Probability, NAPX-p169473v02
U2FsdGVkX18u3BYS+MZe2+PTAY9mztGU9Idc5hthXDmw9k3D+XZjOkpH3eetl8i1IJWPKPmTNkvBIiIQBL5mqEP9X4GeUCAKrJJl4AZ14re9ZC8/zKaaBArvIYLS1Sqk3xeMU9tEKzLKui5OtXA50Kic0PJtsKc8WiSSeaXPPa2miT5Kz/MISynNpxk+JoEEPgLPtdBaamT+4WrN/yUa6QqytsCPvyops/za+srQWIeLfVn8TQaes66u75sJoU8tgOMFhvBT8PBHbrCYxaE1OkeGZgUMnIcbHpQuSlwO+6JAk7bk3KcktDNziEiLr4fANoMaadM5BpU1RAOyZApV0Czpky6nj1RHuSkL5MFV1YY9fVVyaefw3dAzYke5OuDwFtKGEFUYCzVtAU0O8XXbM7AQN7VLJBo9HLwBinSAc7HUCNXZpq1bt3MBMOiiL1hkkCOdIEK860V3zsyGyXorCZj76uDu4GZuy1/OgcN/U8b4GVkxCi/LRggcGyQJvj3DLicqdUT+9Uwa5pUEiCecbC252iwyokem00GLsIa/4dcj5hEb6tPBEQv/apmujyxc/0lfvt+xpEyfFp5s8g3xop5qENlwb81wFeeHW7o02ZWrhNq5NmeKFdWdv/Q5PQeJhPhXLl02JSLRQvq50TEI+iSmUAhYZZeuj3eB0nM+c5VfC7B2x5QIbFoLWanl/Lr7udoL+QQm1zs35ToJCpgedOtKlm1y79ekUP58dC19pFfEOV6EdzuFvvCbM6351yeoqWqKF8NXKX9PuGd15EEpB+GJwfZ3ft+32dDhLn+vLqHNgo99XewaI6e1WC+lowWVLrL7oLOZfoLA78xUfR/2YAYwpCKpcrUS/otmT6+CMZnEhQCn2zWfejBPEMJozBWkxD/e9ozcDzO5GBAojpIfQ5J0E2+f9GOBUbDPce4pq1hRk8ak9bMg6N5FjrTtz84B0rQq3WZiUaaTBfSsnRnc4an539sNDoarQ4/NG6ifVUIMJDNQ1sutQ55lhGNXCMFpIS/eBDSq0S+FtBFToJY4Edtz2FETAxzqEKKV1+BMO17p4zxKYOjjYVlB9fdghYU9Jc0A2tb3bSfvvsHvxHi0pH4/iWZS5YORNFtQ6LbCwQTfOoDxWiEk3gPF9KJHE2GFaNyEkJDz1VWRt2/Z0dTxZNj4oZcfyrNofiPUZlgywN6PoS0+fi+6P32V5KMQMy4T+KUu08L1ZClaWNTpVTbNN6yMvMX47Xp9bLtZhHStgh45xqk9PMeOCZtSLIm6mgikNts0YNxePn5ooXNMCDTvV/KOBqZpTdRrU/CTKYYaLh/Cc8bWwdQISyKH4VpO46VsqjhoDpHyRNU2ZNeXecfG/9twuHb3T5+MNUAQ3Yftwj+/yjg74EtuALU/lv6TfiEUnXImeCfOjRxBOQZ097SpfP1AuAO6kgRl2Tmjahq0kYhfuuYMYT9SsldP3xvOcM1PqhDiPGiDRt43MQg0mX6UjG+AGYHUfqKUwZN/VNpy3Et7SjTbWMAraUqDlbxrgQzcPnTLY5WMOMa+777dmVsJy0yoDzCql58uo4w6cQoxfFjWtJq+/yRfAQiO8S1ZY3ywKTyhQqOjIPjjTtlqeiDTei0zWxXke8E55AC1Cp/pGYIQB1Fd+AzE2OlV4SLg0Ve98Nrcb/sDAluLGUZEg3CMnIGOcwLsNRyeSWgAgrx8mahahFH/ffV2L3Kmc2vvYIjw9n0WDs8VYfYJtxqJyPNFG5Sd+vMeUgFC4kX+Djsc+Hu5dAhw8mtdik4Xwg/um6cvkywTQRCEU5QisGUdRr1J3AQc1Wy/TK46eBqQoZk1jc3d7CnTvjykkOvAXh6KBDHPVfllj62LZbQ0L4YsAvNlTzMm2SDHzMys2BexVPjA2MtJ9j1zTy1/Yts75b0fDWE3tXuwYgwAOBPrENmXxp8WiXvwX8lp8GC1ZtfJ3pUpeGvwafGvT8Pyj0RygMBGUvhLcL1VP0+Ii3WAZbZpFqsty/k65NgiLwz4ntrawZx6lqDGRXVSbjNP/udr4fZzI6Ti4ClcYId+/+Kv1FH+u0/aKCFGwRL4B7TgyQgKVU6x70qQiHM5oJFi8otRmTuUTQq7aUgdfXO0pex9tY7vqnWJCJ68UKfL58nFrTy2cKM/fSi6gB7U2tdfgaOCFe2g3LD6D07mKtD4Whv9ehWOzvbHbk1UQKU95iQ4NSRIVe1nLA5xnoBLGOl0fUTqzeHMYdrjleImyjZdJ7v11nPah3dVlGflpvLnkqy2/llYiidfgkobanUnTqk8H5V/FY4TyVXZDHCIMOnplSrzKASfJVFuxKlch5t/SZL9OFM1BJm/Ilp21HL7M9XjgZ3xss4nnKHQ9HaNjEeI9w8JdtKeoK/24PGZLMA/sxbAkyPzMGEk32e2jC7vAD+WP8fosm1avERelOTGary4GIOTUwB1Qr+9/MoMZYrFsjzOODRhu522UROBIf06zdD5lqD/VhuseVJsknD5QeQBakodLcm4Kh5cMYU3vJtwNcSxk1c3wcRxi9aIy3XD+GNqzSZdu7fLEtY1HWDtIdBIYv4HBSH37okb4WWnnHW7rgrgXhtAYz+TFaaqtq5iKK15Nn1wXKKCTolTc9kCTaZr10IEHGSEiZHKIS1I1uAl+cxyWMEBp9YvXe1Cx8OnxIlvsedxFLId1eDH7KPb5BKlxRAo494JsP80NNWgy244pI2dilwg3Kc/l7/+FFY7BQRXOBeCz1a75Q8kgyLo0uce829F/2jE5oJJ8LbUk7YLspZzva9vvDF21lb9kNgZfAtR3ClMCDAH9XgKc5g8J96zUSEEYStNer/FMUAVXhSyrFOagsxWm3WC82RMWhIk3w0kqlNSaRES4TKY2BoK5WK3rC/08G5a8Ith5EUDwP29PzqA5sm6tvHo4LtKizEs5osmGrDBTFL4N1TwDC6BJI2IK+vjmyrMEp8TJ1Dl9luD2KgGDzDnLdt3V8xkwqlkKfEX8ZRS06C3yNu8Q/dSBmAcKa8nleWYh5jNMN8cZHeMMgAqH1JRpRQ6k169djgpI/aOi/6DybWs73rmAeYf2cKTfKDbJud5+ewmBNQ5UGqoeihcoy+yoReiErKBklfXTwIXGXw2fJnqvyF32xV982MPTavj16BsZVQtB+RgsoYERue4THhy/lkMq6UlonSuoFRbTqXjA8WprHdRLftuG+WEXQxXx9iuNKunjMBmMeTaYVocArq0qRZEQFbrVJCYH++l/zDWU733HZjyu3lVmY+hm7xwZHtBIN8+vOHgCF5jSEK9z6Z2EZDfc/c26SEurd/fECT3bCUvOEOQBux0vQkvdT/5YRW8W/EhINFeurr3o6mjQd1dtzQ6vuDhHqMZfXUs0xMMVvg+RVfDMBmqooaYjK4ldZ9Qc+Z8DiPjvmqz7yBBmxI43w2FbArvRx99yK6ZRDF5HsCwNxUJuUmLotAZ7Umypfk5rJr0S7RgCRHX4n7VnaUKAwgXS37jyJkMdNYwJEvDgcqWBvkP9ST4Nl9i1zSt3JIZwPMDM8u1Sdp6c9Wy3eKBhweDXW4f2x5UdUJfeTowHADZpawx6L1XcbWOjnJ5q8tKYEBZMBV6LuYwiabeZ8wC3uQOEgwvALXuPlAeTxBoYmO/c38+7NxEO5IVICNsdXy/kgjU5r+5NUzfqVvphuPNln/AjL1juklMnaRQELyp5N8tBBpzsi2q8wJFWFNCTLd5x8vrMSrRpIFBtGOVMaw+nnoKQSzBIZ3HNMKhE9+0vs1OLqNzILZzaNDYg1AO3NsjKMlbeLpqmNcp+ND39v9M2Xnw/9zD4KhcAV0nnpomB/1j2A9FaFJP2Sa0praiygiEHJwJYWnQ6x1aTO0xbBBfEBd/eDRIa5l2bxeGED1emmalt7bQmE1NfUjWsC0GKOMXYMTPqKH8zPzOHgQUqdOKoT8w1LbweJtjjhi4s01uOWZjd8SkXPNK5DUfL1IC+uIY+GZeZ1yipnQHWZO+bDB0GB8F3e7yjbWNC7Ru091+IWY5oTYAiyPNALSo1eD8N1uFV56102LUduqL3zZyHxWKu248chitwskAlqtXn/VvKF3WPxMSzMoaYE0l9erXIL1m8MqGIWBZxFwBEDNTUbLGLO86xaBksV3pNk6iOR1wZt6uxHj9JNvJDcj5vVxdp4DNWZW5w5RCXUcEteBq1SNbwyiXByRQUEdU0h+tVqdu5Al+xYkpgcobKS/1Thh1TIWUMMzzbe6CQCqUu8hLR3X11GZj1ZabgPKh1XbnunQ08E5LiEiEBzXAismFc/2cNAc7KLuLuTfCjynf0+JblYPL6O2tVqD0y+6wLS3kcp8oKc5YFINHlq2rGqA57d0mVrvYv6hj81GNhnLGz+gGYJbBQVLA5ZKoqL35Iik6AmcvU2+SpH7UyRzeX6TsTcWsReXQT8HtXwmomem+CvU69bro4BoiLeLl8smYsKMd/n+iQDiPh51XllbSk9+jyERLPhu+IOXlUK9EnKLX7V2TAbI+OWZAHkMKCiWfQ28PIeETmdkbNdAFoE3u7i+yw+RHixTImkPiIaLoYyORL2sShrWi3IeWK5O/8tIuam8vypqE8wA4UR3bCqd9Owe5r4u3v2Eh4fKK9coY4HarrvWck7vrQPeMbieVeU4B0XpSmPqOCyLRoc1Y9MDkryFZmxUue7C8wpRK3d/VbXvlR5WSijCis6MnsR4=
Variant 0
DifficultyLevel
523
Question
Noel has a bowl full of red chewing gum balls and blue chewing gum balls.
The chance of randomly picking a red chewing gum ball is 85%.
What is the probability of randomly picking a blue chewing gum ball?
Worked Solution
P(red) + P(blue) = 100%
|
|
∴ P(blue) |
= 100 − 85 |
|
= 15% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Noel has a bowl full of red chewing gum balls and blue chewing gum balls.
The chance of randomly picking a red chewing gum ball is 85%.
What is the probability of randomly picking a blue chewing gum ball? |
workedSolution | sm_nogap $P$(red) + $P$(blue) = 100%
| | |
| ------------: | ---------- |
| $\therefore\ P$(blue) | \= $100 \ − \ 85$ |
| | = {{{correctAnswer0}}}{{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 15 | |
U2FsdGVkX1/KVVo0ZxFl7X0FTw/qBg6tf86mFKC4M4zoduB8ZeXHDaNY2KgHtQSVHRm7gwRroeOmv/7U+1FbQe1SnWuGMn5MIjSSYyJVP9uqfdudu+tFC2uolFjnqbuS/DNUVFGb5Lr6iBfZRM57ssjTSdn0zXpknHsk9J9bDdCBx2R2CWQRTOeL+ZsgADYjlf8ObS3tfl5ULgr/rIYqW7ULeW+UbF6psnLrX0k6qskwYf+0qgppNiXTwCGzQ54xpX2KsRAeh1aBoJ9SbdWqyIq7o6uukH8gF+VnGRSb66W0FbJ8P0+X9aU2z5uCCnwHuyefIfbbUuVHTtcAg5qEGL1myQBdQuriICq1xlr4WwLwBVKyKzQGvxSURbgzqYf+CMkkkz09MQl9e45RcMrN+rK2HLE4WEifMVC5tvImag1ieLseLjwx8YMXFcwEYEu5bIn+HLDsVPTWKOLFNjyiUpVxQ9SEJoLkFvZPTkaySMAWhb/LFnifOHpebSOf70u1St921Ar79rP/2CBwu7dGHedMubuwAQUr4fEAhrWjbZjF7gpJAN80AhN98YrexL4PlCaDQXmCzsRe6uO3j5pxtw5yrDoM36viU3dsgX8cO3oqY2yS88oh7/plSupQWt3Br0VWFUNvOSGYJU60YIUn2OMz+RUKFWKfZZ641Jbv5cqm9r7Dq4mYvApxd6enKi6hCYhDb3o/cRvgskjAuQ5UMMq5yLaoM/BCQma07pHQKe40iKolQpbW/zevcEFuZQVarrEmfostdk5S50NTB3VP5GoLwsl2TC/amhXiWpHQxZmos6rKkdQ3qeBTrFoDt0EJaU9+spPz2Au78qMb1Zdo15PGqTMT47YV1kvAr8yAWJfRnZ+5lVZ+tjyECd9Y2RsPCZvp8eisD6h9RWJ1G0Hm7ywCa1owqd/3JUA4u/18a2Ry35nNzwtyuISvJxhxYnDn/5u6eBieUGTjkrDj1eN7Zfxr5QHRi6Uja1V9k5YpIo/Ms0Nh51FRd57EFjK3oz+KHxHrn+4neKJdWqGcJoEAw6av5FghKjvuqCwwUn/y9iJhngtCd5DF98lwoASEhKy6pawgRWDFjIBQ3wxh/fIXvJH2BcmprK12GAq3JQarYLrGwTR9B3XxGcGGOCwhKFKI/VYSiFAjZlNkwJDt2ua95SpV/i1VI91Sk8AIjfMYC2VhX7qYEQlYUMhrM5LFqy4PwBL9ZNd5z3Wxy0DJsi0i2afgwm2BLR5ubtIMsbRrTmnhXPOxmtrqmpzXdizxPVD73XABGOITYW7vnDdALPkzrw5eEtMD8jEYwQV+AMaipr3wyjOT+gm/wuqQJj0LAcE/CF7DtkEEnlmvmcv6HxRHIT8nuiNc0DAtp1MS2HQTP0NV4wNQlPMSSJcbimS7eCil3/Qv6igSuEGGZHToY93wWZV2YgEqlZ6WXKMQ6X6ewT64HT5zM1mNWLpv4ueiowY6DNwSbwidsT/0VXWYgda650zRcHaQMb223teqLbAZ8WZK6n8zSFMC8BqQYamHI+03ggDsxL2YynXnn89gaY5bmzjUP4Y/azbcFkTaLYgjwZWrJvR8N4gH9FXKB8zyrfTDfrowLO3/tUKPANx1RSY38fRKsamhxarGHLQOVckQ2yvgQKnT6rNFWBdo2QvBWKWECvf/cAqka3y5kY9JVCIJFX7XgtGBi0iVscY8+17oc0UWP55cgr8IDFBsXiMh+ABhuSZ2NhwbqJ/e6vUWe6q6pDAS8DTpxkBGAJ3RLbEWJOl0dlKnskEXo+YWaIV5UMitjmgKt6gOj+Wvc+NKACBdgr45sUvaAe3fRJoKf0n34FgT7+J407nnUYj3k7gyL2o5pkNii1gmV8ZujGgdU1EMJnb1xGcJGdWSv9RsL1I+fKQUAArOFD6V3Mcvub7Fl5o0rW4fG5eR91dBPrfMHRuxPVNO9psKohVrE+3dbj0wr1Al2Zn9BqJVJZbKmDUVDhQ2tJF8yJ/HJx2tUOEA+LS4M85iccINPoL1Au6XzMlsxPogPAWNh9bQcSdlGSnDm4jLck7dK3bmc/sYkAzrmN+ayYeqqgRgzXXECTTEEZNliwlOM1Wkz8fGdWxW9GCR4wAqVmqr4wHxIGlKDU8JwHAgC3Els8e66+UA+3zUWjycXL23v9CGlc34X4cQftUFp3VAWI6sSg+E3WoQQY62etJFIuv8BX5+vh29CyAnD0qVjqjPd66Sp0GZTKtuLpzBXTq6ZKWhsFbsJlbnOZ3rF74b+Ou7n0LZ7fpLWVxaLlm8+gt2eInkPZfbi9+uvQ1Ih70YfQ1Rw2DVz08iVV3u97c/zOXKvuFs8DdC1y3kqy810xJUc0V+w/k6A/3ojWc+vNhnFT9jKj8uHL9CCBNmL6TkzMzVjkSFgnv+Qx9IP83J1fp/YA2MJ47CPEYt4pH1Lm1O0DDfeT01CvyF2uNG3YkNjFPrAtHsabufm7xD2LoI69VsZs5bwBIOuENy+fvkij5c8AHqc1poFzhBfnXe274bssL0cZ9409oD3HZC3t4h9neISdP9cAFJ0zIyQtkLrcGSzUz3ExERAb7sbIxatx8+Tk0xTryGzsotvnF+DwrNKKd/o7A3YtVQ9fWv67kfBIqzZAtQE2/UoE4lBInCnY/HTQuL3emFnhmSOE+O8/5WScbGmkzd85Ycdd3SjvX7EJh6jx8uYOrvTfLnkbh5IkuDCd0ePhi5GdcNvd7lhvCzttGpO6a7pu/UZMSez5uoM2iJwaVe97Yza98UipV6es2Ris5DF9C6qIn65+Pb+2+jKiUfcbbX1bCcJENC0Whpos4pGG7xJDpA7ITeSIInQJAjV7zY06vTUsNR0ZkWdBbeAQwcTk/8tUTmGHP3biR2tvfNq0p5JD/G8BlDG1oN4ICsGhHm2f26IvIfqjMe8y56GUfIbWi+dt7D2NLcXWp4SXcNRz/NziGEZT67+BHsvQQgW/YVLuxqC53w3NQPATg5vs0XQJSIsVOmlVeOzyXd0hFEpqzGKuOY4GOHdrjzrl8KtKvgOiMUnTtye3pOK+9fMkbGBSll80cv6vDVqkeUZGnRx1kzMjtbzd8ZCekVQKx4WdcM3Vxu8f6O06BI4v9/sOfQM90HWlwnWigftBGJyHYQSVK76/v34rIibhyekBMNdKkqNvVMYaf7Q5Ar4Wfwr7xs51m6o7ZXkgZNGptmitOdV5gO4gmMAF75JQo0owmHqDQnxz0PfoQ0cBCm90qqD5D4pHJbjV3GadrO+ZLlRA79U9WizWzKpSFcarj6HM0hQVtu3K9rEdGQTRAhaKXiUkxJl/YFupX6sNOEyHY4OctnwFxPGg02IHeMtqV7sGaCQoCgVIzLNAv5Zob5mDGC5R0gQeFaqsPmJA1h+ECIXZmzyMT9+nUC0HX5vdjo4jAJ+NA3AnNMoc5hYrzMlJ+7Riw/h0/zqqtTHkNFBEItWzXhdu3Wpuu3DnqmX9HQiLAVv4Ddx1V/jmvcICf+vnfi5oWeBIcT+4Ze1y7fGMgXfaOqf/Y1Mz+/4mBqUngC1va0ysHz3axgIii0irLQ3xHlXNPFkfQ6BwS40rLuub9lIg/BdPgCictJiIiWdZ/kRpk/rH2NIJNJ7ZiJM7M/YJI5wX6+bUGV+cu/17hGv3UPAk0jaVCfN/UxJMk1iTbfYzNyhTizi+iVRXb1EeJsSaW46G8Sp6umXb14KbbbOgyPcWrhGmrWZGgwO/q5ip2CyB2+3EfWYr/mGq1Ihq7CLKW2N0Jfd1tK4h9V3XQMbHureRwICXsHq6n1E7nS2+fiajldMPfIoSXci7RS1NrdIIGD3c02kHPnAGajU4M1RcLNCsmoKonJdnPtpwFwgfAjfm3nkZsVETq5RfYySuM1hqtwtUxtkZORElFrzLQc7joWLYyhEzrqeJSMNnjX1cZu87uiw2LrrOpZBFCEdK3PVikgZhGNW3iTiHzoeG/McW1bfIVwGS3Kd0RQN8zjBUbneqm5mR7yPdF4w56aDDcAiJtzZ9wt/iOSqz1Lgw4Px1ExYRzxjdd/LOR/SgYkBDfna2Ps0LEDTtViN1UxexjPi3RCCy2oN7ucFJUSPNGyBgWMNHTI9uyFYrUggDdNQEdQmngHUiDK2bMP9EpcZahTgzCjVlo2WSAA/mFqrJ1n7//6DjAku8Keg4a80q6ZX4buOqDKP/TX1+yVqQXc9INzSg5JSAf+WiAcmcgp7XZdKSCxafJ/N7AO2iaS0U5RK7nSGB3TjpI6V4NHCI10qnEWT4F9ajcesIMs8lypyMZ+HEF0ZYVveVRI0fEqeiTNmIZH+3J8g3X2Zrh3sYaij+70tN0xvuAYyZGgMInyB9hXWjNlk6IOKSybpzfAETlVc3B8oAYZSZ0NEE78OaRzIX002s1E/rnVmj8uExTseRMFpCV4D5vnT5CRccET4KrM6JfIvsEgjLIlpDZ3TTOohFy653xFXAgc3Kv4y/kHZfft24+zNeaubmYpCwgnSG+aGp7+Ed+SHqjOZiQoD7T/LT4YJQhvnFHCBeDi2OmAcwzuhmlgkZS9mQGxBGBOkFzMf+pSECQnMFVpFudwMkQPcS4ZsILi+6Ixa5C1RgGdCLbz52+Tivw5zNDLjVm2SUm6kFpdWXNG1e5WY7EqcjBsAeVbyRGR/JCD+lEXwr+cP0BB8AYSDE0ghH63xpmjem1Mg/NPaM6JcGbWXtVQLXiiFE+Ui2jk+BUq/rmRwGTIPCG2M6f4jtDu
Variant 1
DifficultyLevel
523
Question
Tristan's laundry has a lost clothing basket that contains only black and white socks.
The probability of randomly picking a black sock from the basket is 35%.
What is the probability of randomly picking a white sock?
Worked Solution
P(white) + P(black) = 100%
|
|
∴ P(white) |
= 100 − 35 |
|
= 65% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Tristan's laundry has a lost clothing basket that contains only black and white socks.
The probability of randomly picking a black sock from the basket is 35%.
What is the probability of randomly picking a white sock?
|
workedSolution | sm_nogap $P$(white) + $P$(black) = 100%
| | |
| ------------: | ---------- |
| $\therefore\ P$(white) | \= $100 \ − \ 35$ |
| | \= {{{correctAnswer0}}}{{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 65 | |