Number, NAPX-p111573v02
U2FsdGVkX19RHxHqYaByeVx6Ll3t+2hIXr+Z2b3dPKOdgBeKRLgC9otynpl+zFawCzqHBvwz4nfT0IZRxed9nkskFx8As6wi8WxceLqm+El0LE3ABx6QbeHLgvgJ7VPok2lrt789ZOelQAyIiARNoL+if+LJmkYA2FWp6a4wDcO/8042L8rHyQEKsvq+NuzKWxCjQmNRNMSP2NuUwa46iB1PZmKo2lLhHLDwv8HyNgLckbKKPzQPvGS2D89gmZ4nQ7+Dg6nb/UpfNVActzq/YJC3AerI5sgia/JDKtcQRF7zCmEWrG44dd6ORmuJuXYcBaIM7IWv50e9oaJlVK0Cj6IxHW7n2pUzx7Vf6jvF2CFu4YzoRJdr+83itIretvoCFiJAFDi98OEK2abHolwrIC5VE9Yv36EsR4GNvG9gxtepRXOXbhhumKbXSNCV6237h5Srowc388M3V5OZM5uwM0fvYIVAYg47vNyRK3y+v9drjIVfci/KcOoauCaFOL7VvbMpYzxg4EUoOpxNq6OzaPRt3IG3YOMtXOz8m/nBoWXTN5xg8APIUxg3x+Mgx/KvJHTAnduMoHEb/amgCplDnnVaUCvX+qq4QNzGrvigDJUOPSZaECWjHE/8tT+0FR9C9jscFYeINVBT0j1GwZXlUxN7OiIByhlq7L8/4Yp2w7Nw2jY82UZ1ByNq+psWjs0jIWH44zB2IhU7I2uEQU5epSPiGbxbukmiYZdlX9zCsX/T1UOcTKcuhiJWvu8HN4rAb3J0tCmbUOHlb1uPWMkqx6NRla8g0KYJiOVL/ZvsRkoD0fwnL9gGr2DZ2xWs3Bnx4SVXo1USeraWXnL6D1vsNaLT1WDqiQ54dLR84Nnr6ZKTcjSfqEUdJ0dQtH/AO1ZrDKhMPH2OYcD38rBKvq7glQEaOKvss3MMXpryxF4454MXg8PL9gZ2Q0tTA0aIzf6deOOsQqYfBdu2V5T7FIzdmRzUWhzwKD15uK/eVDeLDRzoCmYhNMEdPPIqHGtYOAE3YTJ/nSa4Y+zXxMFYjMxF7/9Lrk7jyvpPAKiM8YAtn2S0l6gM+CE5IPEB/ty2OmJxv0aM6mMHWjpGkfD5othu5pMb07heaqu/SPNxg9eyfytI0AdBJhaM30lZoLdUcpAHbwMKat2eG4WEppJDwrf97vrKDSoEZj3TUDngD28J4LF/ks4Rf8m7tNMhYFQ8pVwXFW0jTn1pNfyGR5XW3R43GPK2TFceDXtdSum4I1fFHXt07GAjuZh+zeFJ39HFrkO9fWPAZF+vA5R40ZaB/VP6xXeY9016XxMbzKNjdrForD0ZXROKmtPBOgv2IsSiTYnm2T7txOoirreyp0Tl5ibROveaw7uk7Pv7UcsfKXROrCI7Tiq1D8MBTr0pTHMp4Nej1pJO1FzGIQjqQUEbnTFkkAoIZ8RtrHpgsudEtbERmq1b70ahFggghS1GJNQpC5FTe61y+xCo7hl/8WtcUCHoYxMGV/74Aq6l0gixtNQciMocHqr8qdgrQGkwgk4kysMlfCGatsc/7br6ltGnsZUzI7+ECSFDQ3bDpmWmQCiImNU133Uu7YT7hjr2ysY66wLkPGDIM1tThq8UNAHoE/DDhp+KQALPymki9igcTpCNiIcmadcDxx3x809cRtIoPtueFg+g8n1IIjnROYYYLkGlihVGJKXN1mdHjsXzuVLQ9rRMd5r/UranwjgX57bW5DHCwqt2apDIQdZeG0GAchu6vIVjhgscYHsZcOYFxQhTQuLOCU6HAHul0Z6bgnkJCRE6AVEHuw0usEzvDThRR4VGSAUq3Km+5PcnPpudVNTSDp+kriwP4+Km0ezfKOp7XSTnYh2q21uikfPVT5E+PApu0T/ra7eWgT7sQ+xeHF/3v74ggA5ooGFPaQ0+IwWyDS3U6xZ/shDoGf2aCOjGrZFuCyReWvz3nLpk2kRG+yASIILU+ET01zV0jB5z9LQGUsj02uiILkMe8RJxrVotWF5E1hLbbLMx5eZ/9klEIe4pDlA29V2fkgXu1B3CtFWloeg3OO0sAGRmoztQXPy5jKdiE35KLdpcATFaTGiUdqGmnkN3dW6kNt0+evRQiYul6qHDn+CLAjRuX448lOq55TFrA7i/FDlIZs8Kl3nsN1K5vHMxd4g3oQ2wDt46wSYYxfahiXYbcEdatLfZRSSZ5EdBNzzEa6Zlmf8kMvRlvLFOIt1KmJtuT7WxCx20Di0iZhmhaDr9Pj9hWtnAwtqV3pewLrv9nwMTZ41uJboOp2J4n8f5d6n2SiyqQmU1dX+ih/3bc3iL01Bz77kVdeiKyPZXDiMzCI94zFqYm3UpnimkNsHdmGXx9Wzj1jKDK/d6PXJ5/tGR7HC1jrkTZZGSoCKmjuL0AuJawFw7rTiWltoDG7po7suBDTTldssJ6iAycNhwenbeXgyrPt52SYSPTP4PpB+hRsd0IJyeqO45KwaUoznwQ4MXx8HXV3c5v0dCSGAAUWRZsB8GhCfj3FqT7cD4RSo1JufORDBLMh2MtiSgE8S3GtlXoWgHwg8Uumx+aEzxI9VGXtqTN4swym60JeIeKiaFXO5McAhKT4HXONAfG7JihIKxD5mcQkY8LXKgbPd9SFLJ8t9PEfbsz6YSWq+yKwRsIeYn3l9x7iGrue0c3rPDNxVzeTlwyWcSDOR+lRFCYUMSMobq/avWpvdnJvF+pcGvpNEYihW3Iq+EodY97k6nD1voGc59UHVIwkl8/LnOiRkrbDivpolnnRz+kaokKk1GZe0LyEQK/Sq5if7a4ykRl2W5+mQiFHZY2dk/fPyYyK5h0hg/14HZWUg64VMn34Xg0+nWhTXILWWkvQDAaKv8eLL7IjA074csUvA+wIf1e+MbZeSxAGYzlfHz4j+DqmTqf83vgDMs6GcDY8+OB3cyxkSFMAyN8YfbbPmWsBBS4Jj4AMlBGBLlayfJMpv5ecNT4ldLt3A0fTjqxczTNZiXEWeu60q+WChGDkZwTMi43HS78HgMQZPcUuuofLOlWs243YjI9qFcanbA8pZCmJCgQBCwYtpaACDUiy1RtjfIdZPV0cqicNq7npJDPzNdqqMHdn4MMZ9zPg1LiJ8KlUzHIv3kgj4CXaBcKdXkX8iP/k2tkf1snbu4wP/opIBurbE4tAl2ewMXwMtO+ejfswa3GbN0RBnmKgtCTPUNggZHQpc610SePiKrnTc231RjDZl29maASJIRv2ssUIiPN3Vecc47JtvzBnayE2lHvUpcLVVL0U8RbyPmx+CeXANIClo718o1lExLAD8Df/9OW6rZtxSXGRYTDShSquSg5l7V3bwx0OP/jBOVGdaJtifdjkHKTFZ+y7dWj7ihcf61eVnk+K312qYXwxRaI+kvnYId5pUrFR1UaL9nWgPMSrSI63I0hlxxKJ06QbsF6U1QP7KhjZllirKTX2X4hTTg24IoMmYN44GpB3csfKabx35BVlWMv+dhVMEU/dZap/G6OwqCTPiYtC+mYO2O+sgu4oU2+XMZB5BdAeVDKOOAnmDBGYj9cJHx2BZi2x23nk+IxEQG8062Lgewv893wlatgR0M4e5mnjpVv5XfC7/nNQX6lZUkzPbiNvJgxghx4upWbLfea9v9Xv9GhlyfcvnM1tkahIRwZBNDIOWlFozbFp/KeIXCZIsjh90+vOFs11OPPWTgiuSOYdEcFojodpff40YNfaw6CTwnobl0MEcMRWyXPzL5DKvnmeTmc/AR0B5OawMu/3YUJQYfBwb3GahpaFal67nMkn/4Pm4QGr/wVuE0k0F+YxoyRdX6q2PU6DF4JCjUmJri6etMOMUF9mdCtaQFPt2OXfLNef/ICmEFf5EExMHhtBCRmjHAfWpkTopIOUF/GeUbIj+hUVbsDkgi70R/DY1mepUBEenobASbF65DuW0qMSgk9Ero0qytf65iQpPNnVIJ0UypMlVH3fDX+ohMyscmCVvIVeT5LFafKttGGQoKs37HzKEYkOawp8LwJM0dZv0eTIhT+71WYf50LZ3YKW7OfkC68htRjdAIyFdQxrKaicmCZGRCB/vqitfeP4AoyR6uyaw30ugQ2tzGfpEhegN6HSDMEi/7Yc60aVbq8hKtJlloWP4xRz71eoly4315wX7M2Pu15Eigs5bCkspBsy8ZjGznGiHnc6uf8fGT83lzt4SoJ5PlfoCzNQZuALBPT0s307Azf3Vko7RZmprET/gg72n1WD06W2DPc048QrhYHBtayCsAcVyRTZjGcPvV3GZx98gH75iN8P1vLHQCoCIEWX4k3Jb+53Z8ZM9yAzPTb61S8dL/lyutBJ9lPjARbztTvkqS5zVnfSmjiD06a0sTovmSdm5/fY8Iqy0503rhd2fe0zVF5OjIIafrlQA+YXRY4kfdWT3Q+Sftp2V3BQybuzo4pdFZsxJRh2prMh0zrjZybYseacQDRZSvNufp9rsnUpJ+okOEu1JXOSA1J0XsTnZjz8aQJYk8JGqUFUo/Ba/fVoLKrTskKWUoJcQjwlvuxmd+ZRYMWvDdKeXqVuheRnzAdF1F2z04T0VT6UfU2lpfPjRNnpxtUHRF+lM3WNB3FVLfEmWwGWjJc3O/Ryc2GzxGhmehEkpQhehEsFufWy2n9pdHDKwb4yWvv474/r9eyh8u5zzIgdsL0RoYrEWzMmm06ctt3vpMNRNQClQn+q9DbFTcBpY7fFj8R6G6cB01UULTC/TD4T2Sqw/dBWbWa0Tkd0VxbE8jibeIyuHayrNj6tGxq1kD1A4rGja7v1jXcTQQKSTuqvKw0WhRRVC0LtImk0z3MWbqoD38DHD1mnSIsD1KDxEJ4aePmVxK2lRWPMjCo1AnqOwYrdWQ4IsqddzFEyg+oi5VcZf6G/Pdybw44YqCi/MQ3N72iyur0rr0wh8WxAC2PCBLv4sNRt7/Kba9gcnMGcEINueap3brVfaG9nsIRMX6Jq2LkyPnZPtuaMPpOgVSAEl/qOndzWRM+E1+AGFfq7c72EgZ0fO5dH7GgHtTkA7mJCFg7ZTaY9H5FIUhgOiHaLmW4Pde3dMZgoAiglop4hBQaS1VYPfzV0e7jkYCDWYQmHx28epvn59z55hZT+NLcbI5XvhwZTb49x6TxqTYGpRFmlGR4m097sGEQb3TAZNcUAfeHXzXVpBg3xGUxAxyziJGGYe2HF1FAh36QM282TRibzJDjxd518mJgwrnipn0UIOOTVZErGqCuonjHTR95Ni/LY5wqcrd5dCze6Uu9mvPbEy4wi3D6/YAIqcUu4lKWfsQ4fjcjMmpacov7r51LARXI4bjW6rw3U4y/MX5NTyHL5jrrdq04uMUb8z6vHznuziCcfefGNVWUga4IWTvJ/eOMXGZEigsyrxj9XIEN4p2K0CjnKdLj0RzQ+G0lROOq4LiftesU2d8JBs3Hpd2FHNVbGA7v/uUSCkcHNjptJzo1acHKTT7Z5YSCXgT3o/B5owYaELMz6B0qT/oMSWU06hEpvZbyglj2nLxmiRYWGZOijn6MVWTcFbSJHhaXDP3E0LOe4Wxq5mJzian1ampeOAgCpRZNLbjxqaxLqvj4a6X5uMvjIdQrUZV7wXNEEg2eMjAt857fvG3gyHzG9DUzHJLJnDTIZz5Auhqfpgwc+UH8VRI8zP7E3iiQU9nVdB7GnHD3vWk2D8CT5QguCQpIFrdoebBt7XuAoySPflUDz6Jxpf9M9VQUUIxsUGWWx9TCQP25jDajjWhQ861JCVOpBEzOdXxpZ3TLGF1pZ4EaCIvmBGLVqefaJD/wCvBKIpKv5SeyzaWUtIfmCpFr3ssdwWWGHaScGJjpK7sDyjhXk3oKG6mcXFKySyz7qHIPZqZfB1ZSUm2BBEsty48wqIcZXnWDHIgZiXsaOsFlIvELsdM2j3HPTs9czMDGkUNFuT7g2BGPS2toWKBF00Kr4Orqel+rAS9JrhZUzhCxpY1Fzgryt7QwhmP6pxVsgQLZivMmouo+caHQO1Vy9aYbXY8oYwNXSBlHCRhrKRiAWDCvvwIJYlkaq/NRIX3nHsG1tolBDC77qXLdCpABioFH/CUqFn1HaQfdjKMJ80x2+8cQ7ryVmwPZ/P2iuF6CPcPpjYXluU/+8Jzvuye9hKdaGEjaSoWyzrIkxLWdU01zJ031WS4NWFDsrwNGwztFLTenQrQcmbz8TmgcNcZmLhfgd1XY/3O+94vrGlgPTGXDxfbWz1SJTszvpxQLmC/FjSuwVTa/q1i51Uz/xcdVDyzAAzTqghQ5xbpJzkBFxMvCMHb38ZfpZyGDi/mJkZ6HvMytVwAf9H6S0dY0u2FeOYu/77Bk6BUB8CZCwGlF4Cb+q9x9TZDzVlfLf5EQVRWYhwDyUiTV+bwFTQiP82X+HHQQNZikL/FApJquSb6YvQ91PkxvApOAnSFBV8f9NAK9QHTZEsoO4edpa6RHm1PBTsQSEDgPj2AvXAiq4aqXkKs5rsTq7G6b4hu8C1k5D/uzRz/E9otpBxOD7+lwROz+gNbtkMcKX2LWlgSBIAQ3l0JTYXdT8UODFHk/4z5Ai0KWk98ZRlQ31x3j10nUleZIxekcU8N2YmFFq5yH5+NBJv5Z2xmUeNQFP3+9rY4viPM0E7Tyk93jhDTpQpyPMhq+b/BYHcVZPfqw5gr3bv7AMBdAl8Qwz4Ky1ZyRdCb1u4YWmvQypsQid0xz7hPtNs7HZLJ/ogBm+mz2YgMJP45834o7KbzyaIZA2XFCEYJ2wdk54lfsxATyNwgOAdFCD3tyEBczINWGAZDQlXOs1AEBeTRYyvljfJb5c4Mde5zPekTf8X6lN/4YI8osw5btMUaKSBh5uIKsTuf+fJORgVWi3i2YM6O+6NkpWglYuWauGJSD7ZA/kcHRz763qvxzDQm21OgUTGuZCDx4SBYAFt9hNl0JkbtlVXiYzfABgMn7wr3OF9mR8U/EwbV84wzAJSvOMpbKmo2pha+PyHkmmXLcS8Y4vQ+Bty3PwT5rSYYBg7zPTJufsonIcQSEjtLDEGJIxl4Qkg0uaoruJWMVQSwQJZfm/513HjSEc4R/a65QWorE/sdpXoZ1qRRP04JwS9rMtMjFXqxPF8zt4mcLjwopS82e/BFCG/Mrh0nTaA+Gl0KSyouRaHunqni8bLTM6iC/6di5UW5zFL8ZbesC5EqY8mcDcqOtaRl2rfloD66Q4LgkKkm6dfsEM9n113CQ+KrcX2Nf1qQT/cJ+y8vwzqhrbd+kENvzQYyj9nkevKB+LWc3k9DbLWIfY9b8QZNe4v87czApaWf1OKDrjw0E2GFGdmBTaqosC055AsDXIT7vd05tUWLxEb4unQbEHGOzJMGB0Yl4/nSNnYs1h9P4PijELrhwIy4Olrc2YUrA3fxMK/fcla680vDOEWyn/7SsMZIZ+vs8rsQsJ+J59yGCedZaUEoPCPr2m1l4LhDktBInevzhtuVVVzlKOtuJXqhNcnewqOdafMXjEIQYeLe5+L05BwFODHl5bgrw+Q1UbHITd17GHOIc1oNtBZiJ3mK6j7+/zXXBM3dUh2aKfe9gFGx5lanMv2uhJpyMblugf0it9yfIQROnw9agCIwuhmY2dqRwM67z7v7hlviKJGnwFJvcFhul15inCT/UugjeXwAvMOcXsj11b+GtjfCAtDaK6wRsx1V0z1LhGx/ESYRJkIG8miHjD1glC+Wp5t8Zw6Ro8o22foW9+LPLN6FvGBlfC2zOB5m/LC7edHN7C7WCftA70EX3+PIu+7P28Vlsikm95zQN2ZhnCGglH9ZCNLo8OHeDS6zLJHMPVfwW2hDCTIel5mgRtQdPhvRFiuj/FoYE8hI8oF1ETR01sVuG5parBWoEVsPnyog/aJ4tGCQVSwhgofA4EzrOgfwDQ3aE4DO09lPYzcIkXEQqd+MjTAJrr41AQ3UoK/sipCbkj3o0zGGTkzbFdd6t9byy0COXf9Qs8KcoeC6zqW7TV/g2SVeAGxdDDvfzp/wueeyGoERHjVyo0hoNr8M5hgPW6WwkqxQ3AXsoYvg57RVj8pW/xG4ctFIuVJQ/10B7IUc3OS+Ywhcum5TfhChxBUr4xKUhZAyovuT9UX6WsY2Kbt2kuQ9x/YIq6/MkzgNWCC56KPqlTuwCbqmogmh3Z4mlblpNHK65AcEvtudYyuDIUywfbHAsWY3aDw8MHDtyR6UUO7hQpn7YOYy+FURQMFpGT8gmiusvO7it3tuQkvHj4eNslp5Xj55mZ7RJgNBayKHV6bhfyatYk/bakkbbzJZ5rzNJx+CHQqI3COH+apMfYHOKl6ipXMJLQVmvlssKfflo76JAOu9m05ugV1SpNa2n7EFHZsKWiY/+XS48RV/f+0rpawYZFT6ahtLT//BTsk5VE1fvpN0Y7tF19YA59IUxmKPxqjt014hzac6ATlGvKBgelHJLHJZZPyRmkkBG/M8COdzDPcCljoBjzOEdSsZTQGIiMM7cWQJw5o8uqOFfi89jEktiw+t+Ubb91jY0J543dtbzVdQHxFj25VxSrmv4b7dCe2qc8TEcIHL4j5ABuAGEsx5CxnDUhPsbzsuSHOFcip05A7AlJLfUUnH0NWRZYEq00KVc4v6rWUkOymun/yyoP4odU6KYxlLb5C1nqKHucIGGF7VO0AaOWLmaSzUrWjyvLQBPQgIDmL0+vaEdh4fWojfzYphGWyzCrIL2RYWD+A9IefbjkUhf3ZFYnz0dzvxyFbmxe3LrW7BK3HUuQ3tfbTi5z/SouSSiJWg/z/xWeAIJ2tZYBGLiklSBKZUVK/OTCHrlAz3lDr0j8RjmoPj5qCRx+3m5U+J5sMRa1zykSc9nOrp1JWiQ+wB0Kw3le1gV8gfekBTXyzGQTVQpDpAjAe4z6xn3/sBb2WZnIGLLSIXmEKI80By4MPC2u26dl0qef3gVcL17XXyNUhNRkk3EZ8SPVGmrHLUIsBHazKmpoFhngoMymAoKBDWrCL98EkuH5C6pc+MMvBrYbSus8kJCZTVomDqtHl4KLKRdCfJD05yipmPmjXrXAgvmUCbrguk/QnDXnN+/eF9zoYWSe5udgCui+F6eWFZV6uyKt84KVfWDnvGt3awD2n9Y34wYUIWrsu1rfQX3RSbD4i2vBZ7UFURCS9L7rBpHA8P/x0d9nrPZ3mkXM2KXlz5U+nbljD2iMINqBy4DqBu52u1WqIquTfZt0hq3tuVAqy7HG+9CUH+Z9jx2eY4KvdRT3KrqPc5Obi2kh5I7Nw/CFFmVJiJC8V3p+7dvEGtCnsC5O6VC5G1UyzYuzb9uDAzii5fQlFpZ9kHTi/cFyHalMvzm3XpjFyqvZ1ZM9vAr4cFksXifd+CEn5bRN7GkegH4nrGX/5d+9ucduEgV1IWXM3AQMXg16zpJNedwaRrriYqbaEUTFUUTK1aYgyNTu7Veu8PMFw7K18uaf6nu/GltwvcvL0ulS6IFcPPN58FyQ952Lx1zuHMPEwTzHiCG7R8vEm5UXAJbvixMGUVM2xlayswxsm4tkB+FMTrP/Nnhn2n/ZuS/VQJ5kTZugpwrYqPD0aNNnMqZxwFvFxQbHK81uJf0P7Q7LvSLvxI5F2U5MkNfvWXwB7FNhkzzAAbAiameP6xCyBwnEjF1iqgMOce52p1hsq/VlNX9prrY3Pu/K++ABmetkvNj36Lhcl6U7SYJgBubtcE+O+yV+sKZEDtx/R1tOmiKPkGj6rDxhIs3mgvIiyQWzcPxnXo1etVLEz+v5Zrh8OdexwY/2gqc8gjbs7QcOOEAZwlTH+mEchw+hsVruitvhW8YX7aLblcrvePLZw/2QRwULQ8dHEc3Ftl+amIDE6at9uh8QZHjrkAXGJqU1/A05Uo
Variant 0
DifficultyLevel
448
Question
320 ÷ ? = 40
Which of the following numbers make the number sentence above correct?
Worked Solution
Check each option:
Option 1 - 320÷8=40 ✓
Option 2 - 320÷16=20
x
Option 3 - 320÷80=4
x
Option 4 - 320÷20=16
x
∴ 8 makes the number sentence correct.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | 320 $\div$ ? = 40
Which of the following numbers make the number sentence above correct? |
workedSolution | Check each option:
Option 1 - $320 \div 8=40$ $\checkmark$
Option 2 - $320 \div 16=20$
x
Option 3 - $320 \div 80=4$
x
Option 4 - $320 \div 20=16$
x
$\therefore$ 8 makes the number sentence correct. |
correctAnswer | |
Answers
U2FsdGVkX199ryBG1DZBtFzJuxErP/s0pfHCFMihEDT55GK9DxUuEwgIUHKDGHbqM+J5Z0oupHPOFbOxsmN5wTEeZMPdb8N/ywnXM/cR5P4DSK1DrixXTeV1qEocEJm2uuKX4o4p5MGUbLzRJDO7mmQ/OQiAPFwdHSsajSBcepyPD9jMi55/VbSnmna6L4g2nRmgSW6gb2lwlgkRmoFmLqd0JzIiL1moPhJroJyEKHzeIQs8xyKF5x62pWCIEIcMY28aprtSnL+b14lpUKPq2vv2ZVClwiB5NmorFSx+M3gmKv0ucWmsp7KqPGPFTbTDNiHQJb3nLlWAQ+LUlymaYSzJIHf8Pn875zXSJpVDimH+v0YEVWKiIFomJUN88RwYjpnG3xQS38Ywiif506dGGMdryijPwFg3L3RC4XoEP9v0Ro2QcQZF5flSQatwkdZki0TrtuFmdReM1InJkBYUL8wMbFMdPjwvRgG7nx3MnfVr1rFwwGrebNwLclBn62YUGqCmByLeSk8jWUleTvrpJ0ypUhGhSicrRfhXSAz7LBoNaO4QsXIdmC4cOfbHjWvIsXQOYsmyubqdEWPn2qwsB54GnG8v40kXE7N0ws4oXPfTrbHggACjiLjF67czm+8YVWuqH31YaCDxRy9y1xf8b6SV5/CFj9VJPjpIHFiohwQdAlzYAy7dtgxHkpkJqkyxASn3COO1Ka781+KEiuciloTfiRcINVWZCO/5/Fq1HlAMQKf53s6oC1HYsOY/HL+toJJF2niHrRePLCXBGK5iZLJEfjGxk27qjZU8O7x9Af9IQfZuhmp2iUEH4Jzsxe99Rg5CkwnW3KM+KZADbeoa4wuoSy4PstncXvT4yMeWq8vnyzpCedq6FyWEBoZZjjImKOR+i4WUeT/l3wrfkc6BMsJe5GPMv5t1HkOQUVQn4yO4u57v3FXplRwN9ywaocQgrkru3rV/660voo8vzORc+439/7ACdl064xyr8rW54zlO3xz5vIFLb2WXTPN8RL+PRrFa5tTxmJ1ogBz9TEgd2af9gA2oENk31mdqFTeXfJ6mQi1NK/wMu/3OFq+3XeQz+ry/OQwOjeptzH22wKiNJO+qEquYoDR3EMvkn5LnYvg7E77dLAMK1X0WuLKCk4ttGoiO8XDp/GOGOyeQyZ0pq/lKwfikCyn0x+SJQkiatThN0yNusSjAQVAy2mV6EKRmm/O890DxhOn9nI9F6e/AauJKYMxZQVg7Sjgy68CLMqCeM3QOOUn4Ysu6aiP4UyJuaLH+2nlzfpwmt9D9d1nEBWtAeSbXMG2wkqEtiQnWrTcb80zMo7NAnNA8eKoFFPUk7nH+D7qpWUhiD7DqSm4utC3gxEK/bs5h+KqeobZSWXAC7T172ku8HX6w2JoYkQtPvdTjHFohVsfhsCSrI6k2ZIBmhY9EbHGuMuUp3Xm68VnBmmu76JJu7iMOSEm/slk1Gsc1d6nnPJw3dNSz+0JhAkpKvmVOgi2Do76CNZsn0fBKTR/doChaPQqy6tEqp8RZzA8htyyH6CABddVOJq1rN6i/bsSrQyOK80AXzaDFLXfBF5PNyjMMq/fVo+mjmCCx3p9u4qkkeEitlRRvSYkwbXdncvD4i6Q3PJ52UZzKva3FKoRx603AwqdJWqyLl1SXz8WohQYoX0pHuZ0bpeGyyM5gFVtY20ShEYdOmAqlYyLDagZXdOeNoB+ykFK8v4e/sbkfsCprQEMI49F6kGSvjgrK0pElETXOr1OQ91rkMqjt9wIF+KqbChl1FI7/jsLprJSSpYoRqic2aWZ1w7z/jwg6foFF0VMR0i7FlkNSYPxK6lbKYtLgLQq9c8XJuCvifDqSOgzKC1ptrQlBJuPJwSRLJY4M04+3a5TCkHC9OFH0EEmG1NKx3c58m/l8ADYonIsP5D41P3xNBSFX2qWCJy5Wbx7xE2P6JzyDfLCRbset7QQ/HLz/mzsqzepr4ecsXx7HLBBjNF3630erKZXQnurYy4mt4ni+HEQPNkW4MA1p+2Lj0xyi7zY61VR8b0I9bF1VQiEcnt9Xm3f/rg+PHM0f300gl2BxDo3VMJYvVwmiBf0QXEWJHBg6aVmISaLQnEccemc8znrXiF8/iJrnCylc99mn1/VmsBhvcjsuVdEYNU6NFS1//RKakWsNcVfdcNzpWt1UPiEsrym+llGcWK5uU16T2IBpK2ttIuwQ8ogsUPcE+82b4SQoYXpTjhk3u96211hOH6BmnDzSvlk7V40L/nWCET5nfGPW+divMGcSchg+sZg5nRsmDgw4oqQxHFiZEVTGpNTwfFtIGvQAIwNQEEOflN6KESfRxMjCbO76pMoIIq+ytFmv7c7w/t8HTLyPmParJ4j6Mm7JWe5Dvkuk6wLaGLebry2X6zIFlAoyX7U9lAwgAC1MGP7j81GIDMM0owQ7ek7klxKEEue/4EM9qcHbzDkb2JOqbm7J5JetNX4ZZc66ovFsP/X45R+imInCVKMPX3zm+BaXyeXy7v6JFefeyqZUC2YOg6UD+P6FHJpKcORie3u/3KL7f9bXVq8UQgiHruTeemlegoFZf/0c8We5NFNAu5EEK/7xUDGvvIphsRcyeK51yXIWOYQALggbD+lO3QOKOqgN1g9q0KiU5pH7VoJRB0rwUQSqpjzBbb5yl4laqKhDgoqgIimUWT/aZlSrnvJzeVd4UYBpXlp7d35RmZ9YZm/E1z0foUaQ0IhrEsSf+LdIShtL4o/P187oUIHlLXkpkZ6Nj21WIe8YZVUCkc3mi87aYUrXi+zIhJg4sOriO4WLSOhf8qCdHfuAP/eUmgyowOC5CSZEliv9k27u2ix6ZRKvE32wXl8pmQUYZMl11ozqbVQ6l9ZadV4m0jDsn3scyVSD/zdGfHcWArdjWpQ0kIb19w4xogJpF2z0g8VZDLp7pfIKB76Z8wD7LThdeD5yGLXB3qcxb3cP+5NMUuW7lUj4Ls6UCWU9W8K4Tsm74HeZKFA3mdNEiHeaBpFTTZPVPSQyg3ovmg6lmnteY0YUPo0qxRon3BfyhXfE0HRWHNhzLBCqOwOrwQ2GG1ehwWcnakcOTcpEdBUbB7Egtzf9Ow+/p+f5X+wykvNSiaz/9YI/Thp9YpljjezrUmymOCjuIqC/xiUL3lNdhmALHAXFVw/fpkEiwC594GDP9vXC+m65jYBoJ4g5aD5UXIGCN7Ylfbv7PxVIiOGMy4H4EPMueZDDHL05cPqoPDKShw82HpUJEJvmb2nYD7pcN0u7w2MJ4INJdqMtWjO6T7go7FdKrs4Kql/uTmy7R651v5PfgD+E+NgTcygQKoTD3mxT8rDFPBc1Gp7PutV/ZUs7ShsuLOi69we8oghBbrT6ZbQxxrMkyDCC5r3WDITaaSOh219Deo5JpLY6A4fcAoOBC4rnz32pHX+3GRKoI5cwkpw+QT5qyPrE0RDkDAqtuPCaNgkvnM4eR2RiL36BNk1mWthYskYIJbDIsXyGR16rugDXJNLEEnL4PMM1iTWBZodc1rXT6YoIqZAZGcYv3hJWyUvWAGtWNGmOuKSHlsTp4FlFBYyJzsXAe0JjQ0Gna6QpXod+Aze4mJILYxqnluYLP6xJL6XjXE2dZG9fs9Xm5HAWveiOvHfkY/wAlc73aO7ZKEeMBRGlY938GNu5iufW9y/H/Rw3FONNlh5KS+gYt1hE98x+YBlbM/bcl+Uc72SNIe1UhhPPWPhZAdR3TQ+5QZxGNvCSoijr5tJtejIJKaREwtz1+gyMEWaXQqG5ou4Oir1KKaXv40BzglXqyhCnlB7iIfHvclXHE5tecH0raSTKj0odv6KbW2mOuBfyyRb0w2/GgqPDVsUrYm21sma3JtTEza09/Q6T3uH0RIp3JstMGL1J97ifZe0wzbKn3SW2Q7LOVEyPLP1JDSqaE/3mVrDo/kOwlBqZLm9gPqFnW73qxCBuCABtXsMnUrUMwiMI9sCFhFNurhO+SdsrR1rqQnK4mA1x3YmXvm3fNeHpDgOJ0awFOerSIw12nPLW2DOGWqo7ZJ9wtYEFXR685GXFWbDTPz1krygzQePrHmqqnRXYANJj4iON7RVibtp0JYLikmMdmKQf09mq4y2RLcGnf6RQy6sTOAvnE51QB0bEJ3PHXzJD/LSUr2MZQEKll0qzuomTeBhCLVM305KlgIdgHxWXQV59CUMdMY2JgE5tbgeH9JEp76GOFJT5eaZm1jbUugCYksiJvwxHMZ1hZVU1Kq7+DeyLiHE8i8Sa+mgcV6PHFpgZP+vEl7T9lph/rpENItDx6oMyTP1iWX/0pzo170c7JEg2oeUDFJnqZxgcpsHEEQJ020GD8m/oMnbUnCm5AhpKBC4eNJUiXQaeyWeu9qaMNNBtQ6tiE0aG3GEL9y8aMhtBt8tODRbFWkuzL/KWCrS0N7dYfjJ7MKTAR9ClkeQcGC5ku2LZN1Qt8PnL7XDrPC9p5rwI8IuXgT5H6B9zZ8jfRNrxHk6qH5gLoUm361CUeD1bz8ZsXLoKl282H6zTjRY4lpA/OC5OLcOHo2/cqaDRwSwVeiTYdiLsR81/LDklzoEb3QWO6dN+wgDMhqdI7Nfk/46s/GDfj/gaaM+hqzBim8PTjqF9MUeIKP1T2umdM8AHfzPoMcpA1K7xpX0AuA13xbPgHauhOs34hiiWIoHOwbeJQUlvlnHw1I3CaslyCkoUQkLLvcH2W6y5vxaBj64Jx2XBi7aLLUdOg+46qdzf+l4De0dOK0JsYXs2APg6nbbiGy6f4M++RS6GUqxSPKeOtcMn6rpYMPtCj4ODRNOrpaADafB4FS1r4zhpdOOgJPKq8hEKQ0ue0rgyXhjtlQtA7zZKYddMVHtX4N6AL0iOtlYiNU3kzMB4z2akBpfShfhSI1/47C47A0wvMXTQItIvt2s04o8yIS6sAGJPBcX32b58IJhzd99NjXdNkkdyMy75JPFQPMBg1Mk/K4tyHoUAoh3UDjAagaOINN9blojOLkWnv00I6ojENaN98IEiOWZcMID4k5HNLVOF4RaqNTyu3tExP4PerBZ3H4DEguetd3gyZR6CeWsgfv/hd9ZeFfFYBNJbw1ApAaEvnbGVa70Wibaz+y2Snu1MDTGAg/AnIClLX3GGYVjn/R3uKRPE3XH5gTQB7d9KhnHFFI8BH8hX5R+7YzqXQkjLX/hBHrxq85cNuir4c4VQbS4GrFQ0NmZSAzE6FJy/cSx6tbEQkpTsunOEz31uxMg8FffgsH3DyJ5l+RCfyQNbakBR66UZs3KJuyXFgLziU1DhkLAiEp/p3fU/ITRcldf7HIXDVU3lIUBkydm83tc+BilT0TD/RqjZEpNq6GQoV3w9db4kwUDWBJ46RlBQSEGHzQpjIkn+fSWRuAG0Pk9v+wvjVV0PjV2KeGOb3B6cfcdsLLPyUED+TZuSGZ8rBCsV2Fh6G6nk/pY1IpbmH1wWthb9/0TXFOTOWusDxSpQbdNvyhXdVlb0vpHJV+vgAS3vmXulfkBO9igW/9Jhy+tAqn3QlZJeWU2KYScsrlGmWa5JM31McNGwZlGW4vkebWnQB3pc5x1eahXjC+VHK0McgBmDr6gXix++UDY5vucdd3YAI4AwKuN8CD7GEFNgcHz5aDWAaqSCUitA+8x276hpL0aXufUYprNfxpZEQRFyJ+65m9b//CH/LV+G0oZUSL/ekxkkSxRorGAuOF19eyQRGWpdkrDOxgMH8Uf/kEzx0KF8pNX44XJMTZtBVryRDh7+2uJ54EEQ/OkQvoqQUXWs5mrhGqz4KIkicpR7nM3tAERQPq9Y1vp03I+RToyszMqB9p3NFImeyxlxWBWGrIJLA5TKScP4HLXMfRA03U7RZxH4GmRtjIf6/rrDDUajx0x2DsmEVO7q3zWFbqJsL6GGjEozFuv+ZM4cIS7YzyXLMrizXxMiFLJGmuOqcJWlhsPy8LZb+WEk0sX7oKj7Qm0Zp+i+gxFJyZZ58uA+AXpQT/BsvDdySrc2vcmQ0q98UZJG05cPCO+Z78APYgPdb38Ho0m6l+9Jhg97kw8nXmRQ++ePTQMpBLdVAADmqcm1yAPuPit00t6mlaRNVHO/mNSEDBrXa76RvA1HvH3u1q8AzaSszXcgjLL2HW7ZAFuIyx2Kgj22umE+RaYglRq+63IQKmZgwr859daiAgDvXXW4Eb7S+p1H3QMNfVVoqY6FcLSAVDjga1FVFe60PtjPZ4tTYWAFDWBPnJrUY/8aLRrApB8QUxX5MB/D+Oebglm4IRFvJM1VTpS6tcUo6jNcFtP8d17upuB+dvC4b32kbhPiw+44rK3xnbskNwzs5qoLDS9jOdE2DbvOx7i32CjGFIDWf99mUzUKGXCFHJpy0k5wWcJEJXPuWmfZr0dVE5DO9aNpIeX1479H53iWpdF0q95f9XcpJz92YZVZmuW/iZ45uvMa5tozJa0P3oMis69Tu5s/QiTtcT7yTtYae9z1EveRHZC7MdPWx3pzoKc3q6eU3KksNvhf4JgKwkk5S4zLq9OyvPgZ6o+dTPaiUdLxLcBPF87WIFrPsLZ6Ob2mVsmh0mtJl3FB+YAjZaVRqy2ufFn4bX667iLMU5wXxoWEHFxoE9J/QwVC3+PGXnd45YYDmIJ8O0A8h5foCwTo/0+jXEFP6L7/mtFClS9bIF//5f8aS0JjlRwxmk9XkmYypQ5brx7QnFiyHa1iFVO+bEnSmp/FmgJpH+nl7iQYgwszI+lKcxnNWBO/DW6y+NyNy4+plsDgcwN19DhT0P9Y/W4IqfnzkzIZBvyfbW0m5IPQQ6D6z39WnCerck/eNBCLn5hgB99SG+OccJQOnRKQTUpJl1upegXeVQowCK797u9wZjG64D+RN64UDVsd/uch0YiyVVeskezcVOa7I5ER5VkrsgL47lEqbMpRwTPHpDDICJ34lDR2hPb5e98lPcz5fpIc0CORIMtF37mlIlkuVC6th0NCh92kagRB5TynEkRVtjwUupznjulB8a+sLNVckufTAKwZzuIEIwqYWWXoTlWhXN2fg7eGIWLgKpYZM17fl2h71oRVr31WYjemVSC/ODro8WxXI1wnGJwXXEPfeTHUxXuBnjfaDvrFCFbGMQIZ1OyleVbyM9vEiHVflA/ekdIXZtHxT1JYcsT0L7HCtSNBZtSvvlhDhhe0PuOkjOgS3em2qUc9RoHcLdv4wFKQWRz/bJxPgRYZ0mA2vYEfjkw5ivCu7U2ObXVMJ1kjfi0T55iddcbCpt/jnZGGFYBMdCOgbEqunjO7pVCSOah9BlBmUpzGrwuPYEzrx8LfSbGlWsWabBRm62Ik8xvb+Opdd8i3JI2WqXoUmGLlJOUjgcH3vzQg/wF5AzOV8NFAN8S0MB2jeghLZahwX6g4EqlXqxbKz8cdxZyK5eOpRQBLGjgd1JqPdaylj2Z1H/cemYls4GCOxOeiyPJh4qeVAmcC8IESg3MQlv13ER/fDBhUYXAqD11eBSYnEGwpn7rd/L81xhkkF/Y0uAZDJBIX9UP9yuLu+bh3zz6JkiYEZ8F/m+6TXKMqdfcRgPjkucdFgzvTViGYjgtGFv/dKR8NLbWLYnXo4N6Nmxy/3i7u8Gildtf2Z2anRRkAQvcW6j9275sBckCIl5suctI/0/PEwAq+873IU14xAZHUTqPWHqY3t3ZRsXqmh5U8a66V3ZitNhik+uktGI9H0ZY7r0gaPcJfH4ujVd2igXY5f1ybhDlaL4GIzxIFe2/7R3kQ8Bchl3FOnoWwf46WtsVN/7ArhgbPEnhdqBV1TljFMhbldh4vqPfq+nIDrlR33b9tnYTg3EUTGO6opQPCOpD9eczmIwMz5Sa4jecHUkgRtNmhe0zK9WJI91/fC8CfEZQpOPYXnQmbnRXDTj/zeGfJ0eHHfoQQn7eYNnJiC3nYfuO/tyJcZzGwRkdK5wagjQ7kUO5fzgouGdW4oQ68ySfQLq4nZQbXliVOLR2UQrsxXQck4QFsL/8EZv4NBpyPvOFkjeV76985Oh+dfg/cf03emQxfTCuLtRoC2z5OZhvpq+xIhWIGGPXW3w/xgK8yx1cOv/4GpaGmLYTbO/uxqreLU6LVYD69ONv+y2pP2eUqH940rwtaT6ON8sFyzR+38onVlXrA1wm/gE8ugahB6OWYheIb5f/Uqzb8zoMsAp1fw5MGq3nmZ9d2Ho7PuWwlWaZ/zoXh6fXPiBN+ibbDw4L27h7tCyPolU/YZaMvI8mo4hNk8DDxCgFnOZfvKy4ov4rNS8L86B/rOiz9SvExw4KlHCjxYL6xQkXi+0KawFsld7kA2DhJAthayBt1JeIN6fKb+0iyaXZ0Hqa0LEr5CoXLkbPSeYUIi8a4EdzkqFdjcvxM5LEhNtwonQ1VWrEltbFOP17RW7syVmy7RKutUVSsIj0rLhLr3cImnJIXinCpFLp5p51QTlml9BUWcybkpYbU91+oB1p/yf18/8/Q2xJiqmdG0ghZAZaw+4OYotJZtRBwMD1B/aA/kbQhSibHB6rfdcHh5Bgnhj024CTE6Qz8ffGMMGN7u+e6NI4+NmKZVPMY+W22cFCDoBSpKNGyY5aQ/JrASlSr6bZ0k/5dScG7kG84qscXlsaZrKWoZNqeZsIpBoAmqTwVgBxYw4H7J7efVAOrQ7T3wXyySn7Wvi5EDWR/h4RNUT9FcVQqsoa57khJcSHx4NyRLDalLOFhMMGBE/RcmB/g/sVjQhLUwLL79Li8fXTc9G5InrehcWCQnjWaSfoJYdgGIunTtNcJWIwxjZCC3isLQqbSVsISU7f/k3Ly4VdFofz4lY4KHcOSR0olm70/ARln3RV+x16M98i5WDq67Y79GzV6SG2iQwLGV1VOzCVQ0Olfu83INV03b+fd6uycJkAAmksNZRnZItTSm6w59IU3aQfOM2kj+C8ThLY1InaIQ8m+B8hgSLD8dxdZDy0WTqYG5s3P3DhN957stKvs2AZE9SSaKjn50I3A1OMXC7bGsuEKKN3VdTl0Vo1RId95zZ+AFxqVoFSE3v0lNTOBe5F2XgiD+V0o9WmbYnyNaJV5QlxxjyyAA8EpWM69S3KbnOEGTIp26gaecErKYILig6oKRJ8BulpBW5hmqz01hT3B94qYo0huZ9L/GXCeaX/7/XurmB3TSXwhfO4xy4AVAEMy4X15h3cQV9L6A/xmcVRa7WQ=
Variant 1
DifficultyLevel
448
Question
7 × ?
= 161
What number will make the number sentence correct?
Worked Solution
Check each option
Option 1: 7×13=91
x
Option 2: 7×23=161 ✓
Option 3: 7×154=1078
x
Option 4: 7×161=1127 x
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | 7 $\times$ ?
= 161
What number will make the number sentence correct? |
workedSolution | Check each option
Option 1: $7 \times 13=91$
x
Option 2: $7 \times 23=161$ $\checkmark$
Option 3: $7 \times 154=1078$
x
Option 4: $7 \times 161=1127$ x |
correctAnswer | |
Answers