwNS3KCvZ6tBvnIteQAwbG0vAUelUgQO02xL6SuKZrj3b3dYi0wsFldJODT2XJlS+1hQqDs4sjLQu1u1uL03m8nL9OED6CM/zhEoitF+2LV0g8EVEbyes1f+3lsCC3vYEFYvhkvYhAwOEV8+UWJBeS7WxZVYD+h65BNvV+We3CdyEuHMWDNM4aqpB4H/XHTBfD5CL2XNsh1mrFcd32jq4+zvOoiVl1GJ+7ykHiVh0ij+OAcQwpMbqN8LzBI2lEJgmsTzvopSYx/0HqG29bz2csykTZiDRK5pim/4Il1gTVaKiFBpdx/Y15FRSCmb5wEaI3DjgFNueRy07/zmrJmUijpw4UP3Nrl1R/DPf9Yp+2q4p106E8TwC4qoax6/NFjNCG7voCZrgWnhNsHfOeT6s3JQW/cp6XNsBsVg99L7/UoQfh6jrrxZZ3HLQzocJdn/sGnHDgaI7D0rbbJHflMMu1Ui86kj5qoxJ8+DwF4eknF8V+zjsJgPwOpYmUh1dCMRiO7HLM4JOrv+AtFYhzJYkYGg55NORyImb0q8aWHnDDgjYdKdt7Gjb3IvlAgMA5zO7Jr61b3x6BTVjKLY33DKKIdaRNbFwR14B7X8haamudmC49HVM6OjAJsyttJOid7YtKm0AmIC0CqlnzMtXET5Oyevl7w7taRkMfna5Rdp6IZ86hbc3ci4WV9wTOmYxpZ7sUP5C0ueQRq8dfp8dKRjbyCz0u+43j1cWIW4Uchp/cYJrGD+0/hATPo/hGoGkOrUHoJS+2GtVBRKGL1hgbUaK5uJWsK2zgg9Bne0eDuKLfSgzn65itN8GqJ1tLT3ZqZb4+aDQYToKL/0kjiaas8e2jJukwJQBGEvT3Dun7iXtxJNJq1RNtHHHiNBdLHaJhes6QZLDy2sfPYG9zvPwh7uz713nTwOKNHMQ+/7zBLgE9GLuaFLwfuTDe94tPYsiVvHQ74pn68d35sZuvRjENN+cJI+LDPdozqK0f2jxZQUl2l/p6XoGTDHxNbdq21PiXgtH6vr/0nLoFCUjfo4nWa3IwMmj8XSfYh0Zz1AhpcATMSUx7vRDMfMGVpdLFeigrj/QCPWBYaYy63QE4U0vD/g0Fjb1cl++hw4ehOgljEEHezihIsG5KAHU/0tPLPzHpsC/+grytOnZ2/38kcguQLrpyniFOOjH82aC5oAngrIwo+Ro3lXCxps1S2cWQ6UqXPfT0yi9a2BzKVVJ/kqvlP5alBqw/rZTIvNZH3cqJYhkH2QxrB97u0RqL0EOBL2vDczW8Gp1NYOQCNw4GWb6W9ZoOvFuSdO7F4Vq2Iu1wLMq/dwKm20OuEnkQoW5LgzxAzpaVxs/GUHXSIQliJt6ZK1m5N1D5GXNOFo7pOPSWM8Q3tpWZS8w5kRYZM0TfFGtlmuejJ0yPe92YRCCteR1Gc1LEp5E2Gu76S3fkm2jWdj3LFZeoP/fun94MM0rHhs37ks1DAnF+It2y875xPeYoL13wnaMbcx7zssZ6oNkmw6OcguUazJQD+WWJENgzvrmBqX64GGERnbUY84J7y0jYniqWpA7dfg4C/JE7huCAC4aNH6oiZN0Gwsi0aVApNon/MOWrdgFzSuUiOXHUYiBRWf8tX1tWU/2U7wwZ9drJoeHgniRfBm5OG6ibi4MbD/Mk3iLG2YEGW22g1SjN8wUT/86Ys6mSWJ0Elgbk8jBMNyNr4q9BwRpKET+eXc9uB8tZvW77wuGPDvkaBxeghGUqTlfNNsv1IcCxnFdNgD0CdXeHI4SqzCfEKLfCqVRlubPEQmp73zZmSWmM0KjSX5FqiaWnlMFIdTLURWOWTCrYc2dG1TRkIm/oC6C0zyvmXQLUR7Tme+5MAUueNm2ilBTPhE4wYp9oXDwPOgNMUQY7uaUzHCcuu+v3IQZjnd13moa6KD4txzcFfFvuDpjXRnO4IqsJoFV51/khghSZix4mYwom3ZPhHJ1x7TXZvIFHjNRt07QZFby1dVaokGupZUOrKo6EgE8Un70otv6ItJkHecicXxBHxm35yIRH8wq33sXqXi26rQ+dhROeDdFGsYrL6EySLOunx03J9TmtTCdWE5xsRUpm24Q28pT9DVmXIa/fyJWct15rSAr3Kz1SmJMsCOrdls8ox91Wrb8RO4pG108iCzNCAKjTX5ROrVhfHA7y6VYTdGpPMQEGkRPBAXSHXt6EXdVJ2BC723PSxNdu4fLkLrU6W4IW+fmI8bxRAOAjpcj/SY3y9xuJAsGBSsAlgCRu/wWhjkhVJqbHZ58RvLP9VrePRbJpnmyCuUsXzk5x+3Hv7ikJP5L2Hf9CYyhqtIeyTSzKkjtsDhf79qt8mbBVSMWz9q8k5aKEqJ+/umJOeYxzk83/GWsWhdMJuJNIkl+xfDa35u7xoH+tRNPT4If7EARPr8rYS4xvUqGyrf+k38mJ/2TJDqGhkF1TrVw7N0HuXanJCFgCV0ezypnWnoFxeQQCJwDXAKNCTczYOQHu6jLQ9XR5f/4nYbDaqhxuYDXb2u2dJqLKK40jB/4ZyOcZaTy5rhD/BVksSmLIgi8qruSQNrxmQldulgjHu0JXpNlWJaQDs3AvtHaj/iLnezUfm2Kr0aftbDTadcxVD532mp0hv5yhOwJOaf+E3d2cROsakwUzlrWJNo/PaMGiO8S8WKhwW7yNvODlQAEaQY3GF3ZiulpZXFpExnJQsb814eE84k6flOywnrQ9L2aufXE4yVnHkLFaEfw0f62yxhEZM1+ug7PhJ/0YURfty9AVimBJw3C0DqKaV/85JUe7LYfv4O7tkvAJSX9C84O0hycg8SAgoz4ZWItGhGwdUhG3rbbUBrTFis7HTvm//2Wqo/6gfsaL3UCPEPfxkeR36gTUQmZj7hTySWaEQiqiZwPhxtfa5jSsageXSYuLA34FC0mRjV9W7gJZMH0gUV3HmVtulfU4bt7iLNGH+rBrwW0X3YSVewZGvqntHLo+mXOBMaLOkFZpmC+WHCNMJ7DY1FN0w50Nw8YLqFmrJOnO9+O71OBfEfJD9IuTPJFNHVJ/pdCa1jO+guE8br+j6USVV+H9DITeKJyRKIzMynqTVlfBCwWcY7Fm8HtiOz60pWhXDyMUWEEoUU1GQE3U33q7TK+DWVHx1Eubtv1e7MCeMqmTIR3WyjQxti25h83SX7tbBR8jUEkWOGRYgTSOIDuVMtZDeCC9FJ+FrEJ2AFNiJZ0rp6uS5nfJyoqfXMhjUZ3B0m8L6DZXV39N2VrGnlTDWmJbUgatmVhRJqQOt3lqKjD/MxU9T713xKiJYddTSb9pVIrMcAPcfnnJapnCshIuz9sxJ81yUl9sJjKUKNmSSdxPFwTSSfx71wsyVjwzez2BD689MQ+Jf8lSWldkubLg7TkLEwZheYF/SxHzbZMrXD7puNqag2Bg7LAx3J/Dh9n83h/MEKAervasLBZgBEaZklTIKfWQNpm3eaXFz/iQSOx4w41agucYnRhNmXg2EL1BEDM6kCisXkKm7FoTbgMi1gULYyl/27Qv92teMcmTMiTk96akpMeseefXPzVXgjihqh5yQula4x2tkWfUNbn3QbEkqWyUORFEhmziKXoLd5CncyFRpCfuu76ZgIhHAvDbd5CZHdJNqA+LCokTd8PZyukt/ozYxNqEB/x5FWPaTNKMjdmaLu7EFKhvNDHU9g0VmP6fGNjth3pSDDHdQj4+S+AgpL2OCpUgxOM+ycA7PIZ4LnO48CREyqChahOUTNeC48RxFrNLSKNwGz2M4Ynzb5g3JRk73t0eMKSpGCpQgHlm1zyUYy7SMeBYQ2blaBaPrSZZz8otj+g1XHWOn1FEBFQ2IrrCBohZwxLOebM9r4DpymNM7f92o+Xym3DIzY9oNVSPhn46sSQ1l7BBUrdzvX5rlQJw2ERNhVrHlc9Lqb7mlhzWYmY9eSTAIDi5/aYvpyxbfiUIbjcxmxMvXMJMkLmfJatqcG3EurSjl1BKhkbYMYc51LfIgMzJ+xtC/d1gjwx1LNiHhUselIvdHLMx0khWcqxoiyLxGuTMkRoKSV5XE1iQZMl1LRFTjDnkDo77OJVhy0Lh5d3SCSwPTK7yyJmdDxQhWvTlt7FDevgKjU1kynb3EuSH9WOH9VWIEHL2b2XG+t7MTA9qmkQLqkaIcYMYJNnJ+vtR8ULnBYP5MqFS3oHdK7RJgZ2PDVQmBc1iF1l/nCLIPf74LlYN4EBvLy7atS2syt1BCQfQAYU66Ah9INbBID8ZL9FRhDucMdQKknhc/k38JoJWY4mAyzAibVyP/vUKR7unBAqtxPilT73BOp7FrliJ6QcozYsUDBHTc0MN8KB03DVw6PBnQDtM+Hihl1+92NPqtmFuaHhcG3NDWPLdV2BCuNfP3q7MUPKPsAoW93pbysa4wAfIaAyJshlhUM4Cup6+7VdyOiSLLPJzuHQMgWDp3i2ChvM+VHk+M3sQjdBjq8NOn+qQZuAnyL4dA4tVbNuS7slEU+wxNAuUsie30nLor6eIbOxlpiGVvtoqU4uyIl3ZBbrsqx66dxG2UCCUdH96aMrTIfNxMD973pYYEyeOOqskttEJCY+geQuOI9omfrbm/ua4BREJddaXn9Td+0aslvvDTjo7q5FFLKmTXVsab8ROl/CrhwFffzFVXEqhKPRB6/AQ0q0J6NuLPCyKCdoJCordk8yzOj5YycUbSIdh9AALANKTBjNzs1ocMjD9nA01Yw/wLddhmzvUckyG1dEdXDXAmGcbWYpICS5pwlRWo+wA0QI4yHsRabOhLG7hJXrhR5z/IbblYoK46K2r4mBRQebkzAn0yB4oUmF/Asz+h3btjmphpen8La19kOyVNtiT4Zqtb+Fy4zKSH0i+98zXyXJUwZsbLhqabh9tP+EfIj7SWgQ356wFJy07KOa9IyJh7qya6QUM+vjdm84vSl2YZeMKOZa3Uls0fxmc4XXttwmBIzQefLwdRclfwc+H7g2NkW1fgLKJkq2ZBNMRKs4qsIXFsvz03wexJjpXVaM
Variant 3
DifficultyLevel
607
Question
The table below lists the original price and the amount of discount on sunglasses at four different shops.
SUNGLASSES SALE
Shop |
Original Price |
Discount |
A |
$36 |
$5 off |
B |
$48 |
31 |
C |
$40 |
20% |
D |
$44 |
25% |
Which shop has the lowest sale price for the sunglasses?
Worked Solution
Consider the sale price at each shop:
A = 36 − 5 = $31
B = 48 − (31 ×48) = 48 − 16 = $32
C = 40 − (20% × 40) = 40 − 8 = $32
D = 44 − (25% × 44) = 44 − 11 = $33
∴ Shop A has the lowest sale price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table below lists the original price and the amount of discount on sunglasses at four different shops.
>>SUNGLASSES SALE
>>| Shop | Original Price | Discount|
|:-:|:-:|:-:|
| A | $36 |$5 off|
| B | $48 |$\dfrac{1}{3}$|
| C | $40|20%|
| D | $44|25%|
Which shop has the lowest sale price for the sunglasses? |
workedSolution | Consider the sale price at each shop:
A = 36 $-$ 5 = $31
B = 48 − $\bigg( \dfrac{1}{3}\ \times 48 \bigg)$ = 48 $-$ 16 = \$32
C = 40 − (20\% $\times$ 40) = 40 $-$ 8 = \$32
D = 44 − (25\% $\times$ 44) = 44 $-$ 11 = \$33
$\therefore$ Shop {{{correctAnswer}}} has the lowest sale price. |
correctAnswer | |
Answers
U2FsdGVkX1++zZSpfmhPt3puBuFQKQqnDZ6/RnmOwxDe298gnT6W0RKw8wlCfYDDx3XIGwcsly+0Ybvs0pU4T1oJ+NFgDAQJMmvQVlExOePklUFeIdcXvYnf7SiIFdYgB/nAIvUqaAQ92yOBdnZqSKPMQbxaqK0ROvlr1QmlYE6A53zLze6HOGZWRd2FhbZcvT/neYXYJ+Hd9mvsHJpMVMWMGh/fKOsOCfqye1VsN4CeMmHhMDWPBdejP84QnjGDmccKfnuztmObRzYECuBkUHZ+BF4QRNQGBnlcThY6HW7iz8vhZgIwiDZhgfoyG48cDx/Fv74VtoBOiRyHteHWOf2/kvMSC2ZTM7z9mGa/BIcIJaK7leTK7fcpAUa0ajNutby1H7K6TkSJqjEom2IrMM+kyo42/8GJX2ppbLBKznl7H31P6eIX1BWvWjWbRv9MyBY0j8pRmKStu9b0k0racDnMCPzjfx4SLzD4wdA9RMS9C8zsYYvis5Tl2zF1Pdnmzcr/PuhSePzzjxQazvzX1WqyOd+gAwildHicqSEBps7TOz7mfnnevsHT4bweiyDUH4tkl31IMlTGWOtXTah1FnywRAvLSoFA6PuG6tik4qSwfEL/tGfR6NAezR9vSrA2FeAaI/4r5+JAd65gZmrWJ7WXMzlepXF6Z8VPQuD6V0mCePh7/6PI7k0UsCyZdIe52eV+OA86YkcnZfRQx147Z4RshaYuw31qkNlaw4IsvQxdxgAzQhM8vF2wupC+X80YKznubd9lanBtHis+Wirc7UHx3djQgpGXrNBhH9K8OM2aEmFy8u7I7cuEADZ5GWAzDJAbvcc//WhL1jzU5iY4sZktunEUIIt0rhZ+N+UUHZhMHN31FGq5pz5ung5BjCNFbhQ0bBj2uAyS1QSsc/tx66doK+OEXAJFfd8dEihnnCf3yCE6r/tTSv7gAgp9wukTcQKlJrc+MKJvWaVfck5tZ9xKfThjw54qp/K97gVfHssgi/Sxgxx6ffit66/ro7mrkNGtMYQObUJzcL+r2cLGtzoHyz75FIcqLBljTpEoxYLLmR/87yWUYtmk7mTxTtOzP5UfLP39ltG4XrWd9ANVoc4RkNs0uzJAvsKFBGpTKtCkuOzqGu3pr1FRoOWkSkfQLdVSeD8v1s2SQ0pR0QGfcrGiWdZWeMohiAgdbHpZbxQyRZy4RQT1zgpDu2j7VrtsyFenpdoS2waWxSMbYjlYQr1FnoTZE32CV6+7TPdpkh8iW04vh3QH7DoFCWRkN8hyoolsIXz8dyzUXE9/SHtKN8Y9dcYr1NFlAhCBpi1jqRloaKALI4R6/B8EKngAD5HOlOswtSMsgGijM1UCX4K5c/w3tpE6hdX8HWR0Hyukx9F8I9hvE8ASG7QKH9bbysXJaHlNqm0BZT//2SuWHr/LkzA+kcw6QtEo1wIjwuKuZ93KBnBY71kw8+UgCq+Rhkgbd4U/tSMEqwo7qpBkZGxpFIXvyvXD6wVGen3UK9CRlFrJ4sAWhT4yheSd7aZPyDarRMuKFCFWBgXP3hCCi/fw16blvGBs9LIrg4KGKKLzgNfYzLOLdkOgkc0RkIyyKO7y5NXNTxxSup94zI/eeQHxIVV/utkN59LdV68BR99ILqQKn8ngMkz+ptyn22IypsRfGQ4VKVBkmsBJfr3xrDlxgLfrUR0/VyTpiPa+rEHc4IaEqOawKuEKvSX1J2jJpUJlP73HqoJJFYz5WZMtjscB5hJmhL0S/XJ6fE7hcYqZtxUYRUoSnXEskx8CpH4ioGnGMIsL51EKdUhDTeDIdL6pNY6vab9+VY6H+xsXecwpbi73pH65SM0Vvg4VRaMCPHcHqZzxBha75yJenMrCf6ptJ0u0aesdxGakvVn2Ont5rFOeZX5/sUgANx0W1UslxCh7T/U15sE0raYA9aDDXelw/Vv8v/fUWwcGRVFmhM6yPeH3MI3vh+eI4b06J4ouW0xLAQ2aZpZnnMUvh9EBqt5b5wjHE5CVcbAYvBTkNj2C/EnaaLbmrWtNlpQWsr7wzb1vNIYEBam73AC2ZlmZxjWClbs0i66CP2iUD6mEzrpGR/E9hSPs+G41LqPe/D5m2jW6hCGOT0u4MBKk8j1yhO1JWz5CgO/dIukhlxumDmN9kWXPrj/7oa3YdInHUKHIOZLN1c4OJ+Ez2DbElCJf8D+0gC4KYzghWxtupRGNSRWLCH/0LazOYZqJKkzSvCu9pR8pCr46ZfDh13zgvc5NSU0tQ6wbCjy3cble3I2atOrp31DNShvVyzdaLM7mAxVOZRY4h2qvcMw+v51TztO5b1oSgxl7ZwQO0q2LhI3kFYU2vsgRnH+7bypMYtuPR/IDyhLzWJSWeiRXWJljrfFIkx38k2hFdl0zorTXZVag3XdIW/sLwQDZFuM0WBhrOpYJq9IBkQjvpsIV3cT1VHXULwFejiiSCEDfpoLa7ldzLgnae7r90XPrItxV78KGgWZFlGntmGVkFfvDiMIyD9YhTC8wtCCEZIPZugWcDo7l8i30Ce3UA4tvfFKdqQtbf8soZFszDTaor2fac+6YlKuqb5Q/fjdwcjmC0Swq7lDbD765vTSDFqxBQKaF1Y6ttlfiL6lWGH0lN/H/LojCdvimgy1iPaKx3WaIbajOS/vw6FMLzRgQhkDaRPz12zP5MiHUsU2P7o6I05khBhzPvPY1UXJVuzDsABgPFOsqtB447hcmFQPEjLQjZHFkyafq8G3J0WSzSwCUTjWPLCXHnbKOuaXmaZJoYujSI9n9JzHWSzBhB0YZ6Ce2zklpeiV2wdd+ErEJaE6Qveutv06JKpK/19QlFucthoVy5ebRJ7QUkSS1z/Xqk+Fzx8aHQ7V4CvtDdK1b4TvSvYFdwnQyYcDbq8G7Mavi1qrdS1cCdUGB4ek7SXbDEvfNhz4nuiiLtJNLBRi8qJ3dN4mm++zSbUEHEhlpwlNuSDDY2yf8AWU4rz+jJz2YsB4p9OUneN1/GUXmG6AbzIgYEKsSEEQUoFyXilCEe0F/Tw/j43MZUgGoHCzLrqE6UBegzkCDVyLTNdDu/5OHG+OJvDTAbojzDtbiHHlhqnDqhmpGhHpuSwfSRqvV0/kpIp3Q7a27IfrfRGNZ3jKo8MAIqroKwCvvaLleeb+MHW1DDZJtwNgI+Wf9AaFWb5qdoMoOGTQ+2211m33Gk54doU/clKNlE5+e/Ft91AUszQNA1QLd6viGtrTykbRRMEWpZduYlkwb0oIvni4roosrqVrCFFu3YKWevYMNvFNlK/JFVjmypkseiCIA0/hFlDqa4Y+Q70mF7YsFiDxgwEopZ5CuwPd75eHSmjL/hvF8aKQWulb3LeoD6x6ocp5cR/RDJIFmViWU9x1tnrIleFI/GQS4p+DOtWAbJfLo4bieSl7DrV4yJGLzypwEWtHiZlAMJnj9NmaSjzpCODU0wA/TlWyrUvlwetG9zS9jQiyd/DaJNYQJ1H1+gQT7n164xU5qlEQQOuMRf5fE9JQohiHgVtxyssX2Ry8xaepUq6j11K4tJL3pzFpxX1xHbFMrG1mQNaBuDDeO2oPCqCoa8jZEQ0Bt8AywiOWjxPU+IEfQXEG4uUkRvjb6gcdqjP6OT5lN6MERJoSDLKSZQdwZ9TWKr2/oCnkbyLlCUnyVz2jt35in8yRTlE7QUFs4KCmRlayme+fXN/Zjec8uCHNZXN9MBILo/iTbSK9ncmb02SMHbRQiMuW69G9eA9Cm7kcyQNbVlPXXw3miV7PUK5suGJ7pCVy7uSEvRq2n07SoH1bbzfNlWnXHZbW9tAJNDGh1XYdLcBHO3OYy5uQ/VHgLp3S8O1H5oTM4bqrp7W8jDVDsHECmHHCo/OsdCxvAxoC9TxOWGRMtS2OdUqD8yArbpU5vQm4dIWwJzsDWYxUjUKQYnWeQZWMqRMbEaqqWeanHmmOQbxCTMzMY4deYN/PoVQ4G/EWuYAcmnQlF2Viofy2fGCsJBtJkKJrf49uqt5roCDGxVTnBDDQ2/tN4/UNyoh8iAcKRzP6AlOs+ktA8YX11AOYUSlRnjvRUiSaVrnnmHNZzI37kX/8ccJbkSXFe27prSgthShMl1SNmqYpdVEPfSS4ufORdQZDoA5JEiYirQ3fA3N0ueHif7/S2M3BELWdqdXlCBZBdMvmF3jXIOSh8pEKuujxW4Q09iGMF5TdSj4PKNucKEyWp93E/Qfy+KpYCeFM/NjZpUb1Oytj3RGqMlOAk0aTtBtZg1rCDv7T4sfwhTZw+VtLK5solwUQ16qtg7bcMi6/t3FqkBnEEjMFDCXyqcI1KPxr/nAil7zus/O9ggyzFHzHoFVrIazzkzS7UW2EUZ2jpvD8lLqJTbzLSpHTMxZsdeMzOn5Mvqn7BseTxNcHiD1pJV/gHem75JJGVce63Zk+SWjqL2FfXKdmz5a1w/0O5AHLm2GW9bB3EQODsVJobpNOSRNHLzSq8F0SuRBShiAikGoyYTuknVRmQipIuVWnRZjti/4fb1uHdQL6NyVp7CcJ8XqSNspH7iiIESTl9qW4Q3LhI+H41NjGarjxIvQL/6UgjV6vuhY0DxGRkxR4u1/KYrOe7yIrtPokAQQjz55v++oqmGsGn9A14xV+gurCBBd8h1W0JOyYAYH1wLZCJGm1vPXuDdIawE1g2pRoR/3bXKCnc8ad2cReVnjkGLP5ThKJwf18Blu5mTipAxklmsZzjtemvHaWcY+KWFiVYZadTr87YyF0SV/GhfW2+rEulCRKAm0k0BoTxSsoSBmCsXako/ajCj3KJi5seRvLxBPeZ8TWKiv0cU7kAl2RLkrihbDYQnyGacigX54HWz535RZVEZCV6tDDZCkfJigpO+rQAUFScDGjyfG/9fZuR40CeuPV6ii8WXS9y1F07MMx9MJ9UYGF5zlMEFGWB+hl9zhfLrB0zofqEbyX36PJl9PQtiUtkQZjGk4PziGKcUdarn8PkoTyPDtKXBq4brjnWDCpYoWWJ7eTfRSeaLym+TjTEYw+4lvB6eSxso4Yxsplg9Ak21plSL8lJuFB/lxvRrH2rzARnBha2+sKoecIjKYmWK8Jn0S4DL0DHGm60hKYq4mCHKgqEqS3Ow9qiWZ8S8o+Jm16DoSqt64ge/SJ/Emo9aVX6X02g5zzt7KXUWMzIMgU6c82TghN3F9Ab0wlukLnTTYbMd50G8HhpUDtp+xRDfnG2ag4kMVbIxojIPHw5P7WiN9WNMC58y1tP5plsq9SqRJeN0t93BrnwmMkGUhWZ/4rnj6+5n+781/1x0nd9tQn3rfvPD8Huah+GVIW26TZwqZj7P1n5o/Hc5VG9SqrxEiiX8bXpz8irKHankxIHeNGVy26tOd4YZC/3FRd6Oz+bp2sSXi1vp3IoMIs+lDbRTu9dl0mFXdToWftcxepdAyWiokf7xZS7wrguOmETtUHXPEh5c4WDkVZlVB9UNh6EAtmwocW6Loit0dU0wEMJZrYxa1otTe5pYDt5k3DshflNMmflGXj9LK/Io/wua+b/4DHb84eKnCxvgvQWfynVGtYSMpVQokU7+8cmcGNnkITPYpQijzzL0gWpQTWPzi4PIViEDjtHw50ZQHv5Wdv8EBeZcf+9ytkk3udQdc9v5kPNWg1MtuaBxHxyFfANhBiA4tXM17URrt0R/AvewEdzze++iuItonGrLNmitn1MfkWIOyeVCHk3tLVoE7SYC/03LheHFymRRxzg+z0cOT1C1kD/QpCsSvAOdcFto0z5euk3sgAe5HvhhNJRR3by5xzRdMQY5m5EXSPvIN72j3E+NiwOp2kA91snBQmQdSkkcrcDI7kz7/tqzsLXFFVkIpnMvtnw3CvhS4d3HByx7EejYmljgffy+1Y1mOTp2dHDPS/1AikH+ttvq2edW6N4YTAndn1EH7tNduyc/EAuz58zN6uTzYk26dqNJKMgkFBb/jTcHWZYKz0pvwNpzwm5ej8C9javmWRJ/HKwLFdeHSsl8l2T0/0fH/PJ1cyYaorTaNeX7pECDKGtoFwjGs7VWqyMJeztWoiI0+SdAYCD6L1Bnbsfl9NHdfcG/37TLQQcZBNciJpmVZAB9PTaVml33QqD3AgC5PIzEbQiyYvYbdiPmNVPg//dImYxOuaH08wUsYVxKFFLICRGfkYqZUQj8x/fKnM9RfiBKlzRnKuZ4WQPdG3bHjIVgLP8lnL23E3OSogQPszQMTkWITv6rcVkoWR1SspIETraTgT6THhu1nYI/3XB8ISR17rakkZTiCH3K7bghaDvVW/G84kh9W3/9INugfgb7kQGLNdR4D+XGzuXLo8W8uKhuKH/JhNOhCIaIc0xUUL+ssLqHHgoL1PT89IyQXW0qcdSy8rqMhpWIRS7OE45KHFDAVgVY+9e329ZBti3y73tlRlhMM/1rSpg3ulSLAiGN+MGBgn4I2OzXeFewNdcWFuWsND/QaZyr8FjYwl4x9RDJiuNG6QMfIPwaQn2hG9Apet2kWPpHocqB6HfwG+88GrVvlrJs1RoQOc03ntnsONsyNLE77+9rKB7cMEMrJUZU27MENix51alQBd9xR/7vs5igrel874NtERHk2x3avAfXF3Lxjvlpk+ia05FCdnHqeucxRv2OOmHFOrvij1CMq0yuQZg2uDNePuZM1T9Q9zi2KAe0USXFxgrl59n0AfSrjpgosEt/6owvyg1/1P6TMhmsRO1lgLO1j5bqlMN135dQZO0qKg5YKP4PzL5GKrkvBO2g5SDY1NzYhI7TmHKRBDmb3SRljJcQkIZx2MM3HNWHX5uOOQc3yNitq2yfjPkrowSyK5P3VU9UbWHbeQmOx1cUPo1T06ne19r9YRaWwiG9n+oKjVWNhsIKjBvkHVMpp7//s8EMvN8LUNTE1jH6dQTEvmNqHwZpkMeVlsXcoF5oihiwD3gazHJiG3yiqMuPoRksorsypoaT6QqDMKI5tN7lQKMsZH1kYxlLPi6oIE9hAsJQ7t0TAVVkByIRsdCbNN0BGVjWb+DZhkTvBP2uHSz50YMsFRlCD0bcRQVY1ygGrH2ywl9yEjBEsvgrEEdH+5DTsEbPj/juuIiYXFzDrpLIRwo7rZFq/O5c3IeNKfzvSQqyn27SIcYmuskFPZolQ9a66BduEw++ORwpDASlEfE3E7zgWPE/qzB4K5X3Jd5ukEUbU2fj5gRQwyU77TcaPgaJxWirYEnJp+dGFho6YoiLWtZNGCogJsxW85JthZ73LcuDz5po5ax2qOH94IHMtHxgsCP8XJ/TrFdwuWfetSVMnTqsIVE8lNznFRs8F9JBzWEW5cmtugBJFLEseytGMEsYVSETNT3I7CzAPQPDTQNRvDxB1BqyiXWasaiECEDy1Ghri4VP37g+/UKN3TVW3A8nGYslQBNQP8XM0r/gfgCC+DBZ7DZxL6V4/bn6EFTogBKl2czd90TM1ButP5qRYHL2s5FveG2NeXQICIxMYWc2BEtEIHeDCaTJxQYgYeLdsDGyt3iQKJHkQny7Xnqi57NNK75wN7YtxMPAtSm4qu5PndHjHyVfeqtY4iuye4Qfoqn65kcjl3wbQAtsK5v7ImXEbb0rQm4n20SQeOEXCl98MkDT0jfog+n1sDdaPqoX7DuqE5wrPZllsQDy1ibdazNDghsSd9nlpWZ5TseStmUKahWmgr44RubqfxKL+ebnwp3CAsdbxiOSBbEzEu85Zw5D+jRPrMh+v72wWCNjGdX9Iau3TbhyVGyTORJHYZmKDQLmkMU2FCaTYWovAy5IPVuL4+OxO3IpP51vc5ZzNvjM7nsqQGLFLWRyupZ2YoJpmGPShlFdxB6NC1ytXnT1wzWhTWF3HrIowgSPu1jpSERv2RkivZ5HzMs5WEvDDl7kuukKgr/ZEyGjgeMeO7AbzevYInAGaWdFf2v9n01hFYahv6mOXiaKOFT3ilyAAX+4NiS+lmfNyteFobBdZfqxnHb/qrCoYuD5jmg0I7pa+prG6uWhie2Vm1UQEJEnOo7JmLg6m1KSNPuTrKbzdsZfc4cB8APSEcHz0zPipI8dFGBGyoaP0WxBXC7JL/BlDGe4bjvZTHM1V8seaVy9UC8BAfLTrN4YFu3pme3esYAxNClP21d7G1RjFRoZvZJotTswkXaugwnGQzHlOM9BiYsYqb7Xnh6y8BVgfRvQ7uAaqNQzoy3PaG+i/fsmWgPwN3oSdyf654mp4Dk0XOSy+gA3Ut8ttxIlQP5lNGVhaTtHiWPc19qskinZR55mLDjPhPj8dbwsxDHlbhU41OKLCRRajmeClz9Xg+5be6b0Rm97ZKMV89CoyDCe4MHvbbeZJhWbvrK4kjLuYYJhm0IYlhDYuYh5s2eY1GJQeqQfXeVqk5NmBD1nUd4A6WifbWqUcSBPXNkIO2JOKYSUbi66vkSV3HUEQy8wRl3f/3lm+w59e1SvG/UAwPgHS+VOm3Bbo2+T/UNlxgu5i5APpGqd0Ayc2suhvJKpETV3hxzFW8ejn0FaZRfyrBJFUd1Ar1/5MrYxgZP1DSxjvDY52xj6DYNI29wmDbKGqVNM+B5S6olUCVI1dl6eCpv5oyf/DEOTKZ5ibEOhNBQc8Fgzw6U8f5M5S8oPg1/5nyBW/mZ5fC8yxUzzOh57LM2l8QbAX8ytiEXkK8z3iwgznylWnW1YKa6Q0BrR0BnNEEIf3n69OzU4SliDIUf3QS3Lh0ufCs6m5e0RjB5AP8hDw8Nr8Qpx/zyXxargfWz2BkIMC+xwKb+7acN1acaorGAWqD4R2cwVD7r4hP0gh7uY6aE2VXhKdUx9ON7uHSP/vHSvx0sBcXvPW5neBVY6wchvtNilUlhBsI51Fc0j0IcKlYoZXeW4IedAczaXMqJ80Gn0d5Qm69Cymdp+F45QYUcrYySwV7+7r1Qt1NYuztiJ7D1gkvcmIMZKYwJkdw/H6yMAouneas24MSMnOBHuSlgblS9b5cwavkdGLmKGVa072kYi5SCjMTIQLotKLZ59tj9MAAEkwOn+sFxk2KrJ6Oox6aKihYPWWx1mdlEPGTE79NiX590D8iXMm8DTr/q7I1rR/PeV5/lfviNso7alDUk+08HZnxJeMiArSxUWPP1wX43q5kldO0dNqUFPlT7ggF0l55pptldzHJUH0YhIGXj+1l/jpPWjqB167wA6Pp7EcqHhEIi1x+k75QJZvuxR/1XKgvW3+9Pu8Uf7EhO3SCBu+3DH2fWFhQ/+PdB+0LclisVSMrOs6v/9lH4P+87CUdbV+wMXTNHSp2HA2op2zKrsUnrbY4Z5GuAL02uGrqnwTefET2KCRxjeI2t6dGI60BSO9uq1YwiAL/MxBMXiQHTphFHM1cDUTBGBo+qeQ3CsqSGhFNapaqSpH4A4T1HOfSs6qwr416pNNIjwhO3H79dWWzf5btoTIYtO16cTecLt3xpo9euVc4dJyYdN1KYomEmbNS3vod83bX5H8td1O0bFzayG941fxKpDnn0TiE9u0GVRL74DXz4A0Pdw8/Eo5ZUjbDRP12ANf3d2Cvl5gSCOCH94m+O3wS7kJ8JZ62vVWyB548VbflqCHdz9ThwnFOYqNDTMl0VIcYCfZFI7WdX54A8jR3BtAexZM6xOukMbKg6AwkLb2f4en4b6pHbQrK6SufoQXM5xsSHnAihUKexYRrheeFUb61XOw/MntIt9QlSBLUbKhH6FEU0yB2GZ4nV/+6zoJybJUO2UiMIXDOXPT+gQo+6AZBJQ+yKw0UppnlbJJblN4upjBmYPeE0eHD2n+bmB/MuW2GyyHVgMwh5bjpFaE+uLjRiWp4Pi4iGbJXTZ7IjfjjGgnbx2boCHLH48IuRF/v+RP4Ynd1bxjxY7Zw2b5CFPGmcX8vA3ohc51bRp+94fV8GWU+EZ7tQu1DMOJqX62NVxIf5SibeBHNb2U9cqmiuEBXSibO1j9OsK+C6uoI0NqlcTTGPHgul8oMdAIovOoJIppSarRzk/t1AyZz6VFclj+rr5VfmPCvu+YiYMtJAGyIR/j9a5hvhqJdMCpk3xyUBNrzOEAJVPiDx2G/Go2BD1ILQHqFp7LsHIWldXNhXaxU7bfK6J5oa99oItFe6mfTa4aOjpXJwf22+CjybGoECdRzovwS2qPXU7shMrYvfIupTU97QHtZANBh6LIDmvfZgBI97A0K7aM3jJm0YhxEiL1/R3sBIsMGtDfB+apJ9Mcc09d+6e002wuwjbjAwOu8VJR5s6J0pLQHnquaAtkTpEvF+LkBJcAuDXX0A0TfJaaBa0r6+qHQW5JraNdhP9qWygHGD+ksJEB7IDOL5X3N1lNd3nvkAnyiJxm9NVK3FRVDDfghneqgNpbHCbui7OVOxYkhUb0ki43j9/ZsM6IcpRG3bZ7saR5QIAlKfUCAegwKspcMB7ABqsu/KRkcaFGxblvfr3rt3OFfzEIkUOH1yF/53BBkqlgOhIJiONQOj3pQrcHZ98l8gaOzthaqEb6EA0qsw9/H2/wTEbaaujoUQTygmCFPcMhydt4ALvU+mVWjAc4taORwbaS61kw8xJDou8B3TnWPE3Q6tXt9+3FQH0VMtz1f1DonMviJ+2ASH8TqNqaLvGD21pOG9UpokSiLmFb0BSW2/XDUI99gbcyJA9h2+2apRToALm8CUAEKafyh7X7tnmpjW6kKryk5RqD1BZ85rITAz9uAYK6BzIKUlSNzDolqPhKTVybFb76/tsLKXrjQdqaQhkcJXqqDWqTOZhOwr38fZ1SivYnOhQVpbFPOYNeRU9A2cosQQ29zz8AmvtrhLmowQcaSkcnUUKW2zjpplUEk01Pm+XShbcW2VP4hBHT2xwHuL+0aewQjfNBZFC4gzsGoSrNtvKlZ3oPhjdo3hcF6Bb/YTDo+Bvwj/UxetiUmNeFJWCa9eni/w7piU6Kg2t5sd+1DFb8eAQZoxqqPFH5vUUA1PkAcHf/fX8w4hXVuTi9XrvAeWlgrOYvfctXuELk7fVShoyudNhOe6FkhIs+UH2kL7KBF6B3kO2EWgQEird07QPKPZkDmUDyA3tn2+vNjIQqv1XnKp2o4tgLJNtbiYSnkSu+NbKnrMQLcldzl0WJZPUzEEXRDoKgkIkHZLoUHcvqNUia8YvxfikMGaY6YFMkp7RME2lPG1hovFsa4cmuI6ienxsb9Z60t7JVAaWjGUTmG1vNL+NPcaGdwn4tbIrbnG4DU+C9yedPFOZUhPfowNK3Jv6PQaYyxBW6L2uGXVwtvMfh2Uy4jfoWxfOw7G+yrHhVE63L4hBmDHVAX0dMuW/+/sWEXXuYDcSJi34jl0gBzBNkW3dACmRXhRqEXfSkJEs5/C4+OqcpaZeU1VsDul1LfzmG08lnwrVNxap5Riqu9Gx91tj3IMVGkgaPl1A5wcatARNBrShKvgdoGUJdFGY0S9SW7/a2Y2IE5jkDDG5DKEByu/1bIrJtEGEwD+V5Zlk2Bl1Z1Tkr5eyso+K/Ikwzuz5L97qVQ2uPB1wFoYwExNktC8HQctgyzSIEh1FglQWvO4RR9zIX6Hf37MB01/8M5zE13SJPGyeYF5HdvdO8k1t8BjXow0M0IigPC0Sl8GY208hNJatOcDIHo/XwYt0w==
Variant 4
DifficultyLevel
602
Question
The table below lists the original price and the amount of discount on teddy bears at four different shops.
TEDDY BEAR SALE
Shop |
Original Price |
Discount |
A |
$39 |
$8 off |
B |
$48 |
31 |
C |
$35 |
10% |
D |
$40 |
25% |
Which shop has the lowest sale price for a teddy bear?
Worked Solution
Consider the sale price at each shop:
A = 39 − 8 = $31
B = 48 − (31 ×48) = 48 − 16 = $32
C = 35 − (10% × 35) = 35 − 3.50 = $31.50
D = 40 − (25% × 40) = 40 − 10 = $30
∴ Shop D has the lowest sale price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table below lists the original price and the amount of discount on teddy bears at four different shops.
>>TEDDY BEAR SALE
>>| Shop | Original Price | Discount|
|:-:|:-:|:-:|
| A | $39 |$8 off|
| B | $48 |$\dfrac{1}{3}$|
| C | $35|10%|
| D | $40|25%|
Which shop has the lowest sale price for a teddy bear? |
workedSolution | Consider the sale price at each shop:
A = 39 $-$ 8 = $31
B = 48 − $\bigg( \dfrac{1}{3}\ \times 48 \bigg)$ = 48 $-$ 16 = \$32
C = 35 − (10\% $\times$ 35) = 35 $-$ 3.50 = \$31.50
D = 40 − (25\% $\times$ 40) = 40 $-$ 10 = \$30
$\therefore$ Shop {{{correctAnswer}}} has the lowest sale price. |
correctAnswer | |
Answers
U2FsdGVkX19XKQs+4rBhuVnY00jpfN15O1m6Q0LOFxVl0A3DgxC/6mB5XRZ4nptUCarT3tucN097WMeYACHNvG/tllIeRM45ZT7CS9DbqmrU8t8tKaXID2UaZvRt6bfHaZz1AKUfvQK/d/jsh2igBNJewlirzb8LtPBpvTzK4SI+tvMiBUeZLqo0euqKPt/KTesXdJdoiQHRaqmBreYmCa9Ob9nvfaJGNk3GUsEnR8k6vvFEwn4zu7vz7pihTps0LRMgxBZpJw0DhZJDdf41F7X+jU/5tLDbwm5clzG5BxFWTVTS97xG826/LObYSorOLrLcY3g1cznaSu3QvrTnvTg3CONKkDMbFOukocqTynJ/b0SIHlafEbYYOSNggmJxBZeWS7mLW+qFWarA4LWu9HnHIrLYN17O2O+w4cnGzPWKHL84qn78IEPjRMfth9das/dwpDTBklzw9l18v4tCck1NzWAfZp5agyxKbO1XOhS1HgcbeqbMKITPtX1Jv8uesLufyqtsUAI1NR7Sda+MwBlVXCUnBi11+nEHQ7XLW3ZtGlfNBu7c5vPCfMzXZoseI7TX1iG8pVr0MY40wKUByqqPB5rC3gDlmzO9WD1MgrkJGqhNOWUTM06SfHK6dCkupr+4khnVkYsAYq2kRBqYpkUFHC5gd36sHv8RJJomK6WEQtrfLPAZ4L3jTNQTzxVicSEGNz4u1bwmMD2/iZX1m75Y2TM6Xi22JXbjQ3td8Vq+FbWR7Ps2vZxIKT4iqm/LPIHa103WkAkCmExIh9mgkR+skrIQriA+/1Vvik50/ZpBsSW9TMkbthC46mnfcDuhD09fW6+kUvsK8BkP3LfspXBu6UhxdYO3BU9GzKetQVGUXtXKxnXUk30LP2C/Jh3LhBq2/+m0PxTtdtLmhzQOSXMwYGD4f+IiPNcu/N2oFuUt5A+XADyvEz4rJOgPoTyq8JIDTzJK2rbEQr0VRDQpfwDDhoziXDGeKibc9K9q+Rq5LPheQ5X0Ms+xSEgrKgmPmufPOAatr166vnjxQtfPl9WqvAUkAvNvKhb4rNh3tKNOIpfwcJJjJllN/Fl6gy7LPZUe4Th7SDpZnhwi1VRBsdrPCEf1Q87VGF+87FYsjS0uwFqdeKnkPOUyNl/wKjVItGymRrEbnbvW8JSjkfgg7p6ySvrfzpZG5DtBfWhKLTL5JgQbFqhfVuK1hwCLPOMl90x75TB53iGqdf5Dma9vy0CDRr3/dlrulY64mkprl7dF57O+X/C/6k1vc0LgLAe4mV+vS/N70j+K8PJDwCpnktUegmwvCk1pzQ1W4/G9v/DJp+cGzPVz901sYZbwjjfTpSXz90jqlvVaLHOHwIh1vuOr3iE6XDGbxW3f8pX4qgk1ScBB/akoKXjVj9KnCJiutF8yMugSdg6vZBbMbOFLIBFeGnqY4JMHu8esdNEJzrscyixpVm3bhOlg5G4XddZpawJmHkBqKkhavoij4b6ok8aLvFQ7/JxjWaP8fzqRCq9iZRAzKGlijHF/n/889lYoUdyhp3oT5yIyMblQp05yxacPinQcWpYCOyyEgqAhZbt/PKOCQmS9UncEqCqXElT+FHJOjxox4LXgdwYZOKu9QQ3fpaVmYyoD70uRpDxomMTRONvx+rHbLYeGrKA5QiewV/HW8DnzpaNW6s/MRJZ8++esRvQBKHl8xzBQoAzWds8X65sz8mEH6inSLGxk1A8b7QR1p1j+GZwbwf9+2Hm/wlb/endU7NArKycFePF+aQIirRTlqgR8QmYGcUMuSIc21hunxLLDGD07vV0tOJwSLwHYBB8oQoi7YDTwTsIcBKfb/sozlwQ4Lyf/NW0cGRQ6H/hoOMGQeODXeRv/g9Fr3HSAsOZImGNrXlqO+xgFBAbuuom9egjHZWQyFGFWAhIhScH6MtEsbqjGWttinkRIzJgxgt7hL8hCkGX5fkNIMViu9DZAdHTCqTlGoIBBCpyHb6qleAT60rbWAUA2rghjFshM+KIYJs4YI0vsgEKgpKkCQXnY9XkdVh7Ji956a/Z84BaH/HOZpKU700gpAHLTbnE3V5vJpfcTVKhH7jtB3ufbC2Zspeu4tkf060rupL7KAob4pyKKOIFi2DMBvawA04Ok2JZOABGgPuRgxsGKTCAuCrBMqCwjQKBoEltJ/NjmTxy7AcIBk7lEC3se4a8QZBMfewLjuXztsglIllddhzkTd8dn0j2QPHKbLjnf8Pkuf21hdwK5TG2MF4B4rXJV9SHpkOs5gyWyj2ob433BPznhXhi1ml74/Wdvcaino6b/O40OsEY4hnO8mSsxNUsutKXn8Mc2iccpZ6yadapJL7HYdtGEK//zNJv4Di/muIGHBP+iS2JCLZN3/EEqX9rAdoxHqROMD+JSIrj9hzM40BeuORtdlNXnFHMGz8NVfaN36LxDGNxUglVDlWJrjC6ua1uQ8shx8i6HEIYZMd0ja5s2IestRTn6SfNeTvryGhxSpGVpen86tDLN22TLVuPLvtT3K9a39k3EahYEFB+13Dv5pELntNeQAqoxxZooDdcRtHDFXa14Km2AqRsLkTC6E3mScq0leLQDet3xC/daqPky1wpcNzDCM26r2TRUo5VvNeCr2s6OYYAa5U4a03Xl71Nz3qMtbH3xiRIIXgf1n5GLXQ5S52IyJhduvI8W+iIU7WIyDHMWc5xYuavoVHux+nnVzNy0YrQbuHnZlUWQ3QzywWjXdKDrc4LrARHmhK9YmaprYYqA4hxC7UWnpMFoxdUFF136C6jZ7bEfK32xHYcEEGwSrC/drunRMurUiQesGYWfLJUjY58/WskKaru03AsNYuXAwpQdDz6zf0zD2pc+YlVajRJdXJydWj0fnmKyZ9PzOTcSQjOoIKbfTDpFlnS0Kg2xU+N84++y1By6Q4Hwg0HQvBIetB0fj9slJ+YIgRqtC0poXqaxiOmZgyE27zMcWqb3uaI4spLtpbZWvxO1uL09dbbpef1uONu36H7nYdifr0sYznFiq5YhEUFVl2+O77jz2aoQWecGpUxLsiBxbSIAoJ5mi00OsDg4Ng7W8MwpY4rtmOtCjshUhM5de4LspONQN0Bn4Cfec6VHQiV3M2qBQxYII1HtFz1WNcMhHrYpreqfxgE05+teSKHFFcuaPPR/Z3qoWxTIkM9Fq7XJP2rGcm5Ouc90KUXGSg6ewfU0u9UEZnoVXsJ/w6dVkMnxRzhWb1WxfBcZF0KXLqWzVx9V3XCWn6lA2rN0B6NDJboyYUz2yY19piUtFs80X7wTCjqF1iZ9MAn3i7vem2JCG6IAf2A+2rJgLYSKYPbP8SriqAB9cwgAEFwa9ltCJ74FwwznYNjvjNMsNBXccwMJZAr+ULZdbUHTUywk9pvp87zqeMhdzlCNTUp0azOPmORzDB3f1bjAHij33qZ7xqwpoR/obSrYVO/aLPgfA7QL/u0LiUBJjDQbqrXYKRZ9bLQVfbfY/OqyvzdzghLupQnrzknFJ9WnXUzSJamez+QzaWrz3kTGQujnmY9SimnI3qv4Ux9Kh2CaK+ccjV6uSnd3xwtFkR4d6CfM4hnS/reTFkI7AR8aotkKY8WOkljuPjA+yWWAwESwSAkwLlWS0bE1yEb/MG3uroKdv04P/qDbUtWEjuLuxNzqByQUtaCv5691rmR3xpPuc0pEdGOEr/MDB+CIzrob+DvbaiBjapYZ2HyZ+Yu40pHMgQTeR0rtHH7CeihAcNLRhTqdv25/CJS1uOf8mNjZ9c32Bu83zDZKml5cB91WZqnsx1XX8f8D5i1v/MM7qrtI3XIiH2+BywR7S1kxHw7uXLI2/C3OYgHFWedhicF5pnrZfsg+tbD8Y/pwlbHmVo2jqEh+CmwurKlOReK3+nQwExME88mdL8HiUjSZVMDB9/nHNZZQyU0Y5D8vEyWRyQlrWEbOyzJUpOalhiEtZircpNFuuxiCWVws8A1Ph6GLRc4WK+JSP0OcgDZDcD35/h45BrEyk/oQc559J2iba2ftjx3Iw31h8yJEO78L6GKak172EtGia7xrRWqj29rT1ueIHHXRw2u0mFAdhxPvtnp+roNsXOweZbgzJoOhRVi7xo8CZzfQzUiihAk+7i+mfahS5zVV0ntLqgYTR6whkTDasuecg/wlQX7TjnCQ3CUlce9p0kdvPFKYa8xaGapS1AYufWwIhvji0LKd+24w7m9imHOzPzua77aZEOg/BtpvOjwTzufPY/Epzujhp0G0iSU04C2VYmtr/wD7SbAiWD9mvQ+4BFBKzEfvTm+nkGf55kxgQWVgtApY/Hsx8ut3wDscrlBJqEZ3CrTuuFYE7SRvftMiBKNWLrf1UruH4trTmXquQh225l5YhfSZwm4278VXsm26t3r1ptUPVFEe0RzkGqh0DwUjVP7aVlf1AkV39L7vJv6EnzXIZ4W/zVjtFK48zBtaYaJV9WDrWI9fWyzZaNNzwBvJlSubvnQkiIvmq4uPS0PEtqbGMwXGKf1WW9xyT9tfAwHvDI0/oYHMuJZ+v7efG6SYh5yMathECCBG91npTKcK8pBq67bZGOLjBM3dYKhBPPsRkwBT5mMkuiI4UzozEazuq5yTPmY0AnZnpXfUPdtLATORMF57S6VuOmEVwPjIG7VI2sE07FM1ta0dQ7FmFNykHnyCbm8N6DcaVGP/RJAsUzoaHdau/l9mTV8z2/AsO1j8aAz6gERFnxYZg5MdcxAQODqTbDY1mTJXyhdL/BlJqViu9ZM7/5FGSFUzT2/mOsudwNqH4fj8PMEvc3GvvunlLf+Fzm1ENc+9qtwB7xsCxzScJa4B2xA14Q+4v9y/F4k3DYc4+UvmIg+dSHyX77P00vGslQ3hz7loUZsODbqSnXgEJuFOVbXNRo1XSuEtASbsTveZ6beLOf21YHDfNkn9q333yOr8jvC51qEN5+dTxC4RBPVsiNRE1ji8SFGqN0h5CsoSCTWK+HJPWFy0emxI2ecD+mGQUCpgWfzlMq4JNSp+B5aYx3veKiugeUi2OYKiZ2FNRWt05FhVTDzzs5EEiHVqUbeF5sDucRpprIpfaYC48J7RxoedLACqXfzkkKruUNvl17OzFDsWQ9JpSinsfGanSIJBkd+4u28dsXmJ5zlUqEONBVnWXlHq0aON8fpCiAuwoSkIZSBbr76i3fyPaJ+vNEMurNR3XG56I3fb/TCvb60IUPcfh4S4xhLcWjQbOnRJLf3fap7N3XN50pt+0+2qLSaeSs7fiYRHtLQ7jQDDpxb0PHHRr8M13xh2g1IT+obd4CcsaLNyClcpgPYXkz/UMppp4QS8OXD1nnftc3ZmOi1CaHhRRU6U5EzzirgX+M0DadbdMehDAKrzrNPqKX9QMtse6Ljko3nFIvU3ZIS9zollybM38uvJ8qTjHGKo/P1g/q4JBEHE6TmlM5z62FzPirfuVPGxJrn3NK6AtpB/CJKte7J+eTTwckfR4ue0G68VeDCp2dl5Q1AjFS8GFXis6JZxDH9No/X5xp1T36vT9otPNWHgbTNegwzwebpffTYxi5zD0X9B8MqbdJmZwWMkfczYpc/vGxnwwBwEq2s4aTm5qiT7a1jC+o9n+KIG+nxiFaS9o4ThHlp5A8eKIANPH3gsmKQdYXRrYHtLA6VhI8/Z20+KMhNbQiApMKJwnYBbRo/OQeag4tNh788j3HR7xBHPGH54Y5+KPpL26SLwsXVGkPAUwZ3f8PcRjtlwf9dfO0HySHLBCghGGG52UWEI5dtqZa9+imx1dqgMhRyP2JPzoZF/lVtNyjSzvkq+cspa8tI77N91+2qhopY+CW26WC84D5tTs9/26UQvYaUl19Gb1O+1KQUDSDgS7UdjJk9/rXqOD29S+9evMDICpmOLew33FzdNTkToAjfprtfAQDvkwwww6o+IQuLMkAsJvf5czdoRo39m2MqUKyMaJtUCsgGc/X7yeWIPqytNjo6kAG25MBTsrefV2wMfUy0A7YAOFP6FNgxq3KsXzeRGRRwNos7tWbiM+vrC3zJek9gwXZYsjksd0SBzfnGrsBEWuIua50mnyJ6dy/sznFagTUpSLoHTaweK0gQ/AZrIxHoJ7BFHi8LcZ8QqmBbV+kZPg1fu1XgfRXj9251xR1CiekvGOXBjTiujQmPMao8MmEartOLS8lkXgDDbnLkosbe+B/Tx65mn1LtLPzBiS1lFOMio4agVwAO9EObCGyOq6fOZvfN8Gk2Z4NEqFBBJJp6RWCXT36qV46/pkDGtovJ9PnAedQwI1wva1b2FLtrmYj2uqpMZBTMGFP2BtXN2DQbck5M1349HgSZT+iTNdLGKCqknO2zraRtyFDybPXIkt7H0TQdsg5nDZqQLj+q1yPRrVZUj9UzNmZec0sN0TL3Zc3naeVUHHQuAo8u/T4wkofcrY+FGQdOTKA8tW35LWKYww91deoEdFmb3O/MlJ1DCtwxrjkgdSiD15CBxAC8nH2yZimL/5XZGq5v/whWGCnHjtcta0tAxshX4NNE5um8THK+yoUunOEmnhoW3xJqUAwnM5NtTMbd/V4DdIOTREoDqsW8hYSgV/UUBHzY0h7AFwxwvUnWeMtCqEtq0TcznqNVxCKPiB6a0ZylZvRpv701bs4BRW0bINZLQgV+oJxPQSvAnR3uH4M8WhcJoHJvmOWJZinT/musxJ4wKOr38xNKcKMkC8FY8uka4FOoVzbwxAFgvdUWFVel+p92LmCKr9qSrfPkZmBSsvZ3leBElINucSnIi/o7wcDKcxZmyjKLRX5njMHbipDBP4c9OSaFZ5gLAaOeg/GeK4midIHcs1YsxRDAcO69LMHuO6ANniikFF4gRAenWN4e5WRZymQDGj3fyvL4q3OPZ9w4NDPO1WQ0GB6O7Wz4IS0R+CYw4adU0B0IcXZZfM4hk/dhqY6Zg+7VkGnfIlg2jRqiRyh4B/r1Gdw5A6ub4AlRMxBaeFYbfCKagwRTVbghqpheZWVRlSogq1iP2FfYfQId/tgcJ0J4ZsHzWj04E4qbtUoWrSUPaABisY45tvbskpvcyC+RjYOUZyggXEh+wp8DlhxQqdcZ6h/WXh4jk85/ZoEtln/OEvBbxvB2WAASzM2A/HQMJH9y3eQnkIO9rmzR4sAG7RjBS6ZpnxJSHhZLw3BpKBM3A7/gGsi8telHpwalE3Dl1UbVoYYH7vzAstX4G8fPbDmKNkyhes/4x5kLBdzByDMU2Aduh6usphq8QXJ/d7Bj36W6bnnc8cPv8fklo5cj+wvVyxRqsdth+8JMSzACcKF39x0SGtCj3w/Yw0vvuLhKPiaf0qJhG+4y4gPmUj803QUC+/XnKL1AHl2Ru0zLbA+hRz/YqG7JT71VwBw7CRZKyMRQ2vsrkgvi3xlmjCe8NENbdqSxscrU1fJ/iArnysmnUkYZaxhZgTQFUQzFLGhRZQ4lF5w1JYdqJAh9cduvVrtEz5d0nsOXUP2yDx1iGVjEtaWer9uGjvhU0fpIn9HwMktVDnVBTtGkY4nN4PBrx7kdNPWVIMfetb3lsCg3QGavP6BRp2uD0Q2eBJV4lR9U7yXRsh5nk1K7NNVQY1d24zE62nRwNil2Bq2/MdM63CmGU+0SiCseg+0gxycP8QyT1zLhi2YKOcGVWhw4t669oVsboMqJTup9BEYaJr3p6nVX7BCIz7Jxdv2PmwRGJpaJzXr6evKOPfQywqJisBTlQCB2Ur+Af8lnxj15+kkx+R6uzw9bwMMJPT5I+nZrVLokMmy2Ns8h+KqxxkXGtbSkATMPH06AlSJocobXem7GjIIBnhxbt9FPVBUAt5vgW4Pu0bD9LWkxlyxvTVGlRVflfhHPCgTgEsvN1fV68GIycAfCfmvOqBqTDW4YPfdLAsnU6Cg6faXmkLO8UMFuLAdwZRHApPj0xY1/OjxEuPfmJlIpGK/Dly7Rluq/8CFtIQk1oOxwo/8TougETt5upOeCVquA8cKpDgCPubciij/au4lFuUMoQqEKMcwUvIw+poq58BZ6GTovvuwmFlQCcDSZBg15eKQWoq7tXcAD/eeSEx5jwSAHzcpGSQKrQyfIcpeR/xA14j4+fgma9+h4GqHa4tcuowQARHEARtaPJAwWkt+PqWAtyr+OhP+pMsSXD2ZCJe0N+n5XNZAu8PoYtTH9Co43d9PbeetQbI/vLggrG9yhaQKUCWlRNuDa7bKC49fehu/tW4JFDkyksbjB1Eq+mXLndWfs3It0WraEqaX43FIFpKinayZnCyuO2dExCsRflokeu8TgcoQ0TCjNbCeGM+T6LFboTvHi6npmgrBcXeTqI2847bg/lpEx+cXA7YahpafI27UAT5v52LHH7i3XVgIGAUKXrz718cKGdw5LhopZxVopdDewrBLWGsyaRSp3kzpPv4ETfEaE5rPOdKdMLOTPzjBSkZ/EYQ0xTVuD/An504HaglMTuvWMXjGFVW6B4oKdd5yCk8Wkq4QsP3I7Mt6TSAFBvnDxJUYaBY8HzRTEgdAyyI27hjCs3QkgYfKKq2xl9SDlgu3Z87hF4Tyoady4JnPsYtEadLqPe7aXKmSZbKCDcf+1qt6w55A4Rn8aIKQukDVyq39SeLMhudUuE2aia2gr7WE4lZjuv39rJBbtle72/A+m7tOuNHBxvKv9qVH3r8FahYZ2IHq5pCNxgA9dSASfLGmlFCuP/cHg6MBq/Ul6q+pMhm7hKuiCJYx4fpFeGTuT0eWSRV/BaFHKjFgYD5beKMyFYgc9sAZ5t+6AOmX+iMNuaNFWk1qgXF7tUwnhM6FzNISQ4JUEbDzlWMUPXserBBWoEU2HZA9KNkH5I7Naq9xMuHmUAuLladFmzd5JVrfTmsQP7BdMyf/heDs4Bj+DGq2OQ0erZSFO7Yu/zSCDWgNxLw3khlHQGCsvz3lOACjc43WtNtETwiYwRDjxBOrdxq83WHussD1ABpybGiD7a31heLzBLPK63pSuZNmPqwNNF6J8JgrdRSEzIVBZrRsb9nkfxsn7ca20i6CUWkjuvB2T1OCn2RwFdcEAiedaN1ECPvP9kiO1vfz5W6LpQ2yBH6k+RHnkMYMnlIoZzsKjzkLAQS4PEAftOEOZZ2PVZ9aqpYgL/R03LE1cE6Brmli/+ho5W8FbZgiVVLgm5CBd4m0YNKWd1mBVptjaoUWebgmMbPhJ/cMNTKiuh21uVOSMWIp1FBvGXdHBGRbEWQhWolvY67ZaLTcALL7stPTJYrOOYekJukyN29gPWi/SIrJihCMGkjHqG9iOIGC4HoxEodb+UffwlYClvQzefLfzT6z5KBeHp9C7Z5EJ8HMG2g1BXAnM8VbVuTKNWABKjeZGLqv27m5jST17GJr/eSXdDs2VWX5Y/PeDuoUq5ZsWHy0AWmVpe0Kv89EDCTfekVPjpfP7zQOlnWuAqa9+WS+3jKkDOWwuVLFhVtovdbdVUQL/yVm5Ya+0WpK8UdlMAhCaiuTdadgj/j+kdKj2Tus+jBeW+MMZP1CJRlh54KFO4qX7sbkmq7Ju2H96SUOvESz88Q5noiS8u6YdRJraOEZncVcC1tHiN+NmXsqkU0XYAXbjqVcNDYVNQc+/8FxvJOfJWvXtVuoUmjC09+699o9yVdkz9SaVSHga8qM4o8QP1o3qnxOUQoFkHx5+K/VtoF1v2kCau5ZrbnjlFk9uVS0ZNEIzOif1aVsFdpxuCvf5kx850Q8uUgVKN2qt9agzBwVs4qHDRaY5jpWSaY+V1VXGvwMqcO2R6ZinZyIB2122tDX3uPOB0XzVZYPla7dh5rRP7xOeL1pe+S2IAyz2cFWVPRc6NdiEoedaWaUBpp9qjTpX5M/Ro5YVUmc060AasOwZsgZj0hEbiLcfhcnByuwzbvxg57Hr7CqePMz/Kd/eAyCRsflSHQ+bCemKCbLza4d9vWwXphTssdIVevRFTkpbZVb7rVmt9F6PH1iw2BQnGe6S5/NeaP/mywJSE450AOdJ+5An9HLo9V+ehfpuPWU1UHnYRKC9kh6RduNG3W11oyZhUzCkvhh6Yq/i8fSwiai7Gm+LCJDXiq5mhjezXC40lI7VJvKRRpwdR3eLYGihh0y8AbEfTmRPE1hsRs0sbmaNxKV35MtLs/Mop3jL+S/3j+YpI2ncW0chpHmpRi8i+KvcVmJv0X0R0jPhcdTuFQGz3JCs8/rZWRwGpDapVGmanT1lbZ1E91moWEYBnpIIVI7ZciLBt4MYV+24enwg/2247DafID281kEvGkled+PfT8Wws1kyVHpq04aTcQyM8XGfMlH3bJ3Mj/AwdP64kbUScefuM2Etfuc2m51lmktNdPoBESn/KtbolfFmlplh+8ddpn500F1Kn37ZhYbKPhEB8dZk2sgkQAT9xXNx86p0rJbqORMhuC2ovnvASnv4PWh2pBue2vA98BwAYV61qRwoegsVRzpWn1FLkG8FWUzc6T74Fqo3pfcGLcB46Xw21yuR6KENUmBRfskJEwrF8Z5FHyAhXkiNIAVO0fe5pLJn1Uxa0V7O+VF+R5BBlfS40L6gfJK7tMlKFjpKiPEyZvXzYGD2PrPXFm85QsGzA/KpPfGpa5aOwQx4R/tmDb/GIXffoSDHTKP6OLS/sbQuJEThF/TQosOIaoLVj45jU5MQxnSKTC1JEoUefFTjcOhdbhpaT9RODDhKxa6ROnc0ykH61KRmxzAcafeOAcyn8pZC1Ca/+URn22O1rnvHS3ycY0RKH7bgRzGtmX29+1FAjeq6PFl3NUdXxhJUdD392bGglyPWYdpQz01juYFYYVnbmuUqhCCRzT36Cx9Xkpgn3DbjPdMRy6zu5UpgWl//Y/en5ZTmz+uMsfVe7bXWAogYo+VPbAro7pG+1dVQJy9+2cPnb4PqZNp1T8kGbi2Rzqau2c6zpY9oQFMR+iWbr9GlThQNpZT+jNLezs+A9ViyF2rLNuxnPYaHdn4dTYCHA0rRLIFn8qEo0/QgcAdwRxnS4YwZBSZmXNtv7F26JpivvuV0/gLCVa/z0bFcDYYWKj8ru+vqKCYBnnk5SMV6cMw1qtzK6qLe848A4cMIKxeg9gxG2+6TlhW9zczDgr12cOWG9DPARMGVjDQvYJXJItjOrVI59l377DNy3rWb404YFApl0+e9XzG+QFc2ixKSLuGrvNOwuWBarhC7UCPKlzM5EFKhevA6LKw/OCh86VAnkDf1NKZUf5ugCBjJyIn2hAPMUv+uSz2n/CGgoInUO/Y/DTORrNmBJjykxvk8hGlccvJ6R9jcb3Pp16uawIZXdrBs1LHlRJ/pj+BPa45IvbIWyZLVVshL52pyp2RBQdYdOHiLE1kkl6KCM+w4hZej19vgmnoF9fGowQWuViOVJmnDoFPC8e00OLFybrReiEYeb6kn83nZGfb1Gl/JXTkEybSwt+Z8nujt9XgFVjq7PSIeXvykn+z5FsXZ6tQyYDXeXyzQHCi5FHh7hH170vzhCY1h7Eg8/osLJhcJdC18FyTzRw96kPDvb9FVSjyXYjuKUZdt/pKomXjVVra+QrY9LOPiYmOkCgCWJsW2fZ4/PzqRmEyiTEsFt73a25rQcNGgxk9lp4I4EG9UeoTvcHGnSqxZx6ZpY4hHSL5Ij7oQmtMZkCak=
Variant 5
DifficultyLevel
592
Question
The table below lists the original price and the amount of discount on fidget spinners at four different shops.
FIDGET SPINNER SALE
Shop |
Original Price |
Discount |
A |
$15 |
31 |
B |
$12 |
25% |
C |
$11 |
20% |
D |
$14 |
$4.50 off |
Which shop has the lowest sale price for a fidget spinner?
Worked Solution
Consider the sale price at each shop:
A = 15 − (31 ×15) = 15 − 5 = $10
B = 12 − (25% × 12) = 12 − 3 = $9
C = 11 − (20% × 11 ) = 11 − 2.20 = $8.80
D = 14 − 4.50 = $9.50
∴ Shop C has the lowest sale price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table below lists the original price and the amount of discount on fidget spinners at four different shops.
>>FIDGET SPINNER SALE
>>| Shop | Original Price | Discount|
|:-:|:-:|:-:|
| A | $15 |$\dfrac{1}{3}$|
| B | $12 |25%|
| C | $11|20%|
| D | $14|$4.50 off|
Which shop has the lowest sale price for a fidget spinner? |
workedSolution | Consider the sale price at each shop:
A = 15 − $\bigg( \dfrac{1}{3}\ \times 15 \bigg)$ = 15 $-$ 5 = \$10
B = 12 − (25\% $\times$ 12) = 12 $-$ 3 = \$9
C = 11 − (20\% $\times$ 11 ) = 11 $-$ 2.20 = \$8.80
D = 14 $-$ 4.50 = $9.50
$\therefore$ Shop {{{correctAnswer}}} has the lowest sale price. |
correctAnswer | |
Answers