Number, NAP_70026
U2FsdGVkX19hquUeWSonwU/ekEwdTzBCtLue9J0rP9WyspLUjVO/2xf/+yvArKSZKyhu/2ZsYOXEjudlxKUaf7uIOZ5cRp6YV9qwHpCyTELruhAwUccmLIGbEu7jA8HxrVSoMx5sS2AUnUJ+YitM/8Sosb35/IEDOLAN+8ypaqu581atVtvwuUNta343gxy9XYPNf4AlgVz7eCZlUneoHusJ+3z7DsMWhHwEkfuT0czhhOaWIM9xcfwvEKUV2dDU/VF1ltZTns0p6NP7AlDYZLQvDC9ay+41G7wAWJ/foDYnjTv2OmUls42jsbXAMvuVrR1uE2F1Ffh5PXW4m2A689Rptv6Uao2l6peQXaoD7+lkZ9g0TG9RG+iWSLHJSymUQw8y8EFytPCjT/KS9RAuYSS+DBjc5zw73Z+TQSGN68VVSVEy+yPJgwvDFhHRkSjpxGpvOR0dA/UznmeOCdB2Lzt9z/iuAsc2MeNOP4KLOXL3rpioRFQCjO2me0+8NYbrQf2K5bhlVdVr9b8RUgZSwO1IwEBU6QLyXmJl5SUEd3WC9Qxfun+PcQ6yfNHYmo5Gesfatz4ZkP6tnVjfLuXFW1mWiwX/Dtb+ti5DqjcX0h0eMNc9FFQK0Tcq3G2Xa+PfHblWWZfvytLcYFXrLwJvlCU5JVFhnr+tNnx+lm0rWSEBYU4ZIYtLeFYjsB+mVamUVowGXHgTem8OXnjlRadcyBo6sceE0ZqvtbHbl8SPkx+RsFiLsTHzY4I+9k8o46oFw7N4Up54LV3x4bDEXRBst26fSaK84xEV4eijb+XIzWRkfnXEeAp6csapLEQtZtXDXP8MtVRZm2GqFQZhh+Lwa81XOkN5mTvc/Bsml2IJ10v/TzlcNl0BDd7sNuSm5wSfLbvQKLXRNVHvAna29JzF+TSoqGx5+SB25bHZD+SeCUZB4CyNTSI0eYmBZIM9VI0o8Hwi7vPEbnG3b3cw0f/cDYKDctqx8B9zX6CTH4DYz0qlQfrrvbx+peMlIwc9q9tE5IfsqK8AdR+9d0MVuo+5Q/J/3yei+GWBkgKBqstrA1XCTEAhqY3NcJGeLq7ZRgbYBGHcfVs4v9Mizk6XEJsEBpOgoFhX0bD0iuLReLKM51vjQV9aIVmZxsUGdIrgQw3DiQZVpP9mkmvgyAhe7TdH9WICWtbAxkljZ1OIXSLtRrgPkB7XdsigNhccM00ACiSVvMns8pGBBbWZgQiUFlVqULokPnLCMMTaCQgmZhJbyYTojVr/QmG7sIJOWrB0oon/tNESQLARL7wlgVOSSpZHmEZ6yJBtIh8VfZC6pC2QBNJjmkqM0zL0rxEl/SF/l8Vtc/nG/mw5Azu2OzcolExZrF/kdTXP8Zw7Vn9M+VVNrqo/U9qgFiiv1Xy2YHjv/88a2J5BmOF5A+nYVQ96zpCGuFSpCy6XqG+nsnwnc6WljLTk1fZLuwV1cokBwCmOhAJ4qfE5ttBr+BTixgxAHktmgLfbPtG5v13fUhXzMmtxva//SAkvIHv4x48OFVwkwgWvY9Jh3PBfVEVoBOm74HsezSHbOHdFjMCtVd+rKIUNLm0h1w+WysCts4TPp/LZOyXV1GGLTaG4GBymWv021FdpBRJnnerKJUza3vrrQ0gocGcBjoa6wy+yVkD4X2FFVyM0Fhpwd6mVfqLHUrmEQI8tKDM/HgIiEpeY3WCjOQ/LMAekDOxXTZmwjLQFmRiF0sFg4dFiiAW+UV10Wpen5EtgpujrLks+bdqAKxVctFVjjyI12uwwRUAuDMHpp9ghlPgvUXWz20Kvy9wbv8W9eZ0XugAgcCqgWr2BZJPLxCadOX5snmE3brs49YPDighe8jNFJYfNSE5DRjbLdKLBu3faQ7O0FQfXkJPiWGaVWbhfN7FkmRdvLh7GEGn0URj+Tuk5Xe5pzWEoUHv6Oswdd14RICe5gDv7hdVQIFWkVO35WSxIGjC0bubmxMd7DguSXgKrBsFDIm2GwYyVeTsQSGm7rQtplJ4WJVqzi6KhUgQYyN3GkF+xV4FnOQec2uCYBQPU0IR0YJIy/BfEL1qMziTko2lPsT6muNfejniD/AmdrG+75wlk/utIUpXq6sfHpOvm3G8OplYH4LB+0cym5oh1UR5tLPJEnFKI08riQbx11QoZpNGKz2CVmx2NkdttxtdYixY5xEewG/3F0Vuwh5UgAzNEUFRSm7+6beBpOKowzatVjm+gc7aDZlxQsfaICgn/By1Jh1mfgOkRteulhTr3Xf53dEv1KS516DztI6F6BN0ZmEwLjzuwsA0AeGJ3eu2wgagpNqNuyUljjIEyzvuG32jgjpq2QQN+EStdp9P9ZiGjW/QXG1uEkF07U1adyoJQoT/k/F/BbbZge4vqn+otreoBHp8XAYYGvay8XOnl0JuuKL8X+VcR2H14/WfwncElLvv2Y0Y4FUCs6ySTqgYkKd+kqNVnngsOSazpH+Rc0o/sFAmUBGsI74J3Vh3p6+shPv4NsoCT6h48Qxl6V4jWhF5DQQuoC3Wx64knafqLeq9u29mvy76ZbFbAt8PG7nPefjOgAaQipjJH1QOKxEshOjAdyieZB4Unclx7ZgAyryzlZT6osKYyJrXPHX5sJtZZ89QDT2/dA5nBzW00ZezC+IsbbN4o4KKvypNhQ4ZtDeH6MwxCDPrl+gTX36UJGhL0GFxgzLjlNEqoO93s+Gjj6KasxiTxtA60C1FcVz5TTk9elj5b3UW7bnXUkbXVCLY8ZolMjSb8OlBKHMoPjSIJ7/+HGLljtZvsAIWaB3GlY5Qz6qQvrPjYtHt9xWwYvKFjdfDr2ld7v5dB4zFmUN33LJSEsMC2HoI2IXee7dxE5lRO4h8N4tkfdDOYgkKpjt/2Gpah4KPLG/KNejCdK/GdiyhnH5cZ6dVLTwR3m1qQZ7ahmMzz5g9E6r0kY0QBLbn1XNCF5UwcOqaEqVOY2Ndk/Vsj6FKlowaV5s2iMTeyzwp8uVbVT7hondwEFFicxkmOBf387QKC+cttVdzD3ENimsPDDvwTbjFT7zZrSrPwsULLfDFqVKRB6Nn1QfMrrWBHP8hE98v2PxSnc+DLkkiFOShTPaWtIeT+bIDKMf42NLVKsNED5LlzIB24KDY8hG3duFNKAEHLurSYfQ6KWkngZqGf9Qb2+sJ6xDQ9k4h35oQmtlPff2y3LerHfQVmmkxbLFgU8T+sMJuo1EcPPDjtVUCzuEiaiuMWBlRdZ45V8A5jdVXGcWs4BbvnwyAGH6j+xmh62NdokFDPr0OBheKHYhyefD/4YdgQEBH7EEb/M6+99ixD296ZnNHdyYupGGlmAE4X7gkqv5hajmZmgVukPYcxiyFlvm1zNo8ea1tHfe0tQ3yPFUbIN/qjIBJp5QKjM068uPFsmpOFQjntGWVGAyGAFQ7y+FsH5/KTTY5+1Qb5WRQwRqZ8/MBskFukPzeheHBbF/cW8lB9ut/H5BZLWwGdnaEjxmHzDp07MHtlIbgjSh5nn/zUGRjsxOk1gakCY2ezmaVp5LJYAatKaE9WCi2+sjefq8WEMVUYbRp1icfktJxqvY4J/pQjMQ48ahMBMiQdlqc1zGD2QppjJ/jVd0spiJy10kxAuog/sWS52ImPBaxE00bjT/uugivs0U6TdaXipysim/PMOEP0r76geaqO7BYAzEpoZOI7EmWTeWH7j9WChqybG8DB+LoF0cqrOHLs2ZkuXrJL/cRYnLDOMoAvLURwJzfH2OCXSgZgy8wiZUtvIb6rlOwlO+CF5dOcO49/sMj0qybY3zqaktmo82IGbvnDR0QqKIDmVYNu3BeEWJJGWFMxACB7o3Fdhs9I1nRH/YbsY6ac3C7DlPE7tv6RKY/VTykH4QNaF9k/P+mB8XofmxKoQ/64YUPAeCFEwRfbz4nL9B9coxpwEdaYhMMlZREtKEKA+5zxYQnPa8QlSsirEol1W8IWeMiSVG6F1eWFCmKo9BiW8cojPwTENEvqHgrUCmQTJOCSHlxFA1zDIhCW4LYvfY+h0h2u6KfVks3cLWt4Nut1eYurL+xFLSRQa1LtvW+zMrRS0hU3gSzX9xsCJ7g6wFMPJBtTP6ewp1JemVg/xB64cAXpk+U40g9zY70whls6pm/hsDvlcb1xLinh8nMOwmmU+AbWOjoglY02Z6JuzWfzznINw614Z1hiFjQy+nCqbGej4hzZINYeAV5X607/wWyl/LB6fNFyFKQ0X+PlRtGdc4KOmvOC/c5IE2q9jneaAn/t5GS8ppQVfKUrmtG++jkFAhSHOcAOS4fLc63KG1IqobGCztgX2IN/WJyC6gPZpYx739RweLERrpaujkMKhGly/cvA1n+VJ1kWUflOJCk2ZZt8U/lm0tUNDbsvh7usSWK9uEYBOxjjthjO+qepIl6s9ctsVZ5NTTFyH4qEpuK8477x/XrLerx03Rg/CLVPzPAaceu+9OCnXcUBmH6qEzLpsLJRp08iqMeG35lJkfl66y7ab2XMfXq5Y2TtmUaEsxrNnQDpjAFe1UilBEal9FNQCIOzpOoHTM3/btbca/IfDtFaqbMI6LLQ1LffzTeMzCQdyDgqg5wVRll+mZW/zdSNXxlTVCAime/yzext9Y/OOyQk9ACMsxHLDAkQUgvv05EMN0o9ezDK+NChC5jWvRshgLsFHNX8faDXp5QMLGc6Vg71ilot+Mwjkx1VSQZx1SwnSYTNueWRVf8sPBbws4LCuOPZN6Ao9N1hy1R+xWTNaYYueAy7hnqPM3CJVKToL163tLJZuUBMM53tIenz465JAC2dUCrZMwTum3lrnRmyANZILVM3Sjl8M3vkcYPExYfZHB+lhT4xjco3RGX0IJ3hMeN/VLEpcSLjE4ctTzJ2cewbEJ2yhPvbiNIjxpa+AwVohSw6SQKSVJahUGHWWNrlBWcP1hAPKoDayhRU9jWChFDP2ZR9tMhnZdkOAvw5uvXPcVodCdPAo6v7NQbvhJ+Rf2TNxk/tBH5mzpoJh4RufFR1moyedmOLOybXsrhA4X4TpCx5DZxXMp73WHNERGyaFPXqBqN0TTHX8i5uoQI23QMP2CnGfDnnQnThp7hcVX63y5E4wwIIowO+lkHCqqoceSAQTr+5JO/5jQtYz7vbnrBkfZHiWTbeJHq13RoGYOBd0H2+ub+JqfUFaFjy2hrYA/Xp2pnfUF0TFl5Gr5kcQZNfhQ5o5NRHWItJ61O6tkReO0Vfm724yXz3s0Yu9BSphGQTGye7rK6KL4LmhAeZfe/ZZcX51H4dE2GF9ewuRC2ghaq1Oad+vZdG5mU22Unh8FjtNymXW64xd3wVSFG2FVcUXZqk5DzR7k/k7eu3JR8mPYkRDWdlG8MckpOYIHF2Dm/cevVoC9lmuoUDNqti8Oquvu5prekF4W8/VNeKSa8zMha4YYv+mP3VYniWJI2Xe0+EyZ/7Qjmt+DdAGYeLoSJ7xG2MWJ6mBwSXX06rzV6t3dEEo5LG8h0xOAse1NIBqVXukaYEwTM1s/A3dlTAIRPsBa5IsSK8AzhG98OIccnk6bxWmIp5xplKrUA7iItJ/4keJQqCeTTYN92d29cF6Mx3nAUdMayDorpqk3C6MJYTretLe4dWJYt7RJ5JB0oVRy45xY19NeQUoLy5fV1Bz0xr34LTAigltMTSKM/duF6f4SQGYEzbv+Y5BkGjaEIiajY7/U+/6QThNB0RnBO78e5lJmEF4NWGVQHE57CcgCQwgQgYi8EjEsFF8EQ4PInG41o4RFcjeo9/3Gvc1dJaC/HaZQ1xvWD9igRpzzwto+8hSZKZijuGkrwzfn18JxAZCQpEvrjKHIAYYugO9Doa6JLckrbhnJFvLGMvcVQykJj1OvkIZbi/0mEkqufX54rCi/dTYCDs0Fs7v3UVC6uhVrVQ7Zn+F2dTasOvt4CP3gpEuLH5WdJv+i+v5Qop7lRdM+OBnx3nH/BluH7LumWW73RSzIQDtvrjKka1LZM/XvAyp3Lji3+IeGUoj7ZUDWuPmjfOc8bXsV/YoPmrblNdnZ1J9hzAJ0aMYrPnGk0+Gf+PDaqH6he0Zz/IeZI2K1q6Gs4Tr9zfKZao67BKGbSVNgedffCdYdtnb9wqd5iV+QCxYamdJuCmj3gFh4PlFEFjLACCmy3FQPsWeTYB1gGWto0x+mZ6QHn+hIqv8KCOwwXSIGpiGdejAkf3pFR0xOAE6aAuMYstGB+te8Di9hAWQ2xrhIwVBlGj6ET6FqUVgeDL3ND8w+nFRLmVMdLRLrP5fW4HzJhpZcpXUMaOILFJtfn4h/iTorTEiXQeKQsQ9IK4EFX/pt65fI5FWA7vN32yUFjv2KXu0MG+i2ACpipD/r9zpq0jDB0Za9FDj0rbz6fBMG9BmeA1YBzhK5MZg/SBVP33/zYCJsAZXwofLV3FOt/pcKnMXGSRtzCt9rMU3rGo05uW/BhybbqHnV6kFdukecBrZeQLpHg2L8fjS4NzZBFBBnFLfRpkVwy4EQM3IQDzDWwZ5gWfbaQJCs98b74BLz++PNojlyX7KdyxX0lOIAo/8EYJfFjTtFcPDZSEiHuPevl1kQyTWplTBPzdd4+Qk8iy2oxmtZjLjFdHFdKv5U4pgrnTt8eCmvoDEKrj/iZigmwqQMbp6gHeXDft4QPQKaSx8Bp0pNLXHIcRDsRjq+rjt6wgIDmrB3Xo06snmTmt+dZOq5bRFouFmJFe1ssU7tqCjvUmnlk+LNsUWYOEYp4cix1vgpvu3ahBVuJaOaEZcdjT/4FDYWVpbsu3feG7l21nrIMI2iGbnffB+Sff85Jy8isVxJaXuNEstzZo7ki6DR4cb5ic8vHRq/v/V4saO1U90F6WcI/qtbVKPzG+1/iRLo7f2hAEXpiS20QSdosQ5B6X9y+0VE164DPXBnaDldS36GXXamRpIM9KINjfoXaZiZwqA9P1YSol5TTWEOsaxqtsN+XGLls518yzNcb/m85jafEj8HXfP8vVzBsim51aSFJNH9ckDj+wPwkJSB6gXeuA8pnmZkfXnTsBYbusLnrSbYadGyfjy5JFN4UutK1hQfM2AiSmxPVnEmqV9zH/xxxpB5efXOeZK4CmnPg7aYPyVV+blqKCkM1UVcT7j9dJMR4Y610ZAE9+w3F3szTxUtFovY9F3Hta4TuqP6ZV1GnXRlLSBbDDgPF9rDMtqPMlSU9d2G7bdVmUAptalVExaZ6AJQqo3BXcRBuammwu/PYdMR9JKbMqBmIGF+aK7XAaezDC4QapHStlEWXs5TXhPsDDGnCnvW0+9ZPNRvPZ+EmVLtiWKGHFst82zPPCcLyGsW30cYkL5DLtnyU7h13/H2KIpVSy0ftBGorvFQDu10ip9SBpkMNiOY43Cf5SQ9ElFzEuY5Qb77wkyxFbnFJAr9yBOItZpcF8mAZwtZ3orH5/X1hNJceDn66k/YXsu1JVt2vpAZnK2sK9GQq/w+vo1dIPuYj5t5vyaPZ5PwKbNDua+suFEMEvhbr3h29qvEsfCQllTpFU3N6nrELtN4Y/5WzVx7dY3uZezRlyg3Vmg1MdIkGv2ySwYKf4rCOSs8BRzCenoHWAWRjl8MEiXM+BGmrhyvcV1fHgYmjs6jIqXFV0nuH96mbFFgla6Rt9L2umyt0sBPOgC68you3Qmrr0mni3VwgR1tNVtNJ0F/tF2TQRJsj3EbHT5I5I9oKvq5Sw4tpUfz3Ezvy3jCtrBqEcBRUQ9R1YLCKT07bUoF+P8hlzkNWvnT3mov/1lr1krX07YEmIKfYCuCNyA8/G6P6+XQjhTUf8lrxzoMLaPKlKG7rsl+82sbvtkUNDw5ehEwVY/ANIdMCrsHF4xZ/Ub7Q5cpzwTIHofJh+mlEAoT1LVx6+xrfpo3gP2Om42aFfnvfSI59aDa6mJxSA+BiaGJDKojssGqddGSa7HUg0bP4fnIrSO5m/TgGpub0UVA6hTryTBMj1grUNc1tRZOm+qDkDAvAX4dtETO7sfbyE62uzv6iHLWrElk+SJ0ESJ9G9Fo7eQ7YQUq/BCIxjd5xv8RiCR8goo8KVlEfcWp9hjiu6xq8KWGzXAmu4AlfEP56PYYBcaqOf9klGBRIY1+JpzwmYfphp8mwpnt79Zuajop7hDFHwLfIz3kxvPym6Pwx9Vf89CE2tuJq0O/F8bywgxWLL4+z0NHOGd8blntWvefu2UnVk6fsqy2H/mpqy53/f5Ic4fm09KWJZKFYF6JlRFCF7MLz0bjbZexvgdVTmV1Y8oEeLqCicpXK0h18eOb9j4VS3cxY+yNkvFuaagMFOomJI/LJg5GdE3gM+Ss6cLoWOUOb6FWzpgj21AEu9FTHuGml7n4vvobaZC/zlQPv7CoCH3+3S6T25SlwbTGsBXCIZYGGRPeagKYtUGZEeJDBapHRFqhrP9JTMzX7hiQW058FVOPFsrbDL4s+fve8Ook+ur5kMl9vCFWxPzfFyVpCFyBsL3T/yM2kedc0sVHEFwEnjWn0+b8NZs2O4XyTr9qsSKshB4c7UVNZzsOhYzh+X8Kizqy70jFrUkT0gMJKKki2YjezZe8QD85TUoCnAq1wy5w7Pzk8riKz//v/NILS8PZJf8ibpt0+NYNjZJzw6zgNI9T8YLFCXHHF9ghKN8rccJM3AST6j4nk5Y8/uIqX0muWt4W4LFx+BGkOSfnLD1OP49lb4XJmlc+28i3reOocYm8/+uoU1OsiqiEptt6dCwMvOm3E+7BXfM6dornJVKemL34G/hAyWewabG7kaKHxpS+R7HtuzGtoauAeg6YGL1+xJkiTkbRMS/+Nq6Efe+ElJpaxKXuJ190H630hw6Zfv9yogiWSLKAhFitqJ6MY19afHotWCvjaNO/GuFQ1kXBaZIcblySr5dn0xvwnySHwn8lRNLBxGNCZ2eXQw/jDBKXPeWw2mTLRYXAmDMWKCzi2Q35rZE3MhkIjiSyBKqBMAWQTuvZoBiY7+Jhq1B0so7JmRuPwaQtRVjJ2CWE6tnNhKgJkXZIDUL3yT8WQdtUM7aggPFRoO3Y4Y1CnjUiZGJ4NjhX3fbS8raj1nlz7SiVNOomC5ZMvxPlQEMclnpHkJ/lv+Uu6srS0iyWuFz5gJCc+7zJ7q5/PjvsieHN+Dy3IL5oDjbP9zVJQDTug8hwn+vUl1HWu1eWsdbgMUil0m79A6PtLbIL4CVzYWq+K0Lx0DSwwyfHegpZkNC3dCJ+wVwxCSpQ8Ql6z66Hneu5SOxty72N4QHEi9CZ2YYv17IirL6+MY92sYajGGqTQ0Y1S6fUJN6ecnok2Y9ZtTzs2tPhCJJcQHvLdo2GxFoWIds9CD8loROk/JYYlKHuksvmFukXI0dDJ8RHIGM8n9G16nG6o2PaJsHYdJPKZqQbLheEbzi6DZS9KBgz385tPIV/W/j5XXuXwfUyGCAPKroFh8FPzAWlOP3xRzuxEEHbeL6qs+0K2II/3scyOk7evZYIi/NxmPVmqxhZ/uZsZ1/lQ2FMYm7X0VyS7CH1rJH4agRxDWbUsTymZI3tfXRoBQfzkT/0j0J9s1V3RZN1GcXG1XN0669CDfAHs4f5ePPlsn5fT1S5nmzVNMktIwL33UUlfeqLJc8dpe7+JRDsvDkGELZrLh9djVHQ==
Variant 0
DifficultyLevel
410
Question
Worked Solution
Solution 1:
|
|
(6 - 3)2 |
= 62−2×6×3+32 |
|
= 36 - 36 + 9 |
|
= 9 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution | Solution 1:
|||
|-|-|
|(6 - 3)$^2$|= 3$^2$
||= {{{correctAnswer}}}|
sm_nogap Solution 2: Advanced
|||
|-|-|
|(6 - 3)$^2$|= 6$^2 - 2 \times 6 \times 3 + 3^2$ |
||= 36 - 36 + 9|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19o+Ycp8B5w/2oc9JoIsEp7ORlhdAOS/mlbNqkA5N2eNw5cqk1iqD3EwADNWZLUSpcP2nGWbmWC5nAQrvxQ4kKRSaBF3QswM8qaT3SzhQf8CHgm6g3UW6fBBu1XdTt7d87G6j54G6UmlnrxcwbanYZsS15Kc8F+Vi0gPh27YFYzXUBgo1tN8PcnoLBZhk5R3BoZWM0XEwUtrEY9RNVwdb6oJTfqa4x9pSRMl8EVUU+I6iMyhRUN13f5YgE4ln7MBMnjembxfV42aPehHh1BcYfsE5GyWOs2SuwUcIB0kOFhA2L5O94AAewR0oMLOOlYD2hYa78oY0jCsieVKQLo6dnbMx+XI+/EnSluua23mdwV5oprrgOW0cmRBkvLXPt6S7l3FJ1XzohhnieNj95Gx0O7DXDY0tFqqXJzZZr5yhLsp+5VHm2U45YcbE+jB6prjxacbkPeHQSVWH9AUlaMP5HCmqEXLRLx1+pbk0MPQj+pOeiacFpdCzIf9NMAvjQ//JQ4uMkOS/C3lztg6KOMgIJmo1r3lH9/R+928GS2bmG82M9LeetX3xmB04SyFqvQ/GRIBYLWdXvFwjMrAUibM24w3ahqeWC4hp6O75GfBErB2vfvxCndw6Y3P146J1g1ZtcC53/ZYupk/tM1MHj7ejMvszYzrPwBfL3XivK6MxyQOqLJjCUq4KOH+PFmSqOjFyBsj1mNKqsa/4WEFPkaxedqr3VjyFcZ0z42zOreVr62duIQfxoJZK0rWa4eyXdnDdxxI336SWMI6YUM/oLtUtC4WUUaCceyKpGSJq3wEwhfIKu0+gXu/PAJNjrrs97cD87calvd4ZsQTAYOeYaJ6kW44y68+aKAsqxh6gZ2R+ueqko/1+vOLLx2UtZ4MfFrFK5Gi+9Sj8CGTd/iXEPsmcy9xI2gsi97UzunfkBiVR33Obe2ISwTNMGRRz0MyMKH02nDsZ/hl1Xw3lS4BdnuoOwe6krgs5772JhPb+7qCYTs7Lk+CxZ5T6dHum8vbsb+jdInaERUvrnLt5IgDLI2iGvCfpy+EeZ4OAtbCX8qtHzgPfbfFSeogznZ4ywE2iHYoESQ3GqsEa83efmNFMG3yKQuyl5cBYHHFpScajjfme1y1uucbVz9QhxcA8ZDKkE3XK6CsjjejKxg/9sODKnVxktk/PXGaHcaoQ1aBcbG4a+ujzaxXkMyHcnUqjK9/QNhsComk0SDRuSCXDdBZqsb579t8N2iX5kj4q5SqFktjGvsJ2AKU+wdjtpT7SushufP01Uc+F/XY42+K75htLqMp9xg84apJQAvmU5JEJORlMAyCcLgt3BiPzNeGlyC6FaRUORpnkU0I+8CdhBZOS1iN/l44LkGeU9olMawDHFl6lUp2Jk4OlnQjQqCizxtCIm1qJ9cQnIu5T8Zxxi9CFdLy4jlTgXIzmDNjg8GGViRuAuSyi1Nn2FGxaoUITPNDVbghkFUUhiE5gKilfJMkf2mwkR0aWBP4e0t+SDL7u/x2c2ujxckEt2GVPAdxjCLZ77xU82ZQnEuwJKBgIM65PxnS0U7i5eoU0p8WCNcY3DsduokjS+Bg/9T4HsMvvUHasjVKP2KsyImIjgrH69GB+04QWshw8NWYZd99fpXQ4/T6dutzCA+gn2YNPHbojkj3dQwCdJHO3JMQpJjjxE1IjU078IwMAqzmf6loMmrOK5d0h9uw2tlcei+ihbdykoB8GsHiV0t+BF6UpGhNMADMobAmwsNCuscRocV+zI1hbem+xxP77iVarct/9WamgSWKm7arLORdA4BYNAJ1V1sHn1+sJwleYadqX98aX12+/IB8cthUXHwTlu5yWttkNMJx0h9mFcZ/7asnUxoXjgYf5ZSgRmlOnVMFN43U31e6aaLnxibQLFNSostVXcl7c2cQrH6ofArGKMytpZx6nOK9XwvsDhrL7kKEkr55NCbDQPG7leB7pqW9POXTTcy0ZirlpmDm+MQpP0PinRbr2jn9YXDZQzBDE288GA/iOhw2B2XTsOu76KDQH9pwjmM5GhLH7P8OFUN8sZnuc35+PhS6RcDI86VOLKD/JYjAb3S3tP4nTkKgfqz2MZK6IjXHyuzLhrI+c5wmvQ+kF0JVEpDElI7Cax3CAN1RvcrxizolRNNh7KLKetS10vMeM34QO2LMl0loCpH8b9tCVqZ1/00LPGjWsQai2F1umggA2ZKSXlOuzqCLxDJ+8U9xJfiVZ2BdL5T2chlkzGNB94jgxt+LohK2SE/79/W+Aa5Vz9Kxj4aJ5yBiapyeLx7A9mYgZFfWbbR+dHE3Ae78U504Sr0Kff9QxJO5A1mONo7Z5tKUk7bTCMY20ItFpQKOh4Bzx8UlA3qiEQyvdv8MbCF/WN80s7Psgl+lM5ev7NAwyIElnhWMDLTPQaDKYsqIIgjclqYHWrwXRVOROadO7bLW81z/BGKuTirAt0H31qnpp4BOGHPAErvXMH8IVnSSr4yE+zL+gDUO6dcrKYev0wtL/UojlRasFEf1ScCvJY0jxxfyTli9jyNUbjLfmVZ8dmO0ZQp9Jiu0Ta6WvU0shha79U7ZDB6Ltom66nb+Ui2HHUvyUYCKmkS+YUR860e7Nomj9CkKQ4s/r3SpmYSXJHmfjHpAQZFaibv36tF654A1GzGqovyN90iDTD6v9qN9s12a8RujboPOuIbJQrH2XJPfib63T0TC34Me4fYn/a7jRsJIfXvj7L2bEKjP2HYuNeXxpxRcdtnksSj1Ax+pwVvdprw1KyatgBaecsjf/+qV7ALYvUU/KbgxKGbMVtLg0BaRaaoAh5d5YwYbCeywBMHdRXmrAxqUHVV8ed5Q0WW1bzBsq3zMoKIAVDEwDXrJRFKs2YSt3PxEgwiBjAN0Oo1A84KY5OZO/Y5tUOatEoMhmAtv727oOTy3P7uKW5JQ2DmUKUy4/O/3N+YH+dal/yuiqnlEIVZUpl2IcFd5Qw5Dser0a3bk6knBTs7a/1G96pKOg6fBQhnR+MwXw2HXJ5mUmAAMO6XOob8UOXjalpqIOmvzvq4CXuWzt7EfP3gvGTG5wAeLFuxMRORMrlqCHmYBXotRiLaJOt97XoKZeEfUPKYsRTgT/SKiu10O7t0q85ZuLPC2Cbkyl99b14d37Y9EHIDenCNeRjs1pnU9pPeFY8RXtqMaCOOCrMs4706Ohtp9DDWcWt5uNIsUZuoN5fjfLn5zW3UdjmIjkxXsvdwQAPzot272bWfFl+ynJkMulMGBkTOiukwt7XO7Aw+ddVgzq3STO3iFqNq5d0xkjWVJmjG+ejCx0gmm5kIbZg0DAblWQJmvdvpUIWR+PV9Pb7xFr9wCIQ9vs0A42liS2K6Ajnh2eibFaQBh3Gtt291w1+cf7uMRkWw63R0KeRl0hc/p+dzItG7RkshnaGxa36LKLoy0K8sC1Z3oTEYXfu8JTCodBawvuZH0SVoSSgOnKaniwPENQwoUuq5Ilz8Cwz1ztW5rtef0NOFzVP+R2pbig4SVJPRa7HjPkNOx0en+i9OeKCo5FKTIGBgWtrC6X1LWa76BSKZXRhmldtNoGoEcrzgZyYZ3rDDo77Tsdsr2PZZHjSlOQsuakB1MV/QQn35iorYpKtnawPaN7il/ePxG5RjxLRVAFn+jBF4BJfKL383IKnAnAl4f7pGZ57hAQwHOTcIqcVseQNWiV1AwYeOkmnZOGMsF2nBSWIpip989uFalXk8HGnNEEbo4BVRKz7oc4sRft9JaGBQCLVf2Zq3v8EmC9jAe74+iWeBZcMS0Y/CfnOgbfq/SK+klqCmQ9Ld9YNSHIqfK/KVY1OamvzIKNm0q1jkhpy1A17H8rdy8Nd6/cxNEjtYjw4S+cykeCTD4bMtkrWS86QzS64HviZtTItqKZmbVjmsWzeCknz8sul1jKw61fgphPg+GkpsfcbAmkw2GLRIfb3SNpcrmCLB4I4UVy9AmZyfOJSVzVq/d2WHVe4dkgTEuRzajENNd5qgJX5rqdPvV7ljIES7DYnjWho++6X73rXhl0931t31RTr1GhwBj/8e3B9bptjjLc899KVMYBmZRRhJJ1EJAjyL8W6eXFS2Ehusi+z00eDDX6H48WsS9tKEllQHzu01cug9hT0nw3p0AIsm0PLh1PjKTRzxG2sXMJjbPLW3uc4zPU6IMcMCRAJuZoRISJlNv3WOSIOzb4TzYaEW7QWu/ngzbtcl2aYiNeFtrzrl8K/k0x0gV2SoN+6uBptV6Q1RjdV8V1ATfbpTzbxvw5VYasJmPmzlpmthI05szCykAjY5P/x5zsbJX5kpdKD1uswPylbuh7+/w+JmSIMvR9bUwDtYbZ1pRpiXC0PUbrU8JejudyS3IZPTzCjtOJzKrLhsr02oJCjPOh9qPgZc9d4+vJPrUOT05KkpWiO34kaIED8IgPGBOiYoCz7uAjKdD//MPnIHDaC61RV0Bz1ouIWNFIXutgnes5Ej4RBAxIMWOR0yOhnb2zNKzcF2u9n7xGILUHLDet8DjKe68OCD6A0zeA7eL9OaEyxQ7MvT7OUAHLgbOwSrGMFr6a1fhDRuS4RLurLW/Zh3+tPOf2CGk/GgIrls2A22rc+yYBmzMAzRSkfWJ/GI++bp+h1LPX82shC9SIKB3rT1Sjk7KwdnEN8G+BuRfTy3iobHBNlc84IBRKy2KCzTw+PP3Jdc85eS2j4c8rDWfCHV2VFvnfR0K7ZI73X1YsZyi+WlRs41hb/+0luOfytyfRJ0dDRQQlYcWjGJKKyZ/6suoKjuJ3M12MDotCq4kYRmkT189pA26iWJ+paO6zfrOA9RexdNdG+JDCuKL9pLgg8CdGUKyr15lEPyWrLzjNPSih/DgVWzE21wfsyvH8CdGVCQKu39YnyPNQW7JBO9wuQtWxNZo/DauuD2dsMl+5Qq8WBDHGa0eOHlX1kXNf4bzLOzluRtBTdp4QzvMEVK7XhIAul6b5b4j0FEx2FAWCWnncdjUWSttWsX3wPuEE+yok6Lrk7d59gsxuBr2DTpmukqOqY3WrceZ0y7byxFO7TNkZh1tpL/CD9Eq1K4wpWEqGVoO33P8sSE96hlRQhlkQov/ZsO95C8AeBoRKgLIO+C5zyFLsCUng+24gjBDd5CkwVbxV59Vxf06lVa2bGFH8j7C8Vrw77aegbqL/WLaxxq7wC0ohBofq7ld63h3C68jRjTNW2ddzu3GsPmsFcmoLBkDomJlYYLaUWdiAx1HhWR4aAlpASKPQT8G5hBi9Lk2V0o8ZXXeVsB0S/x62LNwl7jsV4KxBGHzmWvebuQqzJgA5ljEFaoE6xNJcLzJjKTJ797JKFtg+XQOScS1MyZWCbgF9NZ7JaKsRqArMPhtmCaFMxOZZMR1VoMnKaBnA/WY0AqlS2psHGQU/vfyelXa+K/UDJsaCfcr/DPiR0kI3iuGKOn6qAwe1au5Z16sYbuIi2ZlLqb2zSmYL45837gqKU9mdTtetN2YEIdINZ/pItPPXZRzhDHv+eJMKbh9rcicMlAgJS/WJ0L5HTmXUgOoQxpP57uPalrDMHGmUj9TgZkU+Lo9VHcjCz/x+PTEGfX8MC6eSedM6yeAeRVyuR+83aI28FHN1vITygX51itN1NUWo5VWy5b6dT5rpUJLnNkji/SGE3T3J1+w1abb+3XqY6reCc7IGpGBzxrO3CV+A8dRcTU2K+JclZd+CHBegtpKveu9VJA2ZgEzqztOhY5Uy9zLaFKT1KLFKw/LDL1vqX5ZJPevGMNY4HzHgydSkzEi5sSS7nGCTnGW0yRoit34o1QKJ0su8N9gqy1Mb+HxNQ7cTo3IxvsMkQaHDoZOt7kcsouyceMLsJHxzwYTRgxReRw30S1kwVqgr8TV9hQh4Z/lSfwKLtCC2A9LGktN3g0JJhdpM97JKyklVGSTInP+zLZoj+noXXxUKSrN+DdsUtzWl+s07yBphGicHA1YEl0i8mFZ9AlVxpL1toO49NSD5vJJitjtvdDEcJdWIE61SyLxHuwGGK1ZiCLrAVjTgWbNr64jof7ok27DRCbQ53qiebjAsNMKuAUvzNeQpDhpm4Eiv4nLXxZFWe+CcwaFWZiBvJQD0YtupX8CzF1hD/VT5sMNLl2tRSXoN4SPCvX2GYB24THWFqJfd+bASWpyMKM3vSVLUW4nvP0kNd/JDgfXSQd0XwGNZdAsHPWUX9qSC2XNuw3pymic/Qyj6FQbWSHJDg1SbL5vg3wp7mlfJh9zh3xlUcsFN6iZBV87joIbsbmlLm9wwUtS1xJx0IwCgbzQo6kycJ9dvz3nt0nSEHhe+V5Hb7zmIBIKAdcTt2A+A4mcPBfvwuopespPiSfxclIVbglSVdLydyWzGKoaDISygkKf/YQnWcbBc5LJz7gNdOpdn11bWgj3ybFdzfB4KPqd2hxz19uLnIHrszF7VGcCNUUwepUpsqSKCchzaFZc8p0cdu/O3IjcULLZei1jq3jsrRxIvjJq/t/+3bMq9KlnSMFKd8ZdWFsG1B2JxoomqRJnCbYDd6ChMdMWFBzmRBNwkUkiP2LzAj+fixvz/yQYIPd4ngcjERe6o8wbtpoYEudw8c47cRo2p07i5MWuxnVZwbQZfZSPAtJ0LyNz44dy4cZSdqHw/6uv+tpFPKZ36KUEglTnlZRPNbY9bmqb63AMnzD+A3DW5z+HiwgrfJonqrcDRPF/0rAkxPhL/21E5MSP2djrObxzRNCOOs5SUeeVJr6+os3GvERh40/x0gkDxhS7CJBZpH77T0iORPMA2NqzPgbKXOqEqmVHAlE2PNLdtgHctRNu/dOaGfjJcb72MaamduQf+/LsLJfJwcRBRXevsrlmVkCA+4U3nIx8fxHvTXFjhzt2xLy8FURZzYyEmRm5cVHqMYMh7VyqQctN51vTs1JLziJUqOqqXwrquPL0IgVpqmGZOugqftVaJ4AXjHHCwiO8COeBs3fk30llCiF8n8seo2/+hELoQw98xTS00dCpTot6iz7ESZhhABq6Z+hXB6fDmYoQmAswe3p5syoyaaqP5ZIugVifqDn8LkZMSwhOoEUJpIWiF2zvBW9TIfkqt53yBSicuKAHCFupQjMy0H3/ixkQbbX5Dyr/M/LgWpjQ4epbq8CRHGgWuEBc/zEyBF4O3aos66h+sjudtd3TWTEqvJQ4hGcRcvU7YGnWSnTA3m8kIbpk+NkPZHCVSGYw/C6sb/Nlqq5/PmV4ljVeHn0e7E+paLLFGCmQz84YVqbzdp8c2NrdsAXXg5fvA8xfaYOqwgIIALznkUly2pfKAg4A937CbcSdRlNPNSiwgCbFu1Ar7Gy8YfPzGviQOcZl9dscmve8G9XKiq6puYsZgiTXJAl4a+yxltMzrYBM0nxpf1SEeYGT8VEURI8IKFQP4vW4bk+jzIwr66E4zSL3bkjXQNfRshuTKP5gFjvx3AIzc/YGgAN7cHaLZbP0kWsrjJOACKYsn0ldTSsI/Esa4LmK5/jFgIRnJamIvh/Zk2klaLFweYcEVxZn+dEs/uni3iqvVv6qn6cEJ9SLEf+xAvXFazHsZ5HeKFp3agbLDjAXtCR/1QblJc9M+6olpru7FMhoZAMOHA6TuWGZpk2VfQX4l4AT48gUOjqsUlVMkcDPjb1ERt8wONpyOKPpRTTuH+ax76uiJYTHsBUZvdP9xkg/8wvfkjHTWh6v+KiZBVPM7Nkvlh0UbNU1WJFQ7zJuh9UCE3xWwimficIeV4Be2TCyRhC4tAv+WNvpjhOBqQYCH0X+jUM+TmMsn6ZyXjdqF9fe+Z4lrXOlh1lOV+GbaJ3AAqfXRNvj7v63qJFelkZgiWjhX+iGoeSkwIl03YKwUwREWnQ9OWRW6XuULny45ah8ZmofMgMwuGGipWkCUXtCsu3E+gnHS8YGsJ2EzmpbqhOgDFZVbGMF5kjfBuksIqgKg3gfksVZtEa23C/t1jQruEv0Qcn+3OQU79/26cHHbN6y857GxmRKHcqyFAVBRPw+p9vlmmHxzhxGWiFcvP0ZDW9nVeTSgnujLKw6o4wKGM8EttQ+/9/aqExPYwrNyxN9h8pk0IorPR8mqXIPqZtj/YSe/eOLBJZpKX0rIXXsGKSHTfKPkM0TAR6jFksP6S49znnZ3pVCCbjzWFNzdhicOJeVZ01O8QqN3aG7J1PAbY8WOM3ql89jV5c+9Oru1wYROGvwvp1H6VyrwZhHtm3PeUEAE2aq4s+a28mrusfF1dIUZJ8IVTboHZZBsX+Yt2Lq+jCjkYDVK3L+1tr8EmDoqcdJIEGgf46lCieIJufD4NXwBO3FVfQ6slPsSEBK9Z4tLGx/mENUl3lkg+QAp7PoWhx1fKAh+fngyvNNAIwzR/uQGJihWqSSpTFlIwruq49A/OvwrcKd0/fCZkjprQ0dZ83RoNsMiFr6emCQU7n+ckUkxnn60K0mOj23ME75uWHZDvrcMey1LpKzivRDqc5H501d5KS9UOrHYSQNVhfUuPk8bRd4iw3lYAKLdyoyt5JCWSzopaB5Q73kCQv9ri7ncw2Xm4zu2bNwd7AlEA1m3m4PN3mDxqAQfvxLg4zlgDf4/6eTqc/nSzDuEDhOubk1NTRh4tw5TuD50zpwnuTRObNS57iWS+GSlyOluL5nwo02Ixc7J1rlspaaSg24xmr8Atp3c2m4v2+EWor6aViVp5cZ0RfZYBBLPUlM4ahcpz7XJI8Er198bUqJ6lSubZecD+irwOBa5Ome07zQlF0/Z1dnPEUCCcVQr2941Xl2BxI7erjDigvcewAhI33LlXdoMrGu7YL/whL4qf+I1BrkVx49BgBv75EP+Mplgq0JMszbvqz49z1wZODD+vf8uGQ0FUvnohedLaj/xEnDfm6ZnYDVJy9VBk8Ud4WF+LXMpoGdU9ZA1rsdgFZI3f9aqpK8IeM5bfwBnQXHmW4zMf+ByjEO5amajBhguaprFcWlibxPhFekh+weAbMepIf834vXq5tZGrPsB8p+f1ET25oVfH4TcoTiHZpWDOqH9/CHtOpOcjGgzyBsBtQS411fgRI7fMKep4w1EpG6yGU3jpYwv7TykW0k8gorPQi24Exf2P61xF0RubOQCJ3w1aNg9Seo6Oj3U7rRXBqdiBSbPU3DEp6/OqhjUUIEGJSPViigZZ0+iXwLDgNK/eJ6/gcVDCBIcXmVkzsNOWpqCDhwcGiEN0WnMCbIUE0yNLRyJIlG9u3xoeaK0w6DDN2cm9t7p5XnlJF3siwSPX0OH9je8IBwOqz7VzPW4dbb5NzS5DG3jXsXsuel9pHF3mx9UjORJtBV8qaYEsctGUyMMftk24o+7gN/80quobs0/XPqrLHPDAdbIPZaXRl1e3yLjFX3mvw706RrYZRSPyj05UvpK0s6Lo9UcGj29u41xd7rtTB47sSnhD8gIbJ+sCVT/EQ6P4sWYYGJz18a+lgUX6y8aGi7cldWZmqKE82Nj/1Ei/URB4zySk3Ks2+GYkBCHc+qcigbJk7+bt1Msm3+ZpQvYtw+hBraWXkrMVev7Gu7TwSqn4JAgM5EY4bzBnPCSKM3nttGrBoEFIJ4ybadIwxLAUqHcMr5BNeZ5zDlMRwsxY75gkI45JH3Zv13zbQba57bg==
Variant 1
DifficultyLevel
412
Question
Worked Solution
Solution 1:
|
|
(9 - 3)2 |
= 92−2×9×3+32 |
|
= 81 - 54 + 9 |
|
= 36 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution | Solution 1:
|||
|-|-|
|(9 - 3)$^2$|= 6$^2$
||= {{{correctAnswer}}}|
sm_nogap Solution 2: Advanced
|||
|-|-|
|(9 - 3)$^2$|= 9$^2 - 2 \times 9 \times 3 + 3^2$ |
||= 81 - 54 + 9|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/ivU86K3uYsORU34g8vypNAWnbnHTsv7JvhmMqMG87tuWRcuPI35yAET6UJEObDQARPakvn2wm3yUWAuj105SOZaylSWh7X3qx8jOkz+ylVPceBNncYgI5/IP8lE2vheeRWG96iuPHRfqlET5U69mWtEtc2wj9MEWdN8//aQmTHb4nxO0wEng0Fo6A62VBCQ+KPN8mEryHFYpivHgFzDthtA5RRjoB32wkew4ugwyYKoT7JWV14o/KKQntNY/k6xicLKbMe8GcqV/05D8x89nv2EMSNTDhW0vvZ7AXkgLMsktqHH84X2jo0pLcq1z/c8e7x+4JjhDmFKX0tGaJKW4FedtBkw9hJKA/ioJQnV5AnlhsYwSyc3jzXQNxdEXfKoawR1zLCHemmkj8d/8p8Nz3xgNgvBTdUfh4fXP6krG2E55N8chAsTswJjEgg3Ks+thfhd3noKfROQv+AGVc2unTNDAIegfXCpCxgzBp42TKxCHppO0uzDrGUCxp1VNprqG+n2yVMYOncOG5eH3NEXlz1Nal+QQtcahy1PFy6rIzG+eXK5+0SZvbCWsqbdgVNnJxbMmuighps4vRTgg4c9/Pke9FWzSK3HwgT5/y8bGseYsak7/C1cRWjl7yjuZzzu0HAaSzM71nFJmkc01IT8jIIthVGPhrexM0eFaQvBstj5ogHDAS/oLPoTtkifD8uC5iclmpUcedKDCsQF129TLrlfhptd5Eafk+fGEyb1GGrAKTF3rtK8Plgnozgbsi7sMrXtU0Hi8w3DlESkywWtXeVKMZWAOCCdGY7OlV1cxwGcrkC9dJTKGfbHUyUUxM9zB0sqCCv/FyGQs3w1LLyxGRGyH2vcPA3DJ1mdw3NhrLUiWKrAk+8EGdnJ1qumxMXMlTaiPgjvx+PeP+JZLFW+uetEu1MgLFxGHFFntQztLgcli0HV60t8K6FfmZId3AmuXUCKBVBUTfDR3DdpzwoHd4fcf+FXhliCHELY/thl3qaM/s3RJ+wTaeb+0P+cfSohklpP7BrXtMNdjOYcIPxNGXR3M0orFoEv2hDLN9kqrVX8I2mE/xBvKflLHkuv1LWpE77YBvqvCTqwnUmGQy3V9Peb+SX+qeB+aX5C/v+0SJFSOoBA5TwkEZXX1w+8eToetQxaiwuVszW8IqIK18AjaWkXvRXWDmPL2owR6/w7fYLXS66e7JiQ1KfvBAhxfjjyh+Zjbl0l7W7V3NDrh33sXTxpe1NfODgdpcsFipUz8aoFUKWsjG4Ba594e3U6GwvchlAFKdisEbogOEbZY3ITCLLRdASalypvHCjmzT4kPNqTf/KbNY0NBUFSC0Kr9CgkcokOAhmA4Mkac3d6JZEzu/EyWivIIJM0tWNXxXLYhRDXqkPAsjFl3pzZnLuGjyPfUTTDUjpGpEHpYZL9Y7XL4z3fgdzvP9WASVR9wEcKBerR2VvBgOaTP/XkVnMOMwPFiayposo7X9bUWsldDDdens2ex2G802n3z8gKshEGS6n2608KT2m/NriXXJdWpa4//ewHS0uWFAYHa/u5HW+Mb6QOWtL5MHZeXnnLlDpCSlSo3DO6oIBvjuTd9U3fzOJij9BBN3KAbGHzVe2mNkeC1SVb6VBMAOfhkBV6EJfBILwms7Mn6G5aufZIZJEftmyHrlH+uhROEEUVrbofR40hrsxKV82+L+M45oDenrV9irim8j2uGYeyRLQiG+LfcandKJMJweWFKverSWuqrF6B7t/rKh3g/3qWiPaezqq53d32Y61z01ZLf5PBJY4QBuFqV/kt6N2DGTpAAuTEmwfU1EYO4pbIRTIpqel18oMzTl7ZnublUHjChGlFshhcVoR4p2TAWY/V3SFkXODH1tnv99x+kMXpvFv+gHC3qP3UO+EBE8uzbbsg3OaRYCMuLTerGhgMLv6u+t1EulRXOI+VfpXTRBmTt6T/Iglrg/yeuLboCKj5FD6akIQxRapZjA5D2RpYI9Be6T+ndBH5KK2dBoisIbk+bACz22fCMRQ/Mjam4xwVyV5xxrT5SfTnNayY+R9FWD7Gub9qUlZ2yFLqmhGtoX9eubqQO31PH8T7i/K2GhG8T4aw/OEEivGpwBJH1ze1iXo2NNT66mxF5W2H4pkaVPcT9ChbQHhGKag/KoL4wOOGm4ciIhPul47kkfFEVpww2IRT9yLLVJYEmK6sdMVaLNzugsdL5QEo/147CbuopfpBwpCDcETi2q1IkQmp32IPBvGnuIHNMkdN9z+wz3azAqS/vlx9W0KP0AnY83rHtahyx3skaJaHRka4OGXkeKzz8mKnaptFOZ+klNTi04WuX665Xg0bgN5PTqUmi40PnqjNjX2M28Zvkuc7+XNV1xSugVZfBpBp8pOULljihKP0g59vDPUvAMMveWZo3/oOx9WtsrItm46MjDxXyc37UnDDFRBvFeMw9CeP+5rXHoDsLkTKyEIZ1QgllGnJWfPF5VUeut3vuO3ZfcOlv30JrIfIbGJMTkzKIbhv5D9mx2hVo1PmrpZwUe6lTX1CAsHxY1zESJy/rK5++n3a4FnFq/WvYrSso8L9saCKncZTF9MHdy+vTi6MMor5e6rZKPppZE4DNq9t1G5n6TuCToHIsnZn65ZUXlCZNNq/Epb64q4j14zKKkWmQZ/egO/5EbuwK4IP1EZQhdG13AffRko7nXmBxKTyT4738j5WZMUNe6ZNHNrlafUak6HvKMnO80oKWJ2a96hwx66Kv/OJIXliUt6YWPsJJu3YUPtI77LO6pWunEVI6ZRjKhyk+IpVMm47fsq9KB/4Tcor/doN4J8PWfXwsEvKvuAw9cG6KbO4gj+qZFnCd/tH3uDoa32rQbj5S28e+xt4KtXy9mTRbZr4yhTBGaSfx36nF4dYNTkvt3YXhZXUJBdWuklz9PJbc0EvLsNT9U6Xdmog9N4749LOx+0c2lgUnkpaAPv2Hj9VgqwSx9BZTTd2gXWsPuxVv1U7HD9Y8veoQv4+M9ePESTl3MLB+rtQzyCmc5/T++kpsf/+05KHN+n3rSdzsw+qFXxgWZKmDClmirdwXilIJL2Kw4oVLmjqyqS/gCia07KjNkpqNUh7NJwwGVj9du/83zJ675f6+ZYUO3wphyD4xhHKkB1pScOQ1bEAFxqSLdepMhl06GDQoYYmlniRr6nGc9oaioYjl4oy6rCjQhVuM/68vePnqTxmf8liT3VnwlqY2KeMCOJFrHv4g5m9ftlXKNHY2ec3OsLohxadyZ/breNEPq9fPmmUFb5jUYWyVtkR0DQ4rGcH6jyodvQaAy8DOj0muDa29w/llUGR0eappCs86LP0PBB+WfRL2Ox9UQB1VtJooquEclHWBuH6QheIxUhWKxxOSZKxg/FxwIO3/zvbwq/Pima1oAwl0UDkyPdv554lr3dhXlun+NxBr1CF2xOXDc3y6BlSwPPJRLHvNRQ1acjKMXVkSWVqoVmNA0kSXMAnSmXNLPaDq/SCctzCQyrkupao1rAOQ0VG4lLjqPfbNOkDm5SfCGcwrq63UMWSZvjP2o/ppDvUOrFTleZoUGW/kgICKMUyq7UTnrg3uiftT63aW7o6dsvtB/zr6AGn3EOGsFukxGuhRI+VKDJ0hFt7aWzuUB4C4t/KLEk5HL+ZdFSwuWiQWdkODf+3vR5Ul3nhM3qGyCvFJmiMj2mif8PR7RgIHhb6iXe/6ZNJp89nFLE5sIdq+MrhHA7Q6M7RVew9mukwc60kQ9VYewR8aX4RHE12VTyl+fP3szRGRW/kVWyHSuosGPbN5wIVBn72tTvPjW0mNTkYRRsFHprjwwKUipUMNZyEiWw25HE2p0e5asZSGkUcctItmAknOD3OokO0+trGRq/pbDYt7Wf+FvzmvYWQN3iN9FMsQlAl5WeHeobA0HbweV7w//dq9sURJ6Ubcw1w5/sGRBVL+W/Bt614si4ftlYXwj8jcmJve2jchUOzBfonuvLakM4eUe1uOtEYFkqIbP4hrTCb/0LVb0nPLHehyXPR0dSBl8cj+muXRZ64YsFYjufxPBwmD/xvHNolrDKS3K3uB7kjPTlLYdln3m7rq0hcgpFdm1yIfuEnnnL3UklGwrEy/OivtLxixdWNIa32WDolH5hQgVGp+loNZYf3vKF2j/eqSxtm8RPuXmtaaANhN2w6fggwBpwcJx1NQ/ozNr7tePxl0qL51g2bimYeWuf1tNCyvCgJkMrbd0VaOV75FYJPAZoS5Qi+5JQ54uzo0/UH2ieJG7u+vZXAiWPJF9vZBuZ/SBZXaOCUb+nLi3UEoqgdalvvhqSRk7zuaPQgMHOmx0GGqAOOwTB8KysafWoFPo1zZsWKWb4NplMq2xV/BW5vnYBtBqPnSNE+gNEyqbGi5b7OI3kDEkGYBTwvnciOIXkR8yGgJYfORr1cZOkPwYOy09HD/2V21J3+4wZJtUAHChvaIlAF7XDv3xGVoVTDZ2hrhOtsmC4zj0jXqEl2BXeL8JT3rtVdHj55QtR5nuEMtpCpQkHIt0dXIxDpMsLneE/tM8O4KNV/+pyIASUSUdavqocXQq4Wkt3WP4+eTWvvkXWtQEMzfSPRlyqWpS8EMqHUfhaZ+Om5WMMJGFqvj6lpX+TCAPE8gReBo+CoKwb/Lzgr2IwRe1ULHrRgmQu8ecZGCSnaFukVvQLOu70WEjlfQ/g0qMONFGJEEtmLXyymCsmKpjLAANswkeFWb4qg7Z8hvuQjtuSkNPGJ7SsQEy748Tz+tC7X9gNnCpPigYReVHMZaL0o6IeWt57U/Nd35rpNnbfNlSGog7NOMTGFfIy+3q6DyrbecQdQgFc1+iDH591jKolP3LfNjSVBID9sS6btgOx4eiVGh84dDUZYFqGysHacuP0I7WJ2SGYkfO/Fh4Pzu1+OM9aA/Th5KsC1txikPMXDUrRaAPN4QEDEOIWZ2bvb7l9z64JW3zR3ejgTRrurRCOdh2seYT9C5RjYtnrFEyLd3F3Zza4yU4ZlTry7pKLnlgRAdHY9SkkszWfnUvisqifONgx7sHLRHoy0GVkY7AsYwLde0cqKrUGzqeDfR3szYHplx5XOXHeRYIenxY9MGttK1p0AhpZHi6E6x/dCdO8Xys5Uwksen6UzCk6NpZRvm/quk9VaCVqxaAynR1H+SqQ6gjJKpj7PX2fCaxIdDKOBYZp1wT+nQHQMTqxecF2Bj3SoOaS/P2zm6pN3H52v2zpDxk0pXQsc5J02uJec5Og/qQklL3+ryNgSTGySic7Ki//HirG+gKaL684CB541okEraLivJUxxWMYny6pDYHU/lp9YdcwKirxCbqqWcm3ZnFAx3dbtPWZyxHBPQmW5pYp4MV4yv3IogVM4IR1Ma1jaSm92E0T4UnLox77l1FcT2jJnakZqThYG7TKeAWdz8ke6LToppHChnx/0CqEihGf6T9QQBc0LMAfTStTZvtOVTd4SafaP+eA4OU5I7c38A6C2eNVlwnY5jb9FbJwFdoD97sd4pwXEZifqY41NuSeQUxsE57E7zel1SV87RIoc84d/G+4Ci1lXVN3XWF5d8ZzbYzEHAN48JoCNxDvl+5VJFFtXJeD+lz5aph1gUqPzEJUBUWylGsFW/npfLxG/xuN0/zH27UMPQV1XloirJnoxwvD8aGh6qZfBCVLzX1SSa1hEPr2DiSspF2BDyI35O7Ge/zmK9I8qY8Cn8aV+7F1iPpYzaHEUC+an2bC7FVgceoLxQ0P+sEAk02uXjOJoMmFO/8SoyZqw9FsoALXuMamhrrzodpNy27s72elbPIAY7tmctNsJv+lr2SLzFFP7UJzZcFK/x3xEVFmWPrWdnwbsYtnb0RzmMSutnQdMJUqf6LDd5dm5Qu4fKE2PZX5i8rnknmkPcFVkvSUPZAqb3Gyp6VI3qJo1lmmCDrJwKaQSWkow7t2D6jKqexrAPFIwfZ18RrIcBnjGgqeRQ0hxnWd8DrqbzdjY18f8Gt8Iu6nHMJeupYM7qpczmTJOpC4ILSqqWh66QjZ5g6WyJFY5gUk6hLpZ9EUjRp/S0pzBq7RcunLLbHgmalclwkN8BSc4H7L7I7HMClpjdoy+UTd7qzQNTm1YGaFGJjBny8q6TqZC1G/sGXCTxnjbPFWSfBRP/gwgFwO0KGsaBbEo6NRVgNbYr7CMX66QE2Y7/I8wihE4TEVgSb6qpmXaC9sJZHvWcjnvZSiPAVNMl79c0PpzLOhmpVfTLYJXKoYa5DxYqLUcoZqO6CzNpPCw8oRyyRmsBvLxGB5mhaXY0TVlwKVwg69ikJrhaoN4GPruhLOYgYRGqKBoRQXsTgL/Aqn5sDwFwURtjPQBieUtII3jRdaYpVVpzx2aHLVDMjxLwTDqxLDpDm+iSyh+4DWSbdcSKEAXN+yd66Wtsq8hdBGHhifYYTB5wX5GnYYrKXf0+YkK8yKgcmu3na2AwaWWU+4pyvep4QI75/cKpkYWr2JyG0Qu5xi824KLR0MFsrfZWc9K6sZn5aGPnBuNxUEGn6F94xHF3qp5xGaCHyK4sre04nVNp8DK9iMfP3ZmP8u/7jYwTYXebtV/ycbIjuQLekcwKJBIlgVgnpp7J9CJ67OkqPTh4KiTrge4uLKnu2mglQrk12vzFhhC6bs+PA58lYA/Ra0MLoViLtxxxs+n2pnM0nFwuaVsGcZgBoQtIRMMXfLizJ3J9muaU+YFMu2YtR2vAoQS5H7gzegBXQDXXzPgqdogpB3FakeE/UhKHGknbnKQFxpms7TJ3R0FRCJ62qMJRlgBcX6o3fy39iRJklxwVcfPiiobivOE8igtBNnrOTiPJ2mXmWoV4pN7SW+y377qKxoo1xZ0NHQmXbLi6X0BXb1TA6nbhUtAcAx2q3n9ctI81uHS4/dLUFrouyIzTychVrrKzxgxsAKMTF7hxBIwx6L2q22OOHJRD8RPacdt8KP5FpNRMZDAud6Fc20QtRC0LzwVRkUNCSwKBvjgOtbBS0kd6rBmbFnPktDGUXRplGB3++WSPnhawnYGWqb11cezd/s2N62x/vjviMHLFof46rt5KJxyW+hl5pvES8oY3HYsovBOmuWDHi4P6HJXAA8MGupRSSJ9C4mJJwDpgqr6KQs3gUHyDcv9DcjeHyUZXvNH1aUzJzzdno02bNpPergiA+rpTNZP6ErFlqdFo2MhToAFDMUqAVxRKt6q82HlC98/2h/b2sXnTLaDehe/WfT2xJ86e6irUYFMmz6eoljY4f5yfW46cCPzKEW3+UI+lhiYCVIo9gvfuQEgG6NtQArCMTWCdbs3cySFG+0ztW3zEKlZuPNsVpzbElR5J5VCe016RjkoGCc/wtQubvmALLRE+92j/dRdNQH+D/MAReXTYlGKaIDHJ3m7/ttn+KcjO3V4xcnTPBksgHWAIvsGo/SU8CK2EnDx9h1BRny2k/49ac2DjsKyL2lZgMd6iqY5ufejwRUsr4+07m+8Ygljz4kJi1AcfGRDZdHWgExqucqN02o6yNMoez3+euXwlnl0WCVCnNFMJaASbMjcrHpiwBm7f2YUNrssCjwUXg7vPvfw6FgAMnTyll/O8Kn6wCKUR9CLt7S2UXWGWA5VYGxcuo5genNzLUcw3JIs34400ODmqFI4ujotIwy7WNwrc9CLKXQPQxdP8Obfr/8GhishePiJamYICLfeZ9KDow5jVy8fV9Ks9cJpO/wfqW4VbKaOhissk7+kHwQ+anSct1zvsL5XMNFPiHxVMLP8b8yPV13nzyEnUcGumCMiX6xHMlPYPt78jfMBKVjIMcQkCyngjD7Tu/G6vKSVs9OEAAyHgp3yS5Ivv31Q6BgMFjeYyBmFwBeFAj8UFD1F17prcQZiJ8VmyRc0XYYr8tD5/KsPxvLw5aCNNpYjFC5hFfpDQDDOK7iIgV0vVk+i3w66KcmD+6+lZ98Ducfv+0i9wFe8WAiM6src+Xa4J5YOrZCpNWJni7fLfgWGwohbeQLWnvjM/l5TLCXwK2hBNUwlBOStH9pAWE4BpeqAD8mnQ+Ink1+1eiPBePrn8VDPMtRnYgaeWJA+33SMNopV9Ld5vEL7Z8y95Vg1rr6CE37xULK8uskCVtkVmVlZ5DqM9DpHkZbA6xnEeNf0ReOPOoQ1DLZWcA0toG1joharN842RxnWa9vtoOiXZ7MPWwxyDnvUEE/pjz7VCQgUpVzvc1Wto21HDZa34FAcfxQf5BOQ3ba4KS8hrNDJww0gcz71CjB4X6OdPqvBeRg0EHp/LDdEE6e5Z0e7nWrM2+KealQMD1ZwXwWOpCiuSQHFD4rtikaG6cU2jLHJSwnVbixZlM3fC8h4k/oZe6/ZZdSPpZnk0+Q9h9Q2PcMx0mi/tSbpQ/1OgmOeB/XMkxaYLERFZpO2s4KkV/p0NzW93fCTw+qYQgM8f4Xd88TjSpO2F631L+bjH4Ka/JeR89K31+SFNv75tACaw/xYpOMsVcHXFcECJFR2l0i/GKa6szltm3oMJKrt8fimA4zmr1QgSbPpaaXCJPVLWdM9irTOQNtSWNdkT9TDgmH5N3GlwJceHPz/SsyT8W5xpO2FThpBnzPwOZmD7FBvzKvbq3dgtt49zq6DpzUQPtxcxl/GnAE6TnfQGgWs93ahYFhZamCmOdbzg9G/A5g8zOCP0CwGc5e0z9FZ3LrOUXum37emeCpjGsz37M6wu4CFQzLADJZwPUPAyXKnyTmECl+P6DMA2m51M1DxqfD8IwpyjMFopQSI+dd5bxRoWv6zdgucQwbmysIVBMZ9g0ykt2m8SK8M1MCNDB3N2iYUqhCXJT2ldWyR4oEIEB/aFrJYbDY9VWizspdr/EV5d5SRNaiGTdOBgVqzFRhu3GwpbyRpARFOuVy6pcCfegE1iho/XLXomyZp0UkoNcELCPC5XoYnq+bdDsypXdpH8OjhHNIo2LWuRHmRBgvTkVZoaEyuWkzctGgtM0fHxK55ACroJC/Zde4gD7PbVJjOsZOBLlYODc8Z8US7Sb/Fs7MTdFd7tXZLrkw78NLIEOEFi1yI/Z5Yx6wt7T//dMCVCTXHDNa5Gn42lwrWmKAOASpEsZZmfl8MzBIsqRanLkkhSgRpB7zHNxV6ccRddPVFXmejdjezSqS7fGu0GpblktwhOcXuqw1/z+Ro4YzDNOvFnwzJxRTs5qZatND+4QyAXOYjdbXOl7YeqygdO+enRi0zoQBcUngdZ6qR8/QkIa3bLd0QCV2pKv2RdBGp40K4kQ45L1C6/gWXHWS+q/LZMVfVheHlMKy90Kqz7kqyTAf/rzXzZfey8qPUux0GqH9rGDpZKAt5mGDYv564M/EISvtfHKcK7rD03vQud/UhxyKRJoi+o4pwoWKUZ17oJoHSL6rOjseHxyM7JsFlavpB7++XKXvErdk9E6UpdnKmXGR+HWxf05300mw0yMABgcW4ETQAbNJdys3H/t6D/kgy/NmgPixu5JpcGbIwaJxU5KoSAD04bCaywLTD3Lp3LL18M0OUIg03/3fLKhxik3lg5sY+4VQkrJm5Lpiig1CbGnGrUSLook2pL2VSkK9CHr88B6HxA+24h/UU8e2XwOMYZI+hr6nxaH7Z7JzvtfBoCFf1MD/N/cgKwaNg==
Variant 2
DifficultyLevel
414
Question
Worked Solution
Solution 1:
|
|
(5 - 2)2 |
= 52−2×5×2+22 |
|
= 25 - 20 + 4 |
|
= 9 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution | Solution 1:
|||
|-|-|
|(5 - 2)$^2$|= 3$^2$
||= {{{correctAnswer}}}|
sm_nogap Solution 2: Advanced
|||
|-|-|
|(5 - 2)$^2$|= 5$^2 - 2 \times 5 \times 2 + 2^2$ |
||= 25 - 20 + 4|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+h24fVMeeAvjqLlobN2jozQF29oKpD+cpP09aYpoi8D9zxxbLGm/fkHH0gfFf7gOglzZOU6UWSefoo+9hRlLF09mM4YquKpmScxtJHRhzmmhwvQ4DOxui9VIoTqh+FHtQdqnzf2wqlB2yRrHfSPkWEzPE2OGlhvkW7LZltdF3H2/ZBkKtalhmERAGJN8iRjnFEtKwBw/lyw7ddJlIPtZRWI7AnRi4QTV+tnSrxpjJDt9R7WlGkhYw7QqSuHR5hEaPvc+YF0xm10V+hc1UjrbE3IXCjAKPq7YUULdT/LHrPuOYE8ldyqEM14nT83hjl1GxWT9RQwyaNGeiUqH7+nbpc6aU+OcBSviC5I2e6pwGIK1T+/aaNKh3jJpf2CKlIdenlfyz3gPv2kJHRJ28vForb5A04b0nfpKNwkpw5x6yWaBSlq/bLtupha2sdYjPR1h0MneeLprVVI/yRiT4Z+UroZixYl2QKBRa0au+luY+1pMYPM4w7m4lOr9O6Q4tcHja0Q02hAjL/ljjU1jJhUaYH+xULlFRbek/3KvPcxznZVUsGXDhej2EF4qvGdjFH7MtzaW+DLG26kdInVQ+R05Bpzi8dEJ7MqQ1Mn/nforfMytqZxXdiLa3dHoniexUi4Udo4bKH0d7oxyuskg8n1JCuNvAzt4YJpw7kzqsNcM2nmxvbTaoU8aaWfDggY6POx/WDf7NotN5oJFpfmpbG3UVCHkmRXQgYxEdlvedcy1Fvw5Td8GG08oDip2HHpPCSCf+jWKju/b0C4NAK43+1hfWHkJX1yKvW3iuurpq6P4bSTOo7w/6nV0rWFuhee4+X1K/19WMtrg7N7lysfpauXYW41voNfiz6mxzIOfD0VXfYq27Qg/0/YcCG9vwXBCFtrus1os+UNFWfr9LFBFqdjXpIAMtZn710IVPlEz9oMcj9KHzXN+7pHqWfXwvHWnx5Ln0AzLKDMZoNPKoFdIjxnNuXU5qgsoarSPDiOuSi5bdzop7kewAe7Lr4BkXSVBSFX/x2lVf8szM3KvoIld+2Hsb9NeEHwJ9kP4r2fSiSVA5KbGnpg+YeRmfuuxk44oahQcaRMtpO8k8kZIRe0tCi4T/OcM2ahbkhi02+F1Phjt0nI1LtrXAnYtbhXNsO69ET7s3QTAIZR6F5dmV4tbMQ4/JCqRmiVMyzw670CGZMa83ceaba+riFVYpqHi/ZbKYwP+yhkWUj8eZufJLJ5EQ8siXUzbRyOqSRd9+zv1+CxRX4960g19MN6D3HqNGrGgBKHRAU4epzKOkuuPjnH0QvHaZNjomfCoxlTNssBwrrCIv82QzRvxvqdJ6m2SQ+Jp86hvEw9l0M6WE+8oaAPOzZKiMQCwAgf3o6t1Z3wrL+FzNaRhbUN5nJERw6+5t9WIB3o9IpXkW8jKOG4M6xAKrbUL9XZ6+HiMimEWclkPbDw2m7QWo84sw0WFIUL1Gckg2/oku1waGuSBsKb7VnIQ08AjT1YrMPV5JWTWm0gDXkRlg7fGL9qrnAfpkJbpB0E0kKfxAvQnpYbQgKdspQNO2dahfGgxhdlPTZDQfWzw3MFKw+O6uUiFDxj78Ho+MhsuuFeRusaMlgxKpVxLwYFJ0Vs2+kcUUvYF+HBNx+iLtbqXagpfJD/ogu8JxPAeXSSYt++M9bmJmiWeQilbtjwajYT4W/IkyORfHqwPoRSEPz5xoaBgI9aOVKj7V9qGXI5SsnhaxAtMB7jA2l5u3N7bjUyeKCt9l6Vd8T7m191LEvrfT/gb3N+MT7gWhjfcAeR2c+KJ/sHzNgyes9szTwuJinI/ZpnK6QCNoKFQa6wbWdladQLN5gN1oCjJy8ifIsVhlfzJrf8gW6nLneo+H4OJGW08W0Lmzn2UYSMe4h4mjTi0uEx8yV9FE80u1dBdRAThECig5z8nRLEkHuQAHPYRkyUBdRhW8WLdHkQMG5+gzJMCLjji1LzA5ucSxt3bnaMSRUX/5j/ZlIpn2tk/T3vxY2tKv6Dld4XruRkHx1JGVqTOjC4rtX6vu3kfvlELfSH8tkuhJ2Kfn/IWaz7WrvO4x3nWwRjFApv0imzGaQpuwMSSLCxsELTtGOfQGO7oIVrBgQAVm6dGUy1fYHbaWZU63Nn8QhU4GBnkXWMe+PUc1yu1+cNIheG3/JCWt9dMEusxCKIPe6Q73Mvbw15aHBrwwIPh/683hj57eWZb3Sej01NemDc5hGS4k0fj1lo28RXi+o7BPkFxmKKi4xnnIlGMH023x8ezdOu8NVzHrPShEbyqQHFpSFvW94Kxn9Yoj3B0l1in+a2xvjky/l3KSbT1JOcAkboo5nyDa5DPeSJorZyR3CIRCusRioF5NJXXhkpOcn93dVa6/cRJUjmkkF+1yNDamTS1TE8SltMA4YTEpHTebdfv1VwF3wFWaIjFfqXm/BaoxC5w0spHsCZSoE3DEfMQF8Lp4pf2V69GJYoFd1KaBYRX2zlAIH/7QDYNejDX1bPpaJkZFjhA9BT8gATqQGoaOM/RoSq1UM+VnHMWb/HnqVrEZdwFncoXX9ZpWJG3IujZG8g4RkTl3tUuPVYFqTbQmEu+Xe8y8plu8V3Y787cK+zJLjNXde1N+SrK4NXS4axLmgpJOy56HoQmX1HcEkry34NBxiUzUqO+0rOSNO6WoCeDqdhxEQAno6AD8rtEmi3lRUxLbl1+SGsiobrLb0VKvvMuB9AJiUYZCEpg+iPrm6LtLgpe3d15jE9PVrhohquL5nygZV4xeBhx10ECIVhMs5BuP+sX1GiRMcSLpdB+ZdQluJLqyqMmedsikcWrq5IixJl0a+L5hfOQd5Ro3VWXehY0yyxM9T6/5SYRlsDh0eSZtZo9XFdPEGIBEL7B6s70jJSFWNm4ylv+NAdtXDhA2JQqZqGzfwiIS5R1bx1AJLGKMpjYNYbzAHhhN+10KEn9RSpLQmSs+sDN/SVrX8qz72KamdTXqsrjFtDDdV/4nIdvt/bMzTg1tiHl/26bwnuXslFGptW2mCLZLxVzC06FbhCh7ZDXmhOV2RWEkQ7UkR8j8aO7Xs7lX4vLxh5m65BXJtVQYXsXnjJmbaCNxQfelmFmlSeWc7uUawjGswD+t2qtuwEWUpJP2LQ3n6pt24RLrkontjVaCyD7YqefI/PXOG8aSVX9zcHbBHz+btc1370/rutjOFSIv70dTTqdFJoWfAsz9yw0BKHnhr1O3e/MZ8Kot6kg3NVYsYA4DJVodyCWColg96APEOADklNHE6j3pvcHHRZjJ8Og+Zm7tkKDgcHmzo0DOoIpsEpwe9eRQnErr2t4a/1rhhhBiAHOMD4gRBf0dkml5SwbLM/oBEz1Ql0cG006uTVoczF3fQyPpMd850i8eXlBLIHlw5+1yvuA/SurKyCN9v95eKmad9mOKNpsnbHkp8M+ElOSsAjdm+HL7iqJiomWdekwI726LkvldaNVgIB43vMIwV8NVrAiojM4c6iGtrouneptVXSHyw4o+25pkJxerNhWlTyxf3HbM36it0BVeyqOckvkViqXzKVY0UJykL9GDjwv23s8x+4jIwp8kTwIPfk0FG8Zn2+vPRYKZbZgcPaxHHmhCUfnSAp16IxX4eJo/XOUoVEqeBxuLJi+VBV3wDw7yvmnqxo8RZxe39TtDTmD40zSyWSkF4+0vXwWX2nXlOCSRyZ9001N/T/+2+jOBI9xLcQ8e86vt/xr1Wuse049SQ+V0Itl24tzxe63cPDRobZQDjEBiTSs3CNRgsMHEg812BikxbiocNRB57bAu1ELYvEyml6dsW+lLjwYd/SKIcZL7IGFytiwPxk0/QK3luy8bWwBC3i+s2iI8pxLhJZOClbYtQ4uSSdUjCOAyIEEoEWGldWm7dUSj1VriRbObZPmCT1kwhUAK6IXr+Mudwz49ZsbFs7tOJdPU3taKKUMkZOTPTRQhqtgyNEXfj7OveL63dxM/H90u6DTmXCtEavzE6kbBoUFO6iJmGsBtk7WN0jCqgkMsb1A4mi+BEl9aEgKl0vATq7W1YPeSHnOyWB/NB8b4sfCMaBavevH+UaF8LRuM91wPjMGe6Gy1fzcVcFWgZ1S239ER2PykS1VjujkXODd8lSSArVGoQYDXdoyzOytRoPuS7yycGt++aVeMhvGo9sC98nS8+51QnD+FZCLpX83PgS7fBAYFmpackc+Wy6LNDHHoM1PjyVAti7tqTD+K1Fe/maSFo2Ujgw+/MwqhdltiAHGTDdg5QDf77GXS8QoCSYP5l5E6f885tY1P3M5NMZPeJdMB7WJBXi7NeXRQF1I2vqB57La/tkNfJN7rIOOhgBHuKtRE800TUFrEJXgvf8AdL1nF32RZV4/SbjZ2nN+UgUCA8kevB9d7pnhxbLwR1pzpoOBuwngFzBlCw7sSNCP4Edu9ne/LVG3qS09MT87Od0CtVryX99q9VCec/rmQ9r2WUI9hNmbelUdWxPytP8yj5VuS61cMVWdQMLB9XcEFOlwQBuYAUvM1I3ZcoyMHBO5gUKN9Z4ezo8plIqa0haZ3D7NYNnL3YoWfH6qC1JM7G1MvCsFP+uSEoD6H23Xg/28CSICiGaTIomXNqkmDkVnNoVqztAnfAiq0OvHxaSG31HKmZmPp4HWiIyBItVXNdFuRR0xqf72/yuJoHko3uSc15JV+cJgPdJAAd8ygSRrwIsR5O1lrrNZssk3Goq/ZwEvO/L56dPnQSvXKqVbuluSIAuNDDDNMCLDf8JoXulQfaHAPOxWgt8TtCPSP/g9BGhXzMEwhRrWk36tAdI8ykKZvEvR7Ymffbn4rptE9WFefcz4U6vibXbIisoD68/jMG9fF/wYIanvrFE5ySPImkQtRUBlXXLw0vtWxnRIhklQwO9Tr9Ia+8a8PhTIYmixRSy5gZKDaU9J0XXRPJ1TGVwUqP+LlZ1s/KLQE1V+RixgddWh3jpP+AzxY4gZkxFnUL9LsKsliLByzguzKTAbD/nt4zt30De4Pt3l5+M0envmtqhvAY3EGQXLMpRPKi4e4LWDaNw9x/CaJOf3Wk675LLUMc0+J5yn+IYuqWSjd0zhVJqqiUyCAPCC2UaejbTWawCNjd8zb3tmmcJd83LcY7x3UsNri8f4bAbP4QPcMFTIMEKNz6ozdhctwbp1fjY6HAh+6ytRIbgcBWrk9JhgUmVjjkUCS+YzeoYQFxYOk942Hskm3qnNXxsrqTZx12wizxU9nHTuPiv7ZUTOs1UTBF3iIGSVyZb1fg1tC2DRhs0BunXxaUt5uZPZ86MUDg5eKcfgB4QuYqP4Yu1Q+zkY1zC+V/moC7jWRdkBSO3SQZpRhaw3sQzCSdR6N2/EFNX4qhRkaJY7s2T7Y8b/5t2p48NjisC7i7Zn+DBBlNEquIi+Vzgx4ud4gILa+xGFJvAo+S7Uccb4wcsH6c67hJFx0SMZ8BJtXH6Dy3x7CwqJplBMIe4LmDAnXiZ+7selcUVu5U4bDBQZc5JyoKblty/9gSmhLTfIBMRqU40BpPtb+KCOlN0+97bjX5uA+Y14i6VfEISEUbAqNe9kHruWBQ7X3HboA22Fsr9mz8j4rQLIv750oqzh2g9a55VfRZtQ1A4/9wfuVuQm2WdaY2b36eCAxNlJRF5TBJuJ+tnP1jrdi5kMty7tw8QxCQhqRXpG04gjQz1xXB1is7K7KkPb/4g4Cs/ohpGpsz2xMORW25CnDE+nKct39xB+TxcX+QhfhpoERLM6JvyCBY/6UCbQX4bTvxVMlNb028EJKUbIqD0uXj8GR3nszwbXbNYp5eq9yWqun8Sx1pOAu59h/XoTySITUSWEFA8PPwh4n7VEJjFJZ6y+OP1zQz1fZUc/rAbFtCqhBywb6ho7YSaTLHeEqbzWnZHA5XrpCmIM+s7Nm90iw9mVB9EA8JSN0Wx4gPjA+Sn0hGVKRlnm/qZs3KZksH3N6P6tzCR1s/ukj4pJeEIvG/6GCfmUZxH5xmY1osJbWHenZaNOx8Iszbt9QFAPqdOapWpHsFYYcaEYCyPZ/5rtclQF/Fbdg7w64A+hvsfeskPr5Gbn4AwXXGy75cMG5GjDxXbyUEPDnS4d9ClWr2USY8CSli8GgWhyi1uz9Pzu1I4xZxZC3P1w66OwA9+gCRkz3rDXRTY/eN4ENKFACMQR3NeFU4suOucWHYveI7wBM3JM9Td6PqbQ03Gs/c+16joCmAWXZ+FD6KUdcvInkUdejfGZu8dKZZlD7WWGo1BAoZpR5S+klhkd6A9MF8pkFGexkjQM2fecaq8m5dw6C1R2t5pET0xNp7KqwTyLHE6JjclPLtD6UYnJ0byCNLLM7NRzt4xVYQpjkYwPCOoI74A6OZufNfZ3jp6BZ2WWkSwsnk/mzUhOFU/fNaMbxvTr6G8dLuc48ZCwKXZiK1T55WqF6jbZcmr1F4uI4pDoFVi8YELTUxB8M4KWv74mtvE9vxvK0nDSKmtRQad2URTMnzlQOovzHe7cqXLl0upmgD7RMJUtO9vi4zx+pG6LIM+2jxD0NEyfE7YM7fku4M0mboccwvQd0M547V0cuIWoQQFpUFIKi7L8y0nbfkxqC9sKNzZO8DWRv1LqrY+bj562sjIwQxnWRqIZbA9pcg7YmWX02V1A2h3cceSVOnvB4TD4d2KlmlfKiAxAcdzi0WN9YMg3VtHa80JcqWPPz5/POk1vLiyqmJGKcn/oQds8SX9bOWlb13/32ulPf1ElAzF8f0oyAre8fex8bgW5sdYQwsfYriOwMsmgroOFPkNBpa4NeQO0WMajaDA4QxmHJzlM+V8m5trxN1/lmbuXkf5VsPXvM6smvKgpDQhstOaQ7VAUs7UKEbK2vjC1RKcEWSD/NL/py2ksm7SG7j73RHI47gYdIOGUsVGO4WJmegqCECA8LUFAtOyOANwZ/aHk9Llb/kFinJmhz3TclKScK6nEXHqVzgEHNvZP2Jn3gaHelpYDRAQ3iOmJjnZiwkcRzM7QUr1d1yIZrwjSKe6q+DOdwSjd60DAa3gqGrL/KkXYNGPbqh+6Udu/UPzk/pKNvSbp48ZIWpzvS9JrDMPfveu7y1H0eK1Ai5LQrGcscMtvgX7QjG+lZtUXY/8AqEE/PQeVQ8Td0DdutqXrVMS2qK36lIVMvuizd7hizPBeR1Hf39WW/5Pw7KTh49pIquWGweIoYg91WdVylUDarMT1+xBFYGbevkqHKGeuWI7ffFNeb/A5F9ZkZ3WvGOou21gHbbbeZ2WmGX8O0uTtX/MF/Y+Uvw66T3Tbf5Q9bksG05WZfAIUuHty/uryj0EPSvWLKh3wVk0UOIBkj4g0kmZCdd6UvSna/LgZhT/WRbPz3f1Uz9esMpR4JW1IOqHQSVdW3YCraiCnRqn+11C8Kno4gqKONROo7CjHlZwzlmm9tru5hR0ZRfXF31MGraSpu6QmRYxsi6GrpAxVWSUL1VC3hwiqtXGpr3y/C8Q2fJ+jWToe5XEGCag1od+YYdliZkUbuRN4Hdr8BZoXes7Flr4Jx6/9FksvdeNBpQ2oCkdTXzbLpTGzstCjOhBr2LcKgwOsp1JoutwkK4oNRBZaOh6iAJkMYHU20PZ58FcRRHS9B4VVWD6jMAkcExnTA3GKpVqyE2fgSKtnmXkqhkxnrZMPk3lQY+hT8uCazQXgN7YUw3JdV8S98wPA0iVzn1lPf2RuG9vuEfIhCEBddTHaXNGFEgxXNULe0PvubO7myAczNQ7SrEpO9TDOHmuCF66f4Pe27NW5E9mlhFq8UxBmTRUsa3iOsq351b+paIS0Y3S3ExcBzQpjKJ+zYUpnZzuC9PurmSQJLX7jZXeH71C7/3rnrUrMPGm6mRw+PolbZ8nVV5t4Vn9uh9OMVD8MlWEft0PggZOdO4IDeE5kT/NGZOWWm5wZN4ifiqtoG3tM51FvwgNOsTw20CoAT/BGn59H6uGfCYgsJodgtQBrx7+bxTQgbv1cy8XSYwehXtRr1E62w7NbliRKvjWKhZC+ltMP60Nrx5dEAjEK3VPOCItdnK+kJF/gibVdiX5ivsRlgkmEkaCblaJ6F6E4QSskZAlDmEDGUDTGk4havsTVqTGFkAs0gYHCJX+Y3q7GTSnU7cYIpvaTIjYOT1Y+0yxrthPfWOaVgbxb1KKo93lNip/N6i2ZgJt9CWPV66n5Y3MurXUlKHzt7EZvt1qEm2Boi2AWCXMEKBWr5cSvTou5Jr3MO3Mhstk8I+yCkBIwdB4OS+IgG/CC0TvksV5KoY8+0MHe6OyLkHUBfXKIOWSf3O99fXKt84AtsTlKQz1waTi/YCLDQifoSWo9Q0PtWUEfdIw8Du3lPQVRLXM0OtocvOFosH4fQkB0H6Bg4flqKDqYRhGjaf5N47/guDTuY9l/Owy5t1/ZZbRN6dTwg6egQaOW3HTl6alxereGKgBntpOd1YOkPp9A0m8spOFd/r/KAP/l5bTKDi+q0c5KRa9cNMD/ppyaOwHoOOgnu2Z9T4ey9fyPJhY5UOQlglezCyIEuo7CVAC0p/vDV4riyj+Fj5CH/WhyC8z/ope8/uLrIL1vCcNogC/neusNHA6zmUKzs6s4d/uc7mAUPS8jNyfy61rmgIe/sukTnKRRFgTPBnKRpRfZJNgRI6EiKDL+oF/Hmc2tWqywX7WHHwPWahnJz7QMvCnw4JdQ0Ufl2B4J7cgVFxv/QA4Z4dhrhsLf0sdFvQISkD6DB4MzJT6xrx1R+MtcdhgG8c4k7rBS+oYt9GrcV3rboFJe8MpJ8akNLxvKpIl92WhXQpq3Eps1veOdEwkhFTuyUB+O9zix1fMmF+6zmcN2BFP26DGkhLbR/Y0paRuVIqKRoJEi9RZ5S8jdWmTQwDvtdv6nlCxAcF18FIDQhWolnRqkCp6TteZ0GL1u2qcXfzN1mg9gb8AYSs6k+y/WOzW5nenWcuVGASaCxkq2zT9UMGZOdcLPzGN9fvcbdqo31ql84F5MMqRmRAtotorjDRqqKIrSbrpIyZr4fRn/Xs4g/mOE2f1OVjojKglzQdG8ARqj1x5U1V9YQPQ3JsIBEJCm+H56ysIzMv5YkFCr5Gh3MDqv48PPp23kNjzSZEq8st+0aAda1Gn9DKQEalaN3O8MkPxM8bnpiHrmoKKqBBJRD8jUG8UNJFN0burDyKPTygb0KRKLEb22jGY2kOqD3sKnlKtMvOyR7PGXj/59ctVn1w+bmbUBYs9I7b7U68j5Tvr5fxciAwpNtlc/3Bnt0y2NkHltfAhn3mv773bLCzDWsgj000W26xTFrsWMG8q7TO/Fv+6/H8ueVQpdulZTc3KncsP/zABByTwZeNaAYK2IRGQFTAZDAF2CsAd32sF/9YT1TvPZhjb4r35b2y+ScT+FTcNzilky4un+yUexuRupvzRdIztRLs2zSsQoq2y0/pULXyOQTB8Cw1zcGdBdNUjkeCLLGc3LIhzUmLMfFo/CNvngPEY3/k1ogziHiPtT8R1Yy0IE9jRozzNFmO3GDIeokrr3Vb8MeCAZQ1+DyCL5vaMPSOC/pZTz0qQYFV/D6EUhOmy00M/4vA06FkW6w0wbC0p3J2E6sqO14xZK3pksQeNGK7xB0tigveXxBildsUWjc8mFhiYw==
Variant 3
DifficultyLevel
416
Question
Worked Solution
Solution 1:
|
|
(8 - 4)2 |
= 82−2×8×4+42 |
|
= 64 - 64 + 16 |
|
= 16 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution | Solution 1:
|||
|-|-|
|(8 - 4)$^2$|= 4$^2$
||= {{{correctAnswer}}}|
sm_nogap Solution 2: Advanced
|||
|-|-|
|(8 - 4)$^2$|= 8$^2 - 2 \times 8 \times 4 + 4^2$ |
||= 64 - 64 + 16|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX186iufmPjlzgzubqx4vXPtIEjzeCESazlWcdQeq9naywDkupuAz3K/eD1FZpl+WpwpJt7BSngSLqJWssmfloQIsXkoCVmBxojXGAloWBSdnpCp33mV/2YOuEuRacj+Y24+KywRl0FDXW0nSfyr7vfZEYnpK90ef1f63OAUub08ikYGuXgwopX2KU3Pkj2jtGZAlBOjeo2K9hwsRc/E8V3P9jjt/klZ3Y1M3E+6eo+ypkOMWmNsRUsOWTrrNzkmhntmH267fUvv9k8btJ8E6rhWym4jMr4mKWEK7Qnm7ugOOKcOUCYQfZxUYmAVGmMf8EEO3mgRrfRdjJSKmJmbbluNbiG2L/nXpqDydpGol8AzCDjcM2Li02LNgEq49hQKyf/m0tsxnO/zE4cCFzAISyXooZcPDE4W7hMeziKKW7N0kEPsacV0Wr05DlYnfCxKJqE04t6XIhRroFQ92+1Ymd51Mhcwq6iInsT/IxXi6xVl+llOPxM6xJ7cwiLXuH9zGIVukTICB+HzXpqt5CcAo29hg4YRiExOJ5yvA9h3E0lSDwqeT3cMlWfCNaXzLQqkfuxEpoT674Lu+n8QqkJ8BD6z7L7MXKt8CWMRAY0vuGAVowXPdheXkiBOTF3RggOsBaxHDJ1tHVHNxPOTHKaYiYRmzrIxnLWBok2amthm/POYOLAAd3furwCxaE8LSie3t6uHqmJ/kZkr5VvqjpvLaiLNPEsrvQC0t9RDrIBdKewjy9WOcGrStDecXe8lMOdU/7iAfD9XEbCrBrTgiaztuY1+E5pX4X/g0+zKzgbJEkgsqR+HayUwcphddjW/gOy+UBW+UG88MKGF6Z0eTTml0WtW5XeQOLtmlRrwn2hgHUFw4jO5yK3hMgR0FAOGwsA3ChjVPVIYKWQDJuDXZsQTJpY2S8IQJFQHCcHLAwQ6BXwsAPY/DSQg2cCyina+Nx1a35zwjJzweDr5Ew+n5kNxeuZuuj8Te1yhtFBWiTn15CGS+p0bQp/EMkMoI7Tcj4I1r84uqNDhMcoqW99Fsj0bMzQvX4ngFcMsjhRVG26XMyZmFsvbMssKC1+nl41R+iKdckpqmP8ym932A23XCcwAAyMo62PER0liC61m8/45E98czWdXcFNSOSz7X7p4vSZpZRlRpLZttw0zL/RauNDnlJD04zmwKQiSQjE7G/VaVlhUdWPuoztIl4dfFUrDI1kP296Xms/yJC500Ym5vqMkgy578nPrJLNLXYZL6GKDcAp65lioY5RzRwNqF9WwvQ67t3nRXNq8XwW2Rd/pYY05IpR1jb1LmZIY5aIMlH/dMWiXJXz6wN690QHAmtzj95DS4fqZIjlO/WTSDyLDhfJEHHVoyfPPGda/klya/E0LwQdbGZNVUUQ0xY/mc9fa0tfcf0yA2HqRdVz4O5x44rrjuwTMz2oBkcWu1UxD0PgaYtmHMLljB3JghgyQc+iZh9uJLi4YyZWsop5AcfFucZ6NEiO9o5mmZ/ojQA9A45RI32CzNvzRd0bD9v6logtAlYSDc0fcY1AXFYMMqvPTUNOkSwFmIKV9aVeReOyZFvoPKkg2lfThw86hCppp2ztFS1OB8J7b1R5l/jC5FARJjgiISnmJ1GwiW2cXilY0OcfbepJYNwFvuo5S8JCVsL6VL9UsE8BDJACGq/Wh4sYKmOxJdVmWdHKn9ZyNQLdyMErqATeAQcpTaeQmd1REMz3F4Ad3JI/nGDg/pp+Vb9Vh7uARuynyPcysHK8h/T6GFd1BjCaJgZ07NPZ1+AYpVVETSahYmtWMU/QVS3DVxeGG1NOvrfGBNvN8Jgx8e4lNTaGU5NpUUkLtbqL/qpUtl0KgyOp1iPXMnLTWrQ4f5KirKJsRlIM4YexVH6I1G4qNC/dSiiSoGGVfwGHA5iDwWCj1sUFrhsFedXv0daMW5dJSz1ZfNvL8J5dtcqQ6bPpUb2lM9JWb3tgD10jKeKoKuVCT7+t1VreFZCT1Mc2z9dLWdshgfB94AuMdFSv0gHvND4ipEdV6oW7NbbHTP651vmgoNeCgCSQgTVuOLy3T4d3ZF9h3CfAZjALaSLKqtYNo4ke7WSO8d3XuxLH+S5/c6yUhUbbx88rBlb8YJ3s+XaFLr0cy/BKWO5PqucifhDWnB2RSmlH2KuI8md79tUsEcxJsEBjcXBqvuPddn9ZyA72gBHBu4hyyFRBDaXIsgYjjlxXU1Gbl/leDg2wulFKM4YUqi/AQMzvjH2wEnV8ymQcTrwId4fLYeYbOZgarQcbNOTfkwCXCfIsXin66S+ovSlxUvqv6rledROPxcKixaW+2gGBsf99vN6Rh9PFlQM6/v2yYbhE63qbJZt/MvUpgTQ0+r/w3k6H+RP0hPxuV1wnXMIwphHrYfS8u36EQkCzOZJ9cSVjCFn7nThJYY8Hjo24abadoj/NcnIsLcaGeTDZRo2PalJ2w4Z5LXB/6W5ifT0uW/c3bfuSSxcBMTzFOfLQeToUzmSIlk+pUXdwj6Fwh4jmYxXuWs+17FH0Q/YZvb/iHAkV1aLlgTkf7RSDeYp9VBzzBi8lJ661WpY2pCLWJoGVMh3In/v67RPVVO7cf5kiDbxNynyGib0SGj6Tqa2nSC2ImF4q1/iWEi8dLxpOfdVDRLRmZziO67moKuWD7C0OJuMZT5pXo+3PjcTknAKy0cLpGEOdjXZjJkvrHH8Y5LbAOWS09SiyD+HJtHHWlp/L4Vflz3srkK1j3axP+MGscZiYrxgvwrZ5GTCwJqcK9CWk2rV5zYMKsJMH3NP54uLyl3KhK0bH6IoSCqWzmelJcmUykl7EZUKW0U+aWdHew/0UzEXCGU1Pm2bAL7emgdWwmkLX3SEp/5BJN5uP09GZqt6bgBIrgEsdz5MYu5352MWC21LJh8wIGP4J1nRFpAaE/bhyWC1r00MOW+XRT54RdZtfJ0HJnyu+jO+DgSlkTKi/4qNJGDNMvODNqQhndC9Cdla2R9RQ8abolElOg7sBH1LWc2Ufk9zoasF7fG+SpV3Ir7AGVNJ1EVawbkrITkLl2LxY/1jJKCBGuu1BOP6ixuCimzEbYnzchYpojPeWZDuLj6RasoQhgjjxpHd7rJreTNejW6j8bH+0vZVurvzLEUDKhOKYNT8wk4IUdtScLMMr3CV5rFW8OiWtUBPLGTqnWcTgPyDO7ZPua3mZ8khQM7Exe2bQBYmqYWUTqaF4G3CAQjIKdcYzpCTeUr2jFSVqTUoSht5850po2Z6y7n5TgbBJIGjjqGusVL/Gqc8HhnUvWZiegSPK2pK8YFajpAU6drWeVjHnPXMVS11ox9JfuNRCXJK+vXKi83pEJnVcX/AXYzaxdEkKMeN2XpqrBHPiYwXWS+a9td5u1IvaCIKzw4VeENnN7/6tfC2TrRBGzvHXZsTAK7SU4yY+Y1YvWsMuNF4fDfxkVlKl6FwWZL2WkMalzDy3/XI2asM4GNPGH2PwoESUFNas8sQW3ON04wjMbDlF5FqyjZoAzZqPjQJ+213oMVEkrV5/NOhJj3p7a6fEn55VdGV/AQiEck09kSFHiPi1Ui2lQ0Js3ZkBpCx+8N2FrOUKkPdrHS76UE2XnWD+LZCA+iFKNxS38ehn2lbA10sw0L/mXfIHTHE0iHFOWy5laiLwdyrJLo/EBwzmSRJG404srqPQBlkRtJ3OSl0iJjiDaQT3p/shPmQsQcORuUqz0Pzj96oQ5SJ2QvN9hmRnGnwF7OexJQYTo8hH3+6FuAiJ/h9RjbnNBYqriE/ism226n0UyY9kU9VzLVC9qHV1jVggu+/dIfF/O7JAydMkoxhspK7fotYYpCbg8l4qEcfF7VgAvhIZxGjhtKLDGKNJkBVFtFjZWa+wNQsWPuItdaTgYwCrefh5kW1D0c9MdFJHpBAfEfhXs/dWJ/J2dDPH7ssv/fa8Ob7akxKbS/VRGNE587Rtlognh1CIxZozwe0JJl8kB0v4RTeum7ibZDfNhGWLNRbx8l/x5baxqyIbxi1ijvAKMsLDChmxdMq+ai74bFUnunBcsU6EVTuK5EhBbB4o+qrwM0+v7/QIJIAiw7u5gh1qhEJKnNxNinrnxONd2TAOGtfJNChjHfJDqmU2IGILBtWROz0uOnXunNDtDNfL0DWiIlB4i7ipel7XybOQwN9gQrI/FTz7uhzh1JJQTX78rpgRSH3Wyft+oNMMaTYBkclG5GBHhcsHr1014vInk/mpUeJiogV/EJJbb1YZMEF8pvMo4Qx6ZuG92dEQ1s/YlelmFi9IT/kF8/UJeMgVLihP7eacxPWSo8XeourefMH4+hDYnbDoowXG7nEKEQy7sUxRRr86ShpWeLewv+ybcPkmAF9+is7FElIXUqhis5Wn+IuQh+dZD6isATpf8B6ShwAti63LYFmTRYeGJqqLzjtr3m2zU4X7uGF8vRHJ0KYa9AHLILnSkWjSJ4+gZLa2m9d0emNxTY1QI9M9/nBdGxMCgMPhY84jVgyG3FX46yJ/8ScQCngjVDLWyX/3er9Wrgqc9R16rl/7gkt3AKGynxxylhTqEyfBTJW26f6YxIuoXgmsjvcLhhaPnwu6I5/lJUl50OBmP8C9y3TiC5xD2eomba7IZoIF1xFDcdCjBHTc1Yx1WsZkEflH1W0LsNXfLTNVqykhfObd/y1kFDDsIjH6WFMFV198Kg/D/WcoQaAfghC9dbYNv+nqQU2A/Ny5Kv1NLboKMmB8A/ftLzsX6CJNkFocqkTR3TcfiH5CewI/4mv2DRixSpySk5CxujxbWTR7Y3HrkK0uESJwCJ/eQv1Pip+I6haqAQIG8g3L6nGsjytbfXDH2PkVW9GR8h4td5Onc/VIpcJE+UC3CN1Jwl9BB6c8PvsYs4Xu6etoIi5waGjHq1f9XvjOnEPGgfkbRO34J//JDyrchvG+FlUAfAyNJwDn4oMRc8o6m7JqTBP8mIjQSR9hxUdOImriasKmIL6uBNeyXDV0RM1Ft7xzkM1cJMOMPnzyETjJNlEmYnt+XzLA5eJ/iKo90Lx7S+WAw48f7YbpzoHyZpo6WHUAamQInAsU5YxIJDYMI3W9R2IhZzax+Ytc9B57a2pzz2aTT9JZRyKV3SEogwKekgD/T1YyClAVHqZwnMvARtmRDyBjot9dV72R8Wzba/YeRuGRkBgXZ4xUxoeEdN7uIaaT9WbM7Wp3lnTZfsk4aSjSykw0cr5L8M68jm2VSj/2a33bLKTqC3VjN2ffnn3OK8eRfxvAMjKWCIhmTzFlUMjYjn/wkImoIp1RHb9y4JM+DbQ13AApA3hoYx5Q/2EbyJOtOUgHn/QHcmK0pgKuJ1CqOF2/mi6f1zpwCDIMi3lpuXzqCd/6b/V1/jRPlg2V9SA7GVcAZBmB6gyQLHn8LSjQXhTMecbbwl8M4h6wif4yldWNEXuZsuhmFvchZG0UbazvwSrQv8QCAzua9qKhTBRs4qAWh75JaVSwustDe9lnZKNPweL8BCdZ0IDer3lHStmtfOSM0WNlQa49q8oCzZ/M8qnSNfM1FORTPEl5wjejglziYsehXaFdryLbboKZBynxKZteu/Sjb899XPugWG5+29tfcczCIvI1lcLYasqPhMO4dfMTjadFjDIPnW+2viiH3fJKL7bFcAMtdTHLR0qwlGmnnmGD+65HzXWWuGfDosEMhi6LkyZW42vbrkosirTeFQJq0SKUbAXl6NSjI4blrvvliTvqspshT0dgcpZeZrd93MQXqXabjHNxR5w8+xx2AczRtrCIrb4ibpMSbUi4SZq4i2+dQ8bK2jyXHz2SMY6OMxyeoDfbDfSeJZHBZ6fzkvUSg+sEow3kU1CbK5NLynu1JAOpPtyNWIBBYWrAF1kws6AbqP0veSY7J68a5Jjih1QA4spp8bKx0+eaMBC+kWqVV03C/G8dzMtxFM0rYX9aLIaE/2i7wQoU054pQfrUSTek/Sm4c5ehRyibsh/V8eaSopWcskYRT2h63iVbpwj+GKkyozGdmLQlx63FIgkwQ7vphw5U42GDyiDOIIdNpeO1Xn13Ysc+OvkjH9NUZerv4syA6//YVQQCqVjyEkRxaBczzk8oF60iQbATomUfkOq0AJ4yLrEZ4MoiysMWFIO74Fj0SlB52I9XooN4HpzyXHNlhuIj1gyLsaBP/C9LTuw2uHDkFVowFn/eY0Qpvw5A1ONWMmwbg85Xlf/YFym5ya8oTGQOugp8tO+dQjiGRC/yGFPb2vt2clXpRTyh7ur6NdNsuDX2j8Ds5IAikrFZcxh6KpNQw+zXB1/mabPKfcCG+FcdVW5d+wR8CyFUVoFPt5Pd66q8/b1xsUugjEwX11lXZFss+loRtQR/jPWAM2MkCnWpa7DKtyHIiPo3EnjXBdK+FeXTO5jCFwWUaqHTs2/XTAbRaPyoYUCPntPR7p1SyFZXzeYV8I4hkyLVIVRVUH8JV6LrqztZLOEqXkYRFCgqxbqT9cvGz+HENa4METZKtNiZvmamG+a/cJ16TKI5cRcTCB0tAGWHRgfA6JkhNxmoKqhsHv5f+GMArR6Tts2PDGuPtMmaQ/b6aCCZkYzjmBBR5Fm5J69TfEiforjzBHW1TESNNY+ECUwCVQqzN1VORwTz5gSvkGJacur0C6ZMJpiaUZokgmJiC8zXdRmS6puJKxnMMuvGacmvwOg2pbBdZAeP0iFL/JRlbxD6KzKzcEiem6Wfu5aDNIDON8isysr6JqNQduxGg/q3I4RBWDSKVzadd61yC/wzhqnUXaULxf37Vhl1db8oWuimrt9FopJdhZgtf33pAXEBVSsPcBOXQQAarc75UUOENB2c6ObT0lbLKKH7t+aLP6yS0Y9HhgMKCK5Y7L5CaVshMmNzaGYs4hRAJWqpvpJnBs+BGuPBDItoq7/pkaby+c0GvaDbwNxhrbixn5sqKZlaxxSbxgI/Px/jARuqjeCp7sUm49bHIDG23rng/AVUSK610XzuCMNFaReYNFqAX48BUgEaUFmaisWbgcLl/pMQa7kGOpVaFs9T2SPrKKZ05ActsRuBFENxFiIBCzoynJTBrSjpUs9V7+0Wq3f8qc+fcTFvZc5gvVRdUV/dRGt/wpDrDiWvZEz7hmD87dPVztmVaSIBXegcNQ525DvRmaT00OJ7fjMOMp37nr+EZTjosBVdZjuqMVmPlqbm6G27WOKcl7JXdcE2Y/6z3F4IUB1F+AfrYahzg9OsmCKUyubhUmjYh2NFmOIEUBDBB5RjJY5ft1ecd/pNUcc+oVTj2rsycxpnI98/bitc+UzmYvLYTe4gOj7a/9V0ozdgIzpsxxz/IgaPRCXaPn0cpgH4QvnvpNS/DHXElRt59yUw9LFG7TyqVIcVzi0A2Phlmt1Ec4rzjYx7rGt6bf1C4HCdQhRDOHRDRUTwjdZxSgKiie/daoEFEU6TGxY6/BmEyUzfZ9QxZxKN0GGgPWBc3RQ2LGMt4PXalx/2Db38Lklik7BYFQGAqt2KsKC1Iinz+xj/dGFFAF9026+jYqUwJlT9aYQZh3ESWP4HtTek7d1LupBb3MG3/3OlNZ4hzHWaF5keiMktIZiSQU+bmFoIUAo+7hKrIAX4uYx9qWw5SA5lenxxlHLHAKodC8CbJ2f+5s1pTcuY3kBQVLe9hum134v5RD95a/SseloMsbsu7A8XZmpTav/FIi4gKw+mP97EW93vY2FeYWRyoIo1mh+BhX+l3zSZAVQyCaK/webxB4vyA/q/0ACEdBjvklaYjs/sxWi0UJp2xr4Kzlk2OKbigxJUlMJyJvTJ5W4Wn5eNcA926XeQ6U5aVje6aqkFxPdDUYwud36OM9mu8U9/UTa1Z1dtfGtdN860lyh+lQhIFcK9I5g+qF7xlR+QMTjzge8Z7wbvDzXyQI1DDJKpmJiJIKnCPjS8HwGMgW3l5dFRxZE7sLx53ztAvugATaXcy4NyIbjhGMpg/gicx3vyTo+hpyTDitPF/dMaNqahkMb3SFmTsdomUWy4D4uP+3eD0CPdNkf0cqANDT17EY4jNEGXoPEhgLxX4n/kx6CczT2trpMZaujuitjgpor1edgUBy36qkv766XhZ1rK93Dv6YVhK9VirQPrAbiAMW8xRHWIu1eeErTJkeQpo0JAu679ML/U0767tPBqFoI575yDWNAIblew9JI78ImEDuj8GSiVCfkz3ySlxYw274EQ8gd0FeLmYyBzSNyafmsE97u9POZv0QSxW5yc4DvKB8ATX6N5tqqPCNpB+NdTxInDuTvdf/U5D16Yrl1MB6PbYY6f1850pls7z/XK0NxFGwNkq3cTy+KMU19COMwFZI8dBjjvP4u3WQeLDBQ3wnOrDHt90aBn7fw14vuyD+yLVK0AT27zQ7Fx3DWW09RYuEG05qVSCkzhCcHrOYgn0CV4kXDUAXZyAva2T9tsh6p9BcaXwEMbmGigayGNIDqZONAk374xTJ3VdT3IP9T6+qH0NUHrA4ymxmZfZ8j6golkTEm0ZkhvJeBWCbSXUO5DDVwdfozkF4hylyc2PAF+a3UKf+BKXY+eT7QRyjZnDzdJzDnCKxOWKxVYpFUfm2hqWPN2GvLglhdbhs1sfgAURX1m0y+9zpjwm2rSGN7F7bvgIBzWrf2YXGUNjTFk0oGGGD2bluFwFEk5EeCwKgbK7zSMixhqzVNyOSWCLLLm9b03eRHLoV1JJdyYTmrDamdY6QfRqcQbhph24bWCAnA/gb0OI7Ah0PjXNG8JCC9tXiqVfZD50fUW7GMgZVeG09GGY5tLjLAgANg2d7Z9vBD6FHPgxii5NchouSr1UA7aBRcFVw68RztkLLFVo6cewpjcQ/+QdS8JFsILj2m4kfPzFKbT9pH3m519uNovHZICrZ/CtguLQe2FkaPDgH/2tD558ZkEIPJvxyq6A/N1g3q1ESFxhlNj39dMd4u9nNA5pnRKLhercEH8cRiDLJBz1bnet1Jzbv5aMwe0jkslDLAQUIVq6OLZaHVxrsXIVrsA6v62hABfUHeHPkwiJGHaEJGbz+kLzllAYX9r/3VQ3tMxz8aPQWtStURbjlJq7pFmn2k54nkUZBJXb0vlJmeNeJN5uJnQ5Lt6MofeKfKIdRSHdhiaJXzK5RhCm7D1oEl1MlXm7qo+DXhPt/a+KJY4iJoCPyMEBCWH5x+/1GAPLK6eSKa2q9swe3HLpGk4zpgMj7RUJLr5mDtq+wl3tPHdZi51NmEx5LhzYc2QxNvRHZCpljxWHufWPGbOly2lPFKDAUNYnIkLImiB5QS1wqgsj73OGtUeMKrpdQuoLJ9nP5W4+Wd8OV6n65uX8yId7dfodad4YF8RFc0bQYi4oElsh/C9ib/H5IqpoXnCNPc83P12j3/WtAkkSZaZMBAbkg7TXvJr8RAabhuucRtj/78TZiKXt+jnFpZUIF+g8wYlaFTi2QyHQXmt+pmSZICu+0CXyJcL3yjJhrIeb16JA1Ym9FyIuyqXUPgETa+VCkOnlhdmSIHmJHND33jR3l2EXlFbRq9bHL77TusJFMN+59f0zjQ0zuF/hRQIDYs43d+tLBeXjgY10xn7TfBVaqtwR1fCHznqqRrXdzNmNZ1rziIWFERdGMQxbIHBt15vkyDwIugq6F+hjKMKkoZex1PFOLPYY2756Y61kogykOrBhcJKYE
Variant 4
DifficultyLevel
418
Question
Worked Solution
Solution 1:
|
|
(10 - 5)2 |
= 52 |
|
= 25 |
|
|
(10 - 5)2 |
= 102−2×10×5+52 |
|
= 100 - 100 + 25 |
|
= 25 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution | Solution 1:
|||
|-|-|
|(10 - 5)$^2$|= 5$^2$
||= {{{correctAnswer}}}|
sm_nogap Solution 2: Advanced
|||
|-|-|
|(10 - 5)$^2$|= 10$^2 - 2 \times 10 \times 5 + 5^2$ |
||= 100 - 100 + 25|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+BVP/FrM95KTdR0FvinxN3gPSG77ieBg8HH+Q0TPUGzQbKKf8tw93gMLzkKA7oOrHxVe8g01i2KkvzDX1vJref7hyoXcJZECkGd20+99qGUJ1ti00oFVe3N9HToygeM+vowoazBDhTtuwK3xw801hy8JSxfNa0Bz/uuIqdJCaaICCRzd2Ymvi5DCSidW6cVmyZC1k/15ty8qXNnYzx9kXR3QHbS32HfVWsbY0kk5Hqtuvejf4rXmNINJJ2/WWWMSJw7oc2v57iOfb3CQdozL86T9CK01ZK/kSuzGqRGlBEhUueh/6gdINeqECTH4j16xn2rwzLgbs9M0bW2fMfJGtJNEKs9VbnOXp46Av6+gQmEwHxeZAKRPut68yjks+/iWGd32LeJjOzx+dnQaOnR1vS0Ren2zI4galSWkMf46ScyUzoblaeDZmykDjLzUeHLZ2SiBqoae9J75djdor6uhc2J17TLhXH653NKtD5F9mvOrjUKyEe0dPplp8afPVdcqREDO9TcnsL8WdKk+WA0tF4c7ss7H9zr2nNV+cdBS1wu6nTaw5fT8BuJaVo8XquZyyLpHbodU8ZS6R0p+k++fYRJ00Z+0h20A9AbsfpNw4M3mGqLeofQw2aPHeODEKFGmz8WNfiFrx8Vq2o13ER0DT95552+93qJhykP3VofLvtdyg2GhKtr9nac9VzUu0ugLcOQ4ODGf1QKBq6I4/iT5/ZQu0i4tgFENuub4rqtNO49D/dTCl36jPZyOkjBMuUmUrUHaxekrxuVwXlHBWo6G7k8jhr01/aiGrb6ezAuU9MoPzmUUTF0c34NBd6EkBajGfd5AMcJT5VfkwNgy1WNu88Ra+Scjxuws8cnFioeeku9/NVETgwmTmtVG7nskDYBFqOmu2shdmiOHiPo4Sx+mgMbWWEkeVaF1T74zNknRXsEIa/90Lwg9rljmYS4UptUclRMf0kxS9KC6u2Ilejv1jqUpRXLV1g1rXWtgU4HZvCvrLDZf+d3/yKb0YWOAhX+UdQDZHJ4g0dTTRJBbLW8nnXtC14u847BsWKU2QDjp5Cmf4S3xy7tAKuEscwvDV4nkTMHrOgwuRd1zuAneCUDfSFmIQIXp6TjFPJg3xnB4F+LpOCsHPHWSosOh4Hv6JJZfzTviVk4YCUt3+0BG82vcPbN6lxRpBvqeM5W93Dvvw2/xGmJp294xrxB56wy3j8iiFtrPJ+Fb6DqPbndjUWNDtIzcPZ9WFBvJIChVTPtp6swo+jTpKInsWTXWp3nvsFWpXAkcSMolReZyyBMhqCGR/MELMzvMUSGvB4aFoSnvsPa37juMe5R9kbVTZEKA25rqg5kxiyyjw/WkZP4lflYEJ+UDfhjEg3FjLrdzdrdtSnPlsF+sHsTUbgJgkRK8Nfi/wQjrXW2Q6KWzcTZJaiPipq+48+h4vl00IqmDv6f++W/+QNRVOnAYpBdx4vqbRWIXb/R9TJKLyxqV5zKV6NyTrNOpRY6sJ/yiNsLxPyoMACfEGMVnugK2POoGiRIRfzPoc+5yryNrvT2YGTtD4iwtH/mIGkWvveUD2cQOACiP+9hWUl/mddjTQGcxlrpDpuXUTT+XKhRHK3xO6QDqQkf+djkEHyRhY6SeysEUwdqSfUXJLSJ6IW63nmiSBqrdMH0od0gSk9E9Z+d5tvmRDe6nHWYGbzLw+fxLMRxbbppW6CrAt9j5suExS1yQU5u4Th2Cx5wrxyPqEliLm4dH6Ek3i2xGLteYaa9ZlmE+xkIl1SxlgVsQDQh/pRTD7XXaDnBM0jtM1kdVcH93lhOBRegVhg7meBmGH2RP33LtfKAF73ME/o026IGWnfvF8h6ay348Fw/tLSeJjEQ9AXZVau8W+1Vq7pKVwxWAwcy35QpcJ2HxXiXbWn2KmhJ7sziDX81gTCjo1DiYVp/LkEjnttxT6qomrbSv2MLc1ff84ZWM2zAoi1lJBFjrg+KF/2aIWkmfjR+dS9kSnW4dqn4zzZSrh1PAjrpTwPTgU3looqPfVbQwU7aG4xQMNycqIMyQle4MrIg64wIhUtQo3VC1LZ1+ROH/qx4g+PNnqM44tOFwOJRHBDQ4TN9k2PourWr5j5YqDK7b6k7xY07JJj6zfcibmavZg5z0pegkNMaEHkHlOUhh88iP3Txm+2Zzef8mOTGjHuaE4qHpuUYf5VAyRktHowPENVQIoHhKkyZE+8eZSJFY1VtKBA96HyBMrfuaEtLmhYflo/uaIrvA5x58362pNxQ643Iz56wpaI7lN+XuGM1sFNxlcxfd2lIEiUlzvc1Cm5b0lJt7XH4IwgL+lcHA77TZBI/TszCR2CNGnAwU8jCSTQNh/C3qvMjX/M/jvGzttXGmcm8kEs2TxRWOVAyu1SioXrozdnlmzOCvl6ES0t9AMvWrfbA0VP2S4aPa/Boa0miEJbArVwcLahJvA8sHsNOVKugH7QJLgkeI8jGBGW90VRMnQm3AM42ht3/lUhTBg36frQBzMOuFcYvaLqgoktE7pTgffPPJb0uSD8UKNDZWUWj0MzA3ashb8PnlCL3qPiusbmm/v/DgS5272tnD0ac9OXcLQFbGX2wCXg8WGgQNmz5xdyHCuScGyz7GgS7rB3qYks7qIZrZ2UDMOquAT9uYXhwzXlZJUfEvbj8asVD9zlfr4v6GuawxZjFv9WsKe/uALlZBknek05xl7xbyOIcviGwtfXafi2xIZarWJATWeblFUra/elvyyIr1BZ2znRRLtwVPxTz3iNVCMBF1RP+L3CZPKTVwiD+lfWt5JtzlrsT7GxdsYSmKKwO/b8kUjBzVAJPA42plDgz7ZwMdfPFxWU8j7zHdIgflcgdVvzcBCsNKg95nyJyxdsH3A6ssW2qXv9j2s95ODZxgVaksfKdMi07tKMlzG/KSFeFEPmwHPnsSDYtuetxpOAgJhCsWTXttpeU20pAXHHP5wbMOuaR77tbCemvo2G0LRs8DJzSZVkxuIwykOtnGsEWvIiDgAIBRAypWqygQEWKNE0fklZwESJw7VMTmhXYmoEdSTHulKuE69OO9TbaxX3QtTm88v1OiwhC/BrgyATquuySKM3FQkqQIRShhnLwCt+kZLGqiXRp5TK0UTH6SNrXThs2yIDfNu+x8nxP5vkRAsni3z25YKC/XTgeBCHychKhCINvcCf1DJovEexDtJvBwHofg7hvQJIGFUdpSUB4HcDq44ocb2g/IbtULuEhhyEbFWyIdRlxN5ZImE2yULRmIZp8OD1COfcGGkpNZabchgFdhENsHp5l38Kee/9uy5gmQxgXnZgcwRthATU2JgSf09cxOPbGNcLumnDru/1DFV4eYGUe4n+iLRWfMnFoXnfQs4OraJSKVcJ/Z/KW7L22Nm52ifBjQt1NUPijj517SH1G5NCdbetjlqsEXTpUBc42qWqkX7FIn2uEBPQ8nfU1NTM75GKUg6b70YFqjc8jYkpUXYCced6ViNHLBaSCicpgrag0eOTwi7nYhGRtvzDVQ4p24o1URVekU8+eBN7dfgrC6Dw8UB/HhDDTqaAI3FK8tDCfOER72Ifzws3pEbnvo4eeM3alauRzL5Fwso14gUZcY9F7ANUv47qEB9kLcHW5JvRU5gQEg8oeFZUom+4taXO2kSEecgBFTORl50LuSDUD4PzQ/mDgiNd4rJ8GZL+2UycbAZCrd9E7iQR6F9SaDCVkmSjjLHIuWrjF59sOvEIcO1sHy9mPYO2k+TifJXMWSAt8Eu4kk5U4KX0V8NP2n2AX3q4vFhT7bHgg0yvPGqZBPLGiwZajKSn92mJYM3ZWICZq22m5Kv8YnF4XS6qsCwt6SbndyQrBjdb81Ab4/RwPc9b5tQ1pOh4HJJKHWePUUTz1q/XplJt2d7gJNoeJCtP/OARINyuCLOtmC80a6rErQCEJjbdnZqnQ5yvotfHgbLhJWJAXbJUKJw/CFjpzupR0Mb9Dk6IGBmhBUDn+JPEW4w0t8hlvsGs4mKKy/PyDV9AdEP9Na8iseLjOTKR4x49wXRj4nSlen9Rcb1R7ixrEzkooAQoDDg4Nb+4tYcAEqi30cmBE/VUdkMb7oMDlSANSHHgSaaOtGKH3QdaGDt9nCcf31Y1JUB3Bqxg/NS/9WtYoTY6bFQD15EpUZdnwOBJ922FUYs+Ondh9Grt73BZ6GPTFjPUTKrwDO8ahx/TWOtoeFvL87JvJKHyRsI0lHT+NcnR4ScjFGyvkBH7wAGY2bjw06cDMnrV0oKOnE1viUjiOPmgnnSTHnsRcmmH2KtYtzBPNf7vW3JI6Alxd2t308vKSFJ07FOWIeiww5lOnVlmSsZckn/iNLuJr3qeJNJjo3StG4Ckuu9aYeguY6jm6hAWGM6Ftj0vh0xuU1Zh+zu8kjEfP2Yff7DV3QmV5UxywaEn0GHu8iYjXfSjrL2t5gwdd29R0GNgcHFhPAxT3M/XEcu4S8VpRkOVDvc0X9GCfAKWt+HC3ws1pqxOam6lYMqXCQC634nWBX20HruUiID65kV4Hphijkod524mipMz0yD1lhot27S83GlIpZ5hz0b1xxzg0E9brm0/JAYXpi6CczPogQYQxYB8c9h39dobQtJITjyJpwZa3TA9rP3dwCyVk1OXQX4DDAmy8+dN+dY5+oHzTj3b/Czsx2dQ622WaN6FXNgIlHFj0/EE/uAXGqVrP+mfeO/8BlUEsVwN2TDr7cClNItXCecyo/plX8ZqJrCgTHXNsJ44fZKPl0A8Xt6RGBzl2in4o+MgI9WdHlAalW8cIH80bEd+snY2aLP29VKepZhPxtOwSXvVRxWd99rllwckWMk4TJ8ljOq7YJ71MidDUzcIRyT156T6ke5X05bLYWNL/tqb3ZSYoDtpj8U05WjprXj6rTt+P5wVP68rrtwHKHBqdPHPeULiz5gDLhzpJYhrTFpMXPUh0U7RAdHkbORbM+Vbrb9jCRIei0aODPzypTgck6rUtMmKwvtUbZLeVISf0Tz+cVPISizc1dpeoGUgyWuuQQJ0YpHEpIP9L+3ZvOLPyZ90xXJwzGl7/9G4WMx4jg2EX6cYtGOKQ9J/rxz8Xb5s/9q1BkYh39XqaoSK1D+Yht2V1rQIVtZiI51digOacabKzsieOq5NrnBx6/hM8mCu5ydTEZsNA12qnvltao0gUdumtIPWus10Dfo/CbXQBAfmj/HqcdCqrfZTvW+Z8PukCsFRN17YY7JtufO32DFgPV6p4brODb531xF69pTiBmlMWm7VCQ0KhAVNMFJ9s/V5CBJb2cFH8aD33MThVl7ZTG8t4t95hDeDa0M2tf2MMYMMVkFwAI2SKoirlkHUShBR4Td6TlXCR8CPSFPN+EVDBVQNQkt4ojBDAAGnJQ6ikXK7M8NQPt+kUGW3KMYjw/YaWvr+8JwQyk3eJCbQVtT3Ot2yBELfu7KxpupQuDeq4VCPjLBsgaYVbcRepozS1+txUL7TVkLqqSdZDKid+JEBkhoVDCfNmqGl3UtDUbgNbwDOa7zHLWqC/Dfd0vg3qcA+EAdjEhinjZDNy/fc7uFAAb5qLKl9tzTFtiG7/YsLjyUyUnUwPtu2GkanuQYvvSYuFDBQedEwkBKTsfXiuUuolTEECG1m+YhDEQ/PlKE5yfcfv/UPMbmUqj/QJ/pjAXLx8CD+cuKN2sCD35DSRps9gRKOysr8KslhMPxM5U6kAaF4E+FWJncKoIwhD2NJJcSHTYRN1bKuBiQwblaRqctajAEF+hmmk2id3b4fqgc8ax0WKdQv+TwpD9tjApISYOd0Hw8uMdVmDfcwBLRwQ+NDBvJ+6IsslQlj2uCfQVKRO5fdUKuj/4ktESsEEDUb/6ZWo2R25vaVCOh88Z2AAMb6lNX02AwM3UEj5KDmiuNUARC07DySlFbZDxFwDrjdVn2dvYWP2kuUU/xd+DnyCJX9oWSdKZZxdV/VQ2PWuM3s9YjEyFh1kG8xlUj58XfbFbhloq4TdgOj/2nPYvu8Vy8xXabsMK8o7m26n6KSUHuxSUYDirZoBe58MG45jrfjgZq9ATUwBmakDbuU5q/x6fTjBKsHXxRCTammd/kNbEMvVw0pjuSoAwEnozZJaCEdNfgiqopP5xiZOKsGk5NpOXUf7r6AGAbofZOxiXubDdp154jk8q4tH05cyIdKU7OvyCx0ghZ2j2F0FJx4xNcLDx2jS21I109dUV8Oykqgq9MoiSRr1v+WNhfB8OUf2xWjT6iSAZZ2tOQZIH4aTj/rZVvLpw1OfUwEnes4YZ0HXRlIzHtWiw1qxG6Ni2gLxIB5Is0xDfCDSv7Ac6aiY84pmtCCXXjP0avyx9zQJlIv4fsDhuq/wlJGHQOYVAgm6gMfFvo4AGMaYMRvR0Ll7he5T+lvfNiB4PBwaB7PpbS40YZbdLPGpBj3SSJlZ3onR+zEHlgj0y4gXKEllmahZfBR8+kPArovl7Cjgc6ZqSwoCDm7MvPFB2RUq10GEDD9SQcM5rY8hbS6KJaYb2klFg+QVsmeydTB+qFc5PRdsqE5kFz7CTNgeUuBC5w/oUkVBUKOWx6M/VfeGzeH9/BSl9vJ6A1pqVjVeNPwG5lWkEhA2GCM0OW5V7EdqOXWE9Leju0UlTM4yMR1kA3KeSbd7uiLnePFE+l8KwZqH/qnR+yGatWEy3FvhzyKaQs5wQKEkt0OTOusnhSrSHUFUULPmnvqnnfERYlarYluxMnwD4eX4nanJbNVHlkZYTq6bGRJKp+98G+6IJdX0p+cRajmfm7NvYNOF/r3Utk2CTDFnq+wIzuil+VUSVU/H51MWKOtF06oL/lcyLmeEVsjXHaHMb+XzL9EAG/lNrsrTop1Q4IilZ/2KehtQcbCyvXvxfcm3BNuaPWzDd0uwZsIG0l6NiHgaoLEM8FELqI/wZY+kaNXMRp0LCihPB1sJnCnqP8S4jE3Q5//zgjwuxuclZhT/HDfOit4/T2zjES9gYTkaxIzR4fBIhVeRzcBdZmzUzlRWZHEwILxAIGGAVWKKK223P2dR1NOqNWukFJKVZnXPMEGh1AtupPdMKE7NXRjPq0WnQ3iZ2t9I6kJSKAiEY52Z0Tx/2botxbhggG6AIttWeSCZ4D6FCqPn16q2ADaNVzo9hl9JLEocDa4k4//oaA9dDKLNueGZ6vf1VBVwRMO2UqfG+D7+GZDMidu5GebKLkYmdV+bLr+FQOCSVM9BmqYUMABP4O02sZsfxlFknlKNuMP6jEFvlnljAiXemjlJ9V3qXV7I28rPBsF08k4MvxJ/SEwjoBGJk5AbErVy7aNOdKI4FwTp7Gk0Vznxqjg8eek0kESC4tZNpXE+60AFh4HJH/jbciReDJDctYWj1sRt42Dyoreodxuzef9WJyiguIw9L/9c+TAbNhI9YdCKj/TxXyqmxBdfk5V3i+/jEXE/N8OL0aStBoSFVKKfBG52yFrB/oMQP/o3LvOyZy0mf8rnTgUNzdbytaa+lhXxPqcIqFi0Xl2Wv5rm/PCZL7gAaTgYgbwbGmEm5WeqjS49Y4qRsKwy+JKDH2BW/nWTGtKx9kN3ymV77vbtinbzcjUvKfJyvLewGr6NhGAqHDNgtlORs1rogZ5LS6jq8snPo2oSG9R9u5Gy5iTVIHOeplkxWuAaYtEiOjvv0ImVES5LfTva8SIiV+MiBFYgs01tUVxlMhWazYLrKuM27vmOdGCFmcHIgjmWglrs+jzwqdpoMqcE0cbcVT1Q0KxaTHYqSAdRPVz1HaNfLyc5JXRPdZ0cH1JOfvFiHhPCcedwlXv+UNjmCWZechO3QH2jtpEpKjzGkNMRU5UUCERFONt+U9Wbk9wKv3RadCmTpVMUcIljj5KOUi7p7I+g4CRYUSHXRVSoE8vKjDXh/cm9oWzW2WwEwdwyOl45TQu7iXaSzLATHekOkFpY0pQs12pt/XgFxF6w0MVn2MEDWy+1+cLfponhZSDLIKXVUBcajDX5hvoCcTGQEzrwzC0jze3k8rYVqiRCjXx60ynYU3tZbV7lHYJT1rldaf7D55MLoasOV7l5zziSe9I46fdkW2ttE2uR3wipbjYeh7xpg2mcOVQZRAZIQ5pJJXV9kBVfB8X1CdRXn24TTzPtjSbuMgBxVPVH5nJsmGpOEerJvaG1HR1CWZD5FHYl6mjenMQdzRhwZcBFwtn90vTZqwJDb5273nJGNcF2erHP7Tr2xjoUhZvk7mct/LifPN2x+0qhc3mb63rEr3QA9h3x4fdixImPv76w5RQUbpULDD11jM1pF4jNQNU+d/rdF3aviCMAUHiRgFGoiaM7UNDUxF4OlyOe4VHoGremC/DGMIeOShQ1Wz7V3eZtCJ4SN1SclZSGWvLNHQnDaZnHrGYDpqTFrYf7/kaFyACs2HQicQ7bLeSajvbplLfmIr/3oXHo7IhMtyRIX4NEY7aDkfuDR6tX44Nd/sbBe0XW6c7LwI+kRO+uSQ18ied0RZFJ7SOfgs8CJQjJSzg9hROappPhCgkI13S8PP7nEH3KQmlgiPwaQg1kJ9woO1/v3uw9U6T48J+ULGzMfB4sxaxl+/h+RYWbDq+mF8PRL3hEmGkGCfE0ecVjM4k+Z8BGUd97jxcr4Oyecd53kmVE5oAPlE+WEiSos5qfMko6NDbwRBrwxJorhrfFb2GqaOjBzyWDgb+Y3mqwTsgwdtjfF3G2DUSOZ7QnO75b9YQOOgvLSdiVQlADah2grAec1yEw1ULji+OtUo1tmVNL9ET42EItWUtOdsKSQqW5mH1NlnoM2xFl12Mqe3hkPFgoR2Ldoyvwky3S83L89gADDGkIxDOd6/0Z0fipT2g0vfaXysYgvQTxyBkuoYeIs+GWEmdfnSYZOhDaMpddh0Ot+mhWvG4klpVSXnViIsdPZ3lFitMtBfPZRiZDpAoAV0J609uyfI8UYp6x1YTIjZXYGrEVAJ438p1XfGShoNDacBsQzeZcZzNCrK+c8DMl9BBRuGA73vDeckpdKBmOZssap1ERb3GBEAOyrQXbwY4cxb58ugCNKkbX32QCTCpoD/K+Wbqnno7IFf+ZHXAwSJEd5Esz8Rcs6cOIyHPlzgyoRvDIel4uZpx1qXuMe170u0sydMpHELx5CCj/y7zt/5ogiLwuQ6J2gdCNOoT4J0x1UfJ+h1hSiWqspd6uTi18lsMtEeuQVCbqTij7vqw0pc1+FQl5qTL9U50wQaOJJH2MWCOxIuPM+WCGcB3LfiDqYj0ghqq6UgNKizxyE51mzksug8XBSLZ5Ge0J8gJ0VZt9vAnvMAMrO6kjL/g3qhsNQlZdrB7DZRB4L3Qb5lxFsgjJqO2VNypyjnlPuGcb0SzEPLGwXaTrj4Y12CxPm1qA/EGEXp/2KfiyOuW43jyfC6GvLGm/kzgtcmyGjuJtZi0ATE0c2IelxPmYYO+Ootpvq4r+uht6M37EvhrzDnPsSFRy+f6Ezcaq1JouQeo/FdCqSL6UOh58FKLLzAVsaBeigBsxQvP1PWAMXDfpivXvlxyTni+t4xh6tga9ayYN0FafhXc70+TLl1x6SfrCC/lkJNGCK6fgNX9UzBcqiU794aOXAHd1cCY95cQFxK3Qbez5mYaErKUcm9PTneVVXvQ+g==
Variant 5
DifficultyLevel
420
Question
Worked Solution
Solution 1:
|
|
(7 - 5)2 |
= 72−2×7×5+52 |
|
= 49 - 70 + 25 |
|
= 4 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution | Solution 1:
|||
|-|-|
|(7 - 5)$^2$|= 2$^2$
||= {{{correctAnswer}}}|
sm_nogap Solution 2: Advanced
|||
|-|-|
|(7 - 5)$^2$|= 7$^2 - 2 \times 7 \times 5 + 5^2$ |
||= 49 - 70 + 25|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers