Algebra, NAP_22045
U2FsdGVkX198DtEdQadMmk/XHLtu0rW6o3IXjCr5BgKbX+tFEOg1HKQ2CHHwEXCw3wDzgqrqK3Hhlwz3QL49igFlSEg3aCs9D7TNtUgqcqXEsq0AvAh+oAVZt1GKxfm0Y7hLZIbXdL6MTnRONimXZatSlGDZap7Rp5Bg/FBe4gRauLOU8WNlmdy4Yi6bb5Q3k884C/Nivqf56GOImIY8Cs2URpB0ZivTtl3cbLocXZXkpR90nNW8QMExsbix7BM1ZBeGumBlIxiAgSzcXOBVzQ5wtv1+afkEXYnngudisk8grg348ggQ3ByLU8NrvSSfNFIO8bfQ1Xg9ZY7STXTDSmqcMKU85cjho7Yzvpf0J+JR5PHtrxLdgbZ+t7/GhUeUQvcRTv6L1GKqAi/hCACHQxMp8yAiRdXkWl4q5L71ORSHAwPiY7DNxY05KlrTTlu2PP2bL1KR8cPddWDn9RxEhkwHy8kmnXBulcHBT0FEYG1BWtMWBvrb+TxjlSXImk31t6m2lNjKJxiy9fLMSPh3I09s93sp64aR1gAh9jQ8x5+0+KwMkkCPmtmtGpVONshUOHYOVzTXW6h0npDhzkJXWwqZHJB3m0fScPyxS26A3a5/o4JLWQa8Fs/G3bqkmWI/QRbrfi/2UBVpyYq8UYHnaLIojiA9lwXXe4gix1Aff+CRssn+hgKgBOgOItiOs0A9sxeaR8dkQltiJM6FhYKgeP8s+LkLWdH25opprJCEatC8gp8DvXpe7zxz6tNoovFgYH8ClaFgoXqYRs6hKKC591IVLrkETIWJBTtQECyufcn3Vc8Zu0mZ6Sq7VsghKRqzKKM7TYi9860XKfd4heYf+lBV326NFYTB3VNarR2QodwV7YDVJBfE7x5zXYcs3c4mw+ay7qyomJKY2RsTKoFExKWUD1nLfvxAgdxcUXO0HZEGl1HzsUtmaBYSJYTJDOBV0fEb9YbggUIwxuSwiY1tdahHehp5JYUTtbcF+UJOSRtGr4vUeCOIr8lCDqDf6noQtr6dDbIbGRBz+rGl9MAjx4RpmF+bjm6LkU49/kndp898/C6lCBSZAMKjaPJrqQ0leOUEPJZnoCw5fxB3j1+d61T8uBjoOu97WGACqiSUcOnFwHuHPqLFtHtzMi3uueV01FktOxMY6MYgDAnzn3I+dfXq2rqjzZwgJNjH20pq8bxBywEmvT6CFfCiGWGrkKw9lND6pzeO3u2fVGe/416SQpQcAMSdXvlS0NLlusBN8OXUgFjaZi1jADhbXKaHlXGOeEvyD1uDUe624nTrTsF9JM9qXI8udmgY0cny60wNx9FLrXJodNnj+EvfjJV7WiKWyB+bjJ2F8EYaecDeO/9z5SQgnyMw468hoQVU/7UtY7tAJZ1nbE6oPn6wfp0cOSc7JS/+9WBRaYWEdYAlKvgp1Z2PJik0HLgWDj8qRXSdS+IBbKhSX0yS5yJMmCDAxvd4mHFnwuNuWWbHJvtNLbN4FSjUlnNKGZIY91/Zb3rYiVRrn8eLuS+w9VO+eT113eDmVSN6G+vacyDlMbe1+sUdNEgJsk+b52UmC3q2ineLmhOeQaufso/4V5y8yv07rmmjZzPQxkYITXMVc5XJLfrihWY7/Vfw6RzkObRbELKjZDzGkQTk3D4sjvSR8Lb6l4cqUfBL8RcejDJF9F0bhg4KgCfDGJXzwLT9f5MJW0QFMGoHPMxHQnrholJxsiucAMMuXkcSb6ZNHRK15K/bil27n9dSJxGoPGAUtb3UJshjEjXbN/72udSJkz5vO8sM92hsjAa+ti2OW2vn77/B2R+ZZrdTs8V+6dud+TzlQ3yEZQyk94q55DIh5ZtmUifmAwPiixQHvN6s06goIG/OkrWAyu/apRz0XvA32RKqfaPYLjrmZLVJ6y6N4nPQzDBzdCj/5w14tbGrU7i4tulsU5xLf/0/GU8pcrQ/TyfFMFeJ3KsmUTFSWwxjNjfyv1YP/Qoav1d8Wh4rHFU3/QNIbSJlJJGPWr2R6en6if35radtnXcZtOePBzEUrGwBf7W+dm3D2S7THrv3HwK9uewrQ5L4AhKVjslJA549dQ5Dzd3giaRg9NyiE1RdHVDTSvTWhaAEp4W+IDJtuPOuYrOjuYRmyLEsDXL2K8sk3tYijXYjoO1viEK8XMvg9EyMNMbDMWI2xQANQ6iXrPKD0cANG59QP2ogOpx2bir5DKPbkWu97F1qr9B3Naa8vtAsQfeFXHvkyxZAhfyDhq1Fhoe2AumsCSt58ZYw/rvcaOg2wWN5PwswPWWSCKk3GBXhGIKW3vJhkL8XPqu1nD/x7uh6wHVSCYovYcno1q7Mf5cQisXU7oNIoL2/NvBrR+mOJHFKYSonNthFAx8l2wCbz1wOPwtPF+CLMoTG2XlVclOtwhQuJQl/ONHH7CgGHKzdWrNO2ByQQr6MpdUcBmrP5+S47zSGyQ2MjBT0LoZCiUMMOaGyfdaHicQTbgy4TPC95a0pFoLHJ7HY6VTeXpNhh2L6i7xYst0+oDdNP5qDlqPRfxJpVt6yhugX/aeCRTTzztEYEzbUaZiX6NxYk7Fm6BPTtK5gr9VvdjyDfCb0zbp5ksKxQYcPbebtH/sH0+LQHR6TPWNcpEMeJk0gP0ZNYnhqdFHfScHpZPm3MJdIXyaGoafu/J0tRXNtG//u6RxsvLF2mQCfVEhRtNv1Btp2WrlI9yBL1HmBlXxjURVbkTssZQVQuP8rwOOOiA+Ywp7LLl8Lb1KyplWUD/o797QuxsWawbH6VOVNmlWk6R5zIF7lVQqagBAkxMJE1JyR6O/Ci5nRMuf1nfUWha6z58AWZ5oj43jdnHSXyDuGBW3retz/1JY3OFLya0MpsgHg3nwiz4A5EWVQ4Js2iN0IS7OkSnp1c1EU8lamoty5xAh6reCeAXOUFDsz7KKRa/izDDt98POe5OM7fUDnIjlZUh+GUjMAmlkQOyLeqseBAUBzvT0YOoEL6rB+cEeyd4lOR2wcdb/FI6eEJ7sWEtgXgUYqYBkbSibBsoSaWDrasJnpxjrYkHE5bj7HFuq8nqH6ST+r77u8XyyBgssV3BkF5Q1E92kPyAh+y+dQbKi9oAF8bRExo5zqPr1F3gop3n8NvYsev+mipN+Hnxrk/PQcaLSPVGBX54Z/xci0YR7CYsKw21olDLDlqlHf+8lYVG0KsXdLLnDyRbvfvqzCLDpfVT8QOSWZougomwoS+B3KliNAiAYWqa3j2HRhRaueHeyKzaK5YjYPVRxB7vuHnBciYn8yHHrIRVH3SsCp8zVr7YmzGt+MNNZW4UNll6zfH+Q7oqmvrMtmLxNiEjCpwr093TcJQFCsU1x9VlVtSDA5HrzYCfJ/8k8FIv/krf6a1HjL62ZsKcToiUA3OS45p+SNV/1YbAyDqKws306mdbsoEfAAMvEXe/ewKAVE2lwjMAUEYQUB+hDBnjGlQEAkUaDWgSQywXlitGjvP+RaONNntPbbuCEEUdqC4boTTJztyKgTqIokOsjiQkqlbHP9PONHZwCDdm1Rtxtsxetgp+Uesy6N7MoCBiXe0JVjKZl+NAXB49CS0hZtMa3P+fq6IU7W2zXckvrpkH2qdFRXQou+9bLdw+0PbYh/Q4YgeZ0Jf+cYHBU09xd/N4e5t0kvvjrpopDNN9GbrTVZEDzBID6+7gKtiP6SwKOZf9iFllCADo9A7t2JCa9pvw7vYbGaxaKs/P4Vw2p1DuQbXZb6eILZHxPS9gMYFqG/d2ahxVbtaugpDmEu+yuFwmbmKjKITfwnyQRv0CGFkFjbamX2CFwTl5JPSTuVQl32bBlvOEF3hhR8p6KBoefICSEdcBYky0zTZcGoxSNZfzb7XZalR+dMtPi7cNPCSUeCf7p63odUGKMs/IZlOv/c04UNkg1wrEV4wzzOiN7XlwXAe7CbzvJ4sKSj8r3iLrl7ERPd1HVbafxCyiqDw0INmZgRu70oFosAWYXqzbue+nYKvwk+AJ0p3PC5fP/T904SmTZFh7s25/xuGTkNK7trZgn1Md5FvWTBietpJJOpzBJQbWV7Aa+GGHW+D9FT60K+JfBlbbLePHmPE4YrdWs4RS50KaIDXbR8ctBRMpicRcLFCVE1fYguGeegtJeQqdDVhFxLTTayH4aqhD1gypoqw3OH83feTE7guyBUjhWLiwtL8lJlViTbGgnv4f2cVUv9f5HTs0V8F7Gsg7MnsO5TNSf7XCMhI3lw4T8OGOvVmFzjOdxyheSvC798USJs6OMjgiy32YsjPd1C7C3VVAaUimrxSrayWpTzg8R6cBoeDwscUAyze2xyxQ/qolKQNXpjRuuhomfeIbL8e9bga/Bo148vVKNb6ZeFc/fLgcqOoGEQmLoPMrMetsYqKG4rIfPkPxc5xu5CW5gGt40li4GdubDwnWGM4pjOK2DBTRztuTxwaF41aBPRVZ0en+ySL2Hdko/gtDtIgTEsaerEbpXhc75qWVHTLjpeTFmpf7sHg7BbN2wpy98QscZtyS3MfdtOwPjUtu/vso5xiY9+rcYKY1ZsoGb9x4lMebbbdQ3Iwu2w0q7NqldIT8w4xHzzAjhkck0R/vRevDAo2shb7us8+DEkBDnXm5a6WmS1PtuMqeyJnTq+LNgOLNCFKfHA8sAny6tTBSNlQCDU+2+v1oR9kioOV1O2X5HQj0xh/C3OMleamzBb+6T7j93L+3VicaTP/wkNwIAQUeWbzTzq450n3hZ73EZMjGiWpx5bes4aiYv+F2bZ26+0BgOqcNZGXL2f1vzOYAev0YYhqQDPqKph+HPTSbLTSRtqpj8KbgSddpwoC5QAD76MLFlpRZmRdLdNXXbftKkApROB2QTxBHTnsPvRVCJVRAghAxi3hCrEz+CZ5bMR//cfyscgPYNy+BCrMYvDc8DeJmciNEAiiHaR80xiLWEwpqzQ0FRaWYnGCv+raela1zKiLfkp9oYsoBC73LPpVlLFX7ZR8nePhXjSmkH01pF2iVMNgap+XVEvvFAXLmoSnr0wS/WD/5PprPfwuUPoYJA6mp3XKKoQCqFPUz96Fumhez5vuWQLFmIfJUWOWRgeVH1dIyme0+KaASw2SSv+yHZWIq3YCoIpuouZm537i4GQdiNVVD8u/u0bRScRWCwnT38Jr+FZzNcESsHbmik63akU2GDHeh7reZDoWh9mQTTVDB/KCwbUzOTJFjYySvzDXq4fqktmOMcEmRBaqaNYBwk5s3TNvAcEUA3w709qP1hMiUw55OKCMkasLsIP75epyvtc6lxWOOzvPOHyzlhjXizuM4XH2SpPhoEcq1Uz/rUvBRs9h7zN6o0GLyO4aER1flov6oqHCJR+agDz2c7av5c1SNCVCYE1YvUgvyOMAxOUJ3vUnSKWqY07tByA5qvUGDXv5NZZJUz1AMw5NL6DVmmnaGmG9DJNBbyOP+nMakMgvJiGtaMPLKWKj53g1nqk3zaWGRVojUP11+40+ixSJ3gsEaQdc8FebRmRpblglfhkysDYOmBAsxcmcbkse8belCJgW7NML7St2saicy9v8jfvbQNPAiwkSF0K1qo5lyDDZWHkqcl/bKixgY7Lut79UdiJV+8SAYUN8u0C4Lz/H2SyFK4OKGRWJ5Wg1oY4cn4zxItEgZGbZhjOQ3i6XcJqN5tIdHg/fH42zNL8tvGKGVqj+kz+9CsecmA6f3vpOuvF1w+rkVktnOo3B6jIsbBaIAlB5obGucKZ4Plr42xFT5oL0bvDVcFb8ZCHswY3PxUi4utlGGqOVjZjAvw3ipEjEupfFmTe/V1SbVhuiToi6+JD9H431+03DflRSuVJl9B9HgLb/PpQoeVMHrQBxC1SN4kVZy2oKU2zIYL/evEy2wxH5XX2RjMvdCiE4bc9j694tKPAHILFf89006EwvuBwLiPkQ+FkqJIEjcl4zA1UNkJZdtJiNHnIUt/U5sQaPoXUGH7fC+qRRyGsxnttJKWJ25esIos04e+I/em9QagXWH1a74E9/MNbmVnWhk3Yj5S7L7mydW+mAVYec73+/kx9Rp+SoY1RT8trjHy+HtCbGdupEFu0Kzfj+9cc4grCeY1GkngZcnjR6qAvHYJNEHJVizKYTVIMjO/heUwW0+piklTxX0VDaTlGPYo3TS5lGphyYNFLqgWbqeFI6t/N1xKaf5MJaX3ZnFZSg0/eoonsYFM7ViHJ8bmu3N0VycbgnTFCHOhkaCEZvYcUzzkg54vKWIAutkpkEhGRKC6oeW6QDL7Oz4YUasDv0fk3oUKcERSJWTUj7RctFMdpVy3k3RezCYeuYEsC0q+hVj2xTYGFY4z7GDV4nNoi+wevUDF4iFEsbeAIOuHPZHwuZq3fM4yyTsUUiWWSRWOTPcURbamQZEM6EdJ39nJJgcBrbI1K63Yv/iZf9DTg9hA9IXjT2d+xNI6hk+n6QjbVAIDBIelB79yozlkW/Fk2aEG0OQqJonUemgGNZfvLyNG9ZgpkmI9t5uM+aPh1iFFbItYv9BgjdhO89rBS3ERs9nW1EIGNLSw1yR23R8c0n3931iD4Rj6jpW/ASaizz9Jb+fqEHW2vKnCk1LQhD3momSoGtKDHtwjnhMpNJ2SYycyqhDOArgY8ZowTKsnZ+DzW9hwmRo3jm26qgONPLeA7OuwNHuIPae1i7hx8t8+ieVzkV5A9vPdAHDg3qMH/HhCQ/IVsoA1ftPeybnjcgj5jbCnPt4hJzwkatnhRZqi/vKedvJr4y6J1r5Jq8fpP4xGeGpWY1JxnACslmQO1qjaxX2ySTTygyZeAElhn3Dgx+9U0MCaqWLMV5i7BRmS43sEXUkbDE+n5Sk7PAb9aeaXWf7F71egwkGppRZiV2FDdXbI9eFK63I3aZ6iBeEJw7vheur2mlx/E3YE2MTYncNFaE8m/ClGKZzGSsTRqqHb479zt2To3IveLcKU4lBCIHsY4qmUlUZnBlZCzzTabiN7mT864yyCg+MNbPZ2FPX8put+C2IGqT28NocycUy7NnUAs7ghrQPep2De12DJmC42KkjMi/QtUdhibq5TbQln28PsLvIpBjW77hEXRufKvvo1ffWzwlMPpz8rngIgjTKK37jvJnyFjHg5GHLrtEOs/n5z/dAqAXMuqNqwecAUKgbvc0AKtckRbMi/2HtgKhyZhFIo/G54gQVvYJhpByLDgd2T7Jh0M/MpgdHGLD2tSKwWOSoLFM81efZzu64t6ZANeXmjR8pPVPlyWAjLNt8PQ+YjzI5CwVUbxM/JQqpsD1cuRcL3Nk9e+iNWbnxvuoGsYCnx04Wrsa+uZ2M+cqdLPzoJeHadAgiOqBE7srUNjJsSTpmIJd3d1Jmlg9ucDrWq4rmadqZkCfKtl4SLRwTLdFu7XKqOD/rRwa0kW0aP+goIAQEkb6JzLmSrmlC5VFUhHBWvPfOeVVg5UfehmvfRa1dyU2C8dO6zanjsdMau0L6gjbhn8qJ5V2fpMxSU0C1QsX2JjeZ3e+jLbq4FypRnEgH7kA7W3jghGYG/53U2Z3Upz/0cSlSjHkBj40Ijldti0lawz5DSmbZPv/qpwojlHeBQY9MQA7B3jr/a/KGEydnacMLxGAPhDi08+QCCylF7f28aK1YZYVl+RAOddetaAodJ7rH3NKv6dI5Wz7MvumEXdtXskuJkcS83UFTnG+N0uvxymHydEfK83xqKTZsqexh801WvJGHMy66EMGfHbeMUr32JsNxmO758pC5ziqMf08zkUVTLe3lgR6IpHlxc4YMo3dPubGb3PKVCdZxCsFhM2a+miCJ2Bf7kz7ENvJCRFlQHxxNzcCBlcSZh/XFzYUJqw4rqyiooAkAeR9FXrgbTEjq773EfSihzM39laG3SMx/7037raqm/7ihMymgjR4bZSCtklMJueRuVjH5LVAbecE/pSkMrygOa2ZjaXd0oz68jwSug8l5d50CK17UQ6yeX3AiYA/mthvBn3IlR3E3a4jDK0Vw2mRS0A/aul8ilVQhoDxSl2LP+jGxcNcTF0728rVZamQ1ugCCoCL/Sd1jqpCgFiDiswKyFsZqVI4DyaM0qXP83m7FxWCKqLnoF6OK5uGNNjSZIgIY7jzprBICrjwp2i135qenzujabGaGRo1YSiv73twYzjw1YxoO0DaiFp/xeWFrlEgvNaNOcXhCivhe/lz26uMRC/aLWOzNRC1OPyL9p8vpprAaLIukFi24DTycwZ/0BN0VTgwN57yFXKvBuqkwNekiXaKk97UPQW01D8bjUv7s9yM0KWZIlU2FDSIRfgagpeV/S2gzJBtwDAaFQx/INYoP0tGHLkl23dxTu+RkHSMvFSkqOeueA7GVLs0ja1Xk9YKB/B7evBgoCuoOeImrRtqE38DQfl/FVXab71N0IzhaT5iaANiYU3eu81E/QpEMrSMQX9RTaCCR7z0rNOH/gT3738nnHpz7AGoP23IZKb5dQ7ihnE7esxadrhYk9xTnquT5jlSAaw+ZjnyQ47fw2Nc2mo1c7o7bKdom2XZ/0SsRZx3V6KNX8E19//Pdqp+l+Md5xD+TSSNVABtpWZpPWY9OfMtZlMjnbapodB+E8NWdy/VCJaIgnY6jxMqh5qvWiUX1oPzO5JkLTZZEv/iqRVou39KJR4N73XLjgyLTvK8SbTAEoF32kVS7TpEilyzo8hZ5yNahv3QAFtObj27S/5GiSPirkLb/S88MKfRBijPdqREAiQ8Nw+43GdBTd0dn4jKJiBDhmj+NDd3oI9XjivbUYyL2XEPPtncR5+GDPY1pZ/s2DLuNfT2dfGv4V1bqyhAeUJqVtPFMoMf9w8e4ysNM0ZGjspKZPCs37GVINgwQ8iAMAhpDmbJbUTRp9kq6n7s5oSabZHh356kKlNBJDCnD5F8cKw1dSwnDDnEZhyymZ2Ai7gQxbtN45c5uAART5WHyl9rurNqUCyLPpEXNtTBzpmCSrtFm1ae+YKlhA6lrrvj1LxPVMv0dWE7qmMh9gefRcnWFFt9IsuOJGsYr4eDbxDskI4SHM6tNuojZlaMyt7h1eSz04byC8JU8FPeziCPXgRg5qSNz/Se48W83Q5nPubvcXCGVJFWNKLUcWVjYRPivmI5mRuD2qKaEn5fQAkIAIyeOJIEoSUNpO9c5Bx4vb+11lt+nUaDgWUWMCBa224fIQ/QWnS5gZGSYcJoPuZm5zY2myY2rNdmd+V7tHOq/xaEKmFet/1/kyU/e55GZpLgFbciloItJfd7niau/wzW1OkLNGe876lIRFXNSEuXghip9BT8SaJoB0dAEES86hT4YT/+0Jve0hzK205UZ2MSNbWhZN737o/amNvdkQ=
Variant 0
DifficultyLevel
646
Question
Vlad uses the formula below to estimate the population of wombats in Kosciuszko National Park over a three year period.
Year 1 = 900
Year 2 = Year 1 + 30Year 1
Year 3 = Year 2 + 30Year 2
Estimate the population of wombats in Kosciuszko National Park in Year 3?
Worked Solution
Year 1 = 900
Year 2 = 900 + 30900 = 930
Year 3 = 930 + 30930 = 961
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Vlad uses the formula below to estimate the population of wombats in Kosciuszko National Park over a three year period.
>Year 1 = 900
>Year 2 = Year 1 + $\dfrac{ \text{Year 1}}{30}$
>Year 3 = Year 2 + $\dfrac{ \text{Year 2}}{30}$
Estimate the population of wombats in Kosciuszko National Park in Year 3? |
workedSolution | Year 1 = 900
Year 2 = 900 + $\dfrac{900}{30}$ = 930
Year 3 = 930 + $\dfrac{930}{30}$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 961 | |
U2FsdGVkX18XjqCsOSkRnjENrQVLLDYYj38odhNvyJv70hBX0IRrqE22cJFUBFdz4Ci54GAYRtf8Iw4TODEdcVPQgZlqcy4JDrB2WpLVJpm4WIHvbfmTurxbKb0+WTd0bjzSQJxcoM6zpemtQN+89hWFpIWGqOajWt103fAHrTUbfKD//x223rnIYjy07f6qzcL1gtXkDIMNYV4b8daJSYc+sVB4acShDw15naSGZlDGvwg5o3Cabv6V2NdOvdEV2dkc3+w2fksDfzz4uljUs4Lmo6Jc1TwBjDQ4dJOVSLgf0PP5882qc1J5SpEnpUSX1lsI9Yf8mjEdVmUZZoZ0WnaNl3igLlx8ZTsN8QxIkF/3oZ3gAtDzIW+GOrCad8aEXDMDNh/fw7rYkXOjdYXM6zpHqyvjC/Tr3V/Wg2bu0jjqDy9ElTB4yaCTYE1e3iopljiXTE0aVJbTqnX11RQv7aX1il/BfpSUKs6cMoNS+7tdtTTWyUl0y+tpTOi7xMGCMZP7rxLQR1QOQe2MeXwYpom0ODYxOyvZrJljIT7Z9AuC6ciGC6kabRa/vjsvX9Ku9cxOMvXoOtv7q1Dcj6pLbpgTR4hF7RjN0yLHWmuLxDrGyQq5naE4bkz64/d4bWOXfybE2M6OymJHqWN0GvQg/uMprMOzZZ++WVe6dGPRPJjFUk5U3hXSt0BMgHFRoIuwVYzzhEOLUsbjGqqYNk8QodivIxl6UMv35VjFF7PKAL7rbjblXceU4WjlCJkr+FPAUyX0xcxa8xOMGYaryPLXDUnuTM87RhUg1pJOyjtfw6/BOH7yA1J3v1UAaGR13kPiXChmYj8NxsB+sAPUOS5QEhUDzHgdo70BAZ7EZsWk1ArMSADyhbvNu3i/YEeZlPmDy+tzdMGwGx+doma2AKjo5WN5oVVjXOk+Xx7U4FUlnlADAAEt0REPD/+QRcwQMDk2RT+7EonMwtw+B1bV3HBAK4pwes+0zT76k+5ljzMzFlPFgQkYTIBsxOfTlO9jMnaFqvfYXuXZQLnK0m7uLsKjtKfWfoSpm3oGOYYFvkuXFzOA0vwtOImZmDoQA2Q0pKTOSHCx+OgPKbEsqfR7VBzPeLo5c3OSKonU6AwTPUERJGRv1gSLMZ4tSrODnaadUi0nVhs+TbWxBUB+inHAke9UgajTMUr/YCA+rnNPbnDqZwF2SN/W7ETBuj2emcHMxs0lW6bB9gEEob2S5uUl2VqggS9KptujqM9iW7BNeRXFlQT7H/tJUVgaJdBZl+2vTw0+Ok8Xw6s1PwfQu+h/FwnTuPYtH6VwCHRHliPl9nW6VYiqlWYE7Lft/ffrvukAGioUqBBfkH24ruTySb6jF8tpW1on+6EqHYaU8NdvSgj8T5/1jj7K5JzBe2v58H1gBqm/tM9AmXN1UznQhmH60XXhXfzi6U07cATj5YSe5PefJEGMmIaB6Qy5Z7zm/Ul07gU87V5+UC8wOu/xFIgEZJfLnmCDZzFKZkpCH3W6/iWqU/fdtUcPWUEUcUM+3JK6Rz6KqPJC6D6wzMtazze2aH4MQjQV3ZrRNOUvhktFid6RGCdtkWr+EC9xqowKaQ6rHyx69RVcL7QMvwH4ED45U2dpUODLpzQz1mhzjcmuvpTimx0PkiYB4+YxsYAdxruXXaTF/q2awBf6dkgP3pjNczgtGP7c6Y7i/S1IuME1/+IzeP2UYTCiC1iztwgS8PUZUizfbf6m+frGML0F53YuXqpsul72GB9rUzKSDOC3nMbPGuF48hX3IIO5+h+yU2IAmvzvNUiCRMB/MQbd+qkHr0CZI1osh4Pdy3iHE3bR87FtRf2wpXnnffNE8X8tNvRF76m0+jVKD4YPXtta+HjXkcLASgeyuFPUpzIVg1MdU1vVazI0LFWzlp/+rLBCz+ZYey/MjeTHTpl9Ecmip0dV0VAMYMFE4gXWqm+qu/Li4JiSsw9IyvCbGpvYcSg7IQj+vTOrvElXXCnGV0456eu5mVEELUIchpeKGVGGHCI6m6LJqM4IBWBSN+yfqYvjfg+xEMNgl9MNC5erLTnKPVKa8PX7xy3rQxFpmYVQL8FIGyGY5i1KszNuE84pWx5D6O4lYO9ynSoXocz3Fr/6z6C2snVZ5zZOBHy6DDxfd+GlHmga9ckhufW1F8AQSbbPg0q+SakQG6Nbr0I2jh7i+kbGt7gEpdNuToCbcJ8YCx37mIaU8idymnYcpbamHltmo2AgFki2+pfWvlIqYK4+3/Y4+ooInxebwPPcUsN8SznzuUB+v1wX6qZ+vOtjZ/y0oYXDa77VJMLOkm9YG5EiwwebFgCHCn95ODnrDYSIR0bRpzY6j+Q/PFw6Q+WvllCcJIMaWA2pML70HXrRcBAYEpWiHsw/VQjgyXglYilU2bwHCAoNgHw42b7Z1aLQgEqNGVheX0KjZAuLyfXqAhoqBk9WrlAB7P44spWO4YQGNqU5iD9S6q+fv1xxNan5IIRj2Ddc+hQkvr5S+p87+EuBIhCXEs8VAcmhjywEvodgyftsts0JzcRuNHgu3yhjZ811pXMpoPgZMsN224xx3c1iWIPvY8JrBDhUiSI+ZPX5lBv/1rkSjLPVwC24NxPua44XfJJ2ZFARqlZ5B9fwmUsFDOBc1iHb/8ghbHywHEVTneI2e7Bj4yH6CwlVSqIaHkNtCwBRle4chWvwkf7CrOsxVfKdo6ZtLItc8Q956boosil0EHHoCh0z10KeSRRf1DC8/NiRk0pI0gp3B4du2GkDolMhjkOPBvB96rHo+wWv3K/bXQ3Iws9YYFCWh19wimAGL7d27fFTn9AHeI/+Rrdk6IkoGSi7Npz/gubqKrTrmVqcNIjWVHk1rTXB6NoJA0rceaaK7HuncPoYlsk0Cbz2nVZXuSEtUjAI4I9ALn9xhZ+JzFJjFZ1F2B5aS5yNhXZvlzlBPNVpXT6JmbnTTwO+LxultS/HgyoDmctwMfXIPd8SkY3oB7RNE3J55nHiNesgV9t8TR7Asu/bPGiCqvb4BpN1zgJDl8v3NofET70GIoqfxnaGxwvnPsGKsmRPiwf7wO4XG1BE9/xIrJinkUL4J9ufzAMpxbYhNH2dDAcuW1M859ObsOoidlI0NH/NyA8ogdRQUerMa7FZqXBz8N7ISGa0Cjqndgi357cVHDj0VDmAC0elg2TotLAL+BqBE/xd8lBYQOvGy4Jq6UMYmvnVIxRwJPV39WMVAyLJWsLEHJtrbUdlqNSEHNgGg8TwhrHSIdKG+U/cYS2p/ksHRezI2WU56Z/7TlZQXakgmlEQleDaQyI0x2baWUeFEMisKsl1OsSYV5+YUZx4TeF0e8WnzOSeRVxrwFsN7rqAur6dpHmFSS1yUHSJhwgODF8rVW+Vekbj74LjvVKdrJoLQ+wZ2VNohiVIsJ19cUjYW1zjzODnw6ufxGXR4a6N7jNXW9YIsogLcep2fdFMBPx2wONtAmoyAIRZ0ilEgNeivu4slxbqNMxXY/WSxC9irkNcwSbYFwF4U9y9Njlbhhef9rD9iJ9F99Fx93fMmTAQvVcb1HfMm5uBZY17FIpLQp55wffrRgIShkZYnn8hPZJxokxvaUl7X6c8t3nUPHQfoh78DtvY5Dy6HnndECJR57LWwcVWit6SzYv4sdp9odBt0GqemqpdQjsfiZ3vrersw11JCBvi+euhHhVypCogyOG9WfvIOfJewkaKr9OpEmACVQBKMPoftpAsv4mOxpuHamAVBtfK+cKOdd9OBH55mgCPO//ay1byMUJ2Tkli+peVvv5bOBP+l4rwI3iBhJ4UG/v3u0xD9bZCELKa1zFcoUTVzMBW/P57aNgyB6cqDMeb7oRFodPXRKkipX71FKhI4OZznhqKjBf+XGbtD+I942lNvxcs6W7t/IRPbB3NV+mQ5orBX01XunQdwZ0et1/ynemOTbuSGZQStMa2jV7IZXBUKQ1a0J8LUSK2Up2aLGBWcdJQkKz1F0gRwGSves7Lawp0DTbRDBME28B4clqcAJYH5KbXLq0an8o0t+x+zzY6C4c74CkqKrMgDlY4lMirI+qC/SqFR0uUKIq59bBHYWfcn/t7X+CsK1VN2Gf/YM8l1mDpaIZBN9M1R2Eu0m9ZxohAzVAYwAWoDALjorZi6dF6+VWx1yTxkG/839aTZBOZ3azVv5kON8Ol1/zC1cz12gh6tJmLyHoLREMI+OcQ8+l3mnaeufE7l252KhhRjEKHI4HWmre8Vv/0nje/gpKFVHln5a2Ym0/iDDPstNPbTc+u3TR3fHgCwh+Usw/FlrPmBL/Uio4QfT7HZPtnA8DgN2fqdRqnM/u1O0pIUrN6OF6CsT9a0C5bKuy/e345yNf3VosOt5xfKJypb8jK6jeBSHShnJFB/ULeM5ole5ClYvvUdHusowYoTV1IjW1ljnUk07cBrgX+iCOxvYRNhSX054WzpeKa5hFtxitRsll2HMr/JkV8qLuc74qVcxUsadza3Gtilw1X8pQYqbC8IBfodUk9rm0ATWbR3nlIj8Tx2RcDk46iee2sSgx6M6MG22rap/l4/LLiKDPTOy0NZ4tVe/X0t8bn2zAVXcvr18SrO0gbx8O3VXfr8hs4e5d0at9xIU3nhvDC0+2ep/EVOj1w2qaV4v/CWCiv42MsfPpsl1u2pvxDxR1KGy98f7tfXDJVuwGdBgFNBJOSgojSa1qJep59cKXwNhiOEzbRoT4j362434J3VI34PTcD/ADA8n8iXEXPHr6S35K3XKn6JyZh/IS4Aq6ApI+TFWzYohXTpKFvPB2rRjDSlGd5mQ/4P7nMAOKdAQO83UrYJlmn6xSnUvyfL6HQqYn58LEDjiBNC4LfFBmiGbzyBcYnsziQTt8vBiHW6hcwJO4OUlr+XYSHaY6hqNMz3y5XAxo3Ad9KkRFEjSOxFNjPhkKPes8fpmz8re0OfaR60fDLnAnaVs7XLLzm47ar0po3ZLQZhM3keSlRSCr9B79XKgGf1bVlhbgXNZiZr3QAScXHZSK2D0fCKs4uPA6EjFGyBO7obC9WKaLK1Bx9XPtBBs3B+BNBGSeh+DxBbhVEBdROsc9DNPbvDewQd8uY5DgGjnBefQJtgechT6exZYwe2bV5JijO9TPHDLcxOBblwME9az19xXM08IwdEu2YGT4HE32gKbGiv2GZtQHxVIvBolqbwUQ7ZhwtLC8fJ0D1wM036Zb1QJUsytVxXeG9RNbzL/C+FIrNOEwesQ/7Mh2QkUzsIETG/rGG0wk7cTxN129MjfjA6eaupp2y9C8dSRESPxcdMr7raP2I86CX2K98toMKTzvmlFbSkljyyM0PZ3VeniFe3idjT4XstLgRVyuWzcdqn9ENy9EsjDjSeO2+D1EXOVuNPeaAJqWIR53KlT4LCWpmHPxXVlGU9+100A0BG1QusFv2PRBhMc6/VeDZMX9kV49iPaHNhqWZqRHmTTD5IETtI52yxrCa6ItjuPleEX0qqZNH1cRiqpmQtunrX9kDSYtiFQIIpTUTAn4/jLRDqQYJ0P14vdo9XQY5wD2ctCBMvq/1+RdhhiW0zs+R2gnKikI0bJrJQBbnnCm6W+ruQ8WapBytyIsFE/0WJBmcj3DPJieetsrzEkdI+3Y9tBLmuLxsGHradDhEAHDSePv3TwcY4jC/6jgym9199ESyvwgUuDcwR1IyJJztzQVdXNFH6Z6MPRIq1utoLHEy7VB9GaRjIKOwgrQ/XJ7K2HOJvIYaGfS072ZFTnNh5WCA+GeLpeIWuFd69wXT54GhmZBByBiXar7G0L1VXyFWzv9kZ54cjPpxA1n0slfdXIDVYeB9vlUCim+QhCzXK64qDrhBHm3UpfCmvQuwsJkNvUgrta03jt3upuEt7dCBOB/F537GouwAiux0Rkm5pco6hCX3yfFKBBfT5OQTAIPCbs9hUgl2+ZUtblvuo/KkDpv+Pez4sSFpkw62OuIfhhyWSs9/oQr7rtcozvuvcMBeQSWpbop48hwPGDvG7Q747QeyktYLhBb7DSAwH/cT9FSTKtH/P1OIp3p20FiIFm75a2H+U+PRxo/U+bm8R1zPjGc+Qexqa8brca23TZSKF60h/Wa3HwdIGbkC3ysdru4i4ozxs+/6DlvUuDhcCgm5AJhCrkouY47MLPc7NdZFv0Gg1UI7MxL7ZEleq9VY3HHHWQayWpGnI5pue6e+rIBWlcVeAspai+NBFP9jJayIHOuZJIQ3gt+oD1P2/vXw+yZcvqhQDlpQTAZ7Ou0ludSvvQ6m4z0eVHNpBrscptyJ5pFkFHXb8HrmXPWcDU4U1Gn+rLnNz6XcqWmqS2luczZqQR/0wySK5ESkqUt60MMBlXVA4uP36aeRep5mbqmJ5ivyhCcJ2y6I0RGLVvexmBkv4CvoUyr3CKuRLNa4c13GX1M91wH1HkrBtCGPLlY8yXYImcbFEo6yzC9eSuWbmzTbBKA+om3M2SS5C3rHSNCpMe0uYZ1wYj4YieXVAyG08qHGFouGexYNiW7hC9hmGATipsmvSQWLFxlbDsDcwFnvCS9zF9Q124lb7rLVEdZqYfedwAPiFhRSQySC4jkiSxo6Nwzes5+stOWSGrurCG8UoLXM2ZIGTXizEqGH8a1QuyL+rn3DSEvS359jlUfRI5BwfJL2p9cZMF5ClDyXnVCuRH2xgRTArGwMKz4T7Ihh2+qRu56OMmRE+DJTK/HrR7yTItJNzXNYDbmO+ghOLVlCkNkJw9XfVqeY/QBrmSZhImIiIB9YA1tgNdICa25SHncdQLDmcEukcukpWoVKNsrmd5DM7IfSgLy0tcH/RImG/qj67FU7SXjYJmjfieb1Aw9r4Ll+ciAmrbvuUkvPeZ6Q/5KeeGX0ofce3DK5FSVQZqneyUNpv7+waRB0r0sb92/Hjutn/V7I7AwpnVtf5+CxR1nKn4N2LakUvRygWpgqe0Q5Y6tnG4gf3B2nrvTSXJbu4yIPPnLt/8bxkpVFkh8kk1QlMDtQ1p5cncuj3rfmLf6o2G0J4oNcP1lPajHpL77Z9DAUfllQCip4aZXNqtjdeeSiud5yth7/2nf7+66YSU9hmSU7kxLy8/Kk9XIBv0FAcD0kYgK6yUrJNx+O1ECkGRNPvHe5uUaOBKen7zjuvGhz1WpVR7pmoAaqdzPgvEz0X8dSJt6+obw03wpFoNfmBEB1HaYnYxBFiv2QpJicrsDT3zTU4+CXlw1nt6hWbbtmy6mdjWT28ARyyq6NSfvnzvJ7a3Wgsif3X2GABlmXftCWLiztXrtq1eqUUSgiM/jN6QhhCwRyaqlHZnlzei5iHvkahzxNxM+0xg64T8TrHlVSrZEKRZyDKXH1xBSFMtX/9JvgXlLtTkXEno20Y+h8mInbS0lpvNKdkFaN+5ZGoOXdviyAGLEX0JNRbVG7ihaGFrTT7lYYmrr0VzLujG8ZvUj0n+bPSF6BvVr1PQcmU9GgXIqlSk986r31d37RRsH9KelOxyQjcMfpdHfHeCwILgvz+5EB6oIs89Znm7K2AFVodgrAOet+wlYIw8ZAprDcHYgk8QkNmt/8W/Iu8x2XMKiTRKGWV6gmNWZb7ttIC7/YPxKCTPQLMhOidS5RQdlITsgsbdwFpt+k29D9JjcLFSYxpbkU7yTZ+3rCVBJtwffED1bkozUbBXOOwQOspOmJRo2+dwpWln9mNTKq1TeS+qmH+3RGQoKl3EysIqieWo3DJVirzMlBpeqJA/ZO9QimyTgZi8OJDetwcr56WROZ5hudFrkADzEBkUrHd1Prk4skGTcwYXJsHN3Ii5Bxypkks5QocBjYXvbYEIe4SuVWVlPkXaTqTQZ5eaXPbdHbjxASnDmXaKT12FVH7LzFxtKNrJWlH18en/7pI1wSMtKpHBVpRN4c+hPs8HT8uTHVXAhrrC3j6EMmaNujO/TkUNNrF54JmT33oY5mE1iGRIh2l3gBDqJnsk8uoEn5FcYrUsrsUpUOmThMBRkK8FVasQ00lnzI31DvHxCJm8LGjRSrzCvxcMftyWfABDnaTwFtYRe0IFj8i2R5kzN8Q/EjHPqp+FYOfANUEHgz7hbpwlz3hD6Cgju9PVY0TehVkRui/yhEdwfaNt+BiL+Int4QRfsJu0wSbL68welKymKlyS4SJ2tV5N2Y5aPJFzGgIzuXhWS2888XzbQKEN6FlUdDHVqOo4iaK+7XjDUOadfCaKNSd8XwVr1xuNMfof5xGORd1uOl20LqQqPVWWIF7m47Nr5c7EyU2yw+4CFs7vlBV9hELCm6qi5DaLNekzCmf7PwEIsXYDFbyz+r6cSZ//Lkhbfqd6gFsQwMafu8XCIsvnF0fgvjedcyxnAjbi8RfyN2v35OQMWhLTHIDL7mf7waTtYFs8u9BPDm9pcVVHgzOTZT0xzXzZ5OpXmBCtuHC/NSvUQf2hE0h3ZzyPsqU9cvBaoz/IgUXnGxN3xaeIiopSdulilX8PfFcAr5P9B2xjtVqXjEG095GAOkMnSuctIGYJokHaZZxuZB7O0K5lSuCY+5kVAWfcbtJxaPcq+bmdf9xYhegA5y4v7dt6atpcyr9+a3obzHSsCfT6RlUZfyVD7/MtVb2jl4wsOFLGVrZdJnAOZZmzNbxxPaxxQYRD/NSEWPdTOv+SAzs/V5B082uz5DcpRouPy7URsbiH3R3AjEl7xAEl8xGyFhYaLBNrIDonhYuZtXKI3ohNdTC/b6Li0kAo0qaPpAUfRzQnoviGJux9wKF4nPAiNCDbWtQBaky+u6BSUZIL/df7uJjgdre8d9ntcp7/KQIjVbJTonCHPrmuX4PKgADmi2wtAb91AUhreG2JHkGy/3ECfH8Gcktwa9WBmxarhF19HpoIevEJPyQB9bRgDgz0gDa221aHI07/sU9BwEkJf0D23sPQBcaD4e4Ge7eiwvBTOTciTUAJze0Sd7y64IoB7UKsuwRdJf5Y0cLNdDmwv4yQ6d0HaxCkUfhbj+BKpO/0HnVm1i7+8/pas5Bhd4dWQYPThAuwfSLBp9QhsoxfdO9YdGnwyGEko4AijT+mU0A3rSjXDc02tgeglGHvIIbd6L7rI7m0LVchJz92fl3UOpSpQiEueXVFNy5tzhjADgUWgOc2ELxWZtp1bUzXqK7At9Efzh3Oks59V+mX+ywjp0AEkuciIzLdwK+ugTUJHJgpAcyCRN7buv4xzQZElMgLv1ZNpCRlWR2A4GnXglJQPGc+jN6fKK2VX0c1TXIzdngB3PhSuz4aytPDwrkBHEvwK6omx+EBqQHNFMfOhldP5CxwVUAT5oSW5wmSSNdzBlUU1vK2aC0huwpZwEEuj3xDs=
Variant 1
DifficultyLevel
648
Question
Morgan uses the formula below to estimate the population of Tasmanian devils in a breeding program over a three year period.
Year 1 = 300
Year 2 = Year 1 + 10Year 1
Year 3 = Year 2 + 10Year 2
Estimate the population of Tasmanian devils in Year 3?
Worked Solution
Year 1 = 300
Year 2 = 300 + 10300 = 330
Year 3 = 330 + 10330 = 363
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Morgan uses the formula below to estimate the population of Tasmanian devils in a breeding program over a three year period.
>Year 1 = 300
>Year 2 = Year 1 + $\dfrac{ \text{Year 1}}{10}$
>Year 3 = Year 2 + $\dfrac{ \text{Year 2}}{10}$
Estimate the population of Tasmanian devils in Year 3? |
workedSolution | Year 1 = 300
Year 2 = 300 + $\dfrac{300}{10}$ = 330
Year 3 = 330 + $\dfrac{330}{10}$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 363 | |
U2FsdGVkX1/ToJBQ07ze9ide2EAm71CWEcFMjEaH9QtXjj1vkMOBrT3EE6Ic5LDcme/seugxgUF8MAr4fJTk4gTzGrJkQ4qUEcsj7wyGgWQnprr18sMC99zGLoeto3FfE6Eu9fY+JIhWqoZdShyKwa0h/uEcE5s+p5ytzwGybuL2lCSItw287U5J8rPPUkpB8M6kXozojNqCerprkGG3QMMDX6JxnH2Yxj3OqUtedztwrew90sbyy3malRlOmprh/fzR6l0U+6LWzZEbvyUfZXzXUBWBwiaOCy/pPhLln8ZUQ62IuH1Dgfc4W0C4+TdHTT5Az6WarBosoDyEM5bhXk90SJEe8XaJR+mkmjx7kN4JXfGEynonGuS621/YBIMSan3EsGJz55z/7/6eC5SYb1xMk2RrWjRh7zYzkC2726ScZmsFgRrE2zug3/sEx+CeRQK/yIlPD8dCL4YzftUdrBXYo8DL3TipUq0hjp0VCPN8CVO9C4e953nkol2Yz3A+J0DcVV3GG0j4G64AOL2wMIMeyfvLZ1MpzlrZgdOSIH7zCKlMEIGKiXUeT385u6G4rCdYUjmINKkjMd7rJgeysG2NrVwez3yWmwF3mbLmIyh0C1elhFioRxvM56cQgz3YapKUlZzZQAaeWYMpSqh26yY2+mK+wMqNqgexkdC3stMVqmiqIxhEPwGrr0b3uuqdscRnhr5E/XafqVquGy4Zhe8j4MkpEt58Cls/PGrF9Z8+8BZjD5LCcsLT6VnsMFf8+oweqzZck/Sasx90MWTiVEzAK83Lz/QHUyWvRNZlHWblYqx3yoMd8ohAJ3bBL3EBZpwNuE2m/mLxmsheuKH8+dvWXp57lfQh026slAe/J43ZJ+Rk4fCJgUdhJ/fVYZqn73Pkihwe+Y1LABSTR3IEJjLPxPJ4GvvpsQRGqRzRrQqVqIxBnXxMZipAwbwHwDfz8sJxSGbGw77QzAcfhaqW1xDpgVkHi/zT+T7j/vJHBXtS2DIZizZD6FctXUos2K2a5pQBmsmgTSQ3V1deyobHoaVCWjuEYG+IyKD0TiZY7u05dfkM6zu6KpazVon7g/LA/tlNqDZ6yr1wxqWxK8ntJCOtYROtg+dlHhYfAgcEc9LaolntvXoGmo8ly3HiNod5whJNTdamQxPELqUoz6B1Z8YFiuWBvTqv+Rjx9/3+wYGxfVG9p6s4WtGRIdT85IdFsM4FzNDbw5BJk+wOTPOyeVbNB26ZSR3KE4bf00HAeTekfEah9Mg5X68CxdCbNw/QTx85057I9VMnjj/aig8MYAIHVGBBNxXasALP5XDM5FfJFXSicyHB4nqAa65R17Lb2MT9IRp5T+R5t+IHBS+0Hlk0ahw0sAFPnjv3vLiViJnzL2hNzvGA7fTJShwIj88UW6RCicW4Jl3edy8sSRqBiesW8BgWlYJ9YUbiv3KnqngPDF9neg/bqmoZzIVItGVct9Ef6erS5c4D0MIykPfQ3b34WMSZ6wUBMMircbnTAsVJ1qXKAft3RcUJ5K4QUY74G7VptWJNxo6JmWt899KJ/xp91BeYwHgieSDC7BXzib2WYl5CcbgImtQhMp5bhY3LcO530l8VqUQmJDjEKZFlC3XcDIHJjSnMX7PAnfEcIm/WRpem1y0k8QuLuGZykDJftZvhSxuPT5wAzBT1TtK4pavoG8REtlwK8oqvtUECheLLiTiD2I/1kiywD+zvZdSA3P7yjF7C6/VSlv5+DCyP6u8KT8rBtD/Yq8BJ3ne+VZhhGz5ZA72UncTReAUgzRha5fs19TKrpgQUfPtL7LeNiY2Om5z6xWMg+biNkw3cwLGOUF6BUYTNu6AZaKVswfao2VzDoWNoIU29ceEaN6swPp3dwkdtN6qeE31RdVuN0bxhibt6HiBggzzEpro0h5JjR8KsuHINBGRsa/qaVrDdunMhNcdTJC2jeNRbfYY0TiFH77OPX2ZCfOqqYdTI+vJYDqB59kdOGJWpiev3bZhNGm5yMlojTRoYMFZNjkX+937q1c6qz0TcgQifhkb39NgxNTz2UWjd2B+LFhT5P232NlgJ43P81zK51GPqB1TTMwY9LYQ2maNRQM4YqiMq0y+6Pw2caCwlcH+Wukjy9EuIFmmWp2RqWD6QwOCm2LHvF/YKpKa5budIpEpWPaVz8YAraiOnGgmNykiTywM+knMKDMqDImhKIhXukZ2l9R0Ogz2VHuOEirC98YeDkcHE7Ft6GlvZGbltNPiPKMDFnqZ8MFH9fWSfQ2s2xt5ExpJmikHFsVv2UjfP6fBX4meq7aVEoFZoKnaGnL1X0YBdCKhrRr68a/5f9Rcuy1rGs/ippPBLgD8oGDfEPcrsfZSCdpEmJFD8UEkJbmO9huAiT7Ve+HtRtqAHMiKBVJGGlScVUkGf9D7gEyWc8nblzlPfEESTVI9KU+u8519qC7F/XNnd85zrNfyHjFgBfeqvvjzvER7L7sLW/2e1GPxy2szPxROmh8Yytsw52IWTBB2kMhQ/C2i+FEKGqNgmkb5g2p/dh5Yp45h7ZiLzjwUfV1uLo3JYPhi0e0Ooloa+ITy1H7Aaz7Pwm5MUx+Tjsse9vZcW5eAsIDUYiwKPuuGmHd7U532BSPMY0t38PiwCniT4kaa8iBfVuqBmV/K98QomYiuGVWH0mTklHhBAGV7//tlvyqdGZzMtJJ6mCRqCwaOTswmgspcD3pc53qEc6O3m1mg1RFDPFqc/MnvP/CxR2NYPCiQqK/YsQFIyJdrWyoepvJJJ07EWpzJccqcRswM4ng0sr5F90evWWoXs+efQNdX9/TRYS8POSRTiczFB+enT5Hne6U3wRC1ossHUW98m84Xt6gOtD26Lu1buxMNLtjcoQa690iPF/z079RygV6qufiIC7IFviIb2mbrAenlgAAhbWEsBQRi6R0ixkOZtdvQ36ijhi7q7PxCVMfzG0Dp3knmrANhBIgoXtpz8RTkq/jBIXFPolaXzqO2JJRxRBepIlzIdPrxYMxhqnUkXEFI7/iToVIvnQ4yPJFEzM5Eq177qW6IkZWlRalyEIA9whxNLv6FRWnrXeN6U9rk7kmOkmvF/U/3Ng5Fp0YACPWbu4+xLMnsIc0+0Zi5+mvdIfBOMcboaFkyflgbfs/+KrNLzPjVGhJbyBwwWaVvo5wuhLVZXEDgKTrSxPNrdSww3/nihUwjaC5cqQu1AJDuQWmOUFwFB5LHLBDcGJuDjemIHbFtzuPkgzHQMRzfIPSvpeUjKPNSMynaq7rQ0ZM9FlqcAEgE5hVC8cmzcX9C+q0WRE1DsWe+2bPt9Pc5zlIWi6aLXwL1a2+Vt5I85O7AKSDrWFQ9GHKgphx+MWuSdG6Ig0lX9wOHr7LBCK1mex/X1Xhs/5WAyDlgQb62uWPKD+DVFQoJ7BjDqfoT9MQLWMO9YgE/gZmAdYMJItA+AadnvRgwKGzk2KZLuMsvs0umTIsgrfP1C//BiEcwfXAAH3fcCAQ4TuyQSnikvpQFhFPpgOYHEVti94j4+ATckY0slRQedzFd7ssh6vuGSq1QXOvYaWM1t+xZdmTJCToXHKaUNopxA6muxEW5UsHNK6RAb1QG8KWt2Ee+Qwrd6EhyiGh7hUmxjKL6sULdfRapZSpEDeqxQtjtAhp1NGPUvJ/ZhXNsPLhk5SY+jIzNYDtLNEZt5gRbgICBJRrDJOKRbRGRlmoLP0hzudgI1fBDVe8J2Js6FllPGENxAdAayoXxRt104G+D9095awyTqcZTlBSY3SQR2BPZwRSCqVr9XccAtPVjg6xcOTeM7hC/vN/ftV5N+UMmCjpKoiXwZHUqmahPBMKKVzpJVtbjoIz6aswyD378YSHCiH7qUJqRxBTiUwg49jfWqa1McTJqCSxHPDTNp93G3uybUncuKn9NB3kIzEs8X4kjRRjtYob2yI9WNRAQ24yhNE0bcka1xsKtM8eCtWEVw9k5yHZgXOEbMlrwMIm2t/KU4I07M3JPKp+SUS3wI1ePygE41qdS7FbeXWZFgxS+lejb0XTg+0bvJp94tAmpyNIeZ+uO+RVbQKNS0FTrHerKwysxVt+8WdOH35PGvx4mXY0Zh/B0nTUeBdAPjHs52dK+dWqnSxu+J/TUCcIRoqYKYZrz2Ou5KTiHAK8cwf18ippYwrpyA7WG9EGpcevBnol7sBku7C1GE2b0YfAUgHuzbbTxqT6D3og0ikHaXmBUU+zfdIa0ZxDNkuW9PlJWme5kdZc11eMKswoy68x/XHxYpHZ1SPPPSb16qNv59oJ4Ob7pvyFMTH1AHKxrp60tGn1f/zzMzfW+KMCiXCwVv8fGrZKkhFWzcL6WymWerydAK+e9UH/Z+XzLzEiPw2VQRoUVUmrDQnv8txYW+GtGnfKMtoF/W+oASwB0mXxlRjybWBjcaVEMBHhMbdz5uiiCdGvIrkLGYMhyzVyjodpvk8IcNyFl57Sw3jQDC4jKjYHxKXT06k9VIBg6gqvqQ7Xz7H9N9RRdRWfj8Y8+FvVwY1b8sa25uUqctlATb8PntYTtiQIPQUPbqaBsPbvypB9flohkHlTWwyXDQeZHYHjcIYpaRyPVZOSzivrjzyu/zt2kU/YweODmD+X7k6UCglauFnja/yqPdXvajUKe6PwkhkJY2oyn993c9WTTyTSHNOzSJwzA4JBtQtcYTI50oE1wF3nYeCPoi3uSPf7cot7DZI2H8IyprHXi9xFaDobsGOEjuEAmr5WCh2wRwb+SdUukAraDAWw5+yaSLKS9PRmqs4JfNfatnexg7utGSmqJtlUBg+HBCcU4GU2iu8rpfDISXHKqSm8mE6OCmxA/OXOGhwJogkVEm7vRDLaNaxiaYJ405Ajhl7bKU586jLojSiu+NwpbqEvbBchcUQwdRxxp11a119jARMuLoNysv3wMnTIQ3yCZuNgLLeQyRq9pRtU9eGIRpUVQz21u+W6qjU9pRRcWijj9Mpmi235c1IYwD/Z/Ht9XnqVGNsmhQP8sV2NdDrKnbpjWqYWImnoNurWwVbMGL3H7pF8k63lsTpoTw39At3sA13JLuTpk/WDxNZkNkHuuedUe5KyUdJmb6RIhLBWY/p5DKpw8cBA+drVB2xefTW7wvmjxlBAs2+lyaTTdskpm8CShe22vuAWsm2jY+jfVsixxL4iSoRfufI5KbKKKeye+4ONb87cErPm2wqq5Tkyx7ksbtO3VB0oivCBiX+3GDlTy0dvUMHLQglKIVS2EoKiZjnGIjV1Q3M+rigTAtBXIJHbK0EWChNZ2ICBAL2Z3QeKapYhe1OtyM2pHcf8ZmksopC/Tj3p3Vtyg8LsSWazJ0roMILgeTp+j9GinSjZGPrtWsv16j5+ABu8bbwgTkOvE/pXKtDCwncnvXOmBhnQnRR4L5xLAbugcqBOVDc8WdplRpmngcI5TaDRwl3gQnv7CXsshffNfa4pR9kPUHaLt65aAd14+Q543XAkUbgbC+iLPq9bPgCR2KEu1PfI8VkVRp7vZslzOqF9zLnEHXrfCQSXhPHQmwCiJLWs6axc+fmLnHl0hjU9kgtvO+2V+DiqaT3pom+9jF2/HD+8FNdZFf5+kqcpwJtt/VUnxDssnEf6ahh9Up3U8yFVpNCP4qLLReNnIRMhJkGeoAkv1M3STok4oLtQ+Twr1c436xxdK9pwZtqtO3Y6Mlp6xbXyOLsfOqUz+NnQHGBfXq69FrGKPQz5TqQqdBmh2FCIWlabpKlty8/t36+cZJeXVZ8YKbS0gJ2xmYx2Wx8YsLgRP/fliSBamDumBF9bDrrJoAsE9JBoVTQ258pLNJaf4ESlFtKViKNyh8kqOEcHXCc9TT6dhy90VIYLsMXz14U3IslWFmUCHSpZ728QSKcNfxCcszdWgoIJIZki/E7rDddLqxZTcSZfyX29/kR7qyIJYVjqWT8kpSJH/QVqN/A2OZuf6jWjNi0pvrgsML1Nx9uZl7xmY5RbTKiFKgEMJZ96rdLEpdLewnxNmmlCB30ds4RIO8BWNMkDLiwbJuo8Gqg8u3FSeJMv3Uir7cJYF2hkOWEAa1WNhCdhN92M/gFWUkBF+EHrF8UaFAKCGqg1hed+qg8sTR+1u38cTcaetkJmi8n7BnQbOxHa1OTwEs1NChC9cgdLWM3Mej3H2UKY4JGYr4vM6S1QCfQEQe0J8IJOlICOpe8xhAFw210QXN8Ikadk01IjJoog4NvUGRy/vl0iiLEunQtg33QhggZDLTk1VsnxlvEo96TiurwBcoDyzTjE5S9ZiJ6MatG51glJEeSD6ZHvZ7Aul8hmhgPjTLNQoMZWehrrhiYfEQxwhxczQAIGtXQJuzfdulyCCJFH+7la9fTghW8c4qcJou4+Dl0DcTpqtic3zREJ+Q5jsBqp4q376ghRSA9EuOaE9/POgZTkQa8BcJTpgi2y2rWE347Z5zINTIhbfzxqDk8o2bNy/zrpOLBWJJtDSYFxH5r8GLmpfV+S5wJZlfviDijS0ojk47wANN1mBNkgpuQg657onz8yRDqbAyX1fsewiLgTIy+S+P3cio4Jw9k05zMIH7iLjbBtcN9iq49RGa1xDem5cElx7R6C90jwVe+FtqZwS5I+hszBGKN5z89SqpXjwXPx4c+r81PqPpRLZOqgiHiTRiB+09vM+ax/+iv6AD3id+VxPrzEhdJgx6CWZEvSmXo/JJ6uIBewYYu+DhwAuCEMuOqqmZhVrV+NyR87KaCMgh8ffupL4MaodU+Gq4P1YH3yRRSfMxhD8vLT37YGlfT25eDVkQoDdt9CiAhn/DN2kQnI0SJtxOksXi/zkGsbcoOF1aFLXVZfkoKEc0TYtvEQ4Do8pVkeGTFzXmxF2PSer9obS6MzMMXKnE2BDIFOkCxvzUjMzAj8cVJiYIyUNS4Ff73ItIaLh083Gn44Sohiq/RO9AcX2egn+t73P3s2g/wv1Bv6w+/FP3tmt4F09M5SGGOTb7IOfLkxTtnXGyuJ3p8VqwJDuBibEWIMRKS6A776RWwWbTkq67FoAA8DNTXDRKtAHwzJ9rvUVk3CpMUUELY5ReIryUtXih9td6/zY26ONfhZwy5SSc6bCZ+EMkRsUKokPkp+awUT71lw+CCWt8BaK8/QhtPiCO8A9iL/MqlAao0kjbWA8Hdy2ZIL8HiPNoIWhEpK7f1AEEu3tzKYZJUGiwoyLdR567XZodkDTK46loU4ONCfPD2WavKMsSPc4/S1ltGWBc/2deyznxqXhFF6bVnfLa28jdC2ttVXhT0Tn17BwVFEuk8UdE4sMymaIVv3eIgS1NVhzBNitdXEhg8/XRlOycb5ZIZ+USLNFYikdRnKjJx7znEXx9zE35GNBAtrsMB3ZPUsBII4sxINKd5hGYWktrmAmTUDUqwIc2g6hDZmgrPcAA+Rbq8/voPd3eitGhsWKZVRMvKaQAw3dSk1G4pZuM35IoaOag2dNlL+oLAs9rP6VdhcxNXT1kLK/t5kaNgmFxtNCNTpJ36uV789Nwice9UIajcrTY44KzcExxPRsr+Tds5B7ga+dN850zzG8jsf6LChmHc4oAT6WJNcaCH93LwxP+2LQSCSBAcknZYNyMRxpNWpTQ9qCGWUOOlhr/1WerKNWhJwwtRVubZ1u1DIoLySTxLu1dZW7FqQMLoCFPOkjQX4cife6tIKL6B5OstrBbPkWWdMIivXEdLQTCyols85EDgJJWtEgSHHU3S+2GsXSL2dSnBvXUqrUwis/wRp5YWcPOC3lQlPpXu5wGbJqzPYJGMm0I/G2562DgOT8966WbRLXdusIjSnwyxMv/rPkVhxyrGr5PAHPt8AKUanfTeo3yxwOAP5tOx0SzpKSh+g/GF8WUbp3VTxZQhc1cssJ+0Ksc+OMvqni7Qxe1tMtNSensIiGAmvnYeTd/kRA3DeAEmR0HXYt8hHaJDDDwK3kSEk9Fy3cKKjPMPU7a8HTAYN8J2/ONXoBgbut36qAFSumvLvPV1JOpjNtoZwZhf2pkN0IggAwfVRz5QbisqIIugTKeqQbbPgs/1CBfGxaTLllSf+1mdamk8T4eLutwaQLP33ZIe1UhIXD9YovlYhbjin2lMxV39YBpdYnaazNxF4UAL8N8XwriMliEUaCJUE5/jFSYB5XwlxhNBljtBkmxrwNoX0XgxQp79qsciimU0UjwjtvUyz7vtAaq4l16mBpGYoriZ4hiL7ctYOAMRJFpxz6PvyCl35uU4ORL/3serJYZ06w7Jy8wHKgA2BsJjvQPlUD5iflxDD9cCrP6ofyUastp+7jjCvcz4ggMZhwJtg7Cg6piOv9wj71FygXw3x5+JCcGJHZN9QIJyb+l+IwoWN0Fo2DkQ1hS1R3srV/i1CTsfAFtMrXX3tinsfuF2GFf9qNa4OX7MAryelaErS5dONi5eOWx4YazMHhruIcPlSKFwiuV71g4ypkpETVVvr2KQGGNcZxXasPl+diCYHGuk3s6oD+5gN59NB5AeywsQvdoC7cBF133ZSlIsZT79d5tdjJWYxr9nJeJxjvIAxKB5H62I64GRDgto8nAaeKPEkAX8/a1r2k3MmazQGUTnYq3G4VWKdAP9mpDA8VblPjA/nAVX14yhzTWtyd5zlknGHsItx0j/6wdT2+XQG3s1x7G5+d4vce1U3xUKAL+AWkLf9NvU46IGCJwLl9PmK2hCwi5UE4mpCFEuOWi2OjTtThde1wB8DtbdFe6+KK5pZ9zzzFkmpfGVVZKgr5Z+JP4vb7iRvsQ2jj2Mmj2SjV9cvFYTwql+fCjnKm2n5Y0lSpWwTFJyR9N+yWmJdsAuJjOZblTgH7P1cyqSd17UFHk89sLtD85pGmjJHlZIL5FFwXQ96xrW+QpG4zRXvEJXtKLwUW0O5ERjy3ZzorZO1Np4BsX0Nr6gJQ18H4b4cOXamUMRZX94xsMjZcGIs1G8nFtqiCfwkWYy4ROa1s8Q1o/2YeAZkZWB52nYyceXT/9CPx53A/oJ7ZoiTAXkxXm2K2xoJNvT7BL47V3n76x+iJzy5cNPvjx5trDyPVFbvucLZGGTomNYKO2pebiW5vW5hK6MwNuiAt6Ye2usULNxDnJg1kZ6d/psqB06AeApPaMtmK7CRyzb2J74jzyn2K3loattEUKCjfyLlQd85oHchA6rRp+Y3YWXNxtJvXhvRfd3XRIaljb511J+NrSJ+LRevdosuXInwwVVca6JorHMMdyqd+JLb7WSPQQq0YMkT9lUvVQ8ezfOijxIGrOslgWZvD4HrOxEYjfjjhOMuN/kMjQozZx3fji3J7b5SOZjmZbvnSElZ6PiC/ve5M59HL2gbld4Ka3B9+MilJua8A9o6gUSOEMM8GuyEkfQSgqkifkLAT7SHpBmaVda+fD50ZB9wKXpToVJRt3P34qjSH4rJEPvEtXFz0X/TyzeOI0kKxkwhXLYAUA2oAauFVil54cn4q07cUlwurgcf7ge0J6l4H3K9pawNQrW1KtSrznX0SIx3BRMfJgMMi1razuiENeLXKTfY4=
Variant 2
DifficultyLevel
650
Question
Kurt uses the formula below to estimate the population of humpback whales in the Eastern migration over a three year period.
Year 1 = 40 000
Year 2 = Year 1 + 40Year 1
Year 3 = Year 2 + 40Year 2
Estimate the population of humpback whales in Year 3?
Worked Solution
Year 1 = 40000
Year 2 = 40000 + 4040000 = 41000
Year 3 = 41000 + 4041000 = 42025
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Kurt uses the formula below to estimate the population of humpback whales in the Eastern migration over a three year period.
>Year 1 = 40 000
>Year 2 = Year 1 + $\dfrac{ \text{Year 1}}{40}$
>Year 3 = Year 2 + $\dfrac{ \text{Year 2}}{40}$
Estimate the population of humpback whales in Year 3? |
workedSolution | Year 1 = 40000
Year 2 = 40000 + $\dfrac{40000}{40}$ = 41000
Year 3 = 41000 + $\dfrac{41000}{40}$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 42025 | |
U2FsdGVkX1+bT+999hYOg8InqD/BIm3G5ZdcwdpXYr2TvHsu/r/AV38rkbIiAGSE/14XnnMvxpppiPr9dG8Sfe8Sah4K4CiXZclcQLSurnBSbeLEedMY7FlZM0Qmf6d+vMP/7rNZ8AxFjkCR4B2XFQ8qLcg717Yux3HWw8AbIgGF69PLjutpFsoLkV8xJbBhSzp93RMkw1aOpDsL+rS7Z46S1Mj+mbq6bwu4m0vK6GNdcIpsD3ym+l34PhaTNY0k3mZffuRWe34+zN1CKMHRnhwu6HonYUM/1wKgH8ydAjcOqx/hJYFQEPS1JuAFKw5cDx5UmP9lSVmsOVe31BminXFKiEwiy0MhmoXC4i6FCI+zjoaebkJ2D/MO5s0xl8Epukbr/CDMxPzHC+kuFfk6jEPlvz5ZkjbdPbmDdy5NoBsu/K5pyeoUgcmfIAp31LACj0vMbhesTus0QUHPN0sEVegXLosvDG5HubTqFHpDCBadSds5HOCgouvuFLAIABiwF6rDYNvlPY/UyqPZ5ZrOToinPDobKKicYJ7EKla9vHRqWuLxcEMTPxXV6RbrylIaIxMTCbZBh+/3Edg2fma/w6sYnCzNyZReayOu1hCwD4PkRsAmnMfdIDVT+ZCSgETpiYfhglUh3/oVxgKQo3ml/ZJ02xDeWmpl9DA1Mrd2v45PZNmIUKrn4ldvMVNvNksRp9PshrIxNj0TZpG0PNNHDOiazxeIKl8fqtiowKMfJoaaXke6nPF9zvXviL5G0tGIVxngBZyoayhokpeROZxUXxyaOvevXt981J9JBCqtYUw5Rvhx/GdFpbRQAkdfGOrKZBK6gUmhNfYMXRVRcb6m4woj3+oKQ8YE8fuYMN5gXO3C5/qpPfWCvMF5ixmp/bgOc/0hE/dxcF1vMLFnAMAar8P8F3yNdcYK+MasyfBEjQ3J6IPrTQGjGRYEs7Agq9+DX4u7+m7hVXPACSTdFDm27SpGERnpr3M0g/uwoOHW8rQNeVcNyVtFN5dgqk0KDAJPhNk3OYjjiHSJAMJt9et6rcGpzwAGqhfJzQ4eCZ+vIwKl3h/na3FF6C2r+/6uUtzXUo/GxzU/0Sow23x6G/pvnawmD9mheSFFVil4I5851wqofJeAVXp1uilPCgxoJB0KiXlrj6lGyYZTfYOlBQcBtdvEphLhAY5FEAxwHYDyytvlbNMlO5Ey4EuME6yYjQF6HAH6n+o8L88GQuC8poz4ZPJBq+WZ8RlZON1aN5uW8kc6FuSl7dy/SBDd3VjHso4aokj/IGz1ctH6TZmcuRAx7n/HaLSoNCyB6RJt3Uk1KDAkjIWTyv3LsMzkUMi8u0HXp53SQL5tMOrudrrbQtLLTD3z6NTCK12T7MfBITMMZY4sTx0QdH6b8o7XZMGkFaCQ08UktGnhsInbApGUwZ//GMa8OicWIcgdUZ/+0v3xG3xFTiuvRdcCGJ784hQ2n9G4hecJ58Qxd/vyKL24958IMGtw9BRbj6bhmWOCmtPzUtTdJKDKpMXf/0FIA1Ciy7tHttbf4Dz6ahL9dXcXyYLvFonB6TCRureDoxogQm/abtfvIPNvZOiqozZqto3+V4mfL4ejASOparYOO2JkNRcbYtBMfOxfWWiqa0yRqL6+D/Jw3aEZ/7vYf3vwTGYj71O1KYOYOyBf7cjJhfloHjAauHILaEXK1Ejp6TJZRY2Xc8DCOlUMHqYt4+c6rqL1zi68+Tu0thfq8PSRqwk3KHdbAztL+MXuou/iDgfr4LGCjqSoTum68Vg+WU2QknavAR71ya6lImmTus5Ai06erZifmk5JdwAPtzbDQqaLz6riacO3MTmF1y+21c5++Jl75o3w+VObsfoofLYKJ5NpTgKOSZLoNyaHx3UhAGzj11c6G2mnbFxeE5vV6BnmIo/U8oxS5cW34HJH0nmH6ovznb7cii0xygqXzWpTGDojcazQzoglonTcz7S7uOubJnmsT0ZZPLUMHjicVHStxTGF/L2x213FcXkW6j+uDF2HHOu/WSt184LhkM1rSdrZ54OymNdAQ+6RpkhDWkUETacIsuDLv3+ZYg2Ezj1AcuKe92nw/EmLipz8+QEkcu1p5y4h0VN21G2pvzfBS7CPzC/6AivqpGVGLW9WYrmBkoiYMgK+M5UkzQ9PuLqpxDICuwbiJmnTez2WHmmVvrZwC8CvYIPpK+Gw2DHOo9nqlLucCM92jzQLCGDK5L1RkXmL+iRskHW6TBUJeIyjKI8zoKvvATGaIjzcOJtusNcwS3onp2Ib61JMR0RZT1o58PyoeodW6+Ih6uD77Ays584K5YKPgig7Uex+PRnKa6su3AvCyWbdA4mG4p1HZCXwe8iz2RIX+x+T4Dceab7X5X46zWd/ymcH9jCqi7ipNpmxjrbprEF24YsL9gWhlAtN0dLYLZelLt3LTC2NEJSjjjz8V/H8AY+vFOaoEpD+ilHgYTCpEEzAcydJDR2x7PlnhtYsW5Nm4S6Rbcj++b/RyVRjHOXSwdM41e6NuXCBo5BqNL2ZzUaQI1nHTH25QXNxPkpSk3Kg738WSDRUpmXLP6RgSIQhH4wAjv2Uwp8Lm1AJ4vBAzxzvn74DCkgJI4DcH4IHUN15ls4MmyxGVfLwDnPG0Kd1dxii1LCg9qoBwjybQlUZYKmH9YfsaDtLFPvEKV2f3hde6yJrMoQZRb586bAVlT8neNnB15bYT+1N4BsKrWgxqK1Y9X3/7EaeAHxoHONTlDo8hraMUq1blg5HAcH8Wtf0n1cFIEX08e8/jIsfoBmaFcBNtHtOrOtJNh6gW2A5aaHk11HOXRthh0ibrMMDsOcMyw96b08JRxNZRnLtRSd0vc9reBkoKYSbS1DuKCT9vDPS3iyQlPQtIF+rfkykZt9lC/3z84WhPzMIWny66SAZUhXtW8t6PTEEGkqUfBgUHMJFuN3FWCF/UnhWvuD8c1KxLJKyAyvbp28ODGJQtTNZvKYCYdMy0VAx/grOCpdUHL47bJzJ/e+X+dMMbupeE7VfQRzJ2ncdRv6KCYu4EgbmTD9culpmnCW1NwDU4CfEWcHaWOnxxfD3jHnt44EVKTgwsG8aW0WmcHd890YgaHOjfxRDlaW5uUJo9V6FRiz3Z7zKT+FAVaCzDB4cw3lGfQTRnwABp7lnvJ0BGftEEEe4M0N/TyqtDrsmK5E0N7WWMAINrkBXNQ/ph4BRT01waqiwzD91XKGtkJJZklo08wvW4lKtdGStnO0hNEQNusdPvxIVVPHcK99FnMa2EdVYIFGsp/zbDZByxjRt+yiVJJaYGqrB2VLL8Cnwg5g+e1CZCHiwwkuUsE+uikp0rETwcZsA2cMDkHgTJpgDk8ke3H48UFZvRHlLfmbUbYoojYe3/l16stWfg2QcPOfGTAJR8mr8t0yspC07dRuz1DH857UEklYGfHrmLSzuJC0WXHtLMIQTQyIg38GAx+uaeDOsoKZk21OTReb3hDU/vrFTZ2tWpI2PZ8YjTDrzrAwHDcGJaOsD8QeLDZELe3CPG1DCuD21rZn21GwIkxK1ndTW7aVnYaqb/6+2Rh7+tqqF3p4hqEqro3xTTPGQKY3/1ieK5lHStNE1esZxMrFREZftOl+A26yH0HwXJ6pzFYR7GDBYdJN/NIL3woUBaIIjAvNeYZDAm+RNI5JMpDR0+Ky3DZ8fcLrJDzvfkJCbtxOkt8P3W5beu62M8p4JaQD35GSKivnZ98TbfxaG1W3MMx4SC9FtuGRKs9njBtIPjo0YyDYMe7OLYuZwM+HL+Lp1xFqy5FerEYjpS+a/0iBjVFwlYkGB4Y+QbmpS8wuXkcrIgm9npVqvEglJEaG+huQxirN7ts+YyCzatg0GHbNWlc78fTU5vQYoWEd07GICv8RoXUlUlXFOgOMKxCoi257xbaEuyo3xsJfm687N/aSMIAZscj1Z8KZpDMmcn85dzbVTuyMjGmIr8nZNdi02FP9+rUyOpHfsx417dLIAFnUWqYJLo3+0RudvxFlfqYogE2FuJA0vq5GzaS5/7PO436P9MnJu265EkDsYvFTURAwou5JkgZOjFZJS/62vXZfJf84iSaMM8yjvmJaLVkYKvLYKNOzmR2mPFIE724pagwa539kpGcJjBEb1EQnSuHKeHCi6YCLBpzAf95yraWWaRbwh0jZDWebew9O3hncze9oN24QAvdHlKtXMmL+ciFW0MuuncTvUBpDvHEneBFGRgljl8p0jcWHI6H30yY96sA2jt64DYFyYAPK6nYLlqnUXoZGMW8bo2AltaV5zzWokJ4OT6LcohFSUo5acvldnyz4TBCKNGM9yJonQ7id9Ze9/TRzhMnl+jAW3qTgcfarHD4OmOJErHJlNftK/Ljee8Pm3Ex1JkkWF0hN8QkQw5EKyXRNXdySIn3xNF7UgmPJtVFiTIHySOiT+fysRk0wwqieHAIn4CTyJ/PsJlRak5uhsV6Z5OlJ1dPo5lbuefI9c9nC3HnGCR1X314/V/7/9R/0P+CuaE4GdS9SRJJlZxZAN4nSQNWGylSW4vM2bjXBBvqhfP9fqaSOs+2oEzpIo0lDZx+FfrQcHsih5hOvsLuOHsAqmmGDBjATzJuEtU16evKfIoDTCyXzvA/YYmir/3SuefgyQoMcUn1o+QyYCDdaqhzfofl/5FsikI/j5V0o1LTsNDfx/8ZzrmJveagSaeQVVzdSzgK2aQHpVcl0WMQzdmRPkHwdkHD6GXORmybGkqNZ4abzY8TtXCw+LcOoaWnOJZu76NUxVJWKVrpItEGYVYop23jA54ij/OMLKc2E98+iB8EcH3wKuL53EQqkDMDDvfymXNadO4g9wNHa1XxIrZxdKCnOi9c/vDqvxHAN5hIqJKRcfYA7ZYWJp+FW0SS/dAXMT5yP9V5ThGN8Zp33s+NzTP7R5dcjLYYSowEzjbJ4EnoOUBl0e/tY7d11oCZJZjlJGiVaEXqLkthh5Di6HAlfWEKob0F2+VWWFblVm5WwSEeXjFxGy7krUeIsoZQNaNnmGDwHMRWF4+XB/zjMMJyPkWHdQEeYBVfzujwVTAYV/F6EWQ8yUZCBIvlp05IqzrTAHjxy0aNU+csJeHfHJHQafzwteXxeOj3cAaH04ujgoZ/cPZ5l+BhVDnXTGX7ia0TTQ+ZmtBP3UiG6JoJoOyi5XtdtPmNp7Ma4IyPB2b6QRnOQtaRJszAr0aeSBW7T65XhyHz91J+DGBh0RUpVnn1mnoQExkdRKMq1003D+e6ZlMPn9GcLFgHuw8vTQtDI1mT7Q2EwvIZ2vx7jcdq0MphcMAUeMiuIPoev0LwB4DKlhJzMjWJwsBgLJXRVAtazl+RkEHFF3nhgWzJDxkVHPel8UuJgNd3S1E01YIcs2/NEmEuCWhwMCNUfIvkkyf252opZxGkwOYf1eY5yGD7wB5cjiXeNlryOJOV+g65/4m3lDqxy6EYgwbKl2va6QhZBDcCdk1igjdySoEOIgKIh75WZp9+O0CMgBaK4l3Ej7mWOvOun/s3cZCVOr+wvAz7bN619wrTgzlsO+IrNidtFePS8fT5Y6jWkgl2eahvQRzprPEnKWzx8iDOqgdIZ2Q+y+eQQzp/M67ceF3ctR60+FA3JLC5RiwIkYOTPyW3UdVV4SmX83XdHdXu7gUbNbu+G7bShD6/iIHXC9WNyVqNHv4n/u5r2qv4WQdmJ342S3aKsUjpXbeL6479PMXUlRALS5sp7tURem9nWfTifYpkR5bPVDRFKQme0I3Ur3LwEO4LMQxOZZ3XbRfZLy3h+wr7OvQfoUOhrMoxFECVvUigdJDhnE4IAXkQBZ41Du6C41AeEdVb+d96qYIVV3Fpq0ehXR82tebRtfi/Tjysd+6kDfw7bFKjYsiysk/kANs6f4iArCQBujwir3t4oNBeywhFYjFWfUa8/ZnXxGQqmQk2NIE+nw1eo70RC9O3keXzzNl7CI2ZJVE4TBDTSmAcy8+70Hi1tmZgnTM8Spjp3cGqoIfT6B5fxZcLtunAe8Df+Uz2Yqfg5o3/MlNFOeja6o//TIf3iASmLO6Q6fAI8+46nWlkfecdj9KXqeZ2IhL9zU/5ow8TYFn8pguKhUzrYoMM9vetKmmOnfZihV7jTVeNZgiNo7lwXW4NAWbQSQDj8b/FGjXWU3Dxy3ZqEAbeDS6EgkxBI7xEHBM5U9wpm5PhfxX4RZXMyFoIFg+m/Oit7+Zb2LocZS8FkMXKwXeG/pEKmzoEhR9rRs/LFYUJVGWAsnfwHMxJFn1O/XPgsk6jgTQFrLrKblUgg5joVMGxqHvL0EhqS9VRt32l4uYfqrUZPajH0UaXfZfpb83/bcGVySdYXd1l/vjSGxKfojradQg3yaYOsCZIp9qgRmNX/SQqIHxOyy1HQijISK+jiGfWa02SL78q5AqdiAqkUc5s++qEU/qBxKGqzfQjmaRIcyLIGZJ4wgDsbDUhMbQtekjPxYVKBCzxhCH7iBLTqEmq9rt/aIOlUU6RTQO4UaBXYEKupObeRGkuyYg2dDpprrJB8goDjKmDjZ5002TR8GSb8C5Cr+gEt0k9/Ne2NF0nX82+dmTnyeTKF9tF9VZipiciIACNUPBh+b0zdpB2/DSqL4cBeUeMpV3T2MuLoU98S1aq9tOlqZ1MXE4EtzsxREtsKZzW6tlQZ0GcVzJgRVAnoZlH12LjTjrpouFNh/Y+ntY/6mFf7MI9wynjTYw3FMQALX2OY3Me+AUDPMAIrg0HAfOwCLNEj/U03zO8/mTrYe5P3GnAOmsY0r4tdGgAmFObhYAqV+yByahAA/MAQ32vh1tkz/j9K2XyAmlOPUo+WnseF056xAHXJPf9/dWFnYhfRRcM/IegMLFnNYMCKPiunnevUu//3UhMnfylt+b17R0ODjIHZZqHUQ5B0QtFBPQrLEeinFfil0TMHYw79U+upT6h1I+rSPBjvUcw9S3+JOlV4yk8OBfWp9UWmA9n1Tq4QSjlTcAMEAtz5Yim8bkgos8Vch/vOS3kIqBexOe9+SPIUZ9d1suDdbnhU8hLlOyBEpURcW/fV63szEthiNdSU6qMgT7OHTmiOOZwB+9KjXcrNU7cL7Tda+zj+/kO+ICCgLbrVxFyGVI3edjZvWD8Oxg9bftHwv1HkrPCbG91uycmmzFmUZA4/5mSIO1ipYvbw7j+8p4D7AxsXu0aENaGkjkGYY9uWugVOwkud37q76RLhcx4QLaUJLRvQhdS9TtIbQMGOGGQgos6WX938FkDntlpGJ2W0bVfaLATCcqqY80ghPGN8OJi9qrFcWxInqL3J+1s2MZlYDgLj+tpV3qnONOeuYMcaQJczPNEtnIWjw2luvsLOE2z71enjHJTzVP1+BXwfBhQrk6Uei2E7c8Rzg/vD7RFQqMYaSqNXDaAcZQbdVsF482hCMlpzpTMY6RXmFVl+rezsZrzTjcWslooO4o01nFPHkLqkE746Oi98iVABQvCJqmebAH7jL/eWVlpXLEAmJNxQuMvuIrlb1to4RRB4e9E4uEf3UlmV7UlsVXql+ks1k3zjQS+S2CiB/pPEyxDCvoeQ96OIIYYHovcgEpfvHgKyFWR2Fz6wO3Y2Nc7P/kuKdAId1XICON2BYbrCYDrZGsRV+q3hsbE75rShwytAv01mR1PbrfliYz6pjV5XHKkDy2DcAi8Jvc+TDraEq2v8H6zJkD1JDO9cd8rwmhv9xOluHW9dkn4LBa9qnSo9crwOeKxlVr27880XsKUmvDZ1JMOhvC0bbrcqQmEijNxC+oScpB5k0RgohgO078gWMBaDIbcGGKeF19xSjFeySBchP33NutzkAV39HFwBa+UkUUyyBYL5RtUvkillICKVZl2lUaUb9RwGgnmv3j/gprHBdhx0pl+GyKdue1VyIrSVNQuhDFGZLbii8Rae2RIACcR2UF88thY26cEMBsS1yEt4aVJWhSoetvs5FbeYjSJrPbaVueaUUZD2+pe4ZsSeAGXuuQDnwYq0uyelWGLGUS+eFgt4+5ILFlX1qiRouLg7aRQiCczubM2xKOiPXFTAg3KclmnwCHagic4JEledao5NfvcVsiIJOpdzVBDNZFO2pHIFG1B9lPGoXfqYFy5M/ACtaVr2U/TmyLNe8K/tesjOW3dcH+l/1JHVFiQOwkDIrHLv/J4qpcI2nn3d/rSGaM5BZyhyjgdEXPe4TUyCHTxpCAa/ylusm7Zb6GFCTtuMn4k9pWJg5eToJQI4q9wm3lESqKJhudLEH2Wm6KsQ7Qf8CuP9wvDj20wr5l8FFdR3i7B39FwBeKoeK+OhIZdPmCqRquQzVLH7XDuBRhntjlcZJFwno7x/LCux1hh3nRhXq9GYQiPmeZvw0y34yg26n2bbKP2SfOVX2Wd+a7Jz7r0yPisHptE4ivRm206538cb3ukChERWYdurteWl8vUvxaVnU/FyeOn5lui+afvZQbyyerW8SlTy+43In0Tz2Mm5e18hWXR7Fj9StOKQRLxBX/y7s8fsUMUj9EA6mC0tup05EItiCrV8h2gFMyEDawnRTO8UC2Y2Z46gwY5LCIg+GCpkv8Qtz6h6DzvVzIAoyyPlixE8RwbPKRzMbcdf9Z0rjMmAZWeAF9LL3bAM9LNd018ni2IxOSgJ/4lhIhCgS5P28CX3D+Jo24nn+vpPdZ6vSht9z7qjdhdbjhvRRMamfDGgJ2oIFonOckkzhbs7aMoENi5foOEheeedj6XN+uIluuUSQcVnAt5JOIyRa0esh1tr5fa7Sj04vXu2CH1f6b91tLsyqPffmXxzVHp7x6fdgc2DMwC08oqq2WcHiNzancWHVU5J3H/AK/gLmh62npH+NydO8ROZyNrTQizW9Y0v+Dg99ABgMCLXRnFdniWvlXkQkz69PgGHaJwdrWcwoTqQIYTHbQ3dTyaFZRW66YFLOBB1uO21+bgq8DUZWuluD/y72q3wEerbntYoKj5jP97APXlK7ODtOQCJr+ZkEpzBdOLIhIyFcf2MAxqEV6UY0z4zajLrZTv2iCpDBIFZDlmex8k7zjpqojcAvZeG45ZH5dWCeYZlnriXbjSt11T91fZx/R8hgAHYlBKUGPchsywMMnZfRORfmOD7g7QHg3amVI4WqKwUvs2i52HWCoHPJm1SLSXSW1tiCPyF9UXxudke2OzBHUWmRVeN8RSWiSo3Q2PNmP4I5VEVLio/Xc6BW9qJH0yTeJDllhaaiYpZ5Nsrgy+Aoc+pHYOl6mgs4k0xsvqIZD4EwB/Jn3i46lRvOEXcJDrgqVUSLMplEDkR7FLrEbGxvHmGQ0e+zu7DJJsDTYNpfvREL1vWBQWBnY+XErmGmFSvmS0Aak0tDgbIfXvmmEdOEe5Nrlupq1jqu5LRIyF85+0AuSSZ4WAdtUYtupVZtEYM3onS3vEZwcNSlOxIDgp4LQioFtRxsqlGnOiFa7BrhXAIopGZmUCMBUGssq5MFL+DR25jjdQUiMY7H9G/ZIs80SJJHLWH7MDAu7CB903r3Vyqdehql4Mc=
Variant 3
DifficultyLevel
652
Question
Bianca uses the formula below to estimate the population of female sea turtles on the Caribbean coast over a three year period.
Year 1 = 30000
Year 2 = Year 1 + 30Year 1
Year 3 = Year 2 + 30Year 2
Estimate the population of female sea turtles in Year 3?
Worked Solution
Year 1 = 30000
Year 2 = 30000 + 2030000 = 31500
Year 3 = 31500 + 2031500 = 33075
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bianca uses the formula below to estimate the population of female sea turtles on the Caribbean coast over a three year period.
>Year 1 = 30000
>Year 2 = Year 1 + $\dfrac{ \text{Year 1}}{30}$
>Year 3 = Year 2 + $\dfrac{ \text{Year 2}}{30}$
Estimate the population of female sea turtles in Year 3? |
workedSolution | Year 1 = 30000
Year 2 = 30000 + $\dfrac{30000}{20}$ = 31500
Year 3 = 31500 + $\dfrac{31500}{20}$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 33075 | |
U2FsdGVkX18hGL+rR1QvVGJ5LnXKRaQapUyNgAn9slvOkAI667eN0sz4vcFIpf4vNWauXVqUzwOEE4g8fq3H4V7I3qisyX0YXyw+dp553blenS0fdX86g7bcOJFH5394wVVJdOqQy7G6GkMVVeVLEzdNa/vg3fMtIkbdsQtgns7jfzzUstH+InFkv8+kp/bYBDXGJEM4OhMS5xHYkap2OAsP7DWuJGBkGYKhB9z5Qt4c8mUKQK5y55AIrdrmrMggVZiqdLpLTY1WWoYEf0KjJa/DeprvajYnExmDhnxrAtLoYXJt57qzRqqaxZhAE8JnUBX9x0hWD8rlAVPehrcBTRIslEwsUW1iQkmLkSB6GOOm6x/OD3FpAc67pbAiARabc0oXQCx1HbpkjLSyhspzFSIN94T6XLg35k0dqO6xu3JTxg3DhoiC+N/ckfEta+PudGqCoKa9trynkwvjTYTVDSjEwrcYSKtH2yCPXzSfNzi5DMBcnhfP7S+xrF5dtXTOiZ08pOXWUCPHa6c10Px/kkjP6uc9B6W7ZSzZ6cGsyuOXUk29127gStZj/PZeQoNWNd0YMhkcYT6uPcCQYI0TY/yoHF8URglX4T21ydO2+LmbdX+jeeOHXsN2SbjJhXUHH6b68b8fFmmJvfOdCbSeiyJoVEe9AVgNR38ZNlZxaxHdo8JivyBNNEEedP+cwh4bMC0Fpi3G4U0IYSJM9ba3DA9WhmOjOzLV3BOtb3sFt1PcTdEmg2IXHDUskLaA6n7VF8CkpQkWWy05EERTq8HF5ahBmBUB6AeS+3OHdrX2ENV+0U80b+/lpUpj7zxDzym7ioB5tyzoXytg7MY8pLuXjgS5FH9C4I3MDzqxP17qU4Q/EnFIVfmVBxTtcsWkxUH3UvsizKXAU+QVwPp4/wFLuOGEIH6P67hPbrn2TWBuRWlpeefcJ2ryWDjgE1wr+w91g+ffJGtIAn4LgRN6YeQOE0Z/keCH5yXuiUnTnoFZPa4y/Np/H00bHegzMyIijkt3pMELg2569p6hVHvL1ViAfm5+sSFExPpHejvvM2wSbjH0bm2Syqv31vS9CXEa2Pvh7KdHtGsc6Q7LmUoRESdzrtOWeJqYKNK8uy9dCq+tLe32iP6OYJpJle8wL4nyY42TnS00f9uactKAkwUpyaJLLushX466Chib7b8NbUPSKqA7A+YU/HjT6mzpAjd6mG2HRvvsb8nFdnmWOgq3h02UmiwCS7lU6KDFaWd35KTEQzOZ15IGvjEG4YCG3HZ1m3efFLuS+ARzw05ffh6fNAUqyzEG27IWaYUr9hekosiBG4T1OwWkP2humy6nqtmICO70FtRhllPLNEIJrjdQ7va8tt4bBJR70yMLxkuApIDhZE+8Kj3XEqmyostmAPE9R2YApQCDOt8cBpVOwX/oLb4Cj9TSdxX8QRuisY4yxCC6L6Zt7CeUR6sp6Hb5DrLesq+tgS1WCXRRsXdIhl34eGVwu1IyxU94TMcJfAN0oW/jtfZsD20BeDHbDI96U6SXgBUY7E0tY1CeASOsmzPE388Jx2Zz373Vc0ipD5w32sxTa5v00whFsBfCWQuAW2qe1HzJFZXTYlGfyv6TXOlVR9dFB0syolqgeuwRKNj8ilQ9t1DM6clqWQXO8raOd8NbBFsPLMFunNJfXN9sXnWsMT1EvoCQxzs4qqc+6liBhayN7gs8RVRIROqIQt7Sr/PsjZKfpFXygpbUD+W4Nnrx9/6ZEVqT6tsE/ZEz/VkNbYX7DVpPvnxF3VqeYR9gDuNQoG01IB6Ds48Ay7FkCziTfugB1ZOB+cfkcKarPB0SFo5RJavxVIFegMTGhraBawEFbfHFSldf+eP2vf52VPVOQ+YZgWI9zED6W8DXj1HFTg1EUvroauCA+pJZaZuT03WZFMVLytbr8Amw0gXs5xy0H8jLlHCw6vuKCbr1A7eFtm3qPEJUigwBcRbN1cuCI12irn1F1mrqJBZJs5pPankRFa0+87/+ThEJXBcwvE5cUIWfbccyuMjMQFhw4T9JPmp19prdYYmEtPorNq2PhxdgHogihJd6fwkMleUxQ5x1W4e67/YVY9tPH0UeLRZP+2i8zMJmraXsGntYmH6ZcSK1R0gWzoW0ykAHBJxX0nYgofTErT69brsq4a//qGqDSpoPL1PAMzyjEMcEFBfExkbq/aOp5x1xI36AAFf8j0DfY1XBe6ub+V7eQShcjd/Is1a8mPbNl01efikRCOvswE8H1Mhqo+Al6u+0M/f5tjvBnUTYo4FxSNIdw4Rblx2xdHObvPo63H8KzOr1NW4LumUuxlt56AyW24PbS/pQn1ndGEKnxxonQEE4a2gW2+w2FRVTk0KY6leeT27ZHk9dj13fHFMn9e0jXVDeAratKkGfiUR5CC4BpXiQpjrUy8mNJrswHVLShqIOaV8succkm5sDSHcwjh7jtZbGxH7NzF1vmd625yiSk0rhP0nN9aim7BrKR+hd+A/32Ad74ux7i1dJPRPMD1rl5fcM2zxGJsKQugjbA0y2d8sNku0xCUQXjWW/Qo4c8W0cPsGbRKToVdIPIHlrLnqhzXsQVh1QVBHoVb6s/isniTJSXWALR5/ovXJlQWysxjAFBxUnoF3AoJGrsQhnuhpuR/cdAG4efyjUJ+EFH1dPNpc4ay3dKepqH3VBl3vtLeUtHZrtF6VyqJeteEQgwSXGG3bI3Q3BA/VJgjXCb5PgadKNlti99nKJLSZoBnTLZhiX6zbNzp3r1hT9XhHNAjj5VFv2wDZp/xFJ/sw7wuqMpeUzFzjW2v/Pgs7Asiogp8fc0YpRZcQYW27CmfpL2xUhpji3Joqu2ZTSswAJfeq+UYXmZEctESP61l5KtA9QkYvLL2UYujuf0G54kGaplYp/MdIUwwPmB4VMi6WNnfRymuSsmrKOFHoT2cm7GxPSgi/fNMx0x43/emLni9HPSOyqhoYV30DMAGV6Eupk4bBbeZHbCIRjDLXyn1xim1J2Tt2hrB2hp8MkY0aR+EKAi/xm3XcG+umqdt3cMkd6NMYVDCOGqyMl+6R7kEUHnzF1YUy/blgDdQDfHbIRejOeufSoKUFdciwK/EOS7BIvPvj/LoBwBww9umhNEd1haT4dmsa7tT5DVC0AMmksmp1yfd3S07hDxzPGIsufSlBLxUP8aVUQTA97NIekNG09ndYQw/gV4rrydM3Irj1+SWSiiLUPTEljMmScR2Ntx7KViuHFPAK9ouavXj+d6pzr0qojGcAQC4+99odx7g4sDmvJv/e3louu7VSNShWwf3tHxxuTmBhVOXIFIQVeD5QMuV0GSxxxIQkRWteHnARM3Pxi4LyUX29fha+RoDEjMSzjtGvW1PJPKKpVMYcesM3ML+65QYYPxl2W+c1cOa1scVUNSKtZvPaVyBrAWXoh4Z7Atmml6fBtdZCjU8bY+hBGjGNACp1tvbpdy50lyORHUMeCXyCJrDcFyZEVMZ6l7u3ovb8rEo3H86UuM/LK8AvDSrbbUlRnrAALQePpF4bv7TnBJCxGe53xt6IloEghetnxJ+k+gsJyZND6p0cnavFjuLh7gs1DZuCMX1bMsy04ADgr5hrp2nI5Lq+CCzW/+zGdCobqhPbV31bGQGG72w2RZxdzS1beZ7Yxs81A1lTkKN0xSFk7MbgVLScgnCDxywva9PcoGxW+moptS0X26dp3ym1udHwx1ZreFjVeiVn9bZd76ZcEhIdbw3/7h1k0iL0LZA4jrU9iJMJAtdgLxmPSS1UOe6EsvJExctkBnONIA7EiZlU5gFANSWG2Oxz4KLpnlWUTzCyspao4Np2su31RsZFoteZd63HBSywnwysEzFBDrBBEaDRX2DWrUN7sKQ1Z5+vjkt/gEqZj7miKr32uXfK8S0MEpoT7bkdbo6HfOjP4Ej3jPVo1Vt24eAkg1NnQ/4EYIoFda7pKNQKG8t+enEJ0T80drGuQvWaZgTxA+sLvCdTKKmzRhTOgFBILZldiZIDMl5odgrVxqEE9AM0ZPMYMbVo7Eno1hFQ7IfcmYDoq9H0OL6tuA2wM+fsbcKuPClh+9oZQaxjkSNqTy2cR2FlPBdaamUOeKF+AEkzDBfNPWZSa1ItUErh0WDuXdoco2pPzPKQLLpVDR4/leltOeiDGaTs5Bd6MuH4HGNzNitjOz2XaB/J4DhiPJHgr6pVyhj+qZKznK9ICIr5acSBbvhAp4FOB7LSjTKIzclPBKblCPJ+7Czjjr8WpMAksuQ4L/pluNJxGbDG6rrXJHemJQhSUJvONm0E3jqsm+9Cw/bSfUevtuGEuPEpWvA9pqlfTz4MHL7XW+8jWrP8jZqVKLiEDMRcsQBmZjZ9JK+H31vWH2MUyCkyoNBWReT1bXMWAHQXFEuxRs8Zv2BdTVFRX6saOIs11isqlcwoEaEYdCRwzQ1gIHyaxkNJk/ukGmFoLgSTMtGvVMeO8KgePbzaWhhTeYT0yd7KOoe3zCfyqLUnCwr2Kpyi0iBTom4O+4FS18qXiroq39BiOWGfwRMXE/EhiBxo7nWn1mG5yLMRJ864ne0nmI+T8xTVwfg1azeByG1rjr4a0+EJWtkpOfLKDjC2t6Gphe99mlnVnI+dezv5bOpYqL6Ld9H+OITKsSk+64hUaHRj5yzRSp/MXWcRwF8ciIipdiN5fU4J6W43KcylwJA3vpP/hVL/0yQM8lUGb6C5hkrHrwUeTGhsGnYfMY6i8af4NNyXp/B512RYgUWCRXJdd1aCKaT+As9FkbHxYTXJBgL0/T3YdybF9rvPSyoqO4+6HchlnmQeHdLbErR5/lkZU5rvMNOhnc6u4PgTGqoNHYboN+cXNoVukVXvj6Jj6sWm9iQWCZdQeXiCndIXGre25DrEXXBJ2vkw446Ag9fpV+P3vBfOx25XLgkSDI7Tt+3lx1dDdiT4L64eU1LQhnIe0UFPZ4UJa/uFinbybfDcPn7NbyqyggIWpxmX7MkJNWTVynDPCdquJm2bASqErwihYf9/+E2xBJkzHjBIXPj6Tkpx+V4MYFJcnRiMtmPgA1bqd49fBGv5046dYMJVhhX3WXsw00wv76YVb4XsrWnXRGW/+e2E3tHB4Dy0tA0klKkX7ep6BMcDLKp2hUFY+FdcqdF3Ly5pYghI+yYq6goDZt8cpkOqca1lHk3zA0YiMRnmOBYl1QMpMK51rze5J6wF/SIDGR3wI3AXepkiQ8ZCR5+nv+CLAWoAaMu5Yi6IsUdNAiucdhkSy+U1Z+cS30OODKkCO9HdATHoi2+zSOEXpxba3wy86NKXCUcXUqUHv6O69qr83NVhDa1Iqt4sDgT2vl8gGYF8issNRX1NpS+3Uw4qFQYYYOz6jKgkhjfiGR2bzPndlBkabs412i/Z5Xdx060Uln2xA96ZHHecPuxeC82s45mfmaxX+Mn2a17w12smKSztep2Y7RTkCZkz+MwpQioOOKXkDZeZaAlkZZYnYg0fvfDTnJSXeho8OH+up0Kz52iUKQaaiMDflMpJ+DlqqxLkcwWTP7zvO5RPMQfNRnkP3JdvjtoCPCikJ1cxg/J34dukIINq9QXFrsEU/U13iGXeRbUwNUF0fVk7odvKHevaTx9xt13yB5KaP2CQ4PCkSgiSutGtyxqZTBBliTWeNOdigZJsAYT9sMz8KFet3lcKbqkhZUPqMfqGnPBmgopjk9Vr5Xh8sl8WW479P/zF7ESzr8VLPa/9c4LVK0TpUD2z18UcQPSiAYFsmou5Zw/7X00HGolbBN7gNZD+hwcSI3fFMYuBnW/Iuc37HH+9gXJTjaWr9l3XkKb2PkCqeUis5BD1fKEjTdJWC6aDpo1yBkAdWQ8EowPizMHlNkiV3DcgeA0pKhtWG8LZCIdIGfiiRLJ32DbkI+SFzZiMgNhOCzNU84f8EbGB8UTepbjSe5VOzTP6NCqK7hED0tmg4JqHHgFEEfx1f31lHCwtuRRTBY5AZmEX+Vp+ssKg9/FcmYsKGkp5ynZ3DF2x1y6ewma/nDwF2CvO8df/L6F+xfEaGFy/2AZY5iTxf5ewAKp0+HSZP4KGhSysVfyM1yWiTxwE8TiWX9DbyF48NbRh9tdH4BcknT+8Ke+4uKzdf+mb68Xge0AzoRMbMyZehRKxpslLK7WISpTQe5iCu5rPY8uYX4e3I6lT0HYFWQWj2hY9bZENzgnCte1fNHbCvIZOomTFFNWwP0As0GpYl/LbLxcQz+w1CAmAhsS48qd95O6KDIXKlbKrNSCFTUwqkTB1wyf/PFNPrAqtq1ujc+fXNa5uz7kZ5kGDCHZ8+MVbVYn5mUWc072XPA/TME84YEN/QglJ5bEOJzSEIG9EohJzHXQyfoXC1ExkUTkL/H0XT5lQjwtinlDrq3E+YhSAeeAXa+R1dl40y1v/iGfCEXnPhiz3esrSRtMbsucAg4Omgb8VVGDccLE77MM+Y7Yspl82myqEXgCm9MUyor6fHjardRLedC/Wjpr8FCuHkKi7umsWnBzeClKvUkTiZeSfq1DjIWzQ1OUX/NGquqq6G2GgArj71d+bGZ8pjmdlJnysnqMK6y37C8KWuuuGpY+WAzOhw3fzaIc8TaB26RxhdLWjKi8uqlsNLkDie081bMeqbA0TVOkaDP297Ohgo1illcXVTlTzvJGu8gXap1i/40nEDkdspGI9ydOvGLUWRoDwLG4t6YKtI5Tn2oxZ5qoH25rUNZh5euu37aEuqouVabW3az8AoaBVhUzYxxmuaSGGOyEOqYXnRmefcF10+/Thk/6u3RXU08TGId6l2AMc1mT7pTanpB8ssZqfdJJikZQUzDEyeu4gX/AEVnGwhajHleVbzrkkz1iCBQnDw9zp26/287smU3xZo8PbnFzDw4Yo2bPmAkv/uiVAtkn545h2DhoQWerOUFC6S90k4mayRZXBqzIFi7sLPH2/cN/p+0uThR6YNsVABFiwDcf2jWze1E0esF0aQpozGeJ/vHBk8pOi3zmHzYVHFQdVFmhYbtQN0qNmAqYNJd9eCb5Iwrj65uUdCKZ03pwVuSM27g/wEE60is3TP+Z/RRaz3Y0vwkGNkWY567weCbWOq6wJKI/oE5Ygi/mfPuoF9ejqKrDfacl2WRsLDaLJDf+am/EpKYXgC5kioVNLGB1TTbNDQTuPlUQXv6bdgmjZ+zjJPaGNrCdPfAyPtgUPpYFWNgZDakZ8i+I3ovrpEbaIwIs+6swpD8Lp25KbIrZXnpo6ueCirdREYUAuw4DuGMvIfoUCsdgXTyoMdYBEo/3YrFoUmk1kXvrA6X+BkwZqXJiDlGmHWfvgTdhst1BvG5q4b/Fd6+fqdGUZmkFBC2TcvI9ivVclDTOd4+X15IVcikbOyZJYRvoLEvCt4EQgwPy2A5ksgnAoBQl2rawes6e3goGgv3w6WGRLV4AORlMDzV1JyYgtlqrgMQncOnmLd+fPK7p/2yrNXmeOAdVeZmrpIrZH7jSbQV7tSoj3Ssbb+tDgfNhfI/FRk8SzNmp7bDx4zsZOjHcw4kYPylVy+G5QBcTAqWQ/PkzVjnBKD7TmAQ++itIgRd62cJ//7Dw4u5G4X7qKim9rkuwH8YxBJTmlIpiOoA+Ph8ulUP0uO5edb4cql5DxqB5XxJdabu5ZA8EjTAaKqDF6S723yjm2lsL/Oc/W7Z9MiWfShzCA4QcFe0xNi8eSWMHzkxtgi/0Kb28elDtmWCkJtu+bdmiJL8KCfGHU5iwo0F3Rj14QVIm1KBUeTtf46x1deVdQkcpTDyKyO2arkLFM8UiHWL28LEzcglqTpFiB0u7eusU0eGO/CaFGbqIQ8qJ/kVXjLRmTdACWJfjA6DOIWq1jCV2TU793wqFOs6UhTOgNapF9Hw6ViNjE5GlTPsFtHxxocdpTWXxFVd44JBO7oUS/9uFfvG1IZOy6RP9GDVzVrYg/Ci1ghHfDzt4JxLn+RiXKOouPzpAb8JqDl5NkXr0PDKEyuZ/X69tqIAEWXGMIZVgqIoDyaA+GTjJkqOegLfnhbP2PRAVccF5zmdQyuClDemfOha72k0gUoFdTXt9QLjaJDdR9u/YoULZpFfKvwwjmLJbC9QEsGCi2Dgld40R6SjPttNqqwyOd6WA95MRMXXKFJ//t9c6TFdx2Hhk4yAUxwKcnIUHgeE3cTDiKC130eSIIo7BG1Zzy0P8EpwPb90OFPg8AvEHkQPHJEalkooPO+QTsXv4uzmSmFj5fBLS1cbRjneDc5KcAbTWY1tY80d+BnCWRApyUJW8fhvOn9XPhLx8hLhBQVEJIy4J1A17CX0FZNEMnUX7l0m+NiSDWdFf/UZ/6uK1xXvmX+V5kXPgv2FBBqvl5DZc0q4tjEthRQDqIEjUvBmP0cMpQ0+99LYWoHdScPxR65rGiuoOqXJTzauLJK4bZ0L7Jx+sgqEA25zdIOw/kH/222Asu5kPW11Wm6a6jzqQo/pVp0IybCSz5dscX6HWGz2RuL2gY7+61bhdXafj8XzqnJkL31xHJs6IibEs67FrcUbuzEEzCaPz6LSH+CevZB/0ewH77mGUPrkS/u3W+e6Rawj4Wx1KsK0wK1AyiIsaXUm6p9L2u9ICW4epo3pk/7fedQuBWvDT19HTHUOgGOG5/SysUqLMvlipYJL1iwz4Ky0umgWPMgQ5rh5Kj5Nb/qOADVZq46pGR6LFV+N1FFZAl51YSnVjlUh5cT5RoezR5oAaGejVtS0fAlSvimn9lRzdmUMjKy04vkENK49BD6DVcK4Nk7RElHELI9DbnNc0ie1cWiJg/9qFzTKZlKQVU4jCSss0QwgkorLrKZMwiOo81HmWUR47QsVw0mO7j6/GndY9KUTNBWWBxuHwQC6NXNu32ggG+56HQmJtAUsOq1jjjpxFPJdZVCq0rdbWZXs4mDVHB8dDzb0n8KhxuFjX+Pg7VARVVLxxjReajfFaB6ZpJlvdckyjNumdf+iZYahVa+ZNYK6Fr8PP5MFgbDQgOnez6qe07maMhE0xOE1Tnd6mWtb4C65yGDVsUgM9tNYgI9bMXK+kEEFUJMoFTcoSyprEp57R67jl4jMzeFNozhIGeMS4eK2QDnnfUQsejTgq/v6gSs8DeOQmj6KBYprkRsc/EI4gnU09dg3sn/GXFbd0OIOjs9WZ9tjQ4CF/aZ/roqYECOuxNRnEUN1qmuY4/DUct50fcWOfVK8afx6gz0XZQdWVBvT0CfNsBbpDUvswNQU9sJa8KDGon5FfhcuzCtDSr28zyqB6H+xnsJVKuIWRA/gtZ+/78wF6RgHmrrMbo8az30IDrw0jYVBBQeXgj4nvYNx9XGfWqxUlJr2mRm5rb7PwezONis53SjOENSYFPJvskKoRIQt1wdB6fZ0Fw0y9viSlrH57yUgs7IT9tXKXXrn1hFpcKKPXjSC46+1EoTBk6u/aj1WEKya1K/PMPpSxIN3KmNHVeFOjEAeF2/jvgTVl0ROPwhsvrwdWeB0FAM4rYvDMg0Gg==
Variant 4
DifficultyLevel
654
Question
Gina uses the formula below to estimate the population of fairy penguins on Phillip Island over a three year period.
Year 1 = 32000
Year 2 = Year 1 + 16Year 1
Year 3 = Year 2 + 16Year 2
Estimate the population of fairy penguins in Year 3?
Worked Solution
Year 1 = 32000
Year 2 = 32000 + 1632000 = 34000
Year 3 = 34000 + 1634000 = 36125
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Gina uses the formula below to estimate the population of fairy penguins on Phillip Island over a three year period.
>Year 1 = 32000
>Year 2 = Year 1 + $\dfrac{ \text{Year 1}}{16}$
>Year 3 = Year 2 + $\dfrac{ \text{Year 2}}{16}$
Estimate the population of fairy penguins in Year 3? |
workedSolution | Year 1 = 32000
Year 2 = 32000 + $\dfrac{32000}{16}$ = 34000
Year 3 = 34000 + $\dfrac{34000}{16}$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 36125 | |
U2FsdGVkX19bJmBT3DEHWQVMF/sHFKp/g9TB1KYotPWI8MwC8ti84MRxj0wUsOYdG1Rw/awWo22cTTTzCxVKcG7nOuBxb0rGHVXUg6UD0lh77RZ+8AzMi9+VZ5umtl4Wu3W/mTvtZAYYQAIHuW5fCMLV3hFWK1p3SMBQevrtAdMGVs0VLdaSw9Yvy3WyMimSn2ueAfZw4/QVsh+4V2glxHRt9wPP6r2BvZws7AWRvLX9qzEr3H+tZ+dieOWCGdBfGD2bIJSpcZU+yOdXRBUI5rqo7Pg1YvYjTxXc8T7bSVXMK5s7IUz5/3tqYDLnCTUG+9qteD4Plv31Y+pONf+dyDU/rEqpCT2un/K6+DcicoelTCH81H2dexB6mAqbUwTBHLgucyZ3HReaMNK3ApfV7t1XkGf3BoZp+vVqqRNLLjNMeMdmGrqK2JszddjX7baxqlScHPEVB6woyY8S+BFjnTtJGxgrmXW+tA0vmcy1Bl4wYYnBz2aY9ob4iuFO7NkaqpUk43OIa89lJ+gAslBndQPa2K3wtQU39pppf7GCkSqg0d4s/vWLSdWDKZdfye17JVNFuIRSPmroKL0O58FSd/0mPiGoYLipvS/Drjq1Qw6bAzxHkHl+dkJ8wPurcou2qRJCKUtpB7lsCemHKl1b0B5WomUgfgjZZGdzXtGRJL66eH6J6jDATdaJPe2ayKts9WGnCH1K5pA9zqgXMsJhu/daEz7hkK0h2ZQDo+QOPCWGMrozmZdzodXGnO4ybk3kDZFiamRGqj2eyljZcoBiMl3W+nhogOWhog8D1yFv+mD4wsw9jBx+NTlq9FLbLfLfLqbTmqdJt0XYZcrYSKnp8D+14YRaREBvZgu5W1c6iNU0GP+TZIZ+4xUsOxiKAKCVKKnIvTLBcjBAelFdoiem1LWSz3GnIsqjxAQLgGfMGu4hd01zcvl2fyWAR+qerUzuma82GBJ8A5Q6kiP0c+olVIoBrP1niPtbgylVCa0sQxCKtWNAo56UxenscVr3iSuGTRoqFy7vS2Ntvq84kAGG7XgGK35gP3R6EIkhp2qU+bO3hDW4swR4buCPrz/xz/sBfFTbPpKyKirCURHjyCy/bqPaxwov4n5jfAjeGj7pGwCkQbMnlsNA9sSyupwXNrj2z+X1UDDxtmMXV/mYWVvGqwsUef7/tRd/yity1aAeJsa4PNm6kBDwg4j6rnUM1ZeY8kpubvG4jCetQ3T/fU1el1lr7ijzFqVvuOOU0Mod4J3Sj/Op/7NV8rfSuuAF2/7BCJP03ugvZ7bfIWHlut/xs9aVat2lvkbLKE/iJYx/0Akcu0Wqa+UyTttLZwcn1+7szwzJe032Oj1gB8+KubHSH5Q1CxeWPqOxd7BeCJuHBcIYRN/UPYmDFUlKi2J6TFonLVdqk0vp7UJ/yP8q3w6m7Sp5kT2bN9orc7ArHo9Fiyuw/OGWVbMjIYX9w1l+RgktcJUTnrU4NtVKvI9mPuA+tQU62ieZ2qvMRrQzzWXKc4gUmlH7TI/p/xZZE5DV3/bvsoPvdLRhA7CkQG5v3HmC8LxvTPoo9WTm3cNZUo+Nj+pgqQoTc09Uo3rS8znhwgdWJrtqFrJlZbxPCS94oA+4/Tx9XaekQtmyJrjVAU0ArOHY7+PbSkVEWbgpft1bDDHFvS5PjzkbNkDHguKZ2oVVtylTagtvzsVMQ4CHhRVbc+PobTCqgh2l3KPV5n+vs0At3E1U84e49mBPFVMsGTxUHuyhgV7K7OivKrGheCN75k8BeJSe2j9HSgAW2kViMS/zPMjivZkOetBuz6zdVz/koPEGCt/FPU1NHDmJszDWab8gXE1mDDCuU0loDCykBFo0+8S/jSoTGKPiJ/gO1wW2MEFf9DnQq2O1gSx2WfnETAoZ5JNWsrL2XkHc36lE5EYgdCVC7e/AlftqsXkBDFbpWcJdciDQH2qL7/LSFww72IjMXAZeTqCQnY6UvodGotNhEKvJICITHxaq+wfotDoYGTWamkfOsNjOx/LQQsTammipmJI8ZLkBfrdghdyyl0ev0epjh1vyfhar+1loL7FSn2glj0ZlBK1ygDbe6Tkq4Mbp7WJ3bzovvBKJRbjmiD/EmBzJvrHa3evBSTOTVSPMkNyEHaSGAhDxuF32ECFTcMNu2TycnaXfPMqfiqvUd9n4JSG0I0EouS6hGf4EdHBel9Jl5DRmhc0N/kCkad+RR1/X4EU7bEWb4hzKrO5TbLUFgaOJuSaYm5z5S93mBZ4BcATQZ+v1+NrDnMmQqLHP61fWsWLUgAq/eZ3QiZUmPI9RztW35GJe3vgd04wLhSwq7J6R8NL3SfA3k13GCUdurTnNbYvVHenJaXz+csoBAeeygMgQJG9R7F2lvqr2iHshShYUbvLTPCd3bIadIxXR5zIzFkFXX4pJgAX1IBcCddsfjXk3do5ca9ySYac2rQZvWuGkQNy6VpUPMh8on1EyXktns9OdfP6bt3J2vA7rxOZdV7bSYKjOWW5fNcOUO+QPCBniAkbzjvqONesWKbLEsfRDj89LT/jVKZ/aOMmE0ElRFcmS20cv3NhouyWvIryCrQhU4d0Ynm6QhA89bZ/XpJFypvj6oSOd1lshAZpwrrLvPIx0EKmKX7b9n1VpaGL5C/XB7PTyU6ozKf4Ykijluzp5KVPcuV7u52gS5SlZTHupev1x3zKnfOeTFSRXVtIT77rBG2ROpvpI0YC2Kn8r8XqsxsBxlIm/sV6K7ovHrAa5NOzx3UszaaWiLXLegwdP3gunOVmzoZeq7+pXrGn7YzoZ6fQ3LZjIV61iUtC6cK6KkTsBGwwgZaN0koyj6uqsgfP+z/RvBceaCfYsE3lXdTZg7ILcBbL36pBJl8K7U7t1ssnURNdK/IlT+nAnbAh3gSMXBEDY07rVK2Kj2Prd9WamG6kv9xpfkjG0Kb2C78JBPfqjfTPGIyWUHsrxsWMRQ/Fft8jLhacwHh+jONI3n8ibgxVYF6dYdBT/LOvKS1rC05SXuGh6zbt123v/+OtHSc4lDzA1GmjjBiSVXJ7D476IibW5hExfF2IUznPriH6XNiaFffhwZlQshRYWlD2mLzpvQU6QjsqmavQenzq1O8l7nyd4TaAzhTI4ONfGqwPQxV9GlrHIlcZxQ+CdzEOHNOeSFEX3mV4MAocfv2f7DhQPmRQn7Qa2uU41oIzH2Rl7YGVz06FDPUfZaeQGYz0nHRs9ItJWxNGpbMQfYlyryVx2lHS0SoDAzBZvBuU3Aa1cT7RsaWfWgL54+TyPh9eRHqboa05+WMoZOrshCHHD1Vv1FpnN2Q+HeR8sAy52JFrBOZRjx2lziXCLh3Z2Vy6I5Y8Aq8LEUA+ooEgWf3H78yc7+62X1xjlmZGlL2l8w+wuK+tUAhxtMfwJLjQDnKtlu38PWgkbtVpNMKjsAUiO19UzSvZzxyo5cNJ+FqVQ1Djs427W6feazw367h79Q3jF3e7DwROAihJgtvQMBJPrfEunqCP00Wf8/z6Bw5/5/0WxMoIygWHm2aMZeVMXivcixPu8sOde67xv8xm7oyB82PLnF+U/ljltNJR3TXLhRdw6PuHxqMEQJ4H3ahLUk/Ca0MVxukmUkHVeAvxXzqNiX5ZE0oK5bU7TSs4snk0vQ1TG2PYKRlFy2e94Mq8cq522jNk38WPoU+XHQLaWvHdDlqDWyBRe9sEEmOTnddhyNXIXovJoaj6PPhgBkGOx7GGze74Jg46ibrPRF97jxuYhUYcztN2TPJcDX9I9jLBMwgrcUjC2UHZTSXd3gpmaZ4BwoiFHNELoHqdgE4DuR/ZXv6Jqln3H5XNofCz/i6WapzuB++bFUsVoTcpUayC+X7JBeivQ7yZnur+ZsL8NGgVu2L7KPpH6pHF5kVQWBDMwStZsZCjFrZJFBeVxI/02neRIt8nptID2acVyKkVilfoj7cdPp8uotleWRkZmvwAKZzv+xG+vo8tx1zIr1bLmT7Rzs/4SVkPXyApY84dnMybe47tJvVI38T3nhnEWZcYCbLGaCXkWvLuzzGD68z2NAOFt/Yp1D2GIEMERgSyA4dDQDtIOdnZKTZ+0rvxMTF1c4AwqCxD77Ma1Sl33IBcsidVTEw2Y94ZpGFeHJe3vRUqYCs/Qnl6F4IJiu2HKx5CUKXtZOdCi8VypafObC8va5hw5uEYEzcf0wbdWdxEqjVwjY8jqLKjRsQ822e0iL8jAyxlEsHk2anhQ6HEi/5KYNxp8zDyltScs0kJHPa7T4Ocvx4lojSlW/mwuL4yw03rwP0diKqTNajLsNNC0mbdN29OLbp73KVc+oCnt8D/fbz/aDa4WLNknihoXmH3C+9l5N7SMovzcb9kdAk5XiPVuYYYk+t0s/ZadBURcE8TaM7efP2WSFiwAEHR8nuY9nvVwe9VKtYER8m6TPkvMgcNhxXrxZ+ZinqOgePRgrr5+MSXeGTh5lyHFYU/704xbc/ggRzSNvsC/fhwOOWxcQ7Rkai4bOtVuUqWZ4z/A0hhx7uzULXOBguaT42wx/uEzstkG0clgxcGWjdmblmUIjDuo3o6NSqWvw08CUQqEEmh3N+YuQuQQOBHiYozsMgglrmDPFmNWfwbp/eHo96J3C4060cnozNqSCy+9K6OFwlOfdejZMGlhL/SUycLIzHCigbRbpLEjPYszhgjSJ0XiwZy9wYHbu8xl5TXXQqMuw/t7rFTq31UeLlHyuoAJkK14o26VxiQEdLxQ+xE97fqsWq81zrxUwXtMD6yX2uqZdb3V/uPfvkkPL06xqEjbSEYfoRC2/KFU8nRrbSGym7r/JxHxG8NPRnN/OwBqgjsGmJoDqydA81y39I6seiLliu9Z2dSTMtqyrT4PHjm3Hp1mR3KPh4Y1I2iyh4uT6e/nVmBEgW833TdMemGAOM9p2ReRaX9TZW0vz9JcA029XYKOxfd2QkzO5A70mmGcaeVJKzda22z5FUIOlGkbfLOLw8bv6EDq/i8ZmMmuuUwy30KVKDuOfmWNbfgj8kZGBiGWIByJkwVL3tJP/Ija6IUjdR/X577W9xxuKGc6UzIVPvtqanqgB41TZ2ixtTtJ5hbAXqou6assdx55pp1Lswghz7n3JdFDCGYfcshXhlSpppaPEpYaa2g3AweT+uIzAIOtXprWjzagPcteMXFxti2KdELpNxMQ47Nqe5u23O2ctuJK3nmkOw4qNphKIKIctuSvJXnN9kaau7z69XgPw/SNaF8qY8OqMq2NobfI7vf7gRN0aOFpbmMdi8ffYpt37n5uEQXwcFdT5WXwozsbxy/cFy+LPOPx3WiVrYjAXGb7lhnKyvUMw/v8mRMYF5azJlZx5UAsjtHH2hx+dF/poTP8pyG0f4xv6LC/g5zFa833dt3izFplp6BNo4apMttOepyPMVEiQ7M494KwQgzLbo6JrmlGcsu8u0xCy5Yyykdsz9Lnvr85whnYrEy9ps/qjsdMMp5+AAfK7FsLhp3umcJyBWpps5w/uqfChuHw3ayvCNWIkD8nplJA7Ham5AiMy4uyTtjr0Fezyx8G7EgHUrHmkVCUZ7FpWTuUf0Si9AQ5UB4KB8V+9LCltk3UPGfm7YcHku+9S1PgTvikEfWR0pcm/6KDBE37rqDyXw3pMm+0GlBoWYqjWrasp8UFDltmJwjH3GKVGFvGkdUpnzazxeZBBYiPYRjGeM2ENUYZe163C0kQPTMKIwZY7wp3Uddhe1co2z5VsnZH0vs6lmRdBAoMRJQf/m5dX+a3CIALRrtCIiFeDvrkjyV9YEQi5KHARoRAwKAU1H/pkcYmD6jAHVkHtsRUez6DZ8JdGgJEfkR/v4fa9bPOfklb29REZm1kZxzETqhz0s+lloqcJkBpt/q4QH5xijOqMMmz7zjCUBelvBjYgfmoO6YSc7E9xG/wcO6Fj7tXlAXpvQwT4Xk4hrSw1dsz43DY0FuFpatcYVIkHutvdk51QnVMtV24H589MdI4tp2gKIMJEVi8UZEQzO93Ii43zGFsAAO7IT8dmTuvI2NPTilLegwA+S5RGSJsAWFyEpecI4LW2qUVlwh1j3zjnDAUAh1ZqOWHHfz3FBbEqEtMutvvrenkKXABiQmMVjBhc+5vZJ9n2a5ZbvzPH9lEpN85CRgDObUKsZvTOsSFC4ZqndmHUq7/uaS5nJnhKrarO6FtfLbre62AhUGnd/5lFN3en9RJBX4LmzvUGaRpHUjrVlr46MRZOOgzxiWUyiTPLsm4NJ3dEi5rNiVoLogUh8WGdv2RM3cBGnt8k5Crvk8F5nCpBTBwJPPkE3pznvy7H3u5AFPer+nO6N5UJvCtUCLE9GDqs7lrrGUNUIfYQ/L4bEPF4Bo/Fq70h4JRoyOEv4WX8nC2ji9+mSPLD1VXI5n5Krw40pcIR10lL5uKPt3sWX3svcnhtqIW8VckcjOSnOuw5VWUtqDQpY4o1pZk4Q+4JAn381J57/QXBajSdMwKjPJcAjHvqVRpe3pg+ydiraewRMWzPkYsUbLO8oQyzJ68spN6awEvYsBpMT/6VTBnWIbELV8zlLAnlPQ/uQhX/TOs+7Dtyh7GFeXZdL978HRTtBpP7JDgZp63pAgRdyMJqB5nZQJBtmnAnkR/eDkgxdZW1CamYJxMYPq2sy1ROfD6z73UhTc7KwEFLs4IONtQ3VnDTggJXWKGxLp+FO0r+pwsZiY8Bj6PVLvYS5Cx6h4rYyX/zHX5x706+hrmBPj7+ERMZuNpICVkl1lU3n36MLYaWPdLmTfeuodp6EY53ZWs/ZSamojAqK2u+X2qeuR2h7waxrir8cVcGgsx0BT7zSfpe2k6WwPzzMM3uy1Ci7Ev3pOIwJkNk5Hjc61XcfTXHX8bRgKNvJfPhqHGRS8NWLsFoYBBy2mCXQ4TIYd+lpJr18QEY9hVBEYVqVhWXlt/OKJeFGSo8tCI5EXhtCwjKvj33WRyK/LLYr72CmmAOQ47zBCILnkq3r/R8z4ChZuWmg73i+zYergedpL+kDO1q6Ui5D+0T6ZRQbasPybxtAqTitBa5YovJF+M8I+v56ChynyRb+PwUaYNtpM1dfMEX6Y7iDc2MxA1o1JhuGu5NQeef0MTtgtWa9sYAv28cPXvls7lcGzepeiHpByuNW/Mg7My6ic7sgP740x/0ez1pZ/VHossOMB7egVtfeOJaBcqWmV1+C1VtW1f/yHj6ZmlcVizEAWkuIEPSvjplJRLvW0tciMrlIX2Etd5yImpc2iTR54ZwSowlP/UOaFFGBTPmOF4MIr+RaPKF5DVcPAHh1agJMrbaqjY80pZZkAA+H/nDtMXKiZB/Uf7PsUHTbQ5aTybuYEniyHMXiNHAi+us/gxdc3TzSkaPG5TE3DlWXIE6HzhnIWSW5LUvRWn9FwMzHQDTjnMOzZCAt3TO4JAWYeNm8v/O7OZi0BZueCTgYOZIUeSZcE7BLdMnPZ0CT7wjfmANqNC/7ByGPygad80JVv+dp8mqDX6Sx6DqvD1KIanAv+nD7e2qB8M4JWrFbEHlQmvvpkB4g0G3WI/b9BGnPTsuMg3Q9xZgtXNSOKtdkYys8vmhkXdIIYgiJ0c1AFt1nG3UXArjZ4WahvVnxexNLaWnLmWOa3prQFDDRPvfGyHclnYe1/LN/xaZeY2TGSEM9WM7LM7iqfa/u/Qfa6g2pRDTA5uHfedI6nwQFswmOh7iWtnArUpcXjWJQrjfNztwgwlk/oiSx7uSjFdZWkT9om+Zufzb53RPPkleDwPTcVNpPLd1/S7Verfneqge+C2AopC/EdxTGEstp2t/XW0Flbi4I27f28OQcizZ2mf+Lt1pH+OX1x8VxLv3JUsotyD2HNzYn88iSqjcqrUMtHpT411ahSfGqq2Mrfyk4/GKvGf9Bw+hQKBJa3jJ6RUhnPQXzhqumVyDE4zn6VSRr176pVf4pBran7dZdu+qK1X/7/e/GTlk53WsXIolM/qqxmVzWF6mOZ2teSEWa+vD5aEF1yqt/5pKPPAt2hDoCDydH+j/FDpNeed+urjEUfgNubqYVH8RaZIEoQbZ7iluv7M2gUR72NajbIYD5dxmHozM76BoshURFHL/cZ65hTxoYr5wKtE1rW7JBK0LirCaCkVkVaeFp52rKzfEL3dwJFhuba7uLqO8kC3Hb0mGmvvJNk4Ru94+nrs6/7jS9eNsjfP/rSsFuEpHZNguqsxRC39egQ5lZLTqpbkxtd9h+568V2AISByBGNqGkBgiYRvbLJ1njZm3efc30E0D/rtLk9S3xaeZYeNqChMV6jlJWlnsYcWo7BbDkzLDdNiXYzne32lfr5MwgcckU/T99M2O7b4r33tmbXrcIUbuCgy7kiCRLmCrD+/gzuOHQDpOtlpsYRZgtecAmnHmXId57uygoglbBs57Tu0cn1X/xh4x/t+2Qbq8VWV8BMMZdL7qV2asVKY0je3dkOZ2mlZTfNKgi5Cj1SFWXTxgE/P74Ml5wFh3VA7U2Qc8qQMJkdhRGOEGOpJNJS1l5Jl+OyBB7MEHKAS9WuB6hzx9hPeD/8OW915cCa84wE3rmlEWD0hl5rr0vJ7eQEwpVnkSw/TF5NnevpRlOlLrdLsdkg8Bwpz/zRcelyCYNdtlaz1ECdE8lFSb23MatOxIzoY4hByNhtGk/SNFEopNaO350PO4t780JKC00V90YJJ1ZtKssR+Qrs7+gq5sJ2oH1Rud/r89dHxUsdHX314aIDh+NvaV9cfsOaxOfTEAs/4SCniRWOoxZyz9ZZ2eA5c0eHRudql78urCSQeTkB3O/NKsaMiXKyKi2Cdx3BygiJ/l5pK3yVUMoolLTdS9nw8uOEkXkb5EN3HCMS6qPa8vSG1cbOLE7gq6m4cpv4GpA9j3YORFvw2dRolT0mBLET9sF8roPFlG0hG19TU0pzqeZHEdcnLL8ihh40qCuWY9/lRBxGM7qQ3hjYM/0eBtoQEIuzKknelml/cd24+xSTKKZT/f3wfQRRr8pNmDypwImwYWvfbTY/Tg6nmROPMbyFYeRLwShVB7JJVSmstsIGRpWS3G1WHvjZRsYm6Uy5arj642JVV6FEKSwD1V4B7QbrTcZsPzONYtQx1+j6ZK25SeZ++S5/S4iC0wFwtsnuVkrEPH/vnI017CYQmEQmtoMjyXAPRweYY+5ukHQgNi51Lrvt4N3md87bRiJv/gHoo70rkV417Udu77lxNXIQO/JlfepSVUvMxuEfs/Iz+zXAXyR9x9plDryxPXe8ErQGPnjj4XsY5y+faWriINDtIKlWIjvK7BQb7jMWPJwS2xgRu7lp0tS3ZaXEr1NtjTdFL+bzgPItWd0jqdgtwuYo3IOBMvEcuR222Qt0jORcKuwPRGwOMC6CwCaAWAsJlOgjBageBC0Y+BgvPrsRg9PkxtJtgKqBR9qvh3aeTgtUiQwBWT8jZBEoD3pIYdaMSMLup9l58aWbWlwza3YB6xwH37qhyGPJBbGljWrS22qEdvU7WERrV2CqIsjAXa7aylFx/V9QpmCJlaTtbnmui+xh4BeYVmvZjiBEK5ugT+jUyJYRc/Hibj+8wctjDru+LtnrjWd7yZ8MSf3pW2ts2wDXjiyoBAA3p2WVRfTo98YMMOHudsYgYam3C388HideFpomAlBHJgvRBoQ8Va2tbItFZ2rvrc1aW6RZPT68mp9zzpPH7h90+aRBJ8pAWm+YiWHLrvf0wFDMgyJLRsHBM+YbphAF8X/j2xNSZDfdjkac6J5d5bKS99rMG9knksy2VXUQFM3C0bcqcb9EF7kKivfFc24VQslt/BTw3
Variant 5
DifficultyLevel
656
Question
Skippy uses the formula below to estimate the population of kangaroos in New South Wales over a three year period.
Year 1 = 11.8 million
Year 2 = Year 1 + 10Year 1
Year 3 = Year 2 + 10Year 2
Estimate the population of kangaroos in New South Wales in Year 3?
Worked Solution
Year 1 = 11 800 000
Year 2 = 11 800 000 + 1011800000 = 12980000
Year 3 = 12 980 000 + 1012980000 = 14278000
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Skippy uses the formula below to estimate the population of kangaroos in New South Wales over a three year period.
>Year 1 = 11.8 million
>Year 2 = Year 1 + $\dfrac{ \text{Year 1}}{10}$
>Year 3 = Year 2 + $\dfrac{ \text{Year 2}}{10}$
Estimate the population of kangaroos in New South Wales in Year 3? |
workedSolution | Year 1 = 11 800 000
Year 2 = 11 800 000 + $\dfrac{11 800 000}{10}$ = 12980000
Year 3 = 12 980 000 + $\dfrac{12 980 000}{10}$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 14278000 | |