50035
U2FsdGVkX19zZBfkOvw2FCdFk7SrLjhGnqVHx0tKPiZSRs5vmvpONMYLpcAqmk8m0T8xYyr5/SVgTHjRvnq6B7G16H2LactJKLWQgqWwHrm1wyAZCL4CZon92u59eOHTDdQOOdtSORSdaPFrzGoY8ZohiXNrAILhxA8Lhombw3+WKw5qlfQWKx5ay8L6xYcnM9wzMg/lS8hhayDJhBjk3gRglkxcRHzz7ifaEH42uvFEWkRU+2jlOU/KgJWh7JXW+BZqPfjUZ1Wshmwx7G3Rb+jM8N54DhqIetnk5GwyqNiVSNDOSsdPzrhH6zsBt6GLzHJ49lsBQqAxC/SflLlo18sClxu/NLbgPn38Ou9iCh5o7inW5QM6sszCSDehDmoQLaOayBdhFL6ae0Oo+qzx/tRld2Rasru/A2sPzmoBU7IJHXQaYNpnprP4LaK0CNGZ/fjHbeSvy+Padsic0cDIIUoQUVvzHq8Ku+0/uFfvyBtscZD0Tu0Y3aAvyYIieMqbOBeUs3SIGitLp9i9JQLbyO+SDpcSZMOzDn1JHNINQt3hJE0U+dxvYtrErykJIRuK9vrqUu9aOWYTCjA1hqsRFoMpwcKoCDvLxTewofim7ZGVbIQSjH9IGO/B2mVKyjv5BnG/C/Ft+24u7xGXdczvdMhgJYch7w3foQHT+UIaJn48bv+hn5ZLiM+Kw4uUGKPMq9pbNioObCX+PSjfCGfTrYVzvBANqdvjCNUyvxMTzgM5Jwkjcr0ZSKcQduGTEKQu2gUmSd4FBQfdQXMLQ9GofmZYhM/13DGVm5FbHqqD5zZ1mRi506iRsTV3HSTuSsotXgWj9e/g+cvM2AuwdSBp6rEeu4+nnu+RtAC+vncYBwgCnb4pAQBxiKdxPkZm2oxwKryBBq7PoTRo3GugKXFSpYK7oFn5u3wQjX3/JNIrpTgipVJ9iO6xR9uJJTRPDfljsTtHrE2ifa1piRJdXdHcjp3z3NLc0Da6Eq/VATONJKkjTCRlVWe1F2KooHbd1y1yU1FACkoqYPSkwy2LDs2stigNNby/x6koKjOULnHM1LYkcZ91D/RQBRA+ttd5No86hnibticU5t8kGvUjEl2ex+TwVMLDoK3R29JeWJ0V4lBdH9knDk5+tcO04W5saJQaknmNLZ6OvGobmNx1LBa46bj9XbU6+j9UEqqOtOh8hMo1n7D0/3kCXOGTcaAzYMlk/awh9zvTa/MUMdeZxHiw/FkLv2A/oUyRbmaFAvLH2m8dkHWHPIHg/UXj66aW8v80Hcfc/ut/fs/0owReYUkoBR4S/GLTZ23TtxjWOEA2LQFn2jlgkaJiyrP7hEYfgaa2Q+XV/aQa0mU53ykFk4C+azdar9sho6Vb8a6PaztnODcEhCha0XICnu6hg5/3FtUI0H5IiR22U6JAEJVY1xmtWhoGaP0Z4StPSgyynHN5Vobc6r7Cf7tyA/eLw0G4Gr4DjIwOw5g/047y2vdCVVpXmdibmDFChaB13jh/G3GarJrJhxv7/m3Z7VYks0g8hhQqKDJhf4BMFh5V0p9aY1+8hppbuduLqodAoimiae1tz3Ft7ViaERjCVhxE7UzJWw2QZMp8nvfE4iyGDjJ/nIgGnpl/SSouZ70HMcdZjDGms95uCUZINWi9zJ21g9qWtXxTv5GyqO09qs3c6IpgdjsOdO4VfDGcZiUwq878MOGIf1TqgqTYhIH5Y+Ww8vtzIeH61MHkD5uD7mJEWUiIkZbw3bJX9rw9ghz3+gSA3fdkNxa2aS5uWCuBlcnbrXWPZoozzvPh0zy0NEYtqq51ouY47PpR0txgn3nSQ3mb/ncR9uY2vcF1MOpy+9oo5+DaU3iS06awrFJAPoHWVOFwnMyacEDU9R5xOIQPtrR0W81qv8deoKUnFIszR2Q5f9f3d5uqm8boUwq6CXK1hdUf9+jawaSiihAIr7Z1jjKIk5JOlrKekarfA4lNBSwbLyNoO6dJyVaByigGBN6NyTK2hQ87xVc1EGIT4daX2+kBZe6EkZG/TvOJRqTQoED/4ClD92w4fBQJ1dw+EhACCvIkCi5IzGHaw2n6lOR1RQp10LSe12D+2JT9ZxUi2iDoWK6+9jQmc78i8moh4lxvJDDumGDSbrVNY727HpbF8tw0YXZs9Ue9ktqeWl4pORxXbH4Pw4Q5Cv5+ELsUIVY0Fx0b7+k/59OpbcpEwzIAlnXC5+H2fYCfPyRxSKySLL++unhp0Nmjkpx/5GI0ShecxVdQhWZ6Kl1xq5F1fFwc3lR2zM2Xwck1s1zcNcVIU8/P24Q4gUu5LVqCSe0do3GcsWNwA5lspdmzpa2UgvAxb+PHkDMbVty3OrQIUWfbk2ONkVqzyUywRh/QxwNSafkEvmoSHlxiRIrg9QgqFplBw9xGXz+isdoWsn0afydyO3Kh+6/pFv9eVffcM060a30kPtChAkKzgJ+hQp0b+cV3scGVo4Ia9CJ8pvG7lax6HwtydjU6/o4hwQTsqGoy7ieMyCJMbC7n1BLtWZUV/uT7FITZEOi1KJUc+2JE1p4HtsM0G+JzMLQkz6Jgj8Xi1946k836J4T55FulIf8I1OQVoiDCy886X8pgA0GeVDK0urHD9PYRampcPbuQNulbhZtjFY9D0SZ0xL1D/Wzztw8UcQzC9mFKCGxXd8THlA6PAB2hf5qv5G/B+MJfgx1OOZUSoqCQm4WC2TimWKP4ujwadTYOmlsgtCgrZiAjlcsZe2k4MSw4vjIyEDjZNmR2nTUCP+TF6uUTOXIMB61DFutb9Ijs0k8/hRzWlVKF7HoEWLocKPu3jb3irjSkxgLM4bVNQIw0SofE6ZIHDkf30qMY1L8F5uTKvO1aVCfUiDjMffo0V9zd8v1tMmURtoWdLZAY9JPcusBtSW1rBLEwouKMXHSDbNyw7y9L+u+Lp5n+cNw4cilEovqhc14zByW5nyRAd3ny5I7Whg2bI+8GOuGnq6wZI8JYuPpAcUU0dlWX74dk+7lH2+TtCsON0LkFN5LbhO8Xgx7eI20HG4lDeFfy9enkbCrAONCd8c9rkI8z5NjyjhuX9tDb95cyTvXsVFlDMg6rXtWO07oMtUev91WFVS0BiMHGs7b3Nll6LV0hff/6p5LJXb734R3zM2nPkcsHYpIVaAUlGC2HSnpNBQAopAvKmwe1ILFN91pwHtHwZCUuXa4Nqk85WPAhUHpAZTvLICDySLphvs25levAStEuo1OfFhBb7n/ZDFTYj2+RElX5Bv5gQcX/UqHVJl2qpgK20LN8jfszf/uCHoZJMY0hz3n8CjgqFgc5iYPzB+vutN/PEqj5ojEYFHpB330A8Nw4zhIf6upOToEBecdOlwrYEAnhjJcizu8wSpt+uPOWW+JN8tJI7XRwRUGFHZG0zDPTeRquTYXvjk8MFw3n/HJUndpYX28o8FKwZgtZ9uhHzT8tWBwTRuVtKflH7ap8SGwljr1XD/VoVoAW8f9le1LmUI/5ceW96v3NmkUCRtiYEQei+IFuZNJ7Y0Uk2Xc6sdwX+TPEfFCABYA/+wnSE7HNZLeK7MvHIQT3u2opYBzchwlpckwxKjtaD/jQzqbZuVD3B/mxYNkXCyX8SsnNHmKFvOTwand+rQ1M26XJqxbKyEphFLhvB1bda2YB15ulp4KoqQE4XWaYB6DnuEML+EVFM6HtU4XZ/L9X3aokWbSWji/LwUicaO77/p/7d3UnmqVpE7Z2N4xnXrIfmlOVkntjct/LlWQimgvlPb6PTKhNiEZEIS/ywM/6V2Wy/dKzC6ZmnYtZCTAgVvq7Xrt4c2QIccF01nY4AffH3WW5GQKjHoQILsHptLwBmdtYaVEYQQuJprXyWg4KEQaQeMi4NsV42KiyBIQNC/YXXOrQNRJRfx+cT7UpbaLMyESlSRVS0AaZ3N7FD9RJ/wJ5i679hdwsBy4FAidCRFH0cFQukvcuUWN0ijz4aFqAXK02D2E9Jrh5UimspRCoRu6j+xeg36YpTaBaY6ZAtbAEHpidee0dWCRw7lX0QV5rkDZKm3z+30w96ZIUVYZrN6Ih+Ftx0cAyXv3A5/fruam9KuxORcxgaROgxlWA2iyR5qSGSy2oK3yFOYjQ57QB+FC9seFKlUcGexY7GDSxkiYZGsp/2hEU6X7iCzAE54EZNDTr8EM5LSQZHZbLPqEYt2N52i3pENPvW7YVQ2ksHGSPJhgjf0wQT8vf6nXg8sZk2h9XkuwuvECLAQ/Y/apSMuXOZ/gqYaCGEmfCG8eDsS75CELcCcqbT9BMi6vFm/hrrvvgkJ4yb0tJiNwDaysq2UD/opEi0gJYO8+rrni5DCipXDcoTEBsgoArizFLjrKQqWAPNyLZkVi1tmq4aidKOo1rh/3XTEflBwn3cj/mMuC/avdePVCidXDtdRp/mCGRES2qMoFqxAYPr34QRDfztcY8YHhAF8NdFD0xNVjnS8zb8KcYKxw9AMR9yhnm/nr3rkykTauaKE3NLyrTQcPNiCoPIJ7wDUh+20GmPCVXm2fawA3sjkn6ojBWLAjQjANZC+c8VjJC97PyJ+FjriYQEKK+OJ/rHPoCpZviI0diwWljKWIfyiflIww4DWfAq+8N3Le3ZsBhhkLuHqigRRG61Y9xLE04CkhfqVEA+2SMzV3lEPixkZp8QVI8oCvl+xMVVPkcNTHXe7zs1xBmRlWYv4/BTwutbhT+uuWqYogh+B/j/s6Y3f4Ih6vhnnyWJ4PfFvveqsMxDoImyyWdDdTn+ETEudFCFmqHshQH6ty8v4TCTJW7kkSDnBcEweMzXTHGipwkKuN2X9RqknaQ0UmmVvuqL6fa6uKW4yYt+iZ+zMU/zvcZLSxeuajB9V3LaqOp/BCGyGQoSEXQBpCTxTKzTFjOmCjRnHLaCJ5Is+3sY229aGWV+cTO5zKaeSAw2HIki+SrIkrt0QNjPnWQtB97782neU0i5ksWi67C0C1VYzdwqJqjODM4MJ6sdnkbyFY3+8LjXsrRzwATir4eQ8+UkzNYWHDKfMXER1zLKKR4gqtObr0Yh+o9Xv9ZgpvBA8PwIn3dJsJlkk6rpGno0JlHFAeJbNnLNgydLn48bF1yRMdvExeCbKJOCLkFSl5CPESe4RsRCotAROYzyAdK0kuECCJ4x3Iri34G+YzfbuRF/kZExiYEwTGA/7pEniYA4RknC0xBwPffKeQvEsLXljbDBkLRJmYJC4XR7fcyT06tC3nhu5exSQPyjnzTFvWlLqE9PjhQta/Mur5bD3JNEmKAWmE2a3HXW7kSuVkou3YD53a2iIN+SeUG3KcdINMOpDd62DpO1pMGwQAJQKmA9JKPC8mDNaRJVPGXyhBHVkbSG/ZXh3pXkQSj7kSKsurahfhYSZ4ihlEbXCKPUs2suY4/qjTS5id7PPv9bLI0JET7NXtzeGWB7JUfKvqs7oTqSKPdjAinmyU+4SphkkApa8s+WI3QO1h/v3nWVPpLXI8KqeACe0U9HTnGKpPIWROQWO7uXVOot51C11gmbkt2ebseLecryDZ+HUscAHEB+6k10VQL4zL2jp6RCdJafVoV7HEy7D1zk02OAs39HNBDmccBX4wiD8KCQf2w3FMImL94G9ctXUwZJG+PNhGuOlejGm+tNrG8HiJ6h/+GSI+WR6cqz/Bd2ZoT8BWAwUfGFSUoKHOLtzmF6d5Fh6ZrlV+xyL9dozAm7BviPvUAfLlXoWf/XxwaQdLSibylu6hhyPkZV7PcogRPr73TvApKw8dY5VJxA5ECrEB3zxioe8Tu/yAi/9XqSWsoo+djlUBTC+0T0aprdffB7E+IjQ6BXopj7Vd4Fj5wmLu7ul3zlADdjAZ5DApqpqkVTSrNEkQt5W3M4H4AyHPcFdKt1xnRIm9DMEy6EThVPO5+WHBU4JL+26lpVj/3QLys4+zTc+90iFfuzeZF74G8UMlaYW3kxoSIWZSgdSf73IUeX7FNPOL5NRBnqECeWuOQ/H9iOK62vYbyhoJ4DZA6yP4EahGLe9HJoQfpIrFBuUPy/Q0qzLkcg8Vv3bIG+5X7V1+HBmdaVE2nGXWl7LFZ6CWnlefFbX5uwmCKJwgn/f7J7A6kQp0aiP0F+d2YpTku+8iXRugl96BX3MXF/p/mN7BHhR/58E1Qphce/s2yAFBb4Ad4WXiUbQi8vm6tbkSYtXsAp74IhgQY0KnS3nBtmiPUHpwO2efsdzkyuONuyF16Z1L3rJYC7wX7WBNIt/Sv7620Zj3sKSyvbvIWK/O47T9g0axTUJssqSeGe1ce8Q1G3R2BOu/OZYxpB2rB81bKzzmMxcXC2xKLO+66XT2Bdjt7Md/YsAxhCk6ceqLrDlwVa0QHHYkqGjZVzxBZdGnpVX5C/muRCfzrnyZRCEvhJCw/sw8roUxarhbmdHuWSu2ufbBcqxDFrJWc80n+1oJZ6XeYsw3q3abFzdi38t8VV8vPgM1Pc1o2lv9XqUr7yMo3OFoY6CHrO1AwWjdUWWIram6uj8VYEJIcNRbcddSZPsnbsucomsNT+MjCSsD758ie83WRu9zQ1yuv0MEOCvF5h74hxUNYdyadWBTZnoSPYbUq+w/vQ/fwSqLPTYKvEoYuH0bgVQ5IL+x+SKNKgQAwJeuG1YnsQ8dOmMyqdOf/uO/aHRHniMruavOQYge/6/tA+3QWZIl/TijkeErDq3z/B/po71EU5uPc+BdzVDcVWHQlL70otVpV0aawJDreQ87Gcush5huCSLCC81P8RvG9+kMlOjsmW1VDhyIeKP736ZZ/0iZanSpPmKMxbo98wqZktnFGqoRWcYURw569arDobcsmffG2xnYsJpFdsNW/M8zh1H4Rkninswclm5hD2glFvBjihbrocdFtBgDRxNOXDAVRtwcswiaKZ8y4IydPmpWpQIEVtv6s6++7h7H3U89mVAZ2cM3DlEjmp9zPz9HLVJelpsgeipA+uDDMgo/D6Jf/fJAuW/aeHejjQxHncGk2g7shzFc1X95bwcWoNp7EYi3AqjwYst0H91QKFeGQx+ruwif9Bous6AZ9sbMHB9mLadYZKTF65+/ghRTcjSPz9KRh4yBIluWLVQJ4HN5AeICDt5L7fAFs17uOAhRnAW+5JohDWUfz/anZSRcgb92yQd8BVRKgoTF8lRSgKkZNJQ4/2UvvliSEP/TZ1cvq/TPX6yTUYDkURoH7VcUBUu/XKxyRkxg+7aPB0ZPDfzgeudsbjXixyyDaNrXbuF9IdX54kG+doyBFh47nJHWG9A4r6LBRtA6tEL9kPtr7t/sU0tyDwimfUfINP52RreR66G8gpakqR70C6dltNvsGTZ8tSEdV42I1+5CAN1PyuDZlmLvfnUAJNRuDyCGXjQGUv1ACAwniW1F7pSyIfigfz70h+n8ttqKgdEx33qIZZGqbmT9xwgxY3a66Kkq5/9G1JMcnguZywSvfxfk08kZkeNpOH0b4XCFQgJSZj7O5RAacumFPOTGQRtz2eOEj6hgT4IpnGpjJp3Jg57fcI99h55NhOds4RyqBgzIeaQKfLVaOFZaK6VZueIaT4dJnFqRH1Wb5Y6HybOhEwjPa1SHtF1Jm8jm7i2C/lVFWUbgPpmXF+0M8lUG0EHjycCy6tcYfpr7rdd3SOE559jg7RaGRNB1/4sbYuq3shtLZKk5k9D5GR3kEe7YllG/qhdthRm7A9K/nX/x8OghayyZPBrsJ7gg3U1hcB4EeCXdvlrmMog3OTRmAloBXdJdoZp2Ho69/5rjxGyxRxjGX/NM46JKOZ8tX94UCbx8KOQWVFD1R6ogE+YB4gjdTtrqXjW+g33Ag8VoflxXLAqboMVoC1oUECp8x2VVwfumYXWdajSxeTpzwjTgO0FelMJ5d37zKLnvK661YuVpk6osYBIMGNToKVS4s2+SxoxA3lSjJNZJUYyrQXJHc3go5dtsabxoBYuq6MniHqDped74QKIn83eloFND+oR92xMl6UiAVpw3cxY6vxWG/BRxky3mKMtO0ej6ixF61f97tQ3B09outkq3X6EB7o/DFRGgrdO4atIGVLYSDsiTdtATms3z/LVlVdcg2yNy+N3IXg9IbBy5D99lM1wTbN41wQ1e1gzpiOiVhrDy9GVN1dcdlxtRfejoo33al7t8q6fqcJfkznBRu0NTOCdgcE9djJwl3pny3qgDmpgOr3BDK3D84Arg6DJBRNer/koM1zxHTy7OLaLo8YMnFwoLnyDplEXSjeZ8eSpR/zMamBJQoCN4UbA6icLZuMkK4cExP5lig0zqnpdbBB2YyMqTYHYy5SbV5FpGRN7rYny5trtxS1xgEH0QCAiVmeLiYOrd0sijrYZ6UnaLYlHjckQyMm+nYiFCX+Mcn0ipk/ynZm03ogQgvTYHjE/C4JYT4emFk2cOXDOypp7NwUhBEtVgth3apxAcRwRv/n0HSQLOIRxLQdglwyoTSXZBI9hBeff6lxWMOrIjqn8MmNhuxHJbD+yFD6au4Lq3I7jgS/laoH93gIhHJvDQB6cE/ac7ah2bbtAWhLIHYKmJ/z8DlOfnAjI2kkS0+ja/j4Cdjxb8xoLtJSiSPiEuv7r2QNOzMevXiHjof8d/YHWz28/1TZVsnGdMe72WkTPIqJckFSQAmTtuWSqyaP9fxhR5y9cd9IdBjlBAMUVQgojveGCM6rSBPtlFw5nf6HG/I0MqnnX08CFsv+rljzHmCm+hfowncDE37E8WuXz4CDm7DLEey9/FdynMNCPPkmUtgUdAvyiaS90tEAuIW1N9/yWZeW1wOQ2ZDu0njIAEhdf/UbD7rmKALE/eIymp3n/U+qmzN3gv+mNUckyyVyW5d655UbEvzb3AsfcHZFFZo29USHLnPnLWRc7h45a7Kxs8l5vQpbqNaYq0OchqkTiDVzG+Nvod4CxBVRMrXKFWKknyN8dQ4e1LS528zry5Uul9192g28+kLHUI8oV3KVJUfoS4TtmSZCB9pr6nYbxv8gWsdw/474W5I5ILxLCUm62Z9dGmKagL+nU2JlFVQM2BsCoXY6bTWDZCq0KXOf/dfjtXGHGNviI0XQ4KjUmuIYLJjEr31obJNN3MuWPcs/jGrUXMKkd1Z8bJBIIfebw75TVQNreNP+dOlper1xGBydwwKMmboSClnnBP/PP1rADfooGcaXuF8P/yiRr0G5wzECB3tccqOGibdhXGts0KqurO8fYLDFDg/WaQcoG2tIos7taoMBN8ccj2J/JTGAGTGaMt8HBWBjZ7gGWqvwbNmO+I+tlfrGNdN3FsT1pQqfvfU/ADJEKazAikQg1mf139mJHwjvjWGs1FCWi0p3jsPNIB0LWOLrsbLitmn0eV+tE8n0ejQBm7sup7biKMGap002WwJSvLBGU9isZuRwE7ExnZe79sVpRI8dcvioBwUsSrsm+wZIJiwTWAZmDo+ImmHm2cbag+om+SspgfMj2VZKNJoJj9iU0f+uKYWUkolfp4QyK0av3o/H8GOTofEkqmy5RPv7CE7ONnSll93I1dr57MNrCK3ydmT0KIjbhJDR9p3SOe6nzF1u8ClgNthrUJkrE/pYQAzHauhyyXDZOz1uYG9s7VZoG/7lZQj1Xu6Xr2pI2IrsxLsKlAbS2lJRTA1r/V+YjuIlTo2fdO1VV8gYCymbZE5/k7CEMuyif8YThqMajmlzNPn4JYUmlpzUW3Zc8D3Ix02a9YzYDq/uTssChg7jeWbPAAZYS6/6ms+6Pf1ExNMXbvle7+Mvo5bFoeJo6mBbsRjyjSGBYEmZUXQ7GxBjK1DXhJ6zNy2SvRf3tU6eB3ZD0zlOIjQdRlBMElaNVgi9TT7h6pCw8buP53PiHPNvoPaKfl3br8V1EyfpZsF5Op7DZvLf4ptwxk1vcsdHYLjiC5ptKUphgFnzHSfQddqTXp1PuTDPWmNBWG+stRa/eFqh41+kizajiisCzTIwHU9fkppSjKZHjum0t9IQCa1vGaLbt6wBYtSIQEuEF4roEak2/EO0xzMLLFvXSJIjnKU/QkXTECBnr35JsKdo8gc5Zpuk8kSMHb05S16GpDD8FnhSFkReRt3rgEWfeIRoidEWNWGeMlYckMOl+qrtFrjp7ZBRZAn8xIDADVbaIFe3qTbkywXwN6VcdUJQoWy89NMEkJM+CZneWUPtdk8pR4Dq8JrG3hbsDl0IxwTMugcPGOe7azOBL4/oMH8j9qOUGpmyO5Uur5NWK+Su82hcs9LJsYkpAG3J4MI8+FJzeEXTA3QyAJH1NioSoVWTSdLD8SpecTdY4VzGPYEuRt1HlbBUCzZbCbXA8oqhg8ebWasfJCtsyFMOemBhxui3hkXXu7bwbYAiGHYGMimmQE/aEyA/vjLI2IshwVsof2rwUDCKeAODz/rVlhMpvSB4UeMUZ94BsQOg/T23RgDQDoTJ3QrB0UF30InSDSZlCTx7AOjEJUPWs4xjmX4t9qlPT4hi6VqJLEf4w6ULTXd7q7fak5Hy7GVUTVJdJ0wnSDvPFem9+9tXM0G4mhxrMchM1cUALYJbYY4Kh9GAOFdr5X2wmxoD7x6k6i7ZWn+qfQEtEjn3HbNR+8VyqeoRyqi7Yi6WEaLpeKtFpJOjjtYwXxaxlhRSvXkVFw7XOsQLDZux9AA9OD9QE5c2NZ3Bo+nfmuMY6PbNmONyQY0lI4sDqKIzVdiE+xFHgdz3xKUbQ++rY2zl5g9YZ10DwzlKbXVLPMtKMKeBYrKZWSJ5O8NBKDbmS4rfX7IITDRCD+sNvd+JSJ2gUlI92yJSvNjAGWOmEoIeuvmDO/Kk/A4Sxa9Y11th5w40jEpiIs1JPg0q/XZiCefRSJ4bB3w5FfdJhefXz/52d3GV8peikRo3UAckr+r8i3YO7X429Xt4tv3lRy7GN0fuQw72n93GFdFXtvguZlv1ZF9hcplSPBQBMpRIIFg4W70OLdL+djgGYkOm/NrJAXC5PRvDBEeb38xEe/MWTazaWCiT75UJ2JFiZ0WbDKLF8cGwUgaKSnyFy7PheUNxWolpdQiyUAeoUio889goIbihwWZ9ofakxugBrITi4AHA5bXJaRA5NSidwWlnpsp92pZ6ni6
Variant 0
DifficultyLevel
585
Question
Triangle ABC is an isosceles triangle.
What is the size of the angle ∠ABC ?
Worked Solution
Let x = ∠ABC = ∠BCA
(isosceles)
|
|
x + x + 65 |
= 180 |
2x |
= 115 |
∴x |
= 57.5° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $ABC$ is an isosceles triangle.
sm_img //teacher.smartermaths.com.au/wp-content/uploads/2016/12/naplan-2015-12mc.png 220 indent3 vpad
What is the size of the angle $\angle$$ABC$ ? |
workedSolution | sm_nogap Let $\large x$ = $\angle$$ABC$ = $\angle$$BCA$ ` ` (isosceles)
| | |
| -----------------------: | -------------------------------------------- |
| $\large x$ + $\large x$ + 65 | = 180 |
| 2$\large x$ | = 115 |
| $\therefore \large x$ | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/bYYY1Lv/O+IZr3jJ5lIyd6dAytXPzuPML/FEFkvk7P7YGhCdHZ3LcfUL5eQFPn/gfBYahYLubGB7Bh/+sXU46ig4BnKDTSVWQACSLPgO5wVRgtPCuFvV1uelTudCIzaKhT7TR64+utFniSKyQyTDbyQHNPPVcQ+EuRqRyLW/TUwjdgDEBv1q6eAU5u21CozsngcyviEqfYpIQIW0DoNz02y8TRpdagrRzho+tqYhJkUKsjqvZ4TBPO/soDOu2uqhgKJfgp/NzdFR7rncnrw8F3u+z41ZNG2QWVhdTBG/LzISISLawxiJXmyz89nmzrFofKX9teNzDIwCXys3d7CDy1wvDBiWUTs2Iysxsb6aHQC80BWlE47hMk8hcIFpY4vRbrnR3yL+ldzU3twh7Lre1iHmc3XLlIxRaEW5amlqAwnEmd+r8CZCLZCf2CJHzgixthJOhrGG+oagMPradskBSTGnxbHAIBHdIUPQciYk7y+/2+5nniubcYLaNMmIFmzesK74Sk12Yg7xYrRPJqSN+7dsQAFuG/Yp8pxsM2mW9y75RUoIPqc6DxtsQ6/XIOAiE2qxqPuXt0C5TD2xhMLXjpx+tnV+uOylf5WAd2HnaOpEl+4pF+dRTUAziQEKJcVL9w4zOVyo1xJPREWDKeAwfMvv/uPtf/wGXiVgsYlJ+NkndQSJYKawHr5P8TOh7bTs2gr+YSHloPrRRWDA7VnTtJuOl2iIqGVIswDFUr26LsZLtncecZmMdAyP2B8APEwvkQQfTzso6QW9RgpZTg2fFMJ7raRdNKInLI0z09scsoh2bfPBnGmUVsO7V94CyEvpBryGimRwhbqeZRvFaBLyF4Y7+UfXUtORC8bmEdIOGPJjwUP4YWgLJwGDdvLHJu1/1pR7bYTA0TVemCQG3eQgLi3V7/4li1aCMNhp80fjYzsEpP/ezedISQ2qBW5dvnVcGNAygOuTkD2ahdRvGaWFnRjodG4VMlQHX6jxeKanL4aabv0OHkLs1vZlxWYOum7H78J46ZY6/a/2UgR9RC+smhvPxgUuPlhUlqZ2pYPdUT38xWSM2+exS8ASUWxxyJs6hi2XZHOe7tpslsuxzu7HY1TVbUcxsjHiCMI8FZeHTZuSHStEWg1Uz+6iu7x//jCZYxVZpR5Celv6XsUHTQvfsw6FSa9Ijd8NPLVVpgcmHqvMwgiV7loc6mnd0kElsmYsVxtiGFRCpdQ2bh6lEBabW+QDALTaOCCNaZN5qRToTlH3JQqQjEq8yEsaWEhrYyYThIstldxNQOV3M4idRHHEpTUHS5Az8lmmjGG3Wrm6CokaQW1GG77KYnV/lBrm+uzwd/ijd3e26NmhHRDf8XbhCf5vuDfXwtobQINX2/dv5k199kCWquKX9AyktDjLWrM2fEzG2/6GVIoVIGI28oKjOOzIS6dcCASlBVuk6StobuU1eGAqFEsQUIJGVmBnT8U4AI0J2h1sJkD13T+kRQ0Kn6Xs1KIVL4DHGSnxpxrEMFJ1k8Jn9OG58jETCez+a0uuyqod+A/eyMhAfWfYNHOZaeqM12h1JBkdYWjBZmEUHLaX4B5Th0vbnBKCu6+aRqpXJ0utx+Bevj5eSQNw9A8Z2u7F8n3mVZ/YLGJWfHan2b3fUSM32excdqoB9+9tVycgHN+FVNotoGJA6kqYjWzUH/m26NpX0PkvjCi23vLxaQiGl4jYxA7yEmOe8kUOHQDWnZamTE1pzYaukluYJPcbYrP+bDaCZRIsPn46yGcoXNtDBRQ8pMYtndfg7In1sj2j8fPxfkZ5B0cGIIRl8sgmyq0nCxo5oXQvD6ll7ISA7WE0hUWL4PQCiKSh+GhZrPqLHIFsD613N+pk/jnfgATlDHOtY5MNfoWs+ZrO2cBADgQXknkLuEpyBg4XAj7AQfUUa1/Ntk7Ccws5OIp408d5ekkc1OCeWBoh2I/+GHY3TWUBNfLcytD8Eyn1o4xF9JRBn71gi4D36sCmN+u/UpZgdgUNzsjBK1JPLTRbAnXMypw51F0S6Gp/3aN/T4n2yL1Tp1DgXQaqrqdw4hnHQAPfvfH7ApsQ6p+Is6faHiyWekar121pwNICjGUonG06FA9hhKsgparakE9JFyvCFaTdsF06Qo1NLoc8eC4XGCGPMpQH9L+c+xIdKhHLi78jxGCHcnrdGiQbov0PsrlRwzPvXsdfUzf8Y5Tv/zazZB++L4Afvgsw1e6Ib9Z5iPhNQGsSKJ29apkPeZ6y7lt3+mQTLBst0304giuR6m+TbD3ps6yLgczT0R6FjRegkoDZS/6wCeLIayXnG2uWOPw4nmACjHwt08uR/PCp0YXVGBfiP40rih9uP/XbVa4DKCbIUCmQC6rWo6gZkNOIyvyiFdaFYC7jfWTYmDu4UZGcYi0qG9GQGuame9P5NOhQaKi9P+EM5D8hnFjXyGGEM3GOXFnAEu6dNxUYc+/68GCfRH6EpANcIHLV7ORvpOFs9PYoRW1qFQkXEAy8inwdcb0avqSE7mVFfTEOpc3R4ZHKCEZtW7XM16Mpx6aGWpBL0KaY0jc5jSPDKZDx/r2ZWYNFlXgYD0oaRMnxCYdLj9RsJmosoBge5DeoUywYr6nk4HLGFfTcsUWCyi2JaC2zjaSUWfUddBoRmNjs/auCm31el8FY9/AjpApjeNvLCLB91QvVw+XopuWDLw9s34kYfTS0F/TtOcM4G+W9pvI/NQ15qVF+NgcTn89MsBICQgtN7ktBJH0YhfHODfnmZ/MCWbIhmNA31G2+wlqbbGHpnja7/UjneIab5ifA85RS/Pc1yF8cA3NAeBYCfeXkw08Ddy9ObyivSgzvQhdgJKfab+SNcycG1XqeU60D9iLUdvEpkFA/fH9t87Ur3tqkJ/+giEKxgCF9alK4GEDBBlAZ/XA3PAFxPsorAcgnejw8rFG4h5Pqv4eqS4OoTjnTV9cqSLcEUnJ6kxvY3BBJtPWZDROxCt65Ht4tniYALPGw8RmfriAmJjgevMDa6Wpy9o0bSRA0QEelR5tOz9S4ZkMNI4iFTb/KDeaU5G7Bwj95Vd15RN7hPT9efemV+dx/Csoc1T7aKDWPYAydzYFHr1s56iK0hYLlEv1mYP7Z3JWB/Sw+5H0j60FKee5wL9UHy0+5SKDTmlZjIYOmtwD0yQtqfYm8SMqBpJ1JmDfTcnO4y20+DzjL8LtW+4JMQKvJ6ZTQZ6KcoXZ0goMfEP5aT4MHFoofk7CcsOJXmEaC4v9PxHB40qvQSEybZI/8eS5e5Al3g1EznK9tVSWS8gcbKKuF0I0QcX2D+CN2DnrtaKgUzIifxwEQHqqSyxbGMK6dn7qDvfTtge74430XPvRpLScsKq83V698LLRKVB3+8+BgMnANCPZhjqsjEkRxMkjhEBM9rNpDHOW1RJf0/sk/o5vVPcGwZO1cE9p4clitY+aZhSNH2frv2rek2oh1R3v+10B6PiNYn72V/YZ2aozHciYxnadnVd5mQk1eQMYk2QVjLW7B/MKff60HS0L3Hn83Xr3YS3XviVnUJZVzth2bWB5QexchC0zgXx9x7+TqfeQlmfAsNpbWKlQPqxNKOEJjyGqjuP6JCcDBJ79oqdy0QhHzTOY/QsHUXUDNGlCQdqK2ZfdfgNON5+Ln/Ia2DVCcHwCjwLYwPrCL6kInJn0BM+s/i7UW2NLC7LoqQyxcY9GFihj4V3mc2srrU+ij/ccVwA2eLG9o3POFHIDvW+5OZETl1bH3jKJBGSZ50XI3YZevFRpjfut1br8d8oojtg90q8X6WgVxoOqhCstfAktncIV+G1GOF3V3CIaPtsjno06MJRd3alnF5WgyGwapue/WKfvR5h9T57PbHk5daMU/21k4YguU2ryN6/LzfyWprEXemiz0vV/2YB/F+IxPvjW7O29Mp+gs+Zf/UOJZwd0MCPv2l0cNaYXG+nYRpNDLyG46M+vHHYaCZUfR0oQuLKi8orEMXpiamy/0o32AJoX193RKuP79D8Lw49RLPB1d4Z0KTu8np3SjfQpdIPRnjg7MP1GRhEuWVoSBtfhmi/LPfnHdJa3pp030/L/CYQip4dsYQxkmKC/VbZf5luen9Nvs+r8KdenhOkD//VXrhaoEW99oIBHYTReOHetTgtssqbSO3+6rnhu19BaskyokjQQW/VF/H9Hi8CwdHxcSPasofaK5tuvf/sHOtxIHCcHg0uiYshb0zjBvL1rsxGUkHkPHbhgWvW5P09knnz5vBqZTHDIR93c00D7ZgTc5GQ9Y103qnejbWUPwmhpUOYifuWVhnzSrL5ZOAcasqoDAOsl5Oeadlcw+UBBSbm8mR5NDFlBfBkXkiHt6OPx4Aiyxq0yqmAwfMmxYvW/9/i2UfZBK/fVSgYkYU12sqiU6w3U+LGeDh+s1X+I5jqpUEWA9nnAJ+2hFFfpW3I7QRWPHc2L0bFvkTnhhWw1pX4St81ZnjE+FkFXnN64SUVmE1OTiq9VRAeSM0Q1lpe6WuZg/mz7LXrap3pCUMDQKFWEO4mJiMDy2bl6W7P1LZyABsjqeXqCYjyqxAtnnyg72f5zK61b0G1b/F0NIURzU2pIJCEpvBoh9GP6XYK4ViL8Qc6L26Nvq0b2nAitYggaMA+jr2FVbw4l5GJwJO53MlsUh0pcO/lEhmUQXGEpyuyj5soEuvqWegN7F0TKh7JQ88XQk+LNExDUkN/1SrEf9XZU0FCIvwnOtrlla6G2s0pR9JK6kqGkkBgJrW1321YXQNKyXCaUmMYsCIaApbZpEYUilBLHQawUf1O9aMPtBacbi7QbOsUjd8cLP7uIXT1I4P9XAjE/j4bQvXSDERtZf1wFYF3bS1OwUlN8YbArhW66OATubl7Whr2pM1LCJUNFDHlkL04+E4iZaZS87yls9PQMv31M72SmY0vSIXsib2cUYpKwa1lajy/8LgOlqeIkl7laHJzTy1B3Ry4T4mCRF3jBFUmfjQVuAYZWzmR9e/a1wxrp0YyKVAnmQ/9lb1uEL+VCnEsk95W5iHAMmQ7wR/K4l+JM23KPB/nTmVzxIX9USvMScC6q3g6IbYcO8GZyRk96OltwgtFJ6clqlLv9k9+fLqJY/3fS0YPQYD9hFX5JowJ2LHk/Z6rvwBVN/RdoiOU6cFH3XIZrpmA4/iHfJxPWP9ZfyFZ0G6vky0PFB1JXXoXae3f+DXjoLAxRfYQDBHU8JuircmfDta0UGSnmsLZb0NAihedEHo2To41vhIg9RAt+o4+Ml0Gf736oImGhGVA1xLxZYUhd+Qs+cjXJR7GPzlVr7gQrb1mtjsM0R0Hbgt3Wgss8yXOu7OE6tmCs6fB2uqVMnHVGSErJORMpg0jt3/ml12jDrOf611PCLGx3g63GdbpWpKxmOU5elcY/bea5raVU/MentyAr4avzxYthNu+d+nTtOA9mJ5lJWZTVvtkJnZOMiTOAPkhS6wTPRsN+I+ZIuuHt0kbuEOEsLhWdpFzAPwEfKORjhZrLfnJITizPVnoBSvRgxbXAWQi65k/SFhRYbMDIm2WHB6OhMHTwj0cIystkztbH0uJONrS49Gg9PEWxAiOTirZ5EUJMIZATKIdDch4Uu/ELiVTA6fAqhInkyVAgaQydpwszrHrz28Q1aCrnfbYO9irn7iucsJ/x72kIK7R4OV77ra0w8W/OIU8Aok5QWPKmfvIOMhtnCBVDgthDDI3+ZH7iplAbjkibkIWmAFADA4D7/eIHaF1ue18SRJZbTXQBjBTj8/4ZQXUJEiC8xeWX87uVKRDCS5svk/Jmfc2UZAdFqz9A+V0RVmybai7jwk1F5oKxxnSuNhe+/9BZFQmKx9NjWE00Bc+kTyikDlUP1dZm8E7hoM2Ttgvlvw14zjbEpx6l6Rs7GIgTQY655BCcw4S+xaQ2rllHiyh5Oqpl530h+1dsvNPFcC03QyDTh0Xf7Ep64vJpG6Qid7UF89A3VhloA6+lIBdCPT3ycnDrgKNVTKOFdh5JP3V9Utde5d5FAp3nYVo5MYqzF/ej8LooUAwb86fdekZG3/Ifr1SGUdQV4fsKFZ10xpjZ0th6jgilBuGG+zHXydTxSt3K8foFTDJSGj73SIuUomVwec89MsABlZNFX44Gp1haL5xkLdjM9OvhQ4MEgQyKEYywlAOrQGmtGvr/MwvyoCRsU9CDiPVEnrKyBTrhX3H1StQrOUUGLBnXgscJysMFNVchPSvp6KtTmlMhhWLYK2/WwmWrQh6SKi0LlF6h4YG0xVfOzg0AcALDFD4Rtu+nKxEXCLS/Qpua/3QNvJh55j7BNncemf1TH+fgsdmbTVJHmywou1i9U3AQ4PISXP1+BqYOPf+i40Cp9rIotrJPaBbCPwmayQE1lBU73VI6dZl82N9h350YTrPHhmEH9mGDf1DbPC5I0TfRq3+woZZzkcs3uHre1ZA4hxdbAlUb7md5hWK+lyQFyVtQs+ZY+5G8zP1PL59wAvBFVjiIKbIATNapliD7lJ4S2CneWW7Rxjfl97tRl7NU2H6u4UwcfwKm3sUs9GHXx15ZxwW4/iPSBV4/a7dxwbsvhboz7l8UKxCrZDzCYnSyQL26euM9rdE+Xq8JQIC1YMyLxaDoY4lUkFg4i4GWPlVrKXGPd3sfAkSGZql4DmrFstUJXnOpqgWj05pBJSZF/DInOL2ysrCmJNgyevhGIuR5eR4bVwhojJEikNcLbn1YN0TED52qImC45olwBcAOdRoHQyiDTvNEwZzBqi8nETqhUk6+wdzzTFvQNDRa8ezJ7UbGuY0Gzv5Vee4OgvHoGsQbpogP9c62T5jfqIjG9pKzep88+mxTVAVkGUe8hONw9zHmOf09dvv/XK/GLxANHPKjvBItRsKnOyRsc85peFTc5ixfh2RmrtU964bIvHM7O2Z50DHf09JuZZ4had9pIOuNwwgsUcwijQ3pkquvmxpq7thT2YHn9vC4qQ2P/tV8qZsCNvHyl01JRzFIxZg/3hrB85BJzVYHY6UpLDtfZ7BJ9QbKkVsCutuKWFiHC07RukHjW+yt0ATibK4X0zcoW2c0yIfIJlvUYlIhTrR8scLMqgq8J6h5le1lMywcSx18BEcGvtd4u6G/gt9oyr9tKnPSuuIPaFezbumTmiJBqc3+IYhd82uCAlASd8P4NE+JB9CLQ/vUiXmFW0o3Mvmo7nRtJM8KD2rJsBgoKqitp95xESq1s4aK7MJUC9uU0Txh+PJRp5HavawHwf7YvjJYJL5gKNWfTcoGQg8X/ThPrF6vMruJ53MjNP2tjBdT0eUDIEf1TG1EPnO3SkAi+AH01NEJSKwXinMYISKmPfoLSQZuJfd/qqw8IW9YV95gGEmc1gqh1iA9ue9TinTVBvkXOvjSmSD+37OVkjf8Dic+76Fu4DZlNHB2EWXyByzCpl6StCBwQKmvkHOscU6pK1a12Le17XMiVplxtTpSONwgaP1iY4koDXZpnKtCKHnCFencEfNzUxaUwko3wHiDgN+C46zW++G4xRYTrgc3C04BGtJPHWL+734EkmlVI0CjhhLzyXEJS41ktkM65lkSAmGmyyv/RqeSPQH04XbWlqkaaLBEFTR+aEIl/4c4jTy9rwjDvtDV8r1LBgJz+Axe1zsa08L75XFjjDdkCCbhd/JWR08FwRRPYQNocWa3DhgSK3L9x9lOzRLxMlAfl2h9twm/pXy77PznU2MicL2KaX6QJ5KRoxPBjRR2R2DZK4kVEg9955tekFtFqxqk8DNY7lIjIbKne+8y6ns4nWkhvkMnygoeUB53cKw665Kvt9hk9BCNuXOiwbZkxmtS9NrqbaC3tsaTZGA7cqTabvXf2bJCYJ/3tSn7PFJyi7xYfOBrPFngYluSp/QKYwXW1uS64K+tkdpWTRwPO/EeOTlxRLWRUJt5Wo6s6FgieMLAgHYlgH05s4+HNdf/FOPAJzXokiEuBA2dJGgtIhLIwDsq4pMOmvKAZ1Pgt84dUqXTpZwVhj6b5l4GDmWQIqzDAm7/35m9O86KPUTyorLLSKWe/st5IKY6Kixx0XDs1YTvM6yqMplILAqAb0TzHSL/56PCq+RLoqRgS8IvqDYIdLP96W6ju4pqMSXU1fu7UkMy++DoirwWQ2G2aazSU2YNy/R2PJnV9PtXzB1wghF3xR5piWqob3gmG4mJ4j3xpzv3ctAOAz+Igaqj4nQ5AwX6z5gbjwAkFSfowHQEM1GZdP5DPy2nwx+8j9aKjMU6ZIx/W90HFjlS2AUfU/nZx5oSR1bC6Y/wsagl+XjFPq95U5MNx3+/A4mHqd8JhSEaYE2vWAkZkN4Yox5uXvWT24XvMc8qrYAQXNFwDl8Yrtyh2+Ej4WaSwCJrRo8c2Mp8FwwQSfvjcQZIIIkes3sx2JK8T3WrLgej5TNSPqJunxTJVAYHg+mxkwLe6Zwr+RnvmOtCPnDfikHlg2CQqAEyFjWs+svPJoKtRuOmOPegOwHa/Qu4coq7o8/izwdxdXBVeLLAN1fzzPZTn6PvdglJUe8bZMjJk8uri2Y2mfQ3kuaJ5TIdJNV0TCQsgfiuiu1CefCSPQbUJB+M6tPxocUedBbsYCfDXgXOm2Ef/EzhcXtm/NDH96FdwQbilrOzBCgTOT/GqKAeP8fhH156Xk8+98my369N7M8ihAC3rJic6SdYF600xrAbMAJ+h+mnX/BIZo/9iFn0MsyPutUPtO7FnrlhM0o4e7Rzaeb9m2nf+aGxCcR7Sd9Y4XFjLB1riKqoLjLJrF1JXypnMFt83meB6udIl4zWSS8LR86QpZ9phn7FKScWwWn0QZIQiR6n/ZMLqUM9y3mYDKmF9SDLrJJ5WDe9Cv4ynLATQWztDwUYUcoy8c/7mEJ8zLiGwa7vk0WBLWUxHD1v97fheIf2QbMwGCkjZI27+CCQv4wZJ5yWfxSaZ7w21hls+chRvWp2ro0b7WxY/Z2BsswvKbyBTh/TzOGt8LkHEoWB0t+FPC+ldqQ2q8CfWsXG8j04f2zqi2UAH78webBF0VPv6dOxZ00B1G1DmOoMsicZAeKRWdYGb8SQCJ/t3SosouW/UUtp9VDo22e/hEuIrVYWh8qDzfIuIur/vzK2WGPWe+FSGESVE7BfryhX58TXVrgzGTjQ9LjhThwnUOeYr2SVOhd/PyjjeUITvNsOHYGEeA/jppamS4oC0IXKnJFsB7xXoKzVNpKYi1jBuldN7c93fZszkiAcebvNt11zzvrEet36kuJ4Xnr3HYULMcSaMCR6y7H4ACsSHXmcL6VHlffacneta2LkoksBDyhveh+WlXRiLkWbbQOP2LP5sOcb6RVq8MM0+aQ/MIDAlmehRGQzNcK0dn/kCzF2cEYCPxRpskAokqzOsWqvkcXbdPkGMAvnKKMExUuOxKmz98P6qsokwcAr/Q+zh/qrodstvtW6NpXNiZNmkopcdE7hEcBC2jkHa1KtsTdgQtw+mXp4XUy3N+5L9QuCRZ4LGp0ScyQJ7o43Y50Hdcm6TAYHWucfYDznxjaXOUsw8EXVEWL5LzHRsG49xIw7M8SO8KGMLzsl2pnpWammL7BIvAYJBECfYHoXHItAQpviD3kpfnYv06Qp2XLdrgLgGRCvdSFtqDXFgVkuBWW8F65SsWfWuQi2EVbvPO3kUzyja235K7hP3l7VWmXJC1w+X/MDxToRH0VAxhiL9FMEK4pS63ELiRT3D6Mq4jlkJxH0StIQEp/Gf9TpMO5/znfr6IesWI/CrmLqtDMTP1xagVK0sGLUcCaTWdyqxwdDLHdGB3LmO19rGGAmtslkY5Ekd/IqowzNDYibAK76Gx5RfUg2u9aH7aFv0js9VAfBYeyCVIET/lT6mNq7xaozapHEX7eht4TzvSWcdWqIxt4ePr+qNbvPzWvveDq4X5B1rf49u3OPplRO3T70InHE8r0/E+neP5aM1b8/bcQTcyLB2uiHNlz/e+jC9v6XNLvD/kSCqpMB3uLJQ37bf5V0SKZoviDxI+d4uhmqsDCIKVLFmoiQqobm6mVfEMoU99VNl5zPxTJZXG/zrsYuOKMKfGz9VDMpaVAFOzACdTjdu0zn7N7lRgmUJC6TNTVkZpQFdYct0s1rECO/VSSG9BCS/gy7+m+7gPn+q4wvwaDXhzlZzfPLELMAceRfq7toeKpq8xcY6DL2TY7t85lIGbJqoey2j0i/SDMlmzAvv+DTp1dK0aKI2yB238y3kRfsN+tgDzLcpO5IovUnZZxMIa4hGoiNyWVKdocmjfst6Vh1YAFmfYK1RyLFM9pMUYYWSjjIdeojt1iFJfOEoH+I32mNxSyDyTNgX2x1arJ9u9K4y20TmYUMH7IgecuizWvb+iVonqOKW2kqYx3lUooBEWuYYF1bl2Ypoc5dXoIEjkrcm6QvfDN3UUHsDup7aiceDEgWZDUTsBnS0lSu5Wvc3w7yWWxKS4Tq9qQn1rf82nrs/VJ1GYWnlSVnTg2zo4osnlkRaxYXlUp/dcY52yxy3GPN0OOHl0xXgOBJ4JiEMKzM8f5Gxid8tLjqKToAZpxJ+xNaPyuNQK8BXx/ucLTzmS/0WyMMXaeQqgUj65MNBMHQjLjZKcSuQaFjuY+Sc2/31RWvwEQS7QvhuHRXEvs6xgTU9lky9O4L4Frlizif+joMpXT6pePtatJE3HOuOtS350AwFjYhFdGMak/nVPwVtM1ukgaIqE4GY9+3wwRToEyXuVFa0RWOerTvVzNXDuneid7ZJ6hvzB8tOnliRlbS/yBzZx/DAtbbgXqYqIJPWsSkjjkx44E/VE15OzabC6uJRcfpvj07/3lOiKwNUS7ZFr2ykkZD1WcekBeRjCgkrqBFqAe+bT76B+lun75I7pWu5blU4dDUjzmNNquXUoS4acOKs0q6XQmV5pC/wVO6XbsRG442Zgkj/yq+nU0RXuZqLSEkhK0UBYQo9Gv4zbN5h3p+CPglccWg4PlbSC+mrizKo5wSxHl14XMact1FIXOjMtOgHq7sw0Cgn8ssWokRTb93lhV/TdIYxnHUuV4Q==
Variant 1
DifficultyLevel
584
Question
Triangle ABC is an isosceles triangle.
What is the size of the angle ∠ABC ?
Worked Solution
Let x = ∠ABC = ∠BAC
(Base angles of an isosceles Δ equal)
|
|
2x + 40 |
= 180 |
2x |
= 140 |
∴x |
= 70° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $ABC$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_50035_v1.svg 200 indent3 vpad
What is the size of the angle $\angle$$ABC$ ? |
workedSolution | sm_nogap Let $\large x$ = $\angle$$ABC$ = $\angle$$BAC$ ` ` (Base angles of an isosceles $\Delta$ equal)
| | |
| -----------------------: | -------------------------------------------- |
| 2$\large x$ + 40 | = 180 |
| 2$\large x$ | = 140 |
| $\therefore \large x$ | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX190f1EtEk5e1jM2t7pWn6v7nag3cjHCuCaYVhcAEMOQsEfXGpXTf6ZHHltjmRVRcm5gwmqUjDiNcmoVuNWhW8LxC7uz4/CNHrwe765L+HBni7n4tE8QIomskGLvYrNDRPNeW+ogSn61sFdk9T0x+c8qqA3IpXWVjc6C1G2sfBVu7YsBI+Oj+ncSamnqz/rZHH6lVYX4ogCbmY6Dt8W2hiyrh0dwqTRcqe3PLQ4deP0ayItxE6oPWNiqhb70JN6iefh7fSlGH/UAjhg6bL8hr4xtlx2eHgw5S1Vg8oa7J3XJnA45HLd2UtIUznN2EG6KSBB/rAZoTwlkWwUHt6F9daVCn1yRoFRrXDKwvmzz3IbGWlt+VBhDm6hPVKajhEhZgIt501AhQX3s+POVZL2jG0wSTcRaT1DDJlKDiL0MaZKBVZ1a/4CoKk9MKq5bEDT8wjik+Xen+n2BXkC/AyH2y/1gQNyvSWByqYjkCbngypQmIVn+bnlxOi6N79VK2YYxUIUdt9HkORyZTtOXsLJ6RM2qRTPWVHZ1WXikDIJujBhOdmkmrZtHIImHuumYYnINYniWQONDY6VoNkzB5LRJ7a7jaX6U7xWPOh1eJcxbyO2P5OzxPgkTV039NZHtGktxHmxTJ3mdzgaYQIE9kYifvU1WUhEzU1X5CzzyEe5xH6otbY/Y2EhNP3Zlq73UBFWaDEsD0UOEniTJAAc30U/hk2ma9x8KKY4Me24/583pePq5xR2DYdd1AGGiBgdGBtWpK7Xv5v21EUQXH4Y50aTj7eSSGKPl1mCvzbATQTaExPUzKBuKa28GWDEQrSut/QJcvD2+YAywO7gNEjlEBFlPxinRaUzCIJXTpbgpp1J7auJc/TDK072n8l1C47+90EG6DMjusf+u6uJZn2kOe1EZYwTCekY33ht+j2pxiV8rka1p8IzZ8ZzK94jO/DfX4i7m9mF7X9lTcDht/8aXXdrAdQ/U8DIJcgeanjk+eofDoPsBihYAOcP3QULgmC0k5kJ47xmY/hNjoeMOyUlC42SstEUiG/EtqU3X7MAZoEBGyatckkUg5YSC5I0b9wiM82ZadK4aStsy+5wB8VyfdSnfb+Nd1n7WtCSOxNvv+VDWwH5h+snHyTgJ8EXb+djCIsYA2u0j4PqtekaAxm4HwHnKujqLnx51LyCd+tU5n4jZThNfAWdnxSLuOynJjFqaHzwLs83TVXOr8E7AY3X6drq7ltKXGoGnJFgsKT1uHf0JG1Y2xA+D/FrKtal4SynMLS2I/Gi/mikYQt79eO2nJr4kbFQc0v9dmwZBYwIwnxjJuUja5FTORqyBZ6Obyd7fBQE4UC87nIPMEA6A3WlR38R7uCPBGm1I6/NRcBBUgWFzkwq8y4M5NG7ELxj2k/yHLLsCvY4lUkiflbCQbJLvqy1qbql5+HcMSdmgDt3MJ6jCWeiEhq3T2RybtlZIWLq+PtQItcHAix9Q6mnVAeaoPHDpsrfwNamA7M+4IEdk5jvJXLXfWZ7RLEAHLsEFA4HB9i6Jn7dZy4+wDzoqB+uJVFcc1PEZuO5ooMF8geXNHwzkBVLdgwIQycWno7fS5/yte3KBP2EfczFiM56Y1VVz+D8vGcPwnSRhWviQiKPCqqsurAHkLsd08g33gOlTBKi9QgOrliegXZ6jnJLXyDAmQvA80uZi4iMfANvsLnHUYHcTOmkRcSAKL098y8uEgvosBHDaV/46KwIS60yTei6LOrjXzUrVBq0mHk8L8qK420hcPdwUvAz8cErUUpZZAyJ2lziqhSS+bLJ1dJTQBW4a8F3j0YGRkXhhVIPm8EXWJdJOc6Jbd090DHXXFpq5U085aOycKQq96SQzuaD48wz952NxWCHEmCaILSSPx5UdpVgIwMziesmMzvin+bB0NAj3gpjn1vq5yv+q2/qUj3hMbn+5NemUh+rTnFc5aZqk/xvjdRJtfpJCmBhnKnGm1hBcuJw4kdgODP8zxieBnMdE62bTl2g/2u2I+XUp+HyiYCUYZkqIOcdqzVyHPtme058INp5YLDiUKeqvxAbJKLMoGiejXNdeWSt0/QBfrh1k3jC7hxEjero8l2gUUex9zn0haLcWD3b8QzbNlex9a0b2FFiAi8V8ovWMerZyV+bpQjfwbUitFTEdy+1/+b/m3Vi2yXB1O/bLkT0S1doHbb+9xoun2RjFeTb7Q4Q/ZWnsNEaA3v4nd1nkV7nMf4US79VLfiBC/Owu+v/iUl/Fy7epVEhoYo2JU3jYuRC1eUFrKahzhsTxXXoKc/OCX+mnrrgX1CYC0/8SXAe4+zWA0zzfKb9r0vaaKzujjHhLBRgJvkveuO4MTcQ+RpiSA3pH0jT0nIU60DhdO1wXbtl/7KsmNQidrQCmwtZxLQmWBQw+0hzDTi3ZpqqflNTjAEXRw65tJ792PmfrIaHC0iQUrhclhD9TMXYmmP64wOOK6FHhxr+LdCdd3bwQtX8uu6oyml3ueAFLMjEoDEUeXRmAY1y0Hu1aEnM4tD4tQyByx1LM7UjByrffRyJDUNxVlNGfpdPaXQJTCxBDtAf/EW9kqBDWpkoEO/HVGzIfN/vdHOhXSYGm90DWhL5pIgsZSix7oYjk6Dh2F4E+ETuJaG5jw18de+m6YG9eRTSGggQguJvQe4xyxY1abk/s+IH6UQMqYsv4ZsGjY4KM9lGO5kkvTdAEMWrCt3O7ak2qF5BN0OqfrTxu9WUld/rLeOF0f3KoYbNUbqrOFniqt7kTD3hKScike7dSil0EgKJzhv0DV/qKnfWXxVOtmUwwO5DrAvBP5VhNYvVik0OtZoF2TgVJjgd6hKM/a2pwSrEopMXDw0Vz6X/FB2eCYSAPXawLNng5yR45F5Z1A3+555zyVhNH2/w143A9Y3poPGys5uGdz3YGZNPAWkql3vvjFhukbWR7APDngX9ODLKGSr9hT0T1k2tkrQD6pPHcd+6OBfS9R7/cQtEY1MlDxlpFf4vGI2FxEsvKA74KL6O+nnuBdsoWgQ24GVx7XQzmll0EcRS5cM9uQpPxt81kn4oyMsA/gSaM5wu/yzGUCPdlmXt/cHBfLAxlhYe0r/VxwZ0t9knzh6EdGgHEAGBSnNurX8di6lZOZDKLRju3Zff/WaLgdOD3QhkISphh/sYqqHEnO/XxmKBnMl5RjiGyiDzDTWyZTwgBnvqTZBAe5pF9fvSM6yYJa0NDOcqMQzYRD3dVg7D6UpIGtE2izdObG+K7+oXT/x/TFmotA0RZ3OJZ8OoAJgnt49xw0AtFBOsVq9pg8FwHQYl4pvOOuxZBoeXrq3bVE6VMbK6D1bNM8fzI6IPv4zA99avk3kURJH0fdT5WyaLZ3uZa9cGojZGedzdlGhcjtIFaJF3at7YSnwjicNDDYWThHg8f8N6bJJzXQYDAPkwa7f+0+JmFDlkJ7PIK+OxG/CS2M2sGvKsAXhvuRj5Hmrn/kMJl9NV46xYUjTVmfsOJBb+3VL/W5BcpdsYj/uCPldTCLh8VzOL5JLocOlh4LFLhxeYjSs+K88iqBBc+pUUpL1/3GuDfKGYdWjZBO10o5eBRou/UiGjNCCjWUoQdJq39DdM+9aq0eWJCDL4ZUoigs9hrhNgk2UShko0kn9LaWWS/plj2HNGENF1YYUxD5W//0YiYfV2RrRQ+keDcYP4wRedJ1rPY/CkHH3TlbUM0pRsJrMFK3cM+zspL42G7xojZRbI+tAF58o24keGcF+BZH8zAAjkcwjbVT3x4+Q0cNbXUkNWl0G6ZU0qnyAGNjxIG4Iyr7QuaTj3sTt6+hmcnSq/eIuOGg7/ODhwdoQ+SboA6ABIIta5GD3X7I2mOAuVIMlP5De8DkExdZ09mol9ie+PYuSM8H5i40Z38RGMCURVzImuckV9rPNiGRrr5fk9sM63s90JB9+hDru+yY5vMJmaWNAQRL7+fG/FX6SAj31qCypPTfkNIcwoYOiyQrmPQFgGA0WizGVQbrk5t1IE0FlOqSEqVyNW3kGRGSHBQbCiZ1ERELmW1GIZtm/SWbvwBnfQSduqos7PuGGVMkr5ptquS36cD7qiP6y8opdUmwMMdUE1578x+mHTPhdajtnI2cXNJ5WdntpNU+F73SBP35EEENBMzIIj4HlaZD5StnGVK2+hxosD1UqtYotShy3zHRFBc4jZzBC9tMrZYEgySEiLLuLyZyeqf2v0a5PXJVgB9eKUSA1JnADHKkBrTVRRlSodD4WnsJswjwfnoF2NHjhXz4X53Igd7aDrA5c8dJ66QESe357qUhuYPqFBRCJOxI6lWpQ/0xI0AgyN/y1yUVJRDQDg0uCqA1By+NvaWrJcxZkkettAcfxpQGXFtfT0zFqdf06Yw6ErRj/YW5e4phuNeZoQfqJHa9possOjbmYufqTc6m6rCnpn/3mslroUg5OBaKac74CNSCENXmOavvs2sUH8AU4DH2CfOH7Wy/hBgiY6tDJkwCpb14hugPVe7yPHDcAecoNjSJcCUNglTHIO5HpyvGPesWgtkl+XD/A7GZ9JzF7QmymBiYwTV6tZdofo8mfAIno8Edpp2G38RLuPBbtk5fcA8uocyUPiXVpR3//GEPsfhuLdnLlyQ5bUoo9wzOlx91sFt/PBoorzMcAqg4RS5/G/usww0F7ODcpZmggNp7Vo6Soz1mFA3p29T3t+nlzXVvJtoax+aVy2uMjAZWz7tk0DBVFzANttAKpa/urLMGnQ3Z0wrMcC0sqlhKBqc2kyaE4INPKhNPvefKBBeSWAtaaxgVtcK+bRLBQG88bPIkHpjrwhfKyI2tx/cXRKG1ckADOxfFQ1whjsXxlA/BlpsOdTYmjBDSd4LSPAVF/j7YI5WF3EsNbi4J20FzsyWj4JLKLKitJzlePFn2N6q5LZdaBmcORc/ShM3XNtlhbkc8nzxE4DPx97CXve5ld8bce1IkkuIn+6lCOM+jOY1UuXhEMGnDLO1HmCvw9o8MseV0/S3XooX9FkO7JyzM+GcfWXNj5Mx7vhGrfv2Z507kTCzcePHQQ67A5pe43bLLsJHKRTiErWgrKifqM+QIhhwNtmmglg7AjFv7qJwwc/fI3uCv3nH7lDntSRfUT8a6wIVnO0O+ezqEkFym7D1cfazLd8stXLCLAwG50ZyQDxB3qT9pEf/P+1FG8yp+63S5OXvaBbH65ClVnvU/HEcxBD6xFUTg39M5mvGPIv6oTrRCVDfaVix4k3pRPaMeXQx4kEb2QcBn+eJRBtygOGXB32/pbG97NOzWRrHO1nAprWI+BoDSNHlctbpGEul3P1wrcfviG9kt39OO7gB0DIEHK/fo/ab20E+dSEeuQhoz18o9lwXWd/jW7xpc/A+qlMKAzih0vz3odFN5tSji13vjnllXE0sGHUNG5RJpUMJy5a6xNrZAJGe4sjq+1VjQjY9NPJpGLJF40r0X6oV+LBi8oxyDr/I6+u+O+ROi4lNSd1wSTP4/eG1JNIZLBQztnfwXcnDirWBvd2y4JfE2r4gV7JKthaytVqycTVQAfZ3P1CQwuDQAWSF2DuyQigy4soG4WT640abT29xXAolL2P7w77bePb9LUXDtUaNAnXRuH4kdBbmHY0aarGbdtXixVXcq7Y4BI3dyYFPaJJJVzI/uzDtzrU+H2KLXw2HrAWSvwt04fcikY1gZeSXVZQ7bv8C8p06TWUm8FLPJWud04tqyOeo9J3fNLDNhZXfw1sBOT2dTdSzoReSAsrxAUqGleCZ1TpFAH2WlOz5EI2oYDbyuoPVc95o4MGikKYAPcEixBT/+L3JlmkmVtWnGU/jjFnWqqWABE51ACdgxHWgsqjSKqtzlGBuegozzfSeP5eMNLzIWh6KgKIPrX4umFoVK4JvmAoXeoN01UBtrUHMHUoJnIsu2knfWVV9LVvNB+O4xDLmuPVB5j7xrjhwJrp5hgKwGXO8stl4NQ4ozIezw/LV96Q6d6dKHBjlnJw/aGj2rapTyqt4m5kNDvE0mCKe6TdheG7XzKD0tC3DvygJrWQOsxazypFOA8d7aHqKxmenMtLWbUkhGhZ2xjc52AhyifoVMzxbwiUMBwPAGFMGaoz/rWdey8gdtPjZlGC4YkqUNXMzAzPCvGmjar0nU5bFwHnU/A9PE/MsDt13/euCKvGPIHxJQLowzkUpKwBv4kVvDo988Z5keL63IJHzM0NJ+YL9N9l5Q03fCrI4JkVK6VzsUUIHhjoagmxoyO64dEdc00xsw4E0Sm+b/Y18tncmmXA/2dHf7C9wbRySQtO8Ki41zcKM7mRIEgZnh6Fw/AZNg8vHT1HDDOUpoBnUEn3159WarslS49Eiuj9iIYEi+Z+vnBq4tdwbSYwTSdL5TGq+poJBJoPnNwZx6nnFmvpYaTZwqY13s1nKbb+nzMJszlzf6o+BQF2/dcMFG5KTOYRmLOUgXsudVgnNecOPVUaJWJkFv32lHJRr8qpaACvSd7FpV0zwigXixw56TXQRUBLcvdZ9fmzDVjuIiJ0Dl5xDEV1oG+v0N/OD0s7PcJF4o/9FLQhTQ9kzg2EyfGLjEODI8eZzVQgPlLhc5nfi6mPlmDpHyWIoTs8AtiGaYDGWIZazIXk7GglYEmbyV/yQdLGmcZE+aGJRvmLgTRbq1pK/Ej0+/HM0MszaXOQ5gzc5XVHiOHtftDSmC63bmA+cIBa2jecUXxEVu6WERhlAdCmsOCSt+/P4OBNHNAF7MJDJguhMU5zmiVdx6WE91+lfbEI8gCC6GNusUvWj9cSp7K7FYU1YGq02P7k2gV4XxX++KyggJbx6YI0Zwe1OxfrveVHFtKXbb6ZXxHFgPkB7Ml0Sd9Cnik0QUA6hTZLfxzxevKF9169udPoqHBYr9yroqilOUyOTezOSflYpYeN4D8pjt4GkQb819KhF88qEvhB9BxwawLzrE3y26xcxmetmPorqkUk5xE5ORvIxwn6qONrASwepAy5pWIZnUN5zj8PxswaFiVpwXR1HxZ1LnrJffBI6TYA7yMC2g5pkdLz0oZ3Y8OVc468fcL/2/u4bRR5D8wlODzvN0xe5y5LgS/ak68pIzXSXp5KPscCBTFV5Qvx/km6DiVuSiANouZd3swMVJiO2S1rKPeMjdXRN5PrTMyF5h4538sFO/R0uLAd3cKeyI2G5APtUDw5eBdfDHbPjfpk8abQv6FKNS/HM+gwsKU+VkL7CUyvoK0px2yBQkq382fe4rWjwo2OD6bq0vq1clNCeoI/Mp9TnYDq5r2UGEIqVU+69KSGQCQJ3MorIoMgYOaeMVDE7l8qMK3Mo5gY0Duyuhf8XVVGP+jSZ1rStEIRm7Z/8l0JRJj3Hd21jhKi67BNmUEW3B9ubKN/Ubi5V/OEdpzFmFZN/yUZpgxMPN9yEOlvdU8UKT1Ji15gPxT3YM2/0NwEK0n/MDtyK2CApEfymMnDJEBVrzsximDYvBUZ97h4dMgABEnwpCSg7ImwjdzjwBAKNKuCVNu4LiAKXCpSiqDYeTkQWgwi0gHxHqwr2CBt11/dB2FIiKJGwZWLHS5FsBu8i1KPVNZJdis+BFyD9q+0snWVOOmNnHQ3wKpbIuQvoXrjoN4SZhC5sjqztptAA8M6/EsGMO1SCLawwQtFv8iK0miQvWx8/IGjRYpifMO2HDpaKehCLzcMMoIVPANE/FffBWeFgSWBaZgR747teJK3bIuwtR9tcmfkvz0pO2V88AqoIN1PRYjDWvP4S/EaN5Nv6VUl43LCGc4Gnl+8j49RwpsXfXs8+YBeQ58205GFjP/mgfXziKkNWcdXB2QZdkSWTeHxMHoYCHsBxZE+1tMgX2l0cv/1ZaBjdU+xxntqRJlgiZscWBt5sKA1R61WG8UHlkAnMi2sDh6j53Lfuihmq3Df/0rGCPTSqgWCBagUSzECz+/EPsSgnGirrQzFORy6uwhU70/r/xNWJ6gpbwez7Smq411Sp/zgyWYOkDFMi+ukl2WIsyUldSwWMCGu81vgpNVgOnXB0IOGXdnV2sWSc0jMdLVtt3DnW158lF6uCY+6FJzPRDNAhigsHqwN32qVjGSvLDk79CgMRkezDZGxRbNUjke0CZ0+c6iFujtafceuv+eXCj2SDEoyzNN3ajMsiz2zk/Dm4P4QKiOr9d//PSAn1BTZ8yxmmXgFkMfSjLK0iFTAHwkzuDwQGrCQCLCO6UAaW2DQCb2Li7ugRM1hqyXUH/tXVGh2S81aQK8o3rV4q/nlebPQURvJDCOnknMsObc46YbDJ4Tkkr59aefT4TpiJhcYKPrSKAQPFlIe4bAF8EcKUzXqMGYiWzoGkDlFPCK/u8IbeFI52a8sFPxIE+26Ymr+vDxn0e/470Tr7p0FioGKMvRA58q+yv8gY/ZLYksd2D1BPrxNa7u+7rA1p9DOBJyKQRMKP2plnaN/8BJSE256MfTHDFEFMEFfwAtrx/bt25SjfuRMXb8TF0eEEpOnW3VPGpxWKUneGSpxfyQ4he4er5bIJnFKS/PZehuMqnvvwK256BB47pptya9EjdYzFxvk5f9yTtb/E3DTFYHhgEWD3tviOwAVtG4m3qhrGL4NCGdTR7h9J/r5bcMUNf7qh1mK7SQ3aw9yXIrwPybucC/UlocIaHsW2rTpOAplcQgJFESjO5IHgXaXo7ML+xeJmDFXnHDPXbANXziFysiElcoiaDEynhFXCVR6RsuLpFXl9dqcdzlpukgowwM9/NReAlKWE8MMov34jZ9SFuDc8OmaA5iVcofmEQ6RFL0NyHYCEpLzFx4xCPm1xhyv7KkX9nkZy1ycYcK409cAdbbeSz0aXcWdprccpZ39vgcyGmyAB5tEmWu0IBsxiEEXI/BxGbFDCRUPihlPkcwghG3ybayuz3HstrevkhMREiJCqs+PSw9tfe7zmTcHa8/P0nfFDTxhYebe9iY4OHQS8A5OfHqI6axJfadMmUmFZWdLve5QWM6aLsY97ot5zl4I7waTavAFIno/dfppZURv8fDHppaOrx7xOquwYeee+62IQWaeb7l/pn+wJW8HzM6GPlTtYr2H1klGX/Vs5eCb01b6zLBpqXuNyM/spEuOd6a99B6y3EmlLEy8+vWBuwxOmfSzhlWJlPpbyDrNeU+UxX5aoGM560S60scCyHTBrsPuvtFT5RZmVBHxA3fCj8DN7Y5DfHZukceZrosagcXKqOI4X5RrJ9nmX2MyfIKk4us6sd/chFESskTTgbxU3ktWHZ3YS1oeOV63OjdaNp91RMCWBQFQ2JTqHD7MA6LBPSBFIPj6B/GT5oDHZr34GTek71xkNwO4z/mYNch1EPZGclt773rVdYE7S6jooBoUkLFZPbY96n2jftcMh70v7koFAva+rYQeFA42SkdB729sLofQfE94C2uOCi+Rh+sxeFzj7hQ9nB3bakxYvi0x0MReFolPg8bWT35MYGAc/h8i40JVpdqWK00R2weeV4VSA04B6VQg9Fh5HZPUmvj1RVyDwTqrIYxshLbN7FEsiRw0dz7XQIfeRBsCd7xLiRoeq+KfT4Ojl/txxQK7vPwwX0j+8oBTGFj+MKYS3vRUR3WtkT3DDvhS0XS37konPNnxZxZd3YCkaKLC+NMvW3LY90yBJxLRl0G8RxdngfHNNhNPLdbivv+9JE1sHXqIPKeV8Wm8bsHtUEIkVzO0r9xfVsL9T23TuucunjjkhWazPb4H+ORWYSEmj5KphF6pRP9sRR7kDDhS3AmUpgXIJMsMgDJig4KKBFhrgMDUXH4SeASH8kmzPgCFARGFFx0mFNOJyKHLPQSa989qxdYM1JeYp9uuxHtAdtnaPp6Gd9Hohwm61YB0exEE05kylt6PDERDa22i5cWSzS9Rf7UEQ5xETNWZ7VmUttBjPMY4+dllnuXsvtqPDGNLr1NBuNBMvlWy4DA3aYYBKQbjpnBbr6Cm5KzFJD4DQeRbErpoTF8mfXsfUIDY1h1xzctgni54pyvPok+ZF1rxqoCtk+W7j4RN/s8iws8DjoK0FJc+HgfJ8oy8RcrGHJxwoJza/1SsWC+Mg8PjoZaVMNzls2V770zZV61jYopPK99Qcm3mb8gxTU97iRiUkheyhOpR9yZ85FuEcOIuG1WnlGdq+FT1j12C9B1blGX3I7P+pDS7LuqFf0f9ZDFenVwRlkoj3bA+qYN0syu9jx3zx/Uwgqs4Fpwmq35AssmiUaRsBdItTu9Jxbd29WE04ec5uYDPMoNs2C7zd0Pi63KSOyuLNBoqofEzhI/JKxWkEGXjoSZAVWj+y1WQrGWOdlgGMamCV4zeMxx4pUP2BTEdR2vrzGWOchIOUREYH7kGOcoikrUVZy1DGusdH0ge4CX0jFbyVA/FIL6GiQ/GDtqyDMNsG0dFiP7PbaC9REPz+R6Px8lzABqyC7+oVA5gvFim7DlKJqBJTTdSkOnI3lXumV+/B0+yeP9s45RobunO39EBlA4HGyN1rVkugT/PoDrRUe1WledYfV2YkY1svKYjwAaMWeaQF4pm7GYpKGT67mQvlEGntsOzvMvDRdYfpUfC4lH/IrVIDZc0g+fAqywvcjcDhW7p1Ki1Z5zScURKO2+egQdGI+WnkP/x1HZOmpTSL3e+UWwkU6w5NRXXPawn5hhS6gbkpG9oqrqVVmxBCLFFwO56PnJa/NK8QUHMlNdRnQmEYI1BZW3cpu4d0fRAyVnRV7pgR6ND1hu3c/4lUwFRGrp31NvDVHbz6uYNn4v1B06wVnQ53lddWHrtvFacGLAmfARGGxiQWrd4KtBPnlXJHbfB7Q53l8evjwvCS7QTvIGARJPjf37rlbU4AONXbo2p3Ojx4N+9iM+1N9HCEjZ5n4ejmMWHf71w61Rv43sND4woxKIf2+yhYRyJXmfj/94F0pHvsI0FJkpJGK4C4K+gAFqo4hU1t2bVKbh+JqpBkq+THTekpFw2CxFK3r46P9G2rNYKh+7aMNwSHAYF8Q1a7wD9MHs9ruIjhEC4Kxin2D/9ZCyPeYGuWk3e2CL0gMVV5chISJU0BGQ==
Variant 2
DifficultyLevel
583
Question
Triangle ABC is an isosceles triangle.
What is the size of the angle ∠ABC ?
Worked Solution
Let x = ∠ABC = ∠BCA
(Base angles of an isosceles Δ equal)
|
|
2x + 64 |
= 180 |
2x |
= 116 |
∴x |
= 58° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $ABC$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_50035_v2.svg 220 indent3 vpad
What is the size of the angle $\angle$$ABC$ ? |
workedSolution | sm_nogap Let $\large x$ = $\angle$$ABC$ = $\angle$$BCA$ ` ` (Base angles of an isosceles $\Delta$ equal)
| | |
| -----------------------: | -------------------------------------------- |
| 2$\large x$ + 64 | = 180 |
| 2$\large x$ | = 116 |
| $\therefore \large x$ | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+daSflwKa5/XH6vg00FKhUV7tgM1fEI6/C5ICZ4O2VPDXl/AX35uHIkAMN7RmFcX68YmbG0ZwuDIrKVJvA9KIMvYDbteV4dFPjpoi16WEWNYar05YJeRjDLHnPAPsOuliyDGHI2vk7Kjadh11MEiHHUleraOZr+dsuGDzhF8ty/neTeceTRcvtGo/H78y7P2K+5UZzlkeUJEhSljSCmucuF9ryNhoWmyizY5nQrqG4rBbIYsXBaO9XQbh21HJoflUcz6MTCgAs/W6uVP0dijNBdpKbCIwfamJUrH+zjDAf6kPP+K5229XT8D+D4C4iTRiRk321LDqExlog+YrJXsqeNjBF+sybAhDEwjjP3UmfkNkyEtbldQEIEJWJ+omIvZ8FJutxZdajrSxpGRHJzp4kbHdxLCNYUT2DpJhL91rdQ8pm63jZwfH6aqKyHNkH0AJqpfGdGtIFlB/AB03DbYFg5txGVRNVCi8YMXdIt+Od6tlvPUBD4A7uXBkideCt7WjfgQCYeOwyayU6OQ4hqVT3xtcSf0wka0051QAhBs/xJS5C8RJtmw4Ea6dbYnHg50/nxoeciZEg/r9KmRsunEQEuZRVaq278WmvRvBmWUH2r6EiVJlOD9O46dlFX1SFOC3pPCOEBT7FW6BghQRmC2Nbtrjkm85Fsmk9gISALKrXoCP1XxGSsvd+qUHEE3MtvmFKybfwZ+ik1d0S4tHtGx7aPtzScsLX5HrqeAUhkVcLPeQ/RwpqgCuCbanWIyJk45/Ok2qJRXQ7AEHMSTB6/gZsY49YSmhbQO+A7mjuzNeoH5Bay3VaeJGlUuFHSGVW0wEtwysz9s1nIHNSq3PymkBh1Ums6vv5XEecI/rygd3cEdrzydXJ9NYziVeYP4DcxbLDh654ELwkD/JNqNE7MR/Fp6EVIcAvjQ8hIQsjdsYtwE9FXlCVufs8n/PnOY7sGl+eV42SIitEdcC8CXUWWeH9FfMvsbzZmQlCQvb8JYRg4tO5xcfbYtIpmIDwLvag0nyMP+QG7m4Ss0QOhhWJkO+Io255dFLUNwbbx9G0/nT3/0kmpC15DvBmKVUvQvLDt4MVx6CmloT470LZRIcgvXdj5Dw80Fbf+yE5NFl8wdrV+dPNPGpKyY/6CWaYBNjD+860T0KmdfdBisqyOo2RgCvFgptPCJV961GOu4scUs05fqnhnR4omG0pLISwDbe+Q3vMMmXkIL/L4pDFvjN1o2L0wJhFUa2Qn1HwgbmM+pVWGdcNau/9t0LQ7dodLtRT1NXgDWGW0/RL6HSu0qNvajlJe+rgJ2h5Uf38hFai3qNHFZO5J2a8L4UrnAyzjn03D6WrGWblWwEXVSZJxbTpnmY/fY6kLJP6ZuWHu7Cgt9lq3cGULPkEN6vuxVa1boyHZSdIaBqz80sfE9PlVU8lNNCW+FRepD8ja1UYlYSz5gqkRn3aDpyzeqsFCOLtywBdPUvF6niXnmhI8U+r027gljSSJoU7sv4Gfu2JbMsFYEfIerbY40YdgvPyAf4IRKwoIzUjBFq9shEnWCDnpZKENDlHFcUG+DBt8hqyz7d4FjB/QmQG9OYI7bKnRuvYxjfsUB5fXwcXexTQaoxHO4cFyLcQzIdFiSKAqBw26TZiyVr8tjlYqonLk++WiGn+ojFMxIP9i5ZI34igqjA2B7HFvhqUW2hTMsJdC1ZGFCggJyfX+tWApT8lKe0GAmqO0ki5wv8IpihWAyB2lgt06vyF8VXbFg0wiv8X8TTncqmqh5TBcs1mNmG5wDffwVlYkUzEEKFfRh6rzaGOPHwxlwrAFKFeFxMyKLQCA88jJBMglUG9yXtqRJ5SY8DAJ5riQjqtzIIA/fMe46QyRpDzgEsj9mmEss9n7gjG7Kza6MKJfkZfU7asRl+BEvipLXFedt1x9p6UNVPUEM8J19AAmxlWGyPS1qPVe3PJHmZ043UJFjOcWAYo+mk43bx+bIG1oDDi7Cf4B++abTnK7uRdc1K6LTlxsOIUsoh9bnWXZDpbagiDvAFXtnd/9lMI7iRQCJ5b5L86+rfK2Oexns7pWlXi34nKaIV1DaOJb2I+Wu7sNW5kUzWrzVsUeF3UIn8NoUPkWFEvK56NS9JFNZiSXphn23qMShpxYJVonFt9OJaBiTkV6BeUhlUE3kz7a6cUxdzVa5PSnOXPYrIhpZ7wA+kH3siYX1ZX69ri3yhQ+/y/n2Jvr4fb+KOEruKEI/mcs10r4pwmfY2SQ/xU09gEf7FAKpqMx6/87zvmJ1SNpM7DRGeoMTzyT0aPfiVMlNqMEvJc5SvDw5sIHvXIAJOXw3FSJnH2QXGoNmdLLIuan8ImY+z3A/uDZznUBqCEcIym+lvEm5qUYgy50rVjKi6Hx6cG9IQNS3Zt36nOmjgBH+lIOHKSoehwYa7VElBNloVG+cd2ev5iWGaZ+tXZU3CL8JT6hBb0z3ChV3H9sYm3QP7JJI2fYqMIzmCSSl5BZ0lbbfx4/aO+okqPN3zAqW/Kdg/bZBXM+qoKa4vqrkJ+fPNOQ30OcKEES2rcect8i6cTzF7yUhzbLrEVNopiuTK34YYh0oxxwcdPGUA3jE+Bgw4GBJZGpQ216sff/dqiF3KRm88dWmvC4+eelR2iQD0PJ3bDQ2ECMwDRswKdTYFHSDPeglkXR5EdHJLhfExLJZi9AMtLdpSnRVHDXYlp/X2BfLzn6qqrCPdMsMYO5GmSuqGWxvlGkWO/DUiT+vod6C+4bEsw8a+T51mRE+Vg2plJ76/jlaJo4jMvE26iVTlzXrkM+AsSEC2E9Ghk5qSv/2PcVwnCBdSJxtNZ18cTfD0koRaeXlcusv4BVZXk7cXNuZSm5/fQwH5i0bg+iEDk1qNHH7EDdUy4nLZammgSyiZb0PvBeHEvoZmhfqlNBXUTm8kmL3zouTx8iG92LFM/Di8XRvyT7XRMGzwwtCjXTwnjEtTTe7jmAVbwGShMhbiL6oMziMC4XHhmGSvcIc8SE+KzbO/sgQ776A+5tO+2Ohvj+n1Ft+qQhDYYe8jVwnOZup+ttu8U5DhYpQxcQK4c+P12UHZkz4Bum9heNkzYthWWb3bpsUkTKjiY+LgePy/iuJrEbGk9jdZ4l13Je/3tC64XiY6orzGHbyvGvRCgMzqZ2usDG3rTKi9SZUaUcaK5q/RDBD2vXyx769jmRoP9+xsjW+dPwwwethn0fuHkIKilHDWU2Yzq4d4h0b80ANEfYvhqAALR+WbWtGTbiHzqJ98+3NtWpRixyZ1Pk6Ndp1NVW0Hi9eo6PRUFJQYIgHQSHD9ZevRVedQPDA94Zp8Pzztah4JZn7A2kIvsr5erS+tTvgb3J/DHbuxvRUiQVgSWF5JnFWAX61utWqEuqu8RvvUR3IgK17PWdpxq7n39SDNMXt4iQ29AOZrtDvTe8GHbVz+EmK08IhIAbxqxRuAhmna9OujbMcTCTU+0toHrFbXJ/1MIQ20meSHX8ovOZaNpkuZTi3Hmkplhq4C9a5S0M6Hf8FrGyPb1eN+2ceXlj6DWWOKZzQz32P41/p3KyheKSNbqfASgtrMpdS7SPhrKW+A9QzsRgSI2S30z1bdpKjk7N4DYBxy7LlgbbVAbu1MmVKWsSFtqr5kj9OIZ7BWmKaTWrVC00jKEZQhCLL/LhJuoxI75tYHA7QUNKr+OB0Q3N4h8XSMioMsfoP4/tYlfcpt5a4gh/UOrEJUp6dx9Z+MSOh/3xr7qpE/KkG01mhnex8FIZfstd7QHMuIO0L3n63YZxnC/UVojWKOcQzSqk6ZOho/ytkigwLAjHUyS0F2omke6yRq+XFp8uSZo4YMqVnZmp8qaascDsew01D7Bh7D1sAz2lq+VhUctsiabftapQmoNqfO94ViElBDEcdKCfSiv2tf2dhXizWM32IL/su33YwwsLBvj210H4Qm7ontbHF4a5UjG7eD/O88m9VHM5Y8HOzZF4fTFtML+NvKH1PQKHXtNuuxBPHyzBjJB3zJO17eLsDhnCAombHbNcyrd+OCsd2kfnQaanXpDTlBoVsdJupuSGkU/bmxT1y2OAPXZpkllfxrReNaqv+9rxdZNX3kmIIp60zQndjA3xbp0Y0NrVuSAJu7MdIk2UEMJAvVWm9J7j2umqnCMGm2TQvVb6sPEzP/m3xJCF7RncByK617pmILZSNLZjLuEoJlMWJPqhzCJluiX4ibgM2PsAtnxqeHLEJm4e1ZO3Wo0au+VqQpC13tLtE3M5TMPRMUxahc/Lzh9pAbmWf9ScXPz3ELGxXhQElqyqavecXFvN0frTDV6CdGiO7rKbDDQbICBEFDkm0N53kCwN1p6R0ti+j5MhcJ272QTAJX7ljQjU/4WpMq/kDHmv3Ev0bRP33XZuUlTuUDJfoookRsYws/F3BeX9Xzp3oGjIzTAIrXLnxj+cFEBwL7AJ8Yxnye5mOKyxOCteiHBLGqmZbOk/nBOzTZn42e93VlopGJPM0XTycZ1mFhGQrcp/kRNGP/YujTevFcV5DLhNQrJz5wUPqk4hTNmbuBAYCqfAyun1EBD8GumtZudpBqiIFO4hrB31E0VSpX1u7g4MXe/DfNRlWG/0MEgZBudiBP40SdCM8kIEhgOD5tuVIxy5b3tpVkteaM2LzvnJUD0R6Osw/xwL7gla5mdz123LPV9CXuSmIyGAGHgpaNIucSg4EgZI50VwQLL+xZpNzxztKNO6S6qFXS1WeVhLdLMQLtub+QuOTSkhNTkK+lz1pUxsZxuJ8dAVpl30KbG6Q6zr/MyJwGJDrJUqnCbx2hFuqqCl0kKthAyTdCXPzj9+qscP7pGFVLyOp54nHBj5uwfx8w0EvCP4pIvsLRPRG8Zq0aL3edQ+fmr6xFvC/TASdBYaL4DBhwr6qlL1BTIOMkqrkDSrIlWYgHd3fsIZglLQtw+y+sVoBXCECowGVP1UKmjEELY8U4gk4X69Fay0XBH9oHQ6LGP3GVXsjBcjiD92naWEVYAMju8GRAlCRPGosfFCmdxPCZjhiUuh8FwgKd05WAhEBTJpAPXouc8V86hkjgbFoby4RuzmbnEvrIeQGV+bxeqFz3aixqYw5Dnx49yi7KitSS/MX5KPyICn8CI4KZorjXeGhgRHxf7yp9plLYGJX0zVVBD0qMh9+Bh/g8kj7UEq0Q0whNvK4mmQY6aqmWJS5jybBtXEeGjwF+932B4QAPJVGOdz3wSo1BGoItGfHuVZdz/Lu0OVafAtOAxLW8wM54jJM534AH60vau2v0HZjuaKNdfrb13XoMKozsI+NCECU3J8D2pUrJTgdvi7tUGvmefC2ZE98uvJmozZYlRzdbdW0z2uPcq8rxI89QXmcxAHK2fuIbsb6X70pdcaGEOsl/Dz7les8o9LgHKESSH2k3NUPZ1MwUnNdb5NEsHSnuMu680amdS0n9j9avr2piTzi9LikHpZ5puXoCVFRt6yI4MqNNlKKzD49v0/P5Xzi/OznYDox6b/MGKxiBm+hg1hijqx8gRVULApdeEfpQ9eknvst2k7EQCGispUU1QH6t+xgDmHaV++3OcAjvz7P5URi5LN+F5j6njyYS2jPcgnGvZNExivgptmqGfCi0lMIqgXvorRr+aykanGJ4bFWaCibWp66bEKYPUjfmjQ2kq929lWmP4JrgdfBRIeOqDuLDPc3pfHMvOhJEB8qQKlXFXpGrxRMow4OPLI8rCCmHKCQ/DiNsZGWWKSxcQ9e8qKsAF7AoET482lGS7N83rhyC2ypiEXzoM5fhV83M2M8BqJElBux2FHt3SG2HG6n8tgudwiZ3z75YtgL9YSD3bjOWrYJ2+ylou6JITfCfBmk1vui4D0e41jsaVv9TSPO3LgXK952FHAa8NoKPZBjc8y3NNkgHvbllgd5+wx5hs7+odKaP4G47G6tZsirDqYUm/EpV2wxEc42iLFKl4GSJVlL3uhUESUklYEOGsa7QK1Rh0BM3yB71ZrybX+4C2u+wX5wsgzPUl26baPiL5kkSXXy2Cqd1fdrcC62pTQ9BbMiJqrulFtYZHg6gVYh3wEOMLXP9tTUPixp5grMkNVGzfUsa4iurpKzhsFNzyVVottDD9g3GtIA7cJQWAcsn+F81G+VgTrTb8DAGo62BPbao4km+mgcLXwvtq3vdBoJ0f0vXXl8NMr3jOjz41WN6Xg4rufGwz1A8peumg7sWxptamN+r+02Al3eXHN9dGHH8DkpZhP5v58lqG6a8YrLxJ7bhy/kd2EBByW1yLpZxk4ueXqNhlEasE5adfRfTBL9P3TelteiMcTmERfIZ0XK2nJ4o88oJfLEtacKIH9qsbFyvfViBLE1IE1T4yJJLFSHdkM2/QU+9Aif+0Fo+pgRMI+nWs+QGwIqu6rhOhdnmi8JnCRP/2jALo4MtyWDGUgfXEAD+KO93AyfuudQy1+Llzp+CUxcGURAckr3ypAYLceY8y9ir7MJmSagImB1f0wBDtNpGWWalPz+LUb3YSYkl1LRVAKGM81f70zBX45HaO7RuzjpQHY4HASq0G4aK6fkyOeLO2TDkgW6gOpaBC8O0TuSVvTiQrsZtBsyY9K0Lw4a422xfv0IBcdv06LcP5Jrhelo89mLEtsmGsKit2/PzEHDdTatg83pzHgaqhT5joits3Tl00PjGSQqBMh3Cgly7Iysiqmsr6c/fWmWwlnY0TkpB+RLry18igYB5ggIJKem99vV1lvK5urS5zg/FYwIv2e/3VLiPZAqHgS1zrONJxNoRBO/Ov1aZ68bpGE2g5j1jT6RdXuo168GmjCtFEW8sf1tYz5qa7C4OnQzJg0zh8EdIMG0JevVWoSHHXJhMrnMfb2rxKG3NTNHKcbSJ1hShV17jx9kl2CaRXpH0KeKVxr2g11ISZ8IX3bZPHI35Td9mSN8F8EjWdELuUa9LGaQb7LHv42xni8L95IIVe89UnwoSppA4ANM/lo2aFT2B/mDblQ3f4aUzzPLg6lxu3lk+TRL92WWnr23AavBv66sVy5Jbh6oZ3Kcd/vHPGY9RizBAfGHa8uRkN2OJajzq8xZ92vfLuAq4Vu3l4HTkfWcsX24V7r3Gi6SxcFY2J9wX+1eQIai0EaVgzKjCtXbBGZCB6rhpieWJH0awZVJ4meISna/u78zFpZnIhPMXctGf1SSx4HQFiNDfBPgYNS9Nww/q3H4Qo3LNb4aSvEGlWwmoVLSJI6xsxn6lnxsW5J05mN/AE4v+2I6vbv0Krm0LWBggArx2TIQW1Zq/NrLYXcib2HgMRjbBOru6eZqALG0MjKYTyBBsPhWJQWG7l++QByKs3kjpJP1dzHxKf+yUselZ7YUh3EDZ14pr3yh38P9cpl/w566X0dt/IkkdMMRwVnk4b32wiA0cTZrc+aZtTJwyWCKro1kx3/CwkJEQnwy7jA862YNAQ7N6xp0ZBBvw8fj7r35Ni2tLjlv1v/ALQv4zygGhpht7Ebqrad7O34C4/gVquaFbfj4cCyQzVxm/kTKyqfNECJ5jYUq2+SjxnN8+G0Hpu0/sdIUts+ZfKRHVFNUh5jU1LvgNPK8BCQW4JcbmzCBxFC+KYuofTFR0XJO6RjnEdTh+rl1FFbvH/he9n0wQXMBAVbQ77ANLEZd/mnRWu+ZWM/qLOiNxO1M072lYz8hJkAOioO9H2jOI1wM2hYcXhhtVR4Q/H1nRLvqGtwNUreDso/aS1tuAlmtfEYTfoOwUADnDBCIHBYDo3jT3PQCZCOq8Ga00P7/NXij9V8J8c3CJXrHCXd6nvooNphwPCyHV5kdWbhxt2AJ7od+4cU0MIvHYSeeQK65Ji+S/3Mi8SJIHdnQE8q0AjlH+03hJrdONAFyiowQUBF+sheB/BVvoKaRWnPRqSVkbwghcX79zV/SRk4NUYPJHknJprFXY2Wl7LLUX9jNQ/200rxcMlX9tpL73gpGzRGTFJ8JlabuevzmoxC4M9I2NN0vfjwHddrfbbHSlh76q6cVkgiwrRioBI9Ax/WVET+78SjoXe+i1+q7AwtKF8FThhOPYibUm53qh5vSij8QFNgwxCOxdnUxrl2ydtEU43W9PZEAgSdPJagGg1IqqosIQxSqcozYw1CCIXidi4hJfdjuko8Y/9JBzuGe0Vds66QSEjvwii4qENhFhGE6V5m3refjSdZhAHzSNRUZEu3Ok88p5rkL8A+4wvuW0W9siTmh1AZlPf9mRpkWlO6K6uwZ9jXuM0RzVRiK46YvkUkjjXwytQMpiyUG9hsxkbhLrTX1FHl2BkTzwlCRjI2iyGr7Q1Rxr7+lercjZPL68n8HiTYkTxtu/nRVZBQclDuIWFORN96lXvPvVvFoKVhNNeYOZOluUBbwd5andKyIgJ/N1f+SgSQVS93gYz12dLV1T9mC2GIV/lYZOY0pK2PG+n1eHCM7j2atliSlkjoj5xcOAoivwpEVmNNY7UXXVvkbKmRfdyeefbMZs0WqB5OfnzbB9TpYr329+c/utDJDtRfvaHePzXDzxqyqrwrm3XFJ6XPDikrMdlZtVk93Be+v257SunQurIk5wWn3zcopIrm+44JjsYQgbsjFU2V2sbPYqPsV2Nth6l4IOcFYstPzGF4t5LGW1tmozSLwKXbRgv2M65A+stQbcdWMMqyn2bTBoBzqLKog3L6Piw5BmIAZ0L4+mqRHoSi4YH0bo7cITVnfbIuOzCP4ytnqvqQqxngD9o4Pa9K/JVr8ronenI5XInNMCp8wzwwmJPM3+5Pmao4GZhg4pGWvMVYgJ06a+LpNXrdVrLjWV7YhfuXgkopYQNjRpIieipssaj6r1zy8Q1RJjzUkwhxC7h+eckxjXayQJChp49HROur/dUU7Gq5D7wgR/JGAh4FmsTb3aXcjNlpnFc14KQuH5Dk1LvxDRkOg3VJRGYg8SlAIPcxxKoJcWS2Th6a0Uk3tSe2mw/X66Y3KWBUUqhk4NPQhKTyEVQ0JQVnmzyeH9R7N0E96TPoG7s5Cjbs1cKlj4uzeuXxdGSrwfk+wrLSRsLqGUNMhhc4il0EXBAfXCRp/FRND4o84BOuQX7mSBDRrxiJ8x3ySDECTrJeJAss/kmZKSEQh9VPp95qcINQDxkgGAT1h8whotVjegZqZRpAYtiE3HQKw+t4rkXt6Ye9+QZiQ7J33P9MCXgrNiX05wbp7C5cU3dEECOvjuGeQLugvaFvzi1H0Quwpwgyoge1Xy+tZQak0L5UdXzKX58+twsc4JizqtGb+w1SFBdPQyE6MXjqjiq8zJrb1AwZZ5ZZ80FouU6NhQquFibGtfzgLSMfOgM96Fx9nI68LXsP9LdAnd/tyYAWuH6p5Ydt4TSdBngk9MyJHhz3PoZa0nvqdZn8umn3edIlRpfnxQ4xv49ohqFwfPzrXX+H4xreDKfcTaNP2T6nUdjQlUgYMW/bdd8NyO2zJUN58t4hwksD6oW/RsnvmkJuOYv2fLzmCi0Nc9Z7PRvrHtnstlXZ/vkW+oXwzzm1tK9odRzRUIdUKWXhm/wFWnTDu/LsomE3zWzp+zYwrzzJbt8IZymSS1y4X0JXAKudCV5+jWRYCIT9oMaWmPFygrDy6JYOPYy1VrRgHW0SJW7UqAx89uKc6m3+qUDlzuUunFujuXBO/JeXH8Zg/DgEFcOn4YrdLe4YyI7W+oRDURa30odZ6dWZkdBQtz++ueB1xlsHQHBlc0JlxQhxK/gnfDCWvwgbKbY/k+fZwraSXD/RP3FunHk3i6KvFhjZi1Vj6ysAAWh6CN5GlBOw0N7pl2v4CPvgvBOq+Ggvu2CUGcrihKT/NJA9nVZnxQA3DwWzc5UZmoE07EJ2d0NgOmXdhl+ND0s4eNgOgx8PHuuOPBQSqOfAdMlVD8Mai82ssR6l+KGa4SCB6Inp57Q7TmIUs7kVvpnbsUocBU+1rEyNSAwqYEf6mR7oY91ziIh0UO8Gc3vJIP27ZICBX1fDHeP/9fDHt4WGmxJlVARDaxoe5mVufk5T6n+LU2Tt6opVwRNOFN0jfCLFyljRkQxbLq2iaJ9tz7ohlh9i7Ra81MDsVW7HwWiK9IPfgSqJ8RedXWvksJqqajjfxFx35XrGge/SV8k7Ct3EOV6TCxQMC2NFMe7Yyn4zF6EKa0Whpz+JHY19d5Xcxi56qlgMMEofebIvEmVp47ZM2YVtbDY+pOdKvSwaK0zE4ZR9j/zO59ZnpCF4mu21cNhR2QS4R7rToBuJTXpkvMNeSE2/ZwS7ZfsHxHB1pqqpjeLuzMGT12dH8VqrboIaGjvE3PxHNScTHBcs59Y+AL/W6QhfqLui1vyM8IuOPGfy7pAojHgAd6XpRo7/Zofx1w4F5HTSAJ35JR5deqgJYyOExu8+d/pu4wpm/rF0JcFZCizHDgySt2z8oagzFM5NS2+jJT30wkd2GPjuaEenXocTiVyolzAdrhwfa9EQ497fO213d2cjt3bkEpiXKY0nT4/w29iVr6mxwttz7DZhvB2FclbXNVHJqv84yyPl/GxGRcgx4+Lqp4sBvyqfbdwHbxM1pi/DHuyYOVhgT8PDoDZFekPMMpejujTVF06mHymsGhgLKPmyuesuEj/8BSXAbY2GLgvqJkYwl4h6ZLKOeII+oneQQUl3FzLTRgM4Q4BdqVp7oFgkYXc9bEz1uJroppGSup8rV63dNXmubTf24fexuJIcSGCEOKOSDW0i9gg6gSIGV51LRoZHmUhHXX6HhIVTWqVNXMiGSeKwo7d+BU1Gc3/kTmFuKUC5FdCWxkONfH3GixNHEJlDxh4/SWiaAuu/8u7Nh+lOheiCaVaL6SHLculHKHOEvmZkRTCvECOxKqxMFQFvoC8fgbmrtnv53+FItpC2k2viQfFzvWjActCmWBZQuWPOGpw3rSxPt+jYZv2ooHoxRNbct/srS5CMMuZ9PBHR+1+QrGkXYx2Nj6uzJrKduIO1naTiNmdvsBJMBpXJRD9T3k3T8Sr+3dNIG8nMmO12cn1uXTIv2PX++NLFKdUn2asQ7jV/6mPv/rCCB9P6QhT1z/++w==
Variant 3
DifficultyLevel
582
Question
Triangle ABC is an isosceles triangle.
What is the size of the angle ∠ABC ?
Worked Solution
Let x = ∠ABC = ∠BAC
(Base angles of an isosceles Δ equal)
|
|
2x + 44 |
= 180 |
2x |
= 136 |
∴x |
= 68° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $ABC$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_50035_v3.svg 200 indent3 vpad
What is the size of the angle $\angle$$ABC$ ? |
workedSolution | sm_nogap Let $\large x$ = $\angle$$ABC$ = $\angle$$BAC$ ` ` (Base angles of an isosceles $\Delta$ equal)
| | |
| -----------------------: | -------------------------------------------- |
| 2$\large x$ + 44 | = 180 |
| 2$\large x$ | = 136 |
| $\therefore \large x$ | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18/swwdeyX7ZSPXp50SlV6mySpd/HTJzBqprc+vAiZDJn2DTjUewOw+E8RhnLbfvs5BpvJMcmDGsUOZdLbGsS3hLHehWVniV5vnP2lCjTZ/cil/1Q+9NlrdcnYFUU00fk8SctV/uqsWeLvabK66YhWTw1uHccFoNFBZZ4DAwQbnw093xa5HnUYgP8YbjissvwBg1P9YBgBJpcVliaQJRZ7gXTFvyxOLFMhl2wurJYGUBWEKofZDXnYQzSM/0Z/uN3bCy56zZSqcOOtSuYTIXhBypl+doJB7RbC2OTikFCVhZCg/x+57X2CzOrHfOiV2mxfBWUPI7v2Ln+teU0Gvba2/GYc7ZFha7UpyRPgFJArBo60q0HieujlTuQFAN7AGPxoPoMDxZ4UdyZoRrtae5GXcFGTGm96dqB9qeD9PdQss2CAPcOnCi3cObIyUmC/Nge981k0PML+oFNKF8msvAi48G9wrNZnMipyijBxQGhwTdf2+SYtXbI7HtkA8f5f5SDor6PoCJU8KT9H2s9fTVOSqVCTBxWNS5BvobsAUFBdWJpyKuRocKBW9SlFPRKnHvHLys3Yb6ZceIT3VnzcEL5Bt7qpwkOFULUXn3xFYZt9xGSv5TGd4zbRKJGDSTYx80m912aZFzcxxwMnfD8S+FQvSRbLjoP71exFj3KAcwAaW3IO1svQLtUDinekHQOg5TsstQ5iQm2+eesO75mgqgAKG4Xp0UGKRoRXP7kiYPmnYI1a0I7NtbeF+5VSZmX9avlAmBWS43arBv3rafHWQ5P+WI0ciccbz4bxWoU7UW3x2OZqdMSc/OxxjJvfc41t54vkb6cz8xurYRqF1bFwLhJ7SJ+DVoIzUT4k+Ya/oXqLtY0D3OZApSKcW4uzSe7HH1GikOxzpjLskRPCGLdBxMEitG23u82J3Vg3cJf7zgZ3FcvSnMvwnhizY9zU63Ib9kAnmnCLrwKoyP/l3Yik0QftECmgJMp3Xc0JEzJviCtV4dDS6fOhwVSWRoNmu1dXSYD1nDS+P8zI/bYZc6wVOmKRxqIXDk/s7wVaf0NCjCxA/ADNcqRspg+dskX+FxxVdMrUVno0U2RMjXx70LZ7QRVlNBhqurUiHNE+cvCtf7KYBZvQ4/i6yo/sIVFaOtf0KIh1jpgXe+F5Qx0EBGrzHwrY5TQ3NPyY2eheD37uiSk+I3aLO0WGypU9gbeTKz1IK7n3WetvvlH0xBMCCyA86SjSD4SNaEpvTb/ojUz2g7p3a9Wx6PDjp+qVxvSrITUHYpSo7Nfm76ZgPBi0h+ndM3/iNGtF56/JlaeW/n/VVWoD/Lsy/qC9g9dbLDvuGJPiUM8m19ZS4KEOMLlIQyNBHksBtDmgGEiKE6DDruyUmhVbTRxRACRk63mVWwTli1eU70CTcSIAHRSAVBbxUo4OficXih8N91zM9BH2O5wTEF95bY2pmSCwDLZNy6BUuWTZUBZLuNXkBcYbTwPQOCUeX7ErMH0Lin409pJUMDxFAVeZe7NxT4bn1vgPrX26Q38+vHlUcRZe1K8hy+NFhpdnNG6huglb5pus8RVAav51oRMqJMfkF6IOhAbyfR/RyWDQ8GvLxmdX6rv96WpVIEGLP/Z+nMnt2nSfKAU08Sr3lKcx2Czw0m4/RteJ+04owlNDCAgDMkSfj2ECV+vbpkgFCim7dxG0pnrCIWMLRR6uemCfEg2tUZYFfNGeqEP+SZzLSt/nrH14OLU6yh38fQY9Ge26GSsi0ZkthRV5ZA1MfPoZD3Q/4VPPxClryRpjMjrfEXVbaSVHRNzroR8KkhBuZfb51qjBmO8yA3RxS7/K7FgdKrtcaKkhVGgcy/MVM48fTkwD5DpiHawfcqE91IafLK/FP5gdvIVBE/1eYaWe212zzZNnnfRq47r5I/2mVNgI4emekVLgq9anPJwLJSVXwIek7E+vzHMly8nQ81GPPmZvufccwSaJWb55HESCO/W5hebztufn+Ftct+2b00IQHf45KTr6pFqJsOTD/AxNus5IqbfV+5LYYrtblGDqEOrsRSq3RwHU77c9xsTxKmtQp6jw6/qcsjeYP8C2LnaKv3yHNA6wjXCSl6L3B3SSre1T0ywVmffCBmu8YrwdynxhMV2RB63xmpTpSNkbBAGirf3V9+HpNN56yJv893vaubbdef/shdHKytbhScpSAieGHriaabF/c5SwiABN0kxTwTOidRglUZ1W1a5P4vFK4kHdi7CVm1hkc29OYSEOQ9gWdk82MyhFvfrDRB4g8US5nLdfOevNtyylymlU649kJf6cNkXHzJ6rMMRzW7yosv+d304Oqolxr0GEUb7z4mK6kw/9c84rQ3PdvlOVuB+B1rb70PFkw93N+/YTZBgCRDAcw697z5NB8LoVzps6+qgLrPOU8KvGUh6xxxvHTSum2Uj0Wc0WJT8FCF8sKDnJFOYgs3Id6Dnc8L6u4VsNZpgAn+BJtGQXSNWZJaKRhDrgfIcFNQ/+SBXsOMbOemsjZEvAzAy/WDKsB/Rw/XXU+vVy7az/a3BZSJBYA8L4e9gN1j0JGDetmdPXE8v2t4I4ucEIutgYBxrhjWY9nuY0U6KRhJkAZMHWImKjUJt1lwfH2W7l2bC/KW4jYdFRPQeNJRNLEBlnoJugWp7DOSor7g6Z35GiEFdujiWhwN7iRWHZ9Gtv5V0iwFJxxx871I8VxFhbEht6ZHRwLrFF2uDHbeWiQsltxwUTshX88UuhYDBg7DnDtkHXhKyuaFFJLaxxHuiILZhsBmRpt87ywTzD7QXg1bS66NKz9lRxI2FFyrDjTsSgETNQx1UwRW+ioMQH2+uzMuDREnQq5yLIPmTO0XKX52/hdwRN7/wuyqWP8Gq1B5ggodD/ULbYyc2l9yKy8O7ITsY3I80cRyMwJxHbMD6OTAG8zHev4iF3cjRiFWzT67weodn3rwchDIhXr6nAFz5qLkKKaj5IdNg8mNeguDYtcmau8FDPf64uR3FI1tHShO93ytwELiOgdV+HI/24pmrCQwDI701Be5bZzEzkIN77WavlHuN3vd+ZIwzfjtFEcbnzJK1qmC+mn+ud/CvSX13L4vVTBP4U9cS9tcLBhMfGINpO+wpeXOzu2hljxtBLjbHyDunp5NAjl6Q2Wn8PZ1wOjNZp3ShkBK4sX23bna6hJEKgreuqTjLgLklyCQlhi565FnStLrOM7l5hLyYYPhAZKE91ijZ5UPtYu2/4lz6x7RWly+BUzdZnkzwJS25H5iGoJCOfXr43KyyuFXaLILpMk/DjYgmFD7GmNoGCpB3OKPs+6iP+rED9FxZrjRRoHeQVc0EBJ0fn96Ar7G8npDdORd45ybHgmjvbXMNufnfDq5dChSbVyRvDomI3Vf8XujhLrse+6U/S09YqI6J/zAw+Z6EyZhIbB0pfTgLvQyiPsecYSlFWOGVAldcs/BISPZrs0CA1FHP1S0V14W6t/i+TdA2TrUpcHNrgAE2DLE8aKYtExmqvf83En1cwSBOdooBbq87jT7jkLXbR8oW5oJhXI76IVeqMqgnwC1oLuFlMsSwu5D/W5Ot+2OG3OihKV9WeJaBWWPvz2YBHSAzN1kUkXFT6NMtDYs8KolN9oNpf8UZeGCH/I6dupqD1PRVDuFQYkJsQLVMJJ0iKwSwxD/Mvf4U+lt2vix2dJ2rLyr7nkoohF5JTRSMEKNgGtUcd3cBasGTCN9k+tI0QI4/wlvQUxyS1FDhmEctjes8+BzXny1PcZV84/x9ysasQC88MC5PMrBet6yh0sZbTtMzFg60ArpLLjYmSBMSjNZ3lwAt7gF/IA4M5d7dsoxCUJUtzOHS0NCBqO5LkkyVihpHVZ2C37eLjEPd+5AGrMNP32r0aWmgMavlp2XGyMiog/s/fHTqdCUcUvpK0bT84QVlLoYVFZ/D4KeLXYFA+za7UbQmI7f0NQuq3U4GNq6WRO1Ow0a6XCgAK8xMOO4ysQPKeYxstYJLCMPSd+n8rBjWiU5HEmbtXxpvxiOGnhwi0vpJ1C+Pa5Nq4RjVud/XMXQSUfwzTYx/e+heFQSVUgq5y9xUpg8JhkwIQxl6jcbYHK/3EpXd55Z0g5t3hhOiNaYfXlTXBbtDMYW52rKMulh3jNq0SbK6/nbTK/LbH3tOsNH01dHwyUh6BIenjzDfbtiircd0PpnzjxcamBL0IPtxoiIOr9w42evyhYUeVTQ77596r9+t2Jd0c9U3ULTaYqgRxkAIN76mxM/EoMK8anEx9GdjQHBLWtEjX3A/IlueHVWAcr/pAUmYekorGR3NTW2Z2yEZvKRwB/Cm2IQ1563eq/X78mDrj/ZuqAJn1Y6BKRwQczasbODiOD75UoVeYbt8l153Gxf6iPwxugPyAQ1Fea33ItkQUQyaipRguqoeyydqbSTmzEvKM3hN60LVwu/qmAMri5ErAm0zCYdIDaJHLZefIP6cqNUQuXsO+T78u/Do0ntuatqpT7/lqkkCf8oz+0fPIUusp+UFWuI7QyrpdjqOvZVysJmWyk/Uu/qcF/7HA+n8J8lkIDe0iNM+KAnKWJywik+kGjayDjjGPM7UCQFITpQZ2GSuA0zjJ+n+Jz+OHSgd3rhmxQlgTur1BjPSYNtKnu5/ALMbcwWPr4/DezRd/7+hKRja6tHuueV7kHFQX9rCbpltbDppj4cMfdAReNLpdS7LKSsW+R/eFf1lV/3WgdpMHWCXKiz/OB8eLL7cIV2WTdv+1EZdUa0tU7Ijterncet7bJ4KdROUebA3EhLYr+IPI7u5ID2LVrVLEHkGaPckJDPFEQ2XlAlHQkUlSeh8DHGjYwks+lZrVWQv4HXDHaCRAJhOeQc8yvYuQqiv+zp1t4DVtdUBAh8+vHgW4I2rHnGjHpb/jVmcGE95M6Lhr0EYPer9aLBavugz6zSAX5s56+9jNP27BTmFshBUK3K0UotN94kEvXMGCthWqdvCeRj+RSlmhgyjmBPz9+n0QAZw+pm4rxsoUvvDVcXn7Agb5knprYd5W3g2YObnxX6cSXrQtNbkrn6TgN4Ovem0g1N6DLePj8ZbiQKBPUxqswG6Lx0rsG64qY+nV24FITQgWEfuSuZhsENYa9Rzo/ZSPZ8+jnCQ9ocyj7PNl9tmN+i3V7VT8zkZrnpktYzzBNtDRDgb3DQu90YJt+9AtEkpyDzTghuqSxTiXnxxfBAzX0pTGlQ6MbSMu6HxMDn+Z7H5ui37C4GUF0v5pJ+roBlpoGxlFIqswXm6+VRQ3wEMq/JrQoaq18xaB92jRdrW3HfBhPqI7lqMlZECwnMKaIw5x+43BxNIE+E/gOgQ1g5gDy5pr6d8V8gQo/c4TWsOuzJfxD6vCzxMrB9e3GxfLWBU80sW8n1YWBIJKMnesnjeV4/9rDOooWuSrOKGWh+qQT95MtYU+N+YMPgrPcMVwsIvxvCt5KIo6xG83OJvilghLOmatRaxWWxzSUCehlggQJmfPz5W8VAlDzXDH6CxCxIPWN8IjOjDC9N/R0WioWPYrVVzm0HoHkB7kA/F+wz35VEeBBaN3iWsP9+c9gTLLkmUQ4693PdR/0uMD0gFlUSzRR7S4NdyUNphp3mgFF6nMwMjXgx0QljKNQIVfBjri5mEi7/USSo9oG1Yb+kFXg3PIJhb/d4r8OMjlbbuEEp3DcU5uRs3ytF5hkBnF4cOfn/9JRoO01pBYA/e5v+TaxKQnjELEPwW3IeBd1lq0cH1HDFM3/G6rghPFqoflCSFv3RomCihoZXLEyJy23UwjNRKN+QuEc++Gddtfvh+mCkVwXzLe7Zl9NgScKGznZJWpl3tEJb3euxOa7zboNqch+EsWIp4/yq9b1sAyt/iUkuIQ1m6xS71dLs+XGLslJ7gz+qHyqRZv4QnNKmQtWmtsYqx4VlAkGzG/Sk3DvkZJ+mvrqioxW+ktwX4z0g/W99DTV1ZUJENAKGxl0Y1KsryIjhjU2DoXkx+fBjs4C8EElKv3OIR5dSvxkntTWMo1C6eSQ64D+d4sELuXb1OpVE3AxVY8q+TsuNM7QegzOaFm+Fub51weBIvHBFpWgVWpIlvej9zhLdClV/FrHlwWz0qzTsa2164ecmuTACRlAyM95Kj73CQulP+utSeJAGu1Q0L8mALnlpK7kwLIimOZU88faB9SYbAYZK7TsGgm6eQZeP/EQJ+aHKEsr+CMRiQ2Ylnd06nZxJxILv7KNqsjQ1Al1qwVyTj4nqF7l4ARG8QcVtatPTib46O9QdZKVgv4Kz6P20MswD46aTxJGbVoz8BNqxNWsQCMd5ZTS4D5S5Ovwxfj15/FT0ozILNBbqldwCjAjr750GVTZLx8bqwWpcdLjKL8ynK3qshC+OCX1naIL8W/IWI2pJa5/EajKJD92fHKblUUGkUhfvbm5OZVN6KegOXm+IUAz0kO5WbMxCCjnyBws2hu5ibCpdixEGdsupigMseWU1oc9jzgSJTxRQYlw+sB7VpFIK3srPPAuyIb2EthJL50etMBpPascR0DWr+DOLS6rtMiqh90oZ3ytT0XoLUChFCuElmajGvDah+30OwHuSFp8obBJpCBMa0IOJ3X2JM4QugDVZUklYi1ya5MeKSQJNQPGGHeL9iCXOyQPPIS/7CM7YEqDFoxbKHAspPhIM4m92hbwcMEd6WoANqMa4zMn7vU5oho1CwAeD/SS4qnno6+YOtwIL5hTBNMfNDm4meu3EnlI6LTKjlaT/Efs/XepbH3BH6tnxaeHbGovtKJCGTsLkZr3AZm3BYREf328qVuLYlCxLlz5AbwH2NM+EzBE5ygqSUgfFkpenR0mmXg1Qp81wfvAiH4ARkYTbVFmT5ckrRbQpw+B0jBg4t3PHG2qxNCsZcxMO3RJuMAaKreuJpStADUp38iaeJ3C/EoWPd604u5upqzS6lbjoTR/2QQGjWShZOvu1kYan84ZcRW5Ym8O1nZkK6P08tnTVw6JXm3YNPKbTTtP9PXA5tD1KYSnBhJkltQnmSS5LDmqA+7Y7blsfJt7oCDZJb34EjBGzNwQbUkaLPH1rWF+jn4ATEg6KGr5NFvVHZTmOgQLILwKNzqP1y0vhMVEDa3YpBdI1olMhQtgb16vo6Bmkr4b8UNHmjfb1xYi4Y6lmX4Q19/dvUT8lvxJ+GtEt6cOZzL2UtVkii0doKbBcWaLBeFODjLHLVWOZIFCirNEfCITXthzl8CtkW+nsmaKreVuFxBw5pvk5zUz39Rgis17sUwLIoZTyznRqltjF4mEG5in33pPPdCWPafr/yUuGe2NWzhehAsDFvOaNuwp73ja4rohoVn+Jo3R728cFPQRrOR6U3M+mj0rsgh3NIT+mGUBhUi3PaKOHRv0OJZHnc7wFZLdCa92M4ewbFK3vD1cjU6xoX9TUKFd9HVZq37dJO2LaBNS69X/vNpmb7dYmNrOdMkiAE02a6kIoMgo41p3xXyQh4HYpAUI4xqq5ils4SGtTPUvNmEhklpfmItlgYa0zV8C+DflI3eAwsWZxlyhVkGCG8CwOApgzdC2htBRhCwDQLRKZcZmrNS8E4yYUtU95MLQIwQCWL4KGKnUQITDv5JLplMYGP9f8CiG18fSuHKqB1gDDOmLeRviITMfw0CpzsbXNmp53eWdiEcKEyKcEXZi6AwCasQPBYG9/eSUORL+FeRvDVq5FI/p+cN3Vd5KPHMOCtv58Iw1z8rJtl7pVNCOxu54s8YZuod3wlMHhShth3IfSqqhQwnhv6+CUF/XTUI1VFumF2FawEwJdBoMbxspH5eqWcdkEb9nLw8LcyTOYvOwY7K4xj/QYoNKB1ixe8Hq4s9LKbXLoqAsVKEnDv6cw2IWYVroidraOtEq5/Vbn0HljcBjr8cBbLwHyRqmoL9qbqS7FNceeQfgFzljbmq9/kXmbydTAzQuO8J3HQr7bkWqTwFiu1+MnSKFG1OF0ECl0aeVf+3cHq62xXM3hs/zKeMrnnF2DcmTa5j/CWb7zghlXwKSoO6Mmf+EZ6JnM6ElmlXm8njeNyscyovmzdniMr2dcB6SL07KRGmkj1VNbUMh+Z8bH7fgdIQ0FXDxO+WlJRgde33jPaHQy7ABXQSXU2Kwf7uXxIb2SszyZKp4ETlaF1F0j6pEzvT8iuSlOX2xhbbYObxPE8xcVxi8L1+tfwNE1M5JT19BaCjnV7sSMQGqoqsc1q+LqF9hHV6wK4r4M4vN2I1X2USg0TgBWp6kOCynMsd7NK1BrPNu8DYBXARZ4IWxHIMtaVWp+LxRq0vqvklJLRIuNRjYUX5RP05VFLtBY172QmZa1GPI034Ga6Zt0IED/lQP8WBBZf/q7h3iiQKCbbfBbbEdWuBVhvjwBY3cDen8Ry4qm5qSlIgH0RNnF/+VDThZacMDYMaBShte6qyzPT3uhglIpnRHHOwEkvawQNBeB8yVcgBTSMotxDP476oQ2G78O3uP0fLzkaLS29LJllmNkDq5qZJUaXNxae/PbGHQGY+nQP+3Ib7j+jAV4xSg7QD95FIJ7yTjilnRX+Trdv4aJ21K3ARx6uWv0ytkz/Lu2EJsZOEEchImfqN1XI/79o+/URG1L+dfKsQoXszCv0HhQKO7Eue17vEOLsZCTR+uCgBApLtclbPKKHXvDAC1IYC+9Xa7QkcGYhDVq7c1RZVolONUvt6LhPswX9cB8JLyCdgGZe2bc5in1myow44CUgg6skeqDWCWhV5esXh5YePhG7uajQWKGcoDQENseIDPy+w3xAE2FJ3UNbS+0GcD04Z5l2weqxymS5CXfMTvlJIJTCW8pXlWQv0meZDP+cTSnkvx2q8ZSxNG7QgQGyfBMKiJFIxYNIrfRcAh42tnIoZ8QnMIq1pKNXHza29etHg0LTNfn01mK2qsPBML/uBCnyPaEciTTV/CwiPqU63QWbc9B9Y5Mj/bWld2DapFVdjc8/HYbUYEFUq2skyJ0VNny3OdD9dH65MTIBrBIUFafD4gkF/kBlkseyZQKVRW99UIllw1me4daGYzQKw+GDnD1/NG26k0sqJxf7PMFyBHccoISe4uIKzc3jmIU5C32ahTAlvXd7gdA+h8JKYhEVLUCy9PBsdU+JWQDHVqbNboIJb5/kT3SpEmyLZXXOUxPRAh9CDL77zDum0JVQq4i1dlg6MbKshCFgBZa09fSuCQqO7EAUHPTWvD8GCphz4fOqFU7XgJLlsm6Kp9j6VHcs2a4GD4apfI9qE/DuTrTEs/p11K8tm5+VNS3PZc4L3IpX9wIJNTZXAeX3TBZiVT+vZFxJloZEvQXfNDwzO+fJNgoEtiOF+1Uxf1Ejnf6InAwOyCivErIOhhodrmEkzKeUPibfN+bsFvEJ+LsKkgdB8+AJTJUTxUB1oXIjQQHtnYhXyaMPtRyj8mg14opQipdpUgRSOls00KmhHGzkVrew8+jdHQbqjwXKZiEd7AKkzMo3KqLfR6A/L/eTdFgM0utrrgx1WoyC7rjrMgaQHsNmAWXb4Ru6hwXrZNFgDGKbx7nvroJ7C++Yn+1qcmux2XTaT8K+RRLTqmGno4+1i69k2vngaYceZVZB3eQWmObbExxLY/N/Vtqzv82OTnJ/HHEdLEOU4TFRxhWRwzO9hp60PViPBwJd2ih4QlSXm6naPFnJ7JFXiVAS0vW4F/RruiFgSUtZEEm1WiX4w3LvfTagaRwvrbuMtog73PZt21hs6IERnfegtleOWT0q3ZkeCv7XmcyIJJF6YlnmP8vlz4CHG5fW/Cc349JB3JxM13mtGHqnFh8AWZswet06gTxujgTG5o7+oqr38GjgSY1mXDqDwPeddY9PtzzaUJ2lhIDQU0EkrDRtL0WmaMbPV0gQ6R1/5OoLqFgAt3b7UhI0vFDyMU5vBUnnPYTtzoqIJ5p7ytgARUG6qs9cg5Fz2e67ToZrQvRjSWZND6oeEznBKG4lRd6x1imaf+sC6Jf/RKPK9nzFT5tc8Ui6dr6rn+wY4a4h0qVqBXivWmm/PHWDXVbCaZE+MDSXTQlfyX43JVkIFI7DoSWajxuEAH8DeZeQ10dFrsFnM/dp/i/i9ZaLkIsG41x25xph8YoNG7yt4VzNHpe/ctVWN67oK13dDIOErR4rqo7AShh6NYpXySi3SBKd0wXJ+68oOyP1L6B6up6yt5Hv1wINgoLuY4ePTOaqMiy4pn67K+fYpB7GgEdqZoP/GIscOohGAxUvHLTN3bLcIKqX/xAT4JGPmHp0dLWxX5kvu3Zqnnj+3TCfpgCnQy+cNFZSIsqJPYuDvlAm2DzZlo7vjO2+WW0JFsMP/3GqAS7WW1j3JCWCBGc5hoYq5iM64OsbA7bk2ISMBImBocNNdsciDl8G6p3f9axEWHPzL5cMmYU8bmtmRfhOV28ttb1nrsS7UzZeXwp4MFvKqtNuIwF4IAB1mEbJK9vHLBQuJIKDlg+TQXI5/qYNHvFlrFday/SxCcHyQobO1AAuIybeOrdD4tXan8rQTlii3qnByN7AdF+gOHQi2k4P9lPM/KkmQGycJYE1eFvo3jOnAlfnJkwgk6p/WT/R6Kr1FEB+oFjQrjIXxmLe+vBvg8DcvDmA+h9UorAWr8+ZNPieXKxuiHD/CtwSiqK3nwu2bjVlV0jf/JF+OBqKXzWv4iE41t9+QlRTbEATU5jildxBXoK7wRgqS8y5S0piR1zOYhNRMsL8hrcUxt5Fh5jwirPI8dHxK4b5sJ4pudOre5F2dExcKg30LKxJSDydZUWMyc+4vy7Cpq2bcDr+EHGstTJEVY5F+615c9U0vdtcG/Zsd5bHoaf248C4b91EcLb4kocqfpVl/VCU86OFTPbin9jhxcQLl87olVoI01QqWTnO4UDRT49rC0z9xStvHy41b41DbZNisVKPf0UZ1C5H3Ffo2bLX14ezm5vDwPMRT15Je27nCwxA6LIva2e0mTPUfLEbyoov2hni4CnumqRn4zTqSnzjLuIuz8kzyll8+QBJ7tkqtJ5Uqow5fB2GwaWEScrVOtW+QF9Sac46WzFXJrgz+4tQ==
Variant 4
DifficultyLevel
581
Question
Triangle ABC is an isosceles triangle.
What is the size of the angle ∠ABC ?
Worked Solution
Let x = ∠ABC = ∠BCA
(Base angles of an isosceles Δ equal)
|
|
2x + 152 |
= 180 |
2x |
= 28 |
∴x |
= 14° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $ABC$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_50035_v4.svg 280 indent3 vpad
What is the size of the angle $\angle$$ABC$ ? |
workedSolution | sm_nogap Let $\large x$ = $\angle$$ABC$ = $\angle$$BCA$ ` ` (Base angles of an isosceles $\Delta$ equal)
| | |
| -----------------------: | -------------------------------------------- |
| 2$\large x$ + 152 | = 180 |
| 2$\large x$ | = 28 |
| $\therefore \large x$ | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/HbUX83WJczltzow6xxu7LnASS+4MnCY5Q4pxfqsjRYQd1Wu4gLOb3U8NP1Yxr78dgMFRmM/WN62CbK7QJ7PJcKWcK19qKOCSCrPUVYd7+K5lMNOmzIjbZIlmNKH9/SxLDnfGsYWnYams3e8Ee9JTFHw6qS8Nu4K1jPSlt3wABTQgTb+Mi1ipNg5SE8u2FuwWJ59ruC0tD0WusgPabrjTsa1yzsw3QgQCH2IMJx8W7XJ2+ZVfPXcUlDW53y7+cOXA8LkznF2TBhHnvz2NGhqcppqgtA5Ik+uS3Z/8fsRjkNUag5qO3ZV7fYft4+HIIl4VFpEpAFeIfiy0Gxq35j5eCppUEeAfml+hA7l5FYCyXxI6NfhKDO8lv6Ll3AIHL55lNwpowYAUV44qvbLHcigJ2jW2Dr+xDIX1hTle/lLeoT8T2XbmyXlTCbWaiC1FXb013KnihbI350gAY1k1j7ZlswQx/hKHGpP4IJ94CijayK201QruWvs4CD3wxqLJcutfLkJZ8PLLzGjWtY1Rb123bjRwEsSHKMLpjZynR6/tapiqqBEp2g9LN3vIC8y/NdtKJy3djYu7fI5eL+hpAGyXppAw6IUBWVFhBqWl/WKjswwzA9aQFGh/DkseTN5aI9NJAIzZwy1OJ1/LaweoXB2hdCJwmuJTMT0bmkd2jBfNrDFS2UvpywAOoUiYzlvvtAj5n3meRUtKa92OXqMoZqZvukloRshyneLd9zOv3BB1w8v3w69VYKlv1aLwnDsk8k0iE7gtB+MImhnI0V/bEvtkWmUlJo/6W5e+VgPUxvNRzYkkN0WSq2Qm4yDdh4B0wsf8PdKjHuotJSnT9JmjyE5NP+m+951YgJQ5Fpk2ufsMeTg+EwRnZ3uLMBas+c06UGi2e3+YrdU1LqE70JvOyH9Pk2HBmcr+nro5NXJmFA3hfItZIG29KWwgOKqC3RBMSIVlOf3fYNv+Eac2YSd/ORibOcgXhB+fGHILQPsaevhudnnSM0dzmBR9qpgs9aAr03X6I91flAAuVAq/BD0HSl7q4d7IpvbwRHlEc3Aj+FKd4vIXuGEBJVqiBkspP59bPkc+8BvoAbBinUU4Dc1boPF5WZ41f9DwyyTyGKnylT6awQTdcuVXBIzXe80M7a3iljtV85G5QkkLP/CtXudXGNTJDfb/5qvQyT0AP4qzdA3HhMYD2Ct4KgHaOYTLgQvafDdMM2waO7Q97xOOg/9ORq5xrUODnpjATAOBSPc+oZgP6HvB5mvSnacqq6CDziutsxkD59DEmKaqQSK80QSqxCokiSnaWlJjQaB8DgQjbiR77Nq9tbGrG/Q8yu0Sq7lvL3q5ObuaCryreymrE5CZjbPUDchJl775VrlV70zK5bS1nNdLujpvoXpJuoGgrEhW47taaWKD7qZERGwGBlGM3wR31CSs4FCjnd5YwE4c9URLgiJwes6TfqqyeigjqF3duSaNey1KBMOMPfKRHeJm1x3xEKRxLRraatTWLJJ4SX/hOoHja0yMgtmAsCVNPVtrYKFVWRBBfTrLex8CSQJiCzkCTWhID/k8a7kMtcpgGCiBPec70jdo+zr/KwzwtDB3woqxXHwrZDu9lZ2tC9hedLyqrqwvI1heQrfvnjSfBrln2PjDYS80FualXR5vxYnG4R3nONg0sLcMeN8P2vhnrcUjEfw+wgLrrRx7QuSxVppxcmHEq9GwlUZB1NREekRyQ9qW+5satyIWWg3K9g9hcf6W/RTSwXTil5CATKG9ZpiOFTTSJVJPwoMfbHfXgzGpDAbqXXHOLiVrFwreHJFbE5ulrsZk/QOuovgMhkfMvKI7UwGagKl1xnmHA2V4eZ9X7DTCx0WUhyecXim+fILl9k9kKnRyQpvUYf50UgBkjgZBjldokpq08UuprOiQRC5NQHGX6ff9ZayEFq8qiZbYwx6ywTe1rWG+su0J51qvwFUjgZTYQGX0qcA0fEPBWP2zSyttNWmsYY26PpDDz21u91PyD6faPtegC4FZgJwBQnz6+aJewk+IkYKkLyyoE2fAabShZ0icPkGSR62HJokY8cU3Fv5h47k65eg8wfK3kjPJZfA41EPkbPLdTn0anZG8Jokw9kJAIVGHkpBSvUtLFGEs0IQ37ZxQBzfK3ySi/dYVc3jAg9H8SbV/PpJjq0ReigKr+T0gY+CefvrPDHtUDZNl4DiP6ZzeTIZ8+g3IdotEp2WwvXJdPR6sjaMLeikhdHozM8nEOnrU8dYksKQyvNEY7uLJbZIPm+w8JjAeR7VYGmN3lvV8F3tZzXro6WpUngm1g2SCaP3IbUoyBae6aZ/cQWseEjJUCyP6V4tDE93SQ59Rt7PKsV9Dci0p6pyKw4b3FhH6C1ugA9EMAXnRQVSdcGdNxvQrHXgodlhnit+J6abtXmQtQcflJXXZpO7MWdNVuLIcd7ohaCNvq7T9Swuh7M0+FEwjEy+iKS6PIaUfbrN5ksRHlIAXyLAm3XadO9SD6bJuG7RC0Cp9AVrpGACzdI+T0x9n7J2J+4S8y/WCmTjfWKOn82Sh2mkk6CtDtbgDGcXKp6N74fa0Fm7MdztOBKdyc+PEkfTE4HY4PAzmk6CUMNusp4c2rOkZuKW+HHb+ss14LodHGVuUS0vL6DuNVz4iqQOLat2rIB0knm180IwzpBzz82WChfRnfB4IvrHHG6GgkFlM415kXMygmLuFt0/dCaZXiLD6/0rC7TFkhtjPLHKRJgxm5X+xqwHi9L5gsOMwAktq2ExwrsHl7OEvgdfXUoeHgJORFQggRNG7epXrByn+TCMN7KyHaaDYI5H9c1xCbqMRgQtNOM7d/BLY27mz2HDR+G/Pnxu4pc1yshmJtKST7n21HwSgEXnZ6H4+v2hXWIgIYA0spwerq+tmxC4T5fyZlJi9nknRqrEfftkmisF2mviZEJME3znDHeaTW5ceQUdQFTLGTgFhRM2xLI0g4rpIVprTLDVeDFey/eN4pspTTbLqn+I6Fi/uJRnFlAyFpqKCvWt9U7wLbj7jf1s6UUtv6cR5QEcHtJAbBY2WXMeBwp+Ldr9eoWNoKaTn5WfNgJMpsUC120LJgcv7KE6ABMLuvgwxQ/WScnORySeB1JU0+QF6jfl4mHOv+TjN5ja/y4MfCcv8ntEvKvMW8H4nit3+tQBeJ+ENhEvnzRmIsVfVrgExtZ7ySkeVZWBDcHotZdXD0Cf5ITeQf9xCfdoKnPGhVGet+7TcImdXFH8rENUwdr0X+DLxCAvC8uV+TtGQwWWq9CiUWxsx3zlMKWHKLh220LK314KPEd7M9G9iQ7a+ZqhorBbKLLrJJtp3UM0eqAp0XjIyNBPvnLkIPlmjGXqdGBt311T7lTjY7fsFv6I5qmE82rah0O/YpkM/KfJmsh/Q3zBOYMlmN30T8DtWVrchk8GPNf/5LlNEHg94olWS8RcWvBlWxJNbzPBpW1w+gdWOPL8DlIx6ya2r5/BEbUN2YmrcNcoKtxCK9dOHHt3eg9Hy1J6V/o66EWeA1i+JxcFnhDqoTL1jlWZCtZ9+Bg/EsjmOcwiOVyHiG783NEIqf0cS7sfCpzDqLGQ5/u2vgnAaH+WvSMBEpgvsyQ1JQdFykHKMIZVdLh63V4AMmIimBYjg/TuIA07sE75aRjuuGBunLdqFH5Sxo6gP5TgGtQ+WJNUAlnR/C4IhnO+ZzxtVo1ycQ0RSfCkBfYRoo0dw3wo69+mI0HyUekHVNC16FTEOQlkubXvX4Kpjc9UJ9qJIyQobdwyAREaVvanYNh8y+NKVP1wh3l7yLxKgh+SwiF7o/Bq0HARYHkbxiCXtPx0sJ+IWvgfxyRCCZOgrP5MwYv1QW1F7fe22jGSHPK46fKXBUZRXDaoj8eb4Nedz5478AHlAnN4DDfeKOSBi+Ftojd6tWQN7BfQ8VxFL3eRxICJj0ynlzF40OO2OVrjQiajFuBLr1pK8BLXZtjtfzGH1PJsybQrKNDlu8fvUa3IWLHewTc6SHANOIUexemmZcmRxMmFpkj1VY9i+x1Ut5UpcoPinaIDEuXU7PtAipUH7H07kRD1GoojhHRG5I19AjYB8Q4UJ7Xb7Jf4NnB6vWxahx/T9Bv1WHfB+/HFhipS9+/LuDS4sHdyi2A62CWgTJ1Cerf4jAU/mIIwxC9JQtLVUDIm1VTDDXWP42IC24etkvR0PFOHpXisKcQSrt7MiVHrCHCu5+922YShaQ3W97jSQFQcbdwUw3XG3DYu/ipG49ho5FWFESoWukSPqdNZJGSjIiID70hwF3a8tKFkEDjIlmHouPYTJZoL5/DZ0DmQzt7j9WdhFCfKD4yU1TqUVq22A6unTN+aWi16mHe6WOTKpsO3idwKnHz0RsNN6ifZuLvj/+DpdmLxjcBM9uuWUg27eCiiNyH+pTHv/h0x8fSWWEnkIfFpq32fwpN+tbtWgxPz7dpKtJ7NvDt12c/WZaABkmi77jginJB4ZPmjhhFzDHQ5shTJzKXC2nl5XZS76o0o/QTkt5pdfc/fcOJVtXz+6EYkpzMAPDZmhV5xTZbcqb5ngaqwi6Lfd+afuCYn9EPu20zB6MQgUdb5vaImKIWZe9oTHndNliRECeGQeJdwyGtHgSrD8DPxGA0jAVykQREeb35r5HDNzHzaiLfqdrZ0zLWyPnF5nTFciYL/hNiPH//O0dm70xPZ7QeHO9IvVGJSrtm/8/3hwyYBuT6VDXGKCP84UeB8BS4cCkaashrEo/3iVl+k0kXJISl7QQMBeYckitU2+1MwVB7V5xgPOGlEfgRMO5C1dHpVlz+OWqY+cL3OwlbArBflUNlo6oh9pFj84sK5GhkhnOs8WfhsHU3WcyZ5gMhPXIFKB+tZmxjd3TMn6r5VhkUiBm0C56V/Ilv8S9NWosMooWtQ/WbGfBD0yOv+rxzcC6aWBPJQdStckvqOLQheZLpvF9aGJSducJF0qad8Cb48UTYWdMprTAeKAgeHdiZAcYwmq7RtwLYCJTP4HQd99y1JRPi5rb07TZK3KkYKbS7F46E024qWRv1+xMo6OeP9xd4BKGKVkfTeHGgHdp5t6jxZzqPGfb/iUJ+0NnxagCOTem8Dv0rneRJK71P4gOwUIOPcDi6Dq5yZ/EcvcFSQNPwsPVc3r5guBKJmlrOrVI++6xEPguajlBXDlF0X8ghBj4jRjADxdwe2jIR/QR8ZeVB6573QNR8NClsLQCQAB2/X1T7Hp0lz8IWWAv3ckLDWuiJvEwx0Z9sMRZEmycYzacnd2/bP+flYEcd8V0FmFJmDC3LET6VSBlC5yJQR0lk6Fc4q9S6snup0Jrl1OL0V3ksRO9sb7gCJFmuhEjVOipd/M0AZpdd9OZczTQJIQJXAean8UMI6nFhOQPA0CErwLd05WnC4q9KTcbmX+q/M71I11hCGy89kweV/VQePiaHOxanALUiRDo1jqVEiSNxn3GI3MyegU/m4s/ngShwadX6C5DA+tz1o3+4vd2CfMIeZz8OoGPB168tyMx0927IxWdbCJqoYKLVKeRZebLpHR1WNW218a8MP6LvEtj/auOLRbU4ylIr6oBVuzYlkWXNB9t2DeMbrhJtslJn7Ghy0J70B7ytm/2OpgYNRpMKxCTuGVv3V26aMNKckDKOkP8Sxzcz4lUQovO30x8K3LJOqWSk54I346eoCv0BKp8h1PhPN+TkhPHPWQQNgwDHHyLPn2pZ6kb6+R9sStF69drhxUmDlE0ZVVJYAv8QTqXyJ2CRnrS7f8rB/yDrkpJhSOpe9rLpmmS5B3jWiGkLPHuDyvOw6qY7S7dCOsAQ4QA8wUdHWJjAJjveNvoCAfXuCpFkN1AypZW55Kit1xf/S8Zfr2498ofBehlFeGMaSc9jmoHxMzqxMIoOlfDVZ8pmmZsCj+WzXuJogKghmuXFz/FJc9A5umbgdmLHBjDiLXVJTH46Pygt7TFy9Szby3cEqdFKbbF2xT5JujV1ss4R2dAwWAkIoZ5yZeaKtqZ3vkm+iE9sbFuqOGES8KU5JXVQAzYLGNu5LTbGaYyzEimQOcI2ZENgHX/mGgLJp6KqqvsjJDp4skXll9TRmlDPxHrX3qHr5o4VKE7yCCjVHSVSkxnYHBk47Ozg3Qr3k8XBuFKRI4wxsRuH+lBfXTrBqe8/3rIvV9AQcN14X+1cf7kcMr0PsFrayLS57ZdUGxB2ya8lrxr9eNt4MDfYrcszg6o2UZI3IbfjnMgoNS0fsoFEmuH9Vb7Apkbb8REc3yTb52uWPfgBlM+NsFTZ47oQu0zwrH2Z1al/xazU5aLaTyTieFQRzCxvjPPHB7ODZ4vlNxY5/ozhWGvaig5GqkwKJIpmeN78deyhPZ+X658ErXRJQsFx9FmOs+12RviwUZt3faNWwdGjEPaFvsXHLYukMJ/4gdXdzL+7OLnNf8HU2D3m2Ra8wV80pV5ospq1tqblQAJMiaNJ/r02zgrFwzMpNcqAQjQaogCLvjsEQ71ZHMyzIIYjxQ1AZk2HO+ZKK0Zv+1/Cpku/37Qr/G5gXPc7dGPhCa00llxA6NMs0fF4ehV33CCmWPS4u5TPx/nUJXcUMYPGvdAL5buCn+kFnODxgUY0boYf/aWvI6JeGyHuqtwyjOfqEphNEvPyJIt9AKu1KYJl7J/6Vaz6cvubtE/Ue+Kwk+kG2z5JYN4x7oGAdG3QVx28ujKVSs51oby6UYP+oByQbn73VNaEIFz5hGmYPxdq3o5MyU5cDRMxJIVLMstwOWgq69OC+5OgHqwpaZWxOffNK4kpRppUn9V9lUZ+2l26uXq6ZvURUL30fhiPKX3rZ/41+/MgWbBhbMmACtY225q3egwxmb0hCeDkUJEedWEROstPQfZO7ZRY0LCsMfscO/ias5fdfBhmAKWdADrr3xL2P/DcDRG29Kcak4YOclssocALs7Hvc27ucYAkhTmYjnWbYy+fSr6xHfzRZagIoTnmakoPnqEcYYnnOBue0KJ+fA48ESmBkYnVu5v1pAe49jD4vEcbPQA4pzdyoJ/sLPcZwiPPD7atmBQvA3OWtYqR2e2MGj1rjt5GAbGcWMdNtdVRcbD0u5LOwUziPm6ZOTjHLGx8s2/ZiKWTuEpXsq1g1h1hZM/1/b+y4+wrZXFTm/S1RHBEVEXmGYkglOuguvA/pCvKuZGKcghOcGeek5XaLXuwhaijRnTiKk7pqEHIuPCEQ3rwW4rqnIOKavRFF/R5v8GSvWr6W1cjJBcekVa084SUoPKqlocS6GKpCDFCT4eRUbDQBkef+D2JOBOasyKiAN7dfMkFkvkl4no69lJFshXlZb9pdWOyRrIaSOyFtK65kDWo5y7mkTecE36pUODk30LbWUfXNkZ8UfvN8shlPwZQkxGkApSCCOM4a7vm7Qw5G8mQ7Vcg+hAdtNKNfz61EZZ09OJYvIszlojf7ey1Qz2AlVS0f0sC1Bvkg6LrtwhILaKoAIlStMraDvUZSpAsK5P3cVVgV6A2K+sb//MCHnCcTx4ujoans2ZEuBwA3/LWwhCEIfOE2qcP940YJNZA/jfOgYbqq7ZOPTfUz+54PTsiyVKPgXkh7e7KPBPunYyFGtMNzLW/NBbVeVB7Cg2eUReXeXpEcGgeS01JqQsIWODsCe6bO/ctqMaS3QOzWyhyaFpyNzetOr8HWCtQvL2oJjBPl7MYdYC/Gcxi1pwRT022KpjF/q2h67xwNukd6lXgt6eI+TsUZQrGAMnpBWH64JN1Pwfjr5XgaTHd5MReGRA9XyPdzJj380q7SrkiZZ0QN0Ucq9XSwrih0w+6HMk7Ku4W3KUwKj4r8zT+PKabLRfPJCs14kBv7+4138Mg1W7hTVBnOpjrsrlgqK1PojQDroJULXLpS3dgrFApmLcPkF8TK89UB7rfKaX9jQU90nlzF1UMWPs+2UwEx7ZaSsVSHa6I/XwJhiDELVq0FPYDCxzgcU5fxEIsFGAyLD70ODNEipCtEgVISzk3u9S4U7tRRs6X4RGi5RyckJsL639tPILbCBh+Ktofh7vYD/Ljt6r/VFFbhAuZ1YBCZ9qgoFjYgVSyd8MMKYcVfb2jDMvRKp3yuwUJ8wr3o1IkM+cfxOFpou69sMnn2v7SmtiGDHygDlVe1tPIq63yXgr03q+nZiv180z3PU/a4NPigkpmNmJ3ZXzstDzTDqHIWuxRqrsW9Gc7DDqXA8kXbIFCuPeHFSja6dWueQwaePXUy47j3j7F12ZYFM9uZ2X7KBQA9jqJp+nh36T/kRUPZT0A+194uB1YnppIqhaFJfyhfC2qo0RSg5Cgz/5vG3/93zUV2lbakyUAPWrN+Gl+NbWKzYBx696s69+iMDx/2Q2+IwfBmJty9w8d8iFVfGVkcOCDQVcggu6Jrj1FRLDEXywcmU1g4Ho0HNyEInfeC6TRZbQYa0Zg3vbsnySD4rIMYH9heRipgIyMzgXtdhIKg2PF1IgP3sq+lKBhuM5n0rhtB0qpfYZPW3pcYF1nhALF4iZIL49J2+64DnqFgsXjfMyGREp6s+nXwWZ7O9m0gg117KL1aLR+tFBRmJCcRyPJHeIC3IWZwWw3xV0rmvhl8iv/Qo5s9JyJfvrWAWtf9/3KaQLFlZQLw5kbzc6q60l71TsuQHZoXW3iIRJhi26SV7SZpAyJpzy2y/aJjkp/h3eFGbG78RRmQZBm28JAMkt2+y0KlfI2FK6bdNin3V/j8XmZ9fLzqhRgfwJWwN5A/pOqdc7ybczRNAxPqfK1hti2nnc6cZVYfaQa7hpkIn8H7INUb5NuGscwovsLhcPZvEPppVzlE+MnpXVizNoQp4ysswjXd89uqhK8Jk/XKWMN2SM8IlLKpZSIHH/PCmhVvB9ZDTQ5utOltjdkfMLNGhmeqSlYNW9BQsoyClTx+KSl+tUeJedNt+I7E5xn/7ztM5P+N/si7MEWoDM4otzyVrwKB87w55nLGzxl0FzZ8nAPL27grPMFHPYyGn6gn2mKvorKn0aIF16Y8l7Hch742YF94SBKgMM4UPfnMBJlvbwClCKqru8zmqDvgQAYRNMWYiw7TI477EoAtcGj33TMG/qvkqUqCAYV8PHLZsrS7NuQ7Sa7855PztVihfxNGfZm4feqLfdS8KrmPVWC24qqQ4dRzpko5eQyFkqkmH/qVbYq/5OPj7nc0qB/C0gqbH1yGmARsBz8rhmDKAyjEmBf9W0wBRYYaZVVcq12WwgpEVuivGQbC5Y3+xHbK04I470pyhkQHR0I4YgGYDdrms0pSczDBGGY9nN8EybZez9TphipJV53BndqEDVksDeQ2iFxYWvPs53eHHvlQZI3doEawH6C75oYmAOXpAbgAGvRgeSJ5cadmvCq0leIOz7WumcWXE7Bcyw8y8yQlz5cFe0LJz5lkv54cKih5ixbOgQsHufx0wZbWLAb6w8yfHM1sFsUBf8ARtkQjHdqYKMkRwlLzLhONHb+gZrbnecxWN8QgGnL3yZ2StstfUGz/prpM5CuYPgw3DGmUx8z8ifwALK3D8F8uef740sZDyWB6KFjlEKisgGAkFqp+HwgfcphShdD2r5DXJ5RrLkXDt/QLf8+eqw/y+xZE1RQqlMUQPMBUbzrON5DCn5+50lOnnrH5eQq0Y65pUZ+HaMcJ7xF/fxNJW6xt5rMCKijJnAu/qJnucLiidYdhkLkX7Nu8V1ZZADP/mRVCPmwVm59jFafJIfmYwSu6rFbkwvLmCBchj9YTnCxi7UJvr5QkqL1DzKRlA0HqQhP9vQcFBSVl/tjNCKQZprklFbn8TS2ctdEiygqWwpoV85SUNmjB9D/HtKXsopkGAttD7hWeOvIDgrkijYwNHCJiiF+/8rTfej+eIVnkwcBzX+0UhwqqJYn8HsDm5o5plWrvVAmafOaw+z8CN+ieES0EueNoqK0xrVzmFAMaQoqXjB+O4VqJhuDqtML/8i6us+tqnmFKgpZtG0M3Pbc/Jf57jngJ3QYiiMtKrX6no5AdMFhTS6mUg/Mn+arEzD6Xg2psj+uKRAuu5PCvoNpZYKgN+UNxgmu/u+2tBxf5Z9JrOMFSrv/6AtuCZIgu6Zb0COgqNWdM70CnYl3l2e+y+gfULq3kOAdwfnVngrxGoRs/Gd1QGqZmEZ+FWUKd+5j5tv4gC44tJxJVJkZhQFV/G2SjMZ4bgj8EDqsgCkJ6dCa8ml08ulJqQQ0xPwLRbv5QsC8QttUa60d4fevGygcrdPN4WUG4IFPDmshY59r0+qhJJ2vyerIbIFVMjL6mROQWC2emPTr2SJmBnJuN0bVYyHD1ANfjR5qyN2JwoYcPwr1LhNKXfLsqbu52JFYcgFzCF/jUe1ln+fPpmZiOoDoXCs8Cx5K1KHQoBwfiF2dSJT+qkxTb0LYHIqPJTat0OQ7BKTzym5F6WhBIrsK4OnpV+QHxr/7kokqIMPZoX7Zqvp+ZN3t+tmI9LQ1C61/gD3uu/32lsvR9xoZ7C273rd/rTsvrGlOfJPNbr+m0nBiCMr3Hisyzh5ThrQLAPGHeoa9FBbuUY8+tsIpe7v8T18HNRetLkM20UwnsRS5/679iOed5aEc04zl+NzfKmENEQZvRqAOIA4TlR3yfOEusBRxzA78nTcmfGCVnGEInbLXnDC1IiiFZq8a6IeZBOP0+Zz8lrJZm1ATgYuNxmsgVsxfaGL9/H4dhiCFQuEzdF7Usy8e2wvseqpA4xAi7qMluRsp6DT61TGj96071OoIS7Ubyf+ufWV16qyUqYungNMkUsEdgQUZ4KdvTnmCAKPwkhsrfK81QZjzYVCqYDJWvES1EghlFBKwC2RVBla8Mwq68RWi0O7UnJZZvYAIKqQSHPpmGK1FEaDMBQ/mbsUjcV7gB5G7aQtTB1G+l/puI+PcMRPD1pFWAPVStzlY7LmV9OeNgCVt1GSwz7TEIp++87Ju1Go5Lad2Q8PILV3IjtfEOqiWRFDyRxyUlA6CyVF9vnI2GfAnLmCQ5EsJcNbz/LfgFl6Rlh3BlwdLebM99imtJ0Ik2jmts8msexl/g==
Variant 5
DifficultyLevel
580
Question
Triangle ABC is an isosceles triangle.
What is the size of the angle ∠ABC ?
Worked Solution
Let x = ∠ABC = ∠BAC
(Base angles of an isosceles Δ equal)
|
|
2x + 106 |
= 180 |
2x |
= 74 |
∴x |
= 37° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $ABC$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_50035_v5.svg 200 indent3 vpad
What is the size of the angle $\angle$$ABC$ ? |
workedSolution | sm_nogap Let $\large x$ = $\angle$$ABC$ = $\angle$$BAC$ ` ` (Base angles of an isosceles $\Delta$ equal)
| | |
| -----------------------: | -------------------------------------------- |
| 2$\large x$ + 106 | = 180 |
| 2$\large x$ | = 74 |
| $\therefore \large x$ | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers