Number, NAPX-G4-CA23 SA U2FsdGVkX1+zHHTaQ5JYsb5hBdchRXGikLPtn8jEyJM5iZNd7xQ0rs0lT30qVEFpeyD1U5FBlRH29HJXHnZU02Xhsfwm6Vrd8KuK50yCtbtYsQXWqVdrIrAhQSGEbGfmj91zSTpa3e0GVnSV8SNMDB0YhviFzsWP/EOiUtTnhGcKQIbXE2ggWI/5V5TCBWjfYJCKdLVio0L7ie4i+QrdvSVo22NtaL7OpGYa5RhngzXKR1yUTDeMzkzvKXO7BkEfKdAI4U/maZ4WZ/RiNQP/o9pz/XPM6icJ4mCWwZ+nWCkaLAJ/MNfRDiUHnjspTyX3sTFqoxk3Vv17oZYoiWz9CZoSC/Veqiv+Wf8WWFKcxcOE0yI+EMlFudCKKt8a2Kk8PSTtUw2j3sHk0JTtLo/sREf6sI3svRXa8fcs4xGk045EKyVTlnfO1aEgiaY/OblXmiCeKJR0/Gzqqr/hK6hLHDOA4ADblgwO2EvwfSSgud3S5t/eLzWqwYDfOlF9hk306Seb+dpMFjO8il45oxeiQrKAlD3UY8KZu70QZb8HkxjYQjNQI9mJhGSZ9vQo4jOs9AAtbTX1Cwbv7v/nNQyyU56Hies2ALRgzusMelumpzDYOngBPF5eZsjRuNRK3aTUHOBfMio+P0xb7MS6k0i+H3sL3iZjOlLM4Fm0p40MGvDfCS3Ie/xKlG01fGqqPdXi/wuf8vS1v9OVUbrdIcfnixhkAUggFPPuLMfGmYwRpdJW5MmUPQzCy0mx5yfow/K+F+V/XccI+pepvh7iQ5TBLE694YXAGqaBGCRnFzFPCqs9mIEX01CJNE41p1udN+xkc6sb3jtfp3fXoFZhdd+8Llkm/mk4HEaLz1EIa7bnFzonKzLRdAbK02RfZdAHQILq6FQ9aCeqwkfqE5dvg29r5bGAuUJpk4DKV9HXeYwB5VXfWbrwGi85IhN/N2vfzJLYwid/L16jLw+kRxgPfMrKv0mvmmvWahaiR18bUXM+U2nPoMczRKGA79GAJQWFEcl6RZG0XcQnDxJtTB08nkVrA16n5z8RXv8480Qno0dufCQ5B637ouSPpwKAFEqOGnVggluNUiRwZZJbaMFh4wsPZnUSOzuPeQpWbHCsJUCdTDYFOsHnXenDD4Q4WsCO8KLM69hMm5+jiJRlfgtowZna4SGeWkuvZktWIceLhVBYp5a8ortPSLmdaOZAEV3/bXUNSg3Z1d2FvvgPoeJhrkw1XDept3x7Mz9uvG3f2vRzB0LAvt+jKhwJ1qRZmXIC9zyJ2QpV5TR+TFfGNhojJ1dMTcyBAg0hUg5KmhLfqIlhTCWUtVBKLIQzD+eHZZGmqWMRJKxqCLK5QcOJzpvvrpyxZK5vH8ZjJ72/oi3bQykZw8s4qNJ5IqSvPzoCAnD37HCBBf9M8TGFai6deH9IaMUnjGt+GdjodKDung6YzffhqrT8lmC9bFHtocKad399qXuqsonJNLOz1BPQ6RrdmqifteSW8fu8f3pi9nKdTdBCU8fjZmbIULZBuSryyVVL+Zh7Vd451YnZFV6W2KTdZXex6Rr0Dfo1+c3Z4IWDViVPUITxjtup/mv//aJdfzTuhO+FG+OJJuDDkGqOUwzZ3eoP9pPHwkYCph4MQe0JxJR7jw1HQNLjnv2QJ7ShLzHIZfsOLBMfaOYI7JkEdUL08E5hqC6WKcc1pqsKGdUMOwTvMZ/0uEC5KySCSTMjl4d94pgc+mRtc7H66Zdl/Q+vNT+DNLjDGh8/TY2ZJf/BXD2H7PkeGNBdAe9ZTV+S5ekh0upidPSnX3S5tjhKJKEy9pXT04N7Om7Iu4ficEhWGrGNi7m7ASrHuVAlJsbxhuuML9EMPGmNHVgJwpSL9XinRshlnnUtwy2i0tY5qmhCnBpZZQD2r3WTpmP525sFQYiyfpx6ADvtBEe7zSQzEiLAe+oAbQPeh4M8iYYZWl4soE+1zZL3gc795jYJap72G8lvQSuTCdO+sF5PbwxLHeL5NdwvB3Rh7bznvUNWY3hqjxgKIGppnJDBLF5rzS1FksbW/xdZWJ53BuX/y8q1/EhvQZz7blQPEHDzdzOcXjC9xkuynIkK4/PeLj4XN+6/3gDXeeORHUwUIPF7jMih7g9oMnWHXpSsbFLL1eKawH9DJkgSZ0dYuMeOPUbw4/faKlk3PmKeWB+SenU4t5E+z/Q4IRrOdax8oIzQED56NDaZHUzHZd1n+WcxebrLbhqACbV55OoJfQJJE008dI2hIMV/XAmwsLvscI76tTpT3wSahI0GYAJeIDCMvoSoOWE5AYNQTB0h+8umeEh/ToZ/M0DOzlcIFD4gP8+0Fg77/uc/Z2cjM5cZGJgm/FmGChOMkozn/gVKmiA2LuAfZeXlYRIDbT/ezDNR/2biEKjHRhFFhgWEOKYj9jpydzkBQl/bnhr2DzYirpma5MN15XC2RRvDdXLi5TZm+16MYvxQ/DbBEsqXnpBXRVTcjQXVpt01MTPut/iiSVHjFAWky+oHa1CnhC3eREhFKzoWbOM2vvL7w4b+13y9uuN1OjlxW0FPFtf5Lzg9coO9YgGMTkol5LJltwzxH+KXY3NwjoHSQqU4WIBrx98uEHYe8cXyMguIAPhPdwMHbr+6lu5o/KKgiZizOWBnD24jvaGFWkINkYIHpD2DB5XtPuw+c55/1yr1Oni15P/mvnKDMuX0BK6nolPwmo5aifNVsOM24lpGCxsujYa4nHHDPHTtGhgcIVclSAWlrxvaNWC0VvsrD/FJ3BjSNqafu7xc0ZjHn/HJKhnKh5enohPsvZKGv9TM3HcMjKrhLVxmYvRdcZIqyGVPW5noNDCiDuj7qDyN6ZtVBlT3VQ/F2zLX4C90f/OZRg5n+wlH9eN+NC9NczhkJPYwr2p65Bc29P1ydEbv36KYw9NYdWlnNLEX3AhuAfcTc6UqoMQnZSzHzDLje/Ye3bi93CsnqhxABtVrNqnBmGNwNDXMnfPFuBtKQ0DxgkKceo34J25RGa5kTrC9LtrLY9bQ2VcnbEbmkJTKAZJRamdNaraYWIzck9EkUxLT/NFP0gI2hLLiXbEgn7H7OUFOdC/5AxVMhc/yObiY+K2XkYfsW1RvtqDMFMjTXhv/t/eXzoWgUlytwpKN0+qRuVKysofhyMYKyOnIfnuD2vjT9WOi/18Fx1KOCJwVoGUQjU5/E3KOPY8lxPH5vxZNiUnI/zxbUi0KdtgrG6diK1eGqI1/Bvodnnf0RezsnJTNUBMoZ9E35Lf/oiaiK6BmWkxMiW1rXgE8nQxL1FMOsUlzvU3u4uwxssK8O2qiWCNIm5fXtec3PrfUpZKtyb+kogBAf6ybVoT4OPCIW/rHgXD5vQUadLjWLIZA4PXRhoTZgr0e/eP/aMW3A1lZfoQsa2kw2ri8IYT9yJODBTmdiGuf6P7d8CJ7UZT+71+ZGdLUu+Go2wbtaX1KMuhqBGs0NiyRHx2Y/HIEZ036KuGV/U0PEvyG1AHYE7f1cyfvhAFQxVLZlSz8tNM/ogsUtrpI/R0ujdRjlkT/sCt9U4efb7cIg7RkqB2xc2Lx6R+tYI6RYgmmDheMH7UWmchs3WijuirG5958Q6z63TPNqaPPYEhpeM0eMI4AQ2oThJmAV6xF9r2m1mWYUgunJ6fuiRwzAh3mLjNKv2CFOve/rw9NS8fKEREtXRmGbg8ccONCqXlc/TrX/PtQQzAEUq+oafLc0K82vKAnuSV+grWZ1uMincw+ymxX6WUYQKmoL3IKv6JKABZhqc3dWIP6ILsD9GU/QhsCPho8ixgjUFA7AFeEB/gmTzSblsPHe0w3KodGQmrSp1E7a3i1bHQ1PVw9h/JxSFTa63/9o43mpE251PZUucTRC+UHvkpZWbjw//xiyFf6tUVZ+WQgD1RW5ZX19hfRqiM3viKUjtiDl7V1CFzeFK3LHoWc4tYyNM+M+rl6mvuPmS7Ltnl/2sSecc7ca1VUNLwFoYii4m4WcsWybNOEBx4rkfxQ+arFZeSBIT5cDSo+jk5p+JVx28fM0Fd98fSzgWJoUGz2tjZj13+Yts7oCdxs9cK3sCEuUjGgYK6Ct13Vex5ixsivGCcqayWyR9906QL0JiNdSzDpxFr/YcbZ+uth8YbpxZhkwmOGjbDYv6vlo9z5Vv6ItcYzb91Vbz6fvzsTlQK0rQEryYSAB7awTGp7+I0gMvbno2htlY/cGZJnB2IAwpu0XEvF7cg+V0ZkJOl6A+HFuDj3/QByQX5fur7VnaMBK8EjJEnH4d108HCeny8IcKU7lprAj9L47pqidLaFX9dLlStVjAi3Px2Pq0vzs2DATvMolA8W8u11DkQil+fLyksPGIx2ia3k7nnXBT2vxBwmtdjazYd04szAd8gMx1dE95WAS4rt8azMWHXrlTWJEjS3rpe0BFcn3Y5YA6Lwgx8peM+8IXZrPfJ+So6tXhG0qWWDJ7fy9umTULgHvIA48pFAHlecqWR7iBSIxUv692z0Bgr5Js7wP+EqofINmG5tijtSVxFOgLPXYc4drgJKUJT26jMn4aP84lNQRrfSwG4m3ioLJa9V122W2ZGM7vWYwuuTbuAaQcJNvWteDq/2s5hqDh8/W7D7N2dL68koIAxLla5KNwkBiLP16+YcHN+2WHfVhUScigee0kRWJsl6HqEFYlRpWkBWi2wcukc6HP9KjC4B6p2jjrjRLa25fHi69cg0095oGggkpVGD5n8pg4waSJ2GlLrnYGcaQLrag0ze8hLWpXd64uoHAmpkSj2extLd4tSwG8nWWNOEMsmMHUPV4r/lOb7tvpEMNx4sEx2viCPSveccBTmX/PyQRIVahuonM3SXy0zJ6seOxME2+439QTO/+lUMQWffsLgfjUap2PRF6fmlkQWbTUxbo0ZwzQMyN77N//oqD3dnxKOe9DYsTvxuHJ9s3daxVs74k0RcSYUO7KpGxWQ50lnhbRVnyjYbnbhI+5D27rTxPfMcxhDIuSuB4l7RbMiZR90SagxfsC7cOzm4f97ZyJ+oD0D72idmqap9A+KT2MPUF+/mzYQI78Ldf54yAR27rNERVkqmt6oDeS9HU2+4rhspyV/+kKq/aDcJlJu7ZrgzZDPE5359WMWa9lEMnLdWR1CJoGk6U9yFethHVE8wtuUoPuJF4w4Xhl4niTrjX/ICNWUFugI8hQ/JX2/gl7Azwu0wur35zGcZxDAzk1PnuVI0IFt9htpYCvdB7P1QiJH/vg0jR2/kiuT0dqgV3cqgfvnEnrn9UNe08YYc/1eqdF4nZlnoxAyjrWt+lufMSkz7oA8qAD1/uRHBn2gqCDg7X6DnHGlLGZVlcYAZaoLXFu1UitbSeIH+ZhO+D5XpQEV/ov0aMj7KFek47unZJnmXTrVf+7fyjWkdoDeQn+9TsHKAOpg1DSqnqZIDnPEEuaeYlknzPUwggDW9IZBnjFVLj7rBIWGUvbpcmC1v506hUW1mQgqlKzLPJrRsS+Z5FqLT4ZhRYIngPkdB8WXx/qhNUyo5G4tr0Tb3uR3E680pMIOTkgPcuHPZFQRA9Yg02OVpvQox9GsMfcRomNeB2yOFeIh2CwnAbLFTlEIXz2DvQuyV7bnp0MVgTfkSRQmSO2tX2w8u6cPwAhjSvIj5yivOzyJZFiKNHQzR76xmBZIu4fLOKNgbsMEWBGF8oMsbHBgAjLyDLiGwIwlBiUiAvWDGQwXmZZmb+O2EVfnHUEu/o4RYiueywQboXAuS6uSeWJ7nv02ePkQHWlsFfaXrN32aPVK9g7V4/E4Wb9iwU1Im1WxuYrVfG9wXAEjP3R7nNUFvXcQApUtwj2jwOHYVBM3WCpO6nQo23V2Vp8DSsMlE5rMwbKEx+GPlyOKIgw7WTlVQr7bwZuuMEvv+0fgeEDJ2TRJX8nu+vTtnzuhrU3uAfRMwiQH8ICAtmXsGmhGhQ8TQNGuhFQ6jkN6H2kuoJrzM9TbBsqnr3qEAneZE4xYuWg44pUtGhVsbfnXOnZw0RCa1S27uX/jdWqai9ndfXc8K+GvgDR8B0RB2CUoxEO7swQFBNPBDruc59vySweGVfiu1PvgEBi9wo+kYeDRWLx6ZM9oTWj9IQVvPDYu+FzDdoWuTPKyPMz0OMHnAdna/Ab88l2/a6iOBAvEfKGAh2xEXpAl1VQFFUXWUpYxpqS+REtQ71JG0gRk8F2w/WL6UtbKxgzr2sYmJifr+tLk8zhnJlxwpuePf1Wp8iqQ0CjWHKnDEfaXxTrgfdxwyOXKQC7Aoadn9yvXs9WfWVkMJl93HjGfeAW7oYgXYvyLONUD5PoFFYOgG748U2mwuvWy2s1J1yn4Yb6WFJWH/RsUUz5EZB65PKPZl1zaIEhHoKF8HQC4yC2wlCyJNN650b4qWwJlPGx8kAwr/QM6hXCkKvlPxrgmtrxTMEXuUBK5j1SZvtYOQcTKqodH48jpKMjVWqE62ACvIecK48aCWtGW5qmQiqfBeSUZA+feKKHWDMXTmn1MdK6Q9QOoxO17xEPTnnz7llb3YYLjWmoAWF319tdNDSsnpkq1xRVLpauVH1bk0LFCbJPIxqPUN+G1WfX0jQ0dGbYHsca9/lsXQZdp8BFQ++rQluscEqoYe4B9zFE6L2/JSc4R/4UOtBKPeW4DcQBD6afVFX2NiOtd6a861zArZ3U0BizscUZyUqhZMCZFNBrXvOcgJIkVzy/rZ95m7G4eXEZ+HGI1kbnLdqA07xvXRVep7p+dK6drJavi9mn9/+xpJEG5KE2SFWoqnH3my9mJK5LUYGq3zxHWbzDci57xRI8KnuLMxHTMKpDrqlF4FELvAVelQqtssk14PIWrr+rsaNFeW1THlU2V5xf6QaVD7vadGAWuY4b1+0fj4TaRiT9gfnYmoZlYR83j85sZEyLfFO+J/J35wzwYJTWDpzKGiJ7C32ct5z4Oq9MMoGQOuaoIVtqk/WZFpjTKu80ES/6IDG7AUxCqhkjnPdtlAoHnMkOT2FnjmS7T/25dghSxrm5eRXCRZSTEblgnjcoKi7GpICOA0bfM5IyXvu7Irce5CgCZoIAlPKezt1iQNh75e32uWknVJ6mKv5EOxKsm3SV88AMrJEmNjp5vx+WHz8Y41BNlU72I+2UHIYv7+kNzKPYmE8+zUZU6mRrcYdjEWa31y8bvbv/MnBnfYbuHuQjKLAoO6tb4ETurX8fxDZ7Buzt//loTOZuyRM/ugpAmVBnNs+HqCz6L3CU9WU1nbQt/FORZZXsHTpx6B+M7wy+SYn6WAQcJr7gcAPM9x1turvrTthdWIF/mw2TtxLGL1F8jHWycEIHoen+ssA5g+e/WRw8zXoOY3Fw8os0vvCxWy0nXlD2NJEmfcmo3cz260v+GBOe05GLqCr3+xIevs0vMl4OrhD0dp24Qvf7++bTvKv0/LVVDkJZPRU2EZ8BkOUh3uBp0b2Qt515bxyme0HwBZ8Xj3fUmgxvqD+liZ2RD5uyxxvS6yrLdfB87M1JqIZRAGLAm60MzdjKkVeAq29kjImFXc7k+dHVRmrSm/kyeSMgeoOKD0fRQ2berAW5UqcXDSPZliebmbKS/O8MElM5T+HFVUeM8NSxaDzwFlihUxVccKKzSZSCaezbPqZ1m2z79FxH7oC4a1Bt4EqwIstv9V+RtNqzs7GX+AmWJWiBC4NKJgKPFmb9IZ6eUZVdiwQejHOAsgsFfwmwGrfs/rncChUV0G6Le+c4XPGn/BxPUXUWzTq8SrSGaJCV+MIleT/Hv2YbVTI7BsHR5lInXSXALtOyo9z+6Vzew5CMaCFHp6bBTPL5A5GoSMkUFgvWSqad2pf9mG/M6jByGvd2uNpCmqsKUrU+FRntrR0akRWVP5ajgfPlUU9kIjUFODNfSaqJVF34TDQBrDfTV2qmhXJDcha6tukgEBP8tWLA+uZfHtWGyXNON0Rv5ScZApCJR0Sjx7aCkXAW/Uk4Zbb9vwkMuJ4/YlsxD/wUIY+H0XR4ORQnXv44fJTL72KWCZnqaAJx5/2NGK0eyffti5knROiU9Ya400yW2sfOZ52VNGYLsnJRphMNSDSR6NgEplWitMLVD937kKUKStbpZQ1AXwKQ564CLBvIfgmxBvNTXnmb9WxarPs0srMtZEIEhjsqIlMpXjy/IUJoaLh0xsps1KNulRfDv1INKOF070PyaK30a19IDxN4fAC07kZwYDTqXWKkiLbPTNuV2nDIyEhd5vxqcSfsut3phm6ihpmRasN3E+GzBwkhBxivgUvw82EEYE44nVejj61p7gSQZWAAJOT5N+oVm0LXhIY30HGKAHz4w9lYqWHeGx1+ato/vHttbZE0Tz7lhgCn5NdZDQnz7NU7RZPAMC8LTjJBNK8I0/tQ9Z3UF3ENXTdR0qyONwCbgXOvHSPqfXYa4rtpM7UuFaCdVgfU2H5+JoIX6L5tb9uVc9XVTjb4DkY+CCTcu78nwhzSOJouGtDqRfbEf3FkRcGjNJ0lfZ4N2DOT5B8m+13R6HhjtNr+8N6/OGKs8wSDJjNLTy74jW7mmO7nLIGnVKm8OlOnNzCQSRS//sNzDk3pNgu/kMtWRJ9sCSBZKpqz0Bl3KttWvQekJPovM+h0PmeBtskYYLeENizUwlT6q7VSsuKRq4BxSoRivpACqJG/G7Yv0TOdjLRArQytogjUP29RU9VObk+H95TlOchwMZwimCYy0PFuGzRBZiVPksG0o0C2tJda4LXRaqMn/mhGOHBmV6yNOAN5xXCw/1ghgC5LLyH9KlrxK6YaWeV2nnfcdIiNu6FuVt7/R7LRNQq/gVOV3Ttz5ftllK4pprI5rI1T0BAvNWA9XpQZKNgzrSLkihOIfV3enzLz9sglRzIdeSiJYb355C5t+wMwF9QkTcn87sgqd9zn/qrBqf6Od/f0M0ed7ny9N65/pFrzW5BovPoW2TNUnfUFybxyzEgjbBZyg+9bW5rmh7mxtbnZMOSiqDXb+Q1JtRug6UFkmecISvjd8PpbQjNl9Q4pgRvJsQ0+fZLQTsvA1KjgLU9IXaguk88vfy9bbFJGYIyN8UkpohnoLYq5x4AhWDlYpe/s7bCfyOHyQNS5kHMRuBgT88DHamvVlmDV1gkDCoUGROPydclPm+dz1JtWcUPYgnIUNV5yGQ4uEf4toEzuZa2b5RaK5pjAyhw8CaxOFH0XiXGXT480mbsX36RfmKZ75tlzJ6u1Mc6OTdontJoNPbTIqvyRK8omBmVSOdN3xyc3QHGKujbjvh3pP2hO6mrCW1EEmr+972qPeP2AFSX+tSNujm9PIXxuQEMzRR+B5G+nuUlcXlj71XsFGMGVDfYkkaUeo+sVh08SHYyBjKK0podgVNiILTRdqua65mpxS/ryk/z09W0MvNxZwHZzvC9GRPFT8OlSNgPl0awnON7TY6uvDU6hfIq1LEFQnkVqxZlURiUwRRbkVpPg3xGZphOzRKqN5gXVhrITQDtBLOx8zq4xMFGKJBSnvHd0+an2qCSCPxGoPhef+bqqw81ATwHL1aRLuX5GaB02fo1ZZ+EaGVqSalRQWqhWXaLhVhFT5w40JXAYVTEz2k8WpOkbMoT5s8zzVX04oZ/H4WKcRsi2MIcdsilAccJLtzZl1A/LPjPdUALZkgVQ7Ey7ZwSZ+HyKeh6hssjdlBWjkACIroG87kjY9pxxPRevEKi5u4JN37ZhhFlmQ/Fi/oNDOO+Gq0ag7ws9+b3dhM53H6cEpqCJeNqac2onhVuknLMbNltovmhMXPheEuyaPerNznOOBmENWHfvdW40AHj43+YoMtgRPw4bv1ssR9tVDd8LVGvsf5qX4z10FFdwicjI1F2Sms8Bn3+ExXarBlkwt+hpeyYyKlzytyuyxcO6B1MRPDRPrDX5HnEavQNeJz5Bs/BhAsaFzmGcwdq0xjqbW471N2wSWPNQFmmwZ6kb4kpAuuqe8ri0vHynkyAuyXrb8BjNx/JMaV8+KYeXEFWmCcyNs/qC9p0QSUKi3VwWwbcrfZkDPJdF+uIqNFgBsOWo+LbSwyydfWFGly/Qxv/TNGNT9kCu3i3pXvQLRlBqmV+H7Wi5MMZz38q6ctrL3HLCbxj2p9dyqzHdih4D7/pNp3JXu54WLW/k86MAN8W07PbQwfxzHWZCDzANG7PmdUGHw1AEf4wzCi+1At9j4NJIHruBU3WZZjYjjditjM/BGvQtN5U/FDfxlm8Sheb9OGNDSrCSN8/gL3SUjQ+JLbXQ5cszQp/da+N0BNcdMUNjEneXox+3ZyaX2gXg94MTBiNqfB/w7J/07Twdyv9IzDzdvcDTDD6O8/Li7c6RtA6FlGZ7QrGSwAPjvthOH3HNXeO05cWVRBs5M6cRmjxjQ+SMcM8yHF1TzsLCv+YfTTvs6ad+Sp5n4uHWu8y35zCMTo7Nfig81J2ZXufj5JWZxw3Cp6m4s/CS6YBkdekUiRfSQoyqF42SMtXkx6PjNTy1Q/e5RO7T18CmlGCkKqdItBCpq2ZnO9AJq0kugUTkbDmqzvlY5wVSh5D7Iz07YK0We5CdQWxf1cvmKE/Q1EaXc+OggXbrMtiK+Pq5yjJ3p1itMBYTPSEWC/wunOan0CI/irmQv0l7byVKXt8B+RwbOCBb/IwqdpQyEwwQoTePpwrbAhq2A414H48jjnYJfAiuspRHlt1LDKrhii5W6vJn6yBtQusq2NrvRoL8O8YYwke+/bBlAnovwky2ATkpuMawrxObOh9bpoByzk0x9jCyKUCBT1D3V91RxaeyMY7oDtFPVAuYON+igjkiI3cfRFIEYfLgrpWOVk2L9IXv66LHHlTntahgMN/324lsdwqYmAA5MNALiH+qUM0lczNu6P511rOPd7XdWi1TOaW+IzuhHWVyF08u7qYCxz1xHBDYpDTYOpyVGbqnQRWSI3cKu4KrE6sRyci9xAOJkQORV6Y8+ZmUTquepX3miHdSdouL8+UvxuCZ9gEoN5yQ0rQHgMGBsJW4+NLFkftcYO8ObIKa6rIVhhG32WRutYeHYv18toy4dMfibzkj8CF7pM8ukPBnqeBV1k6HIQ9ZIHQ54QCrwIOTFkDKKdxqO1cP+8ivsbTvdV3HA20fEKnVqGqZkbbE1oVEJH9zIeWuOaheolfngX9Bi+BVBMCWXAcY2v3OcM17mqZh0+GS/nEPM9r523vq34YOU+JEBA3tTe3NpyFeco1fzH2rOswECzla0auhkbm6CaDvueJt2rviTnqftE6qhvErJCQhVTIHdyO4YdHNpvoPOtvjg6hJMFmPm29YBBttUplM5/kfBR41rIZlayz9+Nuzwi7FjcQYP+p78MtkRh/i7guuVL7FNk5JBpOVIvTI3PIkaXZAt292AkdW3sZxfw1QC8MtM7ssLiAa8kKtgIIK1zn8aPAdkYhKQrsGCVlJcmJBhggV8kF0sLJlBY1csoHOingpNPbEbIVi/OfD70kE7WNVYKEbrfunXn3MkCQlBNPLu6wCLiOKN/yCbuaesa1faUThypvpmA7RZlOfeVxKV+QUI1pNjpFJoL2Tb3MSJ013EDZ3fhEbz6GXpzkgSrjz6W3WucYIcPx3PPmtS5nwHd1gBLy+h+DIXHMpcAqyCHeErYpZC/DCd9B9X8DQOpSdNuERBG7ncMTbk3va1eruyrcSKnpzXZcsfz3UDDJ4cvZ+UvZY2INlIzLmE2IZYBlfP0AusrsmAYP2MaR0uomE+mFwwX3P2XXgycUVpEDN3k1+T7Os3th1FJQsoP8zFAkvEUzijT3FZJ/3Ki7zJFcguaIh08tummMhXlKGLfRq9c3wQu5AHOnwSJLHxHqGp+JA6Y20c44M3IbsrWVITCEE/Sm2up/JwWeEECYPR0uDBh+/tCwG+SlJ/2HydSfqj80LC2Ujl8NRWR+Em3pahBE6fT5BFrn0UnSe/Oont7LJry+Z+JhQSx3J2pKXLIihDtEY+wSEK6S0k2snXioB8SS0Cba2YV4yectVaV0WLBNDfUr9W042mgOIOKa4kIqFB8OrJkdjKswJnEFhH9gOR3+r5eRNQBtOGoMDmtMiX3Al0v1z/oVzNf7J/02roJgeqz13dz9VrIiAP2TrxflNlM1Ozr7t+vaKdFCyLt1lpK8zp4PJH0+jAKhyKGp0o00VRXv43nD0gLR/rdMiU3YlxAYzq924SuAjNLzQjkySlLvBLeWka6RCb2PgyojmMcnBUUyLmpzQOIg8PZsG65qReuTdt/fVF7x5wh5Q+jSGxtkkKnFwLGew8XvU3/iSu5U6bjYsUC+VTx1UYK5J0RYCo56ODVdRgdHY+W510cCtG18DK1YVbOdB34lXpsF5ZGfAk3a6nvkIS6bWs/vCK7d0YHFNCAI42BSpaKq3+CRmuY4WQ8/QCq1ivHTn33iOiU/DVSOOB/XLgI+KbOy+1nuKh52LXVGp+Wjh6CD1XV4W0kAmBdekRNX05q/NrqerafkU0aM1pJDRUHFcQU2dsmLll7DNpxjovqnCnTXCTZEw5qh0Ud/gw9g56etjjcMCembQuH5Gd8D80Hk8buWGrnd6xujRGOEQ60EW/cuh1U9XvOYfvSkkYvxaYbACss8CchsoGUt+IeR73iFynsBW/Lph3MG/SGlY/f1FCU4mi+3vfEU8Dd4B/sewJan1HAyHfu2HsyAjJfQ0CIKGWr+ZbPkffDpXRBGdAoKg7TrG+meT6RD2YUy2Ug36GHVHVfdB3Tossv2EVlt1M8TSCtpGow9xmewd9fdpmlYjc6QmzfhhB6CmSS1hIpqdWt86yNNHuSmtOc2QUyyhjYP/4pBFkLeGno7m1zkP2dNg70ziRczLHiZNEae7Mui6IuLyudFz3mWj/vktfCm2IgfXBS3IKB/GF+5Xle+H2MlBLbPkd1rMBElzwM7umN9fuctWcq2oF3IGRF7kPFMd5vJQPAUpkYDSFAaLER8ni/tT6ZvFS58nXFm/T9E3+KTf++hbjiUfmtYFSjrEUY0h2a/rCU+845wVY98UEkYItk+q/tovPSZ3uzcjM2fhRWf6Mg5TNkmwkYdYyY42PctuM93j2Uvw4PKJpCUwHe9zQnAYBOSbumDol3YapRWZjKJicqTji6G0JBthX14Yq1X7PKwBBxomRc9NoU17ISiCDHrLhF1EkSgxmI+Pn3N54X4Rp0MuC1cagaOPKX7tti1L9JYWyTN3QIPjwdZdzWVL/7Tso8WoL0Wm3fY1PBu85YhwbpxACyahOfsZVb8vdC1bnaPuwkk5sdVj2FvDzSOKJ2/xOAQbWM4tcn7qJyoRRPi97LggpkIgXUby1UKaq3SLwMH1KNNdBeJIhG+E1V0UUDitAjbnN6mb64TWKHKOrd4OCtU5E3lMO4TGJQWYKnChEkq+M0p/3GKSW8Zl836hNItj2Y+NR+c5TBQk81/ILRjwaxfST/wRd+Uw0xQ7RxsqRDRDZ03NekGfu9fgpyxnLYT9Ra22TuHifn8pcwZvxxYfFzGFmtewCHX/TDA8xoEDHvy1U0WP6YGc27G/iokSRhkRzxYkx/6iqmAYAGTgEMX5y61gjp2Cem2H3mtX6ww60Ov8+//4Fcnnrr4lkdO7HLaNwIO2cnpWnTTqKQQdMvCM3bhHjS1gGkSentHkDlMu6y0Uk7Qr6xwkjHO9k476kFJJeKXphLa8T4IcIheoNC04QJgu/ZuinWU/krBAyywHR/WU+oeS/324gbhBWEEuhvAf014sNBDbgts19Vj0iQxIWixT7T6N5T6qnLAKY3zOM2sKUUiLHtrjmUhgJZn49ZciDviTneoRj7qy3TiOb0PEYOHWFXM0c5q/9TBYSj2Qn8g9shOTHegl2IpPBUUo+SXZHiczOFol1/rD7IIiIRY0hRKnf6HkKeHcbJmTsWIGxf+xDjlw/wCnP6AVKBmohWYhqPbCO/EPfcUT3LA0na1v7vp/TmGlJPfpKZ9gfyGrEYv+YZfCA4eshHfyZt5xgvysus0FCpDUl1SCxpEKCLyCecEN/w7Q0wHaAUjPKhSdIRDJUyigaFlC6M2VKEsmTiBrPJqE6oYi45XwyWatWCCqGuyI3G/tbYnmanQDbWZ29lqopip0RbydppHAG8FcVpeV2DLtb+wLMQySiSk99wpZkfQQApX+hFcyA1eiMBv5jpfNcCV65E1pS0BfodMREyeDyBZ6HFQoKjvdEn5WY+doosgeQISFfmG0aqChULlOQ0w7vDxEbtd0sm3/jOuzuySyJlyzhmxwdOP/6+0Q7wjjgRCtFgnQ8PcoZ/0h8Fbm7mLnDy+96nGL1pvXC6+WiuL1ABNAYfzksU/s4DpVmiLIdohNp5ZLwvheOthDQF2sUc5JpV6OI+cr/7RcHg1yWlEfSrdoEJkn3FhPcadESjaXMa1GCoOvX9bZ5VbBbcu6/aDXwJFuG/Zx3jFGf4CJ1aIRf/HYLHZxX/mAI0tm5xklptEYh20PatEl2B76ob6+EwWW/x6o5q2n0SBMY74TJmsYIUTi2ivkkBKL8QKq7AF/y1BlRjWu91PNxySGJfnHkNFfN7mSUWTLVWah2Drr2AoFYNs6QY6qHRlLX7mPvWvHen48lCndz4TqAV0DlSFlEz5sPCzlsMwv5Ks7nrJBSFLMXstCuLUloOXMUs67D/PGgCZgggGleodR6g3ggVrGs94r5v00Zv46030Ba4sgnx2eCY7Aep8AbwntmDPeBlSjgvhZS5q/VmvVH//HdTAacOhP2Pi7gXXNI9YoEpLaeh13zlcqGUTLbNeZ6n6yms3GIkBsd96rjzkBXamFPwb3YDqnyHJ5ACpgqepXNoCcO81iwqfepYlxrNUFBf4EGdn3tCq9ec8BoPPeZ2RD/aRpMW2ngRRXFkPQyuyilAs3kXMv1XP6hbK3Gro1RjSNt4NwcBFb+1H9dSNP4hoCWUjWcxWBsI3O1DhYnxYYX7znqFsQczOhrQxkru7jAyosVtd6pr4gQT3HGGmlKj7WRwHHFOkzqkhNxSbFOsQUcP4NHTMl5ymMIT7ELWWSYpv4KY2sWrcjORUDLRlXR3jWUCgG6GpDQJzDB6DONZQXOhjS9ca4BVtV2JKdb+ALLySlz4F4Ikc1yLZGBSZsnPVN7cII5dddeQNHsazyTh9heDOPpWlTAz05Y+ZxWLRyhCtJpf5PHAZQ9lxOgNZ6Tl7mCgvLY8wh3yDPficrCWF+BTQGRKWId8yGrF2bmYJfNXJoor7sYc5A/suOxaffzkwibT5UYV2QItnD0MW84vj8PiZ4AX+C135iC/vqz+iDznEhbCOKAibCCHWnhjjEMImQa/MLxsrvKI0Ew9UwYCRdfE2bGSFxJkYT8d+1HAdtQj/Hls5KFTPNW9xsiyCe7+liDfvcAE+M7H8rtFPrQ0OR3t1Wn1wddeiR/RvZYF6/j5e8nuJhHXzh1T4SiXKwC5CeDa+TNbwNiBpN+4theUtF2fTWqmM9m684JrtJfYTMl5KHDWp80NA902sYGzPHp0Jqgozd6q8J0NH0UNhG/ZDLcQw5xu6POLMe5AIjy33l/723OhPdCeNyM2GengPAZZkMS0SfAhkacVYWYM14fXCpctCxU2ULAIuxcOTmbTaK9CyUezVMViWindkqfGwVXFnFwwPdyTgcloXlIk/PGXdDticW+9cl42t6T0/9O+Atp92/SzCX52a/uI8oTzve5nlxagIWjEK12Bh0HhyxErV267Op+P0qz5e4mPUlcoXcLaItjSx3UKRUKQMhKN9YLjTwG8MQFPsvcn1AICzVCkNb55Pp7UD3foYyvEoW7JbeCgSOc/q7thTHTxDOFuTHToFdP8YeOPHFVI8VeqRVq7nAAe60yItnNeNF8qpN+Thss8YGu7dRNO/HRGxOeGBlULAsanAYmrtIckfWVR8Fe718h5wru1rZFTk6gc+1b38+zIYPcIcuVGFQfDdLm21b/qS8iQGrVoiMSItOJvE12BOmwANdyUtjhWA3ZStpjCFSsc989jRcdOVks18ohp1h827WE2yLxAduzut8dx3rZUAIorkhXS5TmuG7edLbnFw7qZwjB7Xio1E1kNRuX6QZkWJjleKdURjfPRsc5kSmK9Of1OTHJ54HmL8K/YrYzX+TnSWlWkrmDu9X3+TjQprGmYnYOSRPOvUS3AZWTtV20Wm/xBcQPzgCSKLQKuWgg9i7giaA2vaVzfF0T+wvKe2jtiB++r23i1Z1XrXpae4CNnz6Nw2Z0cdJI6ouw7TaKe2fKcuIzBwyAEvHNvXBwOiMlGYyI2tMpbvgclWJnjj16JTOJ5VlidbmSrgXHriu8SjfBO+5b8p+JPv6H9eZ0hUSKYOfsA8LnbGc93qBZpS7hggRcbcVE47sn79beYKuJGfdHciWDIJxBJvEZ4EXbArFms6kpbWW7uKPpFLxq84r5c+Sok1D0uudRGSied1TyyETCTI1brMNyterK1luBKJEv74oZcxHb5XsKGBFifj3V97Fg5PurgYR0zGFMyRgMhWEAsSeN9OHx0G3ZFKMp/fWtCrM6qiZPvjHa1CwNJ1zY48XFSOi4BGbkJ5JrPc7c8olkjm1o5zxVM7gKc4fBcnwpaX6wTOzmLvu/YFEcPnByrydEExLRV0D3yFjaok4T3WAsuMkqeepf2G/X717C4NqCz52V2h+zqSzGKILlZPVMY6n3dB2m+uZyvgcEQgv4RkQ7pcEBC/FQv2j2FrMRbzgqsmPWXmMekj4iC7b6tgusVD2VsbRURn7nVSScNY48FruZA86pEyXgjc85v7duPCoRng0Ozfr/c/Su39qhVvIoID6Sqr6P2Jgnrz1OYYp/mpkJiBIj8nV7jYdO7D4JWJYxnCs87n10NdJYXz5jsAbMJzELcWcRGthdiAv9N8hq6tvr/YiDsRkrvDN6xJDaDtmxfol1MbMqq4gyg/u0ayPQ4zL/RCTg8IAcHiDIg9mioHNkTIEbDYA8QnwIMN/BeWsbyAI5MJR/NEMTKk8NPo6EW4dAYph8+R3mCiQKheYpB/KZqwP2o3fXralsZ6QUWIox/6YpQBpPoWosGXJ0QDA9fk7PeaUGe4btyfGSfv8yOFzQCBaXxtM+ZBunJaL/ksENLrZ9WcmJPMncC1O6HI2/qTfYOMNoqRlnDZsfvsBcXesf+0DD+9EElyp089+rOezPrX9HTJe9axg3+eWU9HzNoZN9x7eQctNkRb9ZeXrx8TaXNe5bVWFgsakwb/KlQahIxSO9apZ7HNVU32PscTmbjj1AT/7V5KtLE66GvFw2gFuCBu7jz0m9erPdjYmYuAe6+ydzbbqNFUGpx/4tE7qi7hc2fdCIxRAVDV9plITjWgUekdY+XjE8zd6LGKPdN5C6DHIammJivh7EPrHarVjrCR3ecxo+OXkF0+3/WWW3GUT2sQKytn5FWaULeh1FclFYBCS6BbuOr2icfpWHripqwGcJubiJ/iC0tq57iCkoF6Z4Y1IeyUoLOSGrrKSzzdGW+R9LFSUjPtUhCaaZf6iHKD3gWOytS9YGYuLJAtd0AKBVMFEWyesSnS/nlgI5kCIUlParXQmYSzzbu7aN82OLqztq3vdVv0NooTcayvI3FkAPnWF4vLOOrVA9RxQF91ZkUBe3eRyTIt1LDdHzd/otPGpHHY4C3p+I8cpm6MCiAWBhRRMXTqKXCu0PwVrDsYRKr0lJNodMCcD9w14bb7DKQ67jAFDE0WZMR1tEhc5D/q56sjQmOkSwXOLalP+vQJ5GVNLPUekT6BwQhkJyXlgyw0fqsNmzztPEDgZCGGMu90uv9Y0GbI+uMIv2KOytHLlCmX6X1GnifWdcQ5NL3dWrLlJiytcLL24mEs6qxfSLgvLt6JLYPx2oS3sGKWEhNUG2Xjoukla94KO0QKcaB5vx7hoRRdqV1SMPxsJhqBiT6Osgly4WzJa5vpuZIjKyo6xbqmqxm8iFkWUHEHycFlR2fn05eBOMz7XyrQNXIo2rocm/2nApwXaQ0s4vU9XgJgttujlyGijy9tjdgUzwmUVTjCL0XSA2IrEKC5c6n5Bydk5he0peQqzq8e4VZhu0nXSqKDrT6SRLBA8xW/ffL0rptVSuAxm7Yu3nivYqD7GhvCN3g/GWmzj7AiKa+X5whhEpfUaYCbTWmdaRB4hqHb17cHOppd9/NUDaENUYhU2F9F33OhAzM4HMd6qjDKPqexH0BymCfJLkuhW16iDCmNCrb9Hyt8TYQAxErLjCfxkLj6CR0k09LTrGPIpqdXihLGAnu4K3fm8DRKJvN2xDyxnYhfvBX1wLEVJyTpcTbfHQzrJH7MMEW7TI8TdyqthPZN69FW9cGpV1jNGO3ceCL3Qy7/D8im6xrvsqpGgCPEoMXGWuulKarXbbcjiwdoKzS0je4lNeItcCj9GLFZmdDkyTLwlCBP/5kj278qMfrPW8UcJzzjeS7sDfY2fI7Cl5b+aIKipAukz6a28G+AK0Md9wlg5K9ZmElP73XJiysCcypZQqEqoM1lJxrJ+UtHhO8Duy3sIEPzwXC2xJPljyyoBA7+OLUWD1R/UxyR2jH6Dm+/+vDJPHMcPLbw606pGYhZL+IQSh+tGZ8A3DS8C0UfS08yufOD6pqAUgUeF/OSEtUs34Ij4v1F/p/Xkb7pb9PSALsG2uWCb6BcyhxVVT0NKebW1GOiy7uPFbAvcB2MfajZPQSsNc63EqHAD0cRDcxf0CFmpiKA/AeopQuqebqJVLcW96hQGSKUpW6zsubXCnmorBYghx+0sifk1MtT5gv4DgjlhhCm163//2fjss73ieWK4aXef/bFXJ75dSukl00QKHWHlTXxKTkze6kMG1bQmQ3FOJ+cFgZF5Yeyfs2DUZnnXVHCW7GvsgxNqTahFTFXKtqQfUFmzfz3uOyETmHWyZnzPk9Br3BeW7MDDwJvr0Omp2fxAMSPfWy0wsh56W8urdylYgNXULMpP0yEdJ1y4V1t45NeRhM4SckgJT5B0rSrEEOS/lhJdJs+Vtgfqtp0J/F/2O2yl8MR6UThH9mSaA3Ndm9ROd5qoDiyBOCtvcKSzgCGKauro1VSkEb1Z60v5pe2hL/DTcohsUKnj0HNV9a2VSZt4RqHvsKnmtXbm2PsQbhxHqGStnpgs+lfgKVAB1c4ga1B2JqNfvytWftb5xGG9e/f0+I0vyydxKIPGlQr7Ce8Dz5At3b1fm24M1tbXQAT4TWyj2fC6smMsvLqi0FZl/Q2oaZVuR6QOUs8qsgBUnEGNEzr5NK0iCBb5gL/HxGB9LopVTrbWZKFFTq4q9xXkrqGlQwSLKvgHW6ttXozMoOCO0oqRgNSMgRLXnTc0QyVTR0r2elA5ryXvu/J1ODM+2OT1TBBG6gIXj4tcnrrq8TDmzf8ltJ4pw8PJ8xc9ITs4Oc00oigDQUK0Ous2vew8ZS1bar33irZhalVqIRUdTPY+HaWqcuPgmT5hlUDYdN1rRCmHSLfPTmuUqgEsnTCODvvyXCh6vATlQfCSLFxDm7eG0eoMZnZT7+nZxh5G7t1/qxnAYcdd3Yq1legSwwyez0/Mg5/JjXe5s5vyQNEyZHvYlqaZ7/BXsKtT5acPTxVCIdwm0MYvvZLt2nTaXeTFrkEb0bhtepBEs7JKSOwco7zFx5QhDX/s+HHNU8VaPAqsGrb1nVvBLtujrtCEewVzaMrJgQbQYHijniHX3SmJmHN5lzE6wE9gUu443BcDa2vvexMZN5NYmW7pHryBoP2XSj4MLb0NegbobC5O7p/fpliKA9iSNco8DyUTRoGUzYpyQYhCLK9N5H6SDnzuc0yyJVv6c3UbXhrSm56eam8mpFtLuEg8EIE9nygjgO2o57x91eh72EduaER95fy22djVBOq4sSN6/vzVIewdTZgvBvwBVMM/0ZOMLQvk5oEKF8HwTMen58fF4Lkr00Cz4BUVn8QRePOWrzGQ6RtU5qGwMDaK3UnRVsR0dWjn6QQlKBKPgUiP75KwecPtQeLMacxmQQb6JC3dJxcAhh2ULbaREKwtC0VwfMTPr84esb7KpxVXJE6dhbe1E0xpfCG5Xxrd7o5W/Mw++PyDTAU45Pn3Ak/z/mN4Y9XlbWdxJN3giVucKh0VbMasguBupkAznp7ek0dYdbCm2Olq0xSYvOXYLzs/9t+AMyaDyj51FjRh0Xn4zCdUTIpp7pNJD6axy9NC+XBtv7ln5dPFamcHtw99tJ8ObN/YYS9nHRKmZTk5Wip00Si9k7A1bcHt9F3NiKhjoJBITt7bxMNM33bCQMubz2XSzlNF/LNMySTWbY7wG86rt8fXGMU+NRVErG9MdEf6Jpp/WfogkoqSgYuQnlGhGlTOvBcEkDzgo0uTw/DjB3xhr71x6xXXMVbkXbc6aY8I2JfJZy1IaT5cdwtkfsV1+q41ikOPHohSLArr3K12ve7ISBGRV0nVtIfBV7214BmuT6u5d7CmozBty9NnN438I4u6eF9F0JtRdwsb+iUd6+I/ARF/VAMspsvj5WhQd7iFR4rqGqZJ1OttFcJCVTtBBC3++qFad/DxcLdQ02Jg01GI9nQjI1Yoa03N+NGl0xLKOqfnLOyVzZFvNfb4VDJsHhIyHRni6ZRIlMS+09rSywXBmZhClvj0FF/rCZ3g==
Variant 0 DifficultyLevel 651
Question
90 − 1 8 2 + 8 0 2 4 90 - \dfrac{\sqrt{18^2 + 80^2}}{4} 9 0 − 4 1 8 2 + 8 0 2 = ?
Calculate the exact value of ? .
Worked Solution
1 8 2 + 8 0 2 = 6724 18^2 + 80^2 = 6724 1 8 2 + 8 0 2 = 6 7 2 4
6742 = 82 \sqrt{6742} = 82 6 7 4 2 = 8 2 (by trial and error)
∴ 90 − 1 8 2 + 8 0 2 4 \therefore\ 90 - \dfrac{\sqrt{18^2 + 80^2}}{4} ∴ 9 0 − 4 1 8 2 + 8 0 2
= 90 − 82 4 - \dfrac{82}{4} − 4 8 2
= 69.5
Question Type Answer Box
Variables Variable name Variable value question $90 - \dfrac{\sqrt{18^2 + 80^2}}{4}$ = ?
Calculate the exact value of ? .
workedSolution $18^2 + 80^2 = 6724$
$\sqrt{6742} = 82$ (by trial and error)
|||
|-:|-|
|$\therefore\ 90 - \dfrac{\sqrt{18^2 + 80^2}}{4}$|= 90 $- \dfrac{82}{4}$|
||= {{{correctAnswer0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 69.5
U2FsdGVkX19asLObw9rcD+8KaGEhlTpyNYovyfC2IJOMGQSvO6uuQd5XZIvWmBJDnM8XdfWVFnGOZVHTB0mrKG0tF8JNKqHf0eX4Cj9elxCVxoLoIHrE33Zj6cYLc3L97/N/PsVeo8/MXIbLTbRs2xy3wK3pyPgt3FrBrAkbpS5kn8QTFExJfhDb/3WQsVY9p6EEEUZm27s+gIk7nQKbvNp4O0c7u2f+NTWa4UPmWF0OAKuAsXE/8EMj/KGV8HP9Srd5qS10qqvL3vJOSqVIOoMgG2yAnB8PP5XethGs5o9TKjJdKD89TqCbxiT07xXm7Ynnl1kb22OK+/Wx+iVcQ0orjHDeXczKo+DjPaow8EAon6uXIA3KBhLJCI7Y2kOD0oDOcXDN4tNjKpXxe+wJJc9IcLdYiP7MbRaXvNYGzCAFdzhofzEPD7NWyzwcyabyPQyuH5t9XBoVi2Iw6nxiNhRr7VKIzGwkA5ezjVKFwsWEwESMshNMcYcKovUuFgzyAzEZGIx7jrtHET8FiKDYx41urDGL0bdvCLrqCPwSsZDRcX0213XlfgEFH4y2uTaX+RY55GK6j4Y81PB0NT0pnLDfGE70ImCWVDN9u9sGkfAdy/eHtDxXLEoAj3YzVus9YiBfGcsPkg0/Jg6cnyuroRsayDLbhsqYUD3ykP0z19FlqO4esS7AUc56K0qeuz/QIEehXVYvqwtYPLsItqsWaDJWB6WGcT5IE0cm9aanbvLo1Toyw4AjknV+qT3xaKThaVyQqiY+QoDq8dr1WbgskOH/zX/HoY8nSbWfmG5lpcvkh8Oslb7NPSfhCl//JkH9swv1WDGHGT5v2v7JJ0C7AdN5nZ3+sq+acSOG9nWLBY8so8cNPTTXA2jdc/sPT83AR8NimOzRYiPFnDiqMIlE5vqgO8epBHHOxUgtpJFeG294KFUX9wCGBmRnbq7euGsF4F+3Wl3CC+GpPDtc3vn+QSmW6bfd4al7pZz6Kd1gprvRklDEPnWLp9UdvQf3kuosciBsIwucf2IIZCL/QpCe+e2ONzGqX8KFHo6us2yW3mCREdKUsG5TPTHt9R7htxqkY5LPzejWLpVJ21K7LFZxgC3hvrRPYP9iZLM+J9CkTV273uk1H2pvEaz8PFr2PsKRFMaQQByBaKPFjTfsLJK8jKobcqGeAe236fU7ICmOBY0H0vpyQPerJO7WR+Si4MzFuAKOwDF95bs6glZssAD7aQ+QJljYkskfRJMXwSktgyD5SJh014QfyhImdr06Xq3R2xgQ9Dfc0PId9zW6Itcc2kxpew0Y3uL7TC567UWKuHh4xAq4qfTiAza1nhHLa23dxfYp6YW0JM/uU2R8/tVf3w22LnEH5yapG4Nj8XuXQVGvuEfDB1cqI2KVnjWclCAslOnId3tRuwEWpKSgGylDZadxY6UAruauHwHQAVFaNUKInS5l8ar436es21FEEsaai3b6CMJndWC63vfD8+ZE9ccrjsn8L7ClnH6ip+X3YFx/gStplTzbQZ/Nt1HNBdLHteRCeAzSSIdyGyvgPB6Ka4u4MkyKS/d+8Kn4cjLfTZe5JLLK6V+Ly/PfCmHxAzQuMucm7KFada8RYbHtIs/P/tFwG2uxjv1LlvzFZzgkRFxGX2ta3YIQ8sSymNLQwJeaZEgKBN04S7oPE7J4FzgtXJ6Z5L6zUadsp223Yp5gO9gJDDn5WhFGc1qRepMs/8r/gAcgta+q9xlI5nyIQ+hktFQxGZ1WpHkAmgehp0j80jIYgY/lCU8gZLsJteWFB3gY+iPvj+sQ804stih6w2JZOPK7tE0FRXHRKCeYJZr4Uh+fA5U5cR1J3Elrj7wHSmboOuQbJdq/KVQvBs38uaFl0ahi3QuM6OlzICKHu1WLT2Vt071SR3QK3h3FCYxsKNvi/HjIUXtf587clgEtSeENVwYoAL+qjJAshTUzfFBGP6mubO58ypZFmK9vEah+oQIt8gFCp+LwESTKv5A0ToyjHmfUPqNjm1qqn7SdEFGw1OfRv+SLc+dLk+wb5aJBHpDvK2kDM0jrfSuJjfl3tf4Me/f1Y/BG4SRxkTxXL7Mn8v9aHRHEIZ0BHletjPVAVJr6UQmnU6fja7abUD7gLI0uT7ZTO740dqRtVNO2lmQMdjpA+9iaGiOCJPK4HxkUFK86nRM9aCseNpa8s6bqCrzRgBcGwmftsdO4KMiFalFn0cLe3stTTu6x4visj3szAnKf3lbjunZsgGXb36kc/gP02ld0KOzVnVJkiFENlpRoXr43nG4n1nEcPxTtVL8S+sk+xDHKq8iJ3pbMc/SFPiqcyjXnz+F7sYefAxUTFtVW6yEXStHVmeg2Jq4jxcwPpoPl94vGU9w4UUbH08WEFe6M52zelPFs84wVrNyXDy0t2vJ4gWPTL8quhkJJ+RCwGbOgldRV+XiMWDwDUP//fFyiel7SEJ5Js8yaanFYejlUlr5rgdqKtoPMw3/X/FkOtPJARyeUH1tKqxXvsZbmb1pkzb/jUANE0D19REmsflROux2pw89KOl0fLoYmLM23pHikomCTfsWUHzK88wk0+t5Rb5FbB/X7Klwrvqf+sZTE/ocnJSHm+oA/qpCqQv8N8fVMTMAaUo/CL+NpLOG6DOJU2IPhieH+HMhhGkUAH3LY8vYMmZcsYZzYpYPvjzVqdhyH2J+WnKmijK2++n6a3Huek9ZsC5XBKozxCD9zfXePwdYZ0Q9gUeutRHyqHWPGUfg4MeoVE5CIt3IdvM0h/ewQrqqvN5IxZqiLdFeCF5tZ97zwjRLVlkbsqT3iPzTxe2RqEYenFaEKKHVeqPKQFy6AoqY65vDEoNjgouEScKrnRdtUcdl/xb76Gu6Q2HnnfzH7bPi/PV5ve/7Z/cElxWqm4BkJkfcOV/goqpTftYpVaXPi6LN6gtdSo8UQkDY/ooi1aKVVKYipGyDSRK/f1lUExtAAwcJhOjtQbhnO65etnkbH8kbQNmMYKPvvsOqxc/berfQN/s6nihl7wvlnsYCW9DoFPns0IYHUTD8PzcGz3UoYu10/MoNvo+8j5RnuYIvLwRGPVfswIc4EJbPntOm91x/ovD9EDongm7wavz21oYvC8TXyiVP7B40dSv/rLcF0fieRWg5oDgIo+7KgcUfWCmlNq2AJEq/b6A/KHNY4DQ/ZtFZ6KZSTxOcadGl0J0r8CauowwF3Gt8OerqwFOOGchQm+4PL29tA39tdD5adMAxnzbNUQOmb87/q/yyoJ9bOATmI1etf2EZgvsmMlUei2Q/zYlgAPtEnjavDckdbQ1iw6qaeLqVtZARAIn3ZA7tkyHo6OyXUMREhO9XD4/OjBPmNp6azGrN5fEFL5LAxeAeT6Y3pCzA1rfADyd5hA4wd5fDsVKicE0yPNpMCMrue9RHhLJmBG4Da9F1GagOC99thOYPYQNhIQDLnRmZHq4uZnsP1aBSBi4CnBlvNaT6BisyxpDAv1GViTp4l/GaprziuWsi4HL3MCDqiw0d3fBWNdR9Pbs25IikPFD/Mxap44mGoL66Qls227n3TGQVzUtpk2RAjXSdMRcv0h/xNMDkpP6AVT9IOttQ9hX+FHQ6dWhwqWlKgDX9Z0Sf/baAwhA2EiIZRKMG/mfgWOna6NJflwG9Wr7OVrzlHOUXxzIPKaAEKfYlEaiSJKpvWWfW9805lqxWDg7JNML9GLI5f1sww/8nzHTixLlXNmlCcob1I4HoGemVpPE0HNZhnIxYDIndzm02Nx1/8wTCvpkG2h5H0pc7h3EWKIbF186l6ii2nNQExDY1/Bz/KuXy8Xr5CDdDL5mEHJ4akamuf0wGS2nXXWaq6UtwRpjUMaUEp2op8WpYvpAYFhpAQ5gyqspPqN3w4/L66lLjvLiALN9uufnqqkmBYt7biu/P+FtwE11zudYqbDGrq4xW9B5bw/WK09SQFiiFJWKOms6uzGlQB3IRKX/uLMcyQms0vI926MBvqVfkrRgC8kRAQLfP7WKE66ORjBlKNj9g6XhKRJRWcuskOAzRCnxmvZSJ96t8EJw/W/Og6Lp6dbteX9XcFSorYf3RYWih9++ipl94iuqLoeCo0TNA2K7w7GhSGbOb9Lfv17gHObTthVzlNyJjVQk88OfJGgeJLB3zCg+4dlEFfsxfTDwqSTGp2E4jR6a3hjS++37MRKAKQEBkAgPFp++7PNLPIN7DQtZDoIEuQsxSyItDRKF7sSfBpFbpZTbsi4rrGar66TXpu1qOwZltJ3E56blijne2BTHES+xX4SARcO9TB7EHpbSBd1m9Rbn2kWf9YYlHTuKv7Vf57GJE3You+vXLNNNnwRTjW27qYYuNWNB9TeWISUAppwPLqVY5JKkb032e1/fxNUeEEoxWv2XGZ4X6j50PG67MOJQUTLS/ew21Y9pEPlo+jPJsH4ywGP0KqQrsegy2ygFSrk3nqlLGVj8NNOrrBEF6f+3Co8K21BKxM85fX/04PIkh8aJjEhlAWdkW8LvAiZVNTRfKg63gcrSeo5Ly9l303YerEN8EaQ9JeukLJg5mjpQR5S+zUWB7QVt40T5wpp9iQKKuA6d95LOIe11r3Xe9Sr4jPZGrrEjkpL/ELZRa8E0WP+aONoqJIXO++wCkxReEekbKxJHAyHJiYdCxxf9+TvjSORNeL/be4G+JveFCO4dCxW20feoLTgcFXueMQ4ko5TTCjBq53FLFa8S/aTvrLJYDq1vgwGFOOiXYx31YZaaXZEmfDO0lQCnK1Jcz+h3REtSzDCYSTL36gv0MB4ZgG3koqHNn6ClNUjCKTUbY0p1j7SAF88+Pyx3YNSfCzCvFeEnKQY+VvYfDTQoUCm/Y63MVLr9dbs0YRGjT4H2hRpvc+AUwkaNFQEh8sOco6cDHlJAg2MKQ9U52tzQx86Tbmxvcwb/vU9vmXBtPlN9q7zAl1l+6YmtbJ7mH1er3arNUIWD0rSq07oRSrJkU49GkcugoIut0mbbC1U0HrSarD7JkEP04SvcXAcMHNNb6ccRznrhQb5SvfA95BUPwq6V20lTCuQ62YTO2BeIS5tT7tq+vs6z5Xm+3M5NcuN9pnFgRImN/x8l1TziijgLBFIuUg8j8XLEvuBvV+718WlWRCp9v+HZAkUI+4YkGHFn/IYqj6Y8c5+BX1V1gNWALdOvLq3pO2SIop43yVuaM6m9nTS9K49ucTYzlBUXkIV3Oq66YuwzQL3voXxwgU5cSUOUpHcOx/36pCOIZcn2EAh/xmUuuOnQR9MR+qIOaSddCS6dUbcdp5R+AZ9Ckc8PrP4Mrv03oYOqlO46oDSLDQsfHHbQPJd+i1iRSz5e6GCa/SVL0Bm/+QVOpS/e1osz0c5EcFWaIKc6zu6RYEQjo8c97s+bl/St2zxQBOkRGi341+RetDQ95BkUX30PXNvXskcYEQiSKbhzwb+kCuv4FWD+e2Utm80fyAfUmbHyIet6r1zNYwEwIFpO5572B+Eig521AFlaA7YJ7HimuyYTcVvzrXVRneI9v2ZHFtXGTkJ2qBKSAav/ezFKwiY4aH62FAa47ewvmkQD7uiqDCeKwYUk0QzP4hrnN2+sPWU6ha/X5bcCC0N1BamCvEn16+xFdhWUXxbWHlJRAkCMctbCRDtJoRJtBxVmDqZ1Aa7HBtukTayWMianot6Y6GTpkX7WVhHAsCovdptRyIBM9Nmfmc0sR96r24saS27JwJxYwDf6qoLNGTTVO2rl4y1cy2lnARwbrUulydOZ1YNLmtkpuq7+BOlIRMkWaHn/iMZxmitg2cOwFMkwl/mREmQAqMrkuUmciLAhlvT2COLEcUlyJxDPc7rEzzI6qCs6JMJvjBM7W15mTWfl2ioV+Qu1kiF4NZLwcMjKRIzGcuW0w5+mIPJC9C4MDmt2vSX08L/fVCo4DNPxRvWS4BMaR00ZuNvLRO893qf3MFptF912LFCUc+c40onYhwRuqMRBf7WdykbjtDFPIKoOA3dTpa5z3Z4iU6fkiE7eiEZ/tf+M/g+02QrSfZa8HREJH2NbZMC/4GMYyQwD2VTebQkgn+NrWd3FAgyNXPLY1m1eEyBJuwR3ds5uSNAgk5fy78xwXLDX+TDrszipqsOeGGoQpWQ81UmMR2K6DgiAlAOacm1SvRPiAtnZg/oxDcrd3drW2Mzdml03jBBER/FJB3wQHnJxNB0kgNvF+LEm9+FT8o0mLzOSZSBp8QWgxN13sCImLwL787F5mIUodVIcbv64NEWebXFij3HAcHJ60MOkBXnjmlxvVEBoECGTqNXljT6PSqaWLzN4/k2/tdShrOa/t4KFg+3FfHUQAZB+Fgo5IeUej4+swOHwLw1Q5GmTaGV1np4IQrm77bNWRy+eXuy2T0r6P78EMd87+e1R+Sj7T/P7BSoSiuhbtxk560io9Hrt5vdGQhn/p0Pk5pD/bAeLud4Wn8zPcSlpSCmL29vb0sYJxklZNLPH3KYydDwLGNWDXnPlnA13ZFZiienbsm/pomsmvKoI8UNCM/m8qB1OiwsCOXXWGM+Zjldujjgx45lCs0f9XuIW0A4ErxbNVsqQruIwGnytJUyPK4MJHOJkaM9PVCSBPqJOvo5XND9OVQHQwYnRjbmBWlk/0rvJbUB9BxUfBx/QGmK8Ba5vE+yFW0eHj7VVZyFe900HXyQ8NxsfLGSr8fUjOS+ciajyddOQjltP3DnUksLOAkeE7tOtCiKC29+qOLLTTF/eF32LfcAW6XrwmVcoYBO7GEBTB6c13rOlcTLaTiL8AMhtKetA1CwYm87OYVxMJ50cBMPlUZtXdiRTSWojp9OWc74vFY+3Pa/N8H/sv6XBrUgWC2G2fqjqg2CEjIuFhddSV9/JnqMH/R6FoKVEXHvgSBUBFTiJy41kipRhaU9yv+HzIAuGZHhH/k3d6+Rmn7JU4W89GQufdFBM3o+z2WRoIZP8UbFoMfY/I0Ii5PmCTpfxqF3ja79uZVAVo6VL7oTlXguuv9x0s8c/84VouFW1Hx264qwFsG0lOCAU9p9CKK78EFWFc0lCYMIOmBR+7g1S6fKnfWxdQSzierBP3ehhbPohaQzyLEYPVCgESwDP2uSU+TFcIqKcn4GVUKnRCK1sV8K9Wp+Q1uctgN0v1wACZS6Jl4jiSVTBwGjDh2aS8a3ECv44hrY6peqjf/3+2xyYA78KBBBzzfa2jndD3R7V8uawzBvcjhw3ie4bvLL/2ZqNvLCrHTZEOKdR6WsLxH/Uw9HmIQwBSo5QrHADq/1WkUF8qLTqc/jn/iJifAPuvq2HCHIzM6Yum1Jv0sw4ebxSy/KkVxZ+5Q8uDPKRoVgDsMp10tSA3vIBEf0kODolJXe/w7zXkbsyz3eLh2UpFCNj8Dy9rjYYqowrOhkb9Qx1KSDgtNI3rT7+1ZcpQ5DewxdxVC/vqmIrEpzfZ341FQ16mhA9m43+DgB62jzM50ioqgYQKfOfF08HULbxUgwwVNUWMDm6yS2HbZaPoFxUCMfZYL3oBnNQqZs7Sns/NSrbdqplONjgHVolP4e9NRBsbYgBkRbw/Wln/oh4YEgTn+PH1mOMfhhHPZ4qc9dllOhnitvB5fz5qN+soHa2634h10YDLO0t1lezFcaMZkokquTjhhibV3Kzcz1gGMmcT/7uBh5/h/LCbPuPNYR56+I/gFFTyKR22keauDCN1RV6KZl542UpSXhU2msYcGkuAC0LYGe+s73lNDLS2lJDPO30fmKZx2PbuOeQ/RpUD2zl6fYApFGv6mlKSFJzTN1TqX4c15o19Ul94KZE08xo4OLQYpckz48xmIK8+CWVSB8QYD+1ikznlxXhoqzx9u4KGjVholMjU+Ucd4yLlEGoc2hHt2cXdywgV7bGHfW6MC3BpiG6wvQaOpuYryIbXp2Zx3YE8va8zX0opmX/1qwClFVGe+ZQUkeMhqUXsUVfZg8mXz8GuY9gamE9MurFvl6shosPSBZcuh0988Lq7KtSXGXI4eFXJBtE4n6QIw72DF32o4Fb6JERgGF0aoa9Wl7NSircjkDj4FvdJw8BLzCWTZD449S9gN7XOQSqyMnlG8rWc02jVSB9iJFUysp5/U/XIKIRhFblvsuwZrzY4ceVEP10zJEHSeqNG+Yic6rprfFajLhEHgQPb6BSW3EMxTfDwFwHTMUB1RpyQlXemT3Vlo4lVWQ7U8Jp3VJnCUlrBXyVEQM0CmRuCNpD9MBS9zImYYT3KBULSXFeNZ+Cum1KxJTT5hvPR3eMuDaASYB+qaaOOGE6ddqlS3X430DlZcxatcTneQ7NX4Sp4LCxIzX4v6Y/uXyJoOW0VmywGwiom8AweGhwgJSvPS0S7/0QXG+maOFYglspp5MhYgbyYl76uI0P+NT0dydkjLP3MlP01G6ZbzdL5mmyGKJc6GjLl7cftv2ZF9Vc12XzFP9CrK2xq4kP017hjcR3uaOm2BvE4HGGh2am4+b7jvAGYMMkMnXXyvInpVRUlFxP0ot3kuaAv5xFQbugwAeLHPVQMBfyySYs6UeZ6BpIrxIDiQ1KhDjCUGTD3wdmpDc0bnCUntcgGdiQz3c90+WEoLdxuIOuNZUTed9Zgs+jMdqjbL84ML+W05XTE/0+Vx1bbJzhH9B8n7oFlWoDDBOeZIngk7UdvcLp4AZQuL3T2RRUuhWbQ97csmSPE62jWpmawT8VJYP3sdq7LCQmurrlspCFtHoeaiO8b4bxmNQ42rCOKTNEAI8b8FilY94LQo9CbI7i8tl+nL8/RnjzUZyWVnGgigZ6bKQmLopS4boekqvm5qL/zNy3PRpulmA79OUx8XhCX/TCekn4AtxT+HspJVeeEXIvGqC09vUtIMUyujuVPoJm906ycycCX9jtTrHaxUt+oCvwO43g4El+PaCcccTG6D2iqkFvuMRlbgsElhbuv+uQfnabf31s0vDlEVCz7HGf3MJqXCieBBHdmjGdmaA0VJhj6tpovCx7175pMRCR5LgNs17o8r1+AmL21v862gSxZILY8cQgQ3mAmTDvU6qEgnXPrfqbXlWACxmE+yL5F7P9BQn4siAstJ+/XZWIGQewLANKfbZoXu4ze99wzamXSK2p0xVkDlqFL5v+ousAdSohCMBaMkbkmLaOsDe6ednYDjZbcN/0g+0p69HdfY6FPX40M5PmylApWareOEKRKhQgWvZ7VVirhEim54LGbACveDLu9rNJBMn/l3ePbKEWYiVitH2PuIkxVdEVbiMhN2qmbn2dB9snmyoZsWWvtK0dQVJPtec7D+bBIqelDlPtwScZ9LKuDOwN/HpyFp7a4hyGqJ2KGD/+RiEHV7bnOmxjwnzUqDTDKccb9Ozf3Ajp9FIOrjPqZLidWy+406Oo1V27nmk86S6zzwLiTS8g7Ntg9Zqjs1MjVcaqhMX6OGnsji3ttzc/c1PhN9ynVKCjwjLrv7q26Sf1IkWLjNJz2OI7Uuz3aZy0upIFAE19lIgKjOWFwIIsDeoT7sRfxWEILwAjBmCecKsAdIbZVRLu9VJwtqms6gYLjD7JOTB6whc57xnHlw3R53r/wcOAMMTw00JsLOxBBKmwWsTGD4wCrD+TNMwYDZ3Ckt19tWWKdlAst68+gU+PhfBwEWmL+ToUWgW8qGVBSOk/QGGSGMY/liA+XgfH4BQa0bnlkyzOzGjOpKmfy2BvbVNPKYtZ/dAJBAId1gOuKvLASrQQr/nSSSwTOlsOhtqaOYH8HYjwJX+MuoEm7IhY3IB6qAY4v2LzQ4vBkmyRnVZ9UuaIVtuJ4iDngURT59s3VZQuBSOAlySp2mdV+vq4mOKi21qYMkdTzUwz9ZH6sW+c4iyaaayeE8/DA5YiIvljV/v9kOxnuDnQUCwBFNiqTNM0KCU5gzKUWshTTCEjwpaTcQt11w4RxmMB3cspA2HrFfm6afN4KIMLZAzgPbwFLftKB6Fjdzo7qFveeaZm5dhIiSAXPso51kkMZbtQGrRZIRDEFKMjuaQXzL3DcwIkV1M3F/DjPXu0oBYG8D8/hD52pklucyFg/agr212LCGevgUHz/4iE+b2mQeuDiXCgsrX6c6D7GL9C5YbkpE+GYfiMz6EVzrijGHLFjz8hc9GGfyt+0lzwpjwNmX0jMl5NfHr7uYlbySFeeWMvQ9qtbx+DPFJIXVDf9FyOWHsjLdJnSmaazEq7i9O/Vb9K7Xqw3/QZrywK4Kd7hEmAlaiwAes+9bTA8k8tTqYOuf9LDLDmIjOYcQvIrrmvj6TltL6ju1ZG3kdXT4Mkew2+NMiISCA4dnkI9eD9RTsrgumHpKkTbIWe1uiL8v7Bi7jlmT4RA/TcwWXYhTbBetTIh5PJv6ZkvQ4eqQ0ZVVEXvLv0CZzCYejyA1gvDwLkZYYNmX7jYWIMF1c08M5hEXn9dfO7lAq5xjv4VM8/9gpX1eHDyu6v8PHBN34wUosQFjZQuJ7MN3Xm9GjpdJwrtNSuiDTYQhBuGL8bnnQMqxSljiawY3PNwI8d7tB5QXz8M+ST3jprcjZXyx39UDMZ26A6T5Lht0gnrjfmagVS0dBaMDWV7jh/dzPs0UqdpuW7F98m6bVkP5aWb1wNCdjTl+52mi6eBTscJrKrFdeaLMTrmEdPdNO6DoKZCpBv+cQrYRHFZt26KXtkVDg8itVXmeWYbqD209r9X5XGlL1me4/LiQD/AoX/J5HsJ/uCgpvGyoKZSD191EVym44Ys4ndA3bSC0dxzPg8SnwpgX4eI5yKLlbRpSsVBI1/mRLPWG3pgg2Tb1soup3VvcVA7teCCDshJArmbhyKbi12p91k4HCRe3h8JGY4eMOrriTOtX5gfMhkD2yfrDrsoFy6c3tIhrlfwwz6ubu0TXNDEt0gIxf/AsFPEZTOpIlHnUt0coukPEMAI2TucFJfIx969NjkMg+ruBOjEyHG0NxP5dZUQXSvrCqsv6FE7lrveJtMUjGXEnHChBaBsX477Rf5D1MmqNvwk3x9tzBH9acIEqCIqZsoFlG8ZMErqEn3LATGNDodQZCm/ezMIJN2i2EUmI3GG90o3iM9wFEBDqCXKZibe61jvkRmoWy/YFH4ehtWGGhVEYfhBFYPlMQQhVkCQwDY/M7RkIsrX65F1ZoBvRtKf4Z6jjO53CgdWmFilMaTKBYmXiBykS6nT9/SLKP/J2nzJPJoOwD6JF+V+5x+xAR+TaSPRPEeZZhU8qMIkd1wyWHgxvbsRWc1ABqkuo/FEQ/1lib4JCxlHIgHq7dcZ50dPavl1WTczKJZrcYP3zhi9aG9Bx/xGjWpDYVu5uLZUSMPfY5+qd/81l8swW6anYyGmDzAWh19AEcDS0GwUPo2XKHZnqgOuyBoPNm+4J4wyM4MAjZsK1KxJf45RPOKLO57D0MhXJo9LZqduUqWWSX0zWHwFhEM8mUCv7v5/WA8681LeKvcV/ljNpwDzqzYqOUTywPpYolWXHnSZsZMiqnX4pEeigYJMNL4adttf4lYsAg33AvtOekI/MRdKBaeIZFqonQlaFIcYSafmZfvKLtla6yZ28RF3ynbICao/U1/xlqYA3OC1PGWwJhlGQn9+yam3iVeNGRCKpeLVJpG7I8VdswmyvfymPtDJi/NDQ6yOUdss+Vy3g8OufoReTabM8ZhNPGajiDLoKkxtb9zfQdFfT7s91Xnhc59EHtD6ftSwqDW2mK5ahN1t/85KHfCEfrjJoydvDPHXt2ufeIukXNJNamj6B6XrZpangjgWHIMBV3m1QHzaDBb48/wK1j1c4WlvKa9Q/QtPTN4royDTSzSouGIQ1M/3YQgu3G0s1cdXQz05l8NTzGkNikbBov9ofteBX1sy7UvjI8iybZK8sA3bP6AVcF9I0plx350KgI7BRj0sA5F6oenXm0cF/XvKumOtAtuREVPmz3o6svlYC25Vklw5Ic/EQK4F1hJ5Sw4UtbZ9SmrYbDZEEXZHb/2zQzcHdviWdEYNO92qY6M3AginPJYq6wz3KzEtgNc0IjrM+2Z19BRt8m+slH27SqSZR6soFtLkhlQhL61MGJr18DfShhyd8S7TwEKDWASPYd44G7gjzfdBirBllp3rl68QlIKBwyNAfbKtKYrIceVyqTkoLZfaK/GmMDYvmJVckrBVWYaNG10hEyxFh0vIgn/40TKEPoqzisLueHVZrL1QCZtzP9TIRAyz5Db6kCp6QnReoGit+BeWxYywsP7TQIcvkmdBgae2Ki9UFBqjf6Ok4xtFve0LgVKORwIi28qtLoZ9pSsFqYqo06HehNJ78Zo75DXL1HlrTWTjK4C/IpnfmvliT4OXfCQhUeDXse3l4VyO8t5V3Y2DBkjluuRJBqLV8zrVwQqqnwTAuOIhwIybOKO46JwlskFK/RcF4Lb41ZFUvRDEDWqys1pcrd/Xq0ECGzwEUKs46VcJw1H34h/+/M8rNCKzYHS7L62jXrSGeM3/KCXEl1ATrc75OtyCgn8Ts31s+f9Rm0rwrObRF7GDbX1ziDHoQtgFiDk4+ImSlL3xnfFhtqe3BcpgMgBLsx1stNMgu0VFvjRCoE/fzsGoMWEoQQMOJvZ7wj45zURcLYH7CgkMNT9uUxIwJICRHZrcKUv0NSgTr4gmILOROgikApaqFsBEsZnG+IeS0Ae/06MK5rE+KkcrslQMP+uDWfAOU+VK6YatoYTVD3gZtt2OZYsr6ob328MU6DlCBsSvw0Na9GIbhNRKuxdCmO46cTBRrMfwEBSBw2WdQXS2mZTiQ1NxyOI6Sqr1GZna6vAzDWJF1dN4dl4bIq22U+YQNWOlVQYlhwS4HWrmFFpQ2lepDewpvdU9r8tZ44F13NEm9CL279jh9ZpzT6pRL5J9pO04S3gJa6+kpcJIaaNVQzokjhH2/4Id2TdfLZpvAx2gbCaczDhwZ3F23b9xM0siAfs4YLAp2CEvV0brXqKkFPxplByd2hrKoOTwWhlkzERsFUO530Mc87FyM5kux6knmNA1WpE3oDawL5ZwDSgnhWpcCNpf6YKYi41tSl71mZXUb6XS1FwBPj7zuEPAmKQHyk7+6YVpPfV5XHovFpfgFm/ITJpmplYx7cpkX/VPQeZpkJdYKv4LHM+2dvLdiTsn8LIPGkd+40S6kFNvPKu8HgOFSDU5eF1xDl2tpLIdQFf6Ui+qUWH4hKmiQ7D28Zj3pX8IDLiCVTYt6R5jZSZ+mvXjrJElVi5dK732WEnEPTdr7uVJFT3E/IVQr0IjBpHtLdMtmf+ePWNqE5Dzeqa+b21CTSyvXbCRKdCb3l4OjO4REUnKUHlJ+lY10sPQr/Mw46oGzYVIN9UE+SVQAnC8C/+OrxdSIXM4WG7czxuqADnLTvcJX14u9MG1FYJLAAKFg5T6Qa6v8HKbgbUNI0A2UbC8NP1Un5rOciHnR069R+gAcmqMtyBee/WdZ9eftjN5OhRHhSP5sT6eJPaKIyQVffAXsHmEdFg2Pw7U8oeA6giZhxBWKWSZOplU/hsKGe1SBGXnuxArW8HP/Jy3j+Q7+yn79G3/xKWGa4E97k41lLuInf6A5UYOBFlip76mNXC7wrFefEh82cGcHxujgb6z9y4oPCj78pltNoemnF5KeCCAIsaeyrJfwAJBCgoFv3Ap5FrvaB2EFC/JfSUDssEBoArJIyd4LRVzbQFCFjEjhMs5rV48Om4OKY0fiuHQGR6Q5AZvAVRUGWV3JslGkc2edFlxtrcCHB5+7vsBrJ/pTsNzLtsjC6LvAQPsMIDJQtfs9fDH4WtY2htNR2pVlrrV+LSyxclrnGMV05KU9rsbl1bA2tu+IewRfBpKwa8MQ/K62TTqLrLZIYTkLPCkwUneO776YuvuOkEoEX7l7XGwmew0BxvJllh5jFsmHGy8aXKqHEP8DezWqm+tXeDeqRtAXuwxQ5hyPQbfIX/oqqGmWxqOAhFdmFic1f3AWB1X/IFfe0JsectxRr547e13S2xll670MH6eR1rfTU0Wqh9DR6H2e6V3FPmx6QEjwj3isCNi1B5Af+VA3WcqfLNwCzFqJcjyJdvaGFsxkPBtgE6fdRy+g9Un4Iua/gsDz3xPQBYWDDSP9X76H6aNZkdcbnNvSdU8cnrdppRFH3avm2D3faNg/srh1QKdDDA+x/3Zflsjt0/1gFjWMgr64rWUra0tUDGirWaPAGTPejnUX+WpB3zOl59YL6XsQ1S2zY5P9riV+Wxwp2/9D8ZM2ToAjV1sBYkX1NGV5Y8O/X0HRxkuZh+16Xky9k1Xe4syEHHVrUpUi0ABXPOFGFZo13aGdEWQ1daFDXEFuSyiwSEWKRZLabP1+hfjVxvBWGZH8KSw4EGZzsP6F7Q/eH4wGUGkghAQQqvMpOPdhMB/z6+NGKBfQVg0IxnO3uXyiFKi/KQz8kORdcf26pIhaANz0u9Jc0FoaFRytUEc6quW41MZPNfYw58oy2STwmlROI/maV5bRO9vqx/80krlNTYycWdbDc8aLBjAkNr2YbbQXQ6xeMnx06Uim48teJO2gNdCZG/ha17kSzTDHDfRs+Qvmb+AMqpKhb30EPi5AYVzcyc88PHPoXEMI35ri6bHU5vNrcWgBnw+fzFoGnHcKuhWYnpZmaHre2fpABkzWD/0e1nuxLu1Zk4nJVNtYx+acrwKptWeyLdnazH21Z8siX0fBR9puHdxJaJg9ul1r/HPyd2bXmTM3MWolCYL9S9NfeN+FZY9g2eCLJccMj+IVhXEPRVy0sudOzOBZTrG8JEZn1irLNMhAKX68zm0JXBWXPXO7Wc8w3npS7SG17n2QS9Popn0GWgDqJzsPWwe0z9g6spopKqaYhB7otsp7UP3HSLqqTdIHO2eUfHxRnMmPukWDoI/1uLzVP/wpCuDi+nuYSkisqce36f3oniavhKLdqGwBODFUHLnNLgWJlqQv3E4OHyR0+XmogdFGycjHRSUuVA/WV8XTz9u8pjIhSPs2DkYcbmN7xXDFsv7ITr6W8+MZFN7z5AhqFlOo0CCGBve4qfh3fyxi0aq7JPhXKDPeVCF/krKW2HdXBXYQghkcYvVuaCzd7oRLVuaDVlHZ8Rh59Xe1p6ZOrseuWBuTyIN2Z03Zcb082rgV4unP6otlfZqtyYPwDfdbLA7uo1L0SmM3mss60WeCRD5i8vNmFtEOv6BLboCBnPYzSk5h7Ydt9Al8LOVnHXQPY5rxCc0s8AhnURkiVw+0XPXAgZckLx2ZR4E5pfjFiGhyDnRd1rVQB4FAdxRRmOuSQ1UAy0D6RHb+fMOQV4IlBpfvmILSVRtZYmqGj2eOxenigAWwpzoD4HyoIM6Lf6iQcHJ7iMnhBz5DTjSXiwS/iZvrelUwY8zMJOY7pxQSGhMi1EYdU3I2kloIrVOIAvZJUVzYReusrLc+ZrlPg5hz6U6NcnD+M98exsdXpB7016B9lx0JRaohT+pPiNc1pWm2yBLwz+NaqdJBvNNLlNJspFPdU8gbXrX7+hEWq1qtjflZZPF0f9b6La/uyfGGep3jwOSHv9Xmo/GnCu2T/UWviviz94iXRxb6vO0CLnIf3BLZTfJDoVtzrR3Q1oV8hJgL0fGyqU1F3ObP+hmc/k6tTy5BBcYVnBQR7Id1bg59ILVbbsFsX+eFOD03Esp7WxNPZcs4bIiLaqDUKtOYRjbA09kk5dQsViWU/tXFpq39+dpGugXfbmNdEjVv3cqL8RyB9g7T304mB6yUYIS/loX3oRP5B5l5ijKF+mBl0KVQk/YDzQxfIIH5bUzJXEmBk37tU1V7UklvmrEsLB+61NNtms5sMWyRTScOUYkyU6TyKwIXMPAdJfGIflgY10o6djVfkfsf04p3u+3zlvx9HycFfCOH546y0Dw29M0wXhiTUYIFnOBRW/qiZSpznVi6KEDs3AwukDxDSlBI3ApKy19hefRdlPtzTtvjnxyyw132OaBz55c3CSrKVFU53EmyhQmMAwKPHJPzWHwBCQLWS3bppUKey+t6NcLPfuBXHfDh84iSR7tZhzSttHqUDGrbXLxJyEQPM29nGDRkbelE4g4sSJltbdg0e9BOC5c3K5oD4KZWSMUIJAwena1WCOQcrXyoXlZLFrsT1asRR0Sk/vpNhdcnU8/NrvQ0gLVqgz2BClM5DKtkjRgIdF/XnqwWOFz/72dJfZbGTSfV80URUer1QrfUsKYdKH+1oVLJnJiMwZ/9AaaSamfKC9YmNDeqdYpHFRTIMtfda85b2ZiXt8db7R/TSKtzO0b+uQVvdmIDqfUW1BTJj8nEEbDW42B4kEPCQ2HColvgWmrqQG+LD+x12okwTB9/Klsdv3eUA7sfmv1sobSKyZeeU5lwXg6e5W9eWoJwamYB8H8EFUlKdzWac29VRZlJSpcxKrzInvwZReEZxAiLKGWZ4SBtO9dc6JzkIrM9m+04dhNYDVyguuqK08NqSrLjFLSriP1kcbSXHxoHCNUhIoAqz/RSfNYYag9Z2SjBewrROSAREnbyiPSqfp+bUxIJ7LRS9gzKncZHNgG8kTzMJ8TYxHM8pFpqVUGLuxX6wf8qwLsHxRHUXk8BTgsjsxt7copEa6YUH5bmNkSrchCkj9biZLpfdLqXYRQ5jC/wOOvS2+MkHVIdRBu9LH6NgqMW1mLL9OVlVv8rHxRCuJ1wGpgc1H5EvKU5HVHJvDH5iyqxHfJrdXxr0DAQFC1OGfcyQ2Yhk1fsuPZoBuhkKKDLAJsYWGvAmCZegGXnZvRG+YBHA0BCYD1oc4UeJGPMlEw0e/jMH0xl5HXxauCzMm7fYBV4ZCuh/8csgLoM4j26FdZQvRYJyhQnzRKOpJyfvwRMIaN/Lx9/1loZzejsOqMiVkoulYuuc+HGohX+Swnt0ft2F2OAvZ4fFLlDYFI+Eac2k/qPwQnp8QjVIJ+aACoPnn0u9nB52hTAPFIUdj+K8ETH2GVDkdEShVx1Rk3rigbBCLXmOKtWkcspNd+lv8nBv7dlgzPoDQeDXep4HG9k4iXpfYx8uJ+o8/4zPUbPMZGoar01uYAmx5WkIu1cnddHtLK7e/tKSNfYXi6+gRrYU3sdr5G0ExZDd9pK37i8rpipqmLrpcMKiYdXhr1tViBRoHqRc7BUHPV+C58tymqoYbyR38oKyxBT2eqXTmVDBXNrqWAfoYBAhho4X1si/17iYQBuEF/f6iQD6zTXxo6Y9f1reDl9nTSUMZen4ZteZWCz4Qe93bt0xm52wvoaILjhQUtp7DH/rr+84ULKmHCfunisPMDORR3IuKoxrNXetxxKUoY1yUB9gq1wnLehhu9rNe6VE4VILzlTbfZebqG8BQFdxzztkr8Zyoyroqpg9cv6Q0wYE/m0xmHzcTDR1t4YwerljC8YrpzFvD/TjF9S24/IX65ts0HOjXaez7Vo/q7gigQYZ5QRrU9JS5DyeHZkKNKTut6NQTwKkhDfZxnvFfrx9n8kNUasWXOmDfu5GA6YyxP0nUdgbaonRm4kvUqy1O2nx341faLxd7Cdwc7PIehUoxHPa2/husVI/fJ28SMjtSJlxNz0z1LF54WnZq0uBKQ1w9jtoSJUGJbT9F4BDvdKcN5/dOplPDQgP9trFNC/4WoMg0zhZVpS6u+sNhgSTUL09EfONseU4oSg9TPiOYiXdvoO1dIEv00+rOo7PpHmtzwoPDZ8yJSZ+ibxJ5O7kTQWbzn1ekTNQBAiBDH/MxRpldJm9FwuLN/M+HiO/6BIGS4Tj1s7er5ye0N3T0y0RiKmP7W6wCYCk/JJaE4GIa+wHSRSWQ4bKfW4F3GGBWiOSwN/NsdXYSOfCSmDf+wdkWSY8nOmzKjULNun82dIjuY615xgqXNKCcRrMlSvQbd83EqvTWTByYOS5nMi0CUsrfr/0C79jOxu/pDgbESoNmvDZC59mxx5KOS8AdnHs8f2Bp1Z33rVAD1YOSy/FZ7DXJv3DKfQXBHXkmDm0DZDhQepnNIo0mDQQzLrn6R7z7ob2+Rza5Lq8JsY9Yz/1O+1REqpYKDuditx8O/NYztW16TimpaOlnwzEi69Vt8HLsqy3zS0OxoNDpyEO2L5wU7g45QpRKMvpiSVrDTQrpSLfq1nGDI7NfG0PnMWGWukcv73NoOrKZLXOyifIPYZkmPchFHAv9IhPIH8mJqnkR+c97JijCIThfUb9e5d9K3cupTFg12OOmeIT4LCLE8GLkBA09tsTkbIvTYRqrz0n9f3uHZP1YvifX0IXPl5ixvE9zQxN13o2Y8BQgf1v+QH+2M95JtsimrIa7Q8DzUIGF1O4wpONWJ5Lv8CUwZ2dTotzfyKd19lQutDAXqUJrmLotMKVX+7iEfdmkLDKrnXAAcwqUp76nW1co2NvD7GGRRs2zpBR0Yyzxhn5nqlj0qDLMjMDsavrIoxgDUnTxk0fNyJhOMnRUpE6/Oi+juseGpAS6A4v9Q9rhJE4lvh3JETThzv+9PaYzNXYFEYKkgPsEtOVtrTaftQBIuBJW1R5Tp6yD9G79I91ODK22yv2Tmj0/Mru6ru9WwSRK/bVsndwII974fgS6VqmOdzaKFaJBAqE2dgT9oZ4TGEPuf7PyxufX1e3kS85ud8/mQXHYzt42Kx3it+8Y2ywGm07TaaoWq7WBHwL3B8Gg3ySWXW5jfLzxKjj5ndte85LokYG84XQC8dNzv7w2oYlGWT9MSp8bp+kgW4MzKg0DuEDrzgDYzS8NjgNCCtd3od8jZUXWTDHhzaEftSUNING1SeHjQ5EN27zNmaW0dJyVkPzq2J0+c2XbllEdGB1AIaKGVW3xV1yHbvMUZEg8MXf9Ch7RAIy+lTzgQz+y0UALn+GUfBcIl6iZYOSjZZi9bu7RI9WIB4o3acDxz8xhPfypLYGXQuBZdcFGv4Uuh2w3bm12R4azWXtnLPaC+sFHNO+OMroJa4A5uIMz/RJZSFM9DuhieWMZrbEHPdiz1bimTw6T1yJLj7L1NIsvp74Cr2TylS3VQstUtalAcAx5I5AOiHPbTdPCgyNCuOAixpFPat2pwF+OFc0bxmQr94mvh+kpchAKQoxfsdcOQ2FhhFG8l2zj8rW/krdPqGSuQPaGrBtApyeOpNQP3NIktoGlzFjdeyU3dbe/QVUKolkQBIpa9RJy8+izg6QLeoDkKqdD/7dRsnjJVYh2a1ELcpPF/tNPz2vZJf52EV00rZdN1duJ/6mUTTRskauqYG59amu+Xx6Zj2hTrl915UHuDONMjUfqakTrDlJaF0tVxJfSA8J3Q2E0UDtufdQdF+5mNdXn8dtJ/Krg3Lq8u+3T8nOmFRiuF1lHrJLB+E00CaxDM56vxR30z1vM6/9Q5spsr9cAyXmPDqa20r33uiRe/9Qr6tnbep8tFPl0AecAGfZPapb9pQUYDSuGoW2SvYrogvGaan3Ozk7FA9wGzM+rkYel9cBrO7yrmu5wHAPno7vt3Z/7hZsk/xZY4UVrmchVqijx+HEA3Vbfezzebq5dT4dVkFbzUySHzdVX4QuxihRLmy3J9OuciTn8en81CKhTEyLZJxbppG1tw9R5GtxGzxf05QcZwwdk9voQ+QINbFLTvtNWu1XLmL8v/Lnhcp4OmrRKet8WMDKqCTptBfm/xMIjOXhL0CZ9t5oK41fD1rpULmL/eKltVy5uzuBKXIOEiMK+j3RY/LiebK5KwNsKJCBVrn58LPzg2QcN5EAaIxMoEm8nw0qPXxYi8JqR55qZ9YvqobIloszmz2JSgkijBKE+lQIKvoaq/nV0+RwfcIqvKDRgQgRx2Is/dPVayB4h1na3uRgj+7OzOjVVs8do4/EvF7zY15OLOsp2N3K1foWmbF2o1a46xeRBJlfwIDrNBrcmi0X9qLicHXDMMNyVJZwWj89JO873HCaqfI4L/tv8iuF3Mwn/qKjScnRpQ/mC8MIPVXuasYJP5IcGU49rtCL0+8fc7nkfVq3JaKe8cu+N+f/9rP4/dEwokipIePjrlQoaDPBwiSnD6dfB2yGuqQyM7oaQxBXweo9JuaFfrN0k6sRnCCl4rXPiE+hSvBBzjQyTylZVBRK26TYTYUMeQYmTBTz4/wwCmkUEoTbbOekgeerZhGzkPKAdQsiOc+hrvosVuLlDkakjyvowmWhrJKWfm/5YHtVVvfqzzqt8n+cqmA9WeTO4kMaKjPtyFn/TFQH2j/feHwZUVT4HNoyJt8vrH8LT0+c/Drh6v4X7tedWiWYSCv8c3Keh6mksYkHyUq4w==
Variant 1 DifficultyLevel 644
Question
73 − 1 6 2 + 3 0 2 4 73 - \dfrac{\sqrt{16^2 + 30^2}}{4} 7 3 − 4 1 6 2 + 3 0 2 = ?
Calculate the exact value of ? .
Worked Solution
1 6 2 + 3 0 2 = 1156 16^2 + 30^2 = 1156 1 6 2 + 3 0 2 = 1 1 5 6
1156 = 34 \sqrt{1156} = 34 1 1 5 6 = 3 4 (by trial and error)
73 − 1 6 2 + 3 0 2 4 73 - \dfrac{\sqrt{16^2 + 30^2}}{4} 7 3 − 4 1 6 2 + 3 0 2
= 73 − 34 4 - \dfrac{34}{4} − 4 3 4
= 64.5
Question Type Answer Box
Variables Variable name Variable value question $73 - \dfrac{\sqrt{16^2 + 30^2}}{4}$ = ?
Calculate the exact value of ? .
workedSolution $16^2 + 30^2 = 1156$
$\sqrt{1156} = 34$ (by trial and error)
|||
|-:|-|
|$73 - \dfrac{\sqrt{16^2 + 30^2}}{4}$|= 73 $- \dfrac{34}{4}$|
||= {{{correctAnswer0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 64.5
U2FsdGVkX19XA0jr1WxfIVc0tEOyoj9WwTNLtOsnwB5o21RbPn8cfifsIbSoM57Ny3Zor/Nc8Ms5gR55CDYBcPfxs/ABEb+S17SPN4u67hIDWDNAoc19WMub44YciXkBt4WmESbfsy4Mv62/G9xYgeKtnG1u07H3tex0taLktw+H3q87mHy1/YXk1AnYJNtkKo7otbTV1slEByAA055tz9D7FnQ6DRXvlUAI8qBybT0Z/ShoCV7WjNZKn0Fty0kGLS8j7JBtcThKxBDO7TfVhzOycdxG5w50xDoeSOgjgAOmGDTitiOXT9yLQHt96gVa/VVNHtlJqBx4s/0L7ImhcMMtP+V8+bc8gfmTWKG88cazQzWSEcnYDSz6fVe2q1R70V7qxVfOnpT8ZES2W0iMF8ZNUmPY9hL/19URr/LK2eQ/tsFwiV2a/yVqNpmWePUtunrlo3E7s1Y19wYsZootzKUd6PqwEuU3ypjuRz71zw1BGIFI0zjSDW9XYeIF3pPfAFLuCJz3CcoAXDdWl1vOJ09lWSuFNaYiUdCfvvtP0Ec10SFIk50moZ0kCeYSP2uURnB91ATFquA3AXo6kbKCqgnYhKsO93ds16QJRapmyaZ3U4rGcUqkEAuvnqCBwws7yd+sz11WgzS+WFgAmHb4r57kSPyYgeVCceUPQu6jbKrQXPqgsfACzBCVL6QgZ7ge7vNU9nvPBqNbCNVOn8eK2KBkfxm4UeXziNNhU3SwDLpldRqq8gvVb+Bdh7KvoPax74IhG9dYjnaNINYMlCntHrkd8jfOBOTqmIewppiohQS/sWNjrGe2auZZzLluOXELAVZop4QeSRnCtZB41Oo33RITJCqpafwVhZwFwQXphxzB9J+zF+NuOQ1oisUSAqdJ+adlr4SEYsugjQYhUhU8MXPNr6RlICtvWN2Jp3zt/wch9Q21WCU/FhH9oxVUnvQbLo4xGHGLQUR7d3QxnZYW8POPZ9MI/UZ6wATiCUDvNF2NvJSFznV/n4LStwC3DsqOwHKrmzmosKjhPl3mlMIIA0ESxJnh5eME7f3H7lo4CaVow9ruKttOQl2Jq6B1p8MdzwKv+9q0W6T7MjUZTMiwms5koECTXY+MJ3REnOToCATBSqUUqcPEoPa3cByxvIvGr0dx4VqIE1GvpNMDZz5IsZNHhZfxLexXvQ/0kislycbYwDFVmXrD5pkurLKhsx1Kus3l+llXeM0RfSDh4ntgwrbF12whR6m5NWeyCTgJr+JLn0z5r/sSb18aowtGSUIYm6NgWSjA6Ivi3EPEDle9lCe3LbhA3vAxNF4a1x7SjHMNVdPlU2fmkcnjlNrRgSZX26fhIZvCc7MB3knj1+XtKcornIPPe9ll4lC/JDmaA1BzSanODlGpznl9lraaxo5PWFeasEqqSeZ8GRTXM6JovnOAiwzP8uqUfzfh1I6L4eZ1dFoedMp3seAbIqZmgC068Ctf7fgXl+NBC2+RhJ5r5+8F29+Q9QURyG7oygsdLgiWnPvtE7Z3VBLm56Q4EF+WtxJ7W1cmRYfaNWZ3y6098o3pcqv+5fNmuQcP6EI73qomCsu/zinrwvAVdsVgP2dP/uIAttSIXQfsxupM5Yx7J38NbXWYGV/p0SoOSzlQotssU8nkBtoYXkcdpwktykrW290Bn1bcPhfKst55OnatuncSUsCsSTBDLiPM38/ub6RxSnVNw21kOUzTccGMjWSlGlHCt6uk8KvSRnslB+6Mo5AtX546BfU5kSDe7ZTJkB8Mpdctf4IL41axvNqvY2k/cGxZnZ/MagWdFhsjhNf2/PBks4vtnZtwPRIx09AL8BBnDU4z/Vo3AcQVV7XE3yHi+WVWBuL8EGDq2znH7qdr6l5L4HBnIjzvz6RXKMW1xz8cChwKXU0eq+kUdMj78kPL1iIoGtOu926ZtuvMbjcHMoCvINsLcZa51WghE4Dc553j5RQizCsIhLPENDSMk/HIARX0w963r6aEstoswxOaD0cRgH6Zia/lgr25fN0PE8a1tfymhnfOzLBkkD8QpIrLQ84uXIqFaHh97m4+BDPbXjpJBt2+jcn67RR1UADQqmj5NHtzovxMsSJXYbi9sUPjO1f1IP3Pb4h4iJEeHgSAuEOgAoliz1Nd54ronXxMzGjwv9TM9n/vG830NKGym6QKxsSmkIN0MuVXebZU8e/e4TLo/ykwDPSEfuMSUShJhh1x5tZAQgchFTMG93u9ptmxGqW+In8fPxgyf9Qx1ig5j88X0LjPNYEVjscA/GYTBqTeoRr1Mm9cQPYNZS0Igi7X7+AAeAhqw1YAPmXLUvbxbNFNQg8agejUHmHzL6ghx7FC9hud1C4678rgXPCWWiVj85bLH37DAqOK3lNRHY50LKOLJygcFBfmuFiQA9OrndJnuw+cnWiJNBlIPWQGUrDey1gPHYyTdG5JvOue45iMmkU/HPvUbc0Mzmdnc/BMDwNPhTMYNtz/aknSK6jZmq2cPjmlaA/ZFz9KHVXLyuz6V1UYd5S/rw8Ga4UHQl8F7PkAfrV5lrpT+njb5aDtPwcjeao6lpV42B8hJy/IeFyTbQnrLWeif8ibhDh3ExZMZzDCxOlou2MkX7s44ex9q7H6sIXvXDktqQSeoeo0nCIyiCU93IBQ7JhbNrkOpd8goLUMt4wZALIqWWMmyBom6Bhhmjeo/hA/Cft0mQXYzstHaMK1abmJfRISA31Sc762tdS+pnu/tUtZzk3zQcSjGuWg0iOLLotdUbfG3OVZa1T8ydcZRgKleN3Y5Ogf9dh9PL5fmIieaNd/b7OvddeG5/kdOgg1/HnAZbj7f78xwYdVoJ7+DCzx2RhQCuU3AvlXKhBcIiFj1BX95eH9HmpieFZk02XshXCZXvasT0P8ve2PbsNkr5wKliXAA13C+B/sza2JlT+a6W4LBVqmoCmbwLhECFU4bhKXRhMUFpCvExfUkHwqxMYM8l38+V7c790FDlK65M9j3XCLToX6kaTbJahVf6h1FbcKu9wXom2ykwOj+5PXq47s/A0krMTG6210l3onL0yDovfhT/EhRQ96SpwYtJ2LpckwA3EaQWLCXrrVeM+4SQ9wjl4fKOkJtR1kvxRFR0ULDH0p2+mWaGGjbLAh0KPKFw3/iuX3Qzhik4bTY57x9NwbzvzCDotFkLBv7JUg0UypltspxINWcfv3r9PLv4mmboI8zeWFesduTzJNMmSG7fmCynlfsRmvAchmswbnGKeIDvidLpaUAsEvmqmq5MCse1Q6bbJ+JZGwIu4hzdcWfkeAZaaGfLQMWcVWBAMW7gph8qMpYqjh0MyxW0zTjz02SmUYmixCjc+H5AEWSmgev1B6Y1g0XbJcRBFPJ0SUj0H1PO00CMzTWajjg0fiR357OiSfoCx65apaCeumeHl+jaVyptDKVhlrcPcXpfSo3UYsd+aEGtm42koa5fZIaGSFDdFZWZw7EydKCOMAB//0Aw/hdOnnq3AnACBQaJjPMsi7zz/eoM26h6kEcU37S9O46/l02uXVo3vLe8kiN8ExwQX0aIpvf9chCftm1Pt5/NV/F6zt/MxNFvgJY0nfExSvkQ18QPOfrLEx6q0ADPTdYN326Ro77InB/I1Glae2BhiK2k0VQjm0TpXR8CYtKaNCUBKRf3xLk0fZcex0MPJwtv4zebl5qXbiqNWN12O3bXtQGlio7igvMbL5/jUeq+f7hVAuUc/vseYGjq+UxQ/Ns7w27araVeGdh6rqUnV1FIC8SbhFonMpceTOqR3CnEIaxhq2BEPVJl6JN//J6bDVGWlotyKC0G/LzfKxUKZDhUeLjnU+w+kTFxOexUoywxtxMDI4olnTjQgUFY+1TcIQWK+i9Dk30+ygTHo+VOiMRzYiVpCv8aMubE4yl+9BcBZWD/a5WN5lkkRjItC3h2no373F8eA/czqLbrvJWJaZTIIiOY9TPAAtOqzhcwM7O4MsKIkdr8kBj+ur5+akq6ZpPAAo5do/OAYYzBnVb2eF0x3jFnEuj05QHvtR76NUFmBOum0TvlYWRGzs4Z5zv6Yz2s86ArmvixJfIRSEB1JkxhpUS+MrNnnsIt3uCvh27QXIkrchUOwW1rBVukR067qQE098O0XCo9nfp+55AhMD6mvXzLyMgU/CqF5jSPndSb/bJ1dYfvyXFr+BEfNFx2uIM20kFnegcMQ07k6NpRaZQjrviC2M03tF2NrH4uVjthMuPa5w2O+eCaD/0NBONSJNDFg/W476cvzWnJ1FQ4KPeE37Leof1eHsnm0gpfA9jVg4CCAaAWRe3J2VcEYiXR8ItfaW08zY5h+8qbJgDbXJC3G80hGHNI9ScqmbzM3B5Kd+YyV5EB747QsAt7LJCS0lW+LLRMvh1ktIfuVJGHfdV4hnwiht9dx/jL2tCSWo6aVI4E6jMU2l0B+CAcuN79BIx02dnvANlscC+Ctm4Pw23TJdtuAP2aaL2/IfHlJLbj2I7gGjS0FetkxzhJcYYzbqtA+4K4ZW+1ZmLvsnEhBEuG5Adc1aV3qXeveVZP36AwRvOhiWxHHb1J0EULtxHv+CSMxc4xn0kO9e1A0UhLjdpgN98EtZXoKV5ZIHrBK/Mkaw/xJ8a9qjnfwUzqsf8J0TMAw0BvmzRD4KCaI0g33nQWo2vSuFWHwxsKDLjdG7KMjl2msGnVzcQ/Ib3Rb4BrfwnMa8VAL2A94AgBzdb4sb5XyXM9mHfcljcDs1xe+0AhXLJR9j8SKx8pox9FWkvs3cPFf/ne1TEvjHCD2JGRMC9fw2zXaxxjd4SX0eJGB7eP1O0vXJ8uU2GzDgEl6lqAZvF5GFFkHm8INQqco+uatiCHx3e0mg3mO+ru4SjvQIjtpBWqVpohqPxIwl4LFvD48WUXKUm6Dsy2kWXQqEzhvM4Iu7HpzuS4j/CgQaf0YOuxjVX5sOMsaPIfgcegJT+RFmrtkSbXSQU/N3kY4x2cW7KNgwJ2HJMrugq2qF0xZJOlI3s1is7ZpwCkUOvCYbFvUx6oScxoskFuaSglUNdPK6xgAjvD8qP8jwIK1h2ePOvy2Qhgov1AWwA+Ksm3VhKxw4H+rxWXTE7wuO690f/vypNN/5/JcbCM4lP0swmigFPcu4TGkLyd4M0ndLBUioR9P9bgl4vWyS+ITALm48Oif5hsDt/H64SNdH1Rcaa/6AQX4/gFDfi48ltNSRxy5Ak45XjPaWAdp+ZxQLqJton9Y4xe5AZvRDZukwtWl9Y5hj5lBhAskZRWjo/W4HQIr7gS1MAgj4uwe0z/xX/YHOJBLi3KZb19cctj+ksJUBPYXJtFPkBOc2tlU0J2K3iZ2hjk2Hsugpq9yTiApUeuBiXASIku6Von5jVBGFGboQapo8i6XZPSuGmmnJpa8rsRLptk+GZ6gc9t+XxAvrXLjKm+rUC96l3oJdKXD62cZvGJWTtKQx2aLKizdNlBWBgZYoOHZ1cuBSoMKG1wombqzDSt+msaUlICQ1F4gkkc7uC3H6vPPj0D9fkcoMC8017vNeeiHi77tINt13s5VHGOoqGtFKdoD7ZPpPZdqjvJ99scwtjMW9ADnKcEoKpuzNNULzYq7wVHItmcZjtQvYBEaakm+JMGtqpq2eHZx+c8d69D3bvAc9fxLKEDoeL1YBNgxx030GwNJ7jAzK9XzDknQyf4junm+yrqgRyBONnCdwqPJYNGWrUVFAnxgmaFPSIkr1GjjwL58JBQkDKZ9UvbiJt8AVC7UAu6nDaWXoQRSxLra36+nLjf/fjjLtvIbsrgWhro+3q4VheXVzXndtQ2WS0oMDyOwC1lYZAKohxcZIgcVzdLJCv3zROc5BUF3Zy4wi/DT6UhDYQkE4BXAkGvrixY5niPFcPomU6jkrOamhGdcoGEv/qkysO5+oG/L9AakItFEM9WcrUMiD6oiuw9z8w2cOObdSoReBLTxEX1HaOE49ctusoSIsZkFeWuVL/DpSkCCV+VnqGCIRXEpWr7kC1EQ80BXl7ilbOuMArlUVvRmD4e6wQU4t2/oX+1xJlcMBmDJs4i76SIxoX3D+E5Ye9tbERQCGO2UmxpBni4Aa8OrsL+XFMdeGY99cu4JqzlRGVR6DxZew3t9tnk+5c1DzKVnoRyiKYbluUMb3PY4ZiSwBy6iHNsoXPrzffN41urzPdqHJE2bOUKk8LqWZLoqhjkNU35ujA7DNFT16vtXk7RU/NuIxXEtHevH/4DWZLTrgqYzXoC5MvaaPMe44e9+K6Tu6aiaAAU9pQvxSa136voQY9KkFHcgUgdtk0B5pmMZzw6g2v+hvWdK1b37KxcZC/U/P5f8tBmOxyaFln5s2Ji2Ub/OHLiXsCJiU223FxqJOke3g1TUdQhZ7+jveQvE29s+gdhpRH2UIyZv4i7UlUn8A3XN7YF5Fa0jFiLEwVLq6NDTMvyhkPgwiXoyU/zxT+XaaKUUwU2ptmS9xWP5ta48lqjqHqPZQ0j5Z6DXd2aUII47k2hTUvV3EJlDjqci9u4bZylWRVTiCxF8VQsTP7fBx4kHzZ9f1LJc4+CJ+ciKLjFrjsV52DnALBh+OD/dAEvUGrmXoODHZdLcD6URv4iZUM42V0HyKfJx4PPjQz4//GbqrRTuoSs1LgPNHZBMWViMzPizYB9W3b4RV9ue1D7LlgSrVuLWWl3hwlV/+qXqYstmFDsNapWcLKrA831UClhNaHT0A9nuxib9Y9xK9P6LiqciHGZltYJoNBH4ivMKBJamFhfN+ys7WTjA7zsRsvch96leGpVOApDaOcIY5DhCh+iSFGlcbIateSJR8tAGz1aOlX0quSGsrRydkTXwIs0oTcOUnIpDUBs8NIlC7L8AsSDgiDhRf54wvQn842Nv+GBe0Cck6FWwfJlnZ5kXoh6bPA1+3ZRrQw5TSppA1jDmskM7RIzg4esM3Q0l8C9NPlpNr91ghXyhfxQFAVBYStseboZnbN+RSODhV02GOnakJUQxbWne0BFi1V+yQXtSikhFAyDszrPkge8jtK3SoI+fk0JWS1tcizjX9LTbq2gwnHWunM1QdvuQvMMs+NFPMs619UMxX1XdaojRpAN2py1G2DY8niY6dDEwqPON26fEJ6yNaWUm8R0wFjjNhM5Hwgc2B08LbsGhESFoTqXc1L1bHcw85p6mxH95dLhcvJoTd+75li6EhJAsz44kwMdn7zqzruu5YHf2c1u0xJOX2ZnicsL2GQPcMF1GaMTaF2mrU2lJ64azjgbd/gOOolQ49sQrMX8F7OOOM9gJULg+4taAXN0GlYCqQnEMJinQvmr1/PnQNRPwoio6KvxVpmbCZnEdOTmr4yclnVPAAaNkXHWflZAvxE4HeDOurO/g95jid7Eesu9qx1eLVHHvaCdDfNh1jQBVho5rphOWGpzoChQEpqvi/WWltPHGH3myMItsclbUp3yhOVnUEDoMwlIKoh1/hoLO5NuXjCiRO3BiUn3o8cyIzZzyxQ2sHDQ0XHRJjK9uxlS3F3YQ5Ws8jOAFOroroPdBdzgWenFDJgjhTahpxo7hzEi6bIb9qu4WZEF4Y1TQOxFFgsGdN1EVWumBrs9LQrVz6+UC5DfwvkuR4IHAj1xv73pudzZ07qWEL8gqbEX7dYf3GaCKSCn58Hdas3crj+fuBoKRRD5BWpPRkF5UjxgQsnAJm6BBQ4yeElQBNMPWL9ieYeFs6T9ANzmL0GgIFDSXCBgNmlANtN+FOhiAxzWeC6KRZvlKpHGkXQ37OkpshkKhpdxyQqglOxT5ecRU7kwbrB9QM5QNyYJVS66pwlcqfdXMV6kZtvAGhecblYhAnD7dIxEE3STC0qRyScG6YuGWVERkPTIfyrBWvBNLXoAgldPN0qaG8SeH7+w8i+6A+jB3BtOHQ88Pb7FUVLxYu6RF+qN22bBFry+tcZcPaqTE9D1rwdIKlMdl31vC3ScYBiW5XxBDJxsK+9606HGvn2uYCzIOQBiy2PfAF37bC8De7ItKEBK3/n+Cz8kjqZjRoGuZ6zRx5EatFi5ZlQmCjWqka9g5N1cX9LPKMIUK0pfd2Lfqb6qD/5z3fboXOUGv8/KCJvl65PLBueWOByZ7xiNcZLkbTLKjyaJQRwJxYSYXVYq6DE1Af3pS4sXQj6fy7anxWyzqeCsdLPCkbeUREa3K9tvGPGMU+ZOnycYZenHX7AKUTg/0ocS//sSQcnMfxy3JQsF38IT2pdpx7DOTeM5XqlbGtbzlt/qKm6DFbII5RHwqbiTn3vh65MhakynzCcls/5bTe/NCZCVYNVCPbIFe3B1hwGGEKe5hSrjNRjM889EtmDFAZtGdj0Ex9w7x2iQM4uJlACHPbGF0ypaN24DWn3p1V453TBEhvxZnDPJMEQotKkFa6L9TM89WknrK0LERzPyKg9/72bjxhWDrBLSU8pGdsB3WAXUO/P4c2Tdd93Nv+VNsxmewfHOpdgLVEN2I8R3SLoLtX6B9SMJQzO3nXo4tHGhswsSbCLkQWotKky8ohqHaO/8jnScAYj/agKKulrQZReYAsTatc0f+IiKda8ZR+ZpNFNAeyXUHo2Me49vWE22YzInshiNP+fZJO3DBFTp0/0K4OBc+R6EGqhUqjSTjWc5hCD/saFBYSmxb6j89blhhMATSwI6GJbCQyeIqYlHpEm2R13FIhWYE0dORIfW/JcLx0yfZd6CdDo937tdzEqAmLTagEiknCZzfLtWoW1rLwX8vAAKpsCjjwkOaFne7yE15KhCrTir8Z5kKj88KS8jcHPyGUSSY7jzvQu9oFxzhN+QJsS9qbl5LaVagZE92qAaPFd2MPUuZ2QnOXBOQOkyho9XFcF9t70A/RoP7Zk8dQqdghyhtG6AiM3bzq2VdGe0PLA4rak91/hO+1edkTsBDvmGXBvhNasiu/BeufWSuyu1xLUie9W0ndHwzWRTj2J6amPWsfHOv/z8KUYqRMLPUeFny70n69MWXyZFHDYkJ83W6LEe3/neWQTTXc0+dBQXgfCKI1tVq99YKd/Aoi9e4VZ3Kau0HEqYLzi3QMxGP3Y+BsJJ8DL+j6+UkSp9+jtiEN0NOIuNzZl5gESFPEXescflYLciSWLOoB1jA7VuGUew4mevNBd0pfClbSgcQXF1ej9SkGu+kalz9NDNnjOR4wBHkm0HlfV6zkNog4BQnUZPSGrSD5YaTB5xBBe7wUuEyuZAIWOY6olZcPwfla+xhy3Dn2q+rZkFePSuCPT4nvV0Qusy88pRWFQRKhuZ0qqh+OEHLkpgAvedit7vo7AHqnNKw4z6lyHl+daA2dAyoqf2ZcEVnODfnPOLYtvfCmErarvI8HbtLU+qgSDMxD6dlsbY19lcBqgmaj1dinH3eGdqMZNJZAJtBAd1Ua4lvJ0Aj0prm2tVZ0nNPYZVJTOGSIBJb7/xHzPFkR26uFZPhncbWydN3upxO/KtxGKG/g770AwNixZV5k3Wp3fPv/HwcdCw2BUHQ46tI3VfpRm5P5YIzqknJovIyanMNCRdsmOSBnpstUzYoRViXQ6SVdZLe8CxlzG17sGr6dhShXZjx5iK2kfV0NnAHPkrfKfa/naEV+HVri16Dl3dCjnAo/DDuQZrOInYjP+tdlYFI3AWk0q/CJz/3JRduxzAeLATKyBzZkaRpx0uE4DOYImRucybnqrcWnLzNNWT2Z+tdElxTmdSWBaxZkwFJupBwthIbcHgTluDqx/iZfFLUQOS6uc1AkqD2NiDaIn+xUyrd1DEqG2K4f+9+QtxPLkV4r/cHdQ5c9vDOhRCDEe7/rjY1D9aGJ/z4GwMBs947R4WObnRY3XI/u07vgFT4dYjg+ekymXjIjcUUWFcnvOSu4DYJiDn4CGTTyGrBkl26J5LI64oq7uFOCO5QODimVp6opGlrZ4TSL01nQzkrUXqQ/HlC9K5wzspr+eHVfK6EE5j6TJFhDxR512LDFe25UmZfxul1gPXkKCWZ29+9M4ERF2CblnIhLe+BimXodOupWLgvKU5ecofcMFEK2T4Otvhjqo6NZKWApXDkpjVUn5IFtYAJX8UJsR1PpjRAI1OPwDEZdj5pdYvmWGJH0xoIW+3od99vjRpYD06FfooUFSxV/vYP6bhe3/f48ramj9Ej7tZ3SeD6i3JBzmTy9nvoIteTwzqWZyl4jKvbywxnR9FKZa60FczyyQq/ccNdgWQrmmvIn9j1WQRYkuC7zcMNfyfyltYkf2CNLH8GtNdvebiGHarTrRyQIqjlk8PSGgR2AyLYxRFD3sKf8fRTbUGPJZrODRBuJA0P8J0HjQnbaJO+4pYLsQKY61HAgfqCIozmPI9+zks6sArT9CfdwivIkeeaXEghBoBVccnnD+R3Ln4PbR/hI9PxYC1Sb3kWnEyufayRhtLIac8Lz9EYbezRPsV3DbPgYC25zsSz8oNnpVSqKPNxIikmlDNC3o/R2BirS4nTnCJ6X4KvWghXFWvgNp3sQZzAMB5GbxG6Orixmfs4WDmE/sLd8CklEwZj4cin/f4ys/hbBz1vknIW5dt3z6GsppIRSeT2xNJdMIMvZxnRy1M1lZjdufE87Sy0vh5hrnPr76D2dl9BHlFKn7Yh7EZs6VazDS6WrIYPrnkBoCyv+tATyuPBoj5r+OC6/82To5B2H6n49/+KrbKV7CWTNDmyL5BLH7QxBaocv5o5Icj7YT5huLGtOAlqR4ldveZdFeLFtjnWE+OEJKPSLCxHcEkFCBSaMpD6yos62lfx+Y8+eYmfqnp1UVzYT8f8STkbaDsnMulh9c6X0WwCWkD1IAK1XTpxkLwOSG13/RYMVAvD48T7JEmb/ZXUyp9kRure8A/KjXlTwmX3hFppD9VAwXPcDLlFfepD9o5Hftfok47MkBxiquZR4NpNiw9RmeMhAABiY41bki/MO8PnmdH40SMv2mp6ylblFLCUSADoy0BBVaxprBpZT5EFpMyv7pZc+YUTBA8Stkgrlg0D7rw6ptPk/EZSeNLVEh1zbDVFGRJW07795ia7g6sskaU2mEwQEoWSQxo9zjxLDz3K/wOfiLc9e1zWMyYO3hE20GcG3FN6a7GdIRNq/qhxrP6JNWzZpuNzHIH0pnL2erTI7dvJPEbQ2RXhvDipWBHsO5JnguqGLpK39/quHUKIwTjvwSZFmtSygCDVIFz3uLtmjpxK3fpENddFd3AILk/9X/8nq8nqyTbZr0tV50oyb0FBa/inh1h+lVnObcYdjOtjHR5ImUgp8iH3nlj9w/DRYSRt0bahN+CqpVXvufVcvtGEnJyrxd1T72fXhYFCLml2HQ4izsz+voTOmblyU9+kfj4Aoj9yHrV+15w8q6JbLeGYgbZocooXX/A1rn1lu3FXMIRMN5mXP+1D7GLw3PXXONQsIvSd9zmkLurzRXPv+lncizUHCmaB9ZgGlpFVemxkUnQFBW4mzwPCnoP0D5NGDE+iXowUasrB44mZlAZrw3DMbPTgFDJYzBxWUqU40lFnNQnrlMXldbWWr1YHJoGPBMzDfQEyANR9ujwU2V6qXmT710OtxKBfB8A/9gu8K/dCgyPB+9aWC/DgPCIy0w9aNb+Cd7iFourM24eG5HokbbJ5Rh5jCXokKZTmIJYwFysqHPpw5xb7hfFZLJeAGinxb5W7OerWLARfBDAzjppmSTrodkisV3xaSOorvXlu0F0oV35rwEzaCLH9cxX6mD4HB1VezMLDlNw4vfQ2PeHYPp56M7FLFpLUkScwIzCF/00pxZsiS9CbY6PbVABWgWCsCTSgHihmrtYocNiqkUA1w6lccMLk+/dl0b9k7SQkuNsL56XLWxFoR91LwNDlq0/tjlQPX9N9GMLito5phm3784r60clV/jtMgwvcAtUKkz9+3cIArsBQc84SBNqx/jQEReZ1fkxmAisvZjHBNVb4Ci/KHKQxbPvh3leA2G5mExI8+Ji9DnPeqj/Kv1ubE+IYS1W8pHVZ6AVBV4E63JCvlU76GoBuqkzz6Po4X/S0P96drQqHN6UOdafts5pcnHnf35SYxop1w/pUAgXRS3SRmP4SZq6YozsxVab6PrGUB3uSqUz1VPLv/sUJzrXGA5fbyFLl+Ng7WOBUVfR9nGeJqRKolTElTlTKFZSz+WgtzudrahUntXENAybC6TWsAQ7Qz7gqMT+cYwpWcDmLmOST73YSezraUNV4ZJeKUmi3dxQM1/I8BjGYtQ2mYmx94olMVLxDi+wxTa3r3kttD6eOFSgJqiXOX/eG6dri+Oxhzap4FyGcduMagNzxqypxsWY/lyUZX99v6tS4f7o8D5XhCVXtQnyt7j97yFheqb9yT6p7cJSbFXUVTWMq2wJubERpEqmHB2r0hWgpgentORPVn2OJn3czTJcVAga7hoJ05SjMVWaTUas09snaKuMfE2nEBpJiNTFoerFdM4ZrlFjO5Pyi3YM7s/kUlXoIQuzRdxqeJFE0gDsI/Qrpi/8hC7Re7vEdcWxNkoD7d1CVrcdNw8sHic4Q29G6vXjUy9397wbbIJocgtOhh0TXrQNthnrVBo1DgflCgxJwS7hczorFGhFt+v7DafguGL6reeldxyPl8yeVpt1sz5CfCXRqQV8XiK3hlUADPe2XmQXF2on6sn8Azy5rhgfoigukeoZmjFWH//Yg3552o2l9kF1zZAPjAnWtjsGQ3DgNYTjgDC1vNBMO3toW16WZUkXjD3/9VRfJPIGX5kX/iN16UgYoG4Agp4q9UlpopTEPcGRovKFjA0hhkKihBWoFm5CSHH7uICoTV5Ug1q2UzFJ/O+6habXYCVLR14xKT4JF3BFMA9YrcEM3EQIZWCT7Uuxs1zm/Oo4xhY11PV7l4SPF9BCSrOY88uS4HKnY4pH2q/gJd41NvVFepK/qhMKMPpYZMgi6Naj0UUlwRryr8nG1AS3rLC2y78wn3uMsox3KqqKB6jV7HBvymYBPmx/x1yyX0Tv6pLkN8meEf68YDVFeIPn4heOklihiIRf7UKXOKRbUkL+zmJwcmgoNavRxXcJtRPJS9LlKj6BL+tlVl7wN4edWdSFHH8wNj83Qt+U28Df12JLyeznSMwJMMsxmcMtaB8ADVwPdr5rU4CMNn7edHeB7fjrPNjvahT1vifIN/eYDn+QYu6vv31eTi+CjGpozIw9q6UcRfGxqL070dk2okjezeIGMyzTkYmuSNZScTun7LrCsUKYDTPDEPsG71DuP4I6wPgxKuJnoCtkrVbHXocjyUuPb9363Bbl85RxavoT+kIgvl9lYsd4yiGHU5xYhKm5J1h3b/uIwrDQVs8E2PetbpWkk3uHoDsY4YyWUfy7siQo7STONi90/dAMo6ufFOFvNydiMmJUCoIioO18Ar84Ihpx2wtTN0Xr1KfC7vtp3fBM1mlcXf+YtEk6S0A14C2DzOKUOosEIj6o95nlD00pSQvw81O0CoDGNxmEa6HgLzlA7YHcBqlloK3+YdWsiRvlUbVeI4vV5RyNoeTfIOdAoOM9j3OoKpxQiSB9niMm5nGBKQbrWJ5IQUGwG8lCJ5U8+6b9td3YQg+NlgbKluO+PxQ0V64Dc6yssTV4igsH/sDeNP+NvCOewnm+ug5LuNApIxrwYQ6X04NE7lDjXtb79nCJdHBv6sYxwJ91nM2hO2JGi9n2zhpzq6W6MMvz3grDPa1+uuae48XyqBMiC9Mr7z2qaT5EpAwwC4eqUm33PFaqE61EQ7+Z1EGPQblPX/BIXFwHstW/UEver5U2UEo72W/V5GYh2vrauif8phvakNbNNadVIWT7NRFFs6u5Cbx7/1uv1Qtb0//P2zQcqS52e89c2xgHFnOyVj0Ync6ugxzjkWGEpkdvgT7TP3KhHbRgxJds41L7N9F8vLmFLYLrX/d/AtspckOpgfnbDIAhYTp3HfZImuPGcK3QPgj9DwtlkgpU/8dx5AgFF/d2W3VU89V3hzBVTye2fgXZ3YRCdLjfGtzQVhUHS33yrgb7OvXlL0AGSgb68e/aiTE3IiORg6V1UMVF9nPxiw3xDjN/RDwupwOFNKJp9oqy4KLWPitQvwffKQEvprsPa0K0wlEk7dk4iutKwxyW29JbRBXNH9UstUMpiuDb9jSHIC0nPh/B5TDA5xfXJeOiuwoNn9pIg1Mcj25xWSIZ5T/bNeVpP/ZvYNMCt2jG9P/SbfMEgN2m7KCMzqdNod743reTPxi/9pZc8geHH4Z2FNkzm7K8wcCv/rdcFWCrS3ldmpcqXxPdPoo8OEXp/q6IVgurfGD1XmQf6JhnlQTFUC5o0ppovd4H56Ku63+gWw+KfDarcFDQ9Ip2shMdxN4xHVZ3U/XXXhmzn4wm4jF36sCt9VrNqLYIBI3hpZ0Zv9+1FGuC0fz1DxQ+x9uyEps8o8ZWD8dYMCECLvmC36ExidvcYlZR6dXMae/F9MeBZvS8kWcd9tBohiRTtLOjunto+oRfbj3Kf1ase/SvHPKVTv+94MUimT4OkxOyvPZhhLEjarzSxoJXlpKIAdGaUCCxHkloTheHKMC0bZiL5dhX4txtg7wy5EIyTDVn1Dgy5HvdlQ+nPSXeaSiKQPqC23ahVHL9DeHf+1vwXeHYBx/ViYYzvYoMFSmCtbRSG6Fslx3VlXpOLRBlEIWzZb1Zy6LeDWbGI8E0Q7hNbMVl7TR0MmcCbuQJrcwxaGP6vdJ65ZzqWXNsVxxu3jq0wopgJznOK3sISZu+eEf9H3UnRgZwt6h/1SaL91Lr02mdaituHj4n+zHTdCnK6Kdy4gGEI5ZosOod5iHif9RK2bUtCb7cgodKyHO9W7j/TdtP0NOOe7AsPMSk6FW/f4G7DzotCptm6HYTezz1A9Qt7JiYJfHZQZDSUXInfrGiuXAQOg8wLCc3Td47P+9gH0psqpEpNBa9Nk/A9iT5jwYitk5khZboc2aWYB+CogiHzLGyx2ZhEnMojrnanJcH/D0oY1TtyaC9RT+pO4+fu/X9YwDEMxpCHWGwkIgSUj5q51J5vowVCS51WZJis62uop6hkCbDoKBO4p7fumxrObbjbw5J8oIEY0GarGiYBdsSSJpCnodNP3TPK19sXK66BaB6HbxhlftqknVoFaJ3yiqbpgvh4mHZHO+2pEDem4E50Tbj4v3LhPH4N5ff9gf8TpCBqtamqXl/riYpCW/tFHiGsCTWsNmqoqOUKxQPYide5vBO6aQPacrmr6FVLBAyTsrMyBF/8wh4QHIwh7fZuGFBph/aAluIE0wBBEaIbrCrOS7GhA6A8BobkaqXivFUwrJEcPpcky3EGdH+rkMKBWRy3XcK4KnW47LwbzDTsRWjKVVhzCv+nJqZRyW9BcZn3rD+IjYLi+MB2zOAAc1t0nm/Ts+rcIOVPu/sZKFe0Ro/bdt2bNA2fvimaEal1Nlbk3P+s3hnW+PMux8l+bQ4TvTGSOewIWvMeF2blEGZqNjyvohDAM0gjDI6RJl29xp1ZqvuYXdbQGcFR1Maxu0cjCi1/B1fjs+eokLtA2aVABrQGC5h3J73uy31tyZg0QDfpl/KbcliNcy5wpRku8RldwVg6EGTVWs1iy4S0PnYs0wnk+jrb7JyrgsG9OnR6YDGZt6lLY6/RFcy1So9i9YXExsC1jQmgLdhrpgXp6eoFBfYdrpNWAOu0ckxxziywlGdkih5r9nOyxr2onczB3TLtW4Y+Q8zmJAzvZCD8Li3JQ/g9KFIA8H4ULYHXOMUx20KXpa5lgkSSRmwvgsMQMZAOQ1qhmOJsBAjjg+GzaOqPxpW2cApdlaETtqCCmXBiy3y6Scsf9Uj6+AfsatlXOG9rDUlotqN0erJel0I3x4i94WqS9Q2KZ4K7lT68g33FVXFZbn1BjcwnNUPp5XbqMJyiCJxAMzjYGJ6sqtMy7NrbhTKbNN3+dZBTOGGYBxv3dfhMjiwp1a1qIQU4MLLOjXIY+tNAuIsSnZ7ba4XBuBz97afNd+0sEzjW9LtB21kDIHz9Cuq8kc2D1XsKhrGdDqpavADLS3+jZHskOS0t2HsGXnupY6XphHZfEOyHsX4sfdTfrkdMA1qVWi/DViIRzQD4EALv1JeO1iSd9+wB6KmzXbpWmW1dDHjXZbMAHh8TWitW6SwFdH97JcMklnwkowOmoDHLD3JQXocZ1fmVYj6wBEjZ78YVbxcnOuyDi3lERdwxsAaZfsVgkz7um4h3DBtpze3xRN1/BWRpCyJ/e9LwCIqdRCcY12vr0v2lAW8nzquWYpjBBmzYod2PBe0MeF4PQg3ad6vkmD/qHLYaC1lR9ZaQBrJx8QCwUoHmaefYZattt9XfuymUSOhFTVvN3XRgox5V1VWmitUyXl1i001kj6fytp61Lo1UYgHX+33WSdj6p3w79FhfsakgZWeCcEjhivlTgNYxlFtyuMM9hessEnPszvZSZg8l5ufAss0/Shq0U0bOHM2yJsCYYSaG+sUBhucgZDr1JG+90GDKXheMMD51dUND4imJQjepqdhDbxYwxpIkyoyrXDJGO9DknLCzFs1Fl31ZS8JLvb7N7Cwj3/95fP2HridfET489sliX+jqdzFPj1JGrnzF7Q6u+Is02m/YCunOS4KL/0OnLkZLhTCZK91sqGLwcJJFJDtbseq639AhziR7YkXsHQ6bfIwvSMsMDKA6hDXXePoWJF0pgOTTK/nSwXWNzFMZqMK8twA5CxjCaGfaJeYA6a2lcVUvCqrOlXDd2wu8JaajjysFIzwR8Bur9ljOkRoulnrp5Cr97JvSDepk/KabwRc/H/0hYTYVi8L6cTj71NKqz1vCnQ3wR3MkZj1yAp5bjA7PQTAvufaIXIHPYNyXxXMEh0cvtwIhvOTVHLMNCWw6MX6iCxvghh2K+WztYUS3h6m61XwSs8889m3qmIc9fKNfPD1TzjCLEdVX5LhR2nrXkan4jWjuWXD8VplsBH4fk9p2p459vR3pB+sy9Bg5tRt86gbvZ5PT3SlCZJUzp1/jx5Jwb417H1bIrsyOqSnxukPVbvKl8e48BxGBgy9cSTbDCqfePbI/c1wTeMCoOkspdxQ2MEteZEf2V3wjAuhafueof9MolAjl/krINVGg9ekPclTPBkw6jDIIV8AO+05YfhzMgAS7bGnygWFrh0zHhMR3BnsyYog/vbwf2wZ9hvPsMdgzTBkpr/LBPgTfLsv2JwpD0jO6tUrumq4dij5afweRolv9i3MlmlqJg8qTw8IinLyJQJgBPBdOGPbcoPMWGTzCGLZadfNeMiBSbIuvJnVW+Ta9cILcmq2RFfUXLXYWwdK3JnoD94XbLsqwpgu422y3Qkv7JoqrJysnoDAHYW5j5YF3Oj1FY8mBhbG7UXhBh/Bbd3z7qKI4SwQtXXOusCtqKEuLEP9obt3Pr6j6fyajdV56IM58WpDkNtYVRNHituBc2A9UNohXq0hxQ8oln/p46/OjZBrhzglmzWpoN8Bn4LwGXusXJrVXeQGusspXTJ4a2NSnaIhgGjFVrTkIEfD1R2i697LZzzOqQ6HOFC5VOsWrXJWIXFU2lLHt9AYHVS2hFesoXMpDarizfdBizubTUgq+sESTtBgXEyfiDMXIWHOlPE6/OJZA7szh7Hmtz4TecjpNW2mVUU7oJtimJ68DYgvofWpC2HbvFWjzxB4PQ3go7sBQoGEEDEzWB94VtrVdzK2o0urJO0hHba3tXMJ73Xg5nkpt7RIN6TbVVZgMbZWXR0pqQfPx91AyCytBLQ2YWFbEfTp/2Ka6oOdrDVvmPXJVzH1t1hexeXJMmO+BBnaneCs/hiPnKwmxu7JcY1ZcI8rrl+1dabfuF5K5RMpYhTRGa/IoPs9pYEr11xfaZ0bRWdGyA0MZ/t5e8F1bHXc3a02jpFLOuxhNTNV0NR0/4Y8axvZR7dR0SKdrOlrvTA795BhiYpknnO1I6mNHKx5wy7gJB0zkfFO/5Me9PWjJtVjHs2jk5drINgVtJFOLdh+doh9BfE4zYiQpEP3dVOy/yKQv0SlxYB7VlIaVb8R00qooskLJAqNHggSa33RTg1jawW0C3mVBjmqM+dEADlH33bPIhxK/SsAckdSgRPkvzhaxDorS5XttQiYZh48Y+oBkBW+XSjcxijMaRXDujMXJ1cawvVVypkUnhrzVp0GN5hmQUtfiAlSDSmPYuySeh9Qo7c7D1YlOo5CbVIQB5h/2yOh4Af9rPj5GmJnCXh9s1Rza0cZVUfuKW8e+0ouXgMDjs4zdFIMsDpsDN32Hd5wUwfTQgJmVS9XkvAKD5WbNrKPGswE5SFw+hjQEWnZ/VBNICwGro5nHPjzOPEgAUq1PvRFnPYXKQVCZxXlqXyE5EnmcI7AkSUWBWVhwsDJ1JS/faTcr5Cce6yzZbXZm6BjgdbwUvL8LuK1ZSc1HU3/sdNx2qDetT3/ip26r7X6AAw3OJWXsZz/CmgRym6PwtvgRFgqktsFPNJt6SHXwu+MKDtwusIKSh2qHrLZ4RTZMq80SCf0J0HnxLx2TVZOMa9ZinC5/ow1naO31MbHLVAmHu1g897qFy1hBLhTleYPmnk6QuFJxODwrVF0tYSig4ufNhc30G3sb4cSRyxw2vgOdH+b9hbZDE9UBiQQq3JuV65H/F0SVAzRMj9LKfZR7PkonMQT0BVFz2x7TWhIa/syZlXYfM7QYsj2KFBVmhI9kuKEQUFuzSTHPmdeD57BzmvDkOrxTq/p5u9iCdFNJFFJ7y+ZewRDm3VIUmioVDjXApEkQSBU2oyS5Plv6Q9yyS9uUN1mMbFONgn57DQ3WVuocAdYoVCwz+J5hdGOtBSO3WGA4nbjtZVNzM8bq1utL63+i+TUEZKAl7/AdXucjmWX2k0L/5qnLhhQAYA+C2+tIKtiSrZ4H5nxoJ9aiPB8GDLp9wwdZUjM5S/u4Mr1HBLCWO8MlNBFHs71QoC0IRtSBrlbfQRNIFEE9kgfD5Y7B+p81Ul5zSA+jFZmn8tt0yMmIUgr8LTFFGkLivGxH2COMfqoWLyjPhht9wyY9Z0aWjJHWzieCW69WvekwyGyqf9CW96Mqa2XdXBeWgfc0/PtbP60pYm6KNja1StG2zZ4xe9HB8XwcK8/97NtRcIrplPtjREscIKsRKH3K+iYLxlR4VeQhtPuJVtn2dU+EGsd3ZGx4LqoVNcZu5vksey5S/XPgGc9/qdiCuXL3fhW71P2jp3mochKrjSJW52R5gRUzdv/kh6zZUQpn53HCLhSPKYxfyphzi5jcosYAl312MNtCZ0DcMStIVMeLTM9fuToihIrquJc6nqwVK1rX94X8Y1vP8wqhOKYtug30eoGsqCnFZ7PWyhlv8mJ8AqKsAgd9TCIdUhou6oBZ6vguaROcuoh34FuPeJ9O+sd6n4papBGwtjuVQDnvyArKiQII9GxFC1ykOfyy6QEOWYtTxS5LOq0EnpOXRhqf9GrAR5Qz/TOkNjTRpQb+l+a9ENCEBDxfMMt+jXPMLFI6YeoqCdEwnFVB2XgFGzHfDgGh4k7zpLbq6dwY3ygs+vCTzekuAbB8N/HNEg/p+wEek1DrPar+q3m7znAOwHxALiJBNvfU80CY/VOpHxsahS2mah2RQDLy7O65/wvOq/8Atc7LtiO+jBgAVEkVtJV1h6TQFFgQt3s6LwUEbC4Lkidc/42d+oxi4tHR2VeNrB6QOcZeoaBadH4WsjI8LzTu30t5MyiDZJwI2iOO1oJkkK7kycEE20A0omIUWJDGct79dQyBqwymXMVhEWnfFHVTdgO0U+3mQwGjJaaKB1BB7sYYQszmI0oBEpEWm5Y0TMSzlPqOq/GKH5uDcQstkGE6UglFr3S4g9cx5LS+mev79Gm6DD6zJJ3g0h+mPnroynGUhSXlccXWMC+21/r6kbLNSv/gOYJpI2TLJ4a2lw5rPFs0NNts1MQ/WV/3h80DK1XrIWCiRqJTze+2z9gZskpHeqPQUDNT6OpayPege2eFpxYs5PL8R4SJJ4VRUyCaA9Mua2bH+Pm6YVl1KPh4XjqbuHkSn1sVdM83xzfqDmb3dfHBeM4ZQU+FD743v41DpZq757Y0QXFIwAj41ra7tuC3PDpz8yGLNheOe5jR/FJvVGPZ6fYu0Kg+u+1w3E1JV6L33D7ZBQGI6gdotAfeSQ1YZxV2bYaCAaHBIITlYnAdyMrKdlM2en91YLmFlVZCXHtxn81s6fNiMfNSdDnTyjbOzp1ZoDiyE7diwAh1SytmGoqJ6kSxQ/bbHxvxtTSPb+P2yhVBMxEPlHoBnCGJ4xs73vUO/p/1XHWbILYQZeUQV/MDZZOXVSfmEv86LwNJWVhRZueqxPQhZ1AFRpico5uvFjR2IjaL/g2fZNKChR1tXfbtuHhivm68AzeZ1IdBtNMQgcPE7NzFrzF3ZfCauvjxWoaYNOGq5cTv2vEjPsEObg1yljiiXezPzAXkdG6NMG+WiejHl8sX2TAxC9zEvspm6
Variant 2 DifficultyLevel 646
Question
110 − 8 2 + 1 5 2 2 110 - \dfrac{\sqrt{8^2 + 15^2}}{2} 1 1 0 − 2 8 2 + 1 5 2 = ?
Calculate the exact value of ? .
Worked Solution
8 2 + 1 5 2 = 289 8^2 + 15^2 = 289 8 2 + 1 5 2 = 2 8 9
289 = 17 \sqrt{289} = 17 2 8 9 = 1 7 (by trial and error)
∴ 110 − 8 2 + 1 5 2 2 \therefore\ 110 - \dfrac{\sqrt{8^2 + 15^2}}{2} ∴ 1 1 0 − 2 8 2 + 1 5 2
= 110 − 17 2 - \dfrac{17}{2} − 2 1 7
= 101.5
Question Type Answer Box
Variables Variable name Variable value question $110 - \dfrac{\sqrt{8^2 + 15^2}}{2}$ = ?
Calculate the exact value of ? .
workedSolution $8^2 + 15^2 = 289$
$\sqrt{289} = 17$ (by trial and error)
|||
|-:|-|
|$\therefore\ 110 - \dfrac{\sqrt{8^2 + 15^2}}{2}$|= 110 $- \dfrac{17}{2}$|
||= {{{correctAnswer0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 101.5
U2FsdGVkX18FF+FG7wg5puCc9V3+3Mwd3bStM2kJ2FPfueY7fQPiEO1TmY9z8m8hQYuaIZgYps5+UsYdOqPyqfZBWcSvqcmZcmfnzZK7UTlfjtjoIe+vvMCSCjn03gwsCGwKVVaQjpocZ2j0NwNCWLRe+uIuB7i2YmP1m9up1rrfLw1J+HaukeGtGr4EVevedWW+QZY0sOG+ZrmcL2qoDBxAkzhL6hrRd9t1QD7FW484B37Vr9Ngt2ZNC9/lteatNA3cf+gr3xa9Rk2aMbtMy0f+q/61sYAKH9C7MV5K5tIQRfhik5TWPBYMIrvSSyQ5KTcsTW8uPb7Q4WwQRWlTaic7qj6rbKhINpDDGf93nfyZsDgZtxuJUuFy+E27V27S2nwTqojal/CZ7IBd36hsmxSdYx/i5hECDQzHOMex02shrV3vWZSVbmQJ5tEIgPtyXBgfYxI/AGpyaDAr220L6aa9K7BUYEbRBAy8NdgA+oTDBzr5NPdaEWjttP6I7AXEfhWteuXnvkf+UZmIA6iYT/iSQjZBOpqMsncyrouQhTRcySckR6iWn5uhSoFzNYPix9rYGSWaqeqx2L/mRNBsz0D56u4ekBO37RgapMWqi3QXIxT+7bWBP25OTpv8IRPM0RUhzm2PemJ7SaHU+0hVrFECTCIM9pz2TAlgItnvZPJLo3ADrLgDhMNy1gprUFJ2w0RtL01QlVa99cpgg16uoe3hUw9TBjq5gXH05C7V6coSTbfkIIf6GDBZpjcqZJFJ/lQa4Q2UtIherwsn/6zi3oST1st6PhTZilzs+Tg4mM3vskFcqpWoPeQsQQOksPOc0VHVgmDmBse5Fmsg9D8QXuhcldCNUQIx3Ee47zJ+MA/t1PqTt0yPzgH1TAohlPli36pRozU4DWB9E+LOmt2pszu7klJqKziU3zd9NotHOCn4XO+NSeDHxxHycwS3mWYd7pL/tL4HKIAyQYMeVj1vkYvCAoB+QwEA++37FVPRJqj0BCBZ/kIsGeyzydgKYIO8JzEd83An7juRKyEl48IIpQGm9yHM34tvCMNTwaZbnZeQ9QK2eCPqQrIoCs7YOP8726CuzfnVdKdQYesdA5GMOvsezNME0k0w9zCHB7J4uQ9agDZvNrqbXm1Q0jQICwP6v4C8JlaEUdG9bl4oZGJODLiF/61nb7tWX9jhVuYLuop4oWYzea9sJ/wW3Tg5ahw1Bw3pKFJ+YHVt8HgtySUG90VZEFTdr4TKSiGGUevUdKbjJBgYBSFXSIzauD2P1KzjXoCKaJvsUnTXDvCkDg8XgCUtGEedGFP6PdlwHYTn/VgBKtIS0G4C1hrVTNrbCpuiVA3j9TtweLzc6cpl65lgZKg4yGCJ1Aukryj1+iVgvzG/mrQN6S4dBzCWBul3nwL4FgwD8o8+i+R8tJO9ntzvCrXnCx0RixjekMUgSY7IuGQX9xFTdrFp11qhZnT1+D0LJZEKNs/2vbCGlyLzd1EImWcGp9vbSQ78Ns8PNC+XF2AuEuCtmuksR8cxfbKuA5PcMspOxKonkdK+7F16N93d6GOHHV+zQq6Cxb01KRJVhTGMoDt0MGNXtHIAI/Z61kZKPMLp5tTan4ECwTznK9T1NuGvieF9fW+q7ULhXdzzZt6axVx4EasS9qTNoKkDIkwx0oJH4C/3XebEK2VKFm8ora3vprjRdueAv4ud+piCIIjChgCeVNBV9lESagx+xgOxxjQCSUA6k31nu5BmiZxWi1f6GGXoS1u3R8MnjzgQ+jAckck2/6+AEfWwBxqF6079LclE+1QF/TQjFwMtg4zoXqrkCNAghtMi1I/JeBZdQb7MfKg+Q6+w3uN5xAuNlgYiQTOVil1v7j+pPGqIxBS3wvmJE9d2Cv/8ARvwAjBKohe7m4HdGGuLg+NBbODVPzSlSp3kn9qBMgZefpVD7NZCVpCO1uhPKWSBQp5V71+UGr6lYJban/mX5EKuMBfeq9LgGz/di9xXizYhZ+j41e6Noxw0CpAGp5dPGjeY7C4yrzesIfD95w/DFMeIa49VcDhhKWVJYdo7FOXABOPBvOQLZDGNGmMK0eJ2742rihAqvrjnmsHey6nIHHn6nD9DV1CpMIQpf2eP0riXEoWLYqSIaHRVuybAZmhTkI4X8D6IPenblqlRV4oexO45vd/GxfzwMOucdPoovn4odg/kiPPuI35R5ksFGINSzvngmToLrTA+mjTZay2Qzn7d4yNyaaO/ql5TlRwJz6y4JzDv8rj/ubRMw2NXWHaWghWZx0h/7bX84USY5BRmi2do5V+gaAI6sjxa6uhwpE3sVJOHB92xWxsEBraWojwRv654llEcSTac3Hx2V18yy/t/aFA0iWpqZ8Gus3dKqYWvQWQEBmLjeZ9jLAAjgxgHqcaGjGwwtN9Gum1/QswU1A0nGfZfp0qFs4TH4YvyLOITeoKQLwp5955Hbxmh1RbppeCMP5F2bDrjYwthW05Vg53RpyRc3X8tJduTQkxXM0Xwp7zxflxnooy8eh8kRJk6o+3Fd1Xcp6GAi+r1aNPPZIwSuIe9vVSc1tTFZY+Js40grwHnFCDUinjBR+1hnm9pKdUkLz60Jb0v9HYl4GW3sq7jeAMOJIhJyS4s399ku5VgjbY5flcb40CtXarCX36DuWECAwuP+Gbofp3Zy/whAYKJ3aQzWc3W6hfeOACjs4FDQEgGrzecywzkiI+9pFSNaAbwi4w0qWVuCLEo6o/ij48lxKvY+F+adO6sf0KiFfXWF7ATBaFg8z5SpGGAHnB0ARZZIDgSldhwnC18ntC5mRMsKDIB0Uj8r6rQleRaWSTScZSaOPuAb2V+yRLH3aso7vIlqeKmHh4tYrX0E3SVokeklSN8dZZ9BThoMmw0RAGv7EixSCeCPfVRbcI2VSAi86psjtAn/T75Md+OT8WlV2CnKtyAFyRQhQfp4v9pXC9ZWTsGYGaTR2BzY+XdoHHeOh/5ABfjspVgttHqZWsWRz8FTnwf+WOtgQsuvX05Lv4s9aLPoeEeDfIUl5IyEQJvI01AqBlT75yXq8F9k+ZfEvCCVqyxn7mC2dhJN6wEpLsrA7w5PaT85ylb7IBLiIlKD3Prl79y44MZHXzYiUbNAQLM8QM1iQd3qr6JUQOSl8A5EROyCtSPvEauj+e5YlhcLwNObnf/EvDSyo9nDGOTe/fvA0OvilUH/G7L9zuWEYpjZAGaaGIsQk0UoCdKq9dJS50ZfP8HPKmPAiUvEI3vvnMc6TOfD7FtMAicN+BZjoaSuvy3+ggT6a107+B63ceJsevsnon0vRpyRdNIijv0hFUQcBPCBnZC9hJhY/1YkMk8J7Upvk1zDnceSsAemFQIIDtH3C/x45s0A2GHzvNdxAxmAPeVZmg8yTMvCfe+KTEdKBNwDtQjIyRB3b4Hl0yA9GhTYoYchdh6jFVlRnXUE8isRjvqQzTu/5ziYRMRGxVBV1DRQ205ZKHA0yZ8xUnq5NRrwDrXDQUjNSS/GdKZCGJR/bUWUGQUY4rszR3jJv8isdgOGKXnWyIG0rIxglNq3AMMB9NSGYLNWnY+LGiGDGx59jgsADiyWPPdfHLWxLDEVO5FXWjxmoM8KfAoVk6u9zpUjS2RWOOo89jAQBrJXOB9J9B9h4a8baQy2IH8ZEFslT7MasE0dpIWXLv5nMBR0PTcdExrJ3a5+5BImf7/djUa20zmZ+7s/lZ9Ve892VOz9UWtErcRP+epst4wbmRIANHeRu5bDr1UUuEdStSgn7Y8C8jGy7iqU61eGiJHRAJPjs/jmqtvHEvs4h8RsiMw2r6kkQ+Fd2bOZIsrycx5bhAUDWoEg4bvzhkOjVKUjWesC0OVZLrqCqH2BhtmEzAKdybk/pFD3QhGC+qk6DUbQkadTX52WGRe9CXtD9ChSU2VWX1/Fd5aooqRvqbQZGnESScjPsZlw5Ycq0I/lGf5w93mbmTvhucW0Uzu9wL5R64LivxolGnhvm4sqUKq/SMUBcglJpeZjLB2T0kQo6MHWJZ0Q5pVhnw6DUdNYkGHXn5qDDjR+7x6Zw20yV6rE/u72EI27lvC2swaRhf0NR9Z7sXVC5F8LXwllZkIPOF/TpVWIOyk312PEzEUJ2FD1/yQGcg3uXoxjm5jvWp4dbfFMSxt/Twt/PtR6gTtdv+zyBwfwA/n3yucO47xTNF4klxgl8DIizRYIacfuhFSr+aJAvc6KoVUDlcKrhnbAZcFb+EZqaT6ZTD8Ru6Zn3Yur+khRaJsTcK1iNuymg4U8+WZ3KXPl50LcftnUAXzs0nvn27wzeC1DehzS9Sl7n9dvuK6nfrH82Oo2TIx3KHV9ipwbC8ic3MXIPw6kS9hBxH4wYYOQqJ2uKHx0mmc2PQuBHA7go501x5ytEIIq6NF5EviakTI5O0rLV7K4JX5a5Lsx/1wWG3Fe1IY1m/CV0TUYLoGwi6iT5DJ1cZAoxl4JtJ0QQczGQjv+eronzq3EljjO6kTvwnpOhvN7Of2yatDGqMwMSbgjRz9WJv6AZGt8A6R9+ABcEVEsfpvkH9ziDq/wN0BaS4hlxz2BEjH8zMuRkYxV22KfMAzYxKvneC9AAkIAe4PSK7xf7rDtZA7PqLK+VFDteqzOnCNyq4p1i0azhXHBJggcqw14ktYtHqktm80Y0HPDswOBkwcrowkal5QJiEO/ddvqsS1wDoSGenWS0NspG8HIOwRlRUbmv3KT6pAf3UjiYLzfGJb6F5PoyYvs2W0iGgy5e2mJDDTkL6gomJxueoo0c3+hF0bLL8RYxTiqe4w8Rq35LfdROCweiLFt9HhZqHUu22RFEYzaD+iT1HGc5A67s/aazcVlTX2AulpHTz9F3tGeaq0G4UiUQ6nFRF7ZttRHZNQA60r+4+pXyk+37FglAJRme3zJN5jb6Vv3siXAdMC5vEbXuqNKGhvbl41uZ16OqGF4ETmFk0QLRmnGKyo58umSWJxth0qmZVMxruN0vO2+nSqF/QDEyybNByzmP8NM2pq3KWgncYOta9ApCRaagj5Ll/IEC5QG5Rdv71pxopliuRK1fWf6y721PJaiuxsiZQeH9dAW0WH37eLhqDNEcb5xescmpjU8IESapZSSwu1oDCA0YX+IiA8aM61qOz5K7/7bo+5lyr6Lva42hQj3w9LWqGHV+HJA9N/uScwJerh25XAFFlScveBRIJiDF8SmY0vEF1bzHLN4iuYy3IBHQmcDNSzppIpW/gphcPAPOLxi0aZqMZTnpJ6LUVnHY2/qGa54ZTmBqDD/T+umNup3XMKwQD9joyqypkCCxNiilRE3uYSyp9mzMAa3fIZZo2EyVraHi7ch8GtK8p2Yhvr1eAEM+HDbClCbsHrNRphM1gNA2zE3sv6uF41c1YWyAOzoNgkQFrNKMXoqw5guh2aE6nGSkDuw8aoAC8njTpAdSAi+EKeYiSrD+n6kuiriCkqKkftnvWtmc14ZnpWShKhZlQ8MTsMfn/PRstIoMbmxVhFfH4c1NbLdQ/giAoMW5K+Y+/20ZdITdEPFDVq4WwFUisuQJVaqPv4ZYaRjM+Wp9TIk2gZC53l6STLPxQaC9zzpgxVEZ/1HHuv/y6aqB8E7Slm8MaZmWeSnvKgomczoS2aq8KesbKlkTcvVLfuDyIOWg7QYZFdJq1ve8zemd1K7YFnGRA07h/N6vwihdscojQC5LfqUfx9iP9+oExlpKzz2jQ59X3/JxDT7ovdWo7IikaKVIC1ERBdikjeC53/CEMDOTMOYsB4XSpFawEn1gSQRHrjBfkXPZgva4t9bM4C3kde44n4UsQhpuueiUPJT/rOzvsnchA/o3G/OS+wYPbyW21cO0VEQcPt6Pr/JGXvCLiy/0zfEltRWS3QVLkVJhmhMJvFZ+gYPaMfa7tdKUhv1qO1V2DBaWWYgUMACWlWfXj1FwtNRZ5ELW8Kf7RTvebz0cciwxCauOx6nDjVeZC0GwFqwjMsI5ykeJbRWVZFa+V275bW6FBNqbQdNxcg3yF7vlgn7wJHI8V88hzJp2etQa3FB28v58nMLiiy3RsLCI+0POkKvH9GpFj7TLdfZfPUqXuAX6s7b0zj/MPynNNSN8niZKyCNLSDIky3XINhWvOYLtRvsdDf7YnsFfgzRmOPcK+zaiFc2j4Cz+2JMCxfchl3lecJYoWIwsmbtblsoOmEgZuWCgYET4lHZBXmnoVvxo/dj5rbdvqaPwzGYrV0rdtzgkuxJY7joE92EyAf/QrIVHGffCnTw378YRtUA8YAkSClV5AitP19Hyb3pLq32XCAVwIHWiYOCNje1vfYDSz8c9IdIbE9i1lxUGjeamXwrvJXJ5HVlrMwJOGbkWgG0/sY74rVCPkt027PN4YmLOdQipjw90j+qhRdPKetQiV48y39GPfTUPqA31ccKjNpITbZtIFD62yt2axQmWhbPL3+RGDux7TSlX4VYsOMcTi6RdrPWnRSwCcJYDjIeyKeqZ84sdcECjNtxcIlfJoPcc9/pdF8EZdpCuunc4BiS96AqJrmmlkc4VuzLqW0aaytOvQe567bl3KUrSyxRRUhwc85VZHNY1LGD/anSX1vEUgYOua6qMdxjYycPYtTpl2G/GDx7N5yif34jyn2YiBsqgwmKTxUs5SzhWaGPpP85ivsTr7FnAifXhDbhwVYXKk5qJAPWrkLCM15AN4DedCn2I4BL8YqbOko5KShvZ6Xr9sdDtThfmY+MtIZrq0FvgtlFUW1GTryl8akW1a41wMW1sCRwtEIAb+WiBCsueaG3m8Iyz/Jim+a/ZMIL9F809N9uTYzghhgTP3o/CkTQ+Ik2gUpdXhn2wZuyiQTIVH/GrM4lr2e3IQKZEosSXZi6xkmaSQkINDE4ID5tZyCdNlHF/8xMXxwi9CEpGQK+tYyDhlDY4Wda6/aT71YqYTvbmTF0R0Yl/iptEm+RB95aoWq7jLPlT5fFtTJUkTKA5ynAYiOEFHA/Cy1KPZdjGD2ZE8t1AAn/cj8+k/7rx70O/DD0a+43zQ0BVlXRExWHJ7O2mpofiL4F0HlBVfOkfk8Jpek6psZTwYYS5IY1/OwuCWBdkEmeCzten/TFd4nrDbvPvDOz0Lf1Jo7mpWunlb657srEoWddum97EO/lt8x7qaXKrxCP3TaPly/ncilJkHQWfwmcJ/kvo9qd1RB7zLUJGuzRyoFyb3qt/7YEla3tZ9ElWtz+GaWooIg486bN9MI+OfLYvPpsWRcJNYveneVv68jeU2QN8z2AmNrufR2AaNbrl66U3qY5zrbU8cN6Jsj2+xNUqXkDM7gT9/YasbCpB5rDcGSc3szMBTW6drPUFlJBkeDf+Z5fY9wNjLN1RZmxAvEUJKiW/oAUJ2wWdwf/2HmL53oLKBBJ1qzKuGL+xkL66KrRZw+fb09zjiPPemObramCKCponSwU+NYjMBrH4dq7AeVdM3RCcCbr42NxnKExh7CM2REctgfMGcK431YFyBsw9KPOx6t0JKFRN7JDLLuJhNgQnREkTmaW07Y7etyrdWMi4curTwmn1xJyRMHKt8vBlcGOMmS1aW5RB2nAgO7JCWNty2E75OywajESHyB8gP2QNCYrj+DuZBlJIAinMvPAMD6gMznsyHK0tONK+XSUPt3hSQPcv/Cs16h6HQW8FTdNko74lssc7ZZJd5xyoTB2KFVk4y3fAPNCtEdQlAbuAIFu2B6nGfGYQ1pKotFf+Ox+ZeBYvhg47IofgvB1FgOJq79RaCH65jkDh0kUh/QZsVOcXTH0iulUQTIge4lFBcV317xxQQIKJyOF4m3c4LHbtMct4q+Ao7XV3HBpsgGiv54wuHErdV4ab38DgDEgCBuOEdqGHWQysXFqvVd6OaM4nUaqa97Jew6KF5XC8RR4MvhZZKKfV9zWcI4eIvZEFq4lb4AIFs/fNBklkR/AjWGX5CcI6hr0zLHwWYbYQSQvfch/Bn8Ima9bJNFyNSnqu5M+zBeQL8XUrvDa5l/aD7NTMWkPCeftyufB0sjGWrw+m5Z829t6rrz4pLASMW0vQzjVKWLchjmahg7vA8rm2Y1W0Puo+JlAZTYMALqx8ZU1EwWGAhXAehIh2r7+bOxuE9S53U97qnb6MWM0qrmcvVRaUeZImIWy69Lo4aBQzGmVPYOW86Z8xK/CoMm0WxzvN8ur/WEGAlEf/uwsszQUKMv2bVBHLpNKc2Xdm12U7VFnfQlE2o87ZVkZwSl5Ob3rpEBmNe1os/u2R8AW8Qy16KtdkzcyMEI03gPS3A42kSUf063aI+3cBuDhfaCC9kK2+O+0a42mj05xZz6TpeFvuCRAFUmr1YBHFaewhZ22pYl5cjZZZOHpwX8nSsSjyTR9jmYc3ma4dRDQEPRUYv0m9ixMDvSh2E6R4IrsSnN9idTAhEP4sdkctQV9IZp1Hjz4iQzmyXV70rw7NZIq+b9ZlOpml6bvbaZGRpSIC6Nr2bR+9LGdCDMIqIdhxZQiyHKr9nQgW3HBKQGOYE1dmEB8VXpWXQ1I2lfWHZglfgcHOiQcH/qmuCvSfOgodaKAfXmrUsbxO0u9PF9CFA2IiNUp1b1x0eeMUpxVKGocBtpmX0L+JZQWRHdKHQDUXMV9QKCAqy+qm/cs4ogJ9VJKd87WPyHJ35MX8SpClHfghj0HsboHg/SuJErsi+HCpp6qZ4TUWoW/CFmhavnoYl1bUYBvbDARd8Whhd1/S2SB48GgYTVukRdBUkXz6mQymSs9m+5m97kk6QXMqJ1sFmnvHsk436r329psLGr+Wpte7t5/pTMorWJVE69NLJ/QBdPYq5of5XQ/zJ5NtY16iIj1lLSmrSmCdYiserqUxRHPogxtNptRtf0mUHM4Pj8R9Aj9iN6771vI6fqwrbXN8QIb2fRW1BxkyqJ+JkHDMx/NCpke5s9EDTNbtwQ/sYy1QIO3Fs2++OH8V2KOXuchKfQJJDbefdMiZYcJ0DzX/6/amOwM+A4S3SqZa8qjaaA5aM8o4WaUuq+wUXgqB16kzhxCVVLEgKBl6qKnvv2E/8+hwtvDFjusddlq4P1ZZbHwZBBYkqtdEc9lQENsEGq8WguUeyKjPMUbMdDCYFzywW5d36udWeFB2zIGls3IZa+vJ0SZjDIJqOEvSzOWyByeELJ4E4jBdIkoAAJpqRZkLuoTl32wjtmKG8X8FUoxSJyjjBB0bd7039egqZpXfWXMtbyPpwj54UduYOJLDnCjFXfqhXMV1TVQDY5iJS9KzS2YBJ3Iss/QONQLZqtaZcgNqbRLE54jwIFpBoZYjAMPuOVVpGGisv4YGVrfIgS4AUKAm5IyktgLtmEzpdEdL5uBht1WUwkTk25zc5mJPwnSi25D2k0I1QbDnjVNJUDz8asscCMMMg8wMdDgIaCNl/W/+H/xl6qL5PpCsJQLAS3pUT8Q24UpTw8c49qO2cqqVddmWmbbr4tUvalh++kX6SqzXoZaWBSQlT5Iprbb31X1DWUhLisMlcNdsTbnvALRwAycvjCkiJ2DeN4ymgV49Hq3urdFTP4Fj1SUeAS6FTDF4WBimf16Nxb67+pisHVvM2VhR3fKXXsqm0vtVnTkWIhHMaXSCO6Muu+it+MqPljWFKAf/enFWXw0873LcZY01lVx9UVZq09Z+d3xkLW4YVjJ69pNn8clZXaTk8WKE7Q1zZtnJIbFoVxmy8xSmzWnkD4B7ePxOzBqPTCgcLwruSKHTYXNKG+og3K4gTN64J1Xp4xbwz/1wFzZLfLnZ32PcifhN6ArfTkeTCptDIwecZtJ9ZulJMyUu8HEqqZXFgTNsztfW08hBIjtmBxn17qJO//rFgrY3e5FFkd73TY+UYW9lSkX9zPWvSkxDuozBUPf2BTG4ihjsNJ3Jzh9NSXcBXpe8BQIIUVxTYY1aLmGJ0f5lVF/XvlwMxPUEM/5rrCMqQ8U3XCUgkYMDdr2PPR6NjUAzWP/QjVTYFEdCdH9p2qfflcwssr8WO1efq70CaDM8zvxS0dbzEgMdLEx6MbKTPANoW9WsIcuLSYewIlyQxdUu4sbX02s0JvrHEwwEN0srjpW/mvUYp9W36XACD72w4vScXqfpukDpaCI3jeLgC9o03/6vHrBpl/+ez29KogGzlHGEZ/rv4Y3f46SwBZ/KfAoYnyEQgqK+ceUiqRGrjq8GtIrj547TvK41i+jKIFIWrmYSYqh2YA/3YlRIz8gbMX+BsuQPL7e+uyLYDMEhgbLwrPkIem0Kwpjhq+Jm958oBTCh+KKn03+f/oE7os92M2c5KuIDMilWqf/zMaPedwoIXDB+j9p9fEYKKkiMqM5Tai5J6r0DercRm3+zb0hsqombNVpOoknxRT6X8yRN2yUiQ9ik6pRiZnCI7TFGz6hJXi6sGhh+7X8pBQx/wwxEqT7qiyZaZ6WryVzdTckzC+96WMLJE41Mn7Rp5CC6TcdCeXkWuEHXbUyl2XUYTIZklYcWp0kuYSnJSw9px/KPkxPZN0i1bysfM2bYbA+5TUf1BFhRlNXCWOJtgIQzzER9VnyO8Fms3sDiBBsQ7Rw4qSsUHyrt80un4ZubbXJrXupFV5XxRkIL+JHTlgezkG/nD1Wa5b1rE1CQJ4VOzieeOLab4OF0RcUzn6Ri8Iwr1Om/KZFL3PJkWI/tPi7m32G4aCDgSg2+opYSg0aRfu4m5AUbgwaTiI/gOg+gvesQ5iAHrRlTXjmt7utrvOdM1i5turT4wM4JW3vPOMLrAVp7o4lQIplWwy8IsBxH+iSq0SdOpLkUBc3YSgQBmyFiYRAuacgqSQMxMdixepnMJm2YXgmQrGsq0oB+8FJNGPBJKT6Q/YhYnexvb404eU2UK8O4J6mX7stntwn2ptyyYnishx7o22fElklMwUjDR+KUNaZ1y0xtoMuYyDXvqWioqJj/R0uIu5W2IH7u2a6+s1WvdRySuFCi7C7y+y9Lt663yNG0elS7domfuu0dRlDHrYeLqYEJ1WB3XUCx2gOBFHqdOJSYqD7Pdw+UKe+uZRDriz5CN5vhzFrYGqG49zrQq4O+mem58XVMLSUcaTITa6UkMVeE3pb/8seiwIFx4Um+oIp2TDpixzzCk7/UBn5gshF2vLV5fpLKyJVrSNuJFcqPMvrmoZF1T2naRdfDwnD7ZAu/ouFyvNSii5oPFdhOM8zgCY+EBq8UWrFOMeH56d0W1iK9mqNG3kQtBZl65xI3prAjRgybL1dyFanWuxvdTEwAXB/mPLl8jVKHTKZKC76SRtEG8IGGJonnaWsidwXhAM8NZZS0tVZc7XLB8oOT7sc+85AVC/GrLx9khq1kH7oYh9v6dg7Mh15f+8BWCK9lh7zxaavT3nGnZCyf1BRwFKwDn8qjpA82TuZYzFQPaGeA6hCyylu5G9i710PePynRcGWm2daX6M58p/NQ4lFSdHdmJ+99Cf4etkX6+Jz339gYD70Ka9B2xkBkx9AL3LE73LRMzaHrYmi7EK0rUbqovirb1+a3b2gJ6zK3TRNFsCG64UABxnUlnqO/sN6mPk7UZZZ00wLtUt1Tiznka6zGm6S5aJvtaI9QxK476urT5tvkoAG9O7v+agF+ztypxNwYRLfGTEeAyw2nEGMMQn+FB9deJxSSiJ87qFI+68UDOTCVYIFUCH8rD3C5E8d0QutXxwE6bMNeVKsiWgx2eFJBxwqnr4zYDV/e5w8bz8xaQK0AyUCy+Wg+kPVjjM+YzRE627SgY/qxgBD59LYgLWdc/2ZZxzPk+laNQVGIAvxWTHyRDK4q7GNbAC6QBV9c9MIXk8Ka/Rch1DhUP14xBRp2JQk76RhVI5YRmKUG9P+CnHAlKVbcq42pUmwqNuMrMc+UNAWq/Id8tVUMuZcj2Icc1URjsPg/e/L6ixfDVV3uS6DAIbqqbg8l7Iq7APwvz0JmQTfQV+LCv8dQhsE+1fZJdnNIPOxmepT5XZdgwEN4/axMGewXmSNDh3NSgu+sxvdCJEluWJLSMBzScwBocA9LnkoOQ0XUq5H/4yb6lc1xUeVDIOjE6jB0dSO+5YQXwfkRdo6tSNiNK+W/bgAL8HLBGKf2xJufmliG1TqIK8g8EX4YRRhi9IAlYizXA5qFNRuP8ohLphQOcYMWtJXGO19NbC8FPu/FQgj3WSQ65MF+HR8bv7WVmzROIZbYAd97ilnaPTam6kbW92R7dQioNkOfCHJQD3ub9mbeKT6/wW4JyhhoyGHHJLV/ua74+tezq2iNWjRsquLJAoSWyj//uW25BDt3mfI8Ktlu+gwxOLWEllUPurXz7UuhkQReYVumF2Cqjc5BrjL7fqbNJ3gV2yuF4MwNR8rEmMQtI28I/kpJfwFD0RfC6GXaB8lwvyMubl+QTjQlc0vjGJgSTZ+k72pk8nXjRKGKbt3GT6eRwRYRFgK9odrX2TbX4VHVIprQsh4Rnr4tFBudXDeMY9adDaGu57tJAV+mKBozUDtzj/swR5cQBYwW+oX0Jrj65yfwdISOLqHXbT9m7C3SLUJEVAdWrGj9tNUv51IJBlkBjbRUOtXPhui1F3nD0BtoeH1uC0OuD+ZKE6LgTJXZtbqCkn1GX1z/BaYNiKaYenYhIYsa8oFhDKUIX3pOfnktLo/fSy5/zsm4vtjMhYFSvmTYmcnN/n7hcFNraq1mBQp3kTLXev47xq60a5TEfZJL9ASTO4gxIjI7pANAaaXsNNVylomeiyVdjvWB8Vmthfz5kCWNhs1ZbpY+K5coNJE/MRhKozS1P4vBYtRgcHKcphhZPAP1clGS/EAO6YuNeLzZXPX3/D76URzNFfro82/fVGvSIQsGTSp8/DnknEBwxBaHTqyaU83Ku5A7uIdk4pXdlrndU59bnSRNoMWS/YFBpl7F0oqQVQk/NRP1jFTN89XTjZCWJA+gB0h9Zp6gbA8Ii+SqM1y2x2O4ogwjkF+DPeloJ3a9cIhYG+snLhimHOZ6Io7L5eiPqxjQ03ALtW2AY7s4s5S37sK0P2lUDr/8lg6ueW5dk1z2ORRY4kq3qaBtVvkCS+k6DOqiudNtBIcLdW2OYctJ0IUBAg0PPiwfWEMuId8vLplo0SB9gPK9TrXRNxc66obgDYEWqQinlowijert2iigoqPQ08NHSUv7TFIvWh1YLXbGWRnOZGBzvtz6w9VC7Fo9GlFFIXjhqF4L3rLDPsKpd/AQNC1MZEys9xu7EYwP24+iCKN+rRpOxYeaOzm1NPCaPmIWD5h2rbBs5Yig6WydB3zPwCMPLFlvlr2Q+e14TYsLSrD5ZeJyODyNy5T6/nG2TADueVVlKOevwiCBIyXCItVMvsmm29kVG5+THcaQLm64PgjpFuivY9Lwfqwjiea1tm5ye4njqxU/mFR0+atyfsBzeik8if1XGtw4zfOUJtKhLD/NcY96BncrTzlapMjUBXvbyDhInzKRNfG2QTbziyVUtY5+jK4NTEZcDBIHoUGyrVjGfEw8qohBm4SJHuau3lVUrqVAXPv2iY9uG9Lf0T7ly6+OG3oz/TJ/HMlT4S/FddDbZq775X+Fmd4CDb99tW4LrXEkSWSmJQAvJqk4Ttkl4KY9A+6L1LSYcV3vRrplfoqSTnN5OM0W+2jOZu45Wz1t2Uex4CqWUoSnWwP63/P+ncC/DnuwdB7Ww63B8a1yl0D1zqA1pd/kOS5bXAm4tJ2N3t1HvNr01ddj0Q/wsp7EU4h4aVu76EquXcrbMxUUHtyTtBCtRVfRW6COZZDf0tOk+iO50b/6+XyD6hcxD0r9yHM2Ms4/CfpCgw5MRyLsBXWsj2cDN62XL1tS8yd+beOc6FdouGLNFF1VQaZus9K9AMDyWxH0cb5ymUf7AQiQHdCFSavhIQvDTsdQTpddB87AUU5RXa/y7d86ZUdEdR91jneyU5KxmIeDXAsgej6e36iOMRfSWoH8bW4XZSGLr0VoZTs6baRpcNurE40Pads8kHatl7qPOSuLpo8fxvqvcAGSFGMlruMB8wExNZ2xgOvErSEAtBX8/JVqaY8z0gu8743+YLnk+iFwMGjHomc08BCojlVoSCFa12JA5lzv8QO/wZoaBgjbvBubuKhUsG8QMPle3dN97THRgdHMNjXYzx9RpSC2LHyjUGQc96YJ7jdgX/WJrs93ylfoOF9jmWGdLZtB//Zku5ed4S97yoSAnDCvfUKLASXhLJuUjb+Je7FAnDnLlKL7qn/yfNKzqQVmN40pHmmGqB6PEi5v1d+auUJ97Tp/lVxaP/VzurbF5on0QtLfHvnOMwvi/ay0pdbpSiTZPs4tOmNREusOBvbXJ99nXUVuOalxKrz0bQPlT28oE7R5o0dVitbFnbECUzFpAS7GwhJBKfkHvVnV99n1VSsE03fx2ZH8qU8J7tGmU4HKiNNo5VOsOUVhuuKqYNwkPLeKOci2APc9G0NGlvHlCLb/+S4ompV5slBNbDdFJQJ+RCrgOZhYgYq69+7/b20lZv1Z4w4CIporidKJONQIVKED966kAiS+rqABjICUhdO0OedgOXT7hTE+bVo0eV9DFmiKP2NXBY2T7U+cjlQ/L2UxVakUjjLUKpkLTI1srbFM+TblAr7OEvl7R1TgTT8us9ZZ3KJuO7F04UByOeXrN3Yj0L1EIvKO4CxbzlI84K9E86D7WNScBkzPPyMA9P+akBim79G6756V2G/ZMLZK9KqPv8RtH45uS5i8r9JoWJMaObvc4dwUxBQ6f5TT4ZuiRwju6IIoIl+V0c4ZlHATI7cwaa0HtAvYcbAvMcF4MmsBf5035GAc+BhJtVbpcqKAHnHKuAvkrbibbL9XXl1VO5xG0InuRBymFLScidUO4pQUtxqzfI/nyvuDvm4LHTXsRHeDkHp6JVTZg37GolHEQOulAOV0HKnJ1oShLemto0197mo5+lPxVRWWAT5MV91zkKd/Fpzp9fxM9HUuHMNk1j0sm2wN48I4ox8m9jDz+1DsfxRrTFp8XhD+HU8xM4CjgmDkvRD9vWWwKytU1advqODMlYtbVVRR0tJbO5oKvJpfdSAZBbRWuEQJq8Ur4aZ2ilAiEowAd9CEj9V6eNBbnaRwZbP5BqkVdWbdUs+HLOQZrSogc1RKvtz1I5qgDLSAZ2NYoA0YzyiJauBiscjjtBl8YoYuTL+JStRcarfR2Z5FbCWHKxUoiMar5dvaCOtQeUo73qXGrLfL3xu7FT86UbgRv7AHwjHQTQJgy7LXZCrJCIoawaIil57+v2O/D27RBq8zYN0o3Eg2LXiRzOvdtwV/zfWrzq8mrGaE8LehQ2LZDHtyvJ+7pvOjMh8l9Q/Y5IJnmDiG89b4VAxqN2MUy3o24luT6my1RamV2lm9y8pxwB903dvzQAEhRilnhlPZxd521PPSysv8tKjsXklfF1zcGJnfxP/4p70uGmMLzPksNqG3K6+TmGHZXNTBvFYFMWNm6p9EreoElHLJnv2iHANiPMp0l+Fo1q5vCoz5wyS8rIR+I+b2t+0XtyaNBNbFp++BNekqTYlVxjd3YLZJBvG8YJ9RC42sEQj3OjjkZRd2V6BVBKHV3m2RJZuGug00THf2F+mfRACXudotbx8V9FI1idB26sa6iDVFoEndaxMcyFDZ5b200iu9aT0O7wwSsGDs63zH8CfZuYjAnVm2+4dgTCHjsOfnGwDZlE9ua6fKcO2BQrEgT0KN0Ulag6xqJN4jwOIrqOG5DGG8GioFWXrs/9WCxeYzpNGpBJvhU9FUtrMYGBFVrk11LWBR0mfJqQv35+cOCykx9I0rgDUDBBiLCRq/dq8if1gGGzU9tT1g7hmfsUc8lEYgtbemTI5o6hfLCe5RH1/j21wYvLHrFgjjPBACBJxlOKeuhzGQAWwXywOkI8qhDdxQf0DtTfxL/duedPLTei7zWTrO5J7mKr+1eFq2JkAx6FkJgUme+NP03f/OiOJiAC5LTb05dh3WjmUiew6fz7QAgamMjO8bjUAGcY98MY29Lrh0ZMfYSGkYBvkbXH2NGvvHMSeeJwsi9DTML1vzJEQPNpM1YoPX8cMJreCZi4aCVrN0+DZ5p+P1sFTkbn4KLwbjQIUPhxcXGnnJl4cGNlc2nB85QTGpEPJUiu+LQn5SpwLc4ie3FJ/c+xJDHebVPm2E/TT/Ci8tbwyjcl30OAGjb7Ve3SK6baiC1kIgAc0Tce9+Mir4LUXogi41Re1Ap24/q6ycNEWa0SX6pjDFg4XWXW13x19JYnxtJkZaz/8EI2EMpjxtDlU5c0AgMRaJM2rXM2IR4KYhoDl5bTDqlFE00ho7vjhC4FogMGF0mm/BTflmmB8+qwDZV/oEqkIkRdyz19RgR3TqqVG/xcA42T+hXGDPQeFVzUCSuMkK8aWXkyNe1HPbFM3JpsxqqMAYV4ObasPmxc/ikYY317hLGJFWeJefhct5HV01T0GceavAGZrmPEf7dId4aZq5qLtgsHWYuZskVgYmHB6s9OU5bUE1joiUE/JJUoFrMOq376zVMVj2UKb1BGiwtvK/nAlrpR0tKxS3VxjXmTh/o3sqIOOJnS6Bcw/e8wdURXY5WeMlAFki/9Vtc5ePGsfQJyzD61115yM41XCTCLNTZgqzSqNLZWdH/MKXGm9sMsdpbVn8TI2C4Tz6qrW6/iojdC/IH8UgRyf52Aw0Ntu0CaG4IIhOXvooyz7KJNxOjZ4IQCreVsKhK4pEpvQDMrMAptTt2c5EyIvW1C+HrkcYigdvDq0ITZE93SCvuOfRslrKp4P0SCpMhbDSHSKzcGBrnUKMaHCNIUj0zprQ7ew13HcIDKZAHstuW+D1p6BtF05zbv9V0d6hEc5v73w7Q6s6eGW15BqpznFotMAHobG2e1uLutNBnYMfP2AhWXp3D06wJDkP+0bvBUI8HWj+M1uoSyTqL/aAi54xsTCy4OVR39AJGqyvMN9YsLGMBokrKaNIJvckCbqfZXJhDNwyIxh1TF8ZoLIgiaiaVme4N0kAwpWQlkTIrwuVON0Rnf0ziLA7ZNs9z2dDQL2+xWSRZoUQOI2J94JPQ5sbAJySn2Eh8mDRX8XjoCo06esGR+HIBSBIZ81wxKjB+ErifBVn151jGFkDGuy+0MRH7mPu5/TIbBPj10emxhR2kuJJN+N8PAF6e/tZGZkG/xJkfvMGXREYfK3e7eKc0OVenvN+lXgylYgZkIuT9zTTKFD42tnsWsoRL5A15FaaLftKb5NNsDcHZq0e3WdevctE2m5qRDDpONPFti9DYPtuIhmMKOfKlc7pJMKTfCozLkpPh1zS2mJ4xtGX3X/f1cdeEmzeGocsoYb6w0MMxauaxiViIFegO+OT3+AYZ2QlTczgvkMjN5CGwE6omxglGMNoBzNN9/EQau11Ee9PA8bmIQwnYlIVeoDk5oFk04yASxy/Qez8SDrCEXT/UVM12CE3vRSyUfn0yU1rJOeKTuYOCOOQ0aI5+C+kXVPHQKajC1dr/FV3SjFfO8idOLUVOUfrP9RmXY2/WF7IJOdkek0dvrOdu0LkxFgWiHTaW+NPwgwJt2UnPkcaHzePY4GmrSk9BO+KCQ8yGKxH/VUwfHlXwbmWQGGwBg62EEE5ckz6SjXr0kKMq42BjFgxzFuErzmMBuSxbN8BuNgxJb7GqqTbCqMzWeV43Uzv12JvrtQmRKfXNpN6cS4c9sgHYjuyekFXJwwpOb3zvRjGiRkxYqyQ+zIRkpMtGu8Hv1m46QHmORHPM8sEJt4ONQeG2utMLb1qBszLQOz14sbZLkJoTJGBCDtE1nJHkACwEPgh2P1Jc9EMbCT7NV23D6vAv/0P/nQ2E+gZSFOkVkuMl21XKS46AX/LMLvrw+3xL6ToIdNTuVqIjQnb2sNFTItSn4KpOtu33D6i4+KuqPoAiMQ0xkMvh46TOudVUxZ+igtVt4aX7K8Zd2rVtNd0ppc7SUMdf5BBEymsHrXYWXT2BPBSZTXuJbIel0e7d/hYQjKJbFN3bkW2YOEH0dd6n0W9wF5bTTUUSTWQ0J6PawaPvOoLDXykQ7e+VWZO2zC/8ZlW+3GP5mz0T5NqX5ByTNAQ0fKUZtWJFKUvmST+AQJaYW1kuW1grME6Dxhap3YTE1MVrteyHNgmp5GBGefESPtSkeQxDkRAfdvUOw/aN9n0J9WgbgAjqSJxY+/+k7bLCXvSouuWZsNGBdlOteYlJOKdAw/CAu0gz53wDmFoLdyN1N0RJjf1r4RB4+c1EKg6g30rHPyci+FE+5Zp97RE3pJIE4Hi+SRqUj/2fPtekTNdmyI/+Ii1fZQC1+P/49Ok+ug0BD2PjvITlv5ij71rmHzLe+ePuRprd4vVohpIovQeK0+c9MgBg7RNIo9m9AGOkBtLDSo3/NfZ6ZdruDJU5O6OR+jMvLFXTJi1vFe23P4fEZu1iFyy5UnhNkv3CblgpozpLilZcAkLGWmMVOXqjLX7y9IsExgh/pMH2Md6p63ruostwG7KCCfgPZ4H9je+rS2PEg+ahOgpZD5ANWKlOpiQgaa9xtSr24wBK+VSz2EZF35d6NUL/F+Ov17y5nrEUNzKKaTevRhEhZAsbg5lTzZA3NeNmMYFf7QXOMooqWEIOPPaA4QM9XMC6HHm+uRrXWsWt6IRtyPNHu1Vzs1+QLtKarTf21LjzG4sIXS3Eb6qO5fFne8VoPJPW98afUl1tIKOUwR4Vx/NC0Fp5NmuPzr5jhFN2kWwHt/cwDCH01GY+3QHkTo1XjgfNZ19Cu+muyClRittVfn3XpdTkEcTOUZqR7Qejv+oaWWSOWLg8Jgab52UkbtRkBoHTn6CZIgBM3mI5T297ZrjEZhFJjPIBnerQWhk1E2pJtKL709dqyOUffKqIwZo4ijuVm8orla6B7Yi85yheyd5dotWB2E5ikPqfzlqLMoRMro9DgTQhq3BeQfeKOmgJlx+XJ4siebpnqqSS0ktnROEvAd6VWIU49xz3XfGj6i05dbcqyogbFOlBQS47yVpm1WbSwXmsMFOjtdRVhpWvxetnD8071ENptu9Cv+40zTsIB2aSF/V/Nx6aS8GFv8Z4BkrB2FykEcNjsBPGmlLTe+0IZNyMLx5rrcxu5attlPczZG1TwbRpchRQaUHd87Rg4m7575JKJfJPpP7KcyrYn302JHWj+FDcFOLYRbnd56xCuvcV0XFJ/5xx2ioh1CO5d99oguM45DBU79YON0A1P+WIxIb0AIyQtfVcRhXSp2ahuu9hJ6zMPsaB+mM1tILZi8GwHdyathOYc3HVm+ctDZE2JLcMt7WvpLKeEz2js1GhZYD5KomtTQ7TXEOoLoHoEB5cqVtAdBaDYaklvMFRKnIc2Blj9BRrE1aRubrkAqxt+yG+Pc6dnSNJ3ZY1XDXhCiI5E9yPJieeu5QKSw6YFF2DcIfBc+dJzazj4q7pz3BguceehpPiJDolG+zkBpF36AEJ2FK90p5iihpA8K+/6jx1eYBJypw34HGbKHuKhlHvZ7GxVmlfRFTfeZdZSe62ecwDJIUF+7uq4Iop0QyRdrNe2MsC1EB91G9prKScP/3Yhygcg5JtVuPwnPT4jq/kTf7Vwc0KbH86MYvH4bOALZQ2MM0Qz6GGJl0tkbRXnSi2zd9EsTFFOQLIhVoMWypIBnjQtDq6iIu+WmfolZ5vWSQ+6zKKDD/xP6btoK3Ls4TuStUrQ8whoW5ccp5yV8shgVc22GFCwX1ZJiUxkUOvhRfU3+NWjEbXxGNsC5x/8LkUVKgyY6VPdjJkPDWO74HB/NVum5XUMjXLqUoCqkpeIbQOYo5GkNvzdzgoYRJsqayNm/djRlG8gJEH2D4b41XYfm/zWHcCxUmBl+iTTGwqA2QSVZrAiI80+jvBaUAJgulKRwbsp6TqHfwGreec/uIzZj+bbflk9Wz4AITZW5Cs2aIgUsmATEFm4OsFouQOK6Yv19jbUXlh4Tenx5ahgzgOzkczws6Qi/qmgIJofrpM0zfwCTMoqdIOrfjlMSc97qpqhwlVnyUUs5xodUIiUKPJT4dJUHyXniiMyz9bvuRLt9PPQ9DDzY5sBAm1fMdBk2F2Z9JsxtxA0NswmQsHpfU5EPHqqbS8Drtecyus2bbXritvqGl7/s6Es1Di2rnmYiPXtPfZud6W2edPyx90cjT1XH520GTFClvnus7+CKmEg2FMahjEBSi6kbrd/QSM31ayIAYMHyaWKRYC92HcneNfyxwpG+itKCNI5LwlvbQ==
Variant 3 DifficultyLevel 640
Question
108 − 1 6 2 + 1 2 2 8 108 - \dfrac{\sqrt{16^2 + 12^2}}{8} 1 0 8 − 8 1 6 2 + 1 2 2 = ?
Calculate the exact value of ? .
Worked Solution
1 6 2 + 1 2 2 = 400 16^2 + 12^2 = 400 1 6 2 + 1 2 2 = 4 0 0
400 = 20 \sqrt{400} = 20 4 0 0 = 2 0 (by trial and error)
108 − 1 6 2 + 1 2 2 8 108 - \dfrac{\sqrt{16^2 + 12^2}}{8} 1 0 8 − 8 1 6 2 + 1 2 2
= 108 − 20 8 - \dfrac{20}{8} − 8 2 0
= 105.5
Question Type Answer Box
Variables Variable name Variable value question $108 - \dfrac{\sqrt{16^2 + 12^2}}{8}$ = ?
Calculate the exact value of ? .
workedSolution $16^2 + 12^2 = 400$
$\sqrt{400} = 20$ (by trial and error)
|||
|-:|-|
|$108 - \dfrac{\sqrt{16^2 + 12^2}}{8}$|= 108 $- \dfrac{20}{8}$|
||= {{{correctAnswer0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 105.5
U2FsdGVkX1/W8qhhhNGGnZTXTU6CjZEOAlGxwYQavLZlqYKMoR/JevDM197M5l/DFq2eI9IWrnQ87plBth9yR5XZNcwh2HWV7e031nBB5pf4lGK7QDlqAiPXjwSgElYgPiXQ0XU4rkWJKI0WibjQ4QhJIRWDX9B6rNBiAcy3l+gbikqBe+m79kUSGJ4Gr4ViHc7zguf8OPUADCn1jxUYJmDe8oozvVQ/g25OIwBo/Oaio3vIB2J/RY+WXHHWIpkjRMKsc0ygxwJ/RdvufQoBFFTLTRVZ+YE3mt+apjIBbD3S+HIXCt5CNn+TPXfmHvg2MVmuIEbqTt/D7aJoQ7HcKqtLccawSe5E4TGC5JwxChD8rJV2WLuZwJ1vengjCe+VVuv0OqlCcfBEzVJmTKtkSxt0uv2zclbca7kfQkGPUbCuIOCizDf3Yzbu9oeWA6kksRSz21ER5LQGnnAAcoCQzKeO1qw09lCQdPmw5CEjBRsJnP/nuo2Y3W6z7Jma7A+6JiYxh89ugpxu7Kxs6rVTH21njfU/HSZj9zq8BOkQF/j44rH5jnyeeLZruIvHBBElyAKfdwBhdmTstjfaGhXTAmoPH10npOZAk002mAe328G3yfbTebTeEwPSi+DNEFmvA8oWp+4X3oJtgn9q9b6NhHyj8v202diw5xR7+ev+B8C8ay7EJg7ObuHFlGI8vrKVMwkj/7pwdpHRHVD3yC6d/+mYya4KmcTBf4PD91yIJK9Uh3clbf8DpKfmyz7TQp63tH1ySMzwYj7VULz6Um8GIKL0ZLc2pa3ARMNDu5EHWW0Wu32E93BylKijYX6O0oN3ySTy4GyuK5mMJWj7meLZeoq3D4R0TtEFd5bjagjRELowvuiFrj6A6UdIb30e0zEW7v5yCdXtIPEPZW4rcse9XYpy56y7WTYmNPRAoql/AeHecLoTpEMYgLgeLYLVrlKejXtBjSIOBf9Ccz2m04kdK6n3gJnctQm7ZaczUeX9fsUCW0Hu7kktoMj8cdgl0Ge5HUxcnxjSRKn5o09Q37Smh4xCE7cca/JlXA+7K3ERKZJuw2+bzp7TYG/x8WLint0Rd8HwlsfJs/8YBe/8dnKRiQeRFlig0LkLnjtThvLJZgZBITfuOVmjl1mX7TU6AEThncThVPfzkbedvC9uLvPbSy9mcgZOPZmS1UIynddc9oz7FX324gaQpcYDKwIu/MCxUMrfucuep6rcVJBOiYjuhQ1amFenNPZV8CEDS8fU4ZNHC/cKwjldThuf3FlIvKdUnmJq/OgcDh9nv2OMcfopgyEhJy6mSGQ6q4FHeSgLEvagcapEuiU3ygrPwC9rSRVvDMMWw6/2raeqzU98aYBCHQwIa/aNTOSq6BfQIRRusF3DLYWASuFXFHqg9mS7SFmz6GKyRv4PyQDLNxzBMNxMY5jNPVQDdLHOO3YuK6i85PdplkMnbtA8U8KeTLoFQipW3KPcvW76kqU9JBFYxPZtGxEq9GweEB+RnziBbcm+jYuVgWOf/20A0MunaHMbWyN94p8RwLrARh1oxBOpkelffSk//S/R4UkLnR4s94rk9p2bArzj1expLC0EfHkJBVWa8vlOiKlYlA2zeZW9nHk81PbSadSlibAIlFemY+UjSlVU7WXd5i2mKO4I4EAOJtrFadpSklR85xDwRaxIGc/qpydEADjuAl8PkSGWt4jR6CFuhMDMZimtmUvSNeguvchtlzbEMnh8ojQjjpEWaETdmIETrWaTmW+bN+dK1U6jClJo29t5mgYnShRJs7VC8NDyjWhqQBHtDR8N6WN2HGZY0ezWqBVlovyWXnHzy4AyZINmWkZaqqj+WUFU21Md4+YdvXGvFUg4kVXdOfe73xpo3YeJVygGpyNvpnWWXtqpO2IOQ7tPAGjwBOsJ9wJx7cLMQgR6lIQ+dQqG2E+/H3Q/F6Bf/ZCdo4kp3uHQW9T8WceFMjL5+6zS+8u8O1PLiU/zlhSqsUnkY1Z7bVsBZdzM1bwQPMgVYMyibJU0PoGm81VmzJ05abIdig+jtYR6cHRTZ7jQDQU849D4ohB/qBZh3jmff2+fzoOjaID3FJqz+5FWGkLW7It2lDcsPHFQfAEiQAUQkdqd+eg3TyBbLMizvnn3Jsj1KmGz+Ne0IpWqnstWEoLIg3UkGVtbNCamnvL4Txet0Hn5zWtqaDJ9XYXoSxacuk1rGTrJ0kGL8ECXC7jH85b7t9TK1rIu+v5PYO7otkHU0Ofaa1flY9F4L9z/QA43CQimsrGZ2KGrH7WB/5wNJEfQIjaf1FGv8LGa9i53R2kdQQwZH0aa8m1KRb+8ArqhwYjE4+lSsLzZWShLqGkh1t/6mpMLWEwYsQs0pz+kptW5dYtyaHTWOBtGasjjhomz5FOx/m49dp7698Kd8uV4o7TCWX1SbKJB1djKnKYq5FPDy041+drVXpXG4jeUkTSh1rc3LIipVI/QRdS2R0IFakM/pOMbo3UeuBBnEcwnGrylTxWVrTNGHjYuoDsi+Y+JiqnOHWQFqWc1bEe+u3jTTt0wgHSDjU/1rcAGf6Xx+9VMBDvFa7r/zPt2rhDZqOUpaohY6T/uXBtoIJEm/Isxy5xpQZjpeNYkvRD90wHyM8L5d/YzVSQufiYLCMWpuZpUiuKkbTEDi4G2x4J2zcUlZVQTujVGcRlNaH2bqAhEgiXH5SZrpIlEBvWH+GSNZ8ESMvDZk1H3Fn/IcZ0/LtGcix0GZYpaG7OElR3eZgle7cSqBRvnaj+KRjff0GvH43gcEbdq2deB6PjWNxle/EaYzeM01DA8rAgUhau3AhTghOH12i6GSxexrTVY1idvyazD5z0E9Kh3Fm702sb1bV0ckwMi+y7uh11cgfXD+UbOMJLlbNsxQac86vM4yv3IRmyo43r/6914QLDFRYroVGCDNbFOpa7syj216JE3gl1Jb1KGsaQ3lPbz3d0xXP/TriIEqFK03+sc3hIWlvvRY5KsNmA1R6o7EFfIKxVOBEvtqOw/hbSLQS/gH5YcSYbLmrpJixqXCq+64fP9F+3vYrfv/HoHkmoP2BlsatMmWzGkg4vOYNMi+6fUm6T76pOMgRI84lj01SXyfCzN9Ia/IGJlETWwCkeFeCx+hzFsrHtKOl0hx6VOc0YXcbcc+aijxyRblJSJfSE5UXFOjnTT+4B2Iq8fRBIMdLIr94P0785khxjDgnCb+L5GwMs80OGAKRo+1Eks1QZt2GVsrjv+QwscObgKNxOgHyE8nwS2iys+ui7DqIq/UgzNy41tHuS3M7ZEQv9YETY/1gVoYau0hkF1/iFGI9iW+ocYJWDzNJ8XhFPdB9+a0/Gg6G1WQd+zIBvX7CnkPMrAmA4TE7pydZyi5vAdxwlPdxeUXeRhZnbVFuZiJv9NS76PAs2PRsKx/4rwIDTwHtHSRttQtkEQK2l5XmWo4JutGhFQdA7HQgC4765sjO4p5SpTb57WyxJP1IvmLaw4drIWS0EzebTyHdgK39hgb9OZ72qoP+q8KMHRg8Emu9Dj6ntIKgk/YBLar8YssWeKlrgLVaLw4/PnzoLDzn2vgvXhOevyIq7nYWlSpGL+S79zrR4gtsBPMvitPe/vuJiUxrmKk7iQqpDfomKtJ1tqO8breDiRojpjv9BzNCubQqO6/6ZEF9Qsj8aCTFK2fdC+5OjC6UYbypB8PgfcvMEMygQdaIbvmfAShZa+4GjNwiIEennZyfo9iMBGDAw5DYTiTdCRK22M+5S6kbr/33IzLm/455q3jacsDZLgUZNBcaUBaSrlsLdZ8656jIIASWdPCJ68q372FH4wMhwpI5zvufIS+ci6ynSCgl/YLMFdNsf/F7u6HVfHP45eN1a1WSFJuYcb/iyQ4wfesduACwedMY3QC8gMH1q6a3+apqJOu1PqmjgFl/gepFUGOWc9911Xa003RmrAdC+AsWzqwE1kwTIX74GgP2XVxn8d2GRv/WTh4mbzmNnLamaVEWM8Mp4vmvK5TcfpQkSA5H5U4LGhAPHx5Vhl/4dFtKH6IymxoIfnDMyq9BlS8vi6Z1ANCyVXUnYHqqGCG7gq6C0nZhLOOefmVLlDiJN6LHZkM90Argkjd36JGDcLKT5LDydCL1Dv1uhCO/TscPK7RyN/g3QrHDLl8mAq3uTjcwC10aW9/vk1vNsGMwfHFKuVyqTR7qozNh47gW+UFw+mbcNFpRY4b3qMeasxaIy3kTFPwmfHjPnJHl/bhVfpmMYR1mOtcS1ZYx8crr5iIZXuKwl0/8C/gQRfHdkfOLPhByXu5kFw2vGDqGlW0cg/K5Q8d/0hTj8ZA05EfC3kIOGGHUKJsXbagGwI3ngiIyBGwpjEfRhEPMCPW4QOpl2lUD2jkO+bM/jG8vINFgblH74+jaNiucmjLODwmaR7AImanb/gqpfK/MOvKGMHOmWZAT0N/q5VQOZHLh2nmNeja0GBarHILUqi+EkGo8sYxl52I+SaLNgpcOgh8rVkCwbKGIbwGE83tLgGx2hacZR6KIYjpz56UEce3eYxfoTpitj79cdu8/SO6gaG3BB8ILjLzyN2PaJofPNGS4CsgiTKxHXdRHHdcY3pkC2+t8gr9R3KVV/Cxc8Dh4DRpy1s8+MWu5kcgbn3Mmcc9+Qu96OduE/u22q0/HRmrrQ4x0gjQnvQaM1GqDDwViTnd7aJv0AiwnhRGKXrfqC0+rw8obsWND56aSuOsp5q9m1/hw+3BCX+zGl4F7vL/1kZqyacnNFJ6K6SgOqyH7UKoiN8aLdVFKCjLl0GXLxQYS8iu1jkqfi6I0prNcynSQlA8Q1A9pxt6xTA64xRyfRRDJnHKav18gRLV8TqXLJtiYqlVb9Cju47QZ9BJK5EdJ0ufq3xx0JOlvwiD73GMM/NaMNfybBBdm2yWX6p3UgLgF4ZRkT/kmE57eC0Ng2nbaKKVcEhxapAIjrIAp1L5ovLtsU3VY6IzXh/3QLCNT2FSUkGu+Q6jkCqQa5jdoWI7UOkljIgXZPvN3B1BJb7NyuofM56P0kP0zukeeWk50SGhcpzgWxul3Xy7Siy/0M7oh5OIuPb9NHXqRhnArh95nssAx0TW/iJgk682UL+ViKnGySYW6D7nDq7WG+WaU6yTWpRQgpY47oHRTkG8e/bisBOzgWHf/eHbpue5plHScxzErVxW1VUfPXSn5rvCi1TP98wEwBdTVv9eXi6JLjG6IVyBC3Lf/KZ5dj9Tm31Yg367EJanXLdSBYG5dtFdqx5+smZeOh+BN1gze2fFMI/nRA1MpIyuJiG0BWnn6hyfBeHNa2Vg6+Vp26l60ZYu1R/vWkeVmQl10OmaKtleupRwIrjOrdGbi7hlaovcKDS2gSRaf28B9u0MNb+SZPHjq6l+jfWoba8Ah/vfIzfA8gb3p5KwkY0pcfzxIOm78wMpjdJUwT/dp8ahle2ksA1ya/1xFasNYbgdhLeE8YBEbGWLUNn8gPqvUkNcDF2w+4i7r7rxUY6lWHcLA0hNqPrTa5gtOqkCdgOdMmENIMKr6xKedXY7ZFw0EzxTYv9Lxxz7wDh8DE+gFCuMBTKnd+jYdjUCe/0Upy2ENPRgjoSjGsx09U4kgMf+qEoBF7arc1Q3L5x3vpEhDrJhazCJbmVrjNm+KerEnqzG6OAL5Zw4r6GSHz25CWVYaVHb1JY1uKpwK2NLOGClV/ZHtorTF11opyruzfQzrrCISV1JYHtBwj9yVItpM5Tm/r/NfBoDc63UBRVnLq2mGZX+mMPGzga53y5caTamfpNcepIAWPD4d+3odv3v1NoqaFeZnEhJIj9dF+mFzOKSCU61XkdWbCQhqJnHQF6VgiPMwtVU4Hdhde9xLXb1e5f/qhDzAaEF54cisymE7duyOXDPX0gnhJZ8YSADvHw7/m5ZjTHMnTDYm9JaptSZODSAFo5toiW866qrtr3l8BzlZPnz73nf6fliCUJq9UeUlGqp7zEPD9cf2m8Wnvifkk5v8AFpKBXdf9gN//b+beqkedzVCjF6EHRYkbyjGFKO9kE0JLNVfRgIiu/sgGRHeR7acWiAeg87UIEnHse166zt17V04eGgrEShp5E1cRSOSHqJyfCQuil5/1Ua9UlDuplWpGmkI9jpiQaJpKxDyAb95THoUTHPaFJt7L3liqCUbgcsgJqSd78A7J0HOXtulVMFQGz8GLAMZns6K6287C5QqL1Ll4HRZpHBBkWg563kixUCf4vNddjwjxaucksow59c3s/4mTOal5wUcDHzxDqAYOLqgd/7LIAi3XV4WNCZ2Kc7SGHXu6FH6RRenh0KScWp7VNAzm2c4rqglTvT7Wszf2PbW+ZLyflvkw4ksIiMD7gNV+3nk/fmdEFNtMnI5fFrHCluBLtnJb9OAcaJR18memoBumaltwDIGBbTq6w5rrIvX4rDTaCyncR8bnwXcZu2amIHA8co0dVbG4UxAzUBZfCeRMixYCkimY74nImrG+XqzMjjq2H8D9rsvqYWNBbZdIKgi/ZmCVqqvmgkZBPt0JouKdid22vHw6UgM99WamahWQA/Cmk70kbudY1lzLx9n1/NEqBeguoiWz4phmXbrmrgZ2PyQOMySHNCzKupf0LdD/EBDnDiRLI/ISIcrwxhqvdo/z1kICoWeU+FfY1+JEYA8bhmnAye1KWXQ2rFRiiGMbJwmzOA6V1jP/hPsYsQlp0yxTQMSdFoLgSfrJiDNFDNsnBvISfLlp4bUHnFm8GdntTIkB/UZEa8LFXuCHMG4LsSd+Jlx/oem8WtlHZ794Ra0TZ5/UJBR0iuMfLRSzC+rQLhT7+Dl8+kKYsGdt8mnpSfsNOaghdgc3IZbBxtOBxvIj8T2WSzA0O9KvPEja+MR8ilcDEi6jJ3GC4/0vJwMsRDVCH4GoADH3pMOTvqiEGaLpGY7Cgl4dHjyydez8eyLtdECnyPckbSG7zt1cUeGv+8YvrB7qzU4Pqvi6ABzCUkC3ZYoBKzjaEk6oecYEwzb3NXKI7IyKA9Tinzfvnt1W8Ir3lkt2K8thtJrjlQwGFlTvgdN4mZyreFa3m8a/ozLUfyoT/w59KVBZ4SINzk6wPYj4fWKXUF7clMhDqt4tf1kEe9MO5iMZmGCdsJ55Dxx6ZRRQ0Bgfv8lNodwrNFesvxV3Lzvl3zWp+kYIc9o9gHcOjerSDFlJJhUmtLv/wS2KSl4iSFsibgEpWVLhQ0cMCLzADHqzH/X+u+W7zpWeo5Ek+AAs8L50X2B11twvfO2LrYnOufqj6KoGnet6kQFxQDM+ymyIsFs9nAl3+rb4mygAAZnvvwv3NTfk9A8BTMB/iearoO+b4LI2cfQaRXzhnVQRAFc2P//BMeSV2/d7KumH10urVx0mIWSThj7epmvsDs6Q4d218Eadb6TVxojT9fE3LTtO7TH8BLJcdZfD7U1X40LfLzlDj/5uITrTxYiqMkdvzeE+W2LJ02S+0x/D0WFG7DgcioFVnSPkIaHDzNksfUEWPfMX2IadlLP57j9fe2eXDfOQjD/0sCD5I2dsRXq5n868Y1M09dRQYbXTlrZu2kzUNGhgHZdAbhVaVqm42buTOS4VFX5WFXPvjf04ZAoZVkoX0pF+CKWgh5hp1IKrZ8qD4Kvusak+bAMdojR1lv83OAq+7waRdsZhUh0Pq4jiiN0LZ3/KmVn+jt2WGzIW5GhZHc3y5uMxlzPBmkGR/fnqsjtg6EV5iom0V3o5UkCGQ4ybhai0IiNOVA8NB642FQoo7/zYjFq2PcphWJHYQ4kAdPdrTR9Q1EjmBAV5uYbXT24k1fpYIYrCAj5E1leFa0ssxaXd7APVDUdKmiAmxb8IE5zxZXo+LX791WR6Mp8vgEft9/4Hu3J9z8TwP74NrewY4MRp9ySmD8UkgifFPKpf84Lfhj8Y+BywoilHrylYLuWp8gH2LsA6Jnm6wfVG1lVVOtHl/6BMxLxT3V9dDM0fropmWb7zYFKmjJT4+SFKo5Hk4/kU3dhe5bkOARAtFB4QPjcPewSma9iuGEZaHZ3lavGX9R83MBD6CZhbOcLju3NqbjBgD5GWIkvbPg0cjUNrq4g2ONkD7vA4OWe9XcAdEyWaF4q8NmoWL9JC5fMviXQH+oT/TpPjJZpfqHNGFs12RXD+UBjbMmy/BjxBD+/MzBI6n8BxPMf+jrL5qxennGIBzJbux4Dyv/c13kFdO4FqUqpVwPyk8vq3w9X6k0fWJjFXk8TX1jDB1J8WyLU/Bwji6dN2sI/pI0DfsxVE4o47nZadeghulPaMO24lDuqT5ck7pXLW5pPCF0EHo276yQlIWOzZOY5frb7WOoMv464lUUH8s9f6/c0JoD/npSN8CiU/0qG6N5JOimc4r5TqVWRz0U9ms2BaZNV/0ZcW+PIQDLjKYEHbubU86Hsy2Uv8vAFXWEGd5g+YDqtS4mThvo5LJuanqTs1hgLvcoCPVR3BjJXUdsQKtjfyzMa0r2wB5G/37n0M5XHykJSJKsx22MhaVqbaJ2bes8J0mRGy81GVD9daoIKXUgmljbD77gpct8GXfuA68CcC3d4nnLJ/K2g27bO9SNYmkQ9fvFSjx0xXgQoPHnvmi9adknFQWAjkQ6Pi0j2JD+/fm8NQfhhMYwXIRkniRTelvk+xk5mwjZ03AzSFYfrQpMDo/iUzmiH+r7orb1fChXqfVbqbRoBsjZB5VSQVs0fCbDdSDNjPbrXoBFmepUPnhzQNdoKQD3Yzz1QeGGZq2GCl33rPZTJB9U9NDuciKFRvCor3D9JDt3Ga8YsPpfA1+qu0O1PRZQy2GNEcTxn8RdbVDRTGulHAF8r5gidnixvuprdUHwhI9zw/mq33HtzSIcX713Lr4155xSfbcdbwu989wJPd57VC8W2SiE9cGF8RkDouHCFuD6G5UVhhRute9CkKniqaCHt/2D8p5KR7cQ74kPnM8o9WOlr5yqTcFvEq0gIcY/r99LahViqQKuALPbU1kMmnB5N6xzV618YJ1pm/qIeKWaMlLCm7/s+Cw7afEaOAzhNmhmV5jRGf8NWxIsheNQyJMc8L3PGsrD8y8l2tvYTfH7JZMikVltHszRMtg0ZPXJY5oVe+Kqsrgclpcs9BMeq9m74nXXhMWn/e/MYW5Xz5DKqe9HGKWnOGE+jwjBauJ/7n9kMWV+Jqw+pMfHYmJqnVtTF/5BBzKyhFkr1tXhJSazwJKiwhJztwDMsH0D//bB4VOAg05eTh8Ndjbl54zEoQ6LsalcD61mbRX9EzIAYRDPgGA61RR4uPACIDBF+5E61u059yrII07ZL2uo+2k0QwwObiR03kP+YvqeXPVBEBRjWQVhzf+gu7uUcPLceKMHc50btdHX36Owf5h0UVnVl3sEAOO0crd93FADn2JjPomWNfRrqxDc+yxjZSF2gIuDAw/wuinmEiTiUkvRuCj3xLtMBcqYtN9/tLcS3IoLEpKll8SgaeFuPMQmidpa0GLUm6Mop6KhuDCLU1Xji7FirqayPD5wD/ojRnvmSsMtnJiH3uqKZZil9/6uCVKRe82RRHc1E4JBjC+ZraYoyYNagTr7jfuaFSyzsNgd1aQWlmPNY3zkfSneidw9gpQbTLQnr8ErRchIW4jA+DNhgBVRJNc9d1CBWH6HMyIIp4NxjEXxXq3n+UcX1T+KtrRJVwksYRwkL0qb6IZbqUnk5uriGnnbKFg70SEEhUQpmKo9WvsR6yQOonvrMzkwVfe+hCw7ibQb17k9mE6sQ2chRS0IWzdDNGDjgcrfcWM/61SUugSg4yHZBLbui3L7cZQ9FKxFG2m54u003HXAzqi3agvSPdXxi31bavWRg6p/ucA9wx1utpZ5KdPERiBiIelzFFUZPBnSgCDJsv1EkJswj6RCRGF1WBNDVwsbfIW6qyRAHJDH/6j9e/Umm+GFc76LwXjb4d7NlNYZN0SepGuQTz8I/UYXwErrI2aIIVBL56bEju5nqTsSNLxvFNUiO+lfftQnwbvIDa+pyzFoHD+RowfHTEo7s2wye9DUYqB5RShzoxUJ8lPY8Dbjp0RXhwRinPoWpIGM0tF8A91qEIzGd/qFsDzvlhaP5njVIIpzzYeY7kBbtvdDYEA52DhqLUqc4s42QvuXvLwHTA6Uyc2UxZm0hXfG5Ni46m1ofoTMt/zTrQk/jzV6Bu5n6FMmue5fvvtmDGexKcpPxJeQrfZtzRq700BPmQqMCiVekAQ2WrJoCRDwd4GzopGw/bA/nmu/VlQRRTSeLSe0EjPpjT16VWLffHts4yIKTZhV8y0/0nnmUJdSRw7z5iNLZJlwS0hUFc4NWvf/UV5jQSDijTqvOOq/K+pptsWC+4ph8C+OHOZhBzRjFmT0HCdhd4ov8Y82Vz5UHbcxM4CU7AkOAIidAgsSr5ZgiOZA2h7eMdA5YeUdffzQsiINgm90dKSClC0l94+sFhVUt5hNb2fgJ6wKK+HSnZRXFMXbgAywSTWcSaXlQHyCdNIfKLAOgN/8im501JJ8wKwvnKhiEDO7S/2wk4SUYfB5m94NIH/vFUsvnLjflkZKfXAGvUMp9mpeHsousZI4CQr6TBKmo/44qP5xVsPpi1LHrbONONzjvExtEj5Vlz2o3E/hWubgO+HDmHWIyp+sFkeyAvP8eRQoaL8UD90plWf2HXt+g7xMT6qTDM1Aomz1qgSuB2Ahs54rH+9OZKpIWViDzxx/Iys1UxwhTztQr7xVkX+bba4vnBNAKXhhn4f8R3MOvczzKzwRql5kTCzYHOv4FRmhrfOEDoU7CB+VYGYO6S8+cemuUoJk1+q2vQPWtayV8VppHGyRzpfU5zNuK+Uv30aOCkcoG/ehY9vD2D0aIKBoIjNao4CiGnIlKRql/DvQa6rME3wZI16+hTr1FDsiQ9wQWZ8h6XPuWnXxpdRmZXiniW+gxwtx45EkXXSN++nww3AVvJZucSAPdivmDrCyLYwTjhC/BxVH/57HPbC38bnuxeJ9e0ig1tBnm2CWxodaZJDHJYzP+yBybV/Um6LKw2+C9deZUerCm4FtX0NB/Msh4Ek5eLBZPiS8RrZEcr1e/sDHzDXzDQZYE0yzQZK/vAZ+v5x/Cq+Ng2PdllP4gwXW5Ps58Bme5lfe5vWsulxzqO4VvxK6MJzSHTQxHkElKBXTTU78BEDvjSdy+SaikcBcQTi1aYaAr4oq8so0e63vQEAfkskn6iAJsP7JAqgZf5HJyj0HdFrvrD+bKNJw+Pa9NB3ma6TsnqS8TkS5udPKV4HOffLIeTXbI1O3vbTkwH74yK7+nj2oAjhhdnvV8fFl6FCEnStJd12KPuWOp85PMYNzDR5zXQhYD5MftUuA966G4J3LqkUCdjU2pIUDps6MA5zPw8fqD3qE7crTL8ZxswaEGVprgZZ8yVNvVCH6RTPbQSdBT1QxKOcMX+Lt7D2I335YgLXyoNjo4w2+wrdPiXRCz2r8D5ySgXGqeyCYZxRQchkfmENgDL10eIeonaWbT3bB4xcHcb7YyhO3LLd9pL4+T5d6Id5mLLk4AhJ9gR4ie4U85ZYKGgkuAnxju4AXPVn9Zi293f9cOe1tigSfCxCFESH58+eY5W93NYBS9E8wsWhv+DJnO+vgsubuQnMyHhqL2MMOKFYiEz+AtgEf7kp5WG6Bl3fQbbRvNiezQjPlOgI1t3zW9yAzM8F7GDaCNj+nu5d/O6EH6xQv50BSvAkPUuwEE9XOuhxdGhB7aHmokzSGTBKGEv3C0YUY8rfJA2nrRg4fyMdkwTWUp562baiINtSUnoTs7E8OsqhFMcCJDMhVUwjc8Tfg3lg3Nx6xJk8ensUcQTAS1eVnkJi1WwOaAc5V1pY2IWs7T66lDWvfOELZR6Mg9mG/gGPAR3eRF0pItKbbI/tSre59cc/+nb/RZx6lPcCtvQe77KX6zV+KQtwsYHDwHrU31YQ4GXn3ATx6+GVeIzSh4BQ1qv1LFNyem41GSuaGcLxV2PqDlLIbYjxnYi5SKyFqtCl0Eslh4MAPqGCfZTUXAR5DTfe/gpyf4R1/wnKM+pNNdHzj9M0TJeIRVhajaxvk8fgPtRMABJgggWDtPV61ptjoMb0PqvsjQEcUTJjc41gmpj9Cd40FuI9RbwMtIYc3esIP1lFbDqVrDa+WB7+K216a5amvthj3YEM6zF5T/Kwipxhwgmshsgfoknn1wMCpq5khNBSx6MIeUdzEJnD7HM8XZ0eii+AN1fBHOKnLdOTsd2Xx1+MFGx2BRT1gGPA/fAJnkq04bkBx+r+H19nJ+6T+dKqROs5jN+/ZldXW93/CfS/lTQT0ZiANnRXZNNgXXpMdfCsu6XLuAzU9HUGTyG1RVVtaH4K5RoqTFzV0J/Yy+neHF9zsTLtT+r4OMlE1/4/bIEbWDjM8q5j1ThSMRoTMVMKnTav/Z7aXYK/I2uduWNhqtMnfk+tyIdAFQWPJdRdWTGvX5AQwAnDNyqzvhololMQiq823d7ocJTqHVqOhhfMIteP9trjC3ivPVz4ZdndYKeITJvKRxE4IQSm6qcMTf+lFGwzQB/yfRGgiRiRRTeycIo8uscUDqGby/wK6H+MVRfJybH6wsq6ODxKSvDTjzOTgyXRezFLc95kNdnxIRzu3GgsiGB3KJpavsguDWzCzvo8RdeNqIy/TJ17oH9enDZ3LjRfwLxf7xhe6jow2mdfrhu8CjcnJY9HhJoMo+v96mSjCpPgNuHHaW716zqE4huJfj12wEURBDhfxoRxuJVEHz482V7xPFgaYBmrL8gWAPMSapyHfFnit/v8DAlafnEXRLU/rm71A+dL+y8h+ziYQjEgAqDxF6eY8i+lckZo7lLf6UtZCIYpl/onOxI+wvga7rnZSPlke8+hYhbJZ+pM8trgP2LA9Itjxa+oEqm51XcogHpIoWHwypk42Q83T2AsX6wgayoFtq2baN5ieYHsvC1miL6rSq2N9192GpSXZpvZMYQlHFpAUg1VzAJwbmwg2hB0Gbo6Xeceg8Y1ZZLBQoii10NN4gUWCQgcB5T8RLnHSMkNxuRh83GcR39gpd3gr+Iq205GVr8/CQQfmIPKauHJ/28apR5TnfRq5qxi7qBRzAlLQhkY1QgcSwQ7AfqaJ/uciZjnkSkzuMPuJoNrQIAnnhkSMp6crRQAxBv1K+9We/mOt+nxS44YbY2skkKu21rM8JPwi58hlHHg/XiXPJqQP1Px0DbTOUBUPzUAB7z4rqyEuzD2yV6HDvyDHm7CgKByEF1gGffS1EpVrqZvPAuKRQr/m8cTBmPLN8SN0oiaX1AH/2fhekXMSEOnOo+KWo7QT4XRLLurkZDwdID4KTxc2z2mEbQA2IjU+MdwEjt3vYwSlv47rmcWPXXUgX9OU7njrYqaSuzOQYdp8bSfCrP2rpg2Qw6vhU+jvQmfEgeCr4Dk8V1/KAIeBqnuwxyG2P5sthbJupwoQ+YGPlsXCebLppRluHflh4GvLc1TRZrIDvSujTeTy4OmIZHibwszNNHRZKLRXiqXSW7Io7F3HOIpP1IOMMRVC89JSLg+uxukQqq4GmVEWd+BfnW+bj6xNTc9DBtwf319L+UVZVvrHzaC4SzHrMEUAv8Fyykdqa+MqvN0WwLfJ//JAhLbVBcMAmF/eZncHcYg2t+yBs9Mg/CWrPhcA6uanMwuOsB/BjOBAE4/imf94iiPhpYwSK3UbLj/OGWrcyswTWXn9BpfE9iRLvsejUr6ivEx0xzsxHawNdLl8h5/q4kq5wfmimXV0u1mmTwFgMHI3n3I7BtU0JhYT/aU0T5+T82MkxhHkWVmFVXc7ptgAGVG47KVcBpxifJgjGkCvhQUWAaePrEBS8q/mBiy/z80YHdKh4VS2UTB3atFTTeB1xbFg8l4KI20L4icfZY+hJkLLHNEfTas5n9+tZqbR4tNrxEfus81JMGA6yeah1bY3hYLr1uNM3Dl4RMMwh+jPy0VMrjA7FtoagE47KgCVKedof7DlryMIqQOIJbEACKOpBBfq/ai7YzEXQoWhiL+k+uOp3yxUE65ftWmMSPVErOSwflmNKpJU3BfPGFFpSPcIvzLGrlUE9ZmxJ68PPimLZwE6hB5zm/j0kkbKKbyv4kOsGaXd07iqSKiwlA8ZKLUUzN8vL8k26Xtcg9Nc1G/okTvGMRtVwWi+x88e3w5MJmL/+W9HJsbMlWQjrquX0krVyLc4/C5GvnoLD5GiMuzlmzm7me2cz1mvvzhW76D5iuIMtbkxi75h+TGe61eniQIGMZEdCiqP3R6/1tbryg3HFbL/SR+bBpQJ+I87YLHr8U/FeEgRVPftn2CQlnKnTUpWqBDpzx3GxYLtAcv+gwJAvmqZRfG3bRATYpvp40LzYx4SK/SKmvVHo4+ErwVNXo7EOn5F00rIz5c9TiUhQa5YqJ2wZfVlg/rFsuL16uWJ7mJhkatqHnzAfCMTmOJmJUqVOOQsLNcXAKntZMPf7AQxO8EssU8opNqZjboo/RNvsIAXSZX2cBL527N1sZNpt4XUw8PRHBE6GF4UtsDZdvtZovq5g/QoFABvUg8RYrxKdjruAD/sL/u3Egn2P6dLtK0HxK+ofYmwxG3hwOM80KcAAQ0ZNhPq4bAJC2gR/v4/WYWkbLK7EZbGq39lANNVtJlL/VOXAHYC3PQaPJ4owxhhYGnJMz+ycbOqsWIGjb6NK79x6i0Wg6IGTYTP1Z6KfpR9DwiTTSvQpXd3KcFAO7ovKTgdoqQu9Ehc7dPIoibxuO4D9hfXbUnkObV9KXvIF/XgqFUsyuefUIuawCpzUIaHcb+PGfpFEEPeMDJNG7TqtMBuabj2siP+M6D976hQn22sgYSqrrQQCNRdkIpueRfMA53tR6Gi47Rxclq//GwNtNGzXp76C9YTEeApOeZHjzXl9O8Tzll3kH3TBSqGTUvsDwrfND7Ddj/OcdxzAZvd98u3Km6xL++bOm7si8o1Il0Y/hQSKcj1G8nkqjaZuGqIJHxFvz9N1JC9sBJK66Ma2a0YWUu3PtU0FdR1GmcwS1Um5CTivwpurtXI2knW6HKKBNWo5I+4wj+2UqTV0dxRgHHwEjTktko57bbcnnxadSIdDlEJminXD8jT+dT2xxkTRc017hqBsGg/AR1GMKlZuk3PvtrpzLxlotoT2CV7XNtzovFAUCuaZUsKong38rRRkqjOHjKqLzE39yUh4XDFJTvfdSl+NbzGvcHhvjKjC5R33XCq0nefJN0EcFVULY3Ff8XT4ZpfnZY7xFGaY73KkRFEX0/QcRlUymwyhDXQjksE0OCmpH4DxvWKRuYkfBbfj7Q7mXXt1D3i4UOtFmYSsfBqBJf+qB01A19NUp8SZmhGJTrb0W//u6nMnWF8R+J5KBBsRXnLR+F3bL1xS/IUjPdxZzsG2A12MuLM4SX/iaaeqFg7LD9T42cTyiTYYjBA1AGMH4pJQ9Q/QBg2xTrCDAHdmybNiRHSmzVlP82v/Jy1s5x3IL+7SpVN+Lifo+53SF0/ckR7NVQZv/V52h0TabgyTUBA1ey0z8u9YUSRgvvqdWuLyWh2Vi0Svr+t50mhdKhtTg2WNrNAx5WdCOpkZHX5KuG3jx3LDlLUbh5e8biheDTUO/V/C7JS0DWsZmRCPvUTcysaTcAbvVET8hkI2V5Tw1OTk7qPm2PaQqGYTqP5ODfIwDgfScWbyzxThNL76k5V5Ov1yVco1pNmMJswAEakz1407in3YsKXJqbpEr14GHUp8tCTDBQhj7kG4I69ftg2Zkca5Fx/hHYZcTcDq8LpdBJJwP39p1xIwpuACObbfHfCilhYgSVYpW/706tJLuxM9SmY/KHjx8OT4bjo3Ajyp+GGQi8unzwfckLKy0lQvW9KhCkzM010TOZMr7mj5GkIKKqW7ulUDia/RtnPXnbOS1jHI/Xj0nrcmAOlXKn/YBDhsH/z1xDIbVeAyZkGbdo1a5R/KgtJOzpTeRQwN79urFn7/Au4+uF8gn6BCmc6qslgrDQrzSkxxo+DDIcfbDlwDH2D71ZKl3KwokujyyahrMxMHCzz/6xehGO5szet/kGNPsCX8DUVfe4MwNrznb0Nd9AYGtL52BhYVQjN7uvu4UfMYV3As7RV0qRzUZaG3iT3P4gi6kEd26+E4muh6vMKtUV/R9nOcsHTsUV+A5ApXffwowh8DpKs0kNP79IIkDTORZHzlKy+94e6PD2wmjzgu///w7lPJ3Kuc5PQoZsrgB9I6hEJd5u0x7AHQnFSEdWi/IPMvY/HwU+d7QV0jekEWqzz6wUKlPJNti9ggJkvhcM37DVJXDZn4a/CAWkChroyQUCvFtbdv8sSjMmsPu2rfVUO0HD+VN4b3D0mEoq38e9WhRfk1FeqCCnPr2NwCiNtt2ns/8rVjuj5HGKQ1FuOBYhEKewrN4nIzkE9dHEszT+L+B8k55dNnPPRZYcgaI9yzbc3jHf2W/XVNbvlrtcAuLXhz41YFmGS9pJ7eskc0vd9m58ylz9ioCkBbfdG47mjE6JUjrJNa69WF6Wdofk2RnFVliugon1ZQKI1wKzvZaAz15cSKCL4c0/inktPiGTbsVpTjrUV0HHoET8KL5W/f93RM34D22XYNZiq1BQuBYhlivPWvh6NwLlEbNiHm77EbQlnAgR4roztMZkGGe1VNSBVXztG8kabiFequUV+4jvM1DFdxcXay4noSUzwRc8MO1XR0OYik7h0omkHxZ0X/UMJ7z/mlahsuRMQ93Wd2poXx/hbY5WEQ11Ea+VDAU8LiE4ecZQZVLo/iPWBfW4EtiQ+FIR9BHinS80m+ksCrIX5unTeBdbfTmqiCZRIIVTBfKHD/Urc4ClZO9MU1UeSqSpbzZkO93CQjB0niq6OvlJIZL+eGWqNl9VguvEbnLS2lOgbnGYeHwPDAiXShKVJDjpY/bTh69hlqtfUFeEO54Ew8pVjjZKnqujP+1RVCJ0xlt5cmHV/uINw/pgM8ONa3+d/BrmI12DAKzvKKp6abrMEUA8q92F3dh7ccovLhERj84qatpNZQmr0u7xzVjoyGWV171FoVvS7llkgIzJCdyiqrWDgzWqyW3llAEm3Ju1SJFz9SZPGhnrvKjeg7tGrmCEd6vECYdPQ3sRHSPTnbbqkn9Dt35fUgbzoB5MA7MEEBmJvsCFJRayEOJBLdTRpnkqmHJvpUBHbfm2WTqTrLDwEgukgrFuoDdDXUmxiJgspAVN/dHTTGbgGECGm/cKUV2PJoHAWpv1BN4ehPm3AFZ79WSoiiVdaSPKSBYKAmB0nA3/mGZ9UGlRouxT7f6n4KPdnkOGK5pVDYqwhXQ1CiVKFeLtAcf4QAIryj0vvEa8p9zTIWfPDplb4/Qopxp6ggY4BOk/2AIcy03rtoKoFKrXdZjaN/PICts2Hko3aO83kTuDmdsZcUxtmp5cAWQfEukyIIJKbd56Kr9JnpkIhBzBbFcwoKJI/1xu5k44i5+chvROA2S6rdiSnHh6XzyHl+NkvLvGM6nsIAyCahVjnBqTreGnekPYX1QSJ7G/GB6ZbowBo79BTo41Tx8B/Pv+hce2PbQC4ol8AvEf8svBawb00V/dxFAoc+gKJBAmwWewd/6onVe8DRvRnZ2nmU+7lPPh00Cbv8I/b97N45f/2YKA5t4WVUgGmhyu9WzKwQ1cBwyIrkd5qAj8X2n5+1PbQJdoSwO4uii7m7ds3AggNwTrVItIeUDLnROM+0a2bzOubpIMoKLB/D2whhZPpXZEeR4kgG6N2pHmePUJQmPKHztpjgljuMpRYGX6PLw1ZGaeAfyTqWPAdx8siOQluGZRTaTRkXdIpRIEHiGFlOFiwyQ8hHF6zT3FdvqLdimwGXMA4qQRZJ6aRKC00BCJ1o7ClTPIojUZJniG8nP1zzLGCnpuIjgVMuRIflv1/Sk3rxZU3g5TONuw+Aib8tQlPU9r+dlsBviZBOQWfeZbw2iLfUevSMHcrLcPEN/IYJe6EhsJEQQVtsYYe1EcorS1aGyr8t/XXu8wbTRWexdOdaYAV28slHAVODudqmul8/K6Ecou37xWtz0iFtX7be4zujoHDtsvPXogWWX3jaObl5epXjQg7boJidkri1NHbR8BgvoqirmqaYemBIsZo3Fwmt//RGq5oBSIFmVNOzASKzqt12gX2qNGbpNAskv2MS9lRzSAaRCQ2BT2ZpxLQnvXm6+r3dwVmqis3dFR+fQQug9DmF3SsjwJhJyJZzdnBc484Kwb7/OU5njUpE71Rykufr552VkPiy62PElOuZxnt3j7YzG4/c7gUXUto4qj4LyERTAd8mzZc8XcwoqdTc/2mWSaFp0jB6Pc/+cuMtK/y9zFXSV5I80basnvLCpqo9qatdW6pQLRmatPm2lmSJYoPFo2pf63d1y7vnI3OVqNdb8nDFtNb8iRvUmbJgNY9waCvEHf0FPNRvuAaHJaRpQi+u79sorjYeDMUMSFfgNyiDxpz20kY0SD0unQvEWWBwFcmLuLGzhONQhYGsxEofqgC9//Zanm7eVzEE03FRQNSE3eIH8Yo8+C80PmIfoyZrRnLCMIJlufx7FWzVbC6ZGJ5FuppUHlvg81fb+KBeWlSvG1kThuvESlszF4+VfeLkNvI+lEgsECmOnbhwwf6C3UblRVXqzcuHKSRZbtbdI/VQNVULQ9DymbvrFq4XDoXtLVLPT6CbgBTYzVx4Wh8Dqk61KnTFXEvKP24Oa/jy3utn0ssITHTUj9V6Ce5tnWpP6LyiVDCAPIBc2anbtHEq/1zN/QfsSbWwi4TEuzn63/U+AoUOEEsWcYl3ohTusOFOCfsv54zA1L4sPf4Hh1eWGIcVNDq2poDwZW2GEJodVWOAYRas0oaMhBQqrV5eaG5ghob58kPN5TvefCSpN7yU/qiMHIvq92W8L9HTZoS0EIgOr13YhdBtSqDksAaEJALuJF7Aofs4qKky8aTwYM1k0TtPL9NZEB1dpzX4w33p6EvR10PbeDQxgQD6lbqSwhzE+f6Gh/QeTw8SalR72HzoJ3i39Bkb6WjJD+6W5gnnScExyFaqeh/ngJ2si3CQn98tr4CefekKU/DKw+QDDhnb8mmXzOfUPWe5AW+8FzLJ6wJF5UCVAr7DKWj+Ncc4M1ZzRaqTZ79ACMVIpql5fYaCzlLweqpLITdlHwT5/Uf1l609KTToR5QdZOmnWfCjcKOjYRDggccC3YFrj0SkDzFHmK3G2YmtT/v1v+OdH8y3EQW3HP5ErM83byAwo2IjXnPnQ/pBXS5/nY2YRijUwIbjbDT4vPoVs+ccASADhmhSKpY7PKEBuLAQUMEqealDj8r6BSjVxJZJmFTimxh4YrlSEDCgMpNFdKjShWY5izKgTHWzATrOsevpTV0nMn/hn6tnbFqtHSIubCj+mGoRlw4LzaHUHaip2gTl8tXRRP4Yp9Vw8JAEy5WUzcrFnZVj6FQF03LmdoCg+DdCnHHX4tRTd9xz2vceFmQ1mI0LrMseOzass8S3ZX5TBUZfY53JI741cTgwPbo0Fx4nhldUUZL6PQN6Th1ReMl2qeyUDxfaPDERhDLt5cxkiZaDXaC26qvf5FTxRztAsb20Bi9bzWn55v9TIJ+y7XDWDT8CXNcyc1BuLboCfn89EkTMWtTVM6E8n0uBodrjG0851DxSKrgsljNFd8y3YCVppvKql8dJIwWMrgjOO3GFrgDvStOcPTCi8SOE+heHgQtX5vAgSAc0Ur+pNqE7Stb+RCO/MLpHBR/NApn3OQmxvPF7yaPBFsnbWapMa1x2/+YGV1yJ2BkAjqJPHSQH/VMTKcNa4O5h8+1ErIdmY97fY5r9aPQ1JA/z46fcmAQ0uP0pgrx9vOA4+IrMnfD1mRPsk0nuzkB2HGFkt49ZI4ryvPZu+lVmTSunWFOunMuk+mjQdsIXJgW0UZDvsbm2Z/B0TFjsoZPi72wEiuZhQwTIy8ZhZjI3/L8xSH55cw64sMeb5LFJiS7cqr53M1JrytoGi3Ek2Tx7n6Jr2dxm/7UY50hlFHw62yLzYAepVmE/yxlZBr8oWPzJk3D5ERGWnz4VpXo//xH03uQy1XdMHAP5E2B6mg0kOkoma5WTkJn9nJhaYvaGdcq6ulFz4sRZKUUqJeFJgn
Variant 4 DifficultyLevel 638
Question
47 − 1 0 2 + 2 4 2 4 47 - \dfrac{\sqrt{10^2 + 24^2}}{4} 4 7 − 4 1 0 2 + 2 4 2 = ?
Calculate the exact value of ? .
Worked Solution
1 0 2 + 2 4 2 = 676 10^2 + 24^2 = 676 1 0 2 + 2 4 2 = 6 7 6
676 = 26 \sqrt{676} = 26 6 7 6 = 2 6 (by trial and error)
47 − 1 0 2 + 2 4 2 4 47 - \dfrac{\sqrt{10^2 + 24^2}}{4} 4 7 − 4 1 0 2 + 2 4 2
= 47 − 26 4 - \dfrac{26}{4} − 4 2 6
= 40.5
Question Type Answer Box
Variables Variable name Variable value question $47 - \dfrac{\sqrt{10^2 + 24^2}}{4}$ = ?
Calculate the exact value of ? .
workedSolution $10^2 + 24^2 = 676$
$\sqrt{676} = 26$ (by trial and error)
|||
|-:|-|
|$47 - \dfrac{\sqrt{10^2 + 24^2}}{4}$|= 47 $- \dfrac{26}{4}$|
||= {{{correctAnswer0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 40.5
U2FsdGVkX19mw3DtY4COvUkI63ss552OONoZiQEj+exmUrJWkN631bv/uRNif20NaeS3JDAL871Wk3zk+ASO0hwmrXLphEGI8dPB8vYxwiennefRrkr2Pt/7WjbjmiJURxDPLuIfjYHlJDcxhcM6zJ5bBW8NklJoCiGnnTN2uUTgTs34Cl/nkp2XCLF4mK1VPHLNRd7AHi/4E/UTlK2H28OEjY7CUhkSxsFMaqjvGPERSUeKIv/xMFY1GpvK01LyPVVzixrXBOMLlubZHwcIh49sSyc4l9/Bo/QyQPhH0p+3AVzPTxkEPr6W9BUJAtlRQ+8aPr+DzfD3FvRPI1WWFkJMHhcB8KQ3EBvLsOwX/iObHVSEvZwavxBIFFq41sJkBlCixwnG5gq/MnR4GbWqCUrLIeveQQQngJwobd7ue1hagYig5w1S7V+Cf1M+JBBIFKt+TkMJYTkkIG8yMegLSeEdj6xy32agcWTOEtxy3SykSycO9l9GZtJ2Lua8YGkYMs5FV1CSHhvk9HK/IHz47hZiFbM02myOfaZ/5KzB+77Ioif+Qh8E7RCazDGHVNd4c0BVCs/SZObSfyZcm5v464epdl9zrVKoUUOKPob0BG4TZCWhk6eucw7an1b/Sm9FSakEwdErMKChn9vood9NduJqNY0UqbnYeFOff/eV/RdZEmwrfRYameF/zXrmouKtrpyj7Fb/XRYaFFbRO1pTZ7Fq4wqJ2Bj8A+sD592BAXsjGfuJaVfmio8ieUb4y/6LMTvzfE9lk+RKrmC09XHJ9oSrGeSVvHC7C3FXWJvbsOBRXFT4N01vKHgJCMXgz+RzgaeFTILFu4AWilZ5nAmwN85lnRQEsXI9NEra5iAN/MjgLENE7kku9pTW/jyy4rqAoyJ+/ZVkv+y1DgjQLXshwQN9rQ5rEs4MFVXJ0PuHWyb+KmKBGaY9gVcNzSKqvCypOvZ0LcSsi/p867+g6Pz6HV8CuBuPhgXlJzEqXgF/vL7qai5RbOG++2PVnXpDa92R+WPXoSSPKMJEkwr0PM+K3SqnWhQkcRvSf1jT09tMZ/wIJRcm7hogz8w2lir41LzgdUNX8BWR675MQEBIUcYi9MQZlQygDGAs6FJ4Fua6Bnz1op3c0JPj6m0P0r1Em23p5GDaNuvuxYlurzKLxm0GdHPphcfjGPzDU5WHoDbYVWIPwzFjMsmv4RY5YC7KV3srAGVCVFe12WIoUtCODqTyqpr/k07g8nyutj8F/Z9vwMAUapzLNLEkkCVb2eg0m0Z9E143ENyy48NpYCsVVsqDP/W3FBd0ToE2ikZKuqzsdbyzAv+mYdnIes0+OQyTAXwR4xOkfeWIWDodYPpXP8hFhUMRwRbICyNXXluORlr/uXp+7oGFlFcdBB88jX/+f0F/aq7sSAI9y0F9Ys7Mss7tbt1lH87fsANjBHxSi8qXmtBQcjI2RohIiDHteIi07W62SVWHi5BpkXrUgosxXk3+qodWTGAuoudjJBBEokDfKgs5sNtaJE9bkoKfynr7UkeqJhUjSqYHCzczkmtnV7Jk0xFL5BQ7+AK0NLQp2SRY090hQ3a6o9osGb7iGukgCiWlJksmseQnvXe6svSPZSc/7breotMDfR4AnwGXoBiOHJEFWhVhSsrjxsLl08NpCevpTgtzUvo9Xhe9uNcv1khvMF9rBKx/mA8Kgkxw+CKhULUvmKLafit81xk1Ka1pFxh4482Quc35WDwKVqYAul0+xVHI6ekD8YBPGP+9Rcq/tz463V7M+vmwPmXStjYsufSoVGZu/ZEBNrBC0A2T3w8m+lBbAIrPuxQmMy604FPYTJpmG1S9i9cc0eM7+wiMBystzoKLQlsfzZhrAnfMeY8oS4AhrEnHjFx+SjKLKCAlXIYK9MxA92cxNVsdx7PYhPOL1RIh2eXzQkPMbndNo5nOg3vnqMTy4MTt/7RYoIZbXWfQuQhETSnZw8ta8OoLtIzntYA6mhuyJLpZoQbPbgIl5BFAcP5VrpJn8/5e7nI5qI6BKRwNjeEv/FKVH8WQZaT6MN8LHkmUZgQvWaPQGV6u3tCc8ZEIAjp2hTirZe4ASR8knGpE5rZNkX+aZGZEiC/ZMiU7u0DGtdS5bxKzEsE/N/1BkvdKE1pfIJ+Qu9DV0ptt7S78ELititTeDtZHdzZ1LGjnNR03E5PkNPuRzNed5Bw3ywB5Cd2CSf4bJXa8oneS2wTLmJwz3DhUU/h5pfDoULccx6JXJW8LlBt6G75GRKa19+msxmpzUlNWhcs7rhci3D4m/d4SCty1IItSe1TZ5LKfj7IizOgDUslQj3jWTPlcNkmexnDLhKApTYrdm6Z+e0tVZ9CFd4gIVry8jPsdITPcuNgcl6inn5nf839aPlGL1XANMjOq4a3i/pWy/YY9nohaUeipkK3xcg2QRM9Fm3ry+mOoR3p25lJ053kwBTm+2GiM/gZIz24cT0Kj866W257DGdq7qrkvvXngor/8Tk/4AIMNJJmri+RcczyJgB4gAZlv8iXqYtUfls55aQMntNmqYKCnWDdIws5w5ai6Wa4tOei7sOwIpVqBZhz5VNiLv2XcJoOrlOGyqBtKUTjBQxe/ssW1c+/z7K7y8beoZSdB3vFJjIXBPAHxwddXwJCYVqHqhZl+CNBNhR9mNJ4pG+zVDVCIffjEHdYL2RIVeFrq1JoMSSyksr+zzycFBYwPQz1IgSer8J/jKedjlVeZPjxNdQsEaG7cNrUfREAWctEpYWPRQ9u2iObqLBBpPA4Pajh/2/WHuV9D2hKwEkAbiB3l3YUmGTm/9S5FppcEAHFw72oCOQ4RxM6/oQuiqSUk4QzJk4gag2qeUcksJbUoqSvi5+u5LLdxnDzZuEbkSEmi6eOSbw5drJkrwi5LcbHWxnm8wV8LqGpZuEoo/HPjMub/uPrJTmdRlH5GUV8T/zNsXI07HGZAvpLtQLVfrXm2Y6RNDMjhFmQS66vfIDaItStaZ2kHJIfaylTFNVOUBhS5IZmqL7AA4ytLiWY2DOeifsCjAeOa7iXKLhVfWhVwwQbDLH7OI4HU7B/RaGLTma+Yac0a9FJnbxuxID5I5vKD1owTN9WHiJhZSNmT0Axth5oGhw++QZ7ztSMYSnagrv0fKW4HQn8MLTMf9XbBTN0gPWXlIcezXJgF72e/gIQZNCAFy9rlI+Um8LgepqdSB1urGQu8Gxlw7Pc8/87ex1kSo6kXIRiLt3HoGiPkYeN8Xz2WgRGDjMr5BvZd/mnARxxZZjchc7K7mpqe/9YJZqRqn/gcSDiSnF7jvxANmt4kr/4mNKnpE4WffgJ3n7PWMJ932rt5bb3lhHQgSW7vW2kZGOZdyeH8x66mI2F/35wHK8MvAkBrtXlQT2Xen2Xt5JDXlE1b9rN1GUXqShqhVfqn8TfhjicDOrozcthW0qoGS6/JTZSYcpKHxkXnxbABUI1FDhaiKmTVb9lhLb1C+0o6kZBQcSKzOVQDDzjIUTCH/NGKWtJvLmOLyY7ujIsaeQGBL820flbkQj71cS4M7HBXZhOv2gt2ata9lMeDtHzqdMlIYNiilIriN+PL12shKnHImJbjoxt74rXsqH8jkvqdnZz5m5ofjOwTOnq4Csw9Gb7fKDhFjjuKAzguBVx1WVuB8Als4Da1F845qc7IkfS4e0SYK4VbWr+kEALIiBCHbpiaI77REeKbnlU/Zkd8czFGZ3DHl+g7TzUbnpYx7QTfSjJEgUrPlXgKE9qIPQkIEWBYCxbWu/D55CV7OISQ49tOag0USh6Uh0Z2v9D0oUdr8/zPtdhVWq+wo01dAZaC4XWfVMtyoWuIEV5+JhxuEEMnLj4UIHLMaqg9yP5LRQEmRhcNy62W8aOgneiHQOikgqqdJGQ97s8l8lyt2mxev1UrVn/PX7uahU6hzeuLhQjGKKr+Dm9QgGGkrx9VZhNRWlAT18/XdentNY5b1WSRObFHY+hjMow8fle+VnKUduF1Y4GYMlN3XZP0F2hv3T6HmXw0cNzphNnNF82WKO/P3Nzq6voDR6eh9QpZ/dca7c/4CtZW8A3vebpy11IdwsaLoY1d2S/dlfsvcvvDIXwdOo6GMHkihpzjFxIF3I89e4ozHvB86V3jRdMROb0VlRx+taiVswz666J5aiVWcMSTzv2jnFQt1cafg13mOz8Wr+GpiLqj2ERnC1pmtsJGSBCID+Tugr2YyAvNyt3OMlZi2ERqsKA5oLBkCo5VyZhFs398A5xrM7st5WnJpx4XbLOCXYzrD+uUHxaC1hz+MUcswTUoQvfYcMY44f2JtdhkPoaZ6RfuXPcXnVUb2lB2225lFvOp+Jv8gnusn1tucw5bM4hSTbJF6mJ/w2+nYcO261uUSK0lZppqvbzKW2TOv9JgPZkymf3OmAfdT91AP3G5Vkyxy0UCMjm5+zLWylxono500DKCpfbS8MygAIoCrCPk/qT0/EZna4jzWSb/jqkMu9jwZCzZYwE+2C8AV1iSfAFae+Vwp4qwPKMwlLZvGA77LRzRkTajz6is9SJO40Ffpd4HIcsMLGN0ALvHv9ddOl9bZNaGsxMSoH4cDtetjq8YVXmcjJsr4f4jJku4WQ7PrhNxFEEPN0yH/AsEzLuoq6igrkMrBIpOvG12oNNP6xO52CaYr72aSdVHFJnT6PSr6YP4VCxOof1lPrheepevORFVvU/oYtaYW6/N97njbdw28PpBfQwZRk/xOS/z/kd04G5yNag16oC/SuYLNhYnUp2NTSTKxV73e+lYtp9JnCMsOrUPy0aZdYoZcwS8AieWs0YtRCeigb42GEUxOvSL/yDLyrkdveYvw0f2Xj7MoUPg3X/3MDUSTuOULTBg1THJAaw6PQeuPBivzYg0xcF+4Pe5HmIDbF7jJH8MWCuZNbNjrq9yKm450T9AJELcGNHEZbL+vmX24JxmM88BF2aiKn0xtMX25z109KARhyTmBVTeNUo1R32SuCZbwWnGV0ekhWkGd8X07nQn1VTEPu9BJirSbmI/jKeQz7738VPqE+DkJUa1a5C6E7kGUGH2n6E0eQ3aifFXy/F/6n6OCmLnKFkjszzSWJzVrXnIZQtL5vpPELq8mDcfa+6nb7X4Tx4JYDPwijQ/E0WSdt5SB/O10CqeHRn+gCGSB1fkorWBWgftm+hFzI8fpqs32+TdozJj469R7kGxGJecDzgMND2pbVk7F5uR9jFjPpozF1g6h0AUbg6sE3eGkE81GPOuofyw0s/UJgKhOeYz0Lzi9oXkMXXeTlEKaZCL6L8UMSXy+FBbSBZnT8p0hLObC5qAqDtUYXWHuDF1K0DxXvt8xE46sk5mlg9SWmfmSNdpKzDB65JYLdsGkp7wXPoezytmWHCoVqzJTLk/sm+aPS5F/xCmqHivFx60EMvNQm9m3aAIOxYKubA4lBStXj7jO5MOL5K01wT/NpAEqC53ugN49FDhHoAlPAXqmTsV7Dnvhk3T+jHmHp8C0h/hcuaq4XSYScNOeVWuNNfKebLbRClIcCqubWK5XCVkfPeGPlkZx+QPH3p6fFCb6R/QUMxVOBXR4s/BO1kd0DGJp0Uk3KQfZ/3V5LL5rBPnt0mKDNWMnbtD5jf7Oo3WEH1NdfZtoRseS5SlJ8iaeZ+EHfAZTnzlcuZAAEOQ6WxZJg3XTvCFYBmsxOH3S2HaFoYxshXlYVTEl1TIEx0McceO3cjbc0RXCgo0DLmAvNGZiU9LQYDc/565ZRXErv+Dl2uDrBURp6l7T7f8E7AuswqDp07mOaTqbBJoDLdyz7g1daEMH2cVu+8++Xs5fj8WGGd7pnp+KUNs4A+r/ySWG9zF83vweHVvnW+phR79/bOhMKFBf4Wn8kVFZqv9v8hnHRCmHI4f3I3TKY18lz6Xymh4UsrN23z+9ERm7AwnOkBDr9Tbm5Km9rKnWheHxRdybVC5+1TmFMlMq3syzxT6Puus2cV1JyTv3XmkLBOXaRk3Kn9a993+LkJu9xLOhuedTtMvt8pX5sCS4RhJVs8w9E+HVd2mhS4evnOryWFj3x3Mrzg2ZxkQPnFfTK78bhBzC+K2ws+JyWVzS6n+k4G1P2gnmUzhpnHe7Y5NPyVjGqJCV842tkjDuqKBkUL6Y/zd8k2doDBnKc+uX7fsCaWQLOa6bN9yffLWJWBI0UL/lAQgXQBCP+l/k+Y/E7nViTEEpBWzbBXCMPPk7Q6VIK5qb321v/D16j4k/i39I0u84gqjB1qn8lrU2hDrCqz3Osy1y7OWSVj9fPMX9AL5y3B0xmlyNwYTEQzfDAdi+yodMRkahV9iPVhU6e1gvFzpDicWDzQHvaKUn7AVeTxqCH0mxvgBAthh4i1xk80guUKK6QSdsf9c9Bym1zjvSE0XVFnmLw3T6rFac0lFyBIfPsFyfHHc0KP7Yt+0qbZSWrFiUnRiX+2jusq5sn1O3zLWydltOEAMmyBb5mkWbu02UiUf2AFyeDr8j/+69V0wgHuKIJu2BLWVLNjqUWqodWS7JCLaAZXcminAdz0jtwq2brmJ1rECtWP7Nw/1OJebA+qjn1lPI8EfCSwKZklHSbkakXQkZ4GUPcsGYfV8U5cqSkLFfhMNwoqqbOBOuwrr10aLFf1hPxTG1Jv6s5/H3YwL5b7M4LyLSL6AzixP+E4UeMuAJdp82S34FlpgCjT8mi2VxfdP6XWxm+2eyMTYmX+xtZqbDGEj/xqKs437s6eLWZwCXar+x2XWH+kfkZ9/Asmp1ReYF3503NuBWkjyO4Xie9cx8u5eLKLDVaQC+oFDryaGXzdfjRaDnGCNS31Ehxm8wJ/GiGrgVAzLjnITEDPDPRcBA5Ueowc4bpCthLVSIyXiLAvAVMP0P42MKNOeJEna2ZT2BAuSGibdESbxWz06aoa4tvvUwjrPzN9XknYgM5LT/IyV+Jye4LUuzTpe/TsFIVhmDPJrrHBYv/l/Wtd2qk4ZR4MlHaMs2cnY5XFk0P6lpOKGdZMuxCDAMfADicI+s1HUg0A+lQaDYUn+Gm4jFLL27B/uI74Sdcy9BZ3w4T0U/qktil9Gj06lEzBI/OqXttIbWcAkGhjtwj4nKoyp/5V6ruUAN2ZVgAqvlMB4CO5I63iIgMbgGSIgC4E0gqBnCuhJueol/BvoOlw/2dXFyTBFv57Z1E9frHXqSuq3ubWA5uaKcUvjXNExKpU2W79I1ijYqn9/EHz31k1Mz1P3cDyFI9rySVm3ieB4k60hFESWuI3CLZBhN0M1WBW0fMdfuj5rAmbVStRuNhEXiAErOeYkR/+ofeiVCgDWaEOj+mpGbliMCzuZ6pmrlwQehYP4rFTvwQj1SD7svqkGCO4sEmZWUNBLYP/Wm69pG+VUXcAxWZdt5e/sn1uCGM/LgF6ZujM3a/N7rY3I1MAB7pWKXnYWrRQrcs8J9tOrQE2I8Jw6UYGGnZ6UcZ1WCpS5AO++wEMmkymIUohZPMOqV5bXAc5oCC2ihg27wEMR9/dV1iZMFLcgCbxlgULRm7HY8YDNQRb6xdaGqQGkJyz/SC7gCCrq9au4Uw2LJakUR9edjLYem0de9phGkhD2B7mPoi4ytwMoofmkxncIWmvUSrkZjySgRdB3pP2W0sCnQfZqZeIPErmmoPhEKrs1fsnUDY3eLkFHnwMzv7XLazNJ0lga27BPI3Bv6CmGlCLm6VP12fkUAIY0QVnGDIGPYzjZwpvFfQ/dECcozZYHPDRE3llQJnKzq415Aj5jYPn5UpHqFOoSSkM9Br2hYgVP/1pz9ghIIhUZgCngwdC9QuHYileJTIal9u0+NBOFLOhzHvhI6rDW7pNCwaPepGK6Rz2TGo5wiW1w9T5L85xHvgZVNSgaU3XFJiPcah50MuDgLXZF9IeEf1baOrtXPfc2IDs2XP+3QlX0k4/ogoad3NAwU4luqQulN+XbQfiwdBrNEllEBMnqka1oJmFyIzt6kYjZxCbeoCFbibvGhtDc6vTqk3CpvKKwa+VfD4N7tyP5yjzOqBIPEyv8pNmUQj4yBQO3jKzQpcCP80LFGwCi7z1rsF6f6eWlouLcDOvAl3aOAv7joJcsq3YVt0sbGR4eHiSG+k5vyGvCs7CzvtWfSkjNyPQj2Atf6GchBAckXIgyu8XgSxauqQE/Mvn7EDpEj6gpldQ8X9o/DFhbFQtOjIHInkAKR/3EHBIyqJv2j2olL/AhYSrAUegU83xZE80bqiixmIbATq0kzQxGa737uWmUq1SCIWwEtE0XQiLFuVDxBajCTTWmlNmMYzHYlEWgVOWkw7vIb2jGYsfQRfqlBHuM4MvrXmi6IwRooxFJaqcx48sBTkh4wwOF9DIITDwQDf+cLggroJiW9HKx2Vwq29kFn5FeiRR1GL5LW0cu/YltLRQrIy7WNxpaELZeqGVmm1m5Rv4JRmeENfoCiGt3LlfdmlfMsSISARmwsbc0KSAPcwemprY8WSeXLIKtnuE6dsT2/0ngt1dw4CPq6fMFL1cm5nw7pJVaHJyQALScvUXwS2b6GtSqm3VB9V3KIFUIgEMhOLstoD6Vdt8tgm8eGUcoGDg5M5V2Q4l4/heFZ8/TxKSrd1auMLzUqhQ0a2IMsrYiWxAnp1FIg3TndRyg5C68UW/w4oGodYz1ICfn7J59jz6mPZeSUswuRzi3Y8wJ/+rATEGiBLSQpskm8V6vdGS0f0GteT5p84b8+Gn45j8Iw8ViTkGTGV4Qwi0+NT+GmRTieQjP+iLcGCrZadh8QulkFG5Fqu0eqMfnOjuSQ09wxV7JjZ8f8XzNHvO3pMw+W6J3MSeaWHg5JUrbVRv/XjlKNsxIqqblqS/e2qfV/LBNO+v4N55AFAKFZBPdeheCkoWekRwTywhLqd5+iGsyNL7fX+SSlwtqisOr9JvIhJy3kA8WUsjHQK9Utr9VHwbfk/M53Dd5MqHlvheAtdQWMa5aR9/1mHOPiQMHCtC6osqFYxCUXx5inPe8u3ZkafTMS/qr3RIWeSTYro9UJGF/tWWQksJKvPpLnU86cx7kXrlSDn11PfwZmkBdUQJYYJDUw1w1BHXjEjZAassOqqPzVOnPYKWMuLPMZguW2sX+ivM0Q5hyEMtnNFQsRUpeAFIPlK2xb8kIpsqmn3H1MgbII2+3L46jUksaYpXe3qEm3PakQvbNP1Soi9E0znlluXzpxTEcx3abcIC/OKmMlCWcOqDfcbS9++H7UciVim6U/fxTUNwnLV2orQCyugb2Ue98n4319Y5f84149Ixps4nObsPg/1A5s7HT++Ctig5Ycpmz935QD9+d6vxtTqsKiRyDJemVTbG2he1pd9txZqIK2954HrEpbtqaEPI6jsqKOa1R5B8NC1DutFfYdhr6ZaJ57vw1VKlo3+YwtTCimsKiP3qOnR6ZJd0Ny6rBduEwXYAVJlT9m/BzDO2+DTrC40gV8OEUYpoGd0l2oaDoBoQqHVN9UhoFclXMiiVN/5IDYPgaQYN2vnxOgAjmtiCT1zT1zRugVNqd/s4bTUjJPzofYaOumML8y9/WNloI1v2FGhD2Cr3K+wcM0bMSsWBtXgitY4sWnrjqARQWVHMuP4qP4q+go3w/HguBn7fDIMjJyRl0mTW7A0BUTOk7FPlHXGANrOJB3ks9736S+/CgWWxKaFja0N17dy+i8Z70eLYnbzcGdw+8DVZi1uLCBZplkSNSNhf3Ky/ed+4UsMmhoTESnHyEEDDvAsFXlVm5TCzJ9TC9d3sGrSdP6QmYC2NR7e8je6Px0dczLGRTaHg65EVbnewgdcyblaU2AP0WW99PH/8VGn48i4m95I6K4zwrCpWVZ3tS/vqXs5GIvejq59e2xl/5VHgNZ0/rGmDXWBuHc/VHAhKhokLLz8RkuwTSwkKrV3Uwb4Rxq1sQcpNcNjQ8mjHCazXTIGhTPN7++i8nWZcojz2GuhXvO9J4sZjzIchXb51JPARJw9HnpOiXRpel8SKnsL91y6hfA39uuDuTDxcX7wF2TeKeC1ghE61PHOM1tM3R8mbh5zMU272e5QaMVUeur3XyFRWnwgGk2gsmZObrbPGnPl62DKDxJbMbeMTAePn7wsrjsh/I3ZG1OOQSrUtYdK2aA//4Ptzl+eDAZSMRCqzZK9f4fOW/R/feVUDYHZdiEGkwNaCL+xJJk+alNSfpYwzKJ4EtJDbUSmfCvV1e5Od0Q9PYB1ZZsTmur2Lm+1kO2pH4VkQoh96IwGBFQEnkBVgH7MTlNwf0Mq2ei0tzm3BOGQZZ8XG+7ip30agaSiRD7KCEvYE52Ke6BgKSGI5y/gs/FPmESw4oNyfaejPUqtpth9F+3uFsaxhk9M6DsX/M8Ug7jo7Bg39omNLK9cab959y6EcGxxdqlL0ArL167KC7O3CVTl8aCOfAQ4ebDrHmAleZTpgYsxZybgq1AI74EsgBUbX3rgaSzSTz0uX+j77w5KN8f9xyl7HOOsKWSi49x6SxPQoOVgacjNv+PgOolNSdnHNp446K6HzEcJiGyzuj9i4oLeSrWR1/VZiN4dd6n++CBSfXe9QE9TPD+Nc/W6jmqVR1D6L+rYiSV58rFQEjlZ3qgmuXOEUaTGEJSXlpDRTK6/Ud3eVxW8a2EdyNGCv1uUpSYe5yPPkSmKLlCWFqeuUn7nh03BpjTW0EWOumFppas6f+BsajEEZCKCnwTJTpAj0Qu9DNXtq1eyTC4ciBGv/HzQWHxQM/0F92ceSyv1/35hQJpysKSaRlaxk4uquur+QGJLLR9Ulfg867GKZCOvbkjj19COdQvnwsT0s9lk3VEoB8ogfBfKCd7xbw6LFXij6WQnv/1sfE5IsSd5tgPPuf1xRpixeph0l7IwPJoRAwNuCyh98ppUsF5SLfgmOBCa7liL3PcEoerMlyyY1y3Dn2XHN/KSVHIdyS6Oy72cHmi1o8sZrF6RuWPUfKdbejilCauYPh6NnMBKxRotVVHcaOyJlmDEG6Pd3iucdEctqe8ZkKkSSIOf5YApoMmdXJ3gB2J1jFBt5WOurHbl3qmOu/NVNYmbIXZrsnMXbFlneYarmO2Ni1MFNa6HkwvCBUL9rl5mC0ZsVX8mEAr70RcnstHYsIPEBWbRIjDLv6ykx1IKDTXMD27YOJh8CFIIsOCnwf03wJWi5DqPKQjZ076eDll5rijzXDmVaHKycs4r0Fhn+pQAuYzjEygx1my0yoFoR9bT1cd6TIYs93u/yDdPHEjjd+GPbfyYrokSmpfK4rVPGmwm8AI9uBmDwpEw+KFowz3P5U7OQTl5mtYmymRhaTiOPlWARy/OSiFdsUiuRQ1Y0GF80XnHaub4Mp/UCoE/o7W8C1lfCM3ujMMQ1wXpuXlFYcjoJTuT0+VZhale+JpFpLFYByCxCsY7ZyhIJAaCQqZATn5A+5fc5HZ8FI7Th6QM/mLCXjK4rqQZccRL2gII9rdpsfTGMGmKHq0W6rTHVAODJKxXqXxBkMxK6yJ5+Bei5cTK9gyGP3wzs8T0WUEwZZvt1kmOW7FNWt//8AeQxJJaXbBh4zcl446iA3pM6XO6R9ik6ZWjYscCDriKZic9ELT+BJ6+pela4x5o97XgGDQLCgDY1f6KJZ6IUDxK9mTBeoL3f5z+e1aZB08aj5R2pejyVKsKtoQn7PHPsaRDu7EzB6KZ6Z3ZbYTtNk1QQKLUfIoIv4bHQpcdtuZuyB2d4xOvIWWtl4o3pBjDNUMJ7CeFpIZkR9ISWrocTDQMlIBs/3yzvfk29VZR2BBxM6MjtLMw2uQvwtOnIyXhZFc/obBdEbxfuFfbbjuwZ6OZ7MrlfLKWwQT89qPI0J6IBAs1NxYbChCbg1IFTcxJPnKiAZ2ZxOx4WnhyuUbtAiJNTzs5/zSKm0frE5R5JXQJEmI2m+z6yyPgjBEAnNqa9jws+7HW1ry67QjtfW9U+3xOMeq4Gh2+vfwon16OowQ6aZ88K8AaYY2tXFv5icC/X5awayhMqeozR9gGaO8iD52OT8OZnFAUVTP4DvlCUpPpptjr6/QP4PBzRhtDqNuKZyDq1GBBENPyi8Lpxj3+QW/0JHjkbSaHMlV3xU3/DMaqP8Cdc/NbDNUcZl6PSJTWO6Xql4J0lu/fZWrkiGqyg5I6TVwcIt+4AD0dP1rsch4cirM8va8NASHyNzgMtcpnu8wInLH24c3paTjbeRFBC6Q0jvPcfqpRKbTnh+KINvWNl720/BolgyXnI4ItBCfM7/fYWq0+YGYYc8JmIpS+1IsoyRTsgE04xRPPoK5epiE+37W/1tPgm7wS0yREEb0rP4IAUgL88MXhJh1A0GH0kkTL48TpfB0qBF+3ibhUI17Xte6YCcOY/sIRzHjbicvwjnTayZZNANgJKy16CCYG/VYaGUuvSPFS2aYDX9hd5F/67i0V5Sho/i3RiX4I8haqjDgtN9KYYBpxS873zTByBvxwH1ZLgxcOQ3tNVSefW4Gx/pnc9VKKmRxbwfIAWpEkATvSLZpxyDJ9hf6O0pGXLw6E0S4gBWNJ7G2MGRj5o+RJMSf5WDkPmYgtJlHTwjyx2gYPOiHi/Lr7SMWtPEpfWxTPdp9cI+QFeZK7EaLh8U7HN83tH7aZ4HpSQRAmm4ZJqwl3r8zg9WqxsC8VxaV1NUtSj+d+XvviLdyVHNqkbkA2QzT/03PTDiTzbb7RfaHDZ9oge9Wq893hAA7LI9y+XKTQIK8deP5vQuMpfC9lbPjJvSjq2hYd8+RADPQUkORMnNRczZbh6rqMjQQmfsWEuGeAtNDkofKi9iuqfswmLN7LLk7z8okG9OpFrQe6MCUG4OxqX6KTcVtki20YAI1QWQnbGIDTJolxQaAfhwjzjaRAbcgJAueiQjq/3wJZ33ruY5siBN51MRM/sVcDPpqpaADzD9uaEGP/f7YHk1OlRh/oOtm0aTdsHMUW7+d/pkGEeeW4t3G/L1C0jyVvDxWAhtdvJhBXUfJcNZuFfBBAb/8uykwrz8wHhpNaSTNbi8bngzp3YOQtKjuDptVE5YaZ5bcP85Xcf39BKLkd+LG7ppkItJaAIP6LrhOW7SPFV8fX6vmDF8doFpb+OBRPk2k3iMR8Gjeok0pmXKLIdwykz0ifa7j4wHBgYPxDre9PIqBYupyI4zz5r+fYxkfBfgltcix4c1NxDiS4xMcsxJBcBX33WWzO85JDDrer7gJglSl3LnfsGhQ77U2B8mN8uxjbODQqU9E6FVwbREtDwn84bN9PsR7lNlXeiTQHj5+Kj1QLyRTHCNHwxxMghap0Bf8kluZec8rAU1bsVx5YV7jxA9uCw9rg12KQ0SFdDF9+ZfAV0JQkEByoLV70TViE+x2f+hbSTCACxro0UmAYXeJBSvMZ1/U/i4UApLnoJ7hx9L6dOWht1YKfLu6ZFHd0vZz3u+bG3jm2edSczuGi5xjJgcmU8mMan0LSa3lq0/sQZgA6SQk6p0CsBe9xZMgW3EFWYlGG4aU0sMFqwlIoT4SDKB3rIXNZ45fjIRyKQPqZsZuFGa1RfrKAan89MVeeXFR3ubdELzV4/M4yASxz3mlXrd3rQNMF71tFsgkWZTfl3M2//EdhXIUXjiM1sA2glA7WP4wBKpXFhiH/p4/W95qPujpoRDyjxIbH1gNfWGaq1PctazJYlwx8t2nvuZHZcfnpBrGkSiS5zHd+ftzaeOPBH5PWoqfyihAZsuPyU2dIKHe4jt9ri/XMclC1Onw6BVrC0Nf48ymSLxylVTVv/NlBOo/dQh6LPyMaTORBfyhQAYAhajxWdjxj31uwnF8wRWCfP6Bp9bl7aGk0bt4j9I0OQNRpFIDHtUK0WzDUz6yf4RSKBNbvwhs237BUGjw89GiLvmaaFMArIvF3oC2wYTJ/EGEkY7CIakQso8EY5MlylXWZk9yIfmy/WQPF0HbyEgbfgUEXFSUxpjmsVnSdRgWzeQjUf+5GwvwI8Obi4db9EZIyihNVjlrlZgC3+a+7LITCyrtFfALvfoBjk99iP4BCLPseW3FibVj+GYbp7Pkq42KDuySQ7NBYKUvD/+wBSWDTYm2xz/UENqYuDzN9qTuAUgR0BPk7kjQ0q1Z4XfkZxTKCkfJfYW8MWRTd+XgJWRYcE9wlybZ24dQunB77rHPZF98/rSWW5RU6gqbZCFTe1KzfuaFNcfzthwGFroEyyEkFbyjoE8BCqS/+DtXotxfKTg9wcT5l/aTs0a2S8UfkYrMKqBsAQaewtsNBF6Em0dPWqHkaOYTsI3DFLFpFsjXb0LFQ4uZ30BO72whRmxHcw1Pq+hw8eYRli4Weas2QxTJmbfxg2z9hA9AVK6uvcPt94Jl03UbCXjYmXl4FMyuu/XBO2RTTigSdi3/U60K0bnVEIvpmSHSnlVIZFR8jNN4KueAjX66jcl7j8OqF3W7/UQGByhTLXqDNVLhum9Mj0oTHSkiaNA0aXviPnQo+lduJ8Iu6pmZZ8PO05Q/mBwrQqnAT44l6Tt+NdtP1crvoZeTprw3AeCvw7WD1JWr/KhiqUFkBw/7r8aE1a2zsK99ZcmN/hstRez0+Jk4bbBOtrF4CabXcL47fmZrnlfgMg0ly78cOAqp5cHMmxNASpwjOFRU0NmscmQQXeDJHIN+bwIkwWFt7d/Zg7BmuN1ZGafpYVgC+7BsDlojsAAluabmgNE73HHfovnj6+1x4CGO4YwftTUtHQO6kAe9UAgImFtXQ1oU7ilv4FNHBD2KKkN0ejO0EJiE+a8MNjSsitcKsECRAsovXiSqxXV0ipa/PjjE7f70UpO9Dg4jOeU+Hm0J9gaqUrFe/Y8jyfchfAxfMb2WQCigB2vSemmhdLQPY/acfvI5rJXmhxfcOG9jDOOozmALIuli23z7JlqLOaJZBqEmrTC2QxlcrUZUOrzoFsh9aWP2PHxnjomSgm9jRii/7CuHrjIIPiJ03Zc91L5XyelVE7NAkgkrcYvMwCcu++YMifLZ1OI/64/tWbXx1lQgUtskiQKri2sebxGKYKjcr1mnS3X8gzrhnjoAkTX9iUQuXLQqDXakNvZjBOsnzyjGTOhxM8RCeKMwQUvBTQ1osXrDY6gwEh7S12vYwL3/hYrO2zohHNoKqsmuWv0jkOBJvHjAE/cE1aSqW87p0E73+z0IpLEGxe1bExmze+r7WMkVGTXppvEh+c8IHCHQmG+DKqx6KykUkqvEXEHW99p8oHRUNjijT/lE2ZYp/VE4y5X91I/Jj5sZ+s0AIC6ouCFuvDsR9+DIpBFrUukbbesVlevr7dg9gIHH+IfD+R9/DRVoTW4luIEfcZ+Px/UnHeeBBzU/Q0jYOB9ruxR4G9Agj7lP2mtW/nyuBLbHmu1Myu3BGm6R1VTY8qNGfcePiwQ9k2NDyC7U/glcgLtklJvgRxQAzi/7D0lvQ5fTZrwQ5CpA5zrG3kK1nOXhuaETDJVLIjJ+Aro0BLwUVd0VEYaQYOUPOG6FZfooPw/D9S/DX0sVyIe3ECcSQXGjC6NyCleK4VPSvkuAdukwCD3195o4K1NIGHyb0osEItESgHUkF0GCca+k9H8TbNmUnc8jxuklAAb/FWoDEhT+I8AqHqQvDeKiUThUAbPzorRA+wH1Osq/8Gv7ITM3CDcDjykAu24n5PYQxMHjlZKz5wQnQGImTBIFr7W5Be++D64dppSkZXGzKTULN6uGXPWkhY/Wb7L/kYzgaXm7EZY3XnKxt13r4s72h5beCeyOLKH0TsSGzpqZtD21/S8hjQm50y8p2X1CUYH4+CxEXtG9Q++9BUSAXLgCw+D5CTKTI0Si1R5EP8KG7U6f/RSGeN2/nekwZh5Uf2NwRUECrv95TSOpIjZ42shj5vTTUyYcNcbR9mDePfTc5pQbaJwrGuPDEz23Zcy9PBv3356K6cV8eCkJbX5eA+xnfRDB90XlVx+yXF5L/dGGIWb7UwKQMf5QrC9RU+eZ+K4EVybIC6J77X3qsN3iwGCbGP68iaW4VPD7eN7rquEt4gZc6y5hk0DPmjjrSKaQIM6eJV/GX3j1/ERJ6+zbTct0ySVbjThjBq6qxn4bIY6NUtFVpvWFlbW+IzBn/YJx7RA+xW/oxGAsNBgXjo48FMWYulc2PiN9ymUw6dAbEu0dZfiQM8sIw1l7V3EsXQ0Lo4rbGvDge04KUXolr6roAW9Obfor2jhP4hReafOOo7I/aJi8xg+ic5WIOjUFHmYcqiRayLcSnxVpoAVHa1zWmbTl5nwpuR18F4+nU6+4PGISJTxF+DqzmeTwS8f5yDgtpggaB8L+etW0wRbNZKw0YeuUJjBW0JtU4b15PkJzOEB2rQACJ0BFM0qE8LlI0/3ljJx1CqBlxLU5hiZ7EmJHRsn7XPgRyGiDWBM4q/VSu+Ym22pbm2Co46pbGM8+/97XUErb8u5F+BjBcRifVQbwFA0+DodbkJIOMgyc7pzKhBdQvqJ22R6S8t8rtQaJ6TRqrlpT0eBDHmsBqzRpDtZV57MjnirPhvV3zwR+5BR4Li3RBQfCZ5Ol6F3yLU7WX2Ys5rNPhgkGwDuPXhAwCfACQGgCCScPbTDHl/9cpIxhNfeRGu3HLTICMTIjEFLqN5DOMDbOYdDyVzkB7P2Eyl2Gw1Q7I+LYnoJhkP+seRXZAnHDxIH6ZVVCvom2whvREU867P4SG7+tNcVqTHBc7T9H0w9AhGvNSURTJfMGZF7SEsuw2Ya7BpNtFNHfV6Q69thpnM1hHQziCRGa6Ha8lfQ7hHovww3u0RndrmuDhiTZjzRMCwe/OMTPZsoGOjOJ6GUuYIDSZZFeelAZ1R6i/noV6nqfNqPR8zWM0yxSfPIn9cW6O9pRhPIfnHxeYvYjVmIYvrl5j3X+wNZ0cdiwt3Bp/XQUybdQ1sr8usSgA94HtjGP7LQcEIL38cxNK6mVzpxQYj2LjARQV6F/dRzjMFrBynphoh0ytfJRS7PSofzJCiPyJsdWaceDj/ARpEXRkVa/aTCOXAxMUtHd+DyZ3+EUJVvXxvje67Ur9xh/hEmxpqGTYYZQ8r/S5OWF163FKhn/wQJzmwzJ0mS3rAvfIUy8X0Zyx3U7zh9JOqk9r8UesTpWMu9eO+Ife6OdY4rR3xGSj67T2weI1UJGK3E1tqnBYM6FvofBrJ47W/pb7D0LzceTrJpjbCsWs99ILL0y1WybZrshbEsZaRx74Kxt8xTa0JHFoe/qUPqj5RJ5Rat6rWUW4YKdzYohy1RA0SUG6mvpviS0uvVVmM6/hF3DxqLmY3gTKa4+IClYF0c4qQw3dQfNUOiml9hH/Esd4aFiXywTH4KDa/Owj3VByHp+DnUzXgHLevKvk4psXtKzDwKmm4238abUIVJa3OzYESj4r380zZcC8k8EDLNFgnxtgO+NI1XaiTCD3rJt3rHqVF03XPLtmYNuawj6BMSYfb3yrRC25aVCj2hrvqEoLMN0OTFQNci7Oq4iGZQmQk6TKZU2zVOxqE4ab+INKtaJMyOXPb8WQkEpz46z5iWyI1xMN2oF0LirNIO9fxDrJGVaR+tMEt0GrqjJjoAYA6j9pZf78dzkse3a0DNLTThUYD91T+Juj3u9a3mdqW6pyx0FXeV7rlXzVpm7b3eEJ2/E+KQJo9LFreY6pOS/Dh8VZxBRMFHRiUtGcEHI4O2A+jaJtwoLPhHpqg2NHl58djy1LsPUNgrR3MwVPNXchad+Cx4ReWNbFXxv4QaezRLYgxj253qXNscVqV/6hTovLqv0Kqs2YOdXVt8Z97oc6NnVwipaATPFEDh3TF6ve692GMMtmvFZh5E5jizneIOd7XToPnceymvSTks5i/4qvTt+BfUb5LoMJCXnLsHfyMM1X3AKnxL8KePlH+wBhYqioUITVrW0A0hgEhUBPugESVD4ZV2xHU4LIudiuFY8MskHJQBK+AmFAG62SVNJAJvhK1JGLB09VC9zCr0jna5CukdXkbRyItlSzkTwgzTSWsuOCnRSVmGGcqj114mzPtDL5xbbyh0wYOiGaL1Bufouxi5IhZksH2XNFPZXNmcGH/tr5v84Nv/LNCdkWHN26UvrNwpOcI2xJXl6VN94+Khupk0nysFbD3hfVfJLLtTho1ez/bYvYXF8sK9dDa6l8YZJLjMtPlsxa/eNf33k+YSMdmLmIprUUBo/pREK5m54n50NIKMJry1rXeLOvhO0ay91OyR3Y3tM6EbdudJp/PulP/XOVwI0zyzrmuhRWsHaY8+a70Y6GMKmjEKkkliqgqI2RRXbSFY06xbdyPv0phdEdm0gswoC1GEILnCPctCZPEF16xj0QISxu1L28xMCOOOig6DNFh2twun4eIACV19cCuu+TxrRsAbt/wkay0SZqyCEr7/SR7aNa6QUVOw19xCzlFqQymxftTYdg+/rZhpu+JAuntEZ8sgNBBo8Ps8OBiM7U9vI49uqbOsUFcvldyqJPbXriHIHSzMtlN+UQtj2ioqK/HBJKCSEXCLti4ZaYVd6OQiaUn1XCpU5wIknbSxbhhoHnStTUi7yYGWxQYVwbwnVEraL86kjYav7rJH0ahy9+ZbF4WtaB220I4HkSrc+0awLKFGWrx1MTvu7ewqioedhjX+WTn7O0BUZWood7kUhadBSf5ooNZplsPOsexKwOLecgp70DCVMlifi8yLQdZWFiIYOV4fIhkxTpcA9jdZ295hf1aX6cyr0jTFs+BeaTgk+sxboK2rBbeZTVEQEefTVKWwcgEYBw43ZtA2bszaUQr33LQmfI175ouDHx4nftmfjsSbpU712FfJKI2aDlJnbEdSlTt4SPrHOrViZsyQ+yP7psUifZp4/JHaOQ5EQ8Jq0jaW3OmPwOF9CBKsrO2/wrEWPPa7T/tbK28Q2ULx0Lgky7XdpuosZJ/xQ2yiAPQuYu335dz8x1V4CuWoV+EyLb+oPriYWMhtDcl5V7XyNftJbZcUdjRNC0zlgVF11jbb14SGpdXAFKwk0ipnvpYNjXkuUBgxR74jJ9c/mrTzZWOLkiu3kzNqULt/w71KYimfdmcwqR6wRwCk+XKpG9XQlQ9sFQMU8NXJFFHuVxZoZSV+qsxNL5975hjF/kV0plQR42HUt7OfzidrqCekdabbwthGEgNjrzanCL931YS/qocc0NJ7de+Ah745co0qrs9zYqmoAJHP21boaQrYqOjCjiS8XJx5VtJzOPYZk7YvDSrBWPJ1IQEUh/P0Xf7276rFUK74fZKcZVgR7ZPCp1jXAGl6ZmTOzkO7GnWjE+p+beux0kp9XB8B8Pc6cRRSTMfJ5cA1dxpPdGS9uTx5UX6VygwIt75aBNur+RJAJMG8SPodZ2o8m6jRHWN4yEH0JdnMbcGLOy/HKGvTxBrQz+atDbPYtM6IxZlU6eAYCDFLiyEQoGeGqBltb9nRjHRNk1tp25fWelNkP27449ydjOF4DF2M2WIwY3B2Gvx++rtAdMIkTtSzmlJkOZyTVDv8jx1zEpwLGc8YHgwFe3vhMrPmfd3cyBWsBy50iF2lISAZgetHrs0GXLoy91TuOfIyxWy76+xkDBq+jiZym40nXR5WWOmuzidcboVf/qr2PthBAw0d8TFxZkTTLyi/2HOtDk/1R5RRe24/SWUSlOWXase6X8NfvqVujUE8Ug3kLawO/175soCk2t2HpxRE+ajjSAHsoYDIyut1e4+vBf8iwadZ6ikRqae7LIdw4ytrwhyTP5gNwSMTDQAqCV4+AF5ms8JD4PSo9UQVjjyeledLxJAOWmJ2EQrbBUeaB/YHfSST3a06r016Vjr1nwyKg1V8kZ+3FpKKuohGSYsR6UOZ6Tz4eBeq0bCuMKaXt83I03B2MMKWqOWBbISilcomxMlKl+Ps6RNnJ1Y7XJHLO/zRp+uoR5SQ0gRKtN6iJ7JY4FA/m3AIrBVljGeBdOwRg+1lWommsJHFBWFd7zYdM3QxzUrwXsJMSWRmLUAF4xSyR7lqZNifFtKrIWDajnjKeU5wmkGNairk9nlkDZS3530/DahhKXB6CW6YT5sKflMkofhuO8Pe7B8PUbIxcmJOB+f+TaqLWwaIfye/GLr28AJixujReT/iF5WwUogoCHnzaWKeub1k7EOImyMlwICebO/AMzXojVvo1sTvUF9matUHODXiTeHeK8YsRdAxxwyv0bRlQM8r3kgTZUChYeIio3OieQAbGKH5RxjD9tfeonQHTZfxdFVxbEGsFPiMSW68vVppuaFkuyb1ayqlSrmIrg==
Variant 5 DifficultyLevel 636
Question
83 − 2 1 2 + 2 8 2 4 83 - \dfrac{\sqrt{21^2 + 28^2}}{4} 8 3 − 4 2 1 2 + 2 8 2 = ?
Calculate the exact value of ? .
Worked Solution
2 1 2 + 2 8 2 = 1225 21^2 + 28^2 = 1225 2 1 2 + 2 8 2 = 1 2 2 5
1225 = 35 \sqrt{1225} = 35 1 2 2 5 = 3 5 (by trial and error)
83 − 2 1 2 + 2 8 2 4 83 - \dfrac{\sqrt{21^2 + 28^2}}{4} 8 3 − 4 2 1 2 + 2 8 2
= 83 − 35 4 - \dfrac{35}{4} − 4 3 5
= 74.25
Question Type Answer Box
Variables Variable name Variable value question $83 - \dfrac{\sqrt{21^2 + 28^2}}{4}$ = ?
Calculate the exact value of ? .
workedSolution $21^2 + 28^2 = 1225$
$\sqrt{1225} = 35$ (by trial and error)
|||
|-:|-|
|$83 - \dfrac{\sqrt{21^2 + 28^2}}{4}$|= 83 $- \dfrac{35}{4}$|
||= {{{correctAnswer0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 74.25