Measurement, NAPX-G2-21
U2FsdGVkX1/N8hdNZC0bzFSLwNJCFyoWABqXxFLVLH9Hz2J/K0T4kNuQqJuTzc68nbh8m8zLhByAYRWyExDIK/UmGtW6Rotgen6QISKF/3afORLXJnSDWaeFv5bIMZ6LipFphtiRZvAz4Wa7cqgHyA+XJV3YmSuBk90xioddVNXrJDJ3nZS4zUoJE83ykJYcqyXKAKRXUTf/j0MsOEOL8oavfhLzd0XHarfMsTh2H1jUJEd9dPchRSW4t1h8lWTyL5shbgjhKpJNP6fv/SEkJ2NmTFTV+nXtZPAALKZRPGqD4C4+oNxKthc1I3qks1hZtjJadHqAj12G0MsLjZp8Hcn7oAsFu+Zq4jaVQfGcLXcxASFRL2cvNITzI6UYShvzt2VVkGtQn6ROaTgesEFLtRGOGWikSw+JWqGv5tsfwsz8pRZ5XfR2xN4O/IyWzzoB5T/Xi/e+VizruTmftkC7P3HtgAfpPGgegtrrP6UIaeul5S6jyRi+nEzrOmF2WY3zllxO7Frxb6fcJMds/PjiOdlYLvw6lK3u/1XEP8cctT9n6xcJt30LSYWcbqMQ6s6eozepYSDC18BhzpXoZ/lw3OaqMhVJoRuI2S7rdMqdLp3OR+nqohbdz7QOJQtXHRNeVcxa73oL7WQn67sSGj4qIzHDd38eA5prhNZsENGvwIz4GeRYGvnNu8BBsiuF8klQhLNj4uxd4caDFupdqMEP35D1EkqgdZwWriZ6mukbGDoekc5BOF9DZZnXFxGviQxzaxbv9jQzcxGFM1JfkkRq5in7gdclDhTP0Z6bEEUV8uVCb4L+TWmlDyc9GrGh+OUU/vv9K/jVANyQgkZ2mxJ5rttpMFFsav1/cvH3F6Bdt5r4WlZaVkCxa7/fF9gMDWZqsRj2Ld5pz5UszGeZ1TKmrUQ67RK6h1pom3zY5m4w41N+nfvKXWeS3g7Sp+cA7tED6MiTugFvCecA1lFEsSuakBxJ6nfzX9bVkPbxH9rjtrgTPj/jSKSTRFxhtPfIgJElTPPutk/eZYMgHCKPgBKWqGcxYHgW02jrERBWMHNX4ezFqVhRQgT5Vp5+QoeOcnUqiVXS0LLd0hC1eT0NGRps9jTN2xX1n4+vxBuLYu0qiPcIWms9ZsuJTi/dJRzXIYqFfOijAxcwrVPy/MhE+ID4HwvxOiLHb40HizgFwZOg3J+/b4d07iI4zW7RfDzfV8yL0vMUQJDracqI7o1vYYK0Jwe7kacIg1gqssT1GUFF5lyimnDSz9p0qaofAdLLMspQzLpWjoqjkBcQgKJXV0URQwhKoR67OCZzsyLrgJN0/Zu8NmOGpQWhMxYg4bkCMInrU8oum1JO0zgwOQ21tG5pExJzAVVtvZA+X+Jdm/TxFskF3LMUgS/z7zPuqLsLqt3NoZIxdEbUS6YEQvEhWUGEcRCmFtquzhM14Hiv0mh8e1YECJSa+I2Ozc7CUENixmV7nG9VLq9dxbBrtiikXouQmFOr1sy+AQPTBDYzZeLHb4KH2O/+fWi5PoVQbT7Psi4pxFSLCKUsE/jFdDxwVqayyLrrWdfUmPJQBfu2qyb+Qa1yUZSJ4jihEJIjxhBXWQCwPTU2+ASvqRWYzHKjZrrQRSqhdcnZc7XEmOBQIidZATovTELNGfeWGjEA4v/+Nq6B6RJ7hJ7LnTVmZrGXd66p1AoLipHsEFCxJThEXZpnA6LkGQEMViF8Lpp06lCgd+hF+fawLrhk8PGeVTS21eCktoikIQLyz1cLsqcCxmbPIy7mu7DMRJcbe0dqMRWA9eRt7V7dc8acVjyaPDTHCvgdVSDjDy76Hcu3D03XHK9cIG5HYH2AoRvJbaK1NqJ/UwEIB7qS/YHRcoPv6A7l2J8yxlhzc6hRXCsrDqn9sk8Nc/UJWjrUUz/qNV4Vg8PewJdKZg4OrOYEbnkQXINhi0iOAyLNyEZ2c+t/P+XBhLkAH6Rq0PIlhZvSLIxBm/3LzmNQs2xauS7m5wdd9SP4+gtem7L3RWw6VW73sYW5JnuV93e1+7xeSz+JuxmHsRaSNyBIkGcROqSVrdch1zQu4d7d5bPoQoYABdl0GV0TFZxfs2B29ilVaEUztkesysLqIqPAi7LQKcJEZMCXTl+7Skg/EbGKxrB/bUFHKCOJogggRq2nwOPLDDbDV1BmmYSjNzkad+AlWSiBFn/bHlyagOOp2EcfZfjnGJdV2QfFet2DZNq4dC7m9CO8YryZyiebGgxGph42ylH6MVxYWoXXt+WuUxSOHjtjYp85evZykN+k4nLDkB3ZGK/OzdPx++xMpW9vPEePIx9IqI/8fuAdCzrrXsa2oIkl2oXEb0ktNTyE45yZrDYJ82Oj0w05j1aNvuM2H65U95yNCHIcZJQzWYX4nJT4DO5EvWI39T6nrKVvSDLrjgRD5JfsEy5j0ER1YIWPr48O/Q23umuL2+pXC5qo8i06UHRHgUUgVLZjahneqOnLOvMlAcW3ZL90HYL2fE9pXYJJEY9SaWiQax1GgXDJ3SNWBhEsSi48tMww5P28wPIZr0fOk5f6HUEsglVHfT/ScjJVpaX7NGgA3AzkZjSHZO1OhH7ZG7yFBq/xVx8nV0qk9Ea65mN6z4W6fm4wW4zPhQnpIKdV7oxwUYCGxXGaXx7XCKEwOa+zidmTCKMCLWzTpc+COJoPINH//b7C7cuhdOopobFfTo4JYZX6zuV2hikjNfZ7KeW9kYVPlzatHmMqcWlN11tkaMqLLtSYZn99n3tKif+cn/hhMwSU2CtWY6zmVO6mohA1pUxB1TPhtSmRO1WfvITOL22F0g4A41iESi1b8jznHltdQd0SASqqPS4BVqN4U6+1xTb3ZVlRJNJztjAZUiTuamprbBIsXz3h2kKXG77Ng44BeNPSpW+X+O6iIoz6YHYplAwxw75U4CVFChgyuU3yUu2QNbihZ4gOa57/TZFhq5SY4Wc5XAnZ5C9IcD+6YevJmdAT0Vtpl3ZQ9l4ROfsPU3XbvTPLb9esGEmhKC4f8yTLToWpjCgLocf77NcpK9Yr/P65ep9/nZ/AxFg2btK8vC078WnuJxoeD7MRB7FX/GMDTtIGSdKiq+V8u0r8MGu4rY0FFjJ1NWVj4tEcFKALBsWz1ETxDaiKmXgaal6qk/IutqvVXIzfYFAlKtkb5VjvNQhI9hD2XBLkAAHPbdY3+DdgX6IECLNKaOU94nQZrJNkDUP6f5DURZw8gj1GQPa5PRLyXMsPRwmT2MGsW2Aliu1LtwHPFRC+x9Nap+lI8s5FMxK/vSBVDo7e5eXoUk3BuxGFNviRFonFPfiyCdC/RqjVoHDt//JxQ8iGi+jWskNDs4TmHW8se7shuC1w7eghUExvERMtTIIhQRuNhQAnor07kJ6b5KgxTlEcsQwvqlRi8aoVIrGOUnHGNdww1uE1lhq2mv79r/eZtOcB5tPaFvJFMbSizi1W+yUaj9Uzm4t32SBku0Zkjo2Wnbzu35JPL+4R4OoInoCuFk6BhA0/ThWvR8q78NjtD5ahwZUyM7IvqGntbgUtMaQLPJ+3i6gSZ7zq2dvMziH7cgAxden7VVLMiL2L50WFlYBq/9/W+i6AmM3mxsAvTpYJrN92j+lxAtAeg4fMrXNgQQkSjIRgRZebBkmBxXYdwkKGjMKNA8te3BPV5LrK+Na+z8hv8kBkL5T9fW1kNdzQs7eoKEoh+olaigxnyeLnfIZjlLDX1KdUEBLk57wnmCOokQuPDZAUwpMSNBKhRKI=
Variant 0
DifficultyLevel
429
Question
Avril bought half a kilogram of ham at the butchers.
How many grams of ham did Avril buy?
Worked Solution
1 kilogram = 1000 grams
|
|
∴ 21 kilogram |
= 1000 ÷ 2 |
|
= 500 grams |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Avril bought half a kilogram of ham at the butchers.
How many grams of ham did Avril buy? |
workedSolution | 1 kilogram = 1000 grams
|||
|-|-|
|$\therefore \ \dfrac{1}{2}$ kilogram|= 1000 ÷ 2|
||= {{{correctAnswer}}} grams|
|
correctAnswer | |
Answers
U2FsdGVkX1+vSbJN1J1zdO9LniC0pA5t4/MgElEwZBuhCMVJoGp1+NmM+kMPOddpRyRLUxUbBxQVIsh29aBxbmDMKGUXFJs9SxSx73nyCwX4wHXwq7lfHC4JwPrlZ+zQW0r36SLIlLyG4RXO7Yoi7K4woV1MCzfu5px9TTMPr7X1o5JKZTxvFZ8XznInf65NfLjn+76afcotqQz6bAuBtjP3mWgkjPDswP1/lCul2sPUm5vNQYIfZalAA5d/1nbwJmiEAwhcebsZdH7pS61gO/pe7nowxqxyR8vwuZNPGdNMd8StQaWwVS0Dx3zYd37/HtfJj/Y9Bf+O3P60tI3QsSyfeAj6pTMmwZjUVyy5OXR5bjHg/+MI9B5tYz2rIF8TT67ESa4yymQAtnzO+i4BX8BtxW7rasNPYZIlPBcQNfZvwf+2YxyK3s9/OQmHm08YUr0ZWPbLRa6AgHCzh1exreLodkpx360+1vXoDiQJgLuycEVho3fvcMKm1JZmRhopgt4q+XFF4HQ23LoQReeFKKHvJizDs2/N7uBctGmetw4cFVGtmw2Dyn0cQJyXApax1GlQxNabxra92mno/RrzSXwLQbwXHaaC5NxLc6urhg0xBfzdzr2BQ/wPexLEnev5/DjVCA4u3KJtvgxqSD+Aop9G570hH9+0yd4vOIs8+KkaWAwCgull9pI+53nxZ+0httPLnJ+JL0CVEBxoMGRTiRwRnJamT0nGLceqSBcH5rjHSzknMGeKvAehhaDDDOZIN0pBdq+ZeljFl9nh9WWdwbEcT+r/jaG8S7ZWBcLk9vaW4v0PQmyBm0cJ/6+NRbBG6o6oCagB3NI6at2iTBiqalC0cdeSOKTmTUWsDAsKoQstFE/EaBhcOB0C4nPFTYEVta5GoDDodYk/9hb3pV+jsrKdC7ZRKnAK/2QoJqil/rW3y5B1L6WsIBoUHUev+8+UiqB70ZzROJQnVBA8JW1xtpXAxZ1eL8g3ih5ak2fZERpoFwlSwQ/pDZCB/5BpU9FiOyRlxzqddrq/q+8x0mTe6OKSqHcyWvFdHs3nxIUkF32nsbDgRLAvYWXe34MXoScL8rRx5whyuMWwXMRq1/bZ0yvfD3XwBYxXCY8LMoMkXQfxvIrnbaIxmkRwUnMAVAPrzepXDhEngV6TmqYGlW8JwKggGd49Os0KoPgUIEZYLrEUQpIubM3JQ3HBakn76OCsaSY078J5bjOoOQ8/tlw5aampuV+WQK2Y82z5lW+MJ+U4VGKY20SLjvX2bK3JKwzruIK0OiJocYFWPkG+vgsM9IIFIHqCwahPVnnodSzjSKH3H9npo5lZg66tNO2+M5cmgeHpcowasSJFQZ66UzTvk8YPG+OrAPgN6sBWYyKfHVMiVP0sgsyjQ97RK9E4bUpXr9u7A9auuI2nJFAc9EY3zjBR3PFdRJ3xyibyUByeNk2RXBMZv2Gef1zUIdTgL9//EglTJIYGDjJG5PsZsmTNkMC5kl6FiUa5ibdz6gvw9zSrc3yFWS6z3ojz+R1uYx+ef7iI3xfUhJzUghNEsMUOCvRyxmySDTnVPpicXVcGCh+WLsPmKajpOAc99pA2wPQhWFI1CyVDL2QmrI+4atKJYFEA3LtihqUE7JcNi8ffTpyOHo9btq5Ki8h/loQudpO7SIyZNufn2IKwSNucxEFBwWms3kEsiAwhRQwsH5zXasic68/5y7sQddwA773eBGU8IQI7ojZWCYhWS2/B3iVITehsC4KTscbKVawiam+TBEKlL8JzQ0R3TL1pAhBRH1qbmaLGngjTumjGb+afFgAI82yFQ0KfBQVldaWcwCD3TE9mDKhW61mLnC+LQ6BwOMbhC2qignhkMNN9bC7+ikegbYae3Vx0dADc5A+/KCTD8EPbm+bzBbJFd7Nct4PfGxe3lYALTIPkuDLswHd3XtKSar0k9puZxDlQblhIFo9LH4fm8dQcGtBvDuyNyur0sHbviyIwCnMWQzYBSLJT4r4CLcDbSTRECzrve7WAh9FJ5vYqp3OM9IoWrnMsW2YSTYw2rGYoaixVNQ6POTpmFvnRAb+pU4PAdZ3wJthniXCFZe1HnPqmcg6a11EVrQyiV7I6I2BYPesZVcDx+JP4XDwqqCXzrguQw6H7CCl0G7iB2hpmxkZOKj1sjJDfYXssoJUkXMlYWRl/Fx1eCay1QzoEVwzjU1paPybxk/4XBmfa2RUHWA6LIO+HwJsflvAlvK2abB+6+ECr9o9XLZccLyuJu3EWQes2kmJIV0Z+va+OvLl+Y+VXcjcE+aCoRaRK6hSMhPzSL4PTsBd1VGgYoHLxU9Vzt9c3oI3Dn4Hc4acFRKEMIGLsj9RJcMnFh0bQLbVpGfcOFAOAmUZBV25G8TxSn9gDvGcsrY6lqRdA0t7oKwxZZoD46yRQzieqIMk1dcR6ZPvSXoQeFyQ78649pnGLZkoN3MBGD09NvrMgK83CqWf8VioAjXi8eOpD/A2R+QezRihMz0ndih4U3SvoW8/jo0+RgvQo27zsx38G/+do5IuzZEWZPvu8nfGYdsaZU7PNtPO/djdbg/w9Le45IOKh6Lx3kc9rB/8bEUDjtY4KhG14s9JjTpLwNQmxOSuQPP+wdknRCqlxP//zcV++e7iuDzJgtx8sAf1JrdHmMmArtdRL3C2pyRelw2Jid4ud5pRgdkODSHYpPEeTmbXMkhKeoWi80SDkrDLY3M8tK9SOW96HOQ8nRGVotOhyDnRTL8X4keQ6qDFQ23tg2r+q932N3Ztk97gkkrCaGZgmqX8HkEkKzfTi7d4wq0AZ0LtepJrrPS502cn+oxHEtMr+JQIdhdmSY8EhsDsG2/o+Fs4LpeRFG51D402LlJ0UfpNwgXACjYsqKKIta7+AQj4UpzDfvm0eMpOmYdsxzBM1jhlHo5sUUbePyPA5PfsD72v6F7CWK50KQi1j2LyPqPfyX1nF550gufhhuQRkhc9F6xwUEr+h5UNnzLbReNSN7bJpPzG6icxxu52eW0UOWnmpAyRjVoSD3gExuIc+Cu5SmUQR5UQeghPCNWed0LNhyH6WIX8khAzFliTX2LMuepItoa8eLPG3COWo039JDUYGLAzm0oW196Fm2g/7eFP0EpZ3GdyY9eMn4BE9bDJUucY3ERV6n3Y+a2gfbZvaT74zkOSIQBNfB96cMqBbsia45yreJIc9P1/5nZX493W+s4RXE4tRc3wnNFV2rYywPHemc6HyWi/40H/RC82P735AJZ2210FAiG+68F+0LnATyiWvz5JSit3MvRBpZNtLoJe0G6n8iMUgPJREGQTPNPyxSmU0MKlpfdFwNg80DfSkvocsvMGkWbNMsjas37DYQ0I1MbLR21p9t7FpFsAaZJCN4LHGlLHFVwWwjUfu0D1fLaQOhf0GMnbqnbHcvjoHIJghSYYKCkFV8eSZMwGXazCchtqq1VLKmIaAY7++tDK4Tokr9XeT99IWBCmzN6vyYgjS5MXZUsErFwDztdSpnuZ7jWjxPkX9adgx5QsKv+Xquduy+opUogaV0f/AH0hiJZ/jqHOGetm0zrXq68j0F9y6bhIJefe7k4FYQDdsg1fO2ZtaqBxF2s5BKxoTVcZ4853loIijT2UZZ1sHP8c3+2itHZY50RPom6WE5iOOXGyXj2qFd0qWA80KJkkwo0wbWyaXAXlKmY7q5OoRglTacVhJGYhl5GB74HGhh9molVGcgliU+N+9IAMEgd2lrsm2RjRKid3/oLun641sYMfwye/2lSI8veyIqsbNWVKPyv+3nvVRQUbGvIpCFrVqmMdPGc6yK8giiVIrK5o5eX+614oeHQKmVZo9gbQ8/Pin82WV/bQMCS9XiREteMeHcFiXQYrPPxnNqzsl3Aktf1rkRfemFWQB+zMuZ+oRryJGsDfx6fNjbUEgMDfVcR1u4bOXADfDDIeZWEqYfdekR8ZoLMIkLgyoVUIS+KnoTclBCuh3/cYlMIwaudR2g5E5sRtcUGwTLO17oPAIlikSM0iaUNs6jNMR/lRWqXibmhXQNIB/F16+zd8K9KZ1OpiTo2LcYDU7Bv9vUlemasigSwpf9np548aANmCpHP7hA21PMeyOdChZAqmxnBf7oDkueT85hAneQRSUQkQJyGZmnZ9plZsTxW3JdIGcG8eN1I4osLVqKAnOP04QdX5/sspkCKIv8/WRbntv+R1Nbm9+s2fZ+ReTcSS5dyvP/fyDPHcud2L8P3n8kGnb0wgf4Vl+lt+2vdMBlMv7moZYlRNPoG9Ruh8Bh09pPHyS2CBAaQ+gvRVknCPB+qgDu1o7vo+1N9Ya1VtIXDDFSmu8EYuV+mvniwW/H+UVcQ5VbRlhr0AL8G3AghHhjLozALVWQ58O8SDQ0ip5a8qTIywrEYkDpapOlVl27ayuCDUvVWNAMuz6N7WCTl7DmmcJXkBsO1iJVsoLXFftW50PjoQ4G5yAhxQbtCokYhe+hoXA2Zya/Tfu1BPogb5AAdCENkU1slppm1VZu4Tjaw6I1NRk86m23qDzMVL8Vo3pYnmNlKBm2qd+cRAxQrGPKEHhveOwQIrhlwalRRYeRCxA8V6fCUNxbnoJvHqLsSJj1xNURPLnOUAz1FvDtyiDf+tG7ZIfzHt3ZsGGGFW1LHyg6uFCse2krfjSPoTmPrTyayQRL46xLowq8+4SPx+ipYLeybl2i2krWjWJtacZ0BtOKwCuQ6Pshf6rxL+jM1ImNaw48jeNxY2ghKBUuo80IYI0ocZ814u3YI/Z74QKN8MFgTIuU8hkuGuLb57vwZDMaGrUneAZyeNS/+IzPvxZRTkrMM9Dk0YYakJqFiVe1lGm3aSdH5CQH1ep96mhOzNwp9sdbof6Zli4/KRyj2ncxKGieXG+N3osCBdgZVLpof9YTVuuPlcZ6nSkinLa0dj+vhaB87BiVONaVG16dOO5yYNcG7WKaSapPSnwqFfkpa2iTEHj6Li7WUx9FmKnwC3q1iprXjGKlOmXKo8fMZITTqvXgRib5FbkQPibC60AAhCb1WyGFy/qUYEMTu9wBVm7kIIrTYzwTF+XXs/hh025L1S5RCowT5GloQmP2fraCCfqmTn6F+DZGL4ZCqkWZdA6ns11Cmr92xQziwXNrIoGVpKzaUCeWQIa3JuihhIg54cCvik//ymj8ZNIcuA5jOAeGb6Z2bgIfQ8GYsdjeqrTWygQ9+SyzeWVGFGe1cwExUgOIz3//hksfUAJJrSdSEEC0UFRU9pXFDFkFEDdPHvdrnDYUw==
Variant 1
DifficultyLevel
434
Question
Barnsy owned a carp that was one quarter of a metre long.
How long was Barnsy's carp in millimetres?
Worked Solution
1 metre = 1000 millimetres
|
|
41 metre |
= 41 × 1000 |
|
= 250 millimetres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Barnsy owned a carp that was one quarter of a metre long.
How long was Barnsy's carp in millimetres? |
workedSolution | 1 metre = 1000 millimetres
|||
|-|-|
|$\dfrac{1}{4}$ metre|= $\dfrac{1}{4}\ \times$ 1000|
||= {{{correctAnswer}}} millimetres|
|
correctAnswer | |
Answers
U2FsdGVkX1+s2DfbkxtGFTjmpy6WDQ1RIeq5g222p9u6SNZhUb8AB10Ave7PTZgVJURdoN/WWgI2KGKmhS1iXmWp48+trtEQZcGtE0O5wzaQ2ZLQo9r/0/li02emN6e4oZ04/9muN4oMGN05jRZlkcuAanVUGGKoxtcFzz68vIvEjuEze3ax0MPJSfxMQz7tjcI3QNUjvJeJj1aFMTli1e0gQiuJ52OxVwkNVmRoLmvbJkS5jZyufkWVSKaxFBPJllsvYkgs4rgm3UYt6FMpBPDwACSlmHpKX2Dg8it+tM9C3IoSW0gn2MouegM/3O/4QVQwIdY17pDvASPqdNRSd0bbf+lDh/9eEx24qoWQun4nIYKJCBWyXiUFfWBOONIC+98Ype/U3H72qhjNjVNp7PQ6CJ27pftbC6dOYSKIIHb7eb/fd3qHjZhIhc8XA1hZUCMMF56Aujflcww5bXgcMkAJpmbXz4Nh01Fhblf02Z8mRwVCJ5+cJ5plmCkNN6r+CEMWcIc+1OZgAg+d8tmvq9zduTl6tgzmF8GhvsxjqV9aguSK0soAGocPn6TWYEnUhfDg17LCk3M/IjpM0HWB1BV3g0BHP/KqSHWJrzeZG3Ljwle6WlqoapFXWLf7jZ5q93MlvV0ApfCtZigPk/5Zx/0GgV30sjowWW7Swo8MN2dL0LN6e7c27rFyxBKh+XL1+9jLsAV77+ylU2Eji8lqzwfaB4P5Yu/+rVq760lRiafBsSBKw+2588b9nog+tZw+SIJMQrnCdQTQhux52LZWmRg/R2hGoWMwVANCyQ1GIEY6LSa7W617woj1p32wROFuAzPZpWngsPUEvTooqK4QKVqgUmr3w2SniKelGn9dxktvWX3iTSjnv/P+NgxD9vbraMLYJF5GQ+GdxZMBeXo1km93WVmTw/7lBzWLbDLCMi5j6bjC/Yzl7FOITPohuFPV4SPO576//7CvREbpPy0DaXcEx6qMhS+NA+CA3RphKV8+5tnipyzJSKg5tBWTVh+qcCfDl3J+2R8nKQQql/psAaMFj4xR4aHWoxgXPIzMX9Uk0Yj9y7ekb+K4peF6V0AEeW+B/xnyn7IJKlz9MjNio82Gwwh8MlHCwLDh5EqTquVOhGkqBMRfSEBFmPLz+KSV0piLJZhD344lF11NFUtzXwrK6uJkf80B5FedYz+k4xqEp9+AnN3ipw+uwB3AxzDHndYIPtHbqV5sHnCie6CS9z5VnOc58abdz/tI9J51hce5yPRF0zgQI9y+PxCPqQSADRAxbbJQuSLA6rP/RLiCQE9HtxFfbaJxhwq2UIbIhnEzefmiqAkwo1a8KwDTTkdMCO8MyemN9x7yzDeKO/lhGLT9BXiFkRsC/lmGmneDfwGPG4i0YcYZfTpiTb9WQZtswb7EqwQh5Abvl0vHP9wCV4lzk/tG9Og2LqiYZcda88rZes1WoxYRY6W1Sw/ETcQ7FIEXvqSodxGXu+zw+4VGX9bzczl9hpA3ymp1Qe5Ox8sLpNHfleYkNg0rKPKRJ2bu2FgtGok59l6p8vbPh0JyTTaLdiLVTmmfDgKqlRLpRzWuTDLkDyKEw0A6+KCkKFY3YWvb7+beq0APv6uQieTnwZZblAtt+kzxs5tNBeSnCIkuddqNhNde5CxiUzAW3yo1d/5HeOXOp0MOntZoXF0h1i46Q8hxDJCqFpg+JPou4WunWXdJxyyCGadDKKlNqPkDZnefWH2EQ+XV+lea5b/N3yUuP96bseze9SG+g9N644bGXbAbyuXu3I4GdgF/UBaLGq6SIQLYTejw0vV1TNnJC8BO2rfdIA10thuZgoqV4+7md0CERzoSbjHDquV6yS2Ougk1NuGAGG4V7VDoL08tFCbsFDm5nLYGpRrL5XnX5QvIgRKSqZnTJymabWYjMYpkJp9PyCXmm21oQhdiONQ94IfT64femh8Bg0ObQBSbGD2IXVcHxTbL9a95otq0ytD6Iirvu8ZjIymsJseYApfSiX9aYmuXXOqNqROmVivkEDfL6G0LxoWCzjAHJhkBNw/qbuW+lS3Y3uxL1cA9cScKu8fhM7xBZDKEtfycVeyOhkdWYasuXrKx41LATMLs0vf/HtzT9LfdJNqo0Hc6EK4xRhtozEGSW6o+eZw0pPhvOMctpkblFrupG1oSQMja3yfHIcXdIh+6f8mUmT2Oa+pb3MVAi4XbangascVK50ih7+gSDgslhXtRWDJG6JPPGXdwQmSALBFQ6PH7O2sBKRPuJTr+JcF3MYZbVRQciGjPWbobpqxCsMstt7XSTRQGCXrdSUvt85rfajw4vEXQwiGY2UkI2DXERp2QtdfAA0gFNBMdjcIO8PmyhpWTqD16Ug4d2z0injrzu+YVW078h7BIZkLfkiLP5rbnQBK3ocQxyQSL2T2S93Pgb73sTSskQr27fP9hC6shUJau/q3Dv9alQO+qSgscXPlGCY2V2fUJy7N039ePaGLguunYrlZP0gGk0x1LRUt1raeSRsbazT0HGSSJgBTzmVi88lpYT4k6csnIT83DaVGHrP+XJigLPnx1klKYPnc9vpy/7lbwwnNSqeSiWdqcyqpVv3aUShGkOSHMwcxuhgcA+fhr8qNUeLDN2YQwI2tzROQP6VrlV0YSji+0iK55B5dlke5Lb7+sER8e15UqrF008tYSNOvk9r/VL6ncG+SZTHwiQrpL9VouaJ2NjNzt5FzW8yicd09TyNYCBjOgz9bO6RuuxGovNOQ6D4a4BfD6J93LLGkdC825WTuCzRcIfOd9SyvSiv9aj1QyTlAQ96nbw2gl8jb3rQfH/4Fhiby1J1908q0TV7QWplwwTVguHbAdLAJW8wEnuZlfic5dJatcv+KiRvS5yfQ8mspf5Pe6JdRYnMsTG49Sk6xvwkLmX1q2/Ug2EhTGRdWXIXPlqjNPp3QGr0JQ02vPwFi3FKsoJWQGRwejU9sU8eH6yVpCf6/FTRLGvnbO2gT6/iNJcSbn3KY//b0YajkpX23mtp+Ee96EA/0SCak/EQ6sqBbaEglI4/CfVy/ojf72+81uhFW2k83ztSLU7i4JPT6hrYp9pwrqeSTY4R34l3gGj1IWQjpNAYG3yFGwVYEnitgqUGnQX5cdEmuEnsYngYw/JDtVOUaoVkGvzL0/ObkGrbRVoV3eQbaOyeS32uD7bb3Ic5OuwJ6v6v7g0RUcsWVb6+mHuiDD7msNKilahvhk8XF/rMjO7KJbSD9sC4eioisRxPP3q5tHl6YSxtV9IJmi0R5LFctWJ5qf4K5mFcY/x7jX27OL1tP+E9Fb0LiJkgF8cIxkME0AQT89bjxHcVHjKEArxVQooAw1FgMlMVLRcCXktYDmh+nYihfzgGt51QhC6sOtka2JHULSstbAAWwHuGWwRb/p6J6SyzOUz4BFLgQq5Itgeh5aSyFu5RyYnnPIcG6gQdC6sYkelty2sDjBE6A00DbNd1Acfb88nWUur3tSnc1dvTO6uZcMSoHnSgcQENpDtpqmouraWHp1RpISUQvdsY5k89FGEGgcqv+NoHsvB6RO+Wy2QyfEFLFk6hTlgmVdn1BNKvf6dW73QGUMDUjaCiBJc+XEm2rpK+J3J5VG7QDlv0ZRgp2VjBiUWof52b2DjFT3bi9GzQEeMoob/KsIjGl7JDuQH7JW9pzeJop0krk2+dLM/qIwRh8wJuyDqzrhjjTFEQrPDNxFIRmYQli2uYM80aBnumc+rYUCDaNwi7uyHKJPLQz/wGVeCICK0/GHhY5XYGw1z06uoFMF8v7jnb1ZwFabVwGBC9R/z7F4oRsBo0qjxeYEJbmjiqQaBKpv/ST++KYxQsBVJ7rc3cuysnedes7EoXrpXclyOMzQ2o40+bMZAT/wkkayuUbcamJyVFLYFm3GAoQLwsCN9c22cXUAiZzQZCBVRFwMwv+I7KsydLQ+6JThifErc5ffng1qTlayL2OTV9a0lV7rcBWZ9wnsIkz/aHVLWcID5f5/z051+jwfplGMM5t47tcqbtS5KxSq90rzoUkbQlHjYJ0op3fHsLa3tveqjGF875FsShxW4q9zUb4FKiUHMsO3b3Dry9Zo4KiuBEMp6ZfvD17M7UWZNWnSqfM+X1ls8OgOxoVilhq8MhKzk5O80Wbi/stqlrpA6dzavCFduSSwFm1dBeLevY+kzCSpZ0lV/CtXdusdW6eJDPzbk7CLYXB3823fKOPBITIR9t8/pxc8PkxoJvVS7GQRpv2tB8L2SxojQYz0Dz9TJ5j3hi3/rAqbmPDtrNA9WUgOHAzlz8+IZt1hMxhx6T8YTLUAvLG6esAXbWJphciWExyC+MIN/DXEiUxvjTdcjHBU8JqPLA4kPNCjtL/fTE6yK4RCTwBglA8qO4BWFMF9kYcpKnftlF01RC6pgPMszbgedLJWar4uSbEG5oed/tLP3nC1ynX9Ln4VQG4Igha8FmYHhWdJ3D5Q2RaByW1BhRMufNyzKjd3hUUA7SlT1KqLnlaT92MxxUOpP/ZfUrfn+3Gt2GM9RYwZuC4Gps7RQBWvP2prJTgj0yELI2kUtsWqk7XTUoteWKkqTygyqssLgcMDMkdVsLkbH7lsR0tBBcB5Dyb4kUJWBL4nb4P/CMxQ+uZ3bZkNiISZAOhx3P5vS86sOR6tBgodEPCEdXrG3Nmt6g35X/gl2etsP8zO8CnzpML4ICrEpLBlKDQcZomMs3QJIP5YAmco7T4FRKO8Sjtqo7nf3DFmCGwbMjAyUbu2m4AS91VCgeq3o6zuv7FI4B+FqODEIrf1VBUvN8amTMtoP8CzfPbdUHCf1DdYUNEcgj/45lHSH6n75h9U9+AA1t5f52m9ag4s4Vf2DradA04nsYwIyi296y+vmMWrWmafWnNKTQp5RIytV3jreX3b37F5xGqaAFWirWidYjWNN7s5cE+yBFVys2Z6kEdsiZt5dA9Cfwdkv7Jv2Rj5ZLTePHHEixeScFLNMYTvtIacao9jSms1bnmLuJMXQRUX3DzFDylqyiKUvuE2reH9Nj5GWQTG0LDoXUWXcrMMRx/6stBtggd06iN1AAQqNwqUMaG3J5dqOumwPRerr0QYTVWnT4nPNd4edBW+H+u9Gx/JjywgI9D7lePH56Futw3F70SNfnldVPW96bEn2VetSiVL9s3fkixrHif/jv0ubo9Q+J6d0OziNWvmW7dTcRNCclMJ1e4n4PZMZdQhi6YMFkl+4c2MLpgOkAyOcGbHpj1PCuO6OKDr
Variant 2
DifficultyLevel
436
Question
Harvey missed the bus and walked half a kilometre to school?
How many metres did Harvey walk?
Worked Solution
1 kilometre = 1000 metres
|
|
21 kilometre |
= 21 × 1000 |
|
= 500 metres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Harvey missed the bus and walked half a kilometre to school?
How many metres did Harvey walk? |
workedSolution | 1 kilometre = 1000 metres
|||
|-|-|
|$\dfrac{1}{2}$ kilometre|= $\dfrac{1}{2}\ \times$ 1000|
||= {{{correctAnswer}}} metres|
|
correctAnswer | |
Answers
U2FsdGVkX1/7YJnRrx9OUVp+slxhZz/sH1NOCAlc41fyMKGT5fsdCqysOtOdmBWpiWzZVkY4+KDbKX+V6JFTA8d/p6XNuj2RB6lsE/qUKe1gaUCKk2Wg5HBYP9Ngk6ojVAX8pistxfzwMkqGn1JRcVvlo/dBfNijtm9IzMI00B3l37CkxabBZypn378vBXsZ43vW6TQ2HEIOFRbTofL0KMbfp3TxJpYnTbXKdunIPsx+q6X2Ya/A9p3WixqboCU/GNoZ8nzt+4FBFdjFO/c5q2zwxQfxqHsC5wV2X3KE55MJZpTEzDh1ZAT2yUESi6BNhDt7rqJxDT4OxXKHBrzLmBQZHvtxa9BWexJwnB/5Q6ddX3qgTECrbC/8wSB0smIg4ifC3XYkS9ub2h0+lJUiVnU7Hpogfl0IrDIvCLq7CM4FTIMxhjSQdAIWDtUj5K74tdBM7ebQxrjY5m6dR3bVPXU0PQhM8t6CcUx3XkDdV4FAo09ed/mRHkegnvLWRTf2aAwm3J7gh+EAlI87Va72fmgaCM21pgrELJiSOxpiuIiIaEs9phL4byo2X5GIQMi3KqpWBGGjbF4IW9yYvutZMQUXC3VvlOUDkwNR7YBAXxzZUha0RQeLSnW3EYh6ueBhQ9wYRe1vDSAwoAiTBijhINwZz+ocB7ND+D+5KvqQWu7MnLGuy096JdYFLwLod2qiNkXYxgb9Q5V9saXFfA3DiQz2fmXMVKh+vZHxu15zEgAW4ATgHni+ezZLXJpxNzXbd+D63QgK2JWVdYCQgKEU49hKWJ+iidtXErKlSfEDyIAn8TsdNEjEVv1DREZEUyC4AZ96Zmx3i8w4Qs0KEaSeTa7R6qRTI9DBv0cFLMxCrdcaDVcj4JxogrzzXXR6Xh4B0ArsE/RE5sC4Z2Ic2KfqI4toKQYA5jNnEgWJ3aOCNpCEFRAZvBsgrENqCvcIsqTjvWsGhanYO8V3l0hFPihCvMdWbChREzBbGaXtIWejtY7uxof3GJYA2Pqwxy//HZNs3+yaN5Mlv0K8pdDLO91b8VStENRfoFJXLRF+Z53nxJ6I1Ff/eA/tKTQrxKTFAz+eDAjgbmIxtg5tHndXFfpGqcn8MiqVg/Dvc93lDK5M3ttBJtA9hIj8IeyY7HVExZKo+AGymn5iv+Mkm0BXHhdngmS6msFSWzcaHWde+LA8pho2/NGiXn+wMHqkPk25QQplf4Hhp3dBo6TiogPF/0dKHsl/6Xmm2/pmD2MHmV8gu6xeXcTDsyY41l041neBnYwKXSVbCPMLl74ihWEoQz7tWNysvgjzEPOdNrbUKZQhOoFUmWK+kua82VMqcteVGFjy7N7OtrdYX84A0OqC+zTDOk+tySgi6UQlSHLtfdgNy1qr65tLknJVz3x33+TTlA791d72e5j/Lzv1mMmXRh/yUKIvVVHJjhAG23DQk6Z54sfhKSRYugtfLyGtczuB496uyxWy6vMmgmER8CAGVc7NwKMNEia4PFe1TahT7QSK3FSx5cljPib7XPhfLMLT/j5n8QGRCs4xhHMH1ZzpHf2TaMrrAWjj/ygIkwdSRdZu1dgjDQBlHYDVdlUOYPigXwbdaSEkUp9TDg1Ccg2l9Bw5MZpyTwbGDdpgSuYRqTCSptWOodozYLA7d/C1YcWJ45OrlvBq14c0Qph6HENGWpdiaTp+m2eXyDMbSuXK1AvMe896Ehf7j+RzxA9oqfkOGNxp7FEeRhvSyXbVYIWddsb+vHcncpjBRSAfHy4cph/FS0oJyHXXIUJcJeYG7wzrKoqEhLGSrSm065QG2lVnp0xicbET1U8j6NfK4vI9LlSWGKq5rnbDYFggEJT6B5lpWioIBZM0Nu0sgVteiODzzGaFn6hBtHMlDxvcJdzbp19OuAD89YbQ6rwQgDue4bVKTwaZf4M8hOQAo7w2i7uVBjbIU+tHRn5az9FRKVQBL9oK2JUEi3RAjckG12TU8L1Mr8ZqKPRrbZ+yovS6oGKjwbjIeM+JixmAv/UCl4Gs/L0+eYcniWQgleAQVD+JjVchePkcUsXh7RJsXOkqi5spStWceXJgF1j2INBKJcTy/obURIURBI/5i/gk/B/CQEv65egOWT68tfRlEPfoI3P7JUlXRPIcfVs3gpyyvKr4u3fu3wgGdLfjtcG2PEQUn//W34LXljeUspV6ypmbXu/wDemQxqN7K/NsDp+7yV7uKFdhqW521IIY77A7e3PIM8OyERxXHvtFDVs7QSX/5Kgx3Gp3IWzFtXhbnu61iUBuLoIqLlLfRNUeVXPJBAu6sQL7dSqci4E0AD4y4/hlgGiRTmRdA8StnOgoK1AXIpTjUHAlz1eouVCB5NvFJ6UWFDj5I5VBpJ56m1vDTbwPid2aIqDAo7uXO8gK8q0qvvQJVi2/YSDHCjcXDk75ypBEUSStSMO9nfOM8jDDXqHMlsFaluQPbMgljadWQY1CMHHO1/WXXDsvUCxil1OQPOyVkxUdDM7u/y8+FbL2Ot8DyDe+WFUlCjpRuZenn6FAG7G34YlIFwn4XwAdXyH+i/l2ps7s1M1hnVgNe18GtXbqIttRmi0IVQhS94HNYvPM6FDKdPLAEKJQ4TUG4AEiNkkMNBPcVWkGzubN9g4xSuVC0o31yHklt5rnrMNnu9pfjTf3f1sHn4K6K9Mi6eX4uLhVgNZLEI/W9SmQ+L9lhVZZ3hMIbnJn2Hsl7gEk+n3izB3HJrFB1vJ2MI1+jThi3p9HFBZxzFkzwZI9KTavyZ1EDdQrpY8vqMdMIaTrnQeQkCZm8WfUhXxJfmJTWlpmSiF9exW+K8DXz/A5NIr9Vp7mkzmJDrebg0OiFJB9s0OBLE/bqIxypVbrZsZV7580HjQfAUDe+ffTVS13iH5Pipgm60EbzLafUEC1YsZYPOw/QJXVhb4A0iyJBioACGHy0WSHfKniGKD7INB0r4PIh9+hZH45r9kGsx5/zYJf5b6VkLJeO3i6S/jB3CCgAp5vxLzOKD+aBKwMr2eTfqOsOvJfhfbcWV4b5WeplmRy1YbwmcVeRaGP5+2K2o5qfhcPrC55tZPdVFMepqeKXMiP47v6hX5g/GFujsOaKGug8Zhb7eQUtRYEoGw/CDAzSmfjpzkiRv1X8MLpasvs/WMcz97k4DGu1F+2VN0qrI+hw+rJf+ehDatlu5zxQLGBQZu3+39Gp+LakYdWq7/QcokyILxiyU6QuslOSkwT1fV3xLrI4fONZUzkOa+sKoeMK84/GyWEn0fcugjATCtxMMvOhVb9hX2jUipRTrdEavqMsPPdNY7pDIqo4vKBUd/Vme1NoiFKnA7AOTkd0SzjNf1tUfVk56g8C1UsQfu3iRE6KE+i41cmZMJVcAfvYrK7E0Eah5jSglu78z6hM9e4/oIyf/TSOfPvIctTw9rVSwyDR04JYSZOTSLDiOWyDHpDtVdxhL5TcbDckasSJM/uEoJKHxDGI+Pizu+yyj7jAMMeGJnieJt+J3DzfObh/aPNgJy2qnc3o0ECQxnjXh0gOzfoQ9WTySgV/yzgv++KFBMa0SFwhsZUs5PfmiDJVJOa0xBW4xbVOFr10H8zU3SeqAEq+YKgCNWUrIEmS58IhM1elwBvlQQP2yY314BeMbZeJRLx90HhGQN/C20jBLAmjTbzeee9+TN9WdTO6Lmp4/JvCvG4GIpmAo6oWxkl4GBkrLmAIS3b4I3QdJxqDZDbHqowxypWo18hfLKuYFxzfoLw9HnzfH439JyLcjfzyWk7nqvruXOvPW9a+UbCdMWVeDrpqLUkZHuL+YFNibsJG882/QXqR/jnu9Sh7R1eNPwhNx48GT3nq7uPxh9Fr09DbQeYHOtDx2j5GeZ6nt0dES1Yrn3v223fT4l6XivDgvCizMbRPBbndNwXvqE8+in9pwIjOe8/g3xgzxCbflQZ1hPBbDy3vivWV4xNAP/Kvf4aN1zWHIBjUMUPEvtzT+dFiB92MTeh/jHZd25nl4PtEpmGfP9wIFZNRcAFt9hBFDnaY1mu3Zj+1SwjL51rBlwQntAKLekk9jp2HWOZtsPnQ6Tpd2PcZ4e5HLyXNQrwsBP4qgGqq8tZnhzUeAtmK3z+PSalQ2qFP/fr2xy/TKybrnUG7VkFrkZWJtmkKiQULiFU6SNwM6+NX8mBg4z2Sb6c4OHJy2MHYQs46gtq4LZSQra8U/KAa0mzzMkU7nyDEDStzfQMCzd3h9d3FgGV3kPhMilQKdFNjkIINZyYUNbkUMZe3uXZunVgLg3mMuZi4qFitF0CFDyRAfK6+yVhYMlr2UwQWLFpH5QowgiGbN7lRDQN4qccT8tG0jseyelsoXuSzdruILdtv53JiYdjNGN4KmuCdifCo12w9hBc43jCJMuwyosdOW5qT6NizjLRNw3uj9RJZ/wUxH09mUfSgevRZlQuje8TaUrZtqS/4C5/cfg6YyQSlb4tAkquJZUyZzRP3Fx/aDx3NQhvkG9i79git805RZj+mh7cmggxUKjKVrecvtBWdenSrvEcayoXUZmibEGVKn9fFtPxxASbNNHN5K5jdyEcNHgsIyShvJPxgpx0ZLNfzwnkP5xdqXsV0hVIMIPcqOsI2Lz679WLjkRkpbqZrnF70kCT0n61AwNHXHObLRu1+6KyzFJJ1HxmQo+U1f/cFmnhV+o2ojgHSbngiLVWrxOHMa5U+5vazF1TiEZkU5gvxYQfiLzDUAIld/sM2oss1gBCBGRWD4/HTS8Hm9FiVi2WWcLtRvVgkb1o8wNFfvizBAXqQhK+xZ2kkRLWT8+Ul+Nifo16lcmmI6bXltUnMuihxJE4PuoQPT8IdpOcfEGQ1TVbgU0F9mHDu1T3fRVgP4zH8x8sd3wt862neO2XSejFE762fbVN0Ohexdr7TznqXJr53LovLi+4/eJ3sCSzQH+iTj7RFDZqz/uRmiUerXRneTnLVvlnLz71hetylIoq35BQSAJxPrbtlSeWN8CG6X/xdNCwRo0LOGEPnY4Wdx5BpTn+JcR9yiXOBnflVz58tAIM4Nf2GHl50X0ze9RI5Pnwwt9xlktZ/qF8QeKuBFQN+mkYdWF26JtaQPU618Sg/m0P/Kdm/jauHHHiUb7Xm/ZkVeffdTxJFnG7zaUfAa7t63SvZcDmbLC74xiDkL5IR8F/A11aC9IvTi+JwQT1um8outZHPRIIZM0Egbf6zO4L/bK7nBs9eGNE0jnVKqc2klR4stjiqy6oKpu788ltHWDu8eCC3lHx2IUgt/b6WlMV5pyu5Fi0cVpn4EcYpw4UNYLZ+W3oPzL3SXOCLUyjgpthv+FSne6YIFNVkMlsBr+cU+sDAdSS4UmsoDuXftq3pgTvK/CwdVjonsy5gZeRAEmOWNXsfj0Kxt651mKtOacK0dpVA6a+FPjm8U3Vrm8jgrCYyBZqb8L2gm6wYcSFlX5VN65lHIBFb4vkAaNpalHSR2K9BOHXHNix7e6KpHK77mZ0DOK8aZboYNCr7PPgO3nL16aZDAyC27FWNxsGd5Ph7OfGHjC/WGZDcS2ROLVuZBwsvRBdUVpgOlDiO8y2KCXgKhZU4beTwtwh4Mon8IQ1viEiA0XMtF5C5uJtIADAL9CnkyEkQMCLNd579hFpUPHFr7LX9zLwivUSDMmSJLSYhwNj7UlBdbiM2yvipJzoE/VXujvCMRgkOsS80hPovJkWpcvap4/Hgp9HQberrPcyBBMmuDd3eGzkhQGsAiqnsOhKheGw48yJOsyAQy61l+TfBOqSe32iAJUr4qqZXw77H1H9RKVTuRptXgPv6CrZj6n6vJT7jWo2/PcMgrY0+Dl0YjxHzx+rj03DQmHP/OOmqr1mgM1NxFv2NuC2ShcXNUC4wd6kDiqTXSRcKvkB8r91a3ZtHd7CmfmnanMPnYyJEJrncgG8VX9YjvXff86+A9hLDoRef1JRkDEZsk8GL68VPx6pfs0JwAOW8DNe8JuuRl+VDDeAZJx8tMaJKc0kbJo8Kj3pRutJJRuKSLYPdM6svXnwxg+nwT27obtqbznSEH2MhQgk4wfhslas5Zi2c1e1DvFiZ7cGksk/uzF9sHxkDwH0+ta/XaG8P7ao1wEwTM9Yfsv7uYccBs41i5Z3dH8c/3+VMJMalECfeDSDn/T6B26GQ/BXVCCmvv1ofUtbVoe4Z2viLDX5sv3VjmgkmzhCH0e6K8vHN48gIwtsCNBHvPgbvEyRVDQyHruSiipzfm/gelqPYqYaEsfIU54Y4lh5bCTXthj/j1SdQLAWIxYMUCvnlRtWvurOcN89cKByFyOfPaA1hFv3HGTmyEnYCbAw/+bN7pHHbpgQVqK2sn4g3+Bm1dg4KhaLGb90jRwYeclGAvoq2v2HyZShJdJDmCCb4ZoQosisi5udGnxWiyNRruoahb0w0k48h6CL4AZo+wSjrWINAcU8a8dfZ9m/nAD0s0OLjcUmwkJPSssxHtM5MrGtn3S/i3pjCpkD6Dl9P/3fAcqIakcJYTvH/MFzI3+BFQPl8Q5S5L4Bpd6epyNQomxBBt70yiTUE6Afv9tpzdFFiW8s0kHCarzxe/6HaRg59B9eb8AgCtaghgGP7YoUC2APO57BeoIJjhJj9nbo21BGOapPc5835X9M99/nfphNh1gSNSlFQ205FJLq259PKe/6wEabXSUTznRsZVdJv9w7Jw10Bgy5+dNxOZimShHzseWzuCia7Y7eaie1lauaAcdSVwOqSpd9WQh51WUDIrYVIJQTyaglyp06FNqeCAmYo4uY1WFRxBRJ9GaDRBAZkTkE44oKHSpS3GbPIHtYCYXCG4qlr/yRd0/jOx1UYi/7DfAxnhNkXETF0+7hIDrwdcW0kGxDV7M0ffhtV+xG5rZvQ2RcfejYEsT+culCrpKHQnZv14wmHPA+KbrYMpB2JSuP/lG3texG/iT/VDGduy7oyRfuGYwx2dE4MXzmwo9hz1ZIp/pqIU7gBP4N9tqjCcjKCSspdMXvdAyna0yrE7GSqpmnNfYk3EXN0Nf+NIBfVr3/+BvpGukIHqfwenkDanPwoWZzD0drAO34grEXXjVIhnleUiRoaG8ZLyBLvUeAQQtUBuxBUMnj9Cz4tcFQg0gkWj25mtviSrXdeyk+OsRpaW3h4IiwCsTHk0O2nVeUf4EbhxHRyXeJc+0HLMO1U2HgZXGDmjG8rb9ZuJw25roY4YKYxJIV08qZ+MotLyBwSitZLYLisEtCQjmQrJ13WUbBPch1/8rnzP8lSv4XlIaLAKK9nIIU2Hz0rpctJi9raYPTqYHChmd1IMC5Uub8zuXVy7yL9PrW4y+euluPQ5HQJmEItVWMC1Zj4iQC6jAjGrxQChPPFlLDw3kjFrOfiq9+emEJCO6GLkbi42zSxecTXY3UBlECJp+idMvOgQYBJn72H/gpaNsWtL+5okdGIsKfi/zrIGEvCy4y4Q4VLJbvu9xK145Q9oOwPLhtnFp35cK9wpbuK/AIb4+/7mzUQZgpQTwKk3UMF61PJvO83Rhhsm9wUbrVil+cslcAH7G13bjZ8uAvPm9nyw9amws+6Oj3nOGYX5/kvtIx8O3JNzSX9fmpgKdtrc01hH84+J+GBhQta8FvGpLjPah+3CoLaqbWVGz8mr8pfh/ESib3R1aslPZgIS9Ym81TL657BffyKP/docIcBklPj1w+3zJGAKLXlRKDiKU8TyZdnYiyZjlPRJ3JRM3heEkkYnGNaTjnl5iUrZR47J0ibGm4y6MSzq0D+/TGUMbQ1fgp0YR9zdeFnJ20XktO+AwoswJq8zkpZ+z9ui7QknU+uHOSQR3wDSsRxWpBAh5SZdVo50KRpHBfePV516UaE/sJOo2fIWgX6HOQX104i7ixGkKkMJbIJaDGZb0xnkI7xjB0APf+RMi4z7drz3woOhFq+uD675tAF/aRrKg+hxlsQt8mckKpeSbVk3/BXeCb6XBZ8y02tQCcTOgROGhNAxPEcivUnB7+rXpB4KfPH0IDUPfHHd8mxeI2XRIUCsKIsrhoy3/JzV2sbZJKfB4hmeSDPYcOXYTcNialnhlOROlig4CvAjJ1gXF8w3SzCT3wXquusv5XqQx3j7ewMqRFg+wIicnpt8elZYvpOTY26qjcQQrxJvvadmrA+bVn8PLICodlrvi1++DV+yNQtoFR0k0FX+w4q6WKWSq23AM=
Variant 3
DifficultyLevel
440
Question
Michelle bought two and a half litres of milk.
How many millilitres did she buy?
Worked Solution
1 litre = 1000 millilitres
|
|
21 litre |
= 21 × 1000 |
|
= 500 millilitres |
|
|
221 litre |
= 2 × 1000 + 500 |
|
= 2500 millilitres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Michelle bought two and a half litres of milk.
How many millilitres did she buy? |
workedSolution | 1 litre = 1000 millilitres
|||
|-|-|
|$\dfrac{1}{2}$ litre|= $\dfrac{1}{2}\ \times$ 1000|
||= 500 millilitres|
|||
|-|-|
|2$\dfrac{1}{2}$ litre|= ${2}\ \times$ 1000 + 500|
||= {{{correctAnswer}}} millilitres|
|
correctAnswer | |
Answers
U2FsdGVkX1+GERUBUnCspD/r1ZpqrmmA/cmoZbKyuJ3+DuVEoz1E4RiawjpWPwXA3sgqRvk1Q+zJRZZb0H+K4NAUisxEjLdH+GpTD1cmU79ijth2jfls1jKbWvTCMOvvSVqP6sKUQmQ0jSKiCYOEsM3Na1JfuOvy24o/+YSMUZdZQ7EyXES179fsJ9oANO8UtDbXPzj8xBJxP87X3+QRJRVmxlXP929pjlLP7zv1gxskSapAIkvdllnfgDRBy6gkn2uiTn/ksKzTGWMOQMiFeoj1ECET6wrZKfOcrAR31OODI0/qlhodg+MwpvxT3mXmJncJUjDzIZKUWgrrGZGATMvX6pc8wvLaOo6ntEIo6LUuNDOTSPNV1HuuMQLARSAsKF1k3YvzIlEluZOItK/hOkvm6MzyttTRih+Oj+f411T3Kx2SznnDtAFZlg5PDC+Tc7K7fb0mvNFWxsmBH14+HlELawmOi8BUGcEOsi+HtbaHUCh3c9bMVMpBiSQghYVRpacR6XbupgVSi1THPoKApJEDMVpt44YD7ONar8aBU8adHiWT1LUSaOQAtnVSjcfri2yV1TgaXRZ+q25xq9EAJ8iRgJURft0c/2FuycoHjvLr0Ey3w3BFtWkBs0LBZNa0ZOAY1G9ujw+qVDit7tzdCimpZ0PzM0w+TGdn49sqN0uyeeq9/c6Rp4pfgiYWfVT+jukvPUnh57dBUfJQzsCsTeD4UwtdL2Z71r2IzmSGY9YGsO3JDhnQMGE8IAy7bVfQIlWFUs7ehR7mihRAK85NT9ZlJul1mTClOUnM4kpDZl88XslxW5XY8ZM3F/poKBiz+IqHzyU+lhvkuymr0oCS5dtRz2ST+k0Bva0+8VcHETs+JgnOa0RrPRBlq8NxdyJP4fXqDjxFxrvwcaD5YsuV256v6BiJsO0KVLc9Vpc9o5iTKYntyHkM3z1TrRUFKo/0vyTyqIpTcL8xpQWhOXdnOQfkmQdzm79+kICOzEFivbOPYIOMHoa5vEOTxSWkvx258jQpl0xglP7lnQcig8u6wLfdw6KyWE4NS3qK4Zt4rJmpku/cz9TH8/CKVRsoX8txqroKGSu2aKZJE3QNZcPzqPGTyxlA8ePPM1fFFGMya5ZWh4zWC1dne3xpwjtOVeLC/nlTeXatvp6ns3aTLuhgo47urCog8ewLR9ZEC7rUOJlf+dpZPl/sH3BfS1TUlkzzeZESjCNx68S9janw9mNUiJ2LI2w2/YX77cgYLrZZsNDgt4DDBz785yMokFRKbO/UA7+TQLZ9uzhZu894KcIOkz5aSgPy4ZqNceok9aO8pQ4XKLOXt49sVfw6VO0LcZIh3YHpyGbzHKqxU0u299ZVfniVONi4yLvpSwUy4iV4J61q/vfLRGtNDrHtR43/gsUdKTonM7oSmiuMmWntk+uc7oL02/t7Cu58rg8P8a50oRlPUQGcG4u6casry4GFK2+d1n4ZWa8nnPaMwzAqjqQI4SXpbPpdGPYZJImsV+4fwdDx0akTuizvqCBapIsVPj3G8vSZROEEJmEnbqxwDGXfEYFIm1v1jqxB0xu61LWe1A7pzRN9l2ywhCqde3AJ2fYhXH2F5FRqNK20lRPapfX0ahq+yD/iBKR4e9Bv8mqaThDOUqzZiRLo5YBzgKi8uuwLHy4iPrkA/OJ/eVPLmBBaVC83OU5rqb+yp0NvNPK0ZtRNN0pU5wegBYkgXtO6JY0M7YMH+B0/m10wAezdlS/BCYbnR7NuKRFOzIQxj3syfYsqjVCCQ7gUCmLSM06tijfE2VtEnWPtDh5abuYMNZM5lIqWihFnsn1aa4pnX7VAJi08yU0MysixQjTa22fxhevt3L+622Pe8ar1AfcIHzHjXYgVDOKMABjWN7ZqYmUoXYgbk4tjKlCYdmwBpwQw7MUJWqvj/sX4pHP5tucPcNR08GdtnnNqsvOtAMTs21oYoh4eQDuIrqiLGkT3cgsqsoJGC91eoqONpQNBYLvo6t/AJ9tJmRhnSfvC3MclhnjHvC+oQGRvciZBvhREN46MDs4tiA+lTAj//COIZWDqgoRayCtmEGHC/h7GIbWyOqto291NyTDa+gHw32mOG5Nx0QEayyp3bY1WjOIWT5VCVY07i94OWao84uDaPC+c1VbtjttvkddZGXKB2vG9/rQF9u7sI/T+XnLVgmclKqh7SnGwHXb8QSrCCeZNWbfuDSoI8s27ZjW70Le+RX3QVXe5sbBskpQa3qNfrRHlAmWEdB5ARvAWBqz72qw5rsjZtDN1F5DpNYF9FFH5abvBRUnxdqa/L6cYyUNjmiFXB3J8yPHBDi9gxiMgyDlhRLmAdXxpier7SGYLv/YtqRVfF6CnNxbhZEA3WtET67urBx1dBFbE1cglkNsWJIsq3kwezKQVmEfRWqu9hwiKnK6QS1bvccPNUvA7LoUsCsV6+Ir2uQFpM9Wwzg48Iu8dvMXnShmxxEeBbb0zXgEmgjhmEZpSXB1vof/6DOxJ/9ttdPVOp4+5wXREBk0HD3SgFPx0qOIUeS1BgoeGjQFP/SK255fzOxLcFbT81RA/ur1daz5LbFXu0AN/PFvfi++h24p6HX05VsI6KGpLYqoOIr9mWcnlqGIWcf+sYoG6QLUr6fQxYirVCQjSMdS4NJ5Ef3LL2GymPJJXj0ouA89ntOWGwNeqqeY2iVYwTuiTk2ZvEJv4935HRTemTv7BN3Uv18mrZnWP16iHo3REJVrIM2KRrrB1jA6/oZ3An56LrLeS+9sw7G2IqkN25RoS/oFTE+L6PtAvMsRquPd//HevU1PAnYH+oG3w4zwppEPyrAsVyX5Bcg5bK0yN1mWqYgA4jkiHYTq4LM7LnGghx+vtJw4+W7xYkvWnSWH4P5rzIq78TejW17JG+vHOPrdBv+Xg6tnJ5arAgy5x7Q6rSWLsBi4Z/C4tg69AbsXbIXR71JHuLLAGxa5QnEejxTtn4PelptCmjqFEy0vel9Ibt0TP89928NJIZB5g2q+qAvx15eCX8Zu7piFjnbNaiFJ121SrWDbGJgR5/l3K9Z1YZanWuHVF0CGVeHxspgY6lGFMi4oyCO/MK/uT+6Rgs71v3fiY5KM0Ul2OCILkPBst55ybTOGnLKL9Dr2SHinPKrdUb+f+aWjhwgG25PgcXhNylQyxCTA+PYUx7IDYUEEgM5/VBixCH/Tu8J1AwFTvC+/vRGcXsndUZMnqBB/mx4O8d+yXB35x3u18Nbl1e8g0JXSsnPPoqvbeqAJQwR4TO9z9ufRwY1u3CTrvmxYopLnGuL6BcxDPXIjQ3tXZiFE1SjapAnlCa7LnFcboqdyknOnXU44jo+y4W58Z84Xe1DUfrVKMmN7ZYT0ugizcHS8GG7I9pj+hwj+14Q1B6h1hWsm+OzeqKppyS/N+7Z6O5Jj0tJ/LpjI/1NxjYqO2FZiBSedGOr2EQGc6xN4nI/M4idEAIaLGGT3UvZCy6MAnFN12W2KRX3FIpPMuxTTqttOG0/7OxR8EkZdG/uLeAc1PmxLJPmD6R3zMeu8lfzFcLI/JzM8Y1SBcHhmXk7X8kIymi7eAzgI1w82/i15KMviSoSY/U66cAYJmXSrTI1qdxm+Qk/CRm7cjDUOALMGNa1gXDsepk/gN8baEBuL4u3DNDo2jMq0PKLwIgMDZGG5++RWk4xQlf5jMDGhKg+bBUB4FsFH5FGflck+6eL2mqfrK4GFuoLV+FyAPWCyaDlYtARLBxqbcnbSeRd0I3ASE3POYS+FU3U/4KMHkXkF1gZUruj+a2cfAMG0HNEsYJy/dHhCisVcfQi784MGhsbb5QJwGbCgybqNQbDWGRh0jU9ZsRHFI2MqTpDgEuV7gNae2Ue84PBJMgaDf6TwT3l8TalhRZIpnq3qahVg46dwX5N3ZGmdRz15lNEZ0vSmPdpTA6LcQG6EH+e4g3DwBIbw0vzviDP2UwqmlNImbfn127a/QYwe3SlaZy63yD4OcIsFmOA3LFwMsH3fXO6hsj7qLdbrzfQrL2dD4Z1yuvReKKgPrtfmoW94r25uz6W6z7GsO/R6Wyx30PwLdtDH6fc8hxG3LuBBraWNzc8WtIrilWlNDwicmQ2XOYqJ4Lx3PcurvGzS+4KuYsL54FbNI6yPn+PRvxkVmZwGTLEzfgjSjiXRex47t+KBXJsBz4AQVqSbPmYuAH27q/F1JrYUuhoxit4haDtRZ4z0Rkeh1RMM7Do4TpSSKHrJWkwSmVwNMWGX4mw6N1ij3psKX+lhh+Qt3G4mvwT+KgqkVuP9SuWeMskKd6hNju419zBozMDViEFtRbV+kTvAYYZAff6pIG79RpO9OSdzsxuFnoIio50q9cPgN3h/S3mfhqAnrJgRxcaCuHpwDe3lTXMb+4S6IRpMdlOHLV0U6KTzrwc/jpAPX7NpnUfjd09llup2SbZrIjdYA1vMgcnuGfM8qZUTlqsn69WxObGWkuwUZitypHf+VY5X+gR1SmCJqum2Q5Z/jRBnuHwD1pk8nLkaN55EOlYep1+xzmBS1jYwn0A+6KSSjTZzgplJ1RV5GJV5ZDteinqPWj75f6Y915FZ3vPGLC7fOfZYu+1n2mJ09HNFPWSXe+pWiX2gG3mses/TGhCshjLr2KNR8qoDUZtpeukdvdlJ7YtEC4A1pPavwhJhEa507QRGGTXaTaTtw0NObdMeBcOH8vOzlS/pVpMX/C8K5ChJ5sBLGRrstKZB9S7bkG0Km5S8BqzhgEmTKJvhS9J75WFbnCglwljnS+GbLADsZ5ST2x1eUN9wzGpFarkj4GHDe2Q4YfX71LGsRe3gkKPPKp64nfjxYBIKbzGetzWbMa9peIwjNbLRwCb/VwgtCWEv56d4jnmCEbkNqoJl9quP85DpAPXUXab3gk4iN+L8eFUj3Dq363KQpUPUQn3eah+TLEErlIGBmNk845SRp/ca7YxP/jRbamrOG8MQIhTMiulMHNRifRxQ3RyszAxFO8N46xTfxggfPeJrWDeGwj9QMV1kl7Cp8rkZ+Uo5NvPdLaG7YjeGtIGkgJxle1aFRvdd01Q4/qKsVB/s1Pm05of7w81CvcKhibioJ6ZmjbmrM/KRcOZ5yWjJ976j30eOAph4v9yekHvn1ksVZGb8XJWOcTDema2Iy2vCKXxYKa0jXSQslPL/GBjgbwv/cwkE/blEeq089qaVXXKYC6/ooqTf2yw59rPwaaC7azn4KN1atPFxYVAjg8w7Kwfmy+cxJ8BnWQTtMjAOe2SHkJq1tI6tNTSGSyOREbC5GfWagpQiGQL3DvRNztXS656zBOJ+HxlKem0q7wHTPG1LORse0tFPbx9/pkVxn7cm17G/fqFF/mTPfFede8pKQ2mxy0FcQHy1ewPuZHpb1nDE3krZ5YW7O++C5dUGJF4kwz/TwXLMVsK7CewPzBfbw8+9pYYKc0ejaM2ezFBwynHaBk2oxjL//TrHRWsQqjguFmHkcBnEAt3qh0lHf6uwVR0rX3MRzksjGwt4ozj7IAoGMJ87oQdGw/WkVS9Zu7LDcJUC4JwsA2+sShrQPNjyrBncpStor/V8UQSNC3K7/6quO7/eS1XwA2W5vUHoytK+lZgfTR1GCl5PAwjGSRVbtLih5Ow6A0F7hTaBX338ZS9NIbkCCDOlHxulqU2g4Z/VgPedqcVmnyrkuNnpmxrxqGyEelH3nNJftF+il8/QjmpVv/2snEkg41j6F3LAH3rjLfHqz2JjvLPFfLQbUp2k4Gj/YTSMHOh3EevuEu3uhur8gK385N0j/hIjuT1ACGZdmIeUXrDUGnDezO4ABgHORmYevImgBhxefA8KqhctqOvOozzFnE2zD1nku0/8Uxgmvu6tLC+/yBHfVP3egvgELN9sbMbBcQrUEkGN19vDCzfVjGuOI5d0EZ+BF1oHLbYClLfvEnAyGyF3KNnny60iyAl8kPhW1f+t8B96a5DTlpMqreZMMtf6pxmbtY0XRMRT6sZwDEFMkKtqeroxTuj8ZHnHtYOMC30FIXPwQL5OErdfzLHve20pPKvQg36bbTqpZlb2FKvd98jauqcTQz5CX39JJZU7osMKHtrZmlKl9EFuBcbfw2kPKzhcC8C11qq7AHtiRA1trVCg99/Az8jl+Q93GQhex7yA1IKTET/zE9TfTLJYULJwtWsITciyBj4Dm5YjxIzA0ws2on2esSzlIvfFLGiSgXfX3gOfwhJVETT1Z0obKqBAh1ODR1rOIaIFC2ygNIcppZ6kc+82myBFWXf/w/i2vruCDJCEYSa+33m0sqgaSs0zMCQJgH2pUQrtA398txv8t/dsyRNnNWo8Vr2cfXl+t8G1JePrbo8kOERqJb5YgXRn87U6eAmjmIPV3vPQ50G50OfTNeW7sheSUWY9UPMHqqn1jkrqmEEJQYew9BEg4kL5FyaSo0ixUAVJwCoJftBuPLfyOiVbIwRKTXIuvuIO84wIL6JYxeoC8fg8qxlWT5eavC6JrOFa3ooR7Q+shh8TwLLj/sN3fZzbRi3xEjRADsK2ZXT/7EhNpLmMHChhnSEHdccAni+4aTmUwGu0nO1FJykGnIOASWoh142KETRUhxc+s59oTtggcKMjTUy87LO61ZYk5zVeuBd62cdOtCv2d6LKbb11CjuSL84+TO19Ix95cXd8YkpF64WOw7O+I2qy4+cwJRZVWF5LwQ7bAxT4LfhN5XioZ4/+QTMkaEpfTcEfyLxS60tOaOkbDXQLj4V/3aLTdrZ79KaX0R6BbogB2CdanetdrDtxdJE+p4x2LOqP2wjlKoAHiBH4491Arh9tsca0cWUwtv85E+peYfVKgqMH6EtCpn2Fq08q/2+C4emLCFI/0dO8fGp5SYoJLkaFqD6XzhWxPk/7ZviVt9S0uyQIHqdOGmb1Rz9BrtcyKmlZp4wgDIHJtmORhDrCNLlhglGDzAtt/k1BRFqzxP5eim4wGEngD5RF4T57yQglo6khZJlmiAT4Swa1fVbRI+eUTlJzdTCbjb+D2XZxjmzAEdHaM6bdr2HNyoPrHc82PxEFWOzC5lB1JTUDYg5tpFgf8cmPfpuiI69eHWK9rBp4uLVM/cmhnlqYhLnGPYt84dfUO63ecoJg6lH2KPhTXv55k8AdcdkzRCEQFZ3FLRt634WdbplMhQ33amwHsRI8mhaOUq12LqyfshwMgMnEUUGubVFF6ykCSCEFiI2AlB4GfLqmnn1Kbe1zlj7a/KBNEDQKAd2MSEWw4CFMs1Ip0SJ6MA94ZZ49g+DdwRUJdj9P+cThyzqAFysWs/y1SgmzbWxJH0OmaWMKSberGDhHB+Js6G6R6Jjymluf6iJNI7qkjLVcgbgQXlTtMiBtVD5tvNx4d7cFZQaxjL2jGhGpkI8h9I2PDSuJK160SqddBAxBuWt3HUmFj8QevMio101g4VMtKQOb/w/HLeLYfV4EfOiTBFESG/hVAcdDFdaWAtihVg1KQB4m40++Wf17rydBg5zaVJYlTHgW1stVJttOB0j9ezJt8xnI6N/+ca10HvKl1uWuyQqDr5Fxd/CUA97Av62dUj5ExJab8ll77JdzN+v2ACRHytLP573bh2/kRdgOIe8Ao/JoDCwkDT7XyW0YrOIwo+Kd7LMoWvlmoc2uXz/abJp2QoE7t6w72sK6TTRvDXUVO0+w9P8twu5PSzzYk9kWXn5A0Fu3HrnoivdPeShJ7bRuX+d2VnM8qRLAAFa36Ry61QHoqUeugnTHY5icmZh7/g1lzQG/GnfGB5ywUygkD9dmQEz3y7FDgWgweRnod8WEaZhC7Im5/Vc3pKeY/Gr1M2+D+xjp9I1I8hiSLQ4nf4GERbMM605x4yVqlSxVEV1ckAR1cUWMm8YHCWZL5YlF7+A6mkVJKjxGDkm3X461vzbvDhU5dbJZ0bPLsPsmaDE3l8vPrslHeFR+3mAmc4mOKmohpXZ/OGFrBRWckZAkKhWVzdEXPiK0DbrCEbnlrKeMrK2LqCKmJm+p/aLn/40N4whi+yiXMy2edn/zAHKJyX6NeDqhU6yq48ZDYDUAdQFPAIS4Y74ZiwdWvKXp46ir2QvdQtqFxkaUNMFwaOQ5hW5Hg6GrSZGFLSFPbuTc9AAZlOSL8FFLCYI0ZKB5TJqnutnH8im/COGmiqWnYYGtq4fWci1mpppvIPabZlTwYrPlrJ4xS9+Pf/kw72TmZWRnuiDoytHU5vGKvKPWE5fX0Hm6PPS4WAWEipwL4NxSK42Q=
Variant 4
DifficultyLevel
443
Question
Roxanne needed three quarters of a metre of blue material to finish her halloween costume.
How many centimetres of material did she need?
Worked Solution
1 metre = 100 centimetres
|
|
41 metre |
= 41 × 100 |
|
= 250 centimetres |
|
|
43 metre |
= 3 × 250 |
|
= 750 centimetres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Roxanne needed three quarters of a metre of blue material to finish her halloween costume.
How many centimetres of material did she need? |
workedSolution | 1 metre = 100 centimetres
|||
|-|-|
|$\dfrac{1}{4}$ metre|= $\dfrac{1}{4}\ \times$ 100|
||= 250 centimetres|
|||
|-|-|
|$\dfrac{3}{4}$ metre|= ${3}\ \times$ 250|
||= {{{correctAnswer}}} centimetres|
|
correctAnswer | |
Answers
U2FsdGVkX1/FaGgCaL9h1XTvvCB6DWl/4J5Vo26Z9drs1pJI9dRqKMRwooRlWfE/uT7bdxBzKN63x4JzuPhw12B/bPm0QMSIdfc4qD9VeTy7xmfb7IWeQcE28ATvY6+oCRWUsq/FS23Wm6oR13FLDZE7QoGVxCtcFmIAs6MiLDBskx0NsYswVFoa2jFcmb0OkrLdGbc9mvuUis9pHqnhhOkrKQ4eWKCQdCHvzforAk34VN2jfDT+sUDE6H6HS3a/0Ks/ZmPJQ3YsxhZGNdvwDjRyOtiHUZvJi2NVoxjSb1YIJsuFLMZVQ9sVzvgXJWf4MnAKm/4fIUqp4T3fVSrnAZAAn5NKMXjjz0TrfUBu6R2CZerTvx7hKwrNh+S9RJ6Vxh+ELWHfDC9j9xoZnvh/jSi98dNJLWNcMLoG3hzySmL/WjkzdN7jSY8Zs81GNOF7mxG8WZs1Jo3yha1P3A23uLgnIXBjF3H9HsHupGyaZIQYFbs+8QBTCkFFFqDcSaiOOdpk6t6w1d5pEDHXT/knIl1pcBWiuxvz8JZjF2gwFWzGw1nbPfExX61eRAj1tbxSrZfHUE3rEVvCZJCh7ugdBlOQYnYinq/zB7bUhvYsujl2prhsZVuDw4qODB0dcY0r9eoCpChYGpJPsi/bDdWVLullY2iRmv+2cdkxZU9uu7kBw2A7x+U6qJtg+6MJml8+Y9EGgTTqPFhVV+SOdTIVeaomgTt9t1QMd+8i9B7FgvwgteVuBI8aNkljdu5bb7YkoTu4cP5PazLTiDruFCRTTpNUvZlf92DmtkkeRiY/dTU1ZSqWw5ueXwM94eTIZ/icc8LW2U7MxR9+H1StXlExtyd5wZwzc9qlcQv4KBEnjQAvPq2p1snZ2n5GiOSziMqAJU3LkbnbCpmPFTK641pUXTsVPQwneu6FJRjEsBQPMUq98pNagAL+D78XFdW4PE1tKB5cLOW8M86bndSfei1X/y1yZptAmAsWmS5WETzw2CjXYIyzzt5NA95P6XilezD15E821NtaQ6NplJTphL+fsZI0CxUgfMsXMblROhk2KTpm52ugjnVIyaOZ+XyGQGJHgtszhxh6oI6Eoasz1uWEySebtXKydq23uvu6NW5C2tTqsW8MBLpYaLcUlX6aFVi1TllPQEzDgxOtHY2ybx08U8YoUBL7cSsYGvcbhvJGOzU+Df8nrAokVx4YIbEpFSNWZ0nVaFe6JC8W+sjbZnqgVlR2THl4Z2RIbZCTyZ9j2O3xnaibAobQHBcdU8vog4V7eiCR8kDlXsxTshY+p7oCZMMJZhOEaMf1JGOtA844IEeajJh0J20r2NBDHlINYnsgjnLDSDR8mucYZpGEo2Ic/MRJuM+iHrgKFcUwiDGL/P0kKiGu9lB6wPWG27UzqA5WrfuiZE6YQACXn98saEO1g7MgmxRhgdMs4Ce8O/ZlJn373sH7+SOF03wCq5440G7EnRKf75jw72DVlMgEZXpxGsIR/3B2aaD7xJaQelxXr1HyUKk9+2lW2S+F3HENLJSRmIogAKXDhqoi3XB4IJt3HVDcnPk0+SiyeQPbrTi5zMp657eqfXxgF8vY2URPHXWd9wY6ygEVb7U4wBt0OR4IbKlq/dGz7XVi+33JSoIrSK2AqBVOmHlmC9aMuy8QUVekXOOzFhC1OUfdUDc5KXDWyS+rvFAuphoKxyII83CP3SYTgHEJzIh00RUlyUKp7Vla5sLdx6kahm8h+AAwoAlU1xL7FBPOuYzeZ+Bta1n3QVf9PkkjQFoJRRVlKY4CVeNjmBECQFW8JKr34dpILt/IDDVijXdHMHtvb25eSiRZKhtG6plNd++D8qsGNfFK/7TvGxJv+HrPp8iR88zmXIvnBuuEaXhgOqyrvouzGca4LEIFmkoa3uBzonCp1+QpavuM2OizjNHv+Dd9D2z6EgURHD1VWAMoWWeveaMtSVURHk+D0IJOMnCu6ERkUukGr3LZHzBYSHjXf5//jJRTSp+3J+8U824sbwKk//sFjkytWD/5oeFYPtMYiY8MlAqzhFdE6RzuMwh2lUlYd5VKB/8YMz2BnEGne8PxrsjuuAPuTXs/RKwhcZDc5b4HQvUHeHPdWnVw0A89js2Qvp4M1R6w5arwPXijrtJsRLyrGXWUvp74/Uc6tPASfFkSrd89oCXT6iznx3zBCrWpoRMSnXdI5shA9HzHOdBpjaE6Y/2KIyvrzA3gj+j3EYr/E48RwB9mBM2SgOZjtw9JwBvwqgz19BgXDp/e+uLGS3U6izzpk2yGTIuUgFjCcr2JDw57zyqqK1qv7s2IGznw1o5uh3vqVSFzBR7v/087JJoWSs3Zsb4j7e5HF99K3fBxneDtZrp/rHTbCFT97VsGXqgdZaoT6e3SiittUKOPrRzVkn1u15sWbhmVmMkKpwjG6SPeFcoSNwkSCko1uclRgHfhzzC6noI6Fl7Zb5FoYOFpjL/reI/GP39C0IYofJONyYgrFgNSlKpL/vhVtbKHpjnWgwx4TlPMDS4pxjaPsHoJwU0HA9XfDFRliXZzRFR19Xlfcb0Vros/iMNg6oIp6r4U9W2WdrvXzWDj2MwQvvDounNMHIrKXZN/7WBur25ud+Z5dHKdCZeC9frT68AdfsbovuIDUco4VjXsl0vRz6jaVOmNyHxOerrvXeu8rsFTIMDPhRxu98/YvjY1D9CefpKnigH7Xj5DQSe/9eU4DpKvB8ka2wZKTL0LjZGqJJGGdeVV4MRpUehXV5o3GYcZ0zWzFS8fWQ2iIQHtSKBu5zR1K96FqawOvnSYvYIqHOhs+qMsmS80Thhn5R2Xx9Qzf19MOd09Q4KPaAxHJ513tgbnTDZRIS8ijxGiTcoXAAVuNj4JMGTl652rzmDFCbdQs8NWX/OOSm5rnGq4ir7pQ4y5dizWaETWe3ychTOcPr7DdxxIZ5L0Q7io0pQ+YGFQFCYQaOhow6I37ONdDTzj1j0CwiIWkLPgyMMjH1JXKUiWgSTE8vrSSjQsnMpM7P4/kMnKc0iv4/0bOTG3CrWD4MW8RAs8/EneBya2g0LR4TYbCQQ4VG4tnGXj+R8csFRH+gA5xbGreWobVbn1r0x5K0h48szSCUOGfZO4ewqbP/N3tyGoTN5cWPlOO/8lBEc1KR0CoCMH/ZnE5sSj2KsCrVAOXDRjd2R66chrulJaiLeRf9wj5cfluOyZ5YJBifepEwaEVO9kkXeCTgPJWj9S4vlujjmea5dn5Nk87TEGe0pnD9hOxIHfA3JWdKfmd6D9lN4K9wo/eZQwSVMyhrYjzlq8DiS/NFoMtLhxo9k7y1PEKn79sftZMwkYbcyg7XXlupyqXKcPW4QlhOmueEDdzSZvZvHQIjMdLXZYXEGXJnTxD+AhkLQDkmWqBGPbsghFdNok9j7gMezUtGh0rs+fmGv8WrznsFEmSUYr4C/dayzGAvxBuRXteX7dTtmMOUqLLDpft6s+6XzAUxZtLZxiiPVzp34OvpZq0/skcK9dELpc8woZKr6ANKwAwkoFz4azn1kWtqY/cxlyS6AgZuKwW7G67BQYegSh27/hpZfFazIZTgEmUj3Xkqx+l6iSbrM3PqqyIlwuQzDsI/pGnRmNq/yeoIL6PMy+zXlpMt++YLRhZFLCiDYrZ8X3fojlth6x8vTOKl5r1zocxuLdCx1CHIUpEUFYXXvO5Y52qHjUZ+nE/pq1b4V503axoV+gLgvZ2NXb0o7I/Z5aYQdzdpZz+wOWXYE1b1iuSnAWoE+CJ6/tNAZZZvvQj4VlIE1NbcqjbLbbzQpBxpkoF+gpb4eXHy/7KZRyAR3qqdtEpxgFg3kgGsYEVaPuIe6B5qfOEg5ScCRuYVTAPk0+Y1ZfpyqsB/pblye3q0oYn+bGHvgXarqf/P/hSDHVQ16jNaNcLD6C1t2CGysJIqwbBdM8Zvb8gdXVIyVqZtoscQjzgra+2a46rbiS0roI1AuQ72wL7jlTGb7fgjdRl/CD2atRMnKJXTyg0xW/cJV5LU5GQJwhZhTre5hAO3RNHcZ6dfDlHPq+hc+9UIQO4NV+T2AYcQbq74iqmBEGpuliBfvIOEJUUHd+jf6gEH2dSia06dp1aY3dMcqB8S74XJAv5Cbg2csa0O5IOaUpGXjeQnqBnC+/6QfTnHYVp1kxN28L9dVLFIjYS/u1HwmF1HQtDcF+ZDA/dGuSZa0omSSZE41mDjyuJR2LUbNEkJElb9yYTJzR92rC38Egx7097WBposACbPU5Zpwls8xnDcAin/Z7hTXfI1vhyiAVLKsSr1yr9gkYGYdt3dHxUQHkzrW+renlQxC/7gJDFIUhLWPjGjOI924UJyaVtLzL3MPqSk22l8jG48znym/vfsJ+IQtCRD8k8ISkBXhbFdZLGk7otcU0xBg8/Em//gFtTznCPsHYx1SqsLRB/K0E+/mvjlC4WMHTJiVHPUkClwUeLHWAwTnPkCv1e11uPDL7YkqqRoqVCqGuAshBEVIhKrDnrH8wc+0JG8wGYG5vRpMHsjT5yuV2mq4KaEYeu5qqHiKvigLpd/Hg/ZZmr0u+Wy7RsDmmtN68gHDY6T9JNiKP2eGQwmzhHBqk3Lrk5FjWw5h2AMGhQrOKvg2/uyQP9Xl/HaXunSy+2jOuW+zM8a58XtETahHv8JuQ1OtdcXKrGkv0jOY49SmvXLR8E2ucgfpUj/XnnvK7kkTunFPrBqXGb2/7LLfz5GKr+n/ytuZy+d+ZDNDuJxZr6X5g0nX5uQyisltVZvhFMPcLfCv5/Ak/YQsn82XevuMgXzou68E9osescmbEaR0k7rN2c6ELu7qvMjdbn8VABTPN7dx/9Wo0HNNAUbE7Zcpm7ruGxeM4SF0MZ3+kLSwFq7y95PUig+1SglFqUXBJd65oi2sY33aUnX+7BIvaWwMXbfMURUWTK9rduApyrpQ8fTFnLK7an4PpRLasXDbuIitiip2nWThYm8LfHNmtK3CoPaCfURJYbCEKPs+kUO51KnXwGgz0cOq6gD4j7zZTBRV5h9TeS8HC4WVxvyuqvD0cfhB4ik3oJy0DN4TgF8zwBDoUDSFcibIiaHHr7iMU0WgIn+umiYLR8qrX/vX+Sf9z0CIr2mNPxLaEgtq+YT9vd027n12X9HnHeooOUCFADWwQELKOqS7S6cNRczhTQ1jGjHKuf6Fa9Ouo5/udhmQYJIAoDJECZTUpsKBVucZmrZqlMudqrCXWCXSl9UWhInFHX8yBgWQytPcTcL6Ximd7sWco6w/FOkkHafm41CyKF85AhF1CIHGqpNk=
Variant 5
DifficultyLevel
447
Question
A supermarket purchased a quarter of a tonne of pumpkins.
How many kilograms of pumpkins did the supermarket purchase?
Worked Solution
1 tonne = 1000 kilograms
|
|
41 tonne |
= 41 × 1000 |
|
= 250 kilograms |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A supermarket purchased a quarter of a tonne of pumpkins.
How many kilograms of pumpkins did the supermarket purchase? |
workedSolution | 1 tonne = 1000 kilograms
|||
|-|-|
|$\dfrac{1}{4}$ tonne|= $\dfrac{1}{4}\ \times$ 1000|
||= {{{correctAnswer}}} kilograms|
|
correctAnswer | |
Answers