Number, NAP_70027
U2FsdGVkX1+NmhdiVhrWYDvN+vqx9zabIHJIs8LbXsQ/R2S+l3Zh5O/ix2Gc6/vXYWOXeJ0NzkjwM+enKJBNUpz4u6xLBtOJQFSaZtAFxSCdyAQu/OfKT0w1uH8iwuiGndnql5VNHgeubwTn94p/NGxTfxsYgcqxaawJtvrJtltpSW02ozKncUdEgSxmviJdK2G5V1rqgrtIIsfmrVOqZFqrlVVpD604w/iBrnvsUTqAmuYnp9BHrxGLCn8C2w0LHcf/yGUdYW7xH0lFKCXBD6qqGelsiiLZvdU3UDc2A1x1HFTfw9Uyit455N1O96uBqWicsPj2xxRYONGzzpYfeT1ooqWsSnQWyI0fXGYMdpn9w0Fr5dTIRYsLV3c0SQkd98x5nSC4SJhenq2201GomNECVJgH5tCqHzf53yRgt/cbNOBdfv2WkklXe14B2RkZjgwnn7X9r+sjqOnufyAq9ksWUYmkUWvxcj2IiBIMIroIX4tfyTot+Bzo0wRG6Pb31nDuGiT7fCW7UIwidgE2s8mzwnTvmmRXGLHTr8EUZYOXtc66tPk/VmDVuvsdqKGoSc8JytaCylLya/tfopZYhBp9RG/8Tg6l3waTgkxxOOGUEIkxnJ5b30ya8CGTQp88o5XwqwjB8ZGIop5l+I10m2bMODHrz1ivgzgSuAv2tVPxhzoGlpjwD8Nvw/KRmmbtwmHmESS36uR8uw1tJgY8buZZ7nTT4SHPkU9s43LSiXEhAyveOo330Gk1fAPrNX38kmYOomJ6FkgXJbIbKCY8zuLUayw0qw3H+Do3m74z6azx4CMJj0+KrOUITJ59PIjGnkoXRTG4raBoI8NHXSvOePmzNrrlwsWglB2FoWvDAxBUi6fNSp8PW6e4AGiG7yX2ZgrZojHe6W61BilppOFlOJsWMf1pG67Xq02GZJeLhekqnWVDnWVc5IPgWTrEYl0NAJHggK+WCnT8xWWfHglvlg2zVXPwm7R1qUDwIxzZ94Y7oOW/EyUC58lptpVqr/oMkhT+iVYd5Yfk4AA6dzGZR72y3OdQJ3lGvXwH1nzW0fzMhKAdIP2Z+WpPPFAcPvRiN15xrti00ZMSObaIj93MqTtbqHfuGX/az2qZ7Y1IheIxaCRzqjJDvSpfR1krfrYXNBcLgGaSQnKsPRoiZ168JK6i30BcW38KFRZejMfU0Zut94bdhpCBWGUkPPu4Pm89f6aWh5qAtNoTIsZjO9pj2tizFyhgCiYeCzzB6d/DU7MKai2ovgVN3MKCynYrjgH/PB0Tdz1YKkGFuxamhSQWocgoG2/1Iu6R9s2W/MyhOnaavWVeI/oa7MGaMkkATdzwWCatqc4F/KKW/qT5jKwPqIkU9wk5KdcJVSPPVR8xA0Hj32YiHRVaIkHA5f6uL9jWRCx1fod2ieHTahOoFtDIJLnZPeNr7E3FG/ABP7FpnCTuzs9Vb+SXrvggP1RFDK2Kwscqtjt3WH6Ql2Clo5DaSy5H31xSKYYYpQ+csM6mnc2NQgC18CKoGAF3NuDWqAwf8YtxFfipCd2P/CeZH65i1Lhr9pc8sWc0ksbnHZgXXd38by8QNwQunHf68OD+znNWBuUKQOKs3UgP3RVSGGlr4lyBS6ZFMl2ssovQJFcXrg4qR1PlnoIxA+Uj0/QtHqgF46bfn8kMLf9pRkjT9qlA5lQcfo6DpVgP6ZH5x7rxRSMU6eCgbXDV71U23s7GIbb/hgTfRoItp92hqxL/KkMl2hEsZ+kAE6MtdFnzzyw0LdkMSqKekT2c70FQsHmX/3nYzA++CH1LQccad9kBXkrI0dYjmhI/P69Tafx2dD7H6X8ad753woenj6nu7to5RFPP8cHVqS6hNNfzfvLw20nxQlbS8RphBfujS6KZ40pKurASiQyjTg3E6fQgv+/2BDVeLpAeChDGf4erxlU+yxQabptPRS8NovgKe+74SQ1eGrBI0b1DdWnGEi2aMEhobroFH9RO05x6/bh/TY+gS7JDAn/wDXUpkwev6oNyjuIm/+4aSzxqtnIS2P/tdtoXfZ/ONK/9GVQJqgiv/TE0Aam1rbchhunfc/g1GeO5UgFuMdMMxGC5ejcdhXq9yi9XumxyK644keH5q/ya5jUYuJOEhZ69HG3/EqZ8Wy4AjVgcf6w5AteGc0Ut7cyFucgFipuCI1KIcw/jEEW/D+dyhPpk6S8HOeCUlpjZPMvzEpgwNZqMOM2+crtYvu2j01LT7SFBYn0Jcm1gNGRbgmO7eWeJPWaUesczuJTK2P6eFQZDg1Fqkr+7xTR+X9Fo/NR1O941gC/rEftEeC5pBdDqyayCQlbmbnRz3Mc73aqyRcYuJgTR162MkucwtSgVdGtiUhL8u5NvFq1SkYZIg+IJKn7sVCT22NznfelDG/hziym5w27QJTKN9sEEPmFEj73yF0XkZKD7tMJCaOPgavwgKztHfbbBh1/Se8gHbXnesUzx3TOpCF5HqLYuQXJZqsZgVZ+cCtbzfDV2Xu+94L1Oi7Nz4C5vQvSGM4i0joNuURdLXCpvcaNmIXk1k+q8a4EG7pDPg/m3M3F1WDxBNq+WDfkviu9iA0QlSeMkbHiIagxz9O34oUB8M7FdGeTo1IMABBZEBqrkT4SRCeBOKhp/7Du9alIp6U6rNkDcPrAy2RAs4WmZC4JQlwr7vDbMtL0meOvCdPULQpN4Pum0+zHlnCLBbXiDQxu38fXKlQhpmjbxWbSe5YiKO7Nwq7ZXVjbj3Dwps52tgDuqmFBiHGpEbUoCDFIfAQ+8vttPdekn3FwH6m02QEeLQdDOAKQsR7dBUwGT1TdIc29XmDMv0kIzj1cPBKMkWqVTjQsHTMIuDy0CpwbWb9Lx8sc8AzTQUJY3uI40dU1DIESoJ1Wm3hD/btDr7/lCwcdkAbjPiZBIKjlB/XpesT97jceuwN+TziYSBCYB63TrKnGiKDAlD7/Zy8V9mPfR346ueGZPr6M2batp5wKV0i0LawVbw5/rKHFfpGXKsHsn6JMYTrhupHNQhClfw5I/HIen5soXw+ZCnyvpXQf6UBczLZNaLCH9UdgcA6KRSYn1sdGLeCrWBuO6QRSrsIt+dREYMfmdYiNDtIokACRBirF9LTszkOjl2CuLRHjzD6SD4h7/tN86eo9maTWEqu3xjdCho9nFSIJPs3gXYwYiVfCnNh67NZtEdG5av3fIiktNn3WwoMBuEmufmYutMfhSskOwEc911xRWjYNzg4AwX6ELKJAbxx3VwELhBk1p9OSKDBCURsd7564lb2MHxVQAB2p6xkiMpEZRPYH+qYGM4Bt1pqg3A+1UkVp/bF7zhtKFEjAgDIY4exXSS5bKUjz+y/JhdQ80/yniiQqnHvlV/LcXayiuAh+WDpDHxpq7dLHIPi1m8+pLbKvWeUnI64ysTABUZb1t0br7P62LjtzV4GXFzHWNnd+v9EOphbhABgVlddmuYkwPh9FBGqbl0JVsezUW6a7FbqbrTEhdtp5ayKiON/EdMtxo/ulL0fHi/9jjdas2tJ0I7iwOFOCIIcfUjegF6EXkenq3k1uRq5ya4rQUeQInkmUj6+XSHevc2hM923ZunBI93nOPly+opExd0Ma/bdbbP1CnqNauSq/ovtp70n+BNWfP0hbJYow2Okj+T20ZbrFXvKBYhK9XaZPfqI2xUlDuUSgdCtu0Y+DqRKeL5Y2h/di0RivTGRTP9TSPwbr2R/gic2yPS6EkS8XW5LycNvTgygHilt/su9lerXX6HfSMUuXQV0I8At5MGp2gm96D0/9urC6FEQxqNLXfMAJswgIj3gXM61dEInVCO13RHXzrjDLHsSwNdMucEPZkYDg2W/kFIQKQqioKF419r67mBfJaWgXxR3UyOVmBe+Zg61UKnzr23vJGzn37F/+mj8dYhqnbHqAa5nTHR2oEw09HoVYTIWT/s93If5I2DkAh2EOat8PdlZOFUP+cbQUayQIWBMbWYqk+F1YB8fEwWMy8GTd5ae5tzNS+E9wrvJVVOjR6mfJatymjXtS8YDuENtAK1hIuZdBTYl2MgnhD7z1b+FzeT+SqiC6w+6S2OPuHa7PoWYqwnB511ERNdmqq3r7Fnq3ras0dFDqpUhzLD878raVLi84kNQzTcMe/9Ogupv6yu73wFT4GriraR3K2QoOzGtvLJ92QVAWV7h/U6rnhdr09gBhwwVdylMKCayQS4+DvSySlLy5qy6nrbH+14ZyXxegLZifmUjlMuc+5Q+uxbgPS9Vj1ifLYcRu83XL9K/uAz6bzVsuix3rx/TWtZKYCHxOyr7gFGQqd2H13tnrign8MwbUuTRWQPEyufnCfrB1j+9OwkJ0G7PouxhU8Gv+5TOVA17s25YhClBMhkP3h8H4tyL4Dr5WoXND5RgRYF7thmuksjPBmI+EQ4eW0CRcqqEqWDPvJXo/x/E8XYdGAepP5IgNJDOdBRcIp7FCHbB3kGoBSW1lF2GeHMMlEuiLYETXLwz7r8ahN9JCeJYYMXWWJAxrlcQXOZV5PnKXhG7mjYluhqYHizlUYrRfChAE4Jf3vLM8hjTdzSzvKEx5BaVJwxeutfwdeW54dobgOhGyvmPXYJ0Ny0nGNW6U8WjMk8j2Z1/oikpZzZd6qdMXt5IUxUWgVxntR9eOoTptGThqE0H23VDg+/TMYoFLViIsCx5inkltjw2cWPhfupQRSiwGlhPsnhUmb1PqRic/gi2gyrPruI0uL+ScvCLUto11mpUaqnahvUw+V1WfOU30aUK28ZMpLwBLQW/shE9/R6QaPRd3a9hNVKTgo75yUFL9WKkM+Q7GD8lGZDlw3oVxLCqXdeWnt1P+N3mXQ0/h9Ki0DJvEYKf1ybz4/em7I04rA/vsRwPnmyNeEPPYqtTRbHrZo/X4bq0j4zim1XqFeAfEnWbCIh+R6Cl3jZzMFMoGMZBmylwURnIOaRosGdUMnHy1h+f9il2RVDXslC9reTP8c+byqqZKxBXNjVlX+h+opD1Cvh/9x/diBfvTt9lermF9nFbVUDLHW0TT9Y50I3j8zY8G52D7PJWNwqabk6pJOegBy1hHsHznFAI4YmrBjq174W3tLXyscHxLuuBVtprWjl0kPpwrRcEjO2Vz8pYEzKdwDOt/Yt35IKwk3P3pl2/pA8OXyvYlPtWAMgdoihLzvpfhKaJQfeSWdBl8DlJoDxDr6tYiekKOBnpRXYhfDozDku+TR9x+0Op6jAJnE+RQFWvEUJrVDGQtN7mjnJ7qXuexEDpM7PG96LCfKctah8VVrOoSP9d2bB06PbsY5MIC/KgZOvpich2u/aT7x17ohl3ceKhH7xZjDnntKc+5lDnzjQUIODoq0s/eduBfvTxsXkF+sJ2gdJoZbsKnWcaVXwVWPPrAmG8bDP4/UdWRXpQZ4NsqKHAI3pAu759x+IiWd/R+3/FfXPPO1uPRvqte6iiexDyMMxesZvvBhrUdK0e9TpPM7UqnoC4DE1YA1yDZZ+HPShdEMScuiC/NfaWQe1RteMql6v+0PQKRKbhzX4ntHMikwtZyRjHkPjeqPA4Thqfdq48rSEr9DAu81qHxBtChh6su/noAYqHJQpcRVtUuUZlYA3QW9mlZVcZIVKnw8P+p0Es9aBrjnB7SCaTlVawnU+bjid63hdC8XLMQvvc48X0Cx9G7avHYnVC04TqPdwr6pSF2giB3/VSiLmncRT7fHIqNtAaVLAhdisEkR6M+yqs4avU3vZhpObkbn203DCQpTtPbVvhUkhJzyrGL4BFUjlZxA9qetyWsWXMy+eitqy3l4jkPgXIuX4EzzVYFOJLgoxkmVd9dgAd2IwE2wW9ObqkrK048Cs6Dqimn3jCMB6xrzjkK92OHkix61j/9cGe5FnuJs+NYYmnYnndW+PARoNzMcLCtFqxzwwjn8k2sNUxPGGTzQ+LLIiEp3OL1bCq4ihnVWsNantkZ3GF3W4zOHhfqdu1gqyFeyS4DvRJYzbm2SS03pwWeofBLNC2Is+Ycz+C9C1bc5TloD0pa2cwP191mdb+w9qrg3ZsLpOaNghxab9jNbVzOGf8t7aDwZ0eMGwEGAIePyEJ0lxwR9cFG1G+grDD7Sz1v04Fnavz8ffVHrb5FCVSQ/iWF0apqgvVwKw/nmSH9GkPgRvwOZa2yGy4TzWLLqw1UCNEK+OMmkZAB9h8yDDDdrRfbPDrjEpdL+JqJUnecuCARPftP3Ip9tnU9jOc+FElKRy1FZGQwZ8ohHC9cmD68A4bMj0sKQLGaM8xKG6bsLSIPTWeoo7w1e/gkXr6rrxpbZUJZTW17ww2bz8Fu1PjLkvsUkX+H6spoqOXJb2qfxmFYFS6H8LjKLNkfJ49XPs86WBwZfHykaNDJyTBaNI8fCr6O5JUDWh1fruM5i54LgCK/yXqF5APCsBccssGksvDqMEVyizw6jeLPBLnxdUpPP+4AtF4I0TVuzCK7bs6YUMePPHDgBKhFGbYMUrusykmpynFTdzvkXI02kMs3B92BXoDG4Qf1mDvcFcuXIpTW63SWspwNEiq4AhnYJa6txAk1yo1h+KhTF1vk4emN7OVJUwf6KZjxNLJtLGCQerjIpnFbuCrf5NkXctHBCVJaJFoVl20yK93qU6+IhAYAf3enQV9ikBMcHZjjv8A31NXXVO0+KowETiy83snCXZwrUBIPH68OIH0JF3RUZ+izzVMQIfN6VGXXB3lhPAbkPUlvKBbX8Q2JL9HmkpuWhzTD5XD9mnHGriMW1DmUisTV6mSiyzkplSKBVdkzY/bKJKFWYvnziI8sk7vcRtl2onxdy4/xrm1izQbE4ssIq9gcEu9vOAKwRpWAXQkxiT5bWD5bvVIvrtIHsgYarEHy7LboBe9cvXqN60Thba73sYGNopoLtvEjSOoBAkdBdq6wrf0z2Y8EiKQHtrqvuJaX+tY58xUqkNaj+BLih/Zg5dM4YO4v+FDiESYeKUXsBd/97DXIS2iZCuRUODjlHQFMGGlOtlXKBMeMXSzd5z8pA1sXIAF8f9n4CXTPvv0RYLbsoxGTBJ5Gis4l9XyaY2mL2IpeV07nKOY/BBrqInv3Pzgo4OrKUg3bf4XdzjVyPEWg3URUQ83YvhuH6BKu+g5rEOSKXRDdFIKun5TcwTUUszFuAZ/VgfNvNGgjn4rtLqWW8+X6L4PaXhZfhGkPF4mJ+yLvNj5yJeiBtDe16JAdbuAkSnrVDY2a95QgbjxmI982HkTPsjUPyKnAW3Qqd7QwC2XO/05NUhh73zVWrcbPIplQsPKtk3fwVmd0LElUTaIONM2GmcuOK/rR0q0O+qau6YjbxEgj5IHS3RTa8Hcf4ObhJME7aUN48frUY3BjCBm4qvng0tUCGcrBsWA0Rq0S6l5PIJRCompQTsYL8otYuKRwNi4cIrI+P+eLctzyffrcXHNDtXZhL10wVEr5aIG3lH/Cak0H/g79niekI3DuhsSqlvVIoJoWRtbx9OUj5ObdjfEoxU661BPPWyVYzM47govRSYmvB9shguIg50y4/cCUvvyHB/tR68kthcbfhjRyxiI/Y83FMBg/VAytbOeSLbnZliloPSEMR9e1sJhI7c3HUAGEeaGcZA6Xw//Ok1vbxAoWFQ/pgujY3W64un8G/2hL+ImkDID9pTjTXaWpsxywcHVo/QG0/es6a504JaMKOTmY6EphNhSD18wOjflDhRwCtEM81rj+8eiFmVFPXgMvDYtSQoiH3E2oR+PBmSTB4vNZIeh3T2Pq/cxXRGZOakD5VqZ2C6Jbz6w/9flI+PBExNsA9CK8Mp1+N9qwqPR6D26ihY1EeOsZZde2Nt8O18KrSJumPMcWTCOXnHtuLJRBBkP9O0CxvsDnUdO5s0Q1MdNx2BAU0Q1KrZaBdp/N5+nZq00QvmYFlqlAJwY0+gfhSwIEAKSLi/th7PowHmNI5SjV3NXLNoF6psjuX70MZU+4OSDEGMAahmoc3ZGlwykFFIgKaX2gwrlzlJUvbKJS9CZrRIITpMSQcArQANG83iETm4FUeI3olFgbWW8TgbfCE/AJp7oj6ZhOOxglnzP3U4zGx0TAScvof4BxOdXPMtk3r9rrUR5lf23uHAEd4n4uxrVxMVTWO2Dzdy7QT+F4uEzl3AmxxBiDarmUCEmijxFONIkHGAJH+7nCA8C49EiirOJJJ4oI5XRZojn3NbzRiuqfLovhR+vklZLMbc2Xd+sbrTH0guEZgv9KL9ImQDn2SUY0/7i1EVY7zMSlNYJK9hju+PV2BK14TuJF/4KQucNlEAUHT25Y/zoFpegvZmxQ4hauhoVhj1H5hUdnDOTxfAg5kki5VMjQe6/v4KUCKNSv+heeHV1lbgAivli5p2SIMl6VHx6ffsUeyI5/bZPkaCMecp7HnoxvVf+tosIJWfllf1T901WqLbLEmwLSJhx105GtvYtiV1bgMqIOAcU5EkaADWHMCIVPJf4shZdEuYmGAPsA9QIAxoQQn1ueKM3ZSPmOIXng4r/GWsV5E3/nGnQh1a5NoiubjwCTuRT8tnHNLERwtGO0ppMIHFmBAXpDi9Yg3C/nvzW+5/kzkeYRM5dfLpp1qCQj4KPvaF7f0kTVwMHzmnzBFFYZNLkZjjjHJu2mrvpdWuINYfV0btj8gi17xmfYFcnrGSeZIFcp8g9mEvvuvYUG+MkwodEA/55AKJgQ+ehI1wbJ1U2bcGGw6WEqkDrzUpON5NlsIOKHlISWcJaTdbRLmDkwKh8nSxSEhv5tTkLAv6QnGi6D5hFfFleOp4OjkjMRkGNKNTUOJB3d4GflE0od65TgDN319r36saZyLQd0OA8RschI5BrUxJ9zyOjuu1l/Cl5WC/V3dWaYAdoXVCZHq9KZeVUpup0Zmep2q9bURSs65T/jUhFqrrhwQwCOn/oS+oIK927OpO2XO54EGelayUnxEWdlkZjzQOgtWWs+5W3HIdKyqg17+U9U3uexg0V6QaxlHBYcGxH3AJh7FkGeY+a+9Ny38Rz4F8CrU4QGtpxjajO2ZExQI6YhsYce+HqJe8TRqln3GI0eXMX6EP74civRUI0u1XDqd0z1+liyoOZ14v1KUCeB6Ok+9aG+8v06ZghmmcNXQshZ5Oz+BWwA/Mcjc1dpalKCOz6u1RdEEEmrukfMA2Nzai+SnEYI69UHGXQrHdT9gdXDjPq3S2nxGOPbme2ZsB0sPYD/nV/MVzgzZyrxLtj/jWY1/8C7NP84sun1uFyXcq07T9Wpx2XKWI0eEFnUYYsPrdcYyae7Ho8c8B7F07ZhY5hjOVb/EmFoZKcw/ZerI3SNBE8KRhP+vdnDixirImUKVBk+d7dVDOMcZwRzuSNw1BgwNLzROz5V88nHAfjSi8ObHIqVMrCa4iWOaDcWJpF0b1GLjhyjs1UVytM2+5NYDVsFq1E7YP+Sg6j8OPhX0kICApYmwR476IzN8xZ+JtOxVOtT006zXHLL8rmUvvuAHFCZOJ2xstyAx3pa2oOvPVwhiHpFAqciv+ZKTEWXEbEY7L8WWAluUWCmuSOSFT/ef2a5/zZXsGQrZF0YGM2tp0QXQwRbd0wnqUx/ZUx63+jZRmhlqgPYh9u6hg/9CwLq6a+ICmKNbkR5WtbWPrf150WNo0YO1MvuDMwv4uQg0ZYO4MeWRnAqgWKvc8wtEnwdrfsmECdwIbbMK4QaJxQjRIyeu1tBW1zfDVwFZKaGnlbfs5w5/w8LFQbVWXXGpL/F2I3RSdOnMQ66l4KMVl4iRHqPXj9Hvc6Pvy/ZfirN3MEFMhhT7QmHFhZJSByIIerZC1RwE6j+GclEudJvIIpYP5FZT/WwcODdtugv8uCGhXT+cl2ZovqHPvUrlXL2MFAamNUcgOfdu2wwhtP01ZSKcv/9TvhgOk0xKW70WJGYinPkI697gjbVgp7JixxTn9cxdiKnUyfVC18/AjOruCHRKc6BnbA4iTLjAebe0zNw81VvLrVnrQCTLhVsS/DcXFoN+IVJxUJjiw68/tRQx4rxP0iYxe98qT8SJxZGK1WjCe3qtbXlvUfPKWJzT5vF0K7lad/TQC/xRfW2FmgBXy2GkHWM0O3KJ1JuhRZkSHgQeOH6zsyOA2USB9SevqgMBDMTM3Vfrp2XFZHD+aCIDOIItStI7tVUzKrfGjeL+GMBkMD1HDwnQX4I+BtclZuYBuls+kxSAtSNWNuBMkLOafClrkJD/QgOiSsux8b8FG/xCCgRpZ6m23qxub9ALm1Z+1oh6sGplZ2PE1lJt4PcIh7MTDzP/GpzWMUA0u5S9CVTYoE53DCnYsQbpHe3ppadGxuDHVo08Mbv/yt1aC3ugj9GqMGAIHVqrJ3K/1DveNTzR5Ir37KBTu1kp4ur7K/ojvNA91M9tgmWQK+Nh6/7GxDxVwOfcrShL6oqoeF2B2xu9WI7lJGpeikve9Q0TJtRgaCJVZiHsa5iuXy5N2LPbOo0vkDwxgJ/WAsOot4o+V3Jpr3TWexP6UsqvkXP7WJ2yM3NmaL1q0iWQP4YUWCzwZEM0gmANGT3LjyMvBWkrfewSPhIn6rw77RDGeVwQeRJxNiuuY51ljV4zkLqwVdmWfm0DYEMeLD2Q8FYyAO6kocwfFeQUqAUweqkK9zViZuq3xsjNRG58yxCpdmOBVN3SkPOxemimQdIrvxxaoWTVSHXDb5JMWW/iNjHq+wTFONVoy0G3yYSfuTu6Qu6rqm2heRMvUwsf4kRRi4ZXhB0yVul2jlvBZs6zLgx6HH+JH5+sIGGlI7UsGgo8GwlLEWmhdnuI6kZHhGQrwVYgZ2ZHPU9Z33AdiYxBrm1zjDF5PUhH7V+luGzm9M1m5J/Yd0MNhO+wQBuZ2pNzRR8yZt7X21K6WKwHXbfroOuDk5KD04PZZWcU41gC7r5A84KxDLW6/qSC62tmqp0NRtezYSiD6wKi8umPLEodQNiZVQz0gjQMA5N2kXWpW5G5eIB5tGU6DppHAoRRqWJX8WW80iJxu7Ly9xsP/ntSWMlazO6n8kiTWFi6kFJjsBCUPzI45XMHk6+orCREwpw2FZOn7jNGb6SjbGAUvoWxefwkOzL8JISjHmCDSyVxnUbz0mlSgDqu+6Sn2qszHC+E3ygMLzdu4QjOHE7oFn1eRpmNWrB1UHz4MbATmFCi9cmJopAdQWWxfE6T1lpfIiU0J4EuS2BtNPvp//6gav2guIeu1puKAF0wevx3sjAIB4+R1LjYuF8g+0pY1VQBvA35zETc2IeHJQU01V1vg5nPm+QfQaR/ngSUsM4RufkV+2KquFfT8w1cuvGdgKQzJbPDcFAa+IV4bz4rUXZIzyV+yZRPM0FbD0ld5ubh7yVAMIBddR/KfhWA73BEkvkHvdSpU887Pwjqwu5GUqreEqnHdyHT5NmfdWWUNnUiHf6FnNUqKrijuydeM3SHzBZM6QzvhLuau7I2P9cTcuol+XfT8DLf5Z77yFUYrkgtVrPQzzs0MDfYj1suu7Uz6/4qTf+VgIE4jFrFwAEaymH95nyMGYKHc8XKlYKsumCoufGihtrjNavT7c5z03ICwARJTsKD2hsHDqqbOC1QRXbOf67kPMITqBP7uVtgRPrl92JiX7rrDoj1ppUbJzHz51rvxb00JbAd+sn8dSma20+mrsYUzukZJBc4zS+uLu7T779ETWt+hGTiQA5XTpuLPsnbT147SlmKjVkxrwjj8ufle/8y9ceAs/icUqJ/ARJiLVt0GbKWe5ysPlD7yNGimqDPoyjwC0zx1FuhkPSIMOEFnpqiMddHaz+Myx24qu/9ukiOTHdiMzq/GPzI8/5vc6RwM+cjvEPUcX3IHgsraw02yzL0za4xL9bseY3mG4Xbs9rYy+I3poZg/LMnqivlHrK4ByvKBmAzRrql5CdEh/+f/f2G30VZjTZDndh7oz7Bm8xiSzZQMEwMjd8DLUJhQb4RAu+EU3meRTbFbP/0raHrGxD6RGoQk9G5uxpJ+EeQ7UTApvu2l6sPMkIieQiZ7OduYGn5CpzcpJGSopminZ/OfHASYaMBTfriKJiEEqjr6KUbKVmbgm9fcDOfv3f25GRhXfIzybCfjnt01fkfyU8KGW7MndgGbGTiiAoW/LEah/RlwMpjWH2rPaV7E0anNBm8rDqTGxtVV97AehbiUuVIIQtE01L4QY/YqzVY9DdwLEDpFqBhwrXOyLnBkSgEaT+U4qYVZ1RlHWwphqItpZTUkaj4oNDNm9p23Lyw+/QosKAsW5K6BXguSeQ0/EbDpWUp9gueOC71ShoPCSiHYdAXmNlc0Me966zN72mO3jnszOUea83Vn+joS4f3cgj6da0Z02gM/+ohPkVkbJ74mOFi45xfeSX/ZYoFYG3Lg08mKl2anxvciHzXqiYMWQTU57Nk3Y0ivVnS2C6X935GUVRWoiCXyXmtAvmA2Ah6Oo9XjTZZH7oNvpmEmOwV/dqsEdG98VTqBAtfDW3Fi3Skf9wv+p2llKkG3LzqUhNyRetcrZMwYFeBgbq0Rvu/X1pETIrBPBEYXq76W1WEvuC/eiOj8Qx65ed5k0Wz//8g1JJTXQV52jdZdzUdZfOq61cNszNSf5bbAoaAl/cvsaWQOg0nmKfFPyxG4HS+ZhlGzct6/UuTirshG9Iy79E2hz1nzWJQvYZyvEgkX5784iwJu9mlV18OrM18Z7hkEyCAw91ohSCoEiEqYMBHY6pf1lGt84GHk5W3iCx9Wkfudn6jVjMQ6UDePJ85nAuxsgToGoJU25o/zOJKoDKu4Vy34fUR5xepPAZwR50UmmxxfFLp1z3xEeh8Ebw9U4JBjZcBTAkk9ksF6cwBS7zsctnqoUsv23fukwWwcLYGxN8sijAnngGNtN5asFT5muDv1B5YsHm/vzK9SNmj3/U/Y1DUPqhaG2pA7llfRONVcnDQlny55V2CSJrFgjEhzFkQvsIWgez1lv2kbIujNrpsP/aOIhXAGmTBBdkjBQYvLz3/2lQ/c99c8e0P8FGRz/yBIrPjMk1HJsTTcDF/sWmHFKHN5wzjUmZffm8UJyjZj1lYuBNq6vhV3cwfzUeIn+GD2ccWPrG9Q+NdqjtE1QKJZdROAzuE/dEjJg8F7gpDxPdVN0Lw4/Sr29yyxPgYMtea1QXrEmlT0BoQtVhefJ7Hn/oqN30PQiGHIv/oCUj0IDV7v/PG/SP+zsjrT3Cft8INjfYNxzqaAyJg92inZSC2xC1ThLCJmjl1Rt2eeuYWPLVCvyQzYnAYDdpz5SgQJyoEfaH5V1uqkc77KGpn36MyjUjqywArqqcahmm5n8vuCEDe+iikfDDc3BtCB//sIqMJ6dcUSk7Ty4yMrPz5SntjFKtxgyK0SZskCnt9Lu5HuzlgGg9v/ljLluzGJew6ejtV/ykc8F4uR+k1th7YADhN8DpZS40/3GjRIzGgKxh/wf0izb2az8UmuozIjYGQ617TrX+kVU/LWlj4aM2H0KcV+U2OWrdo20CE1tvRJ1O5pQ1LoMIMPGQ8/6TS3Za60EAizssGa0rGntldWmOXbhTRTalyLzUpcaNklfxQuxI62s8WivwuxVCbx1EaYtCskGiI91OF4WzE/kLf1Qr6i2f8NvK9fSKBpLUllu64EV/xQenF2Qw83UGm6duVF41kY/hXX9a8H5KmlZsO9H6Gdbc0HblDuv0uYk3/KbOc/QqqTrazlzOWoWojuGW6iA0TriZKwb81B0aKQxy+j5C2x+gUOmwePYl6+sdIymw9zJ7XYpYZUPtJAtNWGc8gH7zRunz+IQC3eMdM2iGDZTh9NnqX28ZBPbpsJzdED1HfZOUdp+5UijVQn2sI5rSHcvwTt9rEJEREzncF8+QbQQDdJLRQ5hdnIAtQ+Fi2HTrXG2gP71bqt/TEBsK1qMaEf36GYPbWFnw5s8e0UhqiueflmCdpJ1VLOKEtsVw0nKH3wPcM360pSpq2uvUA+WaxXYwvYLH3Z5sFtTSyIfKGL2zN+h4HSjVSs0g6uTruogQXSHphMzhb4gxu0dm+eWElhIqnZ5QyIURSPimSdTzcApcKEyXTopkuN1YVNTk9e2cLuYMfvjqOdShtsb6jJ9ZUV1LyCHSLEGNxhXx8R/5K2YCp3tGszIWgvywflc7QF7RkFEl7zAAzi44maCAZbUqran8taB2L95WvfEfPFdh9HQGejoaLxdnIh2fiIj28GDWG6YhccvO6iYDbKeeepsy/icUf2HZiq+CymJRc8zKZMNu1OAYT21vfb/X3EtnKkMtoiatQyvkXEXY+DCWj1YgCdmcB5LMNMO6TCoOEQ+Xqokpcpd4Qy+fV+iYsMOynIpTreJejET5l4sdMz/BFOmHmo52Kd8WW4IMFnOOxJNSGLKvY0jOym7tdr1eAcI641tPn4Ucx6uiA63UIyzYPlyBihxxLwl0BNyE/BsD8GaxDFDS4MwkD8t/TsB9MXRUqqD4QPMs3MkOjY2JQFezi15Y8LSL/sR/bIx3hzbudU1ubWfjv3GaJq0cE+2wWjvdZYIXiik5OfmzbF/aSLii9l7VmdbUumEU9NM6m6vulNamIRpBzzUBeq8jUolfaEZil1/oAXSp3oS3CgKpWQxKGnwmoNJNQP5lGndqaE997SUNIuyRSRwByWGGO/T5VQDICerKWA1/Mp2Y1WPAD3zqHTBhZGTju/sAm7sBFqbp4LzLtZN02QqtnR/CBxVryQZs1WpUE95QbW7pUu/jQ3m67r/CvC09xho3LxqV0wXmUbJgjl6sZ6zFAevjgLbchw2W5ZIaBSiojqIxIJOOyQhngo4lgBgJrSW9tZ6sHHQ0BqSFU9bVhFk4x8GJBRYidv5DZGOCHgbO+ne/sfIbE/Zy9ITVqAFfguQqE9DHICMKfp3Hvxkcs6KFob4b6gDWeep9SMQkda2pA98k1oJzlbqE20GtZMiXOPqJ7apMEqub1J4a6bHHUGJlGbpVjAaefzoUoFCRDyJYTNPJzeMeSDtQbIODa6jUH6QNq0rs/rXfsnHu8PmaUMU0W5ZWlc9Wa0koiE4HtHVzHcVMzCa0Wn8AxPNt4PiQqUOhstKYfJdf04C1NRdwE1I6QVicaB+yCCI3+Rc78BBSdHjjRBsJgnGRtH4tfNRl5u/HGxL1Y2d+l6p0Yegz+4YOJG5JvhOkDjJRdgbm/twiFupad3VlwhYJMtI3vONsDg8nVwmmggR3pI70jOhOQGtX3lu4ODxC5eAuZ0FG3ZEZqysJLP/KJOX9qJbtrFRp4IKv4aq3hD+BvsClftOe1D/PeMzW3fK/ex+PpfIltdlFAlZ/rfqBq4e4yRA/aAcmNW5RgiqB6lAC6IhY1xHreUYIXd0Eq1NoMdKkRvq+ICfO3BgYEz4kb8X/n2LvKRJi7pWIT62dCxWbbyTofNHdsZwHhoOinKcua9jotOf3JcIil082gLVkTV0AwNvJSpZJw/BFNraEwY6P361zp50RnsZX4U4484p5rgHm+l/UdpJeI9ufcDXZxMm+gEicFCDFnLOsluoKRcFt8kKpx+8pz0rEWcaFHQw/WSIi+tJ3lGUMKcQF5zDlb2cCFgqesKGp3j58iA4O230RBu4XICAZqvIrBJum04xe82eGiaFu8x4wlIocbiPTWCSPDCJYCPU2jI6Ed1hEkHhVRIRkwolXFxR2gHJoevVzg+GZBTcVu7rtZCBoVMjYXpkOQN7sDOKuNaPwqOTojYMQESFLODQvAq30Z2BZ6vaWsE2HSZ9Vo6kY+WyGaXNtwkYnehD8ih5TV3gZKISWQz/PifWYn4BRXuAlQzTQOT+MY8tS1JRPKcxuCVb9uBAE6tryY3b9zDMSNGg/ENBb8p7lTqQu3G1vn6YSyB8x7QJH95ciC9kJKOJ7E/r8g+4QQmDnxtAWbKOLWi5/x/9EZmodRb91ZLNDHctbGmSQno/JS8B1j7Ah4sDyKOJSB1FW/yB077UHKYiYlW7mKtifNl/YvVxJPcOFKnf3mxZUiaTtVCYIYNq14d1Idmn1iWfPjcodopgj0ROXlOZ3DiDauFfFFkXrvYiggt+sG8BejSMI53AmnOgs6X5j6hA1vjVZdBFT/1c1gIhUH9QVEZm4KPGQPXSjTKKyuuImU4CAVrQxzxlgHrq9fF80Tr1UjKQ7Nn9CNs6B0G3aaIWnOL+py3cVoivwhbebGc4o1A3C7N2AIxZdBGiFUodqrOop1eIo+vm7l6oUYt5n8xXqcYeO9Zhvwk/tyCxEA762klcY2SXTyMn24Ogl/ZVZgWbMTiD/mVQeeJVnwsXIAg0ktlGn0DWCD2npo122bt0WIFrfFSh0jLAyqBGoebUyFoVbYRBe6TZvCUZjlHuh0NWBD8JZABRaUJhXh1bjDCjqJBud5qlpQQ+vugDsaf2x/EV5XXcDWKMaNR0Gcfc3k/Aryx+Oe8rxJ+T5eeyQfzoZtyRjO4hwW2AVhbbBsjpVqed2uhpDDh1DxI0ackXNIdtsdTjU9FLukRGiAVuCxQnh2pjtaT/TzLTfPJ6aDuouZN7HpiEYbyAUCXPmpZVyEo5MvzHqfkTut42OoNxPLBXrFR9QZ1P7C5Of3mTCgKvbDuDfUPbq8ExIrlasA4amOr0aXxZD5b5nPIfyYVUgUCM3X3k86BKtQuki2E4eKGX4QnF+OwTxiba2x3ay/SnnuVOEp/mySTvNK5TIHefq8eB0p7UZEnL59bfiURCE3vT7tmnAfnrll5M7lO4FEAIQ5PxnuGg1KyqiVTwbQEUCQYcRaiV0TSU8ZRNGDWT5wyc8NDaLOCTkHDoc7zzQ6NFXcjWfy1ZvvnERywSUV2hjdpBZzKAP2gLmp+rc+wFwuxYX3/mhu2vEmWtvuDRKcXTvO4YEoXUUgOev96SuFXsYDuvYHOUDCZVEEKspIi0TKj011LGBd0pVIkrmNzJkA9R0m+1YQSyxXA9UMk3dzc086FqSZDjXbg138KpsAHyrdvNTUkVYYehqepJ3qmqlBYoFo7vtzSmpqu3eY2FEY59KAurEx8DNr+q03qT00cGKrZT8yOGolEiZzfAaatLa3KIKTt4aeJ+GsuyKTRnB6R+MK7yPmLGv0LTzrllhEi3PXWsOBbJ0gIDnpZAQ2DF90nE17vIuHaSf16bhcxoWsi5o88y56spg8vGSZp0kLiXm/wt8kcbMZW/xeKiiLMLk9901QAaRXealXfMw1LKKW
Variant 0
DifficultyLevel
400
Question
Only one of the following number sentences is equal to 4.
Which number sentence is it?
Worked Solution
|
|
(3×3+3)÷3 |
= (9+3)÷3 |
|
= 12÷3 (order of operations) |
|
= 4 |
∴ The correct number sentence is (3×3+3)÷3.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
Only one of the following number sentences is equal to 4.
Which number sentence is it? |
workedSolution |
|||
|-|-|
|$(3 \times 3 + 3) \div 3$|= $(9 + 3) \div 3$|
||= $12 \div 3$ (order of operations)|
||= 4|
$\therefore$ The correct number sentence is {{{correctAnswer}}}.
|
correctAnswer | $(3 \times 3 + 3) \div 3$ |
Answers
Is Correct? | Answer |
✓ | (3×3+3)÷3 |
x | (3×3−3)÷3 |
x | 3×3+3÷3 |
x | 3×3−3÷3 |
U2FsdGVkX1/Jw+BOEtuZLLXMyh6V7EtWiXkcHUiLavM3O1AiSbhX4xVAbvUd8WfMC7CTi5dbHTxvkqsxxfCbm7jE4L8eVIH7L3xFt0RFRf4nxWcXJFsPmIykavPWFRs1lljjqJrrxDGrkgAmht4BFHkE4DK1eeRCA9UgpZIRXZW1gJYGHvyKRu27THvhEWNwXIabBzWsDoMW7yJcLn8In+zTeJLiJIU77nyaS+WAPsomZ8f6hdB6RW4a0FKgj0gBjOUqji/MBilvJ07cPuyEchb2k6enlroAGaeW9NwhZNzi6xeOxlt/TAQ4qIrJ34dQyxuJ3V5UNJWam8yoHAcQOAmfkVgMVjtkOS7jcXMLNyxJLxfgqwsF3NvRfPYiU/CpG4/f+HEWSsTGbzl9mqN/NwUCQH/5qIjP6QQu/7m4vZeT0mx734uLiHrV7XQT85jdosXoScLfNNwiCfUsFQzzFGTluHCaq5/+6Co5NEAKKQfRZfpGEBF2XhVuOa3TMNcNYPutt9wh2ExY40YHAWJxxoFVKUMskIkTGjucURbhtoPOdhTlU8I/nGjohMHT3GKooS1ujCxDHThtdW3lbCV3S1t8YxMOPH8Jo+nlbG/xa3HMie9wZvQ4cCvDJFGBRyTfXqyVV/B4wODaNbYYXs3sqJTCZr+8p9dTjg92CK+/JserMe4AZdV0IuLd7bw/c/QMA3z+Q7LCHDD0wjxEtY03w+VjSS8cWUJ8k2mi7nZzl7Vhq1kWpK9IkXvRLgHnWA3qz/0gM9VPV4P1lNCvyRsiB9vSBci1Xn7HfhvwhGnyJb9tDypNoXaPLubL29/Kw4NzVgzrOIctgtzbwS9YGC3SpmnT0v0avUajEx0Jfao2gUB7kTipQKVqXSZxrarIuKeczdFkxCmbmPSf/l5FmerwihFoTB/0l6TDGhyj+7NyUPtwh7GaedRLKrMPfLOuQvY7PGuUgeHv3XvK+YuoQYDlshL5efp04deG6bY4w9vgHSla4hklezQ6v95TgW6pYsTzbnn1gcwInYbF62wM9QyJjh5jR+SIA3+3ndSXhhbbdYvh1BAF4Vv1X20dNYmGPyKwqeGXXfByTVmme/e4SD6kSqq8hHEH4fLxGdJxaTvMKe6Q9CkpeXAKes1nzMrmhZ5qCYvmvXOQoOvKSRx9wrSE0PEH5xvI0XCnQuNnrxU4QCaN1+LwFvTX976CQ5g6KtSsTe/2mhsiku/9SvuMu7QKQGA1nE7NMX3LKziDKcmplftBagcSu2ER+fXt31QIZpSjt25uQ0dFmQNxol7oMKxMDujjF9i8cyBaviBVdLpma+ejDxyxpDyxsPb90Ng68RqUjlH/rfetpOyp59qk4C1TXoRaWofsec1RcVRyEJA0EtWPrXku2bFn8c/JPNOUfzwVqj76A7SVXG9iJYUoO2pI4n00yWFzq8FKB8NZhzxa+LNNknODBivYE+K5aATcpg2lHegq0UQv6MFvp9PA7znf8FtdGK4weX2z545Xc6mOJpfOoA/rFmvRi+nfV6DdXHTXx4d6eSaSfIv2SKlCZQgJS0LhKgHkltJ7mndrdtYVbVC9CXzy1xUlCypE3XHuDL45QombMtiHH0+mjgzzu8djquInHykIW02Uy7lE1/zI+uZfp67oOqVdmnDSpJxh+kpKpkixXU+pn9bJzzIRjUI6aW4n37Heo44T5ZWrW9wWYedoFa7sV6vhIfWsFy/CwBTg3WHdNyr3n4MFkQI88khYod/ggSGzZOHCt2XYw6Lh3HnVxqnqgVUfW9oxie6yMB8Np7VkSViYN0qOwlL4OITayr4d7OZGcWoJZ9diBErcEhhWJTJHTR++Exi9KkV044EfIe6znfoODeRA6m8nt2UxSpZ8Zy6WzN9JRqiWCKjnXxchehzWxu6iGw2iTbZv+XaVRkOcbLUpE8tnHzO/gBssPe2rQXJAnNYpnJOmqcEZN2DHzA2Kl1+lz+INUff57Wl0yCktg9kkMF/qvp04h1NuwWTfCONBZqEKYxK1VgyOxnENvrNTQrm11dViaQQorAYAzL3N/E502De0+G/veUJp7TluU20LRgHU8d3l2JmsNpVAUsfEfqKVNQ+bjEODGyqvnDUuUWn/YEeygcSy3wY2vAqI4X5QigbfWGzQCAYfxv5FNGPsHtiyD0KjEhcnysu4s+AyNe5aIWi5VsH3ofp0u2LjGLrES1qHH81S52EDmwCpRmD7/dSf3CDox4C+nZcAnhDPcToeG7NvxoC+OhU1TH0zoVflZEes3r6cvDNwG03wiMMHAt300B7ti5pt7j2vn6cuyPcv5jKCNJvu48dncIMmVYCFqCm+eYVzWUc604ujCKCJ0rw5tT4kWVbDwUTJm9P3lh8ME/tO6lFethz9MDQ18QPHQEfMqfLoqDBWz0ZghYqDi9ImaI7JjtFAILRhcM+O/tBrHbQMjNlGGAYLzgcP2Kd+QvWm4gfky37oGx3+goHFrZf8YGboLflOZ0sBxVmG1OtAi7729Ybu9dlPcCrdI5rM2K5hkfUD7BibAflhN32hzVZ8U6cZiFZKkFQWRH4HLohpA0KViL8EpqqdH3G7I4bGXGsDRWO52oyx1fjf1PzuXLvoOQCMdgf2ZyNWq4lng0u41H7Fe92IPAjie1Wj5EmY6av83N2EB3R95T2mnkszfVpEd7IsbQ+gHLqMT7Bb/W47yC1yu+mJw2ZBt6bkcWMA388gBB66iFCNuha4VrVB68QW50qlypGKDPGbSzQeem0QYF+EMNnudhDpWD2aH+GJyn+qZwQ7ZzZlrhtgNnBhmCB2INecax+RIuzzk4Y42EojtoFxP8Wtw3Mt06ADTXeuI3z2Bpzklt2xmcYJ2/p3sc/DqtnlPygR22AG2wqVZcHaWup3iowB+TiZHYAkyAY0UiuNbRR/9VnYHoZFQ5D8VMA+wTMueabflT5YAW4DfDZitJovM7vOY4s0i89CFHAorezSsyW4C6fTCpq0AedJ5bxAY/jlvXpFPkp1LlmbGNeF1MiaQVApKQ9zGcOj2ex9uph/6rJG/2v5VC2IyXMyW+zGYffhawSXXTIwFis5e3wD3QkWBiipSjd3nNo5twG3d+Xq8jBuIhIbQjgs7Q23G8LcYtWU6fLg+lKQPJVgInXdQp10EByBF19t3z9vGjX8Vs1XFa61ZNbbnujuZsI8k+t8HZHVS54ZwQD+KvuRrXK9m3SW3shbN3EhCFeylgaPXcqJ/6y2hGoCzSxNE2JD4pnJkVluKjvZMX/X0oElKmP/8w+bqNIGqKUq7RvjgBm8vuV45Jv+axgWYX3SgH2dlzSzv7iRFP3YamoLtq5eFga3DId3Jbb0kGn0DaAZpRDpiTjnuYMqSCJziHZc5hXONw8woAUVySLO65hkHuqB0D/L2k2zFSReOsZ2f2l03bA/Dq2fNkqpJnNIIqhzdLcIgIA5mQN2qvtsaNAmb/xxWqfwIVeHXZUw/KG0UBdKovPUxOvStIbuajkM4B+uMKsxUlVg7HoVq/KhlR5SnbuHDUjnEjcLerh09rMpW4f62WCO22DO6v/p5WI+H3wn431R3w2ueFbYp31W7/w809uicAFPE7aYyHPr1G26P/tWQy+6cnfBf8WYnvoDvkTIkjpDwHhXwq0iT0ZwTEMlekx7kC96D97wBgTychmpMRwFkVm09WcQq/5qsOVSuNyeJtLAMzzTnan865/Jt1F9Mar/cT7t12ATSJVpav1f+lGmi09wigxlIST50Kmi/AM/8OJrdWWUlwu7Yf08MC1rXzD3kJBTGKrTfJ/jNUeQhCuuzt4+/cZCKarMro6kLsLVizMVbFda/3agk7c1u3hdCWvGnm1LzyOJ47SLwatO3cEJTQ2e+/8vklQ6TekH8OZLA1038FSU0wMQhYplT/kurE1nunzgXK5J+L3aIBqj/aUI8ipkS0WW9YWV/Q1uymQDAqWLLzOT+rJbI8f5AWSP9BSLnd+yVIGf8ktTu0+8/8MWko3Nls7plAvdrDpo8ZOJD8zYqSuUmpDBrzGX0Sratqphhk/vR0X6iYiOv1vR/7sFagi3SwBKH1PPOoIo6sBS2ODaPmVK8d4G5FGMxP/CzYdwTPhYM8dzk0Q3rV3eruSr/kL68DKrWh3buBpFsIsICAkEfd1dCrNlixjzrR5iisga7sLU5YgJwytp1Qb0IiGAecNeZ5BHTt/y+xlw7ViDUOhNxLiT1NQABuRYyJRju3csoipnOWeIYn8pz77P8gh6OnCGnvIyouM+ALgwfM443iUo5o7gptW99z2ElX1MNpYooulOKr01m501bNbAWqsFUsCmWhxUmc8cSD6OEddFIm23zjlJuS8MVh2S/NVR2XboVEeUoF21lEJ1VZUMkj/tb3uZRp3h+RRiPC/hI9KWAKyyXlaqNpvrGevJ3rmj5/7fWgQqwSPlii7vPd/GMRz/9VmFDjCelaJwWyomVm8NkUgQF0MoWfxAiiO9Y+SHIjtX/ewOHKvoKPdyyLc+eY8NwUVMk+Mvx+gerLOHwj8YbnFc+w2UYs6DDGj5Ja0MgX55Lx9npNKVLwFdZz0xh622BamKc12dgGG1i1kuF4w4wOM9UNURUsXoP/sXYqhNqZo1Eh+zV53liO/tCee8SmKG0d6JK5kCRmE5BZXkU0p4+EY33d150Yv+TTigVsVtjZN9qwwEjND6m/HqY/Zl2cTkwPZbzf/RLGl5qvMS6Lo0yLwVf/rIPLMqKgwTCejpxB8snTze5xJzFWjuNOHQlo1e8a6wMufVOEp6Suat3cBYPBfq+qcAuKQePtvq32lLb7y/LY1x0KmrYtSY1i7Sk4cK1iF9vHc6g9YDhdzDzPcSpVvVdUO+ckH6khvkocOHGHllkRr8/SejADSJru5h54jBR/85GsJsQtj1oIszeQLWdYPbAqg3TRdjrtPnNrt/WzjmP88+4TSZuhnB+gRk45Ab2/iK85sywlcclZQTPilQ5gN5iUGuz0pJrbtDmG9sNEj4cY3a4YGVRxhcIL5eLzFub2HdJntUK7Uy/r7aaabcpHEJUvILuPF+4sOKYDZw1Ti28lyOd+0Cbi9ucXb8J5CHRaSKAYavju6KOJ5rIBhpvzDle8SGdPdSNdEKiJUuxCZxYYGe6Hu+QqvfrmqXdpZ/hk0Bb2GewWwCbky6vHWrwTonI67Qo1Ul/wSrwlFMRhursAd4mnoG8NePwTyJcYDAPP8OyZ0JIDzwy8YUVInCIq+Cu0TLkCuoYce+lr05rwGo1sReZ7F0EkwolMo0kpdQYnxMGn7Am10jqFndVfG7J1O62mW+8bP49vtLWoUxw2RqnG82HdnJAcFifSgb9G47ygFyt2WUQy8YD81yQlPCh6EvhepeGUi3opkg61VnroqA6spxxIeCSc4JhrdAqyfcmx0RMU22v9dD3jpEWaRmnkIEwAkOJ4bD2hLMrxnYOjCMAVrM7AMVNR01BFhG7m452BYA/68X52DMimw2/uyYGmDoSY9Cnv76fIDg4bmnX9NNBj4jlgfMfl0Bb1HQe+G+Q1astjcwySBc0WB0tW/SdjmX4VgT43HnerzsVfM0mUl8Uiw+M9QaDLl3CtMuMQbMTOdTs4k+9tmgG1r0Hwja789B3MrYeQ3OTJfkhZIJXa9ExeghubXURa8x9RiY73D5XHPPwniJfY8E0MtgnHyd8x6sGcKp/SzHrglgaOJWLDXQVpvCCd68WLJ4dbgZllWSuiiWNNCeirNAbUsCLTwK3XtsSDWAjnDh20kAZUdYGyItKBZdak5uGdvwZKVXCeXfqFT5tdhzV3jWhwjejagOxblpDqrVTlIGf366gYcnTrJ3Jier7YHS/F2FkcUGS/VxZ+mgWMiqifCpsC+jpImW/nTl1enQ0iYtJx8cVGHOoLNSnEIuVD0AespjO1cVwIWaPQUdSziWpUzfxW+rcWFgENcAYK8dh9kZrZDyuXrbt6D75rApLxS97c6mtpne13Mdyqo9mR1pUMCQkGwCr0uekm8PMFDt/jnc79rML+VqrGj8jmUkph+UpzaJv8UNKuZW7ntupo+YJn/jxWM6T8S84pMaU8DzXms0q+qzBrxBpebrEek0ba4tKL6L2OvLxLMh+OzrEK0xl78RnRvQKLaHYLUW5qEqhFWEbITSs2XddMyMyxXEsA6eI+CrQ0nK0Zfv43NGYe/P5xKHUG4sqZMFemvlEgzaiHgMHlVb1f7QqMqseKavoqg4893Zj+uE5Y7TpIyWLLmMuoDjl+0iBy9q48mYGkK8hOH7D6f6f1H9w28OxntyonRAHIPOiaoMFx9qGbw4yjLosIn9IVzhnNmCNRqHLwPNq6+96WacDDZZttqwQNNW/S5LwrGllcsQt1fvaLfkA2xm2+liNv02disLx4yrtqjfDBMIGxX7qFyKbGgHlNyw13crCI8ocoIkOalzC8hcvFXIjxEtWWLtD4t0mUZeaSbc6uIR4sXrVqwSyirakJgtg7XO5KVotkunQnXmZFxfIBk2vZzTHZEAZK9NDEIFY0iC73p5OU8IBNfPTQRTVOntHt7coijfvutNwyqJe1toOKdviflg7Gny0yFX+EInWWC3DGwYwRL52JbPewkPLN/v6sDoj9cYNFXETFgZH9BAACOKu6/tYvQ2n4BvKqyuT2I03pAGUBChRTk0XhIcaxDs+4T9CNCSwyOWseEJi94YtbRjFsphaq4Fr2dAaQtpc4Q7tyai3p5rnFBXX/znXYoK/L1xbeGqNxuWfvPihHJeXwa9EG//Ttczhhjf4fEaDca7cNtuI9TFwbnGlvNKMob5wVcl138mKuW4ca5WMu7rW7VSGbT1MqK2mH6zx7gOHwzsPFQXz6kDLIkBm8P6kT7igWM8rzDAuP2hRBL+umibebEdZaNZT8ed8t3npSCUsqqtJz1CY9BTRid1LSeBMICmTECP20KGbofFiM9cthxoxFF3KUATI1cvKdJweBamqnis9wmS4laZ3PxISmAzSCie15f4AfVIpWLuy++Sj0tlggXmumsYCY8bSoWKOFCb13r66Mj7ambZ5kKvfwZ6GvoDrbrqxTalV3zUhglH62Z3UQb7g+D7N3Jz43nb3HYqSO2p2URY+btNLL1j+MMsZxCCXM75b/6ai9c0zxPqfG2/NIZyIV4MgidzmE8XlG8fZEB/YyZdOKLC7jY9ttKDz8pxOKqq90Z+tEZG5OGyq0UBCbnDd+DC928vSjRa8tvSV8ZCBvTsnpI5BJt+J6jamDyVUE5b4Id2eFmVx5MsJaNKEX1IcxyFq3NTYQtp9oiuKJu/1IU3W+6phPw3qjzOY+7CFQWLKrMmS5fK5/wb/req8dixkz89Kldp1IIZOO29OeO+7+WPPlUx+dcbMGG+DrZ5bqXlYcsJe2/geCSk11ZcjRBBL2n3mVwZKTJ43g7nLBb/ov6nI6vEC6LTvFM62wCVc7fY64sUNZg+E4xbAkYCrxWTquADNutSux6rV6JutbKSjo3YcpbYewCGf8k1I/Qv+A+AG5A6dCeRx4/Jbbszsgj/Hy+gU9dJLGmlsROoYRyEbXPXMCss341t/4FLX0qzlSGMu0pvbxfSfagcan8DPqGjZNItMn5vPY8BFEly9i5xQGhGsAbpGpzWs72kgil6vrC9XeVoaqUEvqjU5Rs7EdxM/tzucXk/ia8rivq4rd2IqWQ146Gf2UqsdjHbVSOuk03sET01ze2XwwMHLEK1L2nGWAXk4m8iJq587ytykQr6/mmUxNAh7OuOh7L4SqxN2yvA41idaNylCy6hP6gOhI5TXgLC6IRhFR//gHqwPquYOeYt7NzdST+LKZj8ah6+aAJgCvWVVPsYLtnQf+n3j/fYnSTEMpZAXZ4zhlbpU0ZmRBW1AlLOIkZr6Z7RJHSV5jQKymTzMeAi80pqCTvnUKT08idC6uJyakLyDAkNRykfIwKwrWV4cxPSVTDNg2ZAda80zxmLIEoE9/7/Zh4rQjF9XRKbw33aXICnjY7CoT6VNiBStWpWjCgd218ZuI/fMhhC2q8wybfghTvhaPV2AFKltDdVbboKc7VGLSYtbqN3qVVt7HO2xIzg+FrhUhTP/64mEBvEe3GQNBghtL7kcAgyXwD6Xoc3d3Eljt2iDhwYittSaD+14xCvKlQ9i68zIlVUX4ZhSRPt43XL0hrsVyijc1OEI+ohIQP/FZlYGCgaduRRdzLdZTugMmRfmzoKPpo1V1HsFYuccfnf+vZq0ZybRai406RmN/febpsnVvOCM19M4ebMdyqK6YHWA9+jGDOlkGkHU2ejyasMkB8Qf04cBb8XZxfaYVsJNXgC6K9Hg5Pfbdb1BH59Um9z1jF7AetDgNJvK2ThRETAJ8KVfiCotLyymPoI2SS8JEa+Gml9uLDP894lsPliNBDGUL5GbvbbajR2vEaHgADSg+tIUeqQq7PErKVlU2en+e0wyyveq2l2dn1fHSkdPLgP5CES+uk6LpEDrciCCS4bcV3xzbmdA+dFJ/Lr7jkY02bluBe5VibA0aDr7wZQHPWaICL7ONNFnBB2VUVq2v3VRWg+CT5pxqusvqs71PpZg0mzYNRlS6ElYwza1O1nRLgcqKCPiApid0eIPXnSQY17+BPl7SGvgf2FUlNUFWNWvY8WHJpBB5hX65GaGcdf1w7y9kIS5gyNyzOT9Ujo1XLwOfEQR09s9/pb4xc89/P8LsYFFnQNlyMUy+3+1i1tmRhZAtonBntQE1uapb0ZUltpVBChrEuHYxhzTdPaQ6W6fdRToUngSCbCf1VnS3noDbweGs/GsAzvmbTzVQAlslSR39Ax97mqyaIO8/DGRWlMf44l9Kvagn7Bqhh9/Z32cbGtz7EdC0fDPxbp5CTVl97+EiGsu7W5kSBb1lfRvZ/n1o1R7HcSU0245AqrhQNmHokggcaodU7FJKqAif20TAoeX/BvUc8sCc/VK4f8SrlcUTzAh4WSV4yLoAhx/0g0/sDnoZo1uGTf+SNSUTAJLXlpuo6vygRFtXAd3gjrTyv4We/KogKR9ig+gGXyKUmdw0J7J6Tqy31Mj4ql7poNbEOZx2q2QtrBcKG8h3P3FTb/NSP8z+9W6rhC5dk/wyB1hs1q7xYAqHp5HJ22UFLrxd5LdA/Rg8OZzTrJHHQA7GXYjhqbiaExMuywrv29d4LfwM1/GXJ+adnCIXG9+uM/N7sgSaYWOCk9zNl4Rqk84baTKDgGnUnnh0OeqZtRV5o/LNHw6db4oKdpndquNK6r8Q3Jn3yIYPt/ge474hHnLvEF8jNY/G+SsttqqtJPU5jgFMQHGweiGkiTTt4UBhoradqedMuocJqAnJ3LEahXAmfP9LPnt5VKV+u1eilUFghI2fMUxbfJPgANqY0+DxNCRycjKLsReHYYN/Mi9vKSi/6R7WSuGNxSTTFFt8TpfhSLV4Dtvsu+sAVVdyGt/3G//ltj2ork970PEUWHAZ+7ibGk/ef/yLFlYtR+nsUe1OjiNdAdPbGR3EkH6NPcPD+NHGhcFfaYGvW1y5JVF5XxZvnE7K1foxCVHE3NXEwRwv+Xb/T/MVlaqeQ/lwyWlhIAC/uiWt5mDriA2qY7T96kcpM6wlGKKnDGE128avEV7wwinccbbzkiKjILZHvnVN/vlyXJOcEmZocsoI2CPyDPBkED83MxhS1i0AlXY2tLx3DC+QfjNn9X1xhfcyAK2iGsdS0JzlXqF3zVwbl4W6hXVehc1FW7n75LlBG+hzwgf4FxgDcP9p5dch76sCiV+9WJdGADgbMQDU7qTDrBvC+lU1UD022eq4HenVF8+9kA8J4lcCHYZ4IqXbJzeFccZBapJWHZjCXM7d66MBG2QJsB84HzZWyeuRfl+lMbWRyGX9K28LEhA6NiwfJCIcmQ9cPlTj/hDU2BPhpJkRFPXRT7VbEJ3WUijoMlT/+guqMQrDzMgOEzB54VRNQXw4yUmY8WuV0jVcfAqRJcssYU6v307FtJWyJwFKjYRIDZqh3dy1r/PVas3171tQqDbQvs02gKelbrm7OrQ2lAn71t2ACK12QrQiThQRvfrUXnxEXSXDOOhcdMzpDzm0DzcFBzyiBszWU+Q1Zp/Vm0NasE+bR9itjRT9ey94Roa2OJYFxDbCu089IDosKgmkGbPlfzOwnzDbxZfq48TTZc7GJTW8nV38T2TP1jpoaku0lfZDjMGOYSDG1MjclfpXOAQVsn8bNYTTLQoG6ad/KWXIY1zWZxaMsJ4I7KcsOuyVVUawdpAU/G9IURSNuvcV0k4gUWNVJu5gcf1fFpbzSElk9aRlIpzmed2qB2MPjRF8lHxSOnOFN7CFcgCdFnN+fUghy6WUOVyuL+HOSw2GCrB1eGUwoUpc1A1Z9LybjHkAxpALwJXNOtMKe5vFQJGUUC6MvVSBG952bxE1X/9xZCItGavKiLB1MccH+FicoX9Jl0hAJX27C/d8ZAWl+TDz2cfwAjPJGlVh7/YrXjSQk7MlPBfxZ19pKx3dI5jDg6qNGLJQDq4eqw6ZlJ8yVvuDP1sWJScyEv0LoPIRD6jvzRB19wq0N5d0AHxI3wLHv50bHiTSbAa5eoR/GnfmPwVABu+FVqwMSI/NhToRgxv5MtTo6asVHxlRbdjhW2CjMQC1xLHx0ecegxMbuOUTxFrPSxtLH6Qy/Z8ZeCbCV5Dmhe21dcNp2CiMCI4jPrH+bLzFlS3uTP1mfhDLnFmkhuKAb3XR55hUbn02V7/Dz95xm3K6DVc3avHIpd0dnS4NB+X+cNR914Eak0pyz2fIVdeZjPtxIMzJsc91unYE6gXL93c/ZDfcEA2t6VNgd071IjOiN+IK4JPQ8I69C9VpuyoVBB8BeNd+T1IHpycRt+hfChxN/M2TpKyklxinIx6dNQoysKUtKFBNtplbEzM9kvUkl5vGwYmU1opQh/aZrXPifxPCeUEm8CS7z50xuP5YbYg5ktWWZpjwEwNm1Uo/NN9XbwS/V25vAtoQ0PeuogmSRnt4nZTUitp8zL/wdDoJjVEggyVDdqBEMMd4VmJetyba68A/znRLwtlWfTsfrd4GSBmAPSx5MHNXgfri2im6A6rrqHppRRPZq7eiLpb+y+Ry3f2U1tvlASq1uQTzkzNYe7iucjaD7nISjU+x9YGHdwO93ta07aePIhkePrScufPvlDguEPvXOndudoJ68ZXDOMstgNU3bj7u4XkSrmnEYBr6qEwg15o9fLDz0+CvZmAGGTkQHjyJT03uT+ha0xHw6bJEnq6V4D+YdUiYDbgPC8UJtobNuXMJKp5+bgqdG+ghK6sqII8xGuhO/9EsHVQJXvDzOF53yWyfb6HIYIGXgA1OiJpOaQ/Jiru5ejlSlzJZko6fBNm0aJ9AZkBY8T+jK87vcQC/pjPAlw56JNmQd3lGGgDJME06eTuKYLXqfBvTU80vyX0qNl8zaTINYQ24iaxPqqFkDlFGYIe81SjNwmbl3iTfunTVma6PlkS4eN19fmAbzYiIpCJh3SjUM7vznEP7/Dr+Xo1zthHgCfUUemKrW+O4Nk2kJgIlfbbc4aRziBt9aFOXn7OmXncvvIJe1fyAbRxlRhAJu4E4+CUfFU8r6tum5hVC649wDPls4J7oXr5k8mT/tW1Rm6TasPXzwHQGdDLI77v6UJP3zN5vxvsbb25oh0xTy7o7RcR0I79y1Pb2s1rpCWKnRwBSU9l2sCL3duUpfr+kS0V0WQx8MeXLFeEOhzP6pKeSR8bbci/9lRzM10L3Pbu+G9oqCvsuoUIVA653HnvbEUMtWdLVcEA4MdhYPyoN/0qo+W3RmF8hRRsCanpJuoeBORey/wkev6OBrNkcxPYDA/UOB8LOo5ss9HBlQCYYdvf3z+y/sOFkjZJjk+bEMVEBjoC+2l5QJncoFjUjrNguG+pvBTlEHe6iRz/Br6uXtH70ilAOEnc91d8zNqUklsRYGdQbECBmC4JOW8APW1pkBUE/6zweoVCLu8lOBanFHlNWMOhKNHZ1EwlB+3nihVFd/aM8CU/AWDgbrWDq4605mY/QRZGKz0ZW6KPEOcrejTHHOSZbjaK8PlyqHnrA6B4U6wdBtfEBGjNC54rwpAnW9v9XPhO/SBl9hDPegC8LyAFJeLYouCBZcsWtjzqOQCq3izxQgq+KqBBUTZA69B+cdDYV/0NODdHNgjfFVZd/YiGeiE14kVP+rCh4AVVRSJcaqUahoZ3eRDhSW/GAJfnxDBE/cKt+IYyM3r/m7z+y5DD6IqArqm9Tzb5wHpBtE8uGA5mBKbovDbHkCxYN+nqeCPqQUTjjJK1lIpVx/QQGoLfLrrBfyAoijNosNkRECraENSX/JRoR8w5IyNwSJmoNCkknsvtZhL+blXSckGkeINHp/bVR1D7XgvHpMQyQfQ/5lHD5f5XsbrDpLu6NC4X04B5x/punK/7r2M1KNRvjI4fNFOZWqavBS9A0EIFbmQzjJMdhpvHtPmwcXs01DVVLCa+B44+F7sIN9IeKN0c01yo8eS4y/TDm5pbMWbePncBraGN5nBxRAVqXG72MpC7aA1L15bcbZmMJm9lOeuPmqII9xnrwGJU/REfkD868nxqSzA9ADVvDrXPdxryRVw3JbBJQO1XmUMKS7Bzwni2m7O+iwkAAp9W0jGROCr2PFbyzBoMVMLYIK1GHV4EXQyN3RIxrzR/p911NbY9W+0mmQLIdFt12LgJYbYlZPHXZ5+xuKP0YKMFErUQEENdLVZOdpiCkOKQuX1iiKboLNfr2+jvLS2zr6lB69KxVQtXcsIi42wtw+o1PNTzC0bDqVf3qwyaAtHSN8F64afgpHdUkPB6+GmDeyu9smM0ARGXUE2DHChregfKsnJfCSfgphMOiyPcH6sCyXvG/ldjZEWjB4zAmMYtzvZtvpcvWcPGamwY17HJ8R4KDWuq9o4Dr/6mEGMoh+DY8ZHmd+cQPXK0UuSNLlXaWb/kp9Cp8VejnXB2YaKLTSUKq5SnwBPx5MxTgCM1E4yJlUuHeOOHUXAaXhm+3s8YKrDXIXcz77v5kjJfVgTZ5nP8HFoMZcHNgyyMjvCWjUJIC/5LNFEAJGG5zI8hQIbUfPuXrnCb2Rq33RY9C2Y1tYhsHe/BrPaoksVYzxpUKzIWQTPskDHbK+RvDpyh+M8uK/2+92nTunzGW9V3J+HdFZGFBBG2o99WV4VOLcNR0E/b8jyU9HbsPHd0jlLipYfLEeiqEaznYaFvyXHTfkYubaVUJ2hrw4+daWz+4fgHTD0XinJSXhf0PGF3lpS1LMJXA9aGh35YkX8beX7Obr0huL1SrxqzjinIKo7ZMoNHmnI7KtEWuwP23ovYx2DftwUxohrcoUY7EfLItn2MIbM66P1bMU3N/vQ0M559jlzxQX/j+Tx26BTLykF8HriRSTGFkQbIVTHCIA3i+LZ/zAk3bM3V3L/hgu+oS1mag7n+WGjpTeIibH5w7KwoXXdxo0cWnyRptNgRH4oh8f98POGN8MWtAnaGIGX4aMoKVWNiuDLaZj/ZUh5wzxkqrE9MxGshHks/9wsnrJ7YcKvFdhKkTld6200oAteAlOLBVSa0RW8SAejwSoziH1dgYSlg5iaQfaYh0Um3AHNg9bMJ/oJtsOjIKED9DuG9+j/6PR59pwMV3hdyQwbon/xq2SF8hBDzyblxoWFzpUdkp0XiaLW3WcGRghYJv64eVvHjvrjHV4wMen96k6OfaLB3zEBn1MzRnGY9wn/b0bfvfa1UKnYbMQX6dJBqlMJ49IniG4rYzdMdd0zAxh8qRIzNjnNbasLEX+mMstV0bE1e1QYY0ZE6/uVf0oqUB+GWvaheBJ2H7Wna5xbw9ZPx1ob0xN6+yYxv5TpfrN9/GlHfls0ohKpKFne0Wq16Kw10E/XNEiq2/t0owvmjxkKUd6uUpuw9i7u7e2Gk6f26J79+udkODsJccxgxxOW7j2N8059cqG3NBzdVUstFrNTUpcIN2v2mlZMnGCOWg3NGZtu47DeY6OSKzctEEMIaP6y+nsAdTFTHw8oJP8bCLyXMf2jWfMhoac6FNEEVkPToeR631hHuc9Vb/6lYMN+0iTn2tFoek6aXs55YZZj+5oDDq6o6YQBYBGsBQcxDBdr5JQ6e4L6/e9MWFs4TFpLezl7NDaHCKHtxg15LNfAcILH+LbgP3vRGrSS0Wfw72eADFzaHsdrTERagtqz/eaVqT6Ld8khQTAueYB53jmL4Jn78RasqPQ8qyljSD4etp1JbufruhzF/h7n/Oxyy6wFKvdbCCgQMVsRUbKAqcMMQiiFJTVho19fQN8ozInA2l+w0eJlCvr6km3SuuhewX/35hRxv4kgOQ3BAOc3NxFADh80BCcn5vNZnkwzGLKVj8OF/HAUpPKBb5rLqXe/nxceXQhPfQF3HyYGgG7aJQcp9K/wCA0q+/kMZdL6SRSPyJgq9RKrJabyX8xq+v9WBLC5PxFhNECzikm63Nhtoh44L60XvhNQlC/5BMzgsWoMx3DF1ZKxRyIDZTxPuxO1+7QtMMq4MSYWIWj+0seXqFgDKXa6GDOA1AdQhb2pDmhilH+ifSuM65FYBY9epi8cGVzwyISjiKnwhLVCoJPsGwIo/RTf4/E+v/XBS58qu2/Sj4NOOsSPgCr8NEsfHUl+1J4lBvgpMYjHYWy6PQ+KZQifUyw8w19jTjdvw+sCKuQenQjbs9DNe8st/caMqZ6pegXzD9k7uPJ15p56o3iFY5XXeM7Pn1x0wUle2c74B5KGa9XqeR/xC9wEsWK+H1bOw7gDnHspOPYV1bhHzgQ2M2lXYnydikfkaSNgnnc2eNw+i4iJk5OeUabZSXCYc4RJOW5/tzv7j4I3lWw6HeMMFL9GOTkYfZHVVlsgls205+BFEab+ouFTT/itiH8uPsntP7gQIf7t98Z/J1wZ4ZnrsqmE7FlFePl7hICmDwbFGiVVZBZJ+Y0V/VgE/VsrTBIXywXv/JVuT7pXzdA3VmPHtMdTNjDSPY8Bd/+cW9PaNg+m66G6NgRX0BrnyuFdCM5eOeTm9hYfS8NxbcSWIS4X94ctIlSnKod3lUd11HNgrdMUCqoNBAGrU3da66agFr3kyZDIwM+pajiGPjAayrSFGE5cPr2LyezcuqKhsiuBBD63Zo/qYGC04inzwuaNYV9At65Gnvx7/6g1QztYFK0dn7ZANCboH4iq1MqKY/bkiuQE6Y2WmTzuZu2pK6MfvbdX5Q4UKxy33cFE4GCY7kn7hpQx6vOkX712tAJqHkmpss58Gmkh3twDvvwEIyDPzPHQcKFCZ21aGA0Tuk2NU6TtojIAtcuJMvjbQTkgp3OS6VYfD4d/zpCILPyUw4RXqEFZFgaLfZ4J/VSkQZQp0R5oRE1UxF//a6/OixhwLAE7UDF0tlJZFFRg9JtYOg4iRlEkmjazJP7/WTt23Gtw4zgIq9ZbcI4SEyGKgUXzN5O4RDKFx/oEfHd0BUdWyNpXkqk/9EGWmL1y49UqvFIRAW4ma63p7uX0IctiWejM9ZW/YZGEC0y7J2UYGHySSxi32ImU6CX+dU649pIwXzm//y7w1QuKBZZxSZMxg4diVdDGlhMWtTrBToK0z+d6SrFfN2ox1qAGrEnFRSy0cbGPjrrbnmj/CY3Wo4W/7ZKBv1qhOtA0fnAD1nG1J08MgFbfIYePglFVK02Qbb/QUHnUwYLKOXaAc3B5i7K8KMrE9H6zITUpzKwuYXpS9HtWzAqpd9hAxEyofmBcPPvDsNNi6JxSdw2yRCaKfvTgQJlbenYF24R/Tua/HRTfPboyxdaTPrrH5yK4/EWUZHtdQ2lrpVKa6zN4/SHZ/F/gOyLC3uWEQwm7KGRb4h6CgxwYwhqGXNyEIGb+3whbdbdFHuaTleUdIBZBNaUAWMW32CyiiKDkmIWGMBlBrb+AGIkZIY5yyqqMUvpU2RojD5oGuilq4v1Kx7x4FushAwkwEmZt1r0wjGRfkWM2K87r3dKvhp88PSiSBSpZ2+E+TQJFc/m93bfZNa7VquWAS4Ld5utIO7VRoCLMDqikZIR//4jnwbTEEtH6hWKJjv9lYlfNR5gxWK3RDQwoGvG1pzrjrjxi+xMeXmBjUYhNEBDv2Sv+DzKDdaTl57Bbnb1UdqeiByaDpoOZ78YlGJSm3De6YcUy14kH8rHDCwaM0IRiUV3Avl1Y74MV37BEtmK7j7PxfDy/OVfQ4AjTWrx75JrQErxa0ZWSMgbobqnsHbaW1lXgTZHWVYMvtcfIlywwPmsCLywjZZeK9wIMAnwtfJiSmUa5Ca3ifdUfOer2z0xnzFCzOYZTJdZWDD0rfgGEVlrp7rUQMx8IW2ZNaeaM7qXctjpLvP+pwdF7eiJ+Hqf5JCECMZ/tdnNj0v1DX9EG13ATTmdqFpTUSVxRbQcnpW0OURkzNXRucl6tARshrAsw3gQEbrxveDwsVndd2Fik0tMHlJ5kPNvzzflCwSrhTiW4828zPNKKucgFp37Tm/QTqzA1IS2HNbNl2HyU66wA7H1ygOs5fHfhash8LREzJZadFBPbmMmZFvSpFuvanFUo/1tvfKCNPiU/WC4fIYP761/ew1E55kDXcTK67yDulFqqYwpJMvAUKeBxtpkXOou+a0TdzxXVqbUa4i2sBQKp/aE1FD4dhDrV/JCXrdfAPwQeFOnQdrO3n4NQQLbakcusNyj14puw2PxpQI6++JAL2u/ltPX+03U+zCqVpYx6IISosnlU5BqjEuynu60xNH0dMvJAWzKQR5tyVddTsjCH46lsfveL3Mw3WZh0rMDVFJZ5o9jUnC0eR01FbsBQxIFrEh4R3BtvmZJw1kOlVCLsUfRXndN+iVYhqPr7GIGKnLMdLjzZlJhyWZZnnAhFQJc3QXn6/rQjQjERb4FaterUPu7orPwKoRMWyndkZNuUpSfWxVC+HlbjncJLZ8wo4CCURLh3YHxziQCc8mpKyVZF3jLKtTM0OenKUUehBpeYtSbs9djUtIPm336tbYrhREvJkAcVVSYlsWhSTelKLHiHsDC8D4iqZ+oirYW9mOoxd+Cq1RSrBFJSIhkBDeCZ+MoPsxYE2f6UBkVFOKPckSDzA90tdu6+Yu/lfeC2Q4PfpkAz8kDvDU7BNZaufniF1cNxVX0/SGqsroz4WzgHdi7XLDPJdcTt4gPF4sOPESGtsGfn1F3ZMpG3pqYoJp2C7wBBkgQa3O2VjGm5TeLg9hQ1Dt4lgak=
Variant 1
DifficultyLevel
402
Question
Only one of the following number sentences is equal to 5.
Which number sentence is it?
Worked Solution
|
|
(4×4+4)÷4 |
= (16+4)÷4 |
|
= 20÷4 (order of operations) |
|
= 5 |
∴ The correct number sentence is (4×4+4)÷4.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
Only one of the following number sentences is equal to 5.
Which number sentence is it? |
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= $(16 + 4) \div 4$|
||= $20 \div 4$ (order of operations)|
||= 5|
$\therefore$ The correct number sentence is {{{correctAnswer}}}.
|
correctAnswer | $(4 \times 4 + 4) \div 4$ |
Answers
Is Correct? | Answer |
x | (4×4−4)÷4 |
✓ | (4×4+4)÷4 |
x | 4×4−4÷4 |
x | 4×4+4÷4 |
U2FsdGVkX1/7DHktoryxGB1XlkwR/kVsoD7tROv2CmRZLUdYcpodqi0b/Rd4t/b7NpZhO3fIs3kn6nF1nrfVToaAcn1ERvCFzIVnYS8N9IAaCHTXGMrgRLnaP9CtnVNCcM0EHO4hP8jPiSeOlLoNwY2pnRYEF8FflQb8GTKTVALayuykYfEnlIWRzzXAgXUAKt8Fa5B3jrXye4WBTE14CwZvFbPYlj1z3inSyX1U02SZKECWYk5UjsV93peKAHiXj1SlglvbhEB9CaaQPH4nM/+A1VyAs3OcNNAzXwv33RodXZHBJlPvNhn9QO7Fbz6uFHKvjTwjFnTPJdJ8gEpf8OrEf7ycMRykIdyuDeRLT2TahXKBHvBz124wQhazzPBMMTB5Jt+MXqoXj9Z6OW1rBLCY6T+tX4Y9odU1vx03NpmTXrYcYmdY9GZOmCJpf7w6B8MfG3IlQWuqa50oXXlJhmiQwBwiTVV36Gb7kvCY0Mf64w8E2jiC2dFBQgBUUP5YD6ipku6eyPyTD5SD4AqLSY0ZkkIfeIPUBFXwK0vykbZu1uY5X39By5kAQC2M7bCuneEtPuU92Cej1/rHlCW+jFUiyOHn6IpEBNO/zrzex6E8FD8SXDEAS+UtDbUMZknjIxYabVtNgYByrWWmBkVWoz1GoYulVMJ7+RHF6cTQY2qNL4yVXqwnZExXBpFAZN7HQ20QprQespnqWb2hfOALhmswCCZWmbyzyfPAtYCYr2LBJPZGWVar1q0JqlfU9XvqrVWiUGJFkAjFXtl3IngquDkKycyQbKELMMQ5e8sLFOKfog798AhkwKfU3R9ecQb4oJY5KXegwOVUOBtY9QlWibmxzJeYSWfCSlzpIAsMuWemLclsIJwP+ojqZrIxM2qiEoGk8paW2hIZRBFW7ir4N8soJKZvx6/4QQ7fbV8xpuLRAr7zgSAgXsTADoTDeqjg/KR0la/qkcDhV9imiSgbIhnMJxaw1jCUg7g+u3jj/BSt7q9KWAn2iSxURTaVBooL5KGhBYJ1p8B1PtE9Z3xP3BcH/nGAB834gDYfrXD1sRLc5i201g0EF3onyRzWLASHOeCk1xCWoamZxJtX74D1I+lKBGivAuPb/2SeOTT4dHmaGj0nPpHZNWtw358ejZhHQU3XxF036ArsQCfevJ9vTASUYZ0dLg3R5MRj2+9HZii3LnHITjMP/1xAi61MiqOFh4QtGg/TxkpswxOjFJ4jKU5si0905eDOv2vQ/Gj8OS4RiGGkGt0nUrYYfvgaRXQCuN2nblac4T5S4kbpETAtVKpwa0t3lX7UTsbNTATaQBgiSRrhclwNubxcx7agK/3Qi5kn+jTHDIDGRop539FvlDSe5zYzfAjSmYrOfsNnwG2n8/3ofZPi6KG+bzvGqtAj97ZmtMWa455HscWnDagknnj2nCyka3uW3MYHT27YDzeX7pPe7zbC4E/68qFYPVp2ryDnMH0LObnQDR6svAhVt+QQrU1hiCIz695bNM2QMnPyZZ/L60KD+CeXMCtprpLEvH7jro5T1eDJNMKOHrgZhfAsgk9c4JdqFQv9CGBDondZkHisr9RAvDLsKLlGyphXrmQfdzhdRzkyOlem5oX/2s+Zg8dlm3p4bvV1ueJapwkd7r39dZnccn68ntrW5Q3Js2HYRVcqlxdLGrfCB1ZSTicNXaEGwPPJNNjQpIdZe8LvDNww9/MgADenGj2QnLnf0hj87RQFwd1mX3FBpp9Gb2cjc9H8ErrQOHJYK6ExJykPQpw9lDtVAIErxzViLXyp6/JBrGK2fB+DWVa650Ux4zCkVWQuX6dqH/ZQRpxVsYKgPT2JSLyQVpJSDWrTFMsEaIs8Zgx6e3wtgO3fbOq0dmw6qU1CcHBjxg+huCfNcjJVHyJwrs5Sg/0wvEqrZ+Z9Pju5CHtWnDb4XFFYpMp9ip8SjulP8WlIX0hFzIFFxp7XC6qNUjyqaNMFJpDV5nIlhgXqxoUwVnt0J4phJtQW0HJo+vg5V+5EbM1YSvFPoFiN3BTeueVdYFVk+x5GvfJ6e6O6pps++JlWgOqhTudGDli5rPC2buMauG41p3unrgT8ANpZ4UWZqz8dm/M40IDRSiYZ8fMyyCOQUntdpW7NPWMLcOcgfONYdYzjh0oHJSCRbNQxto7Z81p7p2NuKX9U0ywMiz74/6sUe+trWkgHiIcnnLb5gDCB+eU8Z7dy5fHQFVcDnTfIqX0K86wssOSsxHRSUy7OGuWQFwX+WZSrC/rl4AQTS0nKVGoTLuI6D5Nlno00r0lCWPnuyqBitziX0twz5FWwebnp1XDtH5sZL1VpNLeiAiiyerY4Uwfgf+AoUAVL7R9H4Nc3iLsjLrfr/B6RIPxX0waX3RLbyeBS5KhTW2RBaOXYVRvW8bZLERQJppjc43bJojcTAxcGe7kpUm/75jto0Vjm8IaCyvpA+KEJlevf/TGiCAlFtKaBSZimJZgrKRBdII9EoI24ujfCnz0WjwQA2+4Q4cZ60/Z0VUQzz35oh5edO21+MVK6b7rMh9UwrPCjIoKvJgwO2sphJm/HBNw/QzkMb3fEBmt2rwThYso7XjPvtQYh3DyiQJAFMzSLnJ0Izz04dvQYskTsyrxXx/PJdoH5Dc9+45d+9QA05JDSwHEKKtheHYk32xqVkCgYT0Zjt7wk9ItW/kHKZEV6kR2XGzA/LNvOk3M0EW5IKWF+2PHeMXNKLriHiPV9MfWSNeq3lSmlwokFfHG62l4dwMM5g7qlwSHS+DDTN69TRJ4HnlxLVQuLW2O3e4kjYzApNnzSC8yVmhucD49hTrtENLI8f2Xnn8Mu6gaxc8SuzA7scOGJlNnJDjigWCAQzDNY7xm8DIn58Q0C8/LPeEXsfIQlJBlcqQh9tCUNGEbbr7WzF8Nt5rwsoX7IZmY56LE4jWyQX1S/EVaLDXh6qMa5/K1NjY0YPeWS/MDwTFhnFEwCmtvBdJwepW3+p/vQojZB96C3+yVDJFXLUhtdh/75xJDjazJ+cOEW00cUl2s49uFw59M0pNUNzj90VOz+MKD0Hspw/8UP9VBXGxUEf5+F2ptZPY1VKHm4Xyutacqg9N3RHWT1+b+W1ciSIxJO+GaGOOrYqCSCSJhfgD9ZiTXhNcGSRM+3IVaC6RbEbGTJnkFckj3vI+l2JerwjJzkZ2RQG+ecBqH7SQmowCcHO/S0AajA/zcKSSnx9cKmrYY6CZG8EMSXe4Si3tFiqqHqvBbugsQicQXMleq5Q+laI5EkFrfZR4e0ctDnHWeXpuJ0GVkXIZ3rBVOv86qFaSURGvxQ/E6HO+U4jRRGVCUgsKRsgcb5nmAUVcWHdG30F9HJSAGNFKmKJSBspk3U4jeM+/+h+sp3xex7aoX9b0vR6aJRonI6WhpsRSSbIRL21TnsHiGvXP+kKwKDuGQcxQgDbAy4Aw39ADRPLYZLaRHUzWsiPGws+r1inXiDnvUfFOH4EgtWtvZlWsBo2At5TwCEoaZbTq/F0SEA2EbOuHo8rppDTgQFKcBohkKDY8a6ehdI9dBXSgu1yNcFMwGTtaJT9G4oXOZ04dcML7C5vot0CfpzEKiXDCTruLewdk54ylzxJJYaCP2YW0RJvQOCRRYYfA/K23ZlHO++7+U6hHdjomSg0WNvB6WK4G3/lXJ0m0/4dmx1WFaRwpJC/XYb9Pa5oHf5EP6QLLY1Vfnh9Ezn8gV/rXpjKXKLESkt9YP3d7QXQx4wAifG3CnniK4KIGeFj7QuCFyTeMfLH9R2qcJB8p55An8Zl97wobCd4tclxvlP0td6bOynWxhnQ+LQ+OL6HAcfq1EvkKNpYbhaVpOEQ890n23PhFw75YM8EbL78fxSZ4I+WGyREAqk/rp/PWiYv1Cpazx+LcuCMs5PWR/ETLUUsjuZ2krc1VIlVmpbp7HOgzHCZH8kv5ZHKowWnKn+r2EXV0UgHa0RFDsG7WeysP7esGKCtuFT6FzXljOnn0fmxLgtrQmygB87g8NNsEaT6/ptnUdFQvaxuTGNuHW2v++Rp7LZCDGrEFq/8z7cPRnvjprOgcwd2mEfs2yWYYLzo8wDtliWgwlubCPiQx5iabVaaXmi6aJ74829Go3s6RLjHttmRXDAyDafSqisTBiVvU9q9gGXMuOSlz8ialQJhrq7iYEkAiq9gcwczysrw6atSYWYcMhAYBmidQXkSxv6fheak0cdEsXCNPdFrkTV87nVv4IUXqUnLfBI0oFJuoobDM/E4iZPP3+D7e4woh9e/rYevtyS4XXcNG9QS9ki3ywpHYCh+mgDNcQg2iTZ0ZcX5w9m0X1T7WDu5Epf4W0zV7WERX/vvpgGRMKUjjWUmMEK8j1Y21CDHt4BWp5CxzkgEA4CK41cfG/1Wt3D6WdiHuvcDyFkqNN+eLfpSfStnR8YaLHy3nukBkJz3M/nu1sVPTrPg9XM6kuGMwOqSvcxXSiSrvWNve2EKusrB8NnN3MOGe9BVVHFRf5uBtJ5lHj56Qn25SxSiMVP37OuzsIh9FZO1BIlzNrYhiaZhNVp1O8pi2abrzz432uFyiZMn6qBfDRais/9w4AJ+YkxFra55WxH26qorKiDTzQGQlL/85rhp+hc9Bx8yk5cYx5J32ISc0LRIs40tlxcYgPj0T2Ji0dZWxisguyD7TOu+51v6LGCnRw1YSfv0idHsRopdXzzvQAu0Wq7jjLl2+ZhfwCJ8jcUFZRbfD7e1gLByXQKTab3+4KlCGFBnaoWDD7ZIt9aZz+s2fn5ZmhPbcoQDAHajhWNNQ4D/PiIvqpsZrk35zWdVs66mvOOm7G5kQA4qIg2pfFoDNhH8IspglIxj3z6EtHOB3SrrlOfg632mjaLB26Fz5dlbkF8BpPJbZbBM0/57w5S9JC4HnNy2Zvv358/5A779QviUKrUhvEDkY8K01TffiCSoDhAMlZiCkOLIzT5Ge9mWbHNRB0QXVRilFjzjAFDUYaR9brP/DZwLy8CTztOluHeo1F1Hsb9OTaau5tKfJ62GdNjM/cehz4uVmuXfZwkjiTb3/5qURunGD2DPbK+G2BDrsH+2WaL12O9cw1BLCL6E5i4D/SmdqOCb9CgkKajGDsuC/QqzOh7uJ5aj937wGFRVwqcVYygqAKweR+Vzo3XQsZFZp2ZiF90VuPxraY6aHs/GEvAyGz7m0ar+kWS0jEXRPkoxS9UlFtggp0qQXSVNYPt6dkk5703m6kHzvl0S1CLAAC44B3OHOvxDGppvUCrpTdaiGQuLNeVol+wqTscDxqfxAKova+QM89UHAAk3tXk2vR5zOURyzz8rQL6IEH562H7rlJLu0hk3lp/8+xaZIckaoRXjNQk9mADKURXOqg73J4C7+1QVessjyDx1t3f+BhkFSw1Z7yX4z7NYt3LhiWDqk/1x/lHNp0Jyqz3dHBjdITPwkprJpUkWlKj2ahgCXC2E9Lpp9/LV/2kmIz2bVLB1wYlu9wz+1YlnBQIC22ttZqJ//EmpgJdU5P8qaQTbBCNfGfevDD8p2ddbd3YZOKxLVxghr18Eeg3JhUHmwROGXlr7gNqgR2WojAgNiYWp5EKHW6L81/w+ROQPbWJvol+VI0WzZu9OvFgruYDO4J3+2nPNFQTM56LBVDPGM4PD7kxhmhoUPb89inmVc903Y+Wy7cq0lGXL4N5f0l8Dfye5fPAwJZW7rdKJsWuJyzzZjXccQ//VXilguTDpUCsJXEmz28W7RVP2FS8lIfMWAX42j9hib/gq/lP5t5oMKJ1gdnYwFwfSdf2lMiFd2/oO9dibLmYb8j1YKfBJuLRd9xp2I/nRG8cvAWKFkcR1cGZtfaoSyeH+eQP8Lo+LrXTN2nj9DQS+P1UMhZNTkDPsm5cze7v6u6QzQAhYjztl/W/2PDMAthgQ/vzRogBcjl/zmbEyskeeHVAAXHbgdel1FU1ka6tTvIggqRIu8opyH7yVWiCvopwhZc+o4wpAxhWN6jUL2NaHAvOGbIC2mtblXnbK3az8GOaV1rK4+/pXoL68URhZDhopWNRe3SgwNzLJo4Am6VSxVNXSd7ni7f/f+buMe1lH/ECZS+xKtLNkmAJNRbahg4hp86S3sQ/58tyhVsDYzjvIMyjyqyWUb4LbM1tEiQpiosIeUFNvxHoo3+Ts9d8/uQNi3T+/EJr+5aYIxgd2yPgZkFoaGl/h0YKbhnXJ9xkcwiKLJzlMzjg2H9EqpLATSl7BacMExJ12j3zrjONBn1Yro7HOjhCqKH/4u00dbHMthT787AJIBrSIELy3P7hz+Dj7oi6lqqX6ijyem1GKa2zuk5rnS0vzQQHuUzbcPzQRzb2R8aR4n/hPBPOyT/PWQI7aAMIxf4xBwwaBuQMYEEteKBc0X3mEtWAtPqWzIv4fExk+1ssjErp44oONwQQsH7s5EgsG9Igz+wnGbf7yVntNj5fIjJDlDra/++lNPAYrq21hVGeuHzKc/cZVH62gMqJH6giVmLP3jSl//+esK4UkQJqZcVNNR8CaNz8nrijLGRfxm4dBUBjdaEX0RB/oJB3WJXAC8Uyly10reaA+n/hGw4JbmctlreDwzS9NH+LdlCGDdyBnlCCD3/LzU99gkWfkdTxZw1Fs4mKVEuXwYdfUdpyh6B12Fg+OoFR1XARDjj73STz91Bx21hDuxwqDTI1QCznzh/G+e+MBTX1LGvclbb8o1Kd+5UNqqDD7nGZb16QPSQK9kSxaDDBBjQu8lQc9uAoopuJxvRI5EnEFpXwmiO5+VOm0nQFxWHJkWtHXockYEb2ZUEnODYBnINcZbZmayHPMtGTUOY21Jsh+CrtSHyS93ymLNJV127Cn8DjGzgSq7eEgTRbC/0V5KSWDiyZBCqOu201GqgNeT8mE3Zt05TiSStOh/VWAB4trS4DMkn3AfPSljazm5cbtw7YTRunrWEdGLzLY4f/IXak4oblKnh1eI/9Lsx9kGeaL9JTg7v17DHxDVKbITcpE7ICfRkL+4wTO9VwyJ8g6mUfGeBQ0U6IKjYLyLA4IrWs4x9/7R7HcSO4Ujr2HhQ/D4YBuFmBcFTdhbhRqWIZ9/Yt+gERAxSaw88+3SIC0cppMsy4J0rr49orhRMyqW5HyzYqqOIxZHHtTFegFdWkm59m64HZWS8Ktt+yb5gB6vW4b8RrvTDZkYWNB5vQGrN5hZxJi8ftxoNowMasggTYXlrNDFXrGRXq/1F8QjD0S+v/QEaWHgEao3mVATxHr2cN1VTVpaeIM/b6C1hi1BwAzwdR0UD3qUPw9ngIWNafESS1PcQ8ndAZUSajfaWhwa5Hl4kZtgrsK4Fj8v80jR7Rr/1B1OzeASL00KGAm9bMNuZx92Zzk8SXjeCkxcxJVxmBZ49kOUdWBoisSJH2sHWaSminSbGFoH463rrAycLAUyj+1lVTQyBqcwVJdx3hvI4mUt2UyazdxdcjMyGHdx490oCmTM3Pho8jtXy/jwDwp6HCf3+McT04PWidxOQqvTuaqACmLoROppmfS02ZCFlAgq1C8H7HV1+zwyqypPHc5CRm2Xg5Lx6+8bxhNkAGMZyn/yN1p3N3yDGQoyyyN0YbFfAnYGa4sVgk/9kIsbW0a7xQBmJAt63qD7Lfi/RAoNOZEsK+zouClcm4CTbZ9z4Sc21B3dBIIp0Mtj70W3mWqoOqayr3J6zZ/IaxEbh+NpUCsEUDQn4ImDLI8+U1chmK9kxqUYo2FIhrPD3d1764xLUpQ3aZXhghY3/ZzhHrDaGf2pNZL8t1jgMypFlhfSaEJDT5KFh0UQY0k06WQtrKv7yaPmsCMpfyq7JaX143Zn6eZTX4jYuucPFCH1KbB2yArMbxIWNoRN74zj+39IIzuXU0X8qNN/nOaJBIg9xlgwbB3w9fxGUFUFdSZCHa/mrLGczi5OAqQ/7RZF4OUVirIync7i/1buL99V5UKgh4+DxYUXqebi3SthpWiBVjDQW/KxaOaGkDM6uHnGpMQcwng2gn7FC6igxOF9v4Q6Rv85XG6Df0penBssg4TDrCQFYDwobI8pku3vUtR0QfAlaWbH+i8Pil8fg0fJsjXk6u6rYMPH8qj0dNlxbqM1onVSGdmjDGF9lrLFfhCY4VtUqM7u8TTk3Ly5n1IRNszwG9U8jCZSpCqLHCz28Ba2jpiCsXH1E7T42i+iyLR0uCDYjoRcLy6Rhrua5Rh1rAxW4Q5fWgbGbva5yI3FlLXDAZ4cYJyWV+Q4OpKsbRNLvh5zJfB2O5oiIp0AoaBR3k5S8pg3QmLQRLGmT8UjoMRAxD0J6xRwN4xqcs+a3ydqmmEzDkOl9Ml90Nlgh56EKQhnkeziZ7+C1t+CqHr1NW5M6JazUizPhjWB/Fabj7uzNmjCVa12Xov/mTcmMXfTjeJyupRkjivPhacKV5z8WHkPNw3RsUsoiOrLr8F6kfzR5Hnc/kSv7Oj3V/BY1RirhZOo2eRW7rxfbrQ2wLvBQw1QyEXwkqNy2BhLHot4aqNlD195bIFTvQRFwtY/AX6mwpStkJgSyw3QSY96wXXbd/xUsol9+0n3msLi9De41P9anwbAeUMOFQ5jrZtn+OfBbpSzsiGdxbMo6jKfHUDNOVrKjZgwU3WOY3LlH7QbV+jYVilv85xP+iGwA/sRWIsLggbJLUBqES4czI6VOeJHq+v7PK8bzP4Bf5boKZHDiYLWX4K0L4sYzoJA8Ds3k+2lY1tuy78wNVzLdUfjZC99gQVW1GKvflm1n5qnepJh1oyaWqyRP45CLwqFbwHIk6/Nosstru+685saIXTzJ0N8Xaqpq0KXeTOyOWdqrdIs+NavCAw1HZnxbdNBHGZoOn1xaSXIGTqV63xbm06oxZaRxJycnD+i9F1E3Bqr5tOvR5G+c4b1DGL+4+YPdcDKSV1D5gz47LiVj/xtOewVZsWwlvtEDRVe8KdDCgwqtX1p5e1kAS/3ymEINZN7ZoTCgUQkKc6aOmjN7FSzo4o30gGydkQnFxHmXfh33EJgchDxYH1V5JBjwVp88l0sUYhZqdFi4gXxO7msHYCtXfRKfbgqZ9QSHNGpmnoT7kMpHM1J0uHPZTUAlMR1nhp7ywgdc+PAvJwVBzRGa5OYmwRO1IxqJSg0faB9mipbSpIMWssSrZxcFBeIuu6Dcw1tPuOhGraRrC+I70z40QkKv8MT/RnWVzmd1eTmNLatMtAQcNIAHna8d03UcQR9hdJZBwb3lfR/2rV9W03MSQfq3XcIXjmaT9S99dijS67B0K2qCUw1d6C5fnLsNyzPXab6nKpjOUH5M9U395ZKePk3px2WcGlFelKJ1btnT3wGLwnL2lU+hZ7K4ntA7y0CPeS62y11HPb5SdtQ8vhYT8idta4w3hFOdl8M1OD6Th+TIMxCcNVq5TTLFLcE+Fe4rUWDd5ykkguEmZKr7d/I+fyz4BbveTWqCSUAnhKsXLfusWd1xW8jIS6z0Mzhh0TxNwycjuhxMLiHBljcmBrhdTJ9gtZPVpOr4rp24x+7Enjxcw1h4zOruAcg8nTytVJxV1OvgL/UufsklVcHqW9sEo+UpwuNcM3vISuE7M4uVzo7KDOr1jTrsZ/FnbCVLjuBop/3MPy2xxwEps6xJllLOKXzfBw7DVyt6dSmzywOO0Jbhf2lKBtOxIUsnel16oPTnuRbIVXTN0nk0RGp4ifebkR8fhLckZBgOaXUZsp+Aoj1RhRarM+YT6nOwm93nfrPsnQFMdQFSzWxq9P0PMT6UEALzKwl73lVkoMytEUr/rEGkPPbKOpa5nQW3qmvEebGnhHlw+MCtH85d0QiAAXVIHEVJAuAITSAeoFr2KTRIHSL8nCeToh75y7xJGRifswPWj2FvFg80eQxr9l3OYWP/fitdxmBAyCDf4VzRHA0t/sRl59SJeX9TuuRR0b8kIN6mYrxXEw1gatn5ihgAghMOdyglAy3xM9+BlQSaV0nG7wePo8bINTEqRvbXwLk511JRDlzganJZIhp3ijAfAmjwCJVaKuAND9EaD5mGnCfENhS1cRFqhuJbSyuXHkErjsC70iNjgO3TlLnBj691RcHLPXdzGaRaY1IDERQ+NjBDacuXMR8x4RD1oVWq6sBiFG/88JgGjyCj4x2M2gtStEK139akOfFVQ6m6D4Zov9vJWQEM+p6g3Q5fQ8CGy9yDmWwVSa8M0kex+yKnSe98pP0J/+pdDMphcwivRRzVSav/Cvhdtx2EZaD0WPBdAe6/gqiapOWp/1/tFs+YulE44QBvbAmuVLOrdKGiW/7VO+aXhbybSMZCHlnZe+53q/wy23wdQpJqOutWfMion0D6l191y6CgXaz/rVhqryAxGXdMjiOd/Y+u54bP/fwz1iNDY+uSjAp3WPRdHxJlhyBRmnr0MZufaInUlX2sQ0wfzkCXQG0fzyOj0rdK+0BLOgcCQ9jErnLJI77tQjg+q13GXovj3M8vHHNEm6YwTr4jaXX2I3WO4MWI+HWIqRY9SNns7ig0Zl9C8BPLX1eZsC3mZmK5/wEUk8hUUDZ7l0VBTrwmVro4tN5eoiuy+UoNFuzdKWMyh8LVyKs5C5eE7nJIIwJb9al/NjHo+GLXLIRKnVtsdz1CB/Uc+TGD002EbeeqDHTIY4XAQLyWQHISIqaVwrj/Rmcgbo3bqceToauPQ+Q7bHleGaJ/4MtmUhPHhTdBi7oPwjeNiwJEy+RC6Kta8g6pwGtFLiMPu5fFNIpDeUYNyIvSvzXLUVLY2KEc73LaClD/cpfjYS7muRjdrONtNkn1bDugoQ/grusUzZ6hhRUeOlajJDINX9UQWhjLSh3+kybH3bF0lxvrF/Vl/6CDehkEqt2l3mg8gjFpf22C3N7maM/53/x7h9+0OBOVdYIS+k/PSGMU1UUYlBiUizPswOE+V/v9t4qr1Ln7pN++myMQiQsgidH+syg9E72AWU5W7DWkBENksIs3ze7m2pCbw6mHxpSyaMersIB7ZNEvKuhKpB0EY4DaM3pT5ck0gkMGZSl7KEWhaZJTOoLe1Q7PWA3Vfh46Ik80g1fhb8iAmvO4LzRNTDELImkqowNZTIfuWeHW23z7zC4f2rK0d6s5VP3LWiRIjQWIyWm12wZ8JW5JKAW28gXqdCFjVjMB7DN3XNU0fZbHE/8Fme4uXkN4o1lM6DLv1/IfiEdfT8v5ljxF1ZZmvFyx/zNOza7o2LMM1fkx1zR2KCGhJP4kFQoXYrIplueLJ2fMw6Z9RvOrK92LdSkvch1aAUHWJTLJQnhTHWxZat1d4Ci2NuYc+iqLV3e2WtpMmtKngrk11oTxi0KgQjKgVAoeWWyoBemXGkb1cqXmMrNyU+Bzv63erFqkH6HcXi/yUg/6r40ynHDxfnQebAn6WZoglPpipa0qoyghELNFbD7+44p8gcZgbmBnpYAgrsSz946xvWeqf6lt35Y4KHkwx0VIPfn1VBVzyYQU3clXrFAs6KTIO2nW9KuiX7mhB6398KQTIekkbEnr7x0AAPaIfQADKl5AmwNrk3c6szi88yLHX6IJ41cxg//UVLVAKuBtsP+Oj1WGDcneEuh7c7L7x+bjIxZIPO4lt+YfKI7j+Ra4Nc9wb5tg/kL66BJdlyhOVxjqBvQroxfZrS2GNTBCsjbwbtbthYb6qPG59WjfLrQjZr2zBQW95bNAkLoA9aygJH+OaQjvJOhYCCvfHqqR/KDLwSlppMz90TnTOEMrNQcwN3oTevfIwvyVQXMNndURrebELcsmCxGrvje5NYiwKiBjKGkhJTEGBzsevFag6jqltD17nzxGCKaSC5KW+YU84kdtfy9DwMybLk6o/RrW078FamffNrdVGlrlOIFO8gbzeH+dGBAUGVmXNlMznVW0QOpWVotU6Np3d9R8tQO9npjNgaONKd8KoVcQjPViF9UmOG9xrZZox/YJCSvvBSEmNCB6DYJZncivCfqwCTpnPKEw+VhFSGIwemGhtB+axGi74bGVP2v0VgR0Ycaoo0taY+n9oKiFOvK2P+aiGdcASMN2alqLiwJVLB81096EOVwnoahTC6xqhHP4VhXPZtQXrEwMq/G9+X/h+qT8JkY/7hCrhsW2IQFztdRvfDKre0yoTpXDKf142bup0BZPSeyUuISbt8Q/jRITSvkpDARQgL8pIc1SlqTXZKubILOeKx3xrcJy7T7UBKpcarGq3v4cDTC5asgphSPYG7kpIux3WRRp5QfuXr6TYbBvZOwWIxaqOSqk9wVAQJdF0WKDv8ZjTLi2sxgt89Zma2a2uvG/vXufv1kz3PEpiUtuAQI9Oyzul/P0nF2e1gGMv919oLyiINVT2U7UApUc1H9MrUFeYkGFgUqQnPoJam61HoNXGQXOA/6bJPQVU/SPuPY746VT5pJQa76JBw59GFuGCNETm8Hn8ydeBh7mCOwGGKT7Jd+ywpR4DBh+wsALVcGXtl4gqig7kVkXrwC5Fc3Yw7D+MIV7ScPQWzw5mtSOvVhjHzQIGtSmpiViqwjtKrnbcntgvP51FSZBL2GNy3Hl4upc04j/yUFZh4MThasN5Vfop46lVpjh5pgAo3cdCrLtYVmm7kI8WYDSzCQbeDsDOyCQ7PTSGpFDnGcPAj3JHiIlNMi6YPvTX8SqYzEAZoBt7V51RFztT8oFeUb0lMZTcknANmrb8nHpPXqtiJc2plFhMogG2Sn1KIQZEgamYeSTQf11NUBCEVJvdaJ36eqt56kpn7kM3zJvch26vffHNQ0TKlzTA5TdlMXfee1pYdiLnU+SHKtSDQ9DPFmQxNvjZCz4raU2qLCc7dWhaWLQv6atnzHH56YWlN3/C8OBbKmJN51BSftqjulmpgfXVCEaITCUyeNn8s05YvMosGd3uYDu8JZ8pFYck4xP876kZS2ARRym+srvWYZa4mciUOKEFfL8co705dyg/IiuafNlRgsX7UbgFh17NOfqmW1z1wXkYYuEMNixAr8QTWslzm9H5PPgbd0zbpAn2rGaXtCqriNv87trRPhogZUSpJPCPyiQYr2lKMpPUr9cJ71N6IlEywMEheZGH/cduHLklRqUEAzW1zWN1cJFIdLcOiakOVhRQngKtmfZ0kgHNsZ1tV/zj5bpmOVPzZOTqNy8iYMQS9ARoe/lc1jOjeHdkULpgtK+A9ZhB+tVaYiAY3T4A5uFDuPNhPExt3WOjAK4swtrfn5SlsBNAutmg3WSxNXeyyae87OfCis6EvLWYyvWsBLOHC4bMO893VDWz82+pjP2RXOjcKqnFvRA61dFmqpp+noWoVExPqweO3WeA0QC5HIa2GRFQjDEdARq+MPICDyM7b6dnteJmoORSTszQg7IboTIPKsZk+GRy4JhJJHy1CbKOLoXb0yma+K/WycnvcqNd8zOpY2V5hZmtTG1JEp4ge2D8YQ2IKC0ZGKb2BBcdPyUQbaU105VtCndvutmLRVAaEKzMKRJp0RtYhU6LxK2f/+JtZJs00BupJaOq+sRJ8i2Dh3D/KW9zivMh8AXae97MJH2EFDL4t2qHQy9u+zJAB6lc22kVSzzgcjWURiTpQ9rWtClVH3q/L+DB2XU3TkwYdHMxPbCnHpWUBDdDFZiWZ8QMliT9mu27itldkgXOa7/f58SiBVxorO/C15uERUwRNpH5mQgv7TvE/c+UGhH41xDMO6/Uc0LqU/mKXlNmjGf3y0vHvayaea5p6bP/+cgjw5FnXj2KLuC+2kIxwWr8OtddEUAyf+uF7z3iq7OoRtXzRJtmznq7C0oA4cFf3115syDeen+8+HkvEMhlj4DBIIxWhdpqZboisHK/Gj0YWxEAp2nsYiFxNfTBBheyH8z3e5UVCZvBQfE6BYshET1ri2nc+zys3X6KDdm/gNSbnC7v8ffsijzCDiTiwrzLi+NES0Pfx9I+0wD73d69/4cXCFPX+xefX3govT2I2RyJi8paDylkgGu8dnxT2+cXJ1FmBMdA9r/6NRW/hJsKEBRo3gkUgQbRq2lL5F8yesWsP0c42zxEXFAfuvilaNE283zZOcwwuXsszv3xf7vsU6ip8fq33qDJB9BALj2XJ9YOGzm44RBO5dwh4gYPq2EYQOx7e7m1aQON5ZHkz+5AzQ0g5bi3P0p4sg0tBD3hHm2e1jVq/ANsoxs1qlIkPoHaSYbzxnFNfpvnGbb53LVsF7CIFoQHuXjHQTupk0QsODsPhvVaDX+rRNTNEedzq8Vzf31b6XWwVxInowFhqt5Lmo+zlhBWGbqYkjNrK23XLJ+xR4WWWuYJeNjjdMNwAxK54rQceudGxuTkdFVIpETrO+fKXgoCZzFdqP7v6yC1TlvgmoDd1m1IR7iLcSmLRSw0iMShHw6efAx7R4sxVsVwj/ImtddH7fHPsxNca0nvS7ULPY9ndj+vRe/KYzLRRkR/q9sdC6OUAgxcNQ2oD7qbzN2ehIt/VpUTHVjoBjVzw5EnpFOpvVY9iyXQwhyVb4slRjenIkXwxz3P1WK6BetnWWCldfgDljattc8/8TT/WJ5Rr+mAWNsCwW2PdXcXqxW75Q+E8sZ159O7ssJiA7BtBsFrEWz+PREEfvJHwJH6WGfylXF+X4effq0+vvLJg/sXn2WgvUL2e01yjrRBi5yK+VDldRZLfE26LzJDZXzGLckm7pXH52VUVy4Hy6MidgxMYuf3xfKaD1ShphtNv4V6DyuVaf9WWAsEq4gmKqiPKbTmX8VGVbbhzBH98Xb2urKA8eCQsz08wZ8G+23/nc3ckT/z4apeh0D2hKPFwbqLxXAvmjBEOzMD8jeyAvyjxwNuaORumBcKLc/P74lBakOyzhNpcUEostnalyjeoxWZYoxmMHSma0p27QkjUTHoo/uz1GzNvk56eBw5y5+w7XrRgdLJqR3oTL5XxqRSkLkoH/GDAiRrWBwLyZYhOZ1rTGqxxhRrjkjbqK0uDd6GqmrVF9hVUC/ee2SoV3GQ6VxzOMCQc6OcWTg3Kspf8LhT8jYGWhKtdU31zgP3NJaknIkMeIN38sEUqmOAJCpiCLVuYn8UjDIRlRTIlHIoTEy+CR6PBcqdLuMt28mqgDwLAfDr2APM2aJE2zSN3gB0HnJYU2zOqv/GWKugP0r36HSv8CrZ2OKra+Oc2ISiV2NTZJpmHU2aERvOPkVwqjheViZhm9vB+3d4Jvc6ZdQhxwCHpDL9ajjWW0ggwk/6sCvgO+vvaek5sSNroWSAhMjINl+CzxorT/JemS+URQ5xyRR8SyOkBdeLvtx16EQ1TyOurZMcx2fdHTo6K84wuqbd2Lt9iXnXpByiEucFL5tGSg2VSER/G433BnmCQVFK95xDT0nOUcRAQDJdw5Cmi9gJEzEIGAZhEOd12hB7gwLxCwsI9PCI6Azd//edsPkBlJPs1mQAmj3ezkimE4Ed1MQiq5hESLWClH/Ba0pbhTagBLDPRdulhsJmSD9ONNfThDG3Zjxs8mW3d4uIYOCDl+TCS579QNT8GbK3JSCHwlNXR7e1c0KXCbDhXesqbF+Fdr0UBbFCCB7yGfkGYMrF1LcP/f47wsRqbuA//U+Ou5mdYyxFXz/SAqVWVfCj6W9CvQtHYVEaqrW+7ancq11QZPxSqzV2+sD92m0emIkQyRB+qfGwvha/G82xrF1Fb8mkrqvxab8DP7jPisgjV+I9ggYuLBgvKYXCFwRpPC71s6GVEJjnAPYxneTk40ifbnkI25dG35z6c3LB3Ci2JPC/wSvvKq8pSRp1vqSkrtv8BjoiBe4BlDNpZGEG3hGXGcuL0ZGpa5bAVUC9lUWyR7B/uRv9q8ew7poJl4WrbZOCSG2BHKMu7yqYz1HsiX77nQLrrvK8duuOrjfqDlr9++2Rb1szzhfab9ojAMBIVl2OCtEiw3ludp+AS8YYkI6CgzbyrL9h/QE72rSF69dUUCyQ/Qohvy3IjXnMFkbcNyU8TrYwdFNMjeNyWmwhctjmkZd/utk0CUH77+8RXIdFdNKcp7ZDTBW+N3HcfOi+1W+nksBFJ/0FSaFAbq2wAX2GtqVFk2ttXeNNSZ46nZoReyUAJkQBM1SW6cibV/1lkfJpsZinDQY2TAzrhI+S7Jijx6ybnULaxYT0AG1fhIVysw4ddRbcGICz6MUORe2D6EsowRlwbIAp+421stq2D+yewCHB3cBf38RhiXxUE4nRJJMSeOViQBPXU8U2zxS7QcUQSL6bLfXe1M8VBlNk62xplPpOr3jT6WZznP4L+aI1jX7Mt3SGIzcOFGY57+7iVq5r7NdJk4p3tXh6/IdSbaxeXFpGiz8zG2t53RjcFXup8SWSWEwrZVS1QGlKHM8FJ9lY2VV6Rtnx9//LmTvdo53tBYwl1O9nEPpI1J6tVwmHx+RMRQ/gPfiXyBB7Hc1yRmKI8WxNGMexiAWerNBLqKv3c2BmBxbKanaI8gHHIcLM8hapGhygJMnQZH+zwfJwtXvZXlWPQq773fOYeIOmN5v8gvK4YsBGmCblCeejrpoMysuXLce7ajahjk66i8WhKWBW6/YUc+23WUBV6wIGYQl2igew1WljHVjKDu+2cdq0MsBgR986P48S+SNJZmegW/iPCTPanV5YvCg72Y0hGKsx82PDwl4bm24e0VsyEtNcvNrefENCEbdpkJ+qga6poZfjN6vnsva6xGrCz6U6ZIx1y+biOh/+U1+TD947MpV7ktlib4rAC701CAGzgoerZfe+6jG1obkeLuOS2ShUHoyFrKmKIdHfk8hqoXx4UsUa/Z+BlCOMnrhmXWmZERZvRRcVrPCBboITXb+E8/NVqc9pJRnOfKzg4uyCLTIjqoeXxuaL6fH1AgOT7jn6wQ5BY2S9pPiz/JU2yS2GQnI6ZXKAv2TQV1mj9l0kFyTK+L4BaUIj864syuO1002xGg8yL4QzG49Otq6z7f7vtlHlcVNlbtrSeOBWs3ATM0d1qHtWt/2+04TlovINrk2jzwgvNuzssq6F9CkCaVQs6nLNLau6BsZEa003CRyEffguFWsZepTMOLBxBlABMIa7YZI/PuaX89dEcju+kVwZS1+d4itz4HsnqNDWDaTubeL0nDER2a506mYt95j/vj1yaiSLGSw0fuL+jsD84tT/nQva1WYP1KlpIrd/kZGlYFSlKrb82rgphPIlNldiz800Yu/FxFctAtYMk1GM+6jFkLWbNwhLJuu+193ESPXrgNH10EyI5XaCdofjunDkEQnN/FY0/L+FoBZzg9bA8gcTxN7abAmCjU3wpn9vCWX7
Variant 2
DifficultyLevel
404
Question
Only one of the following number sentences is equal to 3.
Which number sentence is it?
Worked Solution
|
|
(4×4−4)÷4 |
= (16−4)÷4 |
|
= 12÷4 (order of operations) |
|
= 3 |
∴ The correct number sentence is (4×4−4)÷4.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
Only one of the following number sentences is equal to 3.
Which number sentence is it? |
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= $(16 - 4) \div 4$|
||= $12 \div 4$ (order of operations)|
||= 3|
$\therefore$ The correct number sentence is {{{correctAnswer}}}.
|
correctAnswer | $(4 \times 4 - 4) \div 4$ |
Answers
Is Correct? | Answer |
x | (4×4+4)÷4 |
x | 4×4+4÷4 |
✓ | (4×4−4)÷4 |
x | 4×4−4÷4 |
U2FsdGVkX18tzXybLLbWhGDM2IKDFM6/K5oXUYngLV8utoI7qscikxNv797HGsXbDXd/rZW9zZsovLNdlMScWgmaA4c6xOVw9iR39NsbTM4TyFXpys+ePzYzwi8swEtK1cZUEdIBKc3SszVWSuyJg881ryMAXcimhkE8RWSFImTm0ubcvlhjfz3tLtEjKHI4A1YtIJtU18htlGqN+aEQTFyaU2SJQfs8kXAG55QRehFYBlTF8lS8Aih/FLTXYkSYs8ZrXbU3cb9yicSwQ1PixLAb/kNxBCHhfesChFCgesWHb/0pwihereGuPmj02Gqmt7v6VCI3P0uxdW0Cszjhgz8pLeHIcbNSm+eJvXfYQBzVFEUj1BSEvnoLr/ji38aRzYh06NeZF78jGsQTWMrY3e9IKCHq27a0DTnOPb8TcetUPeoSgFqIwyMwcIlBAo0KH+/thpT6P1bBwfHEocnZoSoP32SZxmxXMdzBjcJCJd5ZfYM34ygn8YS5dHDQOGycoqAZbhYkyMXz3qIaEFsiQiwbaiSKxlsEh5mrPNx3X3AJamUPusMrH6DxMI+obxLINFyN03GgHzQtxBknul5E6xqb2cshziXWHDg7hhqsfVMcdW5TH5suLlyWfWqCamIhe31HIRqJA056KTnlo13t8ZqzxySxTknz2Km9XfgTo7Ht9wioz2edbu8OjTdbn6Edu2V0FFuWS9uuSRisBvOXmpbMsnVTU93A6DrSDbSMP+0JktJrQ1hocv+2XSxah6Yj2FBWrJPLYmfNRiLr7jXaTb8TqbrEOg+jQLvJqbLVIXxrrE+TVbzpOlPTRMSaNt6qiRu7HQu5Z2jNGqAYNfIPfKWijqSYqjk2oMkZEOTLXz8vPZ44npTUU/RpLZX7HWFewO1+nCLUuLk+/RFKJicrWw8EJVAWpuPjUIH2ceIe//bOvxAkYeDT+xzPrr3OxCocEOnvUR++BsWpcObVu8bjImX4bPxYU+kY+7rmgjKX6wM4NHxgLBK5qIdNlWlF+TcOHDhjV0YMqZk7kQ7AE/rYwgEWU7NHejC1+xpkd6ltCIySSddi3tobzLT3nexW2Ambqwicy8Z0s/bdSsW5Y8Hdsio6b0xMMZ3dPDIk59BjEFDIpsY1kEbTKraF0zVWaKTjbkg4vtlbjrlnd71H4TlQ2bdWuBN30Q74h4fHAtDbVgq+dBBtYjpjT4s+TXOoFP6VI8gHI6XRnKdjdLe2GubeR9nG8voXDvR1lwwkrFQn5OwGYaEVoS2GK0SYmh58EUIUAXTzCmwha1gNgw5i1dMnqgXt7Vv0Y1Hl/opve5T91yy2A/x2POUMMbXMOHORe26CC01LfZySW4ShNdojNMJ2a9QCfxa/0gF/RRnMyMRBuRdknV4iNe9AmJMaeQLeaHGPPM/4N8vWra2cuvo+eUz7TpsVdY5EyIrpasDz3VExM/2zYwWnYNQrkQBzZ/udtlCCKB6klm5klcnejuyEC0a4NS+SFkvQ6s0n5HuQrRjf1nyHTFP9UAnECx/cApx4MNUtTtCGDcT8vA1ZXADB5z5/LTXXEZOzHStkwtwD0CuOhLQJu8hDb+mtBxL35CC7360B1xgqjU1OQgnfs0TjZpkoCGKUexaBzpZyzIm7pISXKH4ctauv440bbGRupYuPZiDLv8Hm0D1i8ze3RWTOoMRhxgmaJ9jgSaOowgnqsy60zjJWMoLu3sjshScq5iuON70HXFKOmr6vfeDd6nNvOQWeFIT1JOVCP7Lhs6GqJukLxQmjT89/2qWgPl6vkf769pZjmrM5K+Hp+JrhH3oRWMc/qhtrjWmn+0OsNbmXpcemJzpPqAikbm+pTrt/h9bpVPVL/sBY6m4j564FfeQ00S+mbov0yZJdSC/tIdV/wK0xVXSsrH8tnV2cPvoz+kTe49RLcXupy1Eap0VO71clXV8S+XYhkbv7lmEBOu2YOTwBxRv4Pr7d/EsKtFqwTy+r9K9hy4QYyMDFODWGQRm/ghbzaOTuADxlClBLkV9LsuGrL6a7yjDKydN1tG03YFG/MZX2vCNTPzVxo3T432aZ0s/F9f2SkyoOORlyA/4yP8UDjg8ihIMl8oKgiyaTm59ZtUjsGusiHoVAzOMHWOzs8OjN4yMKOKlTBg8rdHaILqte2HEhJDX7MVN1NVXCVI2mVVmOwYERcJLfNA1uycDx9JAQZs7YqmQG1IhO2XkycA8qYGURWlLVH9pdxhkpmEKyi1gzJJpFA7vxELeIlEMeyNIAx4sIKB3MIQdsGmV+sQCb0iQuIWfI0oJneCtTN0ige9GQXaN0X17f9rLAB8wj9kcpssK0LgJGlBqPeQoKBa86HyMetQxLMHPo+Nf8KSh7xVcHPg2HWF63sa5Cg5jjAGQpmjcP9LC+Q/aLBuk943fwRzx8rfWMw4rwc8uG2FDJQcIKIyr9quUDK0t6TlMSj2j85/AxVDBnyQV/AFcj55awXx7sJW++6N2bdOvCj3gIwWBwZspE01cEBBkeJU5IS0lEa8bhGQ5Su+JPfkYG3Y5LRIUQZboUkYpO3YShigRrUdPc9c2ZaLqeZHwhcOZYbW/FgpMXlHBzG5XzimNKKKkrw/nA9tYlkek9otvKZRZBC3hpWFfMdwQodcXkljlFlm13OvCVGtlzOwQNtMMk5vnY9Rv2ScYZ3Fhad6YjyGnKpKnBlJrkexNY9rf4GauUWekrLpgKSf8QS2KbxC6ZjE3GHeVfGhACkBbFX3noO7vuUhnbfno8Wj9C+0ZZXj+tmRzBof4yUEFLHUpRbfXfIX0JJc07zTFIZaIi8ArEaQ50J+oQ90095ZVns1iKAazt+7N4ffHNmDF0O7xZ8WwsFUH0TOgighj6kFy/1CZ1YXFOIaiIePfVKg9Fy9BFQPih8ILxfXg2qY2vlWq1aK84J0XYQ8GLDVVDtBvdZEtBIT7ZvJ6drwCUAG1ZhqBcbE+Cwkvv4m0UeFS63Yf8b1PGCEWQscu9Do77xfn49KbPNP5F1cVgmX8Zugh82SvtVeoF+Ud+heYNZwGrU5KJhj+KGFBKT5yTrZZQw1SYNPI4jwjt8fUcbowFKgxok8na1CyTC4VgSKqe5eVudH38ZnnoIIiIY+RmrqnPPysNCmwxfMxS6xDN5zKwbqdCBhxgYWwiGtYlps5l7NiXY80jvGilmElHhA8a0z0sc8LqJ92faHDi4kr93MeSk8dW9zLCuxE3PYPlp1Vh4ao+TdMbR0z5YM7ahzTFSy6DS1hf7g+1LW5XZAqpW+JQ9mx0GCbR5U+9p98B/46nwHRlirTGRUALlE3MjNEzi5ZeyxsxGRBWOSWlU1iE5H6dFncLfwDcq8qn/zmWbp1mFSpom6vjGAkAYHpwQ9Rq/BC0PjNOoTcthYPprFvJEaI8NxK49gT2xqEgFOxwHWTLGEwRotRRmILz4ol7KtxGrOPX79I71E3/cmQG8BehAPVYN/hEAGRr4BSPGi6zaJGtuI+jDea3WfIpz5CSwBlDAuLaeiEw151QVOGZsoKSZXEloJj7fXHHB+vEJ6IMpqHDK2nLxwqTzVkkbGVxjFqCbm1zJoC2H/Rgc2neOr+WAZjQFbaf3WF+SRf5jLLn6B+99QG8FzuniTQNLztqljJjy70ub5443gliF0GqVJK7o0TP3JZZWi8XjyDitM0eNyvIV/hTXvfXLShBdGf1cxkZkO2IdCTyag0/ABsZNSHws0Xo68Ct/Yl0Cd/zzFq1M0iB8uf+prxls66anoSna4XClY5GBoUa7+B9Eg4/A+o7GRH4vjmVzuWd1BY5IPlWWwfdowIOwIcbtOxFKldheCQCcDo0PAKuyogjBr8L2wLqspSoQ5t/wIlBKYTmX+0TYrKrQW/XDuvD3ABY8j5LkMcpC8XPQFL/2NYdD42BErg0arHCHboq178OTWgiaW+G2S8MDKKTvruy25hkcWZ4ySid5SHQkoXPvQqIsiBOOTgS4NT6909/weYm9UH3Q2jUvH9KVVpZdEAc6pIggTHKbiG/jxt7z6KlDBDVAVCpCi6I6xV3wViadElfeRITAfZxuBvlLmWXH05dWwdYXkRBJCXQ81KOFxJW1iTsQhQPNSuzXEioGqDwV/BkyP+QmKKIrpuvd6Wh7oQAaXMrkjQuE7btPhq0We1nZh50fw+onTyYYJxbGmfVx6JM1xIO/qp6ShKZrucBxzyOldNUEvK370pGFoQUP53CrG9lvPGbPrAjnMHdLUSbqVrXEVrt7VzM8nZFN6yfVEuzh9V/K1gM0RysRSC/WvdJUtv1lvbebSgA/pVA/m0Dz2J19h68EkFWKvvoPCcGfvo49AOSjzIhv7500YrDUqOCbm9MLm6NyO+t89haJoijoJJyxR9/PUmWDx373w+pHJH3ugSoqf/AVskpxjhlp8OMpSyWOOXQ2qnUp4u4klFzj3VNg9IDgiAmer8C1KKn8gKbSc1kxU91Hi9/7ZyKHGatgHRk2GZ1vUr0bqLP59KY7fSdFuoWTqSzvAmTWdSkC9u9EQgtYZb3AIh9raEW5miWvmRFYNAq45WJzu32QSPpseGdDAM5eoqPge26lS23UEeoZPuQl0Ru1bf1fHeaQCQRIryBEqTNzn286kKDQmRInvG0XFgzyp6OEmS/ODnnxc7yrtVZKKNWuZ1mOzD7JgUWC+L5VogsZyBDrLi80TB/V5SILaOPxGsuTqo9NSvkfkQvTLxcM5gxUh3gUHq1OYvU8AWJ7g9GVJ90bl4WVqgLi5BekPCLWnE4j41peaNYFMwc4ldkuME0JehP/u1t7NXvA2PHsuA1yPuxW+rAQOmErl3P/JXCRGH5cKN5RmGShI8bXlzlehQzJppA548xXmNtdnU7HT6/LC+f7MBbAgdt5mO9tHk1i5SiKaJZ7qtiaw3kZtTvG96uyQ1HDC+c1d+MZXRlCsmEFIsNmOmCoOD6UiJtpfasK/ailNAEYZkLGxf8ul0tKOMWO7KSoChOTKqwBNzNYpKfFPEOll6Ytqv/tm+wHnW/TDw9co8VfVGnxxU7wPgl0+uBY11C7BdHNxzz3i+nQkK0j8Nr1xj5gANGhRTbvuSNJm3PIt2i9hQPbQL95Fl1U/9Xr6yRb93jMmnnwOjPNbKQZS9JJVHm7t0uYyMyfix3KsfRdk5tgOOQtF9VVFY/9vGbDLhHqKHUMaqP0HqiCTovAWaoaHAaOlfcpqVX7Mrd9tH2PTAB6kUhLyX4EnSL6qlo86m3wLNf+Ul0wlQNmuU6knXjQBEZHAiRWz59LCHMrF1SDis8OxJvQ1KIS6UFazqpllxCpi68l/jO5EH9b5cYgcZ6Cb3cWCUvG4JQA/euZc0xfKARsHTlW4ewPTS10J1T0pFKkQxB492ROMCNtBxHKBRIi8U5MbExYML3nprzemmExQVi4AzlWM8XYTaTLbjbxKmDKKBQNeKExgztJKiCnDcIegQeYE1SxD0+iroLvncCe3Xya+cud0fQQzw5TIn26AImbbjxx216T3YnV+G4YTmrxQj3NNXo46M55p2MUnIVu78/NvNP1+wHpZAR909Rjb0IDBbM9Io2K7kupADDyBpnQeqEACc0dSg5WH+VA1+cukaec82NT0nwRfLsZq12Ql6QLFyuT0qob+HLU4H6lPHp+P27XsVafyEvNd0gO0ycyz1YUMf87A8qpcJHWx5QV7tFsZMpAYO8zQOsqzhgaLEfUKtx6Go+j4971NZoqvdBs34UssWdzCRzCk/rR5x99U02K99OkT2GzickiPp9BSWfKYy1vgH0XOMaxtbmONe+0k2htOERzRGF2B1rhOGaslAwqJo52JaM6+cI0Gre5APCtwere/vj+1UDtW/IIvoZCxLh6dk7cIwHhs3Kbvhm1I7iKBtBAh4GIES3K5LWQf+VP1MbvGH5vxAPYIkwGabcLbPZXMPRXWFWzUP+xnK7mlyFcE1IaVADO9/hqrdskqtGozU4DeZb3k60bvPEPoikPYrMONfQKc4Y5kZRkEjmpJb9gb269pQ5/imxKft+bmRF2R8SmgaCNmeo/kc1M53zHml5lYb6WKSc+qs/I2tD/7jpkJ46eLoEYDLy477pkJX1Gr5Rj+8dHENCyHJOb2FQDIcdTNA3SHpn4EgHy2f8B6DjWE21euAwLtoa2XE16ItwSmwzHgTosbNR4NjO8B0S9kOM8xYxyQgdrBFTxjRB6j+5MRZjhA0sAix9x/QNccIlNDduluHc9rg0JM0SMC3A3t0hyqkkEhuXNKUjINiFwLacd7rRkRZjaRdB6kpjrVq/PuiwOBruE9qLHiOBzBz0RVV58sEPMnVw1eI2Lj1iA7JBzuIwM20TUtfcNlTHJu2jvI53lyRu3PnzW1j50SdVyM4LZoHUxd8+FAg3A6k5Y/okbty8POJejjkzWv3jEuhCS9vZEe20grB6gxTA9Xmvz4ub8tfnLuJPEb7mlHz0V5gtjcoDEkQCxKHjDVJhzm9CTBaMDwkDRBrdCrJqdTm3Ub6Mt6YUsoQpZjW4YkWkg8GJ/8Di/6TB+ZjFjKd/JIZ/m9ckYIIrRz7xoFLS07gsuZALD0DLGK9zv2b5yS/kON6OkqHzZKEXjpk9uYZm/akhhl492dgKTtDHEnXIcogO+KScZS4Pau6ZXENsnEa62FREbEZ+RikUGIx/PzdDjHMOr8YgGFGP938r72+XhEFLyghmUGOd4rjGkbOvHf9lg4im+LzMqSFRSHy82Tvalnedc4rxdQeZlHC5xEakUC6Xb+bvWaEiaEe2pEfmXgyPJKGLBOZTDVUDDXURI62EjapIUW70xwt1pw9PQCK+fp1D5ZoxGKFciGoBW87Cwo81nEPn2Z9Pi1VNNxjK8c1d40ycAA3xozenar83bVYNxkTOjcRv2yrVvSNiTwdvrq2LiDoKCQOgdzgVtR4snUeXlxotNGUwUOQN7Y4FYd8HkEciwdfWADALKgewld9QNXf3vcxzluf2xCnGkoRK1cjlmusc/b2TwzsvuWzMq/0TEIH4fgXpNjMaGmruqcEy9RIKwUbm10B/7w4rP7UyxG3LHiGhGBayE2+/TXRjfzmeEQRkA9BNHB92nQFV2bM0dwcNGK+UBQOaiWHW7HF1T2TjTY6gqExjXfwmRTJjykT0xojnlxZreWqU+MKmZGrOw8Uv1yPqw+yqnXjulBBdC9sQW3U6xhW/7EpVGohg5PtyTtKxpAVN2VWpV5qITTGnQozCZDG7qjTQZAaRyNYrgOaZYNdl1MhY2B/uNSCL1MgJkidSxLlfn53xYvPVeZ/nAoZZtM+j1wjwpfZwFTvMc022qVD1ED+sLs1wlUpvfOOdPOgoyoZfxiDu0dx6kGaEV6jk32TkSmVlAbZ4+/cAHqYwzQDcBBnScasP61tAB957bxG4PcO1HPbDW/npcKrsznx4EMyVUTi6qzY5Vg8MSTUsDPy0WdG03MJDSTnIDtiR18CDVwl59mwe18n/A4YnUNHecqmftpcDWrAdwP/hTtG42FyxaB/MnPoGpRzzBTlIeBAFBbkt1nXG8OD/p2ahbgxRR6LkM6fpN9mGtdCUTX6EyEv3mkkzjnL1QMm6ELHoHL5FBQcGUOMtNuFFX+T+Bpgf7SCwEGev0lurHUkYDQMI/kG4O5RlUuov07mg2qxyp42WS4lVGSo3v1oQAQIJnIjr4V1GwroPno2W4Olb7zxsaOdtUcgGNVoov6x8e8cdTxo+CYEuVIT0VvZ1bx1l4d5vdezva6qzFFF5eXvD+egdSHRWwpw2+anTYoRKgtcd727EPXVpa0D9NOYb6pidB2q2wgJljjfkjMUnFB1e182ZnWRGDvCGDGFWCknkYubU82ULuH1jgeqqFT3d7NWFqMtxVtPMf3Vqo2Ii5cBm0JAjh3AwNsdBtrWyx/6tTju2/nCd9sI364yga/4gQ1rHXyM+4qvtG+RDvvSwK/OWSpMq5/ZYIkVEGUBCR9/7iEmBCdu5VhWOvES6ycntYfQV/M2OcCykZ/GOSlLZTzxuRQHKIkRXF3W31ByJDJmINY6dsGRAxiA1N20/tKt5lRCzTcJNOJzZlL+Rof2lw5g3rb8c5xC3avAuqErdFYxC7Pq2ZZVYZfvmJhxGY8RtLM2MEZVLYVoiMnoB7WWO842zlY9QRVOVVOlDx069ofz2uN6d5uECXMEAotczgprbOUuBOpqeWttSdPPA7f3v99oX+MFtoTEko3ePZwxspXezcLIkx9g3dQ7KUvI7Tmb9S7F22CXRZXJvcE0ELMhl3PBxKdCidAixk3ENBnMJeNkGjeSmeuoCer344RWYF4C8ytUkKWHVy+IWaw1iqlmLJpNRLhNmzxDEJIyZxzsQqUKpRAEUrmzZOctbiPmSxyHAb0ftSOAWpqrKxEQNVQOmXm/FJKBIfjYOHK7slbskr68oLwBDOBEtGew+Eiyu4QnktRxwfu11AvVrV2r41b4QgdbA/gLPJmz/CKGBqvSKm2lSYnw7RpUM12wh9NP1nMW0rXG7fAaMKSKF/aSS6cy5Az18cQJ4RJ6xGXHLcBo/qJALUbvNIuzTVZXe2LbImV3jub3SguxnGlR9+cDchfA+cFv9O/yNeUDWZmdYvgvg8zXKNycOzurOA3TCwArF53SesR9zD2/e8/aPW803ooW0jakA8nF0ZDVR1FLrwK9h5WFuFo7w2hOIuykTyHbqbVUQF1n+9YLNRKA99/SKZXbBbueKvAdx6zosh55GpIIVkuQRGgZNhFdc6vTQxcnlc5DkarOKsQH950doAiJRtNpCwebA7uTPecC9aQRL4MsT728LXBKbYxq+SeGz9J5X3BIbE5lXSd94/lyPJMZaSOGpeCeMhGvlRwVjBuzK3tnxBLAiuEJXjB5Hh6AJQEogfZZMHUIJHuquNdtticzXTLDmBFWZ1NuIAN1N8PeuJyxsTD9hJVotfXXA9o7LdaVSmtJp2lub3AMXnxEt7oA0BnAc9KIplVPUxVUk3+bSftysJdRnwY8djxCnlid+/YMuCjLPCEWox/Tom1fj7NweqLDQwGoh4Rgg9CZ/1x0m8f7lZNbjRGDWbDZezjXC7VNOfEOZsWbzGGAQlMgc8V6eO4x0ULFNczRI8+6+qDsvjAmYyd8p+X5SgVtvSdU7QAzY1HNHU/8pSMmZFzyIv1q9ounEMIJxVwTEB7PBGUpmA/5dUIta2GOAGATZtqUPa98HV46HqoGV2XJPn5MGLEJWEyhs89GukdySwkEqLElUxwG/Hnd3JtCfJW8F15I2JdkH1700ftlLaJfF69WVRU78sqWcvHK3vBYo/DAf6XyEZ6K4BM/EXRIcTznoSAegPoI+fbeYn1Z29tUeNFbkp6ZgsN6IsRfLwecqRrqN1XeTECla6NVneFIV4fG5o/UaILxYJmTHAv51UEotwMTStlWXaavRfEIlAIc7L8vvbRjRzLqNJO5HVjvuIRwAzXHzcTyxPmHfzOTpIi4llo2wzGNPnT2VKct6rdOqrm4bFYZMaVzc5T23Xb62ZJtcft7kVjx+sIqOTmFTEKqaG5Pr90sRxsRaL4QLEedz4vR3RQnW1pev8tw7bnsiUZKQJrwfx29L4f/FhB7aQa89MdftZNOhfjmmigqCTBxjVj6QPMa+lbNXvZo2bkpG6qMwiUD4GNWw5UZXWM11HEAeQxiaynSITX2z4exDFck78ZboVC8yJEx/8uEx6nIFump8F7GLWqPYT2QIMrpH9DOCXKAUd+BvCYYM6wGfIJheFxEL5qWkI9S/gSZ7lureAsQaus29PgsOfKN2r5JhEyT7PJOm6c7Sdg7ldHhULoVOLaPOhVhGFsO3dX5XblA3MNJLBWi+nXNJ0VulED8pIuORJiNgvhk2cbWprF1DMEz1lD6/549ICOuH4SFKE9J1SdjvkWvy1wz7U+5dK7XQhdiGaZHgZgxydXGNmklMfUnBC6rXDqBlPdpRGEgJuC6t2xpFHaTUp02YvtdagKcNgvIcvgTDLZLlENSWg6DNB9QvxLglS5mfZ0I51/yfZ+Gl4YXe1HyjZInx8+sbDAcIJVQGLHdCqJ9lsaheu7k5RHsQFLHvHzB+sdsmVG3CI6P7A678NWyrsqFWpWNtcgcYrNaEQPHYPiuNxF4pK4M8wTFiojE8yH8EKf43ioxkTL6urnLFOeZlPxUiRe9RXjxEszmYoJg3EYLSmXbVjA5kzOteVoPONmI3k/1pyAuyz8/mv3o8c3ZwKktk5yF5aEnEE/3vFg2BBezbHvMPrl+zuL4e3q3Mrp6CdAsMZ9zqmDI0AVfy0WzyKRIYSJarT9tR2tEcJiHounyPqURfrpBcNiRaALB6HXqd0No2e71dvZO4EYpTiUyx6cjbOeRBBa+ZUCXt2mIQ/trisVUSRH1LMLo8ukESU0bmhk7rAnp/gm6oU+bLbzwEewAKVIk4o/AT5x4qd07d00XwhgzQrj0Iu6ThyzlPlDLW68pVBrpcFnjY3AaXxkT1mUuVdWde+jkszRevoovAFHKhgprhgA1g0EpetOomVcus2dsvhckb20OKgJ5M2cjk05ahnsv5/wPRQ1xWG+d5qSzf0Hj34+ZmbvloCT1EAFqj8iAHkpE/w7MYKuUf8VaMdE/Agy3Q8vMHUtAKhDbefGIJ3i9mgyWO5GGLdWDhp4CHVUpZOU2lGeSHd1gS1VJfzAZUP2VUl2BtXe5T7zJfYUCdyK/0gX2z1cmPX/xtW/QQK8OHN0LbRXqhcWrWPXAKlo7c+4GMuhL80krPzsFFD+gTOz+L6XmB8wTMq4nTZ97LFGdR2uYVibR/cthIdYy1GeRT+2BNa8DwDzGMWS4E8NoRTTElMsQJYqPvsdTQ3f7YiLmzJqWljtDwJm30S8znGgH2qZ54tiOleHJA8y1kRVJE/5oDdcxJhVkyje4vKh3YnkGQ0eZY0PqgxHru8cbO5qjf7IN5dsZpTKuEIQWaMiGxSQqGRlotIrmj6iGZqdZv3SCQQdy6kgYpySDUJRwuiEno+usaA4lz5+JFWY9I7vDH/BPQney7V7QaTDYrzgiNB0I/lLwtO+eNud1SPNmPNPxMiggvd8CNbQJ2IjjzAAUvDK/4ijEKAmNuXzeTb1a73JvMGuBgpmSR96y2RZW/BPB4T5WmlQCyECqMnPrnMproVyPvBV2tbh0kMUA1MdJQGFEFrxunT4vLubEAHYeb44A6+K16fUoAvvmYopXQDcJRo/YqhMbxf233kGyKcSSC8PUbVCIG2UuSwJtRaROR+FlW0i6gmrUV+HaCfr0d+j3boz44DHM2B46NZyXOXeNTZBXofYV45oO35e0EnFLLkvbyurI+uVKSvL+lYZ3+w72hgMeUsFpK51NaUqdbUwaZmK2Bw0/jgUzfSfVllmOfi3MmeYENTXQ4V4KStKKPwgya52nb1V9X5H9KkgTa6ed3DcOEQZIW5wBCadNJnGlSuKBlmpxzDpJGw1iEYA1QZizo1fNxP538IWFcd4XCmbuuwBNSJ6a3G7/iOKGAOQy2iRczQ7pZq8k/pXFdAVt0f1LDuLJjw7xRMfL+2OlnUWFeLxzl5LaNB0xiZelde3NX1/bFVqM3gRPMqZ0mJHwqws+7pfGpVjQDX5AcaU6yf5VDm17rvJCd1OOAmUMKBQREPKwjq8VhkDG84MEQt2PNpXbfkdljPiafp5joTJLdhvWWOga/gMXwglShbP2iC1PaxuJg9gn8K823AxBgMb2ApDGKFBlTQrVqR+Gf3D1Ye3xFH6hUWFrhtJEqXMVcvUgi8O4aSQw5Rc+Vf7U9jiLHeaP3nlk8/UB6TSjgzas2/sxsDo2uYK18jKCRqHoGT6TAX9pK2bQSPtjUe6aHRITyaSzUWhp3wRNrxklx7Wsf5PayPaBs+Y+bC5EWMH2c2VFensiGYFq7t/ng6iU+kPamZPdXUN3u5452DrGPuVShlOg3NLPUkZIQKbXHKVKbdvTPQQNGa0LKox4kwHF9vnAKSvuWCpeIUQj6cePDO0m50CeaI+6oXy7CQsUuObdZ1IBqOHUMjYy0ZNzvbClm8N3KAYNXjZiab/LSzfKpHBJcLbZkbPutBuzv6p6yCDRWvkljcmwNJ1v2W/EIjKgr0NW3Q0z3utgf+QyE/vazr/mqWMTnu3JrnjZem7uR+UkkZX4Ad/ji1Qw2ZjetsCK7XzMLgaMVLoUysWIVdwHCqCpNYL78HOg82GL0qOLwVvvgfvx0ylCrB9uYFPXEUYRWQOu5opBjy/QoTp6n+QD3nnH3xs4r7ytJeygEU6TQqJZBFXSWs1033iLLltI9Ev36b3VsuNN8Kvr2lv7nxzufrdGl0oY85WdakD28yt+xtjWR50KnvqcaWCpNVlQiPAiYyimpfS2DcQhNIw8cf3/npcjzannvrD8Ok5n4smJxuvB8LIUwOEO+EKPOABy/Bao7VkWjkm4VJ1S7Of0U1t4lWmopSpbQkaMayIeUWN/S73r0QMcQhdld9o7lLLZYU8VuxTXyi/GyimLj7kgUsL1ERoOoic+awVjbBmAWYThta8MTMC/w1HX2RgpR9gA+z4siERx62GPP7jPLos6zd/s1H/ZFHZ7eZXuec2/+h25oO8wf3B+EJLgF9up4Cs90zGTJPM6B8rbch4YiGMw/SJGUfIIAI21fmyt58e2jZ2KTNuuWrnKH/UobTj1C7G4yg6bHuZv5Bv/u7uyd+rYREMhoRSXEV5zj0kK9gvm7ZyPERs0tSoFY3pkT9ahdO5P+8GBXYpQ4hOERSwWT+IRIWufToNR24vz437LGlOs0cUDtsL3QI4OLdqJRYGqIdzTviFApJCPmI4GVw46tbsRbym42Un/jlk5ok1pZKFD+CfTb2Ag75elgfwv0AhLG/rFSLE3aWFzc+lS3FZZEyYvwKMoGXIl9OPrC+TZAqYvOz62as+/xu7RajhVr1VikErT8ovMTX0djBcSDt0UuwZvCkDBTZQph6WLPyDNpTSJUPB/iswUVEUDftJnzFAGy9FHYeth2tQUgvzvC2fBSSwje8c4Grgnv0nADBlXc5voJWUnlN8jAngF8o1N5yxh4lCYhPFfsO4xuHTdYZmgMqrY1p4OsFw97mub5H1ZZVBo9NiT/qeLo0C0EhIQgZX7jSPN4goQsKa9yb/d0jNsRd/vtFlv4fK9qG79ceV9bcWRWEJF8r6W0GkMHiZpn1ioq6s1/k65OShm/0HDNkxHmAZ9SrZqwQeSUm6YBjP8plNvXhyUE0m85tdhchtdPNZe7jzqgG8JuURbveuIqMVv/f1YiXEMrpi5gEMUbahWz2ynF+gxAvlUBTVEU3gVi69461Ua/1lJI/9+slGqpGE/zRn/4fIeOOx2lMQekKil/UmO2Ez+H3E8hFDwh/qmvq7kFuHVmuJHQt9ol7nPS4JmkfcxHlgoeziw7Y6S1X5hggEeWbkniGl+fhtkgdEX8KWEtzmpvmUmux+q85Dbd43QE8AfQSScE68FCaFKIE99bELq0AgPQ4OB8aWokYbyK8KyRIAi2ZsjkuaMEb+7EcUxZ8DDb+3raQo6HdlYnAkCsq3L+uUBAqTYUSNB2XJQD/O8gbOvQ2fMihyPJqETVVhMkHRMVA1Y6ARVNTR736oDMe4hK3xFR3pC5j7vjPBFw23LyF84L8Bq/268tzLznkDlouz902wx8AbvJUsbS7k2AgoNRCuOa9I1Dj13FT5IzeS0vZpxx8afv7qV6tTSFUkhwXj+X/QH4UvYZMbxjTxiU1FKeY0b4hYnHLIuhMxiGTNIu2VTZJ4ekpM8cb9QEldak4/KjQq4fG3tZUYnScTKtya+T3KU3lv0TXaihbVnApW9wXnVGRfIdwWtwLGfyc2kb2IgkQjI713h9BI1DvkcNYwv0HHViggyaHzfsErTkw9Dopx97jWGJdGBk6+ZODwSSxIVIU5SWcgQgGvfoF6PVN+QS7XfqWUFDCbIfOvBdHU9oDm7288DPngpaHcVzpsiD8pHbE3/6qpnHgCWlG3P83jeo0tsE4Gfgx/s8F0kxzORPCmDPjupvIqhsbQnH/w/z9KfNsAcCygvIqmCieXLTv3IbpsYGOvi97efQukxl8HLMAaqS6rGbFe9zuwvYWmFiold57VxE+Jn6zUrblwPHXwiTQyNUsSlCURK1YNrHk81nwifc39m1tIXkyq+z6bJ/ceo/honDHojYAFC+nz6lEHak63aYQ8GPYk1OsYZEdES/1irngMi9EAdwxE/gzYUFfyFEgNAQJ6EFVVVT20Uxcnfl5Onca45sWBt/XKLGszqnglZ/Vbu9bxD5jbAFKMvGkAg4UaKe94RDA4xvcmk3Gzc1ZA/Jxd8/iuFXwKCorLvnvKKZkOfY/8Ftkx14RIPu4HgDVLayFVFZM+higD3f6hHwX9x4KcNFX9jBoFwyUNX/aKaX/fTbFoqO9s7k4ACQpn3hkXkXZ44mZjV4jTdS8qPBuqA9PmfZnHYd5l35mJXbZzUOwGTPIbQGeokz7c6jx6t7VGrtx3dHSBIc0THwpEjBf/tSsEFaXKyIdsbZRX8FVNuqmEcTuW2+nkR/6ln8ZkRx5pLvkHi66oRbAoABPMImW3EDJKS12VxxLb6PVJod6F8CvxFzsCJ2QaZMWZyEgMzk2Cilrj1C/Zq7Rd1mn+J34E9BgwBqIgUT4i9rsxACJWRvy2xziCyCBsNzr2BCj+Gg2ln68/Fkmy1mWDC10x5+Q/Tygf0AIUitBv3rPiCQ7q2NQC4sePqzSlfH8d1h2MU5iOiN+cDBCZY31a+cOgKdI/HS8dOrcZ+coyyMuYeJz2NvNM+4Yg3h8Z711uGy+VYaaqv+1buzHwdoUHqYX/37n+y3dQlsN4m3CyR1+ZW5h0eBGYAD8iz5jQ6xi+MoxlYXjdiGGZjorLhNhW9rMwh8c7sVYD9aFz6gB66WZc+KWZJ+f8QOG2VjuaZ4U1orUdKY9L5sMGlwD3vGf4E4UiQSHbix/GkHTWlsi9Sbw2n6C6JuHIzFQIexnQn66xuURA4Mwvb5yJSSTsmoRux45nwj2ZzOTkisw5AxlrHIt4S3aHs2BVnIIaj+dtqJXlCy02FVoEeDTOJJNnUI9T9ezZAEdkKyb9sLWlU5HpuEjikIdcbptVhHRFH7e4fHdXYFhpYlE9G0Re1Qk84Gie6pYat6HC73aHknhXvWnZ3RUkCx6HPk9rn2FVBxKXs+bMAvfqHsrCKqZcimyxV8z9R1Fx7+U1s4zS4op/F/XwF1ekAff0SSUKadnQA9JNZVTR8YPv2oCKAhGO939Tda/KW5fGIX954Qq+D6oJWmEWvilvOAd6vu++rvuVPXcOVQrJKpZYQBT3CPozu03pMaEExxKCC79YJlZKRGMK+C8rsQG6YGgJvw+ELnb3fEmaMaEbbtR3I0gtl1XEeHo/nuO2JXZBrgdBf/hIWD1jzcz2nIUs+2xlUrJlx29BIK8edtaUhiYJ5IFA9d42W3YMJ9g71HZnvzPFCei1YSy6YhmXn8WGniTw5MlOThydbED+uhdTVM3lZltK8ONA9lxXbTUeDPOU3lY13CecTLJi9bjvkzMzKdoir0RuGBHaEREAZ7B99rwcP161t8mIjZJuDWdFVa5KstVLPL3Mo5I3V4JhTy7b/I274BcRs6+nq6XaiH1HLYjsbcCTMMgnHN9em0HT1BkkIXZ7QV1tFjFNRb/x+1jLZTvocMk5te4Kpq5ooH9jB7Bke/wEJA3U76qL8p8GBkECuA947tngUCs0Tp2+7L5OK9bDhq4MMaMQQGHZ38RELVIQjDqPozw6jSFGP3QNG7tZz1ZgvpYlFKDxLU590cA17sceb0/MefmBuEvjZ9SEi02M11F8RXf1m6MuiPUdQSoAN+U5vXtvnxLMPZmwWVJ5Fxo1zbK/3GTX+G2T8uWwq5mXfndKDE5PyENf13XAX115bXKOG80Yr55zHzs4Q056zxvg/dtsjAOoqwqJHem7jF+OFn+4Rq1JwjwY0aY8ElBXHFH0dk3tG+TkruurHQa9wiPfvamYCAM01Ti0xvffVu9YzXHIFmisSok2LZAIU0SAqB9ymh1WorcqWpm5NoyKZY5uc4mjNW8D8N3HA3HVActhz9ZkCMm1TVF75vszr3moeY+8BGFgNVWjam5UdarWvnAjffzwYXdZYBPtTs7eQ3IS4An0iNrDYUn2Vn+1NvYK0h8wtnFQwwCV4VCwooi/9ZZKmUgfYdV9XwQPoO5mOnRnkxMop1kq6JiqHx2oCFfz/fddWNH22Cr2Iap2IBbLHFtljy4UGOh8hmKO7eSi2eiHvY1YQ08dg9c5nbpX4XTwxY5pxyUOdZ3ByvmFB2BIA5s18ijOjnkAUkpMTX4pRRdHfW9O1QFsNiFRouucV0tOux5nIHIxPGGFhEkOH/u3vxaaAH5ZTLVKcCiRJ8qLiIJMP4E1lGUlDqhMhyR8rEEs6vhhvE2qDtSIqmSml/5FeqABccCyDXPdXy+Dz04orz/mgKvJwuuploRb3oN7EJM+Omjych0091xVp0M8irkUTVTp8EWoJceM957QvqHtrnPjilGx5hArHuPJNdrTypZiWYvl/LSMj5i4DW8vCFXZbkeYV2f72xUPpHqCMeS54O0fYG2Dr74qIp2Ynwb47kO24ZqPsJkPlGRdShTENAjRjFUhHniwD3hRCU+um0xsJ+jURKxaR+GH6bNSoHW8DSOYwv2RvAUyxC6xU4sfaXsDNBxn2JC2TNToVJo4SVdX4HWSRepkGlQuZMSi/xJ8unDM3bApP0sBsH658MUQp71HevHWINnB4WIMM+VbKS8pIex7LCrSMBGHk+vpNBT4/BS4fY1KfnvLublnE9U1IhzJ+593qYyaS6/eqcPUFu7s4pO1mxSId/SEsxdQ9ZvJcsmfKNZY7ks2Q4bmyRsHniLTGFXuiM+GovrA5pzK1gkRKTada42Es3Vqd8qpkiB6uYQBMz7lYL3uHU7432sQysOFFMgiB6/BnceplJxPdjp4M4jRTb/nqRdfi9VgiLzbCI2evjMEy/oLW1R4LRflrlnDrfLQo8pRewdBIRm3yjHpnzNry48BoYBfdL3h+anX2X0I6HgHU8rSshy39Z5M6syos83nkDkpp0FtYnHImrD1dPC2iB7eDz2e26nNyl1wE/SSs9wcZ5aDddZ6ZbiU3QA2Wky0/eSJu3n8M=
Variant 3
DifficultyLevel
406
Question
Only one of the following number sentences is equal to 2.
Which number sentence is it?
Worked Solution
|
|
(3×3−3)÷3 |
= (9−3)÷3 |
|
= 6÷3 (order of operations) |
|
= 2 |
∴ The correct number sentence is (3×3−3)÷3.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
Only one of the following number sentences is equal to 2.
Which number sentence is it? |
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= $(9 - 3) \div 3$|
||= $6 \div 3$ (order of operations)|
||= 2|
$\therefore$ The correct number sentence is {{{correctAnswer}}}.
|
correctAnswer | $(3 \times 3 - 3) \div 3$ |
Answers
Is Correct? | Answer |
x | 3×3+3÷3 |
x | (3×3+3)÷3 |
x | 3×3−3÷3 |
✓ | (3×3−3)÷3 |
U2FsdGVkX18UeGORw2AYFM1WLgjzwTvjWFyV8QHMjgvhmS2OkgK6vuqTKWOt6nVCQaB18xBbOxcThAcTaGxgHqOUljzeWTP3rr0d+lD+cAoS3JPFy780bZOh0W4CZxFg/HOFxdOLIQhVcqQM+YaGBu4gXX6con/IApxrCNSkdBGniIKJtrl7QT8BVD4/9RwT1Y8/4Z2Rj6d++dYQF1cpCG8c65eTqBVEYEXkTnupOloCBc07Who+W9CLVHgFOduioFUQXaMALPTN7oDYGqnOjepGMmHAQy8RAnrDj+JCa/VNjFESniHfSLTt4VOOH6Jk+alySk2/qHvPE7Cg7oVDlMO88T5NzTiSuVnHlwV9ZmmHcLtCzVvxqFz8daLIkZm7NR0UlaEphlgH3/2MqD080LxzdsQDXasw9kJmzpkAk5kYysxecRb9ECsXQaSts3LvRFp6XSMhCXiCp5TF5uYG0NDKPdKcyXy4AwGB0wVf3q9ULR8XOxNIoNpno3jo8e/Oxd/lVDWRRye27Y1cbEWcuEJTETdVbiqDU112/26SFuibaDOPbjcjnodDlU/w8auNaQmvCqAcw3dkg8z7fcPzFSceUMI6gz0jyobGtrvGMbZxCX+aYsV5IhIDUaC3kbgPKMXDapzuGB7uOQhbgwXttkpmhs/t/Vr3sW117tEH2U3Ey/VIsMPj7uLuQZjMTctJyqkmNeNsr7l+S4pBpiU6dEksWUJz4DsivXMLqPkY7Dnu9JRH1bHckAWkcMLqu05CqwRxLBOSvejpLOSW+s8mAE8LrTaYqtYzlUJA4sDWjyRJxWhZd7wtqVutdxEQU9uZ8OUD1EmgznixbAWZCBoP/O4kWXAvkPHAf/C1x2vYFHlX/7w4VDRzMW0lpPM6bCIhVR5KPyW+fi0ju300wprnjRV4/PXb8me3UB2qI1jNbTaomJfRAYdxUihSihk1Iu5DXDB/jMNu4Dj3tIpREmkM2dxkRZoKt6dxdGGKv8erL75yspmsVFZwYj1S5dsxVB+XlaY7dxf7wUZ1LZ4UHzsVKQzCV8C0LK9DSP033pczP/+rrshKsnEi0+qCewewShpJ1DxZzbIKCoBJqBR6xdHiwOvYfJWye4nePnDIPZrW0e5+i7EVm0/pNtY3ujI7YlulMgHVmWIfXl2YfjdgBMN8tzVW3Mxi04NnM3U5ai6PiJm24RaJXYMvuKA55q4HWUW3Dckt9LDCCclSkyUhB+gUz8JjnSsGLjWMkILeqCDDXTRK2ruCG0rM+8uBk69MxkNYKPx5gEGrudKZAVsayHo0WLBKx/W45yyxtmgy0dX8yUY+zWHK9jgvYy6O9AhvT/NqSFXOLlsbapVr0yC9LB3ywNswwZS6dUaicrHJakKJflLGWPBkF2pcqfHIMp//HyEx9cPs3jEj4gHQg2v0xYQRlaLkakA15+VcBFLSO5zVu/rutLF6nRKik3pODIrzhj9fcdkSoGPk+ZcWD7OxLzAIOXlVRobvk1ic32KR4mfHA6E4UPUG2Jna7oG5ZKu2miarPPIWlMeMItlgd/vKfxIIvMKivALRGDv+/zTkHsOsF1OJLkbugQCdFh8Z6XDkhdq/U8XRd+W5tHaMVVvj7gziRAzbLR4biKOrlOpFm5TppfHv89RnTo8ei++bIvZ8Y90WPMqhU9yAdyB9zEYhDm0cpKMtY5qmmqnsg2bf5/ikVoEh8webFUnk6LN1j6PTMSl9lAvNaTaDufgbVUMOYcxq1vw4kRRCfNYqJcDwXISxhQzlH+dL/Fhet6dLB0y6kTpZCMOvsS75vzEvPROMZfIus1+rJn17Gr2oXxzbN4G8f/GNKcQ2Oo86OSXd+cDW2x27M2TGFqRdPIPofSIywqgVv65nOR9Ny8rQZAUFwBSKORq9QVrJoy25tmbW7VRVd3jP0Cq7laPLvGcyMBp7ZODZXLdHvVfbm0VYlsQgkBV26g9Wl1q+gwnnj53tMh1C0rFM3fOddnRkAmQR5U456mD5oFekYOOtRzVXgzx9d1oRJXsxp6z1l+rqLaxqd4UXYVXn1C2zHkQa1psYv/aSFJk/8/JnVwik4qoeCUIsyOMAaokFo8oyJjt6fyTRmvRuT9glSn8VVnVMhfYU2uiLPolnXlooGcxjUByhghK4+sEscRI6DTDpz9E2B/ZILUFSP2faevzejz4Mj7gZAmiR2EPTy4N7NQA/G7OVy7I4C3elG4ewQQIAqHpNQjrUeEMrG8XrD2SNUjm5yU64Lh6+/muNq4/G9FhiXElvpFtJ+fP+DS3Ybta7GQr76W9hqS9xlzs9wKW7GPSL1wY6hKtip5/iYhFFnngoUdP4z3XDcF29QficVoEjOYlZrDJv2/cWU2qb1CwIq05tv5FbwMsOEiybCzQqE8O8bjvG3rXm9n+sZ2xKMUvk/dlwNuHNz8pLciddPb78/dRnPG6RGCl7Y1WxCgdnJXDMhQO18mWMgk+Dt9iGUtgkhdAFZMuWCMPYFdV5YsplICsU+hXbuARmIuNq4++BEVxXOc4+bx4tRh+yRpG4rOKWs9uWZRzNvnKaDjOP4UFSnLfpSkbe48GvVROlvOkH4HjnbIaCXmpXbmFcmIm1G5ozEhoo6tpuk3LWU4kgeAgf7zb0DINl/FZJjrUNyRfNP4NsfEqNL8us/jRHPnqaRyvo9fW9drph50N6cbS8Y9Xha8dO+G8v95X6xJfLEixmpoJPaYx/JK7IONp7+LCDTDO65HKaz7soHGr3riFsZJws66bL3+fmObxjlQvGF0PF2dG4Aj+kUzuG2UcWt7sGsHCfi13je2Slgr1ErmKxSzjTAgT5TnR1ooo04EFuoAroW/NtYseKVQ7U02bpN/h+X7KbMtcu92kIAwposWf9MOtgAWABHeqBt5k1pcdaDJ7ZbTCfSDm+rptJ0AcIQdLAQC2Fgm9NkQRi5eDP4wYW4g5vEWMDOlmZLF6aBV8pQVRRrGme8hO4aoevOIlvcy+YCT4UzKXmstxaXmg9hWHZIc2k/erU4pL5YQRnvwTTYD5ZVMvXlLAkSIFsNqHgBJbrRUp0Qr7IGgbnebZc8lPIVaNi5EEwFIfaDN39c4LbmufR0Dcx5cz5uIMV4Eso/eBrTS7iaie6LTW2jq4Z4YDC4FHpaFN+ssPzbvCUC6mncGqLhDvBOrk2DO2ZsTCDARspXUp2Rweisnkkn3k4HTbBGKwRjWk1rZtRRFW9hQpujxD4OerYKK8cmTEXfg34UdS7opX8B84vIYCcX0NvipuNqPfZrpXbL9qVitg+lLeDbtq5xG8RlC37bhO8JzhpokgHluwIBqDKMwe02RXYl3xswJWI22mwhImpkt2bFh8VRmyQwzoJVfTh95RW+5wIBWyn2OFcWuqSXpF8xOlJL9/TyD6OsAUTOWOzRXHtJg13yqEg8NuXz9QGzGLI7xmBUOcD9Ezb7reDCKSLAB4PUOYTe1ftywfINyAl7M+xd1R22kTCFLbNlbpXrqb86+jmlhJTTW8ws/THqTp1MXZRtBdqfv43zpo1lVD60tteVbwmyI/+aVJXQ5gKIUQOMZziSfawgJCIOB+E7mIWxDsUes2a8jJRh9H3QAyTFZ0c7Xg1RCt3p9xPn03UXFLxU8oEGoX7a9mU70PwOG5JwyQPz1DeCdFkis5kodjcmYwyHM6ocd8y1tDygVWj5P7YmTAUGM3uLo83aTbiOsRp/HnbwjMxWl4JVz2LmS9MtFLVyqR76awJcf4strvYXfaHym3xRa1SUtCrKweInucrI8LeEnlRJxCH8kjB9CfoUwxNnhCgDPOaqMfsrWh2+/YcOSz6SC5SIH8wJsCiHxE2YCO2QxOyC1tGEmUP+1PZS6OQgwlvx5+j6mXejg9sMvFWHIvBBhCARgrnGYXFbdXW+SfQ3OkVOfkgu2Gqr4GQ9wEiYQMte2rN1HfS4Q8UfoMGsvgu9CFcHf2BtACCg1AEMD/TVa+AEwrwztqZo1POZPazEOeW1PgXNtn21nlnLUGXpM0d+NTZXU7iafFI6mhl90bESEFqM5Npe0kV6gZ8TskQphJl35jtXVZr3LUWcRXiJ8ROaGVp9ovR8US4lNraEY9yq8tkOhYT7piU/47NmZYrHfhtMvlR7NbNR5TImr+GWzylbLZmlFRch4dYgZKG7jr5Dl784nCnThr5kI5oPFkM1KETz0RbRPkBVnaC5IKm0QwZIbrDdZIAIG8+MtnzTBsMhm9vXmnXBA2bhoTvetdmxRSC/biCBmKK4w3lYoAMW89XKp3epukpVZwaSNYEmRTsVw/SFznCJgAyqpfjrzKV7bdZcr59sErGdD+AdlAqSRN634p9GA7/xT7J+jRhsNPjVYOhCPdUwK4l0eW3aR9B9iKlP/9H3q0U0Ik9IF4svT1kQFmZQdwgRLxkagRlDBp4gnwep8CUtin4y8t6GgNgDSyjucmvGCEajGI5jYqY2HJ11wcgHvpR7qc+9lqg3QJLcuRcQJIOvwSLC5sL2gWvRO6HEV9A0OHqdxT1zKFd/naLQMEen6T/ig7gM1Y+g1W+PY5t6+3aP3Hl0A64ecLJGnB+mTn87bRfVLwwqujsMqX76Zpq777a9YahdRNg5aiMSKBavxjqF8GmzQsCPRvoW6j4n344s0MFvQu2o/xDRyCwdYKC5h58RLXLyp3HqKjWUBt/z7LNklg4IhoZmENxTfy6/uNyNCbCt5uJ6B+JY5RWIiJf/9rI2KsxghiEJ+QgF+FQM2uag6CxrK6o8LRJ+nCnuKHomtUX5prcHqA2oZ/L0SQJmBLGdRtuHJTyM3d/oiukCZTPRt3sI27iTqOYSMbcpJ019no7eZCBVWQbeqb2swl0yja502KEgVmXpa3u2WIn1ofIC5qsCKnM5qq2T7ACu3m3HnSWY7rjSwdo+oYgoFlvZtt9ax8yua35DxowTpRM4PNdswC+EJPMjht2qRYIGCOqUwZOzf3AIUxwzw6zDJH0H7D0WK3ysua8IPDGh7GL7LKCovvJDIgvrdE7V76mitLEGrOyxQKOwOI4yTXkl8BR75aDftuSamuhq5HN0TTL2nzUXPnGkEX8glCnbu/KvQ/wgXA/n5C7k9f3ovvvpPRGjlRNYexOzmNcTTmsfBB8qnICJw8lXVh5fADK8cWoFDYM7O70hHiMb1xSkv1duhXu6c7jS6XD83csYtnQ2tgwFdnW5xb5tg1dHHZzNsBgqpGWtU5XFD1nNX5gjaqxTzYBzM0D11CHJi7jAedZMiyCaDk0MXhW22BK43EvLWY1Rw5aCgG/lyJ3cuo8PSZklxe+UPfiTZTV4RiefaiulDTvbmlP9KLtW6NKIwjIrtTYya4WmWbJS1pBrot1XE++N9UzKLgc4q49f1PaZHmBH/OgXeTZzNCjZmmn2o1mhgI/izPuW0Ot13y6hysPVCUliCZWiUipELimQY4gLJ45Mv0X5HbtMz66wq7H3aE1ZnDJNweQV4jMTBYM/TZkx7WWI8dK5x9h/no5u4imt/z2OhGcmesBCnu3p4BYmxfDLqbeuv/LX/9TEvjRcIjWGb9gXOtfZcSgj8RZC4894WPOSnlaPsrnEJpRctWgiQf99kFhS+ubCcLUzOkaxriQlqWMW1EcEquYrYpFu2ow/aBjl46zJ9wt/ub/Y8jLTQ61f4hClnjPY3c5Xv7dFWm2AoTCa55JIZSpXTAfp2WolMjx0uiaUTWneuqO4gqSS8VIKJmf/UXhI63MpnhmmZDfKwBaQR2wZc2DJ+PhPW22k30A3QQ9rizj4VhkcLgqaUXrJZSknVjVb/UuK8FnjXpZqZiaCXcKBG6DyMmr5u1+zHrBncrx0wQscYGhB/2+nwGPTzEeEsy3snJIPbL2jaM2FWpPyzHyeySxHcuMnkZPipgIclieJ2EnY8JeMns93hhrJq02QHb1HNqodFTZ/IrJMBYyGApP9mxwKevbKsvuwiu3nOGcsqD+uyUFV59e0C47aiL739lKPjU4+OutHtwGZtKM3Y9UCzDhgVFiHFOK1FHx/FlXEmmrs6Pja3Uh7XrZOw5cJ0mTBYFe5lHuFH3iX6Q2/885bQFizQbRrrkm1QcT3ldOKkhKkyUPj3ZzW+gPV4heo3W59JmShYfcFUJgGAbK31RairB+OSbz6/kzqndJ9jn5dNgxz9fV4wiFZd7vbyXlrddf7mmzOE/EFrFeYO5ZcHNQaPiLipC4UtFt356UbzG2p6c7nhONLl2OBVrRZXhRA+vRAANxleIaTiACYAdgpBORDLT+iuOtiua3Fz62snpXXyiP7z2GEizo2kezlERkw9yINSJnbSVv+SYZ4uxv0QAw3CzusQFzdWtrP28vtvVUIK8RxLaPFUgnBHxfp/G5A/uQFaDHG6O0xvwfgEAY31e9XYFJyCLsUAfne+oVmA7y133z6JM2xHZp/CPdqksKi4jiIRUEEUjRphNLPc5LFwKdasRunzMSChQTuGT1188ezpXY3au9LeSgfN9cMrycW7jhnvx2Xc//PbBzHBYqc1LslHLtGeC7RTiKRi51oJntVZvYnrbF15WamVNkn145BJpEFezDZw535+gE6OlykV4R5WMD+Kv4ThYwa71YKGaSoKQXGfm7fcBZtfLAh8WePttyInieDfeDt+SSe9dTvBnu6qDUEkWLbl1M1apmxGiJp3RnnWEKFmZdDYn645O2sN0XAtbHrJOxG/Pass+WJnVLchlojxtaXjD8sJehVE7B5pB+oaF11qeDVDQtihu/N1UU1/JNPxTyY3+kxq92FoPdEOroM5NobQ4eaJ1LavH0JxG34iXMioSqFcAy/+9+ZXlIDfRe6SQtmwnBJNzE3Y99LTGJUkeKnfm5PDGBo5kTeNmKnGIyEgGr7903gX5Ymm/Yt+i7e1RnNYp4bJV20iCRCpQnk9y9csht7tgQ5w8NzuR3gPxhRi5EGaDXNV1ObQuNqKJuCqr9NU7leq8M6idDQL50pekbE9nPQiFiszNuuFk5uxPoTHAXXX6IB1/a7NAiiaSBhrGHp1H5q1uZ0jqayHH3bSicxnZcz2U1DAIo44V5FwSCDx2UfRIkgiPT7waAM/jg9vkmfW9BeHYZ70iHwYy2rbQ80Y/aI4OW8EvTcv6K+Qj3nnpzaHZw+g4zDxo1QWHcsdQEwPasxA5oPGrcWL4WhL185EP5nRMlCszKDZStyxdDWqx8H71+BUjvdv9NWPvuboTUSQzL9Y3tVh421wrljCW6xYkV4mm11lewONHGWEfi1aF0VLVaCBnJ0MMG+c2mLX2OLIJ4EKiajHKRgBV+cqNDM5rHWhdH8mqSgMzCX5qt1qB2OirulNDPoTARPhb3xrWZhwzupxSOfn+uOai9xBC07lGOVOPujxmO4TGmUaIzH6MB5X4ETheXf8Nvthl/isPZOo0DKkYaMjJn6n7WxfH9LwD11jUhdfBEey9fKCQzMiYvd/xfTL7hwadl8cELI5siyhYa3VSz6NamREFctf9/KI/t44xeC9SU96R9nstNSK9U/P2IPFI+jjkyF5AzJn5P5RyZbyDykyp6pFrbBiAlW2rSg3mUXfCCSVKDKRNPsiKqU9Jo8X99Wl5CipR5jfVIiPQ3JJBDDnuA6FjQ1WG2WRFQyNFmn46jPh10wkkAdf+m/NYS+RXBQxF7BFeWJrxoqYZ3Kw43ttXOqSbQGOxNk9S4ZLPLXci3zJ4CA9RiYVDn/znBWVjJasEfrGQcX9Z4ODmLv0cQxkoqLhdLIg/66ixCQjhggbL47kIuDxUlw8lvCKAxE5OTiTUTTJZqcE+QhfCXjMJFL6nZO2GyRsVn16oZlg2oZJo4Is/WTuQEj5w37p/uZ5WKf9xiJUhQ6PyHmLGRFhqkhvZfNGp4nRaiUOMnYVUv60/Q+9M9ue7lcuS2ZUuKW+w0N00w2+/mMPltUd5NW2ZHWgnXktZG//dMR/gHclSw7HgPIt900QPri/vhw+4955wEra6128DV118HWoUSI7TQ03H0dZOI91e+b1f8yG5QzdJijEEnyKYJPzTUsGghZLlyFk0Nk48YbWGCajvjbc2a8GKYUNIrqu/nBnbFn/efAo6l7CwcWqtGtZKiA2HXhy1F0ReOA1WVz6cGFzlBleHyjBjX63Z8hem7k7oAOIJzcCIb+YTYb0xcHZD6x05vCmIoucwI7ZrTznHZxGbgCxAXOrBANWjB+L/vcoxJUmkfc1yL9vYYNd/4PpovVffZMRZjt5kEO6gTlWkiAvC363I0hgcq0pZG/Z1rs7hZxUgF80eN+yuJwi5/5SscxdGc+MSYdjZiMpKSkumJ4+iYT3KMUlxmDNTKfXuiAicqMLQ2ZiKYusgnSrjJnBR9uvmbVaRILa5EbwU+t7rU0lemWpYXa6yyS8UWtVAAO4gn/LdgFQhLMPk+yk4hmx1KpPcFJSSrk89oIFdaph5KqBqO7/jWfqEIqyybSEzOM5AMft/HrTvfnhrbq0u65cffN475uFaDCaLgzJZzdgT45L/hoRMbnnPa0bdHKdHXG8Wp3AVOGOKN/orT91KlpgSjMboQ0yTeMxpfr9ZFaNuvs1tK+FdjkfhprB464oBz41i+wUMaVAYUx2PW16wG76xuWviRm4VBDXpj8TxHvwsYp6T8ibUa/TE5GrbAmynH+126dq1gh8NG/gK053siqOFvo0lEkbCy9ymL4LDr6LPxE+yX/LqumxDGCPX7+Wv/MhvuLhOYJ9t2HvkU6hTQbZeCvAMyXtsZD3tXqKBPPJgKgJ+HhrIlMW7kcGKWaB/djLGdVZ0eAyhcFnoBFyNSxUnZMaZB94TiUV7ZRRlG9Jr2rfjVhEO74N81puuQSoOF78jPY2hTNGkHRoSYI3r//itOaBl4KhGKcErciD1derqbOLwM79jRPYwraJ8GBfyUtA/vkbDafGaHBNGQgTuuQzY/XLVSX4YcZSSamTQ1kCN8PnRiq0rrbdBnPxuuPfYMl5g88ZZysWw+OxpsJ0Qy6fEqQ5OR/oGNipCF7Fk17uxtkwFy8yGTkzEdpSJo2d3r8Paorj6DjUCRZsGBSOJ058bPeZSwsmADEuIZjPH8aKm2ts+dJI3qc4+qrJSHy2ed5VnMgIFo2KxlsavRZP8gSsjjmOPFXjwId7o0sy+60EgpBmZ0rl2SdoWTsAtvlcFPexwsAjibO271584ltxfQ41hQsSQJJCKlUHLD/3ICn5dLTbjiifHWFBM5bHvlAQO+fuckya5eBSw+ffxHMfKO27ckxg2DgQ3NUJdJ9yDe94o1IBbfNyAvDe5Dmj+/D95pfuCTnEXDH9Y2kSGp6rn9xzMybq/+XjON3ziQrxdhE3S6pO0Lv6G73Rpjz1U/a7BiOs+pSQ20cW+ZXy8JczZ5xko0EWaYvANZPC+7ASVa/x/VFX+6V/VCsdG8fe31SEpy0pJ/rWCdCr7ndlqHrBWTJbGjWwcq3yxL+V/81/8VEDoB9K9D4era7/0JTWofUM1rP834BwuP49K3CMQHDk4cClJJizy8IHU50XnH03s3xUIOqyl5QiiNtKQ42oDN0qHR/EF+7WPp/CbRKA953Dxx3LaonaA74+fxGR9bsOdZLUuYyXVsCM6Lo2few5n4bDcAgLObONqNWCtbqIPOrdA/PiCkJBKtakrTgVwQslPFfy60wm1n1y9iWJIMKTye2oQZfKHMLU38BUROA5ORa52yEuRvx7Y8CBp06bcPi5revtCeMb5mEQ8EvWjyzO1kcPDN7QhjjwfMH5UBkVXA+QmWHEoT1TU/KYzURNngsvDJmFtSVOyUmDIJHvnhZi6pgbb4WHRRGv4tf1asC7vkLK+yz0qNw/hZFqqDM86LH0LgFmGv3E+CH/IDXmcydR1wei6HaF/8j7w3OJU1VDDI3lidwSZGuj1mG28WvCoSPmv4Y2YQbUBRDe8AxZ3sE5zB697t9zjQjWJhU2Jxdmmt6n3PUAByUpHWR34FfyMZ/3SfsWS65UqBv+muFt3yXmwjAmDCj8Bb39d4Xx7Oo6d24Pl7ASsDQ6ZYa0kxHd3WId8jufMtq9+EU9GMR70OtFe0ogN1Pa1MkEEe8jvLGuOtkyAJvKy3ICfeZGDs2o/FNupdt1/tnufsgiST7T0dpsCo9O3DivMc5QjgKdMGUUl/G2oU1KVuIDjE3lD/9vMKb9KuWNbMCb+o8EehEXVguMiMQGGVP7ZVn+HFYFphbT6qAv3Y4AfY4CmHzuGi5pcd/mfYHZuiDh7JLtPKKD2HMsn5JP+Rs0oROyzC/05Uf8FVHicw/0aNKgjafOM03I1khGEb6Rq9Dnp2KxZ5b58v0uWatrdYUCNJ1JiCO3sQ8c+fsslPo4zJrzVfNEVQoS7j7/ZTYdHFzuN7DreD+/3tpT78BHP1MEr3/RgfbUJA4UC66/3j/PEpFK9YUr7qg0s8PG5DA6ESWcv6+5Pv6AvvE02nKFbJTdIjSwMAN7l8kVciyjXPNi55ENUjcTx3/+i0uO4/xmV63P7jeaAUp+eM/pXKO8HrswJxHXXzvAtTED7VtNpv4siYp525Qf+XInumr3KDMNMOmahlzgvk0/XOt+dGsP7Xn1j/GsRTcha0aYDxOzOPbJU1OEZyDahwgX0B7rLqRbgAg4Yq1xO6NLGvB8RcmTZzaBQDfOMuk7OW2B3XErtP3Ogxcgbvc/1Vimf3eMBqo4GTPXxcCoNmpLfRnuk22ZLK9Fb543jL89RvWx4qF/L0VfCeWbZncczjg/Swrhrl/O5OJDGAKzwtu38dopMm66k5Gevj6vINMd4Xx/cykBYuFrCUyLrqxaCnOnF14ZlItaTY1v4Glt4Gtw+1CO3W/j/s0rV3jDMIhKdTi+nP42I/kNwqSvBY/O49ptH9nt0AfpamCWuMjzFsF8S7fNVxs4mK+VuOPkgNjWBb1VLUGuTUDLPzZrLKeBMJB3H5oIPBG2aG2kLyHDijdQOi3ubPMN7NfQXmQiEIznd5doIM9qsl7O6d5tZXiv+TirrMFQW97XB5WWHBza0tktBZGSN4gdpsJ9TQ/JON89erezdqf0pUh1/RAGV945EZwJURoO3Q2lfltJxNhTQq/4eXPJHdA4G5lqvB3qo0K+qUJmRD8qSqUybor1kYG/aGQIN7Aq8dccHsEsmRZoJQQxtLVwrBrIHo6oFHvnSQcpAFMo2Cnbh52ROns0moQNphZDSTlCJlOkryporbfxaq0PWcLhh4ScLbpKvw1lETGyrzUf7rbTC9EX/DJD74OrlU9tiL7a9SAn7g1sB5VbucjbyL6EcAcHopgI+Jm7c3KIyfU8DD7sBzv/eoV4fVq4fqdOGMzbBJnEv52fhu8YT2SXhegMj9WQbC/Mt0V/50TLlj4HLTaiOF9nIQkFIUptIhCe0nIP7Cp5Y+QqgrQ810Z/zMwF2HtKpfTU+NQdjJl306YDPdhq1/9sbiGsMMFLFY5285bHn+03AqsVn4O5tGBirXVZil/9zlwlkVsIB3tR+aSsMg0bbedPzNUplvns2NbEOvTL0omKC7OB3vS9NbjuCmnY2vBeJBg3tA/PDk30PD9C/eAyL4IRCNXZrRk7JUPRfQz+OcIOI09K5Rd1oSnb6hOcp6Ze1CfW5z+9Ur+dn906xR3Vxx4TsI5gDHWYcTj/QKy7tpTX1mUag8yNvb+4LeuDEsE5yqioMtKuRBIWwVEjKYtnbdBN9hwWoZgYZW4lccQGhuhkGz+k0TAxB9ns2OmJpn4BmffRVgK+cnFIyJrFWD/dYpoIBXBdzD6i3OehRzkF9N24ti0n8NJmK1R0dA/V4AZehxc15zImWr05m6pacZU1hfuwa7iOoL4ukjCQ99357scCPkHTvfiBvdSouWZ8PqRaOM8jr32mIA99vpAzUpWJaBs1o2HCj/QJ3ZlUQHk3U6wTUhLCaPkPHn1utddGbVaQ60TejZs/qqR9/DrhNaflIypMRv4RZ/77SBV6uvGh/U5PgPAeLTADymylMhhZOiO22qe+LEFu6jbqRUQlCroH7vR+matPPcPiZoWXZf1U7JNtip/3ije8vu4tNe1pwl0adiOR6BiCmk8sg3HsSkyr5ugthRcO0/V9LEHJMW5JJq2e0s1dmmnxNp0Hmb/KD8RqSNZwXXeWrO1fVu8zSjReywVIe8/5JUQGnWmIEGxJt4i0ePL5WF2jX1tBTfDuDH+As4KIz4uRaoMN5wb3++GFrZrE8FsxJbidAnoE3cWJLlB7sS6vmcNPV6h7yf6vsG11T6E7o2u0t3JQMN0URmAua6+XI34WXFF4pgHTFZM3sPbEYx0uVW5dCMsF6PGFcPHPkZSmxkkN0zssQb1eqpupPlfw450HTMXlOH3IF0JtnThCYzjCTzWcBZeqXb5pP9NQ9wv7g8pM2FEHLkzkxKcR7p1JVKv59PXIBPJNwkN/eSaAMkheuQdz9RPQjG99QeoEphzo+9dYQhrF9jsYwGmgM3Qf4uYOPjQki+yKrFaGKbbumqaPsz/u1Uecb+Lu7NlAlB2B2JFXCDxi4ln4KDShcZJfHphr6tusY65EfYy9zlbVUyrbhV+s/dRmM4gXucgBVqIL0rJ4CMQEiX/AqFsSFodO9ZwAJn6PmXeVhLkdcCkWWSVLMzd2Vu4N/dHVL3+QNfgDBhbHnhh6XHyVKCT3fjPP3Al7BBrOSd0/AsmtVxqR+kgbQim+H1NvJ3XyF54DlfDSsqg0IvXoJrip65QEAlBDYnoKbrJgtziL3k75K3O+vH5astIQ5Y+PheVU+Fx+ELGT6bc5TSmAFj3MuEVtaMEHr7onVj9GgDyXR/l2Jr2RHI+6rslRfgdjGV1xeJMncLDm6jDhmwxtkA9Gx3fHJvHHAlyeISOUcIwAFKjr2SAfxX/1q7wQTnbtVLa0ZU6HCqUC0PbgCTH/+lT+rfy+qo4ikx3NXHEWDCi1KWYFolGDwmsKZkTEp/WFTuZL380QD5ZRHdA3GS+afTNxEnBCZGt+/F3Jtqaj7LA/X2sV7K5qsF+N1ln9KRN2/wgE/AC7J61Vmb+nweqkdkV93cYnGX7ZYAz5OdpNtxHPPuvjEPAg9ZSOCosXftMn8v4cMahLQfPrjAHBZzwU13jbSBLiNGf5+3RylKz+5TzAPqwMQGQ6+fUkfSL8HsB4D9bfy9EBwEcGaz7a3fsqshs8X8UtVOLm3FcsuZWO0Tad12Pw6Ewva3sDbjVlMz8ZpoLWsywBuua05B6HyihmxO8X7oIr+wMMUcXhz7HGBbzRUo+PGg7agsaJE+bYZS6ewDteI8IuhUGzzKgnms/94biyGdWkebzdXJ3O+QK9Qd7L2nOzA/SNO9ATqXSvNwOIaqnXaGdvtixW4AlT7zAnZDwr1xWsa7glqonlvakUfjazMhhgrpHNf7mW15gdvBySIQDprk8btjLP9tIiJcyTEnsOeNJUksIOeUUD2Lau78XakP3PijTAHh2FxIT1GRgM/EEkZ0N7ikWor/zo8LqG7ghbHJY/WSTku8lBjx6aAw0zrMELujeKfx9yFXIKlJ8mcVm4s8SGQIgCmLHt2Jl6r/EUOdVKI4vFNUI2A+iuN6+WaUXJEkVCir+zfey3qb6o8OHjNLTvxE4WF4Fc/DpfQ8EDMUezsMmdNGwvN8qwWPke0x8f164zm395ALXPnSMgq7pwAhDz8+RKHcX+XirLjHEo68DGW2dUJcVBOF7wg0XPUFMrpjaunW5HgJOtRZXaulsjZvlG6eRuSs64ExuUNoKJF2IBL6AJJ3kBxpS9rFXoOhoICcasFDl1SoYoZiSKTySf6zTt4lpQoIEr4TU47ZtJcqNXp6gIstgkL7XDgXBAHzE17AYQOXqGUllvWVmzqwlpSCYP22cQftVB34cpgpdjAdRUeKMWkRezg1wnAOGs1/eCb+10P48YIVUYqgH9Rn2OqZHu4xLkUfBKsZX3nWIQRwRk58FRc4PMj1Sp/viRFqKAThYMOFeJicByPnC5zUh9sWuk7eEvZ49zkfU8wff1EpHgmdmkpcuDJfwgJxh429sN5hH/2QsrT5uORPYq/aOiAqBVRMmXZon8ZSiAVLzku8nOBh7u0g+VSqRjACFXKrd2hxJyJtjggsdKA4rT+ZEVQsPEX/1A2wznBSbw40SNhdRCEEM0QkFUlR4lrbPesjf3AqVZRnAttOjVARlhyxjjUqEairqnhCAT8Z2ufbglTTKV2368nz+zbfjNyRu7dXKUJe1NPgOG6g5As7WnCdczapswoyayebEDlaEL4hFG4iFut4apMv2dOub9YkkLVMzLkAQskzNM5DQIvbPbPtgsdClf8NDFXnC14UUP1q1i6NzIXZ6HPc7QynskIe4HiVzoxGdcGQ+2jrw93A9QHbgY2VU3UVn/5VYuUzdq+5jGfAQOAc5lYx2mJM0tnWwRymOE1519q9kkQ2x6+y3nf0zySbhQyDC32NkIeawn0l2JFTD/Zlc8K9gsEPSBOI9Iw3KmLkCsWcNK32At0mSHFY9JD2C+3hBw6j115sgnAjtkHHDQICK+7H8w46ExmI+zTUIWk8zZGWjKWi9O+TXUJx79gP/40BMSfPzCEZoqUIPAyi2KVhH1/zl9GbFbP4JJ59gZG3SYqLhITpKz2o/psUmSHrfnMMBGdel7B76b1W+5Vyjjh0xXkgHEec4CF9J3DZtmthMs659yu4ehzfLRqg9anF4I2F5KZZrEspDwjCIFxlVIhxUa8TAf4SXpsUzwu6LRfhujIHDy1mlw5pGkcoaBC/M9HBISlbfBpm8hpyYHaD1JBE4q/tTGpa12UCdkIJ/dAIyJNTRJcVd8u4HiCGML92AUfuM2VPau7RmVh8ozDYljdDgFWKqyLWbk2pcbRR3W5WWKHTxj2+gwF/u0qkpEqBdD3X6Ec8KN9cLqZ5LD2Q1ybbCJcpiVLbMYPWPI7qX5m48efWtllln5W8VHppZYtZePZXIFHYSMbe25DNWkX3eUsotoSIIC8JgWC+lqKUBfZvThHFI5AtoIGGVUnHeenT+TdjpjRswthrvJrebevK4V13sjlccUjU9XUavOTfbbnNVLifAtRfeLBZNVftrE4qMu5JYzbE6pUi18DJMekJBFsXErXYz6BiJy9JZ97cID7F/y2ygE3vprJfSZ12V34x0TuLXuWBnikzkKL86u0HIZMzM+Zt29royHeN0Dvl4SmZmrtDGi+ElpcoXMMSagFssqgW8Yd5YLo2Ck0vsaFYwN/jWC0VSuWxVieiUS7nOUupUV4vnzomBddMTLCjgwLdNDPGMCjqkwlOXtOQmAcwkK1O6LptxKSmybnjtFdvOqdHzcO98eYemtqq68/JOg49n5KX5ydTJlc9N/z27ta0ww8sA97kwqvqsYxiUpBdho5Z9yIejPRGPBx41e0FAedTgvC7WmN6MBhmTfCTH05dVtFI8AMHg51JSRkMeDN76G3hwHb7SepnrWv4NWmE4rTe0LvwhWcyXpcrUqV4NmER4Fsrq4zT7HCaGjjOUO8mdITb1YT5EJm1rKfyOhUDf+unU/t9p13mo/n6YOfeUFsmEvaDNbdk6DRUdpnK1ZARkYf42DduzSOlJFzGI8gdZekYsHJsgsmXBm4cQO1GtZCbRZU+bG0r34wWRDlPmuIL3bj711hVrd5wYcDC+KHJu/sFLZ7bhTMQyhmI8UUNRdTDexllynt024h1we+JepnlwKWnX68VHpYIdOK9EkgijeZrFplIeQbLmhfI1fpRAxYfCd6iDmSYu0slv5ssM1c9XfNwhoSTpZrH/V8L23E4OqGpFj93kkqcElPXpZlocoF2imJlaLAGm+2jAn0WFJNZaDdbxkIZ6VozuTI4HMSVihnXY00LDhGuc5ha7hqNMNN7syA6c7Ub7vPv4UOGIocKkSbjB49rEGnvkmFX5hspUrxnH/XITWp7ExOmfiVyzYrBKlEBvgnlmoaUWUWAJxpbpSruuwXTg4IVv0ZtnCtjeT7x6mLp5zkREPgmX854WdZyZZd2Cq3IakpNuJd3gk7Qza+ERLOJsvfVGE+KSS38kID9Gc3Z58CCl7EaftLO9mT73zQNse2DnkJoWFUegtgCBhDWwEjNKCr0dhFxN799OlUw+wj+bl5e7Rq7r3NP288VZ04FCNRX3jgOw+DYEO6OEzc4jKWxt4bEVfm8WGVk9XfpadqI/QHOIYlc/dJ3XjrNsSAzjiZWN6j0/BBNvHLq76HTdD2B5w3mElYDspLQ3NAexnKsk5/jV+UBgCOsSyVxIL6wMbwZEHU7wlfJAXHCAUwsdw5mxlyTGezYlDGqhiAv2PE1GNVYLe3s9y943INhFZJjXL/+EljxaQUQq21yoT6JOKqps7LsSO5ilaWdkNecLJm3hgZMgctuMUcmUhCAw//kMsnJxTwbWZf3X1XFIMxOFJoj8Qc6wDOSUPS0IShjKMuvRFQKtXKhkJlayXPp2x4QhG8hLQwxVjLsrqyN2ae68KoHiffTcZwRGRgopVlUx4s4eRI/BmyjMj7lo9qAYd/78bYQvvUiotN/B4te46kLoqStffEyahAQiXxY3IP6fp8JJWlubMsjqxdzmWmvSufQKyY+17DNrrz+WaB60RP91Zv6hBMZ+1Tm8/ZuG2m3q0eIIKRRCWS2pH7Si9SgJ9k6mPOqCEDEwyhqaJ6WCrRgnI39aWkRyTtxNife7D5BcAWYbzRdmx26Ff+zuP06OYZZ+lL39VHqqT5f5ZhjKzEsVMlgmxj/JRaVwbXgyQg/yFE8NV2CRKRBZntAzgQW0ytU+7FyINqF4VoZAGk7pjZ7Q4dn9tnCiiOUlO4c3wxIaLeCYeFn7boA6254oKiNcAgohh1pTyoMbcAhct4gbTYECdZNzgX4ucYqIxNLuO5YEr0TjVCuct3TztnVb9xQUHa7EqZzYIo0WuRRWyOHGib3kjMhPaxOkre4MmqHQxcesQFJOVEP7O+guNYAPvGdzfOJAcmPcdNHLGguvUugoO90NqXaCLHJK5pgqiTcBxPnvVw2poe6ztKkEzYbmWJR4jHneCX/7Zk8LqoVDZF0Ykn+cKTlP2QRCmhQ4bEyNHTQeo86QlyF59pbD9Ia5C5PxWLmLdrd8I8ZRlR7+cESUCgmCXLtfqq/xlyDNZOz3z26/PnHmhetelDdxELdeSn2kLaqlVPCIUoueSq/P9+XITxqWhMcjk6smOJ9cP3MTgpFh45Jaes+h086KLtYNO0/iwVDk/gIp9A609BlIUrqjh7Na2UZuOYVNQb02CCF2TKeb9cBp21HSu0TTdWs
Variant 4
DifficultyLevel
408
Question
Only one of the following number sentences is equal to 4.
Which number sentence is it?
Worked Solution
|
|
(5×5−5)÷5 |
= (25−5)÷5 |
|
= 20÷5 (order of operations) |
|
= 4 |
∴ The correct number sentence is (5×5−5)÷5.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
Only one of the following number sentences is equal to 4.
Which number sentence is it? |
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= $(25 - 5) \div 5$|
||= $20 \div 5$ (order of operations)|
||= 4|
$\therefore$ The correct number sentence is {{{correctAnswer}}}.
|
correctAnswer | $(5 \times 5 - 5) \div 5$ |
Answers
Is Correct? | Answer |
✓ | (5×5−5)÷5 |
x | (5×5+5)÷5 |
x | 5×5+5÷5 |
x | 5×5−5÷5 |
U2FsdGVkX1/sOHzWJ1RnLrrx9RweR2lO+AN1Yx2MnRagF52+4vQ4aXY9LkGRIKq454JbFMcuT5NLnA62x/k1E/kIfNNqkaxAsopdLXMsic0Hw4O2z9UcGj/m7/LPjHft0ivCqnQARHrNdyMm9sCwn7WVVIYCa6OVbkqUdg91+cPHH22uiU3bdMTdClvsCrZNxlLTIClLiHej4GyFdAQBC9vu6xyJOv2ryp2dRCz8J6SyHwD8UWUfwzvK7/x0M5xd2YoAM1DmfAcomPNQCo4iaI8WWuxfOKzqoQ3U84wjGnVaEiqA+dCSsCb/YoxwzLdMWiBq2ZdCakG0czRT4U3issrLb5mpoijKCpJn+uLFXrDWXpa2nei6wwCZhuU+srUHIK9qUq1m21fqFhf040MIGComBCQL4dwN/6QNrgNP88MTg5dkyglYaXNls40/6tCCzFJhliLfoV6FB6ikpu22bFovWnZI2fAm1qOpu4qsx2VIU/ROSlY6tKtGNV5rLL4Er7x9/yHzhtT+/M7ySrGR40mUke4G1JiIgZuss859r2FRpr2/6BD5nb2yLTbtSf1A5kJLR0G6aYqJwH1FueppZlK0hV6fAR4xNWb57H1cbdSsxqzYIa1NsJHKkVtXNiHdp9dEO5ZyKQ/9c0xHSWYHTCCBWxy6taYjHH46ZQdx8Q8PWNCZjcPlvVz3KtesoMef95PZftjRGhUPF5ESwO0TujXXErHAxFYKIWxlr2lmdnlf3A3YD2TPq8/Au+IJ3B6NO/KjpDB0VK/s3U/z10pjfIlHR9qUKyFvjGXb7WQXkpc5PStdU+vgxJu6DkwMhG5WMPXdHqKog5KBzqU/l0NcGByWndk8xFFv/1YVpb8/TEf/00lXIMCJhqgxVnZ1INzbFvIQGheGFbT0/0lfN2+Ja+omI/gZKHks3nlEIW/E9K+jhKNQMAa6i8P6N+2f3iXHHf9R2u7nTcKbNol6PNugGSWf+FvhQ5C4pQvTF7RgHLxKb7IX00cQj8STpw658NLILYESXdzoyVG49C2lcG3o3fegPA5v/8HofO8mr7JgO8XEQdpEsiqc/ErdB0usLU4SM6ZG/HpNigHt8n0TkMddhqkCTQOxRlPhT4XoqlEJL5RDjHXdLIer6kPABNv9H1Tbv7RADGociSQ266HbCX1abJdcZVN5hBQc8gNGxCuTi23nHy8GvsxzRzcOBEvaAWSfgqVUvaj2nGOOEwKOD5qKdJzuC2bDboOWaTeXDIvrlJfSVp9/GxHo1uB3G0H+IKhiPFBUSw3ZN/LNn5qt7vAfAAyCDHW2rptImVqXLJzzZm/xLaq+SUINuGnTwMXsZ2/MESb401jjbklx80RsjZ1E9O9rQb5YiBPyXTJs73hLmJqQth6UqkzkqTK/24KcvLAKCeaPpybVx1CYnAywi5vKy/yQCQVY61dMT/WQWyHi7JY8wwoWgyMA4juL0Df5nzENC91oPNOaEZoVU2bu1DXCpYdXM22cJQ8EsZ5jPoN310QnncTiNuzTQVfIGfJVtqxcr8okdVCBW6yW8kjOAwAkOAtQ7E2RwG5N8oPy6yQFy9D0YdzSjUXEy+wlznVmRpVuf232Z1O8YlR3X1YamC1+GD4Oa43rpX8ly4QMYYpNGftlvOPsD5AzyxNIYIcQVl+m+wOlnDgZwIVNY9R24OYOumnj8Y+2TDDRh8ggAQSpnEajTNrBzH2xOxgnkJ0Oqp4ZDqs1KHualeNMWH2/meXEmxHC9pf15dHcb6C/jXjc2BlmdwytKSN2912RnkR/Uobm3l4DMaQL0HP+gM88HqfcwxpP7h22M52y7HRaMlEdPVJXnL+J/gbcj2ciGQam/oarfN6/t3ei1nU3QRgbzD2QldV7HlGYINglzjEamuxg5Re1O2OAlOQlSfYIcK3MZMF1fhz2vrP04axFK9KKBiytWhbBlZ6U8NdUrw3QZL+w8ZVSlnmcx2+jc7IV/2GrYrjdcIgIv7jcgCJwrBt/LUw+4G5PfmmiwJuD7OScRMVkiAfXWyZ1/Cb5ZAgurvwFF7/wLhlkke1WPVx7f/0L1ERvUQSyIv/P2N0kDpALF4FKNBOlOP6raqeSWchWVx4R5H54b3AgBeqoMhaoRJ70RwKy73i02C9fBQ3aeFzkTUrw0cNq0YQtedyYXV0cSuHChjvUhvfwMTjYcT/X8T1Hb16uHn1DdzN3nQZcdtEzCsPTm5eRyvQs5aD1oz6uUWfsVFumiWT/oIqZPd6FVI/LIAkxi0UsxOoKeKQfof9C6zyQb31HxocBfTazVwQOOdUg7iCw1ZGrQx7CVvM09sCwZEws2bcxtephCGLcOIB0n6bAkBw3Ag/1g1gRGuFvYtv8CstS9Fkrn2QxTs3gjrjriO8co7hFvA2SfM9Nmts8MhMd7bleDHdpWlmSd+UWnkrPWuMn6c86KMsnV9Ze1UAhgx0vAIfWs7BIOVYG2lg5sOPGjh6NEGBGaspMw/cMz9nqpaABG+MOWcJbrg0G4Q+K5iockGVdRPKrtGOnljd+42UFpGjQ9UNCymxMQ+ZgbxIj7ZLc/2hivEmafQ38rr0x4/CnuZ+rCw/e2auMZ7PKfkU8rPDPrvPyX6BG2sJdvWEjMFMF4mz8z/Ds0NTYzd0lox6Wdwq6pc+rb17uLxc6MnKLCYO+mmSRrfroI5pBdtDpiQgH+d8/zQ7ZYoYk+9kNJ4saE2KRroKeSUpfQZ7ynh5A8+wUcwcf1mKayK+/gy56esH2d4fs5twjt5AHdvoAy/SR879Emt2h62fY96cHJsW0PaC9dKuY1kpNsd1yoMRjL+lrTzFZjtAU4Gv9SNfhHxPY3bmh7IHPKhRvUYSUekFEAAKbtuZJc/gxMWzCnMGMf3KljtBKMhFloJKLERET/SQQRXsUvcqxOeoPELJl8yKUk+Mz/2bFLpWOiYHKvVDD+3+metgqohS5uvyh18tDlB98ppmna2pJgvV3G85vop8dnelsJUlBGFC4cwBCy4wdOZfw4vVHaAJLrsaaM+VH5paKm/hxHcizn8/jf84xCHBbNGSAtIyzvtD/nuwQqEJf7UpRFHASFBSS2/k7uV5XreDWS9DauEBIzYHUQgGp6OBC+qwkBJp39TT9CYNo92tGj/d8gAEJdhSALmqvVpnzKXQWOZaEkeO/VoMNPsXOZQ2/+OktDQnQZ99SIjp6tw4q1CXiypbdjbrYlnHdYvo/0DFMZHbcl8OCzAEznUlPqbda2BfPom24/2XoFrxZiBxXKXjgSK1BuGGg8PVfEWVP4xA0rVpSswTp2eD7jMKIFj/bWsCmJetZxcEqJGpqrHi6JAnSChpwhsarKOkXXVYseHKmvaTz6Gtbo5BNwtFcLK+wVp24YLyo57gvnwIjlizFGJlLUAgSoAU01Lmi2zpSPe8hldeM9Eceow3+elJEYSsiHmyp9Zufg9iT/5QZiOB2Hx2Of0SaKh5LZokcvHNzxX5f2muot/g+D89SuO+JcwhjAu5uAHBKiVzOsKGMcJPnozxy15Hazzy9EVwoUhxsOC48BxS3HwOZ280XxTu35sBkAUzp2Cn8HJvMY/2bxfQyTsHTSK4xy5Fbn6e144ED1fPJ+MBcCZKcVNwUYcW4/CvYrtU20Q85KnYiS75yDLZ+VvL8SmLjWFpuZjteqo+XoqvHE9MR8MQPrTR3KN1VKdZWqCBcWdm+Gxu+kne9SpitK7YTud/fWTOfyuK0fjqYyo5wwlzN3wjWCIRBT19LcfDN+wWm0VDzphvlBcPiTGTbhqQh/BNScjP9D7vkDRPbdj8qvFtC5FmCtuFeOkioYqW3yHAkYAsrV9YVabbAA/Ti43r6nBO0ugaaqLOLIkhYtyr1ET9EVo1jJ4tm6jZUyae3vB4UZqaYly+FNP+APsO5uQ9VbKyXO8xTemMvMYV+DhHCPsUFauKT6yVkXCBj3Ln91yVPjoY3rBr9YUB3wm6KxWgi+CfbEZXtet0U5UJxvmluQ6xc2z2D/a23WDxBI3cXbBcJOWlwSo6ZCEm8tMmJcuWByvJ36I2v7gRF1BRYrBAEnAzZrW2iuJxCD09ryUYUDTTfrqTt+61LKCMcb5i9pBkPpPQ0RX7ZFOT7/jQVn/dK8OV5SIwVK1H7l9aGXPumUFGB4x8FY8U/C3FsJnLKTkk4LygSsq38nU8CdzWUKzwPgogH7M8XZ/zR61Is0UR2ledwzJvxTJwrVaZ1jM3xQ/BeWUduQRJ46Ue7PLz61HTgYKjmkFLOHhYq0Bt7Tf583GuMqiLUOZsS2J6zFv7FWJX/EuNNpqE3LUlgxiwyz6BiNUVOoBsDm93cUm/HNeLnkOauxSQKUxB3uMVisMgZHg2J53Dkpfyw0qMDKv6oc+S2scsWMSKdEXTiJ6WQK8iQ6lorufm82KyI1BB44dyKsPqr8UXoe1Ga78CFBJC8pL7e6+SiEhgRQkLMVmC6WFU3cmF4fWEghIGAl39a2X1W6ngCxE3/G57Lcim4rDfAxvd4P6oZ1kOlbfzSU1H21UXZ5neosnlNJlFPyGSdLxlZub8kdUe9Nv1GFtV5Sgpcr0KygsPKshz0vcBsCg1cCYB/ToBpEn532rtBMAI+Z/8OKIrXoLFmUOA3hG535DRAHfIYy/i7wAPTJiBNdLSx+UK4Y8V0gExvMdbQG4QI8m/eHhMEXF6MZ3rw7woLA+KH2a3EhyexwuSq6RNN32pA4qTNFMQA1bMq5bw2Nl+EiUorFaF476DEpIVzPLhPgOP1fFXfLukLVfjcup9Doo+CZgh36ZWHbtsi0+py3VezKoJfJlgtQovAvcB7titaxiXhKnXYAUbK30mLq7C2wZf3qlag+iSPODale1SjA8gZTSy6aaRn8U7Jr65CMjPMCQ/6uWrqIYnvki4QMSN5d3Klyx973paIsH9ZplCwfzX0cIJAnnNhBYm+THAXdhd9BeDian6bOV+LeuWH23EDbtzGlTSazy9Wmdy8MMyJy2i4o0q52+TtGrLKkdXR8lgnNJlBjTg9bBmd7MRjfT1rvQB0hcwkGxKu5grPETCfmTfDzfeBwFxhiUkVwVIlvgBlTXnp0N7+RWVum9lzU26Rmk2je5ZuLvkPNU0xLYcyAudV/EVEtwmC8z+RGTtvKspfiiW2MbnrYCqZ0tAlitoYwVNoPacFfJCgciM6YJ0zWApRQVitaeNdCzxRpAVctk1jibZRuTT1bIsacyM14o43epzm8OPu36h0cchTLd1eSa5kzQi8CKsv38l6WWniudhDVMl8i9+6ZXvdF2cPwFMmvDflCz8srQv+mBo3hZlixDBRpYEhvjheO/GhuAqkPREniuWXNiFD5LsbSLsLxJGFiQiZX2o19Z7yOlD6Qm0fFDLsLk5y8pGoh4VOujKjGCZr6rIj9v21VFbNDXSjsUljirt9a7u+0skeYVZEI9N1n6wpFl2DjBgSADl8ojfYIlwD7r/TflJY3tN2i8eEye5/ZiMqZKyjIlKuqPCEdbq3yitwY0Xh6xztJJmodee9+wHDYlS7XG0huQHYJMJJ16OOtM84md36XwOlalOuoLM2MIr1/wR2Rlr1exUocC1Mzpt0VdXDDVZmk/6a7p7DSHyrVaq/quQbQkfPpWJUkUtn+ccfDZUie/Y7BfqI75oA38Lj7pz2kI/VV8wqtAulvaQ/RlRnQ709T7KqFgYD2O1ExsN3xJIh4k8xWjPLe+kNmifsxE8TVL7HpUdalfNghVsPD68PqtltSK+nVByf9ePzPepkYmhaUpDw+jQaecDQwHWTl7YJpM8PdQ34a5benaB/VOuLSmstQ85QXPmLkNBI8OD+6gy7PYwYi8IfWaPW7vQtZgKwkP2SwFxcLWw7n6rGMvA1HtTcUD/8CD8VXXkiQoyKm9IwufW9c7QWkeNu07rnSoypuqojqiR7+8jh/MlODqkYuhcpXrkp5bi5LGRATmT7k+EEgOSB4iVTt0DVKEMjR8t7uB5KuePbzv04oqPqRsV2Be3FkJTncYBTr5TEee4eaOqCeVWco5TI1MLKlffSfMR2iloHCOmci4OCjg/kITeOPEpufksBKSh6GuQLTcDYiRkAtlowxlUEaaQtJ++exe9QZvDcBnnI2uVL+9uN6zXg5NuroPNtAgB74thPA+uxYSOmx9ULm/1EsSroPLqkfe/hlewFmQvo9uYDbTpVGwFdh/y6sVNGOEitD3r7duc/OsrvxaTGToUzdR71gtJBcI88joD0F9qOTABrgyiBtppiKUx8iZbFQJnRwM7Jb1UFiEga90E8NBz/P04AzGNRhTIb12jn04HCgvcrvKr4KVOS+ra3J68cfRVWztWkynUcLu4Htkqv+QsW7xPPxJpC+gn6F+PMf9wApDKLCjFlg2TXXzYQQ8C4fZzpPmm//vWvwCxAlHiIPb6tk40Y5htn6v4du3FeXUQrMK4pGFUoGZATzTptjVkoK8FLcVl5pQFpk5QWqpT9SL7CRAYXIAQiEKnM29U3Vtnrak3klvU/Mu+HLIj3Wv1tlCUlIICVOtCkH1+BdX8GZLZLQVifUq8uL+jOWBTIRZ9DGvotTTC9/LeAKtNMh8vnyDLBCpa9vbvmwcrel/vjxAooOcng+ePj1JHy0yjLjohkoZA182Y2dyJ5GF/kn/FX8/8/Rx3i+lhGcWkvBbbt9wQMPQRbyezz8lWXVXne9ZPu7hsZYfdImqdDvrOIZ5T5r4mdNGMC8mueYslLI99+BsNBqlWeg7CS2QVY0xuCO2lYertEKnkZOrNV9DfR4D1gCOlR+73nr3lzI80/GFUjaAVhYTRjgcmgPDKjD31LrokCiYmy1xed9UAPWAgaSmH6Xz1hQBXJtz2PNNcjtnJnprZeVzPOxAQYX9LT/5SCxljYnNsiEBjJ8VA5bRttGGGBzr82IE38g2z84Q4XVPL3nRPokIdLVrEdx3HGmZ5HoU4FK7G2KZe/C+zYHWLxOhK4WkCHsD/7fJ8W//6LV/mdx9n45r7buueQEYwj9hAdbQe7mNlHCDaVHmHdjqmEqkD3p8h5aGjdVPWC2wnkWV8DTTyShyeXtzKPCsBUnt8kR19GEnpFYUoACIdZqO1lt/tXVomaTtKEjkyZySjTkGTTmswxTQ2OG1BiNXjOswug/tBWQl0CYvywVRjHh7Q0+TsS9yvKOxU3W0JRvxHgZlA7eZF2Kp4aapJqr6DX7+LQPHpzSqGw/FFSbjtrN2ISRoS+bCI5t8CBZ9hRJMOwnC5qavr1wIgx1nZ3bcsdL6yVT531iBFAGnGim+yhd3WdP86Ln8iBRH0mQ7ZJYt0Rv/cdzPu62a4mNESnj1bxNCJSA+csY875PIyxhwvquNMHKxSF4aaw4/DeWCny9MAyqo7bIlaGlJYmBW2n5qW5GT3nt8lzE6VMd+tBL99BNdS/zXz0hjrjVQO4JB16fU8kbHTAbdlaiMRefCXnkoVCA387mb6NlfMqkBwAepydP6om+v7bmEO2q+W0xyY0FZYV0z8l4tAxHQmtHDYZ3CL+j0FKUT7+ao4tjvtB+KPTc1vjtk2JRPvH7wgZB870WdKu+8r84L67NlPmR8tyghxkieyUU8xr2rsILx5flS9z1lMNR63ZeR9/fVCxShF7O9xFr+HV6U4a8SpMzi4cqMkn27Ej1kOlzH+N3PM0JhgdKGwt25uVnQ9juHRc53vGI0kWJ+wKzkrPPC0cDHPOkqf0f020L77qLQyvbMFE8+4dke0xsEbcOGik6hynvE4mGls7aPExm78Z3BHbncrU3LnEhMeHVg+UCJdYzFadfN9rmRtpFArKQm77HiDRIX2BEtGdwMhl9ZNf/exHQBiDyfu81akIbkXnANMMnQxXdGu6FkoccaP+JeJDLzG/fvaYKf0/GCbcdGsp1IUcgvbnGfJu3WNHd4oNFimyo54PKBP08sx5oeG+NzPs3VzlF2amnNPzLVJPJKlNFYKO3Nt578JQO8NBwJYGO4UhieUjXiVLw7ko3x3xo2LzJP2UMdOGop/d0DZtFcmmJasZ5Wks0j531VwZdWhheb5Tzr0aXBcujmrYFlV2BBKNB6XnoZ4XpZQHoVuPz2ElaNNhZoWcgkvfi5Ho/rMtJswzrWqT360FfXKAEkI6Gfbj0PPNucBpURtMz5E79MmW3NcpdrQWlHLXDHyjNzRrY2ckJFCbBKq5Ay8KgvLOs80j2ZDIXKqIVDAQ6vbVULXh62hKPSv5sXwkfIKIBQnQ53Cz86n03AwvosNh6Gph3sYtIDWKhIZdXuQ86qMiG5UI/r9YRcZlTDjBha9z40McJdv5M2MrteL+seNNwbt6rxPgf4vjMClOPLxEALHDFGUmySHeQDlU3jqLycsyUsgXTE2Uu4z3t+KrHAR9pUNPKtWJ17htZlZC8E6dGCJF4cGRbd1FoDFIwi3r8pj9PbWuQNqjSkciTubrXG+KUzr+3P7yI9IATCcpse04PyCT5aq9CtH81WCyzegzBII/aKUiHXoRYAnSUYiBNSAuc1YcmGMBjE5tq3uCn1AGg4OwVLj06mW/onIL2Q/uCI38EBUWKo2A9yL6jQ8QDKsocpB92GOuPYgq/cBnEKD8+/drgewWxotc8N5QTDF0qXXX0pb+CsOBT8q1wKDxMmpxLpAP1kzYIUMYzzYqdfLxk8ceP46uMHYnE0u8hYYGK9gAZuS21RYJbWkRkh7wWm3QOiSJBPBxeS93cjyqwdjzkiLfOTTQ1VJdgl1HxjokGbmecQJq5X5yRl8xMuVN0I05SOodRXya4KpaX4zorZAA35njZNmZFVajl6dwuuL9OXLMDCDnP1dNO23uQ4P9OO6TFRW4meuoJTDOQX+3t2AW7FnE5kIl2UeKuS7OGj5OnMz/A8u2HXmJSoUWJ2zXPuZk1tukYMjSG3CII1g7wBB8xnZz6ZnrqL3w2TDbsu9AD6PmGqkysRG9RjqbCDSmYPsJ2uzb7cowGhXppkbW/TLKU+femz3YKBCk3+Gbyv8c1VM8GV+xEEncWtiH/wIIUt7ywT+5IMxOE3b9BgDgEktRKUWDG32s4vZ7GfYxD4CWRbUOSj5j1b95Kyye4Vfr4IFclM8ky7tpFLb5HqBe1S2wQ/jvp73UYtYhy8zs8bdwyDYiHoxlzalXJ5ANyERnDLmzmS/PeNPazZAN7iUZg7HGElSzuE+Bu1u37fVayYGwHacWr4GMUi6sS5U2bUEu7sQcSmRLl760S5XbEhinPfm+Wdmx2ghER4Vcdd9cWt6U2iQ8z/zHEW7J2zhyAhCgM13NcLnd/gmSq0+uIHOgqSuUqKjoGSaRzYawEMSe4lLSgL7i65Hx5CNyt29PML13jCbwFaTmRpUCxqj74XP0Y8Q35W0rYgjCr1gk9jY+qeC4sSECLCZ7S00euw3kS8jJkuvKAGPwdu9O4mcWczdDD7DAMIAjHRKFkWbKwG8C2iCPue/RSfHdKLhhlTeY5rvX7/Czfia3vM+CeccSN5bjQgc7A+YQDmC2+xg0EdEwc55VK5Nx9AporgzTUgCCnOxv0b+7BdrSDQHysbkIs85W3CzNF4kaK5tG8VotTL1NVDmg5zoFCR+mcsm1T8AwU3mgxjKcvcgnn1BxyjuTqmJJ5cxMwhHpyxhn3/pRuIkX0kRtD/sI4LQnNuLLn6o7VCnx866SAfxbPLfrxSFE8Cw0L8brYyvbcu7tp5qgzo7SxM8PqaSj1lZCKTNHl0HWy5c/hIv15oiBI28ihD5A96bfoauW25hUMBRlqDXRP8R/G//Jq03VxQiAI0VaS2gEXnwLgdB6odbqs2g3kRz2wBXKE4BWPD4LA0OJBaZ7E7aGfICLjkBHPuk4I6cKov/zaeCFhht9JeQ0xXYaPz/TbVDIcZL1cQ+LGTHNFzYktx/jmaBlcO2uJ73GLKufcVWLAvw5eeQ0m0Ek4xMRtEm9j6CzI+yvmg+k9YSYavQzuXLwV0rIUsULG6uuRGlNn3a/tLZ05tsm0d1NMh6Pcl8FWw/EMF3CUDfFZwDTXbfZYZhw+02Z5Ya/H8JEJ2rbRonoLVS/5CAY3T+PlA6CBrFx8X+nHY67QtXwhwqSW4cEuyvUDCh3m51msjuGPZoQuN7uBuKQUxNkpPfTERN415z42LVrtdt9j4MiQZ6MV9a+ltUK/JTQ7qe9mutEGGeak+dTJvLK2wmIK8oc/7DjCr7BZlPjeban4LNtorIo8pIgj0nGUadO/d+lYoFZxTgMqI5UPvO0IpCKjQFRxUdJe8XxRGRBT22FIivUDwYKnDd9awmkvfkwW0OVGyiGk7PPKWntaA1sV6ezkGcrXszSH73l7AWyCuz2CJHLQgBc+vzWXlDZpDxFr8emtX+a+0g/lRFVf0PboUOMdaYWEAWyM5rZALjMs8wCR3ExYNae+aH52H0bhF47YE1+9mAj0Q+LXdGzuUNI9P+wjxhyYB74LyvdpG5GLz0AE1m/KgOe0WcxfBBlxdv9jaJSRtwXECoaL6NLnm3XG3Q4j81lJ/wuMdodTBEtpaXWV0MvG5GFZTmi+W+KKhm6mRW1a5t1oOR+WWQTl8q66xrelRDxFrL7qurSXbvFmYAl8FsUD9xl/j7XPk+0iKjLvH2wpfmbKTjRNoKSyi+Kgcbd6vAJzq72jQJ8N1SZYvvPygzFI9O8McMeovz6qWkMXKZL3Ia2H2beQGJRM98t2/+nTCWWh2BuhgGibADkntJO1JHML4OWv16o0MnDpcSPk5s2H2u2oQKnTblYAn1D7LqpZrH/xu/PRlqGMxtT4yucOkpwdL/S1eNaty0pMmqdUtkuYDYv4uqUAuY2Zg+pd1uuWvhqT0Buehv5Dxz79lma++utqZFeqJ35OmECq1/lZtOXcHx9lT5I1y+A59ocD5t2/tl3DzQngXpzJgq5jxBhFgkXzWyCB+A5WtXqxCSRQPB8nDB/Noxz+bvUP7zIGZ6tbP2ui1+GzsXkr5hdvVDIitJShYfoIywT2C6R0YKkI65dqmqj9aNST7m0CLtTnL13qqdnR9rSDaUpYrBxlsS+L6IgxeSrSxbTc/3eTsfECt7iQYRxNMRjrkwCqbKVLO6dXYT4Ri/X/KsRKKspJEC+jiEbPfcQ93g9n+kFQpIDCZ+qa3Ps/q0QhqF7ol5bCCDeZUpNMMY7MPbmyyT2/epo5/Fg4K7r3U6u8LCOA1dF3ksWpGv5HFV2ZeVew+P7F1Uwa9FHeHtBe9GKW+KqeD4u+FVlIvSSwoPan9FylxaSdX/tfSpJXgZfpOgDPMiKFIxHZhKkyh9Bl7kCtOuB3UlYyuRwmUgmNPY+c9b6VUyBD/F/PKTo0KHuuBw6cFxrOE8oXoMsF1ldvq0lkoG2vigdEP4NmGaO031jFqDxFpUUJ0IB4J3se1CuxGKMgLn054uXmY/FJ5YEJh/qBC6AjdtGjn279S8FiMsCI1z29TD/faWR8Hir6OMeXs7VQBuDJ997JSa0VOz5Jmr95+bwQDlWUPCjN+cvSabxK5GF8PQopwuAnGr1Dzc60CnlylIbiR62S/03AaxpkwC4OvDloaaQpdZ+GQ6OwbhCl4BHQeYs/2mV9lP4eQ2VuJk2aIGNyACtddQ/GFKUdxKgNnrVuerifQh4DAREn9Cye+YJZYWVRT319uGIFT721GzvGK3mNE6jA8Pck5ox1HGKcUIYnI7kFdinB3CZP0xoy+fU592/17J3fd6KcDNdXLdwHPcNh55d3voUQ4gdOFfgWW3US4k0gl/d5GpHBicJKz/8U7iz5cQq3COLf065IAEO8HQHwcop/6W6XxTsWhPcgyqeumWtoExLr319HvSHP1eomi7ankzKZIDgl8HM/qm2+mf0jVqhDXl9sPxeD6KI2Tqy6wf5vBkAoKVreAnB7ynnYwv2ArNFDOvqOUl87j+157uqqVwWDeV4lKUyy5G8dD0KOc1vi1O+QF0s2xVFzUrM19je/4PY6YT0UePiCyE+dlOBzcl0R2CcXia8KIR8wR7/cI4h0uGDb4UJ6Jm1A4zQ6VV/8MFKr9Jr8SthzdBqV/ka6XzhG3/kFgaq2eNOY8lPZjEBa5ozbPvIF1viIrp8cajENy8guURd6OUoWd5cXz/X5o5k+p6JN7VpCPMgzRf9SDcM58YnbCF2c/KlSI60MPRsUrStiUaN/li3kzflS7v0PaWFq1QdaFDA3MVdq1a98g+VykEP3suGHZZl2lu6O6Vx5aWckgCeUYOR6fIk0EAa3GCWZ1FSHNvRiY72KLvDr9mhJ4wFxXrEKJO9iVdxEeLQj5DxxVt+kQdHdeoQG7QwWkdp4KkcfUx9/jTMpRU9TkQdO78lo2PmJWmCdAZkyrGGyjLLMPsf2QeT/c1gG1nnhCN9pIHUSyPl5ULObTcQc1ikiQAePPszOlVTCet39E29YhxV8VeEs/PvqTX5H9deKOP7PGz6wMK2ukjwLirpUzAhF9ybEanXX9oY9bS9cRsqNYdrMZ2BYRRlSJaKkOkiZdt0EEwjUqX7la057qKTGbOibWG+isi08NImrpokiUeCwLvvEPPLxc3IgSGaXwWUjyQC8evM/Nn8yEC1/7i+BXOmQSX8bTVHoOFw41nAxF/1xl6OrQvwsntb6uDJx6MFP3E1YCdf1iUFelNh2A1ON2BA8V165/x1C/v60RB25sOtJXmZKLgGesVljeKeq0rvpmXJdwc7p5wmz4+Gj83jr065t4UJyTaZYVY+YUhYvONjml8O6JziQNbEIv5YE2GtoNHq4CqYTyUJVvdYQvZHqaRtcG8l7pKHURDoaVkwcfwbmRxmOHA0ZoP77L9hnyEQe7cRf9bEJBuh/BDqNjkVskVkk/5bZL/JD+jgwYQd+5LgkZ/wL/MIqvR4TSRG8kXhpgb1XjXaqcSvIqDc8uL6HNyuBWtoUAj1p02TYy4iTLR4tKHU8iiCaNN2NTID7G8YG5MAxbBE8hnJPx2ZQZWe3N5Nb9rTY33cLN3eyP4MOv9hJxGCa+KItFpgRwe+Xd5rWZO+br8kM9QF78QtV5II3ZpcJaUbcgljcSXO6UTW27t3NRNTk66611ljwZsl55THUdrhHSN2rQ/FfVHCgUbQLG2P2L9SOJTuMwMDUZArA8jEV19CNPAwp7ZOIDciCK9PKMlNZhUtKMSKYYVT3NTnT9sBUTz5NEwjWFbIrd0uxOLiFfOZzaLQAPIb/HYNCKhS57tvwT/MrP/W0WfC35AhRjx1MkfeFzhpOAeyB7nVGABEWu9rhax2UX0eEq/2+MxXjzYPvexfFc5Pv98io9ewLI2sZ5wQ1z1POzWMXYaGDImD9NBto4eoAq+EmxEM+nouAGTEFeUKokAb8KYh40logVmB3Rlg2igOQSPyM6duDXSYt7kSD+Iwnji6OVTMOu29ufgRxipnYZDTMbzv3pp49Zd1/9ovMy+IM38SRMy7/RyqhCMnUUmz8xApCelg036GqG/X7CPYKu8uY3Yo5GZx3y0DiCUU+PWb0kXEkC6eI7Lea640li0VyP2tEp27tXKbh7gKcrDxA/a+L6ZuUAUSQoX9SaImEOyVA7t7G+R+DrwAf37RZikyjBDlxhXh/3MByj3BgnqpmTT4JjU86/saJ9mhfqcKzw6YrAIKHSvu2DKjNuHv4PzF5ULCQ0lEoJVZsf6GaAxJq66uY8TRh1zktct3FpK0wJcFK2xtnZGVC9uIK1Zx/SuFnPo0/M7i3+AqcWWrfj26qQYjf3bIHFIuU/BCvsfqKqjgwzkd2uImzFLkkIUStqmJ26K63c7JIgEL7MJNR4kEy2BLzKfDuOLPOkOFRAmatv1AG+70P6xm4muQ6b/pKFhj6FK4iFGkhbvCTPRkqzE1qH4x15H4KNkUICWSiiVY2Co+UmPvCLxQmiok2gjzhCEsEYdejP78ap8xxdULCBofs4dO3MNl47zOHWYJaxoV3EbFh7vOoAPv5vV4Y8OLgcBW1U8slIFwe99olRfSzGbrdnoj9OqPLmEpcMnZp+B1fm9eJraTXCXTmqKGt6SsGqEmpaG5AQoucwxvVvd/hHTqWKRJRrqc/sJsWZuU7DRldCrNYu5kTIKdYrBqZRRVuRnwllJBvgg2zK0FuDA0G1M9Nmy9+yR7uTLzKj08RYXAYqg67n1S/UbQHxPWPsJkq8v4OaREfb5yuzh5drrctFQwF4Cv9sVRntx95OeHZnqUKSOwqbgIBz6QUStnE7SomqkkwKXv7efFY9IOA3++nbIzgZ9/oMv/0W83T4QTt4FEmbrFeYoLCGBT0kdUA+WhOZVPQexRf/uzakYXobZdswLhN4mqLJvb09BGK4nKTIf3GJIDUohZyt8wyBS55TcMeRdQPWvt97axrhB5sEZgfd6HdNzm1Vt7Jbr5WKGxP/x+OJ+z6igVIxWMbR5ra3pt0IgGREa0QP5vQOFFqEU4nX18qqJ8Nha8diLXAsGhYdjvi/wOKCW3ca6XIQelTPkIya7myMZ0eefa28P+Wsa3BDpKOmYwZfpLCSBwSJYYKLK8dwQiLdb1ZowI7fTLICtDW+h48aBc4jb/hgkL+hRBgmwfgmYrKi2PzaRSRaqUhxMCWpj/0fPLF4i+5XPlJuBuiF+/XDE3j/Fm18leXY5s6aaUJolm+1dIFqP2vDup0xEv9q3D/J75eEGhw+U0FIbefi7Wkzv2j7RdPXJ3lqdoBYnh7f1Hf+lVvdgJkbtMGFAbtBRu5yq+rujYyLnYsvY//Dt3C5izG62xl7BnEaT/Ifg34ecHUA/BrafbAv8hH6Lq4bKRmX4LmzWHcvXC0MC5O4BKJH0o6x6LbqxFK/aliZhHSco73KChiRswd76fOT2PrnNsO4655BGboAVV7SIF1KcK3Vjq7EHOBJoSfZ3xvTBP6y2i5PU/dU1Pw4TpNii/RTEvwuLRFp3NPGME3CiMoQBuIDoUprAsCYg5iO93RajWh4yfY3t9Z5jpiGDilWQm0v7Te/hQWwuokZ5+bQ5WMV2y2D5PRXdGCQuwNVHn6D2s3ct8H61tD7MBCUgYNimz+LsWPJdvtq5kxZOovjE/yFHGHxAYg6fTx8ADWgXDAx7yqePNhsp17cgE6XYghSpcLSjjU7KW3iAIjyc7zPpEn6MS4DzjC9gfEjt/jS8rLWwuczQp4+j8wCjRMOodtdXoCreFJD33B1vdEQcnhd7hrAHjnybrPn21zjylmF2r5cbugbgBQyhH8yUn4uyDG5EYg3kMW8hy2PkycfcdR/F/iUzrqS2JC8RG/6fpDSN+X07k87I9ogRYdzVhxlMLrv8Bk8uoITZ95w1bZnGBiSL+Jz+6r6r+MPFSDBg599bh9U8+nPM5clrtFAqd3o6cnDWNjXE0IrEPIeR8WmvYRn+URBssFv5wL5/GudCFgCfpCKOrmQggy6JPNP8V1Bg/2NhMIF9B3zF5hz3Nd3q+JWaoXMNhw1qaFgkhWR04sHG/VApc2uLgQ560Hkl2toR5s7iIKLtZ861AloG4gRnKl+yBfjt/iNDVJDgvRAWA2PpdNwSshvhqNp7xSWqtXXN83REj7mllIsrTRSbIWUZDcjOodH+ZWp2rhPs+TFUPMUjve9eCkWigr0YelwnShqXcsfonnFsGGblemzo7t0EbgBsWwECce8O0cy2nI6ZOZCTQJpUJmZulWkaXGTPOKOrqQ24PlKrTQBf/Nrp39D7kDFqsOLJ7W4EISnyVvQ/4Hl3/ops22VY8RXl6+rw94rgf2XWPpbCgfwTfM8Zx3eVfJ9iNY5nt+1sxqX5mQxu+lnehHlKkC7aPDV0O96jX/XtyXwlss6Uqtv78+ku4gDYGhnQlQzdieetAZ0dAYOzSzJefu5JAvO8NCeU2m5qmN7isL0fGXNly4zRyDn0LNshPBFLfiVADknbt+Rs5bEZwb9P1IQJuhowDq0tynKAJzkxRiaPiGcFovWzqmufQ/65vSt39N0I6EnRuGbcHj3U9GJ7Oe7HVnQU9uGiXS89slkH8UkH9K3d2f5B+WLsfcEStdQeHoCcoRy/gZHfS4AV7G9Ahw1ue/IEde04AXxCixkcMnnoZ5j+CEpibXef0WxrQfZO87VzvesKtySUXSY6ZX1OdcAxXA76Mfm9IsBg0iCot9anZK23u4WugOKQEvWs3dPZ0EDkpzCdhw5Z0ijJYAVli0BXoVXSXE4+0MVPrcq0lN/diaOw5qocFXnmQdSpErkW2/aOydR/43OGO+1K1D2MbutvGn2Qt8OFa2fc1B4W7Hs57FT6wlYIyYM+7etfxIjtQai3qT8xUd8raFA3/JyWNZEKgEfRdcJGfHFAQXjauA8bZ8tQoUn/Kt0oIP7qbNU6gD/h58mNOO9Z6lP5CukqGlkKqqUJjjeXAY/tTzTjcWw6g8w9vqY0E549xWp0aiOeH0LGG9pTlTNTQWFTg1hILhk3c0xqqIEM/zeVYfGId8LooZUL2Dxcx+MdJdpoPYaru69BWlCvcFZ6Tmgtn3fQkQjuwVbIBG9u8mNL42W0qQ8vwqU9IQpba/C0gvYGUoDgwwrI1Uc5Xp8A9Y1FO78DHtFVkMLPuGuEEv9dumutJmCFVrlzUotrQztK2HudN5eDV+62vKDqMkK+slYWeow++snicrylCbm9JYbSqBPzngv63IAubtltnVAJa/T7rkMBQbB0GvqEvJ9mGsQDFomhMy9cQGeoPeBR37C97DYkezNUxuUj2tMRffmmGRp5xFjlITcoKngJlAl9gjbmw/Nw9KKk0IYxnyX4aJC7l1FcYqDHi3XDDL1kI7LTovXbKWqMleksqySrMzuBLK+3YepkAYR5tJW+p5s9LkUGjyx3GiM/t264EsC9XvEuqDgRBlhz3YNoVZ56hOx+iM/q/edMYUs0on4lXIgCCKRPFCCRooCfsWrhz1ljiX2GzHdTVIbOzTbgGG075Qzv64xkZjSqMCqdoR5DhUs7gbvdJ8LoMXBYzUhaLsWwy5XJXSiQ+bK5XoNrjowxnhuFU9ij4Z+3tbguUTR6PcuT3kfY8LgzZFgmkFde6Tw7rnZq9pGTaN5zRR0H90XJl+/sAr2CD8WjhGN86UPhtKQorNzUnYnRV//h0+/dyJYH7Cw44dhlgDYFaaCUFJ93nMI/TT3woJQdforvWijN23hn38p+demDm0ryUGXmJ5Di6NMeYRZ8sImNcJeEspGqj+3Y0XaJOxikPaYKlqqk89gWqNwPwsrptJtgDJ2REU4nPq7cVyWGU0cJt5iiaqk3zsDzuhQ5HJ03IHmM=
Variant 5
DifficultyLevel
410
Question
Only one of the following number sentences is equal to 6.
Which number sentence is it?
Worked Solution
|
|
(5×5+5)÷5 |
= (25+5)÷5 |
|
= 30÷5 (order of operations) |
|
= 6 |
∴ The correct number sentence is (5×5+5)÷5.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
Only one of the following number sentences is equal to 6.
Which number sentence is it? |
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= $(25 + 5) \div 5$|
||= $30 \div 5$ (order of operations)|
||= 6|
$\therefore$ The correct number sentence is {{{correctAnswer}}}.
|
correctAnswer | $(5 \times 5 + 5) \div 5$ |
Answers
Is Correct? | Answer |
✓ | (5×5+5)÷5 |
x | (5×5−5)÷5 |
x | 5×5+5÷5 |
x | 5×5−5÷5 |