30069
Question
{{name}} receives ${{wage1}} an hour when he works weekdays and time and a half when he works on weekends.
If he works for {{number1}} hours each day from Monday to Friday and {{number2}} hours on Sunday, how much will {{name}} be paid?
Worked Solution
Weekday hours=5×number1=total1
∴Wage=total1×wage1+number2×121×wage1=total2+total3=answer
U2FsdGVkX18M3otCNzEEKtGvEkx6+BWPKcHDpoX4jP7OpyTuAkH97Fg6dwNNw/sUVKLjMK8hDm1Pf+Ij/VEjpIf7rYuUSWHiX7Y5rMksnuPPbZghCITVEFV6hoDtDWxWRfROhiyqe9zQHN7HzNRddPYlpn/de6HERmhOObQ0cAXgSd7yXC2CMZ5ch1QLkAf7QcXD+UcD6sUJBR1dmB7nUzCXq0jKpb8mMp+QWiKQuhNZSAVS4dlyO77JiOP0KBH8HMxxB2unmIHSqT6ZRAZ/PbumQlVyx/oH06LeSZFOJRPFe7IzEYGAJ/5hYE0EwoJRc69eBoH8FZy4HEF30BqrjJaoGCFYIdwM6Ma2Au7+7eiUQ1plosAbJZ0PgZF28wz12qtvPh8F05nK7cF8wxEK1yR8eKgeShCqKKvSZH/Ho0Fy75wFheT1X9lbF7dLqJ0+1mgGjuEx5/6cLPS0Bpic/O109c/aj6HywZiEjDrlBDsXtXT4DGSOEBPSfXdHFfYkg6wLEOkPFcI9xxj7GQ9WVJfEcQ3R5mWzetAwqA/Qo1Gb6KaAQ+ol4DvAoNA4j0TzDmIGNpPLlGg1uFLT1G3qIajQZg2H8e1frLPcZflSUsDnjuNtFppRpu6sv4qB6nVjh9660di5SJ2pXgFgLKXzai59aF2+7ASie2gHF6oLf/0wtiBdh8u6dWNJLZgR39eWYhs2sFfsLpj1IYhNsadFaWGSRmXd195f3R7671bVx1BwtjjFydnKw69NuphRY8srzIN7QW4ESEI8VMdXtlAJsOWvV9W8FZGrSeyarKpN2r5K58YOb4tcWd7d4Ebsxdy7uPMgWwZavdGRhqM1fsG1C1S41fMvBN2ePhCYRHXXcDnrzVO8DFsZZYTNJsetg7dgc/lATqA/+NvdXgoKcyjA9ws0eh+IunHHBv2Kxm+m0JQSgFo3aG+IyfmpaFRg/DcopoDWXBnPuXeEoha4JhxSjzBJRDOqLXH2hJntCui0la6RA1BjWAtPt9+NmXE0A/U9L8QwA3irINQ5NXQgJULfZ8ACHoOD6htA1DvMjNfOmkI73TJmZwnmTtTfDNBkBjjcpdEuKc5z1SFlgTTUW3fbgdpq6Z6peG8lgRw543LVKSM/al/KCNzJ3wTcWVDYZVBneJ7Ea7LGR24x0BP2OLrp1Eag2vGwySR3m5kP0d9ItM9t2VuiNqgSBlT1G0b0m8BoCdw+tTVQVRSXYduTgKSr5zDYg2rAVH8CsU9WW3lTNTB6spXd1c0+zP1v+GpRScpZz0ZGvZpWDq1BR5018PS15AX1rYJ6mEfRiglsoGAvPL2BJ9Jec36JJcrSu7vKqL5NHYVTUrlqEjmTUVIEXo43yTXUcC9eB9z+yGX4C1L7JI3uqz+IqxPWhM+0kXZ/Znk2l3u0KRfz4/VL2kvgwLiip0EXFpuo4eaBablLd4oHmwCjm5cyVlnrETMAokRHVwm1G4ir0S6wIO7/MuEKSjqsxzf4uvaCCyBMmyeNAwm+ZrjFJ582ksKoDNtgjvykfh7hdsxf2bgVbvKdts78eqZDScG3Drm2lJ221xUGB8HqY6IJeHquxfT5qMbbDli+KbfWgw0cm1ixhTZ0k94wmVi0F/gcIljNYOXsSn4wM3vrcfthYyEtBiUSkMblsyIADaq4fifcs9MbYZH5lnd8NyAdfkXUkDJ13dtQ+xQYiJxVj8C6jMC9n77RaPIBPcivm8f8a41J1wr5OzSRDsHQ9DhDlD+mboJQxJyEV7/8QPheDDK2hpbGG9a2mqYD1J3+4DfZDgORlHUTt1HfvanurrLkp6PRDd7Xb9vovmXJzrKeVEkEld9+Aeq1tVhEjos5XLAspBcQLQzETpeQ0QFaxDO2efQLHDVz0DG+baM7h1uunmIkNeGHKHI9vCdE4uKKao3rmysTZLEkpKx1Fcki+01R3GOlJrUSVO5tUrBdnwJ+FcQmungzB5o3TeiAUCYDVkbHVLe2GV2ZUKhT0wQXrwk3nvvb5IFw+YDq/TrrrwDixGfm9uzeOMVJt7c/NqNBsHeo9SveabbAFFg2nZz5dM0thnMS1NiP4NrjiJ/WCm/hwB+MjrOe1Oi7ssVhnQ7aYvJRKoA9cfevzL2OrHW9sPlESIe39m+sMuL2+vJTvr3yow5aLtjV5zULJCrQvhdx+JhoKe1gA3VUc/yTGJoMXOrUfABK3/NQf3l1BFW25WUbz6fhGevvSqKP1Q0lWj4QhV49AsLAci7YJNy/ghtq3dmMArEHDup52uS3wZWvHZuSmS6Pem5o0QkkTUBxl+pvQAXl1Iuoe0PJ8wGrrVQ3YgQO3cSGQsDRd3jO3oE7n4KdRldj1pWceT8j0Y0AgJd2PMykLs4W/QEmy9w4WyGJnxCfUb3vhRa7uLN3SRYI6BjvZUCeGluwLsb7NU+v/rG6fSGViGbEOsKLx4wnEGVx+YnluzgIMeNG2YX7EhykWSEVxuiE7dLFm0K8XGpsfnm8vOCCuY7zaxaSLFQKNlUqXd89+UmAPaScQIFuVYZuZsftRLR554EKr3GDKXV29G1v3T9toSN/HYcDlF5CFCJHf9hmv0o48HeCOLcFReh4UHAsIqNoVuNb/Ts3NCY4sN3k+2GwALmqcGbPfWuMq0XeZ8Lrsi6D3PTl9uJB8VQxHb5WTS1OOmFC3Fm7uKcc2SMO6V/AwKfwFwjWmsbjERxktvlriYP1UXgDUbwkn6DqlH/GQTKWcS9FOORUV00IFdtE9mL+sdClRobFnXw+AubhmnBc5ygf0oNKcuEp0GgFSWeAIa01xR7EtaGDNqv9mAPXuXNlcmlTV05rz3xLOFxswv/2fhHHf0xz8eod8Gc2W00ldRTo+w7y1dlzroRwKK0lqDgB7fN/nB6aqMmfRbQJ016mgS79wH7bX4b72W3ya4sfq08L0Utxifi/jL4BL1wOKInH0uzpw74sFcBrDk7rvpBa+GXw4I6B+aItHoUI5Uo6DCeIdM0bksGOFvnyqstbz8Eq6jKMovcO6AGdmW7e0MW4BAK5g3+pB+34Z8TF1/+cRKXuazKhhvjqvdx+JoT85ysiFthYFte5keo32QWwYUdaDuFSOmxRVoHWL4lCJrLRhCcTNcLwVf2ZmGaGJCRhL0x1XrRWg+ClHcZpzAGBwaM7yHXrIRoAA8/VbZo3b/+h2vAX+KPjtB/vHSTPuR1ftIs4A/Yx4VhDbczE5tZureXyd9jISn4nCcGFGfeidGskZRqiuiDFJOiOw0NnwCQJoGJYfzQ5ttnCv81qOBT9Oq0OEpuCUm7QFNM0QN5uTyCnVS0H/ZkLAG+WQ32Bve3jbKEbEWKQKp9yBX3fAzWQrDWgYXwyfr87qaW7otUuxfEuf6WOeHjqK6aQu2+dh6DfTCbJ/cuvzW3lWEE/4lKTUMSFu75+TP0J8c8og1KbWtTrG5cGrJG5qIp0B+j7tZpzLJy/q/b4SRsGMt4n80uEQDKitz089HVGMnj+YE6wxdlIUYs9B9tc+BnMtW4PQ527Q7gRq4klhKlwPHuciClWV3zoBnIyfi0hDqMN5Iw++gnBp/9sNmvCQyFfa64BnSUSEf1Krv5iRorOcF8705jmZ3GnSogFn0J7Rrpm9URitewUdPGFkoQu711GGJIEyriKwYlKUGylV/2DK4Rk/061924JtPHvUWi3dIDzsGyGOUUIaOqKlDWWGoK8vhIKUN/1Yn+hxvYpcu72ZudTTp5edg1MPK1gpNP/hk7MjEChziRFJxvwK0mzHE2EvWDNTjiZIy+NgCDO+rcRykwb3gX9Ygln8EtzcpQyBvZwmRg3ZRdiK6ggTvUgcc5vDzneDLM6jGuIuSg6mYcOkB8PrWWbBlfU8oJXzy9zy542ibyHtiNtgIAyvwfES+WqkdYH1f7W3dhNHMRmKqsC67dsKuUp57n2tm/gtSCN7hqodh16jZ216uhMYWANJqW/a4jGfU+6uF7za409LAttak+GM4fug36WjjN/XmThiM84vQ0vaiToujfjFieQArdLo4BqsDBs927dLAahyk8ibJ9lRrEA1+5zPBKBM/4/RGAq+9JJn/OO//fcT5+p/ux8JIZe5LRYzK2cyDnvAmRjBOgLHvdp/M5T1ZCella6sLd79tkILTjVE8L6JhyX6O83+j/YDIHGEABKsfYaw48cqDwFBq9jHPveSiIIJKHlfADR1tpCvr4T6ni6rTGVMXLdEPvmXlsStU7LEwulk5S3LKu15EyRW9rnLJFHQ2OtKBnPJ2rh3Zowh5DtLavI0W/LjaNVGYXu4dIJ6Yn0y0byH/cYxjZlF5UmO3/4bWE6lI+xWEA93RW2i8R1VoCLLFJbTIR3UG07sjpaYMicZn6wgcBSzN5iBtoAzqV2IQQrnWu5e4QEdWQGSiTLG2reFDLgL2pXndrZWgmws8aWPo0x9K1lIkhqQUMvC10ncCAZYwdwUVh23W50tpBdkRz9BqWa9265b741jHGSAYVQnqc6xCLiWnqnZ5QNtaD4sYPvNzV6CrSPB9Du7JR6vXWiIdctDUt/8I7dnX1uhfULXhgjm7/uKrsfQZsCA3QBn3sF7f2hdMS74UDNSrlGPwQ1exMDPVG5GfMH6SuFFJGqBdQ+y4KTK6Q4POCDYPuaFclWkeHJbYOD1Z7k2Dg/tLS7qI6S1gY+OvWO9UiGH0lVw7nDa8omisDn50YnpSVfjU3Mi8QkwNXTpjd3OTvoywTzADNcFWeTU07jLqkpc4i61ygaWnmM8DzKmokL4eoOIVph7p4gZ9ZKtnhGXSQbeZtwQIBOinjksyTM6VhLtJHQZGUflQW3HfXsVokkFox0n5QlAYjYudv0y4KnnobwlvNUeyUm/GVzXdrZZjnNN1pl5LzVrrXqaMQb/+JgKHkNoggp+Z4FMCpmNu3m7YpBWbVM5wSHcKEL2U2hZM0G6Vk35sMW6qWG2qKXgH3nmRcb/nw1cPaAsORUCahP+o+gNGhCsuq3h0np5LS2lS6V/sMOH64FJEbciVEhNjnWG21buKGJlmg+eJJ66GX4Bs+RHSRUH+wbTOcwTis5mPbimE6CNp/ClWouftPfNfeuaJvQN2MGqwr1rM4Srawb9X3EHOakEwE2PtT/jCPD06+5Jk9GF+SNn0MXDidyMPucgynYZbT4R01dgK49RP0jxC1tDXprbN38FMYnyQ9PToxbqgRVBy8lwwh0jJ9KSRYJoHF07c8S9KXFXqqTg6224IRiZIuNNvOq/u78xSp97PpgR4iidXwhOp4PHWQWiEI/d6We1d+aByje4H91ogEKcSQx8hQBw0Zv9wViOTvgGMMCjWQz5IzsrAnCwqzr/QmrEia+meYZhNgCEf5+iYx+U/DYzvn1wkOa7xuBitizHVXnklUgtasZ4Gr+lARkqGfrRSyZQt764Xn7mBDxTPXqU1DvXKSN5KyjCuKNtmSmKa/DgJQd5DQBgjqyOjS7rD1O70iITbEeg6vAKjX7HGG/qVDyY1V42OG1ihOlJxMZ0WNvhS94j4jTsNwFKgOWuBX1+/FseRHM4YZIdKeyZGAnpGYHGV88umONehLbJs6qKhZWG0jhm06L8W+TV1eY8FhFeH8xZrQ+MhEnm3w56mz22AFI+ugrvFiKWV5LmJ621EMTDaYhc6uEMmPVFZqfDOqss4yUha/q/diYXVrFkBhZ2aBAAn0utSLPAAcBTUWYp9t7ON0+rGmFnBXZidtgiiJn3207EIW3xXNfBF2NAiVanY38cxkZSHRPwMugAj6RfC3UXWMu0Bf8tw7qPmjYclIo0etTp+Qbys7C1hunPgSqfHI0QVGwz+bwEQuqkJ3Ef3vDTUYm0P8brhJIF70fpr+CwQ7LwieysCkhGerh7tr4G8xacwBkw0Ksvtw9h0Tobd7EpfDLi8w+EcvLLeg4MQF20FgM6s2Wq8zkram7aXc0HQTGEBhc9MZzSBZgwz9081xjxnPjvUoULNRJo3zOVHdo5Nv2XDlMZvDhdSvn9ksYEnDSbOSZKCPbNbO1a0YwxWqTbimNG1JG5pPe3f3qTBom5vl9GJrdUqRqO3+hp0KLjMT0owrrXezxeJlQMZL9M/JtH3TwsXsEL8SeG4gaoYtSHoQy7b6B7oIdu7+ZJcOcv9Anm2Tvg21QiI188tZ/MNWce8EdroUCGPuu5PBJeD+sgYnZCFKb49mmwu+yKErQv0J+U1h6uTAh6zLeRGgmejspVMvhDkWyF7IvuPJrbweaKWDgTT0tbYrltDjCdYfQWzoL6ke5fRSwG0yJbA5P4w9HnssGKaAb9+9JdgyHFQ2Iy48KvxLvn8t8zsIK+6zED2b0UXamYSpIVxZ68wwQOgEQbTFR8GP+OcLCM9ZIFWKsbav6fgPAeQhVc0E2SVzze/byjn2jVERWJNVfbTxfjAKJ4U5UTdWNT2Hl/ARyaTgyVih7A61oYSWJ1zlE++3HyxamEdCWbiVQijXh3PRkJH5GJitwDA9xfwK44dkiG3PkpWbfdWeft25gMPGg424FNuuDWUmRqRxqydN86HeOyQQ6mT1beukNPfxnNXzI1+QTtB6glSgF3fzJzAu16SxQResO/fnBa++QO01IACx4xxVIkDR44KCXv750RQfoW1FC7c4fp8cQVZqHxq0GaOl9EjEe+ei+ibhHKkbMuiD7F3+bYr4v2pUHRMZ3PBOkT6Oleg4DYiUZZektfL98JV9apJ3J+tkS0SexZ9dmhAaOzENSAttYB8ysmMsvmY0IZMJrr4uU1F96z9X50vUXHyIO8kDzT0dczHgUjoRBr31eUGiOH7JzaYgdWwSI/TucnsNVsHG8O0zFJJqQOnPs+LwR7wS1+TtvQOVHCsQk4wlJPhGYFaptFAviMBfGX6FqxiiGUUHWlbX6sb/eilJ4XJRoZRp67ilPbRpXHMplV4K/dg+wNhZaetb6htnzX49wWu27JS01zVFih1zjlAemwi6Mu99mDySQ/dIS0kP6QheDxCJ0l2gyTFHg3g707ixTg7fHsC3VHrRI7uMfLcp5Zylq9/PONv3FjVor3qozDlwTi2sh7s3NNDXsuvX0EY5QEiDowZ1yYcIYVXc4Rj/riPw2hh9cDMJ4rwz8Fwdhz2B86y4/1fPFRKtMyHVvJ7RehHYk51fzgnYsqnBvqJcgmZ7HAXGADccH8kMGqVOumjeCqiS3kHwvp3nUVvpa/sake5DwLTN24xpTkrk5LRbbix4A3PmK2OSbO4TycUDfwxvyJBprUFvHlRSujf6HjaE4uawFt6se5qzXtU0GhWYoHipxq4ScYAl7/V3kouQ5oBohOiXYadCb/hZQybtHIacKgl0lJzGy5wFRoBLiAVb43RqaTgVeY6P7fwjUR6zofA3d7g4OlALdX7h3R5bOPq/4sN5enz78gQyrOk0WAdpBeBb7mmD5jhBJ4g8TwwDRBe44JFH8mWGDzOQ+v/xMnER0E4Kc6+yFl81b/d2qdqDHickIIcvvjdbCKTuHp/9sLYWeKCIc/oM9kw1+FR40PKWApXQBhaLaYw3hqBqHsQZmmQGDXC9bt+eMcF8pNodQ8Qng+NyDiw5T63zgV3EVJV21WhLMp0Muoy6vgGBPjZg8McViXtNfaukqvpPQt0J3OCds4LwANG2lmBbsvmGK/VsSgV/JuwM0lE1p+FfLh7puab/A+OJQiI9V1WDu8fyHp8+N1SR4g8RKO0DIlIUFsSfMq33Jll6+19IPtWnR215ExC+iLaVn9ILC3p6aPbDzgIHoo03GhkX68X70MqpNGoXPpbiTsZdk9Y4p/H5KhxLOTBc6s5I/aUo0EnAZJM0fBrV16t7B2o9uG2Ue6FA0ppLXnvY7vBuzMEl/ywLAphdgKxG6XMn9fbvvkKWOGcTDyp4Ip2smprx6bh/lz9l6G8MB2SsSun9m0Cb/NhBOqachuS8NDAG6j5PZ3dWn+pgu6wKJsGcJzDHIgDcimQlMaVGy5nDnpw62vn/Fodtk8GImLQH3im37fG3lpUhxd7RefT1uSYva5NZuqsafpkoQCd33lGz89mBUSDX+H/X59h8V4wEQTPt25maWIZpKLqH8i4ySQzwxKebc6UeFJQL/1YsBlBTVxzRIi8aNAKo0ftlSVrNzTCOMWcvVT7DXAOUWsCVTfN2RF+DPpiyXbgNBGHKjmDDqtCsycPKU5/dj45g9wpzJmswJjVRTabF+fgEPaDsqr/ITc4BCNvit3IpILly8czSVDTwLEOCwDTylYStWXwiphvwg9FrMq9m+mdm8tovOrDdaN8k5cNaxgf3bA4TvPHF4SRbfOpwl9QXlxezHyLrbl9QjLzBp+WMBphkoYwhxWYCdh3wCWrkNVFj5jMQeXd2mejazCGPLowbJaVyMPTpGdEEGubiruKInHcdctI8u6gJKaKFdWjjva6BLANGt2aymRYooCEm/I2wgQcbvnMa1c2zz2CZQFwyiH1fW2fehA3ucuMJ9EEpWYLDJVav1TS/RR3eFO7eW0sCvYGhLNsw28cmji41ABXJavrkHEPSa6ct/mk5Un5x4QpWHY1Y6AZ6ic5nLGsCwT+/OmPaN0W6LTClOtfOWFXo+D7TBwf+fa/XhlWu5oIz79aivaqTj2i9tsHP7agl5wMFFJBYjHZgmsyt+EMDxpzbRoddIOzt1sadB4gKKCTVOz1y1e+/YUKNci0DFTpIVQ2M/EhtkENu8kWsJsltsAkriAEfHiuQ1OUo97EB8/GfwtBLY4vBQdF7zdxsTkCEcX0TRdgu2DWQSfaNv2gP/Uh7kVLvSaDFRgX15g7/j1i5W0u4COtEuAE3wXqDVxJRX6DEqkHds6EGcatHFxf2rE5+70j9ELh82q/hCPd5636jxD5saZrKqBDXs8h3G05VzWW/XkB1C60dYVGK0A+V2zoTUxIV7RJ/2JwNxrLDvi8PAt6K8sqdFpdyuSLLxoA+pwbtDSHEGQL8dIohIn/4z14ODsFB0F0jK170qCwE6WT+TnaooeygFF2ORrdxZJRRTzJZB37IQyxwbpouR4ctlf5qmDpTL5lxQ8/za9XtMXSTdAiRDsTGh+5opB0bhH0jzhttXeccgdXXX5L2dJ6EJjKSdmnG0EeMwzlTXGxhpEFGlwkVfqGHZS09CxROLkeKclPx6Hhf6W/TqMmxBliXKryEgIpWGCOFr/8nXKCXzQWNs/PX+s6i/0YavS4cVLJL8oDtoNjOCXoIdm0L+ega2VxvfKrlwkfuTLtcE2B3X9xt6t0iZRhFCb6uDnH884edUimmOR2Y3DvHSduFkBhGd/U5M0sWkyYA8BrgOoZndPvxp8Sf3obkstepBYgACSI27XWMuXHNt2DXpkeONbiCpU3MGMfQxF04ABfKo32uRuqFiLGs2F1ekHBHf1UaCNeNlrGSdRGPtiIWlqaDTkrjWlcSp5+abaHVaBLCvuGSxEXAHg80r+t3YNnZhtJ8yFlvu9NTKwhA1Xu0beK69leHsXukHMD/Dy5pBgnWlhKRgWfpgkuj1bam26BgwM7xuKIIWLTE9OEJ1VpxClZelaOQtnhqMcVL5NQxyFIGBC0NkCCuvKyJBUEOBcfGoU6UQZQhjM2ZMQ3OkawzLQy5mok7pp/6ECcBUgesB+OhL+rfSb2yJ/QSs8dYu6CL+OV6n25l++lfqSZ6D+HW0gl/ox4YjKmHMehNswjeR4WUb6gbP72uUDGAXB61IP04VpygYbO78kYi49Yk0CbV1+nesGHyBLv7JZ9L9ohZ59hJ/PSlfrBuZxfs/r5+TepMCyqnoso4R7ZoP8XS+fYjSZESqJLiVEqy4vp2CF96Uw73r5XvQKhjKvM5RwLao7xd2enedLOy/rDpuU1q7gCmAGtUvoDyO4wdGeYoYrzNXkVOxlQMYsiOC2hdWvbZ++47NWr4pIY+3bdkzkJw5heqrXYBwp3E7IvJkBlcFbMOMCxAlGPQfQcX6eE4OqPBpvCx94Vq6B7jZW8z4f/8GqcDkVqScPq2nhE995jeBviQrCetDHKjp2cQT2GxKUKi+2brlQUdO+ua420l/tTR6lsEwVgnMRVwkTlecPkhao25Q73GJQwehwudD43SObMCSbBaCqCoBOKfUubEhTdKuqZqwDsr74ri8HWa7AjcxhVCcgUmVlJn8QQbSxlsL4Is4H+oAWnOcUtw0X+at7cHOPneKRRh8yiksvaU09ZsL6TgEY87Q5RSXd7Yoynd+LNSKf8UZA3EACD1OgUFpbeMEq9fDof8k8l0t57EcfD3EHi/Dvw/m5bzc7R0+lqxYaNa4qy5WHMLe6MPxb4SjSMpz6vPhEIKRzrKjiuXr8hBxV+XZVXH1BEAHAvkK1x2gYpcd3ozGnjHaEjhLBy5VjnfLWUnF9E7xJUH4AJjR0JYg7foml5dzvkA5JjUi1Hx7QJhnv2Xf2HtqOX2m0+QjypfyVM9BEZ92iHMmO/oVg+IGvmdunW1/paUy8wt/QM1PdT6Nau/G6ZjA/C2bkohuNPZrieQkQcUzk1LX8E6cn4z8abk5SVnNBbeLFEhBa4HCtoMe/ySIwipEIE5KdvdCIGnpANHPro2jY2KsaabxfUYhrIUMpuH9EFyQpduxLIHyYR2TFsIBASqZmthu3N7S3qblVRP1Rgowk2NRt9qfmsm45GQqm7xJzZMZ+xJglvvFJg0zFGa6ax8OqZAzVNHq6LN7oPaC1mTrZlHKX9iURm8mQG0SeUKAh6Memv9JD7Nbf+NqkKVTHXRBv6bb/U4UZQQrc/AhgC+K+YUSPhPAwkbmXireZA6avI5HoVFgr/29IBU4Ir3H8Mjwl5OIzuYgJeYUO1+mITwqEBGMRJg3SfjgEMCNmSwr0D4NzuM/n/DSPK8Dfh4/KhFgSWdX5Qzk1OYvxG/Szov0tmMgxNkDgilAT7GZ7cpIQILZJ0zYFgOXeJGns+/EPWKR4TxJedp/2W2ZELBT703eFbgYPE9i8I8RqNZfJxA25t8EOmAEOuhocBoF0+LvBnekIHnMJuBQFySx6lteZx5wwc6VkwX/SOpJgay3JO+RpQmf8KAGpL/jEkihKj4yWb73VS8XBhAfDvQCA2IlAoFQ84htHtPuwqaUpaNtqPeFh4bJdo1FU9AD7+hOMynzHis/YNTQTb3z2d0M17VXmk7hTETMGyHjaC17DEHRZMKtH8U3Pz0WLCaODBZnXtmA0clztaJ2aiBay97TbEo9ej4dogzfu44Z+gN4xo6KwSbtgmUEnqQdJFzBj68PvX0DCS0izVDxDJEa74AFcqAfuAS3ezHVvg44O/C+1eC+GA8K2I1gTm9jhriaRpaH/IA5eV6b61EmgHeOyXk1dQg8sELvroTvSbuqQcc5aF/fNqlxAAdmdbTUhDGZssZoAT6M4cI9HBkmD4JGBfBgkFxCCP8nzZCehufE0CMwrim3KMqpoitQzyvwh8/0fWEbu4oK22gKHlRtK649HvuvuNQyvYl767n07WQ/PTsJ+FM2gc4VKE+HSpuMIVWI56loWpnRdwQJ4x1FLDTPkP9CbNGEThjw66rLwBTls70y4AmP2oUrZg3QCbDvFTG0G1rP7mri6jjLVMC1fmcJIrOT3idQkZ3CG9giyAbVxjFNECVOAP82YGUTwH/erzm3oAM6YG6B6ATbv/6w44DNJJoQq3UNeLWmXZ9U2DY8hCOgOw85vD+R6iUWc3DHx+hn1UTGBSG0qS2x3ffBMhkr91s5tW6aHM/xRWFiuuH5GLdN+nXV1y7RTc8/Bsb+6Ox4TqvrKdZc+EoiVxxT5WW8ROmY7K8wPLWObQ30bgLR2M6w6+CtjZb3LkAWx8qQcFyZq1crGmVpkTG1cx287OwGrFPE+kddBpOg4n/FlzKdfpJNJg1ISfmrDLt1Na5RNiZeO4HCtr3+vWlvt39hxEsus6eaw1l+kEHJwB6SPk+dibfisXQdXyHH7y/BUXoaRSp5IT76D6Qx2rGFujuJDWTtklL6Bo/dOwHNxYy47xYvI8iGskB53w1gR1AVOF2quXJ118L4LSuSl9AMaZZ2tvvW1mTRRueSYt5tXjJMCmEZxybl3bzvw4HGyQwGCfNh8Q9lIYTAfHVEdFNh6QnXPtfycM50/6jMn26zEl2iS2DbR4A07HRo8eYhOLHCzG/ntXwWnrXKB9ktlSV06PXnj6UOwGQT/eF2lz3xhHbwS3xpk1PX1zJISp1DbFzdskf0ok4Sr2PbaVyjmP5OYW3ITIiT1wG5xaqZQyzK7jK1pOjvFwJ+DVQ9gRzACE4UO2YLiuvn32ppgg6guw6794lB7T+pkTXrQ+HtjxddI7tnAh88k7GktqNrlYFrkfz8ABXfVnxEsmJB1z+6B3wskrZKcyE6WUlT9REoWjwX+65S1m1mvDpLpffopjpglBkrBhqcWfWbGQtW0eJe9jN21RfgJhNebCyQxB+A+vgADGexR/ra4Y2mTmShcQnEe4ZRqOKpgZbDsuWUfGApKx3B8EMiBoO0R0pFoMJDMX4q8VvbUFR2yoz4DurKBSMjZNVuUPn31S0d7v+rnJn9c9eZPIRz9Cwg6logQks3k1b6F4fV56mCqhpN5CaRuOXBHkxmej+qxE44Se0Jaxhj4JHAiYv71NRlMJWO8UUZRBKNNhOa3891cSMu2TabSu8fBRmCyNvV3IAZc0IUvHyfym2Aq28wm5055+H32DiCLOX5sOb3e6Rxda3QhSzKcGFLmRaJAT+RqXVhdwTFcRJ4ZopJZp1Dy11KrNo5O3wRdPp4luxqsJxVUwEfs0Q5OO5ikqPMC5btjHVZXQz7GXVe1fnh5X0V+MBoW62UzLoks64H8fM7QU4KjkyMlhwyUPRFHt0ASllcKazPZNN4MK+e+CjVluj1y2mP7822xGXq34qdNCUD6F9yV5+wPjML32vhk1ZUq29YT4HhFh2c8qQU8UE8QWYvY+5HeN+nGh6p+JkrdV3M42OJHnsvTCTB/eK4R4unnEo/EaMQZHUhPvmTwiFpAjZZgDMdivfhgLONBfDMC834jP2f3BkuXPbBQL0L
Variant 0
DifficultyLevel
570
Question
Rob receives $20 an hour when he works weekdays and time and a half when he works on weekends.
If he works for 6 hours each day from Monday to Friday and 3 hours on Sunday, how much will Rob be paid?
Worked Solution
Weekday hours=5×6=30
∴Wage=30×20+3×121×20=600+90=$690
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
wage1 | |
number1 | |
number2 | |
total1 | |
total2 | |
total3 | |
answer | |
correctAnswer | |
Answers
U2FsdGVkX1/Hw/00MiJ95bBBL3iaPWioG2SZ2gqmTgZpresrpX/n+Vr5NFJceDZ9R4xYwVP5386SDk8t4OMkdf8whFXJVaKvNp6ikVw8oq9hwModnmJ/D6n50aI9U/6bQtsM4SSfMfWJUTFuRCO2bdqap0c8Ynv3popxa+WbnS8dobSLHvH9MhY3FGyXTCzEwjEkn4Dq7HgLaoP6s2mYwq6r/Eew5LILaeshUZ/y3zQaYJjxIbDuCuw6oTWnwbLQPqfivgX5GvlOY6bURtERoeh9PyZdiItHmPtxD1T1rQJUd1Q1g02d3H/1+xB+x0Q5pA8Q2dUMQHnRLmFUAaMIMI6QCE5TP4N59dxy2Rx/bTX9cRX4c4QixXKSYtXbu1Yr2ZHxfDuxaiOx6fo/9stOTfbZyvRUcdpZ6v3svpIrhC1h9onDARv1/ibbXGQp8zihq4R/mw/rr8tiRoGSdbBKtyCHwj1EvOxHZaVi6C9eLBNWu3IU4xX/jfp3L1oioGacDhZya535OaVW3gaV52Wv/k0rNZapx2nNA5XN6fxTO81f+P5RiROm+C6AkdTHGooSlshxGi/6GqpZo8+Kj+WlSl9I4nRGRp2/CWllC0C5GdhC8enEa/QOK3ghfFEoxfd53wf2hBgGh/6u774K5VJmClCtkUl2hyJdih334g6asKpgTdTXH5DrNITHaccTM/ya1nFBej2f+bCg38G/fEUzu0xJtGiNhRYfw6S+DSXrP4mJrfA1xT1IXQyhpVksPx3krShv8yZnr0uIYcaTGIXwnP+mGGpZ5DEz73CyW6qfw2pyZDyyK1rITgPRX3gW/4KSkGk1VILuGsobR2QE9ntaqEH0WRgmHgLRVXRUsk0iTJCXkEpHaHbytJRVbCFHbpZa5JOW3kBKjXD1/wyutySFlZWNuRWdeJnFgRu5EWtkcqBxNtIuROF6TunLuL6vrMbCoJxm+TLIti2Kcho6NyXgD0YJIsr24V7uSRRfzXhkYeH8FHzivDlOM2cMr8YaFI25aJGtfQvJY2zgaHI9QI5WaTk8THFK5w8qsAbg8Z6gdHhIMZZXsJ3vv8AW6D8RNiVESCopwGffGdVEj0tzh4yDcVSxbyWLfgr+8orj15pJdgbGz4L0R2xq6PvuqkAw8WLdGOT+JXVrlY6C+THwgUVwhS2oGSR5uEQy2fRHL51hvG+xds81wTj7BJalDlIGECSm1pCKAkULHlcTjfkv08bHvuIHW2vnwh0G7esX+E9/OqiQU/9OTai7je7ROq7M5Zvis4774XxrgcDZiq69b/Z/f8oRxfO/E91R/CXKK5RqpntVkIwAeny3LSq7+n0oMUloXqpP6xVICR9iEn54B3i2Z39NVvK4zgngPKGMDlhjE9y2m4bWUS36umPG2iHZiXKsPuQqC6uzFEQz4+f5lJTlcEWJPqnoz7qrKkNwPpxW46Ih7BBUADpYuEIhZ5cN2IdOcjOW0wLyJ27xvA3i1K1vzMdDzhcE848H/XWpKmusBNU9BHhXezL/+mW/6FbRuFiXmVy8JMRZg25ctDAHuLxtx+1AyM4f6Qb4PD4iSOQzQ4WQx/7IEaYkyXnO9VdRA/MBFPF63713fYhVa2/WCUoc9mrO9a36/1EhZn0zNT22fk0EQgVsZ/nuVJlJHpUTSSNX9mG8Va8zw2wapWSFvkZyas1B0wg9Tz7vG9PxgJwQuMIBuPHRzJSp3ogAoh8H8XODixZjEsETP8rm7rH6tVspUgwos9Su395Pxazwf+ROVYR+S4RnSuA5hdItiSrQApOlXf7l2tFnt/W6UN3LK6M0I3haMhfIAQvusZvZPHBu4gGwc8TxFQOJhREcKS0HkkI5Xnn2Ege95sQg/KLEIpIgIrBCclp0WoKixVuCcQn/JyWm8sbZtZZN6Ax+a1TAAv5QmaKJqpv2uaeB6DrrQ1t7tSEbcWRc8QCssr0oj8GFFB1ZbXE0sRNWsKyuzXPfeBE3ifoqfmlk1fF8ihfEQrxtFe0cogqcRKZOjNmZtBOPehvZ/IBvewT3AaB24EUgzBNxQ869cQmey9pmmBV/r/vnOxa+tuCyt7AtC7gz5/Ra/S7MogqFz6Fb66JyJSUokB9ySC1wEf1wpWoz3LEfbdodzMFTz9wu5M356lGbIDNJ8NIwkBQO0/63JYoQeQ6t3n29mk42oyG9AEN5dNYRTpFl2NTF6FZKEcqFFrVGopzjaLdl9Rjnyk5WiSQSRQF3HbDarbJwQxIMeGkOU0dc9cfhcYjlieI0mYDq151JQLRd04Goh6ldMigwaTuRkkVr16syJ5uVyNsRK046GLNAntdOqYt6ygNERXcIwxIuClueRqDvftq+K4drmoNtA/mTZQRkJCQWSm7vpJYp/kjsjGFjxgH5yHn/2qm9vu9EB3EMMdkpEXDDxWpQGcIbb+KMieozIKsavwYF/QW0cHd9/1BHHCq1Uz8x6sVqoa1PWdyvj6XQuOn0x91VzSdXyZ4KMi/kZhJXLswL0wZzjXuctEAN1fMDZK6UcSy/AKy5VAZPNb6oOZsfHc33NvzNZjkglGv9WT0vNyHYt2V0V0ZriBPoFOAkqFT9nLkR0oMAgka6miD4Uf6WrER9OVu3KniGQ1LbOyVxCAajCQkRK8dQHpgfrf89OU+r6GaBq3mnXyBva5wGVjNPJu0z0GXPMBVAZ5Vk19VdpO3sZRLX8a93Be0IzvfbASi/4pcol5njorvVognKZgUu9LqjpRcoJOv60YAiCyxHtjYo6Xt/44g2uGUtPIKKU1NT4zWdUDszXytRWHL/i8iYKfneMqSJW/R0gddSBz89X52kD6FIrBE0olfI4bNP/ssAsLySu1uRSXqFV5xF+seq13HGSmXzHD6R2568qkSMgJtAKWhBnbm+TG8cByUr6sjalgYHBkNvZlWu4S2LUlR82tnzY0nK0eTGCcpfMOTKWKgd3644AJcWFcTKeKzIe2tWCrCA7FyFHRUEiRMOzgzOSeS6YtgpIAz1THP5TT5a0aIoltZYRCeIC1naF/LF+HDYw+0OaRjft9wv51a3xv+8qxFzGMUUugahQhg3Umau5ehJjuIfAYIqE+aYJQrcXpyFl2D25KCReXVLEnhOQmrdRcZYT1VyscT0KBZU1XpYuY/iffTyzLADg6AnBJSST3+rQuHo3R13r7Zkk+iTYoNFWnzZLBK14KQ6vkOnyYh3dJX/uTx1Gr4cq6jmtYM4LAUJStVoLJPYvwZmYkAm1ckjMEySpZuGIZTGlVfdqUNIbunFIfEr4DZYpbHPugJCcYo85UAqOP5HX90KxmKDSmqIZ07N5OqWVa8wxdENFw1hFBOPj4djMY2Lv57S5Sfjw9vEAe35db4nI+ZGxCJIUpRnl3gdner7SNSZPL9JzJujTPH57AsfGs976Fv+iuklq8cMYpVPm7Rn7OEpNyeUATzAMrmGp6fLVczUv7KV3V8GFREWFwggoVD9sS5FSammDhCRMsX/ikugTFaC+Lcflx5oSrIuvTkExaTt8VhFDTtBoM5LqFJcEL24apQL9da6JFewI0cbCGiHZN549io06NI0Dxf3B9QeKz4PPs06b8rbLFnxijczXDpajKQzgvSyl3FQTs6O9vlA99zRNjojrcqvHneVf5sSYCvWegu+imQPKS4SSAM4+bRMXaRPGyaSdCuSzK9ZZiZfI+6gKNp8uB2yUQdu3WmVG2wbkkmQFLo0ezdsHYMuT7l0z/FeiSLcMtFLipLZrsGGCwz6v+z2QQGjfIrOF9Qr362nnNWaexm1/k+zSVZgMwedBc7zTNI07semC6ubuz3y6py+kEuffndXZI/cLM93+yYmS2OFWjArYdRTntvsnnkX87carKIa64CZtYVdw31vtF6z+3hVQBOSV9//iBNE0LzlbVstkEGURXAYfnw/SSrr5cFpul1zdplm6MmrdIEMAKQcHezIeGSHQUDyMSdhDT5LKS0Y5xK2iuFmf6jc6ZQLjH6G1SFI6W37SgjqtjNm73PctkOoD/PLGVeYTVXAMWCEWm14+Qql03lKXNYmPB7wzuE9XXR+WgA1LSK81U3QMIkhpQvN+AXty4k6WLJihI1gLiaFgWcjHuluw3Jxae0DrOajkNDoXJ1gw4RXSIZdbSNLve1eYsAIITSxksHK4iLTbRvwalPOxioqr8r/e/1fq6XJLeBnGaJIROqZ1ANm++lewKZ1B3d2TlT/b/J0KrzXWW5ZLmiCyC+npaSFhCz8nVt9evlz7ICsX7oTXMmx+ZtZNqkXzui2aZOPjOSbJbOV1srqXiZ0heY5PdvGJnqpDmC3+Y9M/krtouCJAIL/x7fSLuGITcOrBKdfp4DPqQlETBHHSLHi2Oz3nskQrMmsCJ5QsijewIG+S+pLnZpp8dHMWqqlozdOBssvkAvyR0Csk+xaAiA1vo+paK+KaCDtK1lHQZFBniBjsKa7aJ+hZzxJFHS0TgC/SUr54RcoGrJxej+i8KrXT1FMEjNN6RaTc93oZbR4qoKBEZhzU/TFM43QmPIRsh6YwsQH2Y2CTb1NrfSeGUvKGpaEfrHyn/7tCVSpyNgtUfJGBx4U1bwRKUy6Bf61x+IKX2FLs7K+Jc3lEYAYDUe/ZvXEQOYI+hiPuG0YPjk0UyL7L+I58cjVLULytCSJj5T33qQQZ7IeZ7vSNkkeMKE8UWCD00z/EIVqwsNqthPb2FAZJObzbsOYAwLh/hhfNXvjQ16vihhIOuEQ9Jb6mt5xSWRyLYSqCuI7/H9oKRcY6Pfgzliip+cx2FAN3W9cWkAcy1kWnjUfjnxoioWoT7w1CLO1+dyKQSNeeLE76Hz013/KZoCDLEGSmQ0MsvXSj3fR3QHpUqvxHpNIW/gh4i1+P1chpufAzTo/m8SYhhhdHSehADelffIBaaiByl2rf6u4lNstGl+9zKCW8mPuyX+vzL26lXQhE9hLMb98KEGN6cpLiexxgyrLEgawkoJWuit6zyqTot/j24FVXngQNhCSbagngLDVCNBnJMr6O/dBoRQ+4hNITfZZ9RtkYSSzQ6rNyg+fP+tyC+8rtgmLCMUtLYs+QgCCCIB8OSy7Jo1jHjzXWBoBl1I11OfvQkNpszygtFwWhaSlX8MlaYmchftbDhEjRgTs/wRpmrqS5/xJtF35uSiDLk+3buY0kjyd1XOMkrBywmRgiP9PrgfP5QpeYox4R7OGKhrtcml77HfqN7t1AlVJFGhpCFFIp0Bq18LIhECm7Bp8Xj3Smfpy7EHGzxgrP2jQHMsDzpE+SvmBtVT3AVzUD5NdvDhhkasYA23DvgrqX029+JuzSGGUKQQ6wVX9Dt8bp0CR3pa8W8LL60dHcbqfPVwCs8CPezTkSIZ2d052HoHvvqsmiVHVtqSkyAMGOBW45JWg+52XfCTKJY8R0cArbNKLRd51sa086qKzmIoZxAwUcF5PGxgY+K+tsCXZCKHLdkQGdpiHqs6Il2ryvCyraCYq4aMIski4Y2tl/o51CgAQq6ZL48JIr1jjOI5Ppd/c8BKhFe2pRDqKpzlkAYLIdvzVBsRlh5z3mFCbkPK5H5Bw00p2PLHHzjVZ47PgmHzfQ3Ii0gCpSl14QCnFJkKp2YDnyxHURFHmSKgurUplPTbyKvfoDffNLMWbZnOUQjUN9ANyNOw3Jpl/ey2x/KOiy3fr12pn+709t0mPg3MRlNRgOLve1QqLGK4lanmkGkmMHAcG/M+AS6LMs1dgrPfvh1RMhXVWqMVeE4rgQM7OXuBA+7sF4msH4LIkFnTQKwTWjr4+9ZoVycRg4lyTHu8yQSDl2+/ynsN2/v8XqPKAUi1FVRg98vLqrV2XtQCRiUhwAUVEBSXUthOuVYX68PRLZ8AYL49oBRtGySmgDV3uSoERPx+ntcvqJr30yPreYP9ko8g3bKfepDxviXOXzy4wtABecX/baX8H0NngYlGG7UWwrLAHlYun/CAMG1nzDr/dYqR7pfWlUvhqwJJlOTBCOBVZ1qXJ70OMmj0JhdeG0STH1yGp72aHmTtkLyEksxCaSYqA0B1uGCrt7T1YBuz7Gy1LnFdYsWWnBaY9w8H3sfw15o3iJ6hsYlWroIC2vS25g1pbtmz8NQocLvvBISAxtHIPCuZ7mfYfKWGjZhnfEldqkpii9Or9dhCBzGX41x5o7IuVwJ6dy5f4/P9vQEC146Mr0t6Cve5L9dcEZAdmJwlqanZNBSxBKcjCbd+w9wix3+s4uz2MuHyyFFbj3iD4QrTLnx2q8UopVksXmQklME9kNt+8Yyig6fjGRYiCtddGoJziKfwtokdCyU2zcsKnqkNaOdYr4OOpho8INYHQGN9Wkr1quQEgxLZjG93eBrIoTN23FS+ZJ3RQSJ3fCqj1Yskioq+dJz86ek07+tucBJLRknMB3nQWSX8ypLDp1PUeDGEP1b1NPwxeCupC++oSyByLMmbPcjFGsMq6G5Yz8kxIRnQyPh5aKfH8qUsGU61p1mizghfvm74gdnh+uWvnsSJo2Hv748MVVhI45YJSMwBUawjjmk+Blj4HTKJWVXWp4qckME2ikJ1w9IOXM13o4vMr4sP0zYnnvja0CnInbt5pSnM6H6qKNW1PAVCD8setMDuRtO5lJi4gPEybZjKDAPNygzC2nd4TfGt7vsSetdV9lWHN9GlWN/6PhJZSgXxURMRW/2nZ7+6bxGAZcUpmA/WUtUhnQoztxnAiZsgeqVYfN5lSueZgG9GnOpU+DBfZ6puy9MV1mKZme7aglp+YxM9A2ci6ctaiYpJwZv27hgGvHXxr7FTJ4xMANAdxc9vEMBfuXKLR19YtR3Fhj6rqGiYbEXPZfTFSOviiIZUEoBovB9yv+xs26BI3ERWzGRR0k0xp4IPRHqSQbGcL5MpRPePNdSQEuUe91iPU/pJrRuVC5ivJ2FiQPCPnLbVtOiXS7YQBX+lmzwbrQhXkHwVYEBy/R/7Bo5c/FjPJOmtTV+mTNxKskpgT59BU8E914rx3lBNDFyMlxorDn3cfytLTPp6/kxWYMqk4pS5r+4HTCLpz7urtwCfFENkjvk63uoPko9/+p+bC1jR7VYmZpvSZh9BaM6mXckHPDZa7d1/UqMOfcAriEl5kU2BsEXCZQG7QJG+L+sN+NloBv4WcnFHAfoI82lng4TGyMK5tR/NX2oK+m21NIczhWCts0HlFwlK+vDdFqLKVxVV6dEkTf+jLArZ6DiEXSHcCM2l45SYypch+ClpWcfEVvxrQFmZwWevoYn6EbtsFLgUSUwmPDC0upYrSXzIrrneCpRaewFPAaMLo2lld/fnY0UySIAHepmi2WdTY6U4+SJror2warAPGmNQZGZacYjHR9+ggP7hOTGp4HBf6Wndq76vOebEo5/2IaMUKgIyUQnm83DzoEuhuwmpK2XVZRu89r/wSDns+PKkJJrsWOs35xtK1mIqwogiSh+DbHG4d/NVJvtr/qbvGMedXcIuCBhOuk34JYxVcHiWi+2JMb+3Ey5E2/pxHW/tRixgTXQR2+CzUIf7PYnp//XeJ4GCL/JW6RDQeswsJRtiz0xFyp1ojfLg0x1nj09gSvh5X+S1nOK92lMn3FCPx+4mSmr/mbxsSgwlQg3DqiwB2H1S4LDGAIfuBDwlvx1gLtC4CeFlMgpFAofALJvMnfTVIKTfUNQmaFp9cJUWA3LYkN5tGfatKctqxG1yQ7alEgTBZcLwGNERuNoIaZraYp669tvI3o06mqV1iWAHoQRDsfU7dE+6Nm82wEoVl3mYOvlpzgWRPbmbpov7gwVwWbM3HWxSOk3kuRfmxr2+biTfVQo1zzG9mVzGrMIcuFg6qTxJ0Ylxv3HTk1QXcyvCCnTFNNTtatmMSANzBr+rUOr+kholMvBM5zZ7tnnQasvxuKfhwrKG9ziUxaeU1ZDhDuYIUdLxZROUGjMG7dDSbp71q/noEYui5bAL3v0ysAlMOYG6t+1hDOrB4e/foopZELB5NrepGbJhX4aSxbh9RfGfzMNf8ezxCWdeme7+nk+n3q99o8adYdwBH8zWp5re+Bl2OME95YpAqATjP/ek0Z3/efWEziEik6WAt8AIazvGLpXz9wKtWOW5OFVcvuwwD5S5Cg8YVQ+XlX14uMgv/FNkYUf4CPPPn1Ic6BcNZCs2hNBpzA6fv7RVpZyOEACcd0OICywMm87maKQCfMD09v1vk8l9xEPPcqXGIZ8f+7/TADqMSxC2H81TDnmyBHq8FBCtgjUl6fIAydSNG5LEesXNuDEQM66Gu+Qg78rwONTiFKYtOuQ18FXr41RRNxepigRwzu/F26tf16MXJL0tTqFj6WRoU3wEH7iRHHzMbwcAWnq62qPzf+x2pVvmiKfTvt7fFtMdqgymk9mitJvDCKLkzRWH0AfXbS4CcOX/Uo4k7KySpZ5mMJiSzERMxOkxzV6dmCSqbOF0Ikx1J5h2NFxD9ZqZpXyWjkV+WAbiS9t/YHusScWqn4JZwz7CdHDa2vBPe0kzkMb9ObuwIiYsVhSlwcNkx89av9RNKWG1l7zSIlfBD6mmXusv9Wxlvgk8U2ll/2uDj0MmHvZp3VrMp7hC7oZILoIizUa1BYaogJicwTpp2sh74mc8Th0RSd37szKYyfVOVNs+RA7kfuUVOg3j9yDpaYr1mNZsQml5b5oCoD4L7AkaHkWOCBg9JEyGV0gybckxRMDbPUCApWHQkLOPIOG+675AVhp5uKWqNunD08ygl1Hxdh4vUhRWVKsdbEmhV3nvugr1fhZHZimehOmXAPvrQx6CvNn51cf5r/DzRXAcV7L69LDeQhwCPszwmbL6N6cjQzgoL+QOkjvoiVq3nbVBK1JArGkQWkSARl/0/tN1o7sA6J6A+2sbZ/1wTfevUwsRZDrNZtaqZGBp8DKxo5iqDtPMhkHrQ5FXQWSaYxD6DDaaKeBNAmDrzcSrWVenczwcflEWHnfQtRDZoHzs5V5OlR9wbENfr/Jvrer69DMPQtpSaZhFMzLjWUbGuDRi91a68Q8PYzCStOMhdbMcTJW4HPCk0CRloXih38ktgtdNAOdrYH4zGnFhgMe83GZ7yEPV46/jC4pKy9R33GNmptoQBhsWh10L5xm1JbYq2C/efF6RqLvGNK7lHDAdI1jUf4yKJgfs4HqX504CJ/JVnoN492dh6HDft7hEuCDVpqG7eUXuG9Q/8DR+qyB/PEQqMmKiXTI8n7YsC3SDsYV4HHUfqtc+dYA9VkLfLla32nQmkluwvGTUG/LrFAK87KrxK1cYpAFUNtaEYGmGmTZZ5g4ucgj4VCJmNeeF4Qr6gFOsaNUdALvPHJGO+Ej8zpY2ucquBZsAJeN8H+NrtqGUEv3AWodW+oAxmZaXUS+vhP6N6GE3wGGna/hLxfAyKm0CF9l7e4pQ7dXcwBsLkXX69W2Q4by0FUiEEHnclCSj3+U5vg4OfPcR79qG1HKyq0nWqzDNJITTIJ3+udyrV+QWCvoe0VF2ciyiFStUs6zVzBCVuzLMPSf4BhWbXiqQXhsg+SYnPp3ZuZHyz1UbNTO9ohStHEUpma5vBoBRANjQn1zNtFc4KFQpK6LjsbHCHEWK04+eSJZyKXGunPOIUFaBxx5bpnYFdF0yAiTuWls5QUNvZWvGqYeSCwCWOahjYAQvHJZ4oavxGFC7jZoMWU651JfYaDZH8YfGrn/KIICCKoCdm7s7nAkXZtMCVZJUplAEUhnLFqZp5tBlgD5Rc7L/3w77XkWQBlJiioQ0KOPiS5r2EjfIUfZv6i/pDoUMtFP5nvjf7Lg5hHLuYvmZOEAA6V/jNahU80ANng0fMPMQR783Seq+vyAGFZYiYWjx3GAbbsAmNcpnjG4qacKnY3FCSSbWVw7ZPeg32x2USt9veioW4btfSqI4F+AmmjIPt2TS0zFZ7xO/8N3wBj+R6dVzs/k/WVOLe6/Bg4Yqmho1s17iy626zQcWv7CS+LLA3JQyiaBBrKGXXSEHz5fJ1l7lUr8tePYXIJZqy67ng8YN+rDU9XpYIN9FG0ueF+l13UXYS7jOUe3XdNMFzlkezPz6lZdh1+akr8GEBaMrIjd46PsnLJiWu+DJB7EeKeispOQYrSkzIXUmTUqw+uaOzjY8yqPlEoo3utqMxSaZ1aKLtTrogEd+TJuKPX3scTPMubn6NdsIyIgfhsRHoTHIqJvKhwv6mNdc/mc/S/521Ejyh678JC4/2785h9aE/cdoLgc/CJQJMZmAn6h/93Ej3Tlm5LKS625fz8RSfDF7FJa4Q0pgdPYdo7ZGwo1pax2rDV1rpI4THyjPShw6BERIXPK1FJnyv6/rKoWsKmQYZrtMqsTnZsJpwjfgofj44/1GKWKq9BODtYrMY32mR7LFQvhFrlbVLSS8Le0ZguQgFEauSgMFLFkivKjAwiRbXgBEM5d0CVMpB9t1lUN7KOw7nW2cnRoLNz6Bx/rp4TNyKCwn8Ue5TZMouHHyIuRpeMJD2zGIITytJnZ7QsnWmyai2TuyDkzI7OZlXqmRHhtrhfJXXWNWVrJ0b+7VPmjPQsLKTeHMs1EeLLFfWzSL3sG1eiNs4rAXKPlt95Cyo+hvPfQ3Isb2EWhYxsj06/to6F96HvFkoDIttxaZnE15lkSpdtUA7sSO0sRx7WQG1lYag5xzEdr1wVsAnDF02xBDBYGEXSJpN4+6SW4hzc5GbNdWF4CkyN4cpJCf9zlXmUn0jxaCVoD92x/wgkb9537Ptp/uLlR9XDpYMHqqQikGmxGWUwSPGoVXEfF6itqL31bISsEWLz8Uaj8w0SDMnl+0Bi6RbikIPPxXkd3VB5F1BGGhOAwbjnfO0gK/ZOzDVDD8yCd4JecA4Nm2rs6kl2WrYOEsrwo/6YbAq21AwwrbWLCbQ6mfhER00zHIZESQdWGZSoEGOd8zMA1zkjo4dlXPadDXjHPLfNJ9VFldPE7SBQ1rVvOdb17yLHbCmaKGNVDXw34bQO2ldjd7L704LB4BBCcgnWoK7soQYns9yCseotxFsCDJTaciwHbCHLPjsOvg+QuMgw60Ui4wnFchit97SrEo7N5BaFVr8erSuRnV53briuTC5KnvzFXEeX6W8Yl5TnrtqMlHBUn6zEptn7eEAtP8ZMPRIVAY+IoDElSsFht0twc3Q6d9geurh3pCH/b1g8Xk8F28BLZsuSU5x3U3OZ3KV2dBexo/QjjlM9AqrOlcvj7QCiUNcO0K9NPFT/QK6RHtdOsAn2GVxVPSWWa6+rdobgdEPxKwltbo2fmo64lHK17Q4zih7crAuP29lU0nrwMd2vZ0jIEFSETeuJtqknGeKvbKV+LMCcd3ynORkQGU+69otgD0ot668T0MT4PpGcRUH9+H/aecbuyHb3IEUtUZYodpEhRSu8PEU15DD64ecMPzXgFpLyCXQPowlLVpGCJOOHkfpbnZIwHmLy+kFnJaE7GZh3WHJGASjQw7MXa6nnRzjvsv+9u9CXVrncWsRHRrtY1ntkkULMRbcCHKtu12cK3h6pTTLtX/5coabxdmpquY0BOKU/aGmZfLM1qGGjK0MhdGGjSTUYaHq4Wf6r20q4BknBKNhYEf4RoZ+nuKwHFP2tA4EnsdjTtj6X50ytmPTdAsyFM4Z2o2UkhB/FJ6FfRQU0V/Vx8OfUlaMwpJWl4mtnBDr/8I6pY2Rj58LTM/NxulsY3wegQan9fd/RPE8ZkWEJoalrn1GINACL6v9wS4PBItLCIKMSIt6xrziqrEZzb37QRpYa9dFMFcc3ThYAOa6uQJ1fJkNS/yl/PIQGAEFL02eJ1S3+1VJtVFSZK8F5CNkPbb5McxG/q0k9tqtqytxaE1eTfJ7HG5EmqVnpiGKwvmNS+dEcO837MaIWyesv/DIa/F+4+nMs+z7AvR2Y9gnCq7RLUcaLiupY96noCwX7gKzbOrrmGKn3UFSorqFgY6Gn80rl5l9OS3aNUo/JI+zwYW15zEugiWkzcC+Uh5UENr0uyWAYvrGIIVompU2sncsRjIFGvgNaAtIQJmS+B5f2y5LLP/pNv48DcrHburGIIBxKhX87R3v3IgEX43Y78S9RAwcoB7wLsHubWexOEtF41Bmr/sZmtfOG7DnJbu5XEmbD4JPm1v3bEbIcGxmFVbIG60FJkvK3cc4lW2y4JuO5gGTbuJoQStK1S8tDvEKIOacpbg83Owbut1JjGRKGDhgXyQhskKOn3lEUzd6z6q3FOnBgnm1uFhMvh5gYA1JgP2HC1I8oiK9orqgQPVQyZ3UxArInaOqDROaC6x44hkCxXv4McY8r6BM27MOIRsOcJGMZmDGKbxX+qS6DB250UbMljRUKG+46/Ern1giC+BSjnFLALHBO165sjFiBnqdhRBkZhUI+fmVbqpluQw8uKLHJfKfAx/7kdUUpd0+r8B4T/U8+/ZHZMEyKapj6CWmaGcemQeijjiMhQEikZegHB3BqdijTioJgBSIniQpc1QeJAfLaqrC1/1tITzAZlC8EdtiKw+VAX+96UvuOnp17qP4y2QvsUPX/mvd3Kx2OTOFnqLgOCe1hhjTQRtwiwlGy1I/d0qHaRHgE5iUIj1aYVe1OYlGnqRPmW+kCp1vL0mOs37L7TJY095PtANyqzAn87fZbK/46BwQX3okiUkLuoMW2Dl82S2ZJpmwg5gAlBtJsH3XPkBtOFeCaNqwLcKkGWuF4SUDs7H4QP1xWpIJnIWMVfwWAmoStVYfcCFsnEuI47qKJEWxx0fNc/EmIrizWjfgQxz5UdOdvnK81dF927OaZ8UR8/Bwy55M1CPQev8QfqQgRZ0iV0zyH4fglaIJFzlahJaH90vh5VAVnNStcko+pw4G9l8jdyHqJrnKvM3m2iG02i5hTJORWIYHl2Nd95ahHpUHTGzfBenEGTaX7Z+XdfHkZ8UVEf+rku8YmoPf+08v8ke7YZJF21sLWJ8mSahtH/XiGnlOeuwlItK0SsczsDuu07OTUVENHRb8ezw4PvB5umWB07RurpgEmpxtV6ymbkKhjmvc+m/0AXebxTgEgYZjXg==
Variant 1
DifficultyLevel
574
Question
Donald receives $30 an hour when he works weekdays and time and a half when he works on weekends.
If he works for 6 hours each day from Monday to Friday and 2 hours on Sunday, how much will Donald be paid?
Worked Solution
Weekday hours=5×6=30
∴Wage=30×30+2×121×30=900+90=$990
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
wage1 | |
number1 | |
number2 | |
total1 | |
total2 | |
total3 | |
answer | |
correctAnswer | |
Answers
U2FsdGVkX1+qj3oADPBdx09Y9v2J6XF/fknF59+k+U3D/mf+CmjZkDL7kcuVxY4GrU/Pvz9Ri0vh/igntxYkUNO7auBRfw2Q+U68Pk+9V8QtH6J1xjdcjq4/CAXWIoz8rJdt2Gv0U2y5c+r5XYLgn3TY2mEzl+xEO7xymGR2jeuXqcO48pmTejoHT9G8kWcwMmhcdevFsZFNCOzsrUYXb6HNl2TC1fE+ijXEXo2vWyvVSU/0ENnyQA8Q3hPeJaO4cTSPLGT6YPN9tDYuF97Ecq61uJwh+vo+u4GR9awZzsIl8XQBoDcxz0J5EFFeCWonj0dOSIBmKkTto1NLoPw4szkpa7DdP7i+YNl4kpmmnn/FbIUQWce6BZO02Qq6xs5PWQ6sNW9XdJ4D9iUhE0mmUeOi4htx1zsMnAj+aLMp65hQ+yt7yMIJDa/ge+HiG9r7eOZIXUKNTFJaeX2l937LrPmW7v9YwKmWKhWtg+CRCuQD++sXmN8hlm01/QwDkblkGX+rga2rZOgbnnfBgRTjzKB+LZQiPZelv2irMMvTdB89jXHI4rXgFaaMbKAa3xo3OCxkRVJT4g+TZI38hzfhOVNrkRd2tZXlkkP8cOAW9WJDSCgmSr2qfDY45Uu3gJRZfqP+ZZo+D5Tc5jAucglsI12ELKljPBG+vxprWZHN1AWinqFZhdqiv8/UOrd5iIY5h08f8VOQjE0jSZ45Nc/hig1bSsVbFVKYf40Bmc0tlCILD1scPxHkqUs7cvHz+awMTdoyfxyC3UCKCqGpkIJjVz27bT36Po9BxLCVhJKr2dIWoDMJhprFrvutNieZAVep7lk0Px5vqifDEQVAa0I5VSGvvJHOKualxuxXj7RY2AOPbt4EVtVIUPCprqIGa/RYISS5GOqRsEXQMZuQJNLHfWvy1+M60r5iFaxVB1wW5vXZDYtioi0dPnin3yFkfLVaP4znO90pN015sMFzPHBBH7ZL0vlIrGIFsDJNBlaWAhGt3PKUP1vRS/TIHzh3WiIe4bXqOvfekzjNUFlG7qbSQL9ylbJXTqs5V1r/k20yahMGnlKh6H0sS/tZP+7anh5mnOE1cCLCPkbLSc/n/AfJkY4a3Hfd5W4+NEYpFAhuYNjuvPr53RKL5BdgVgT7vTFynJtkg5CZD9/BD794iJI6F+pav1XhW+gT+b21acNqxaa48RWeWUvjNup7GVg0jobLWSdCoXNla2zth+sscxxI5eHx4lyCQbmDGMOuT0Qyy0HeXY3mB1MhoVUyPW039w840ZjsGybypfOqS8pI7D3fOtcG8bGQEI/2cfcab9GbdC0Ln1umlvvsifoKY7OLmkMKXsK9vwk6tKc/F+1LCs1wCaMRRomm8qO1RJiaRwZ2EozSLrjWsMbMQZopFpk7IMxriHGgftdUzXJP9fzJgpYG3g8Sd0E0vJIqPd/oUJZgvXRLrdga++HRbaQOY6BrvjM2uMYUgwCyrs6J3EOakpI/BgQ7Lv4pC2GzQQSPcZ759VATnpxSTpv9ODXZoRE81S0kNb0J7Uk/vdpEusVjYlVfraQqr/1S1lktkK/1wxCvS+yD4Oem9O7hP5Vw4xp2f/+SPy8HnQBzXZ8lGSq2tZ7AY3Fa+WKMHepLGxvj3KPtNr4ecVzFcJWc27BNf3n0Lj5WZUGRGCSUvzcMoPN8bdo87zZ0Jl+QW9zodeoluYRSnWiL/C5b3sel9ttI8+1m50aLSqnR4muk45za6Bt/h3wx0TsRUNcsQ0A8ghBc1z7XbF1tpZKQcPL0IbNchNLunQpMs4af2waOS/PkuECTdG6xEu73zxkw8yKUWJxfURybs+79YMYzxzLfuFo68pwCsGNSUm8/2MR7ceoAbnP6A8Xy+cQVoavj1sPskgWUfcl4j3BRgAlWBKnCamuEzbT/ceuWDUeldlqavJuvPg5ipKsGjg4egGqEj5A+myOj/NXXwkn3Vo5u1h/YhXj4/5g9KJJqDWF7gMbjNxwwBYVqj4y1VvrZEz36U8iEFvMoA0Qzc+ilVQu6laUp9J0X9Bfvkm3zIF2BYkhG9vtcMqNOz3KEaR2nDKZ655e8aD6shasLyU7/TF0Yse2ZEDMUtEqRvO9H5Uy7UOtLmdXba1yplGZ+OlQleRhAM0IyRnehL7YbCSieEpjVijIAQWDAC+GI2cJzeJgv1JHoM6hxsE8JmbWz3jD53UDJz1AFtYqAo0ne4fDG6h9d2mhoXjb/oWlDI1MeitfYSLklsg3AiLaNk9c9C63X2uND79zU4mx7eEOy2y1+Z/j8SpZvv7BF41icgILA1DaQOMtOmvgrkC7TogJ1QEJwZJ6VUWt6le+hcWf3DU4Re/HcqvltY04Y8RtARI2Dq44Cb2LosiNMfehB6e6CMWZT48i5i1QZfEiplb2vft9/bldRpY+2LM1QzxPe1DAPpLklaIfiaK6+2LJ7Z4fS7yngwROSgIlwdNh5eJW4le+jiC8mGthvfTH5DSW2ZpnQqc/K+dsru0ewqnlKWp1xpZSIB7yIWP7Gh10O8UPpOYKxFWQuuEO/46jyIer2hLB6xMM7TV3pf7VeAwz0I+GEFW/WlEjuHb2YunvtNKZt+4iY1TJFg5opEcrS2WbeyBNbhqFp5LUaFGKc7Q8y90+aGzSeuKvLcBUwR6nEYnvsQ6f8DCx+wdhFGAt3o95GSWk5OQD5aD4Al7XcHuDmSfG7ppPtFs4i1EQcvaQHwlbtWO//I8fxKW+ONY5tPDa8nSCOoH/ZLrN8kKfGLDCKDAPfXsJF7AeYf7gqshMutIH9XBwoTZMnEcaecq9laZpWmIxxYD70NgFYRpqjZJpdKk07EgsUWjr9ffS+OuR1BmIeicEznDOVydBFcd9D40+IN3XcR8Hi/NofaYasQMsUdJAiNJHSrN5kgqi2AbsmScMLCF6IISp1bb9hxwo1Ads/+L0BAN+3KcrqztEQijXC4IiUV3pR+tM8hII2n07wjZmqy70NLXkvAkWsypuMcXRBZEgQZy/vdV8BeAsT1M0Xh7U+SKdEhy06Sv43HNKjpLCXqQtISmT5y16cg0xm0FjWw9URWihhn9PE2etmRp+IUH6f1v/3rQMhixg0svDV5NTcKaz8FrTOYY6LAeok3xn5QAotg/nUpuGZzeLmjBCRbNiUiPrVKssh/PQ+jXkPTpXwrzF18ooKv0PU6vZ8QphQX+iXfwkQDx+RKUmplC6hNthNB9JBCBTLXDXhQuZaPXCijJMxPezpOUhiI+tdusn83eVbT3LaRKCg1srkATrWTRrKJvOjh8U45g7j63CSTu3k8Rao3amcFKx+zLNLjgaST0KrG79B6rWH+gVIC1gUjqgq2QZuzyYi3qTF4RBBTdJmDXiWyyDgYY2vceciX2DwqftdLD2qRl+gaDgFqWr87Rxcme9HthGoNIcsQDtbd/WFhC0EQzMBIPezJBwv9466ExlF7YRkhbSapmipmnUTS8Ex6xM+PhYL+dJNFQoE4c/Sr0RsTZzCl36vjVJpBxaD/VCyQFRmbOH0XjgY75EJVHyzfdWmpyHxEMJmmXweOke7eSiVo+yhMRW3Frh8iKdVfLRe4TU5dHgtjzpX9AkFhkXbYISeN+XPGwoAhiwPe0DwEQjjvkW9bxcG8DME2A95/U4Yx3Xt4Me/ST2R2xPLKU0UTRfhCN40e+BDKDVF9QKZ1d2NIYK0K9PcLhhMDkqro5aHQlGSYb72BWTKvEx1yKFPyCFkvpWdeNRExaTvaRt15cs9192VQoNnJrnXBd/lw9Zy698ZqmL3v4YKt7dj5I6GsS6oVcA+55907Ebsj3P78sxRnT21pt1pJLBpIKMvwmIvbmKGsKVbGnHMQ9M7yJ5uADLoRgkNFRZHLqlghd1Ma0aXN/fMdcAaPm+aqbVdLahSGY6Fr0+IZMwQZNlht0Cz7tklS89LfWh8e3Z0+XlHBnKtb5sRH/Woe42f/2GRnpJU+n1Ihp5GtsGKEkiGyf/6dFEVkdbXzWcuyv4zlTdcJ28xWXhg4XeCN3biBaUSSkaTjOfKeTR15r3KSoJ/P5Ouq+X/kBP2wmr7l+PKD6Cg2jmeB9y0qqzDCT4l4Z8uelkCUE9PoSLWOw0LtS4EP8XL8sT8ltfvlordPh9MdtqXwHXXOrbXJsxSrIGU+SncS889eYDfjgd1oUGBY/Is8GVAg988KKJsvuIBTmQxasgMdCVWuzPjumRHRWp9SQf8VsRXZsFr1HJrEWLVdYyn6osbKhjWNzGlderv39YsADcjwgTcGa/24QVxDKmnrq+kixpgrKfBtSb11Ec0RT/DT4xoxf7Ar2zxdQLP3RxXkVq1gp2QlXeuUkgaDBKAdDTjpUXM3iYvMM41Ou05jUknkd157G8kWAnPP2WcPJM7yfX+WT8tREcaXRFJhYppZdXnUnmzT0kaOHs3fv6yw0VgDy+PGsb7NDyu5vTJEcc/XTJHirTwsXK2ZQeg+Rz9/a4evnZNgMR6Vxaza/2aL0k16uYhxkV+6uZRvmxdfnrIppuLssy8bT6yVvzQ6mV5cxrU7k13/qpQ/gyd3Wd08c9H+pJGCInrFeXipog/4Os+HvX6ndvgM4fktITF14naN/vrwY15iQBV+PsYwG/FQT5zOjSiIhi/ebiTy15RXD5+lCYolUdM9gbnHo8HXHeq829GNjMfny5I6uJPXvOTN6hT+vU+CexgR21g03l4AYrTg36+uUdL2AlLp7UaA/FLXb13i011/OCiMJJqrM0v49GsPwwS3K/eIgIW9mBCNGjTKUMgUry3JsfwrEynFGNxMJ3GMs2NI4kkgnhL6OmGQ6BEjOfgnZFCPMxP+i+C2BWGtwOh88mVN+TcplDOV3SeY7zJ3agrHXalHnHn/Tw3CGkTSfSCTzJ7zXkZffiQlf2WKo8V379xesff0AJLQ0dGtL4HsXKuApv12kVb2caP//JPueqea4YzZhaqMcFiMSFGhb05OazU68kNfAJipwGZlY4MncmrHkcJCb+i80KxgiUvx3jhJ6x0avgSM+VHtDq7SdfrIMER8xxvzv+rBAAm8KY+ed0gAZPBc7PSQnXbMyEIWvgbpbx9t4Lwbl3EPoFzLKURynLuedsALnrdl/AdUWXv/UnRNj2HUvcm43Y+cF0PYbcIhu2TjjXrj9DOvX16cY//XbxPbEwOQeaqThq0sU32C+l8vGyZJeovlLVxHNJa78gy5jJsDrDWQmISkZNDcx2XpBO6sdeY8g6bvO6Dov/JVRFTxHa53rUS7lcDd5iBR9Mw52xzZ2YW7mpXjfnpqHxqUdTCVIBfW7UhwQeKt3RUBfRVZHYe4SjHoc3rlJZdk7t8PY7xIjWUqrwsG31Elns3x9TtWPV07wpG7Eq/ELh1l7gDwWUm/bgBF7FDt9H4hMHfUBLyIRkWCPGKmJt7IuW97UULgGNK0xGdP3k6aG8CWIfvpYb2k1Gl/SkWWOtLZ3juQfNwjhYT7qPw0Nf2wG+iQ0W7hbOMOlE7+9iJv9G1GabN/n0x/a5UM1ah7gqjUhUS19NLlhSFfy6k1Z543jREon3ZkxyyIo9K+eUOic+H0HJWw7XB0HqbKW3F4y9ALzgFJE4FACPfPf9QkyZSZq/NvQjWMSwECkz+vmRSFuqWMmW4W6uk6UEBPxr6a7MZ5B434nvhvxv6ndJXOsyE7HAFHLA7gv7UydjB1J9FHdQzz3tM8hRBjxptKeOsp/83H3D59cvxhxEFxG+vecblLm4ZmnJ2F+Tfi6UFnut3mhjo9CZz0wQzmUEuQBMsV63fNJE3Ppaofx7uUlMYyLpXhUxxIJ0D08At+vbDLnxzYNA5Q4jRgSG+N5INg29FYPg6v0FF+qohbUNM3UlEHcVKAROrLMrT/f33NUAzQtIJqEIK2LYyxBBIODA+e7rjyB1o8GqE8tlbaX9nduaxHUVPV9yUnYsa8IzETsKbhFzYmQunkdemUh/6EUPpL5p5Ar92tXljJvNdfuUqEqkh8ExUCWAJKBclsUH2Nqbsjk3i7TDnTARJdCBTpva5o30pgymbt6T2nRtOqdrf17DegNGf9TxUYiBWY1isPs1+4rrYnkilxlWr59z+e3WK3GeuieT5GATUkNNhAiIrut/O7u0v7lTJWQwrR0DZ87meTPNG2KMw1Z2GbTyCnDzI/XkWRdqPHg4Lec7CqnDnLYkV4HwoBv89hO6sfHTTvYM7bLFcwizMEbXTPbZZ+GUdqe24QfkKgkuXy6gTSUXygb/NCUV9Ow0Zt3tJK+fn/2hnGeX2fLjVWgZHuYLFgrrpPk9bNHB71LXB/Igd4AkjQUTxjNc9Z+8eY+sVFOJiVmqMzfQx6rb7Gi38FEyjhyoJCfLoeBw493+ylg9Lazo1l1vms5dQHqmlheNzAzrMgueAmNhfFQpGiyMIT6jL8M5BCPrS9foPvqAexWQsphqblz9pp4NvOPBz70BwcwGJe2deyGeFOdEexxsfseGnVk0EvoWnJeZO8S52XM6vgK7z5yeiOJzwABrraHzxWArjo2XblHcFh1qR1I3pPdJj64d7unnshSQmfWhJcrzL64Exyo3Ihq/6XoToEWb+GQyq7GVdIrchUkg7hU21aVPZGYNnHNErtSEU3YN431V00FEA9P2BKp+sYzZ8BAcsrLtoiL6MYl8TFAbWe9fa0j3bs65DqcnU/CdDwvgknb4adORc5tM63INY0UQrnFnMoxleejBHYGvsq8X9kuYD+hx1qd+cakgjogWzidPs8r/C+xk3mx9j9oSaK+hsXdpE9/A+R/ZdnpmPzQPyIKX4JVlyiv+ZVEjNBHeTlpgKmg19aPFuIDE7QjafP+O1BIkOuzWg60JrXGveADWXLSMG/KtVZijfXfbBK136gJ6tTTCIT0FwmN71+sSWV1nTIvj5vOTDb51/W929uxH8DQcAy6OXIAPgur8uyXlA5vI2HSnWUIlCUSUozV1HMWoCI++G1Jlz76MAYZC6IuN1ngv+Eq9Bd5hQGPRVK6sfSUIxJrGWmxRDOF4mH2oejr3k/WTqAZsWFEjECOcn2bMDrjiP3zg+s6jGyt1EzEd6MUdOCn85CBV/ql+i+uMXuvVxZ50ft02BngzXav/jbwEp1U+ioU0wsI9I9DzKl3B49HvZ9BcxiNN/YK0PIe6C3jnE/rVCIMum4rU0Xzba7cGPixE84f68fhQQNafcdRFF1NxvFhOC2qtoMHIk0COBD4mDrya0eEWI2VXG39ELoDW9xXmby0Yq0uqiLuh0xWGHbJTrfk9GhH8AYA1i3LYkYx9eEIejHmS9XV1IMu6/sybsZvdsFTKZ/ht7ZUrEuhs0vlNXLUbKThUbHmVEf9kcvf91SU1TPfHz0SowDsTC6C5Chxllt38AMYi5vgM2vEJ4oSagoGbWnbdV/u2MDCPFwcZo5naA0RZ0UrGn57ytWPlk0nYZeQe2f92Ohj+uJ8Kq5A4Ro0/6QcZdicjfJQ5ErixXqlNH0npNsg9T/hgZrTgJvDjJPgVNi0H6Fg2JMmZiX5T+vNHfwp2sFJ87GkL0ZsOA1gpw/P++yW+KuCrt95LDc/54ChrLGEGdsxcltFr/2svuwk4wRperjW/J6i9kXrvMLFKLhitO2V+6bVrWUYkV3f4XDtl2SG0yGnJpRFfFDfItJJnPDvuqp8bzsG3AVKw7m4cIEsdqd5TIn2is1XOzSgzPwjFZvHp/uFKGPFz4VAQt1CDn1qRGjj/4zwqYdbjLWDOZ04flnyNHKGfRFkb92qM8ITw9QfY35YXZRCmeoSFO0Ghs7KIpqAdu+Y47LWvFRf6ANEaT+DKcv/d2pn14GR3NO23o8w60jllHg8iHTSzsiPNqMenHSVKAo7AYhndFzRJRrtVpHgkOM6HgyKORW5ReRiSSkdkLn7P4mxdNr1Z7i2LYkXS1XsZBwHqDl1VbLSC+gbq5aMzBKmfb0pF/UPR9fDhNRGtmj+5KqGGQqS4SI4Uc/Ntm8CiiW4vVonVrNObIfXsszTJ8YLhxbQo5w/uAao5GYY3DYdwvfCRZgym8HzfQ3Ng2He0WCdqzQh00ga3F8+giZxLBxc1kwtFnhZ4RZsKCP+sWjGMTc4bOH9kK2yAG+za6CBO1M8qUBMc6qxeqM8rvBOS1McVsgy/DIJNSRHhxmMIO1U7QVpkbbwAFpe5csapsQo4UD5MXF56Z4ZWKtREiluYdM52l94x+b/Lxce3U6/FhWTP2C3UWQxC5neXRThmp073pU+5wnALZ9/JiMj7os+kxlmXALHeargw9JTTCbBHZSlQmTub9j0E+L9jQ24VDQo75HnqlxTELoBRRGIF7JZMTxVYmSRGKybx4Vx753EBhGIP4piVimjeKDd5PbWFX6jpDTYfRORVqksPTazpk638/NWFGOrsngh6cLBXa64lC+rDGeeGpAz8eJGXCLiXcze//YIdSh0QIIIrzOkDcWEHtlDKjOgAxLNeVzhp/aONl2EyHDAn2eRfoWo3u2KFc5497g1+/zTpMTQJbd/8LDh06UzWiYGDlPRnJf8VFJy5S4I+xD+wW9/ExWxdQGgqrF983wScRThGL0yh2guZVtngz6TZPRzW4XyuJ1PFHMTP4yz3y7Qj/Gu/paAL6NGGDTaF/SUIWw67ip0/OPHa+PWDnJQ6iyrctOKH+ixvc36CGKhjC/9UCfBIrUlQWwOMFVODExq7+LWrkFibatHISA1XgLktSz+uINfS47eT0Or8Kr4dtIAASGNVP5542WfFiIsLil/e94zXW79ITMVDfd73LzubUREVZ1Dh+byByTWjATD3CcwYw/CAuUz3DHUjn0HRkhkntLfq9y0UciNtp9dxcsaH2NufFvMH6wH6UTQgT5t7tUfHNouI0WhA2SNiIoXTM86WdHy+Zwm9HaGRjC9Ng2Syx3IGD+oFrv6RAU3wY9S/qQJJM99+2fTlPw3qXGp4wUDgA6swgjh/riIaU7dG6596fyeuLGJV3kq9p0UnI+DZzoKs13u23fKIecMQe9mhPATWsreUxnPZRE2ooeY23NszbToiIEOFrRt8WuGLJmI2TS9NqJhhyLchsY7V+BJ9gMmX8cPrmMVzCSHz7+rM07blyvuqchEUr5U5eVhwkBZ/bxNT5JFRZTtEQ5arR0I8gkcHUGIhjZMGrppK4cf+ibs8JfprrmZu+Hwzwdn6s1OwvIEItHkBOkqdY5rgg5xHM9SkZOE5UKDoWTP91X3gNEl828C12v3yZJhJIZ+21uano6UJmM976AQkJS+xd4YXQpwAtHX1PA6WjpreT7b/CcBpT0HgAeAhf7CLgiFmT2/vGIVtxKflFeMfbhA9vMOsINdubmEvda77oGGkS28znG4iyI0DrmWLbHkIZv17ZZYgbNcc0tr0Ew9gIiDY+jWlkpoBNbXnvqT/HfnT8YV42uKpM3cF/7DDnA5LaWwAjqXORfnyZl0X8dohOblDKrnETHLxXCj4wZC2XQGLEJswQ3mErpXE7v9g6q3sh4y2Rq/3oI/HO18VNCuXPfn1KsTzqe+Z9xXX0wxPNmqhIr0xloHqtnPQplLQ8nRwZAFH+Iz5MANW/kqV5dD+QXDJuNvr90IJGE8YCyh7onm1uLMmaD+morWlbl2bP7XGvWEW3KdvP1Sl+8jRoL0MliwqggaJPzq94VbCO1B8hKnQWPWsYdHkafKf3apLIlVbCIkN2smtHAm7xnUNq8lQGtEyOQjYTkeAKXD4cU79+HufOPYukSombAs/vdNFXjwA0ETOe5YBFV5VSTiYVpQLOXwRAdNvvcOhIjfS1s6UuIg/mpf8e/0TI5nEHl9iws5d3Zj8gejUuyQNKqOya8qGdhrwoumifon3PXi9mft5wxlXV6mwsXqhRHHFhAzIMqfD3Is3yMBWSQ4+khnV5RZIrKOh9XOuDlsp26ORPnUEvVCsO49dXsmdcSsKYBQM71X1dAtTGkKe5DAjtmvLiT6tvxm9DcIhObd5Rgy8tsu8gMPITcesXwhVQRRjIeXXoQD52mdSxvwnRc3rVnXctiTPOAcOWXBnM/buVVYEmV+sE1ddPM3xTTAXy0OYcGImyItNW1/+xmpQxJ+Wn3NGdh9uUL+sAyO6vIj65gvWCIF4m3XmGMDjzilMnmxQxELRXv6QJwDJ3/uNuAiQ2Edpf3Zv1gokqqlE221dl6aTMcIiyfu38aI4xboLa5otlrkrDeiEp+aWxTjG8SLtlXqSHFOX9RJp2r1x3yAb3kwRRkLDqhpArUAsh9HELlK3IRDGEPDYBsR/qJZ7AVkc3QCieyviNggb1LgoC6jPfbyknFuRW1j84a/i1VhEjvmWJMFdZvCuWXblfXGLFQrubToqeGeQV0eJUvHPuQqsw+HT+TlYz0aqrCn356bj5ahXaSmn0wNaOuYfw5yqgotzt3X0JQ5Dq/sj6SlCHQsdE0XQibbo4j1aft/kC6K3wfucNRM6Np0Op0DyMHfexENm2MZRc+F6uqtqcPB65sOS5Zjnc3Cz5TRn7Q6tGdVjYllqTsgMv7bs4599ziAPQ9WQQPljEjvUMr9OcCNGUIIC2ifT5CVk+gWXbfSFuZ11pi95RQ7pFW6sngp46PSFfzN5k2LRQ568be7g/1pOBodFeGdDc8EHjbjjQBaviVQU02+VnXjnXe8z7IR2LznNxoF2CnCzjV1Q+wr6Cx4vVWte+2ftddt04emHWD8t7ubC1aozKTSuomEgLAeFCw9Ise1M0O5Xt6xPXmf1vBy42YtqeWF/GLftlmd+RmH6jNXRK3/1tKUq7AXjuxdUatPsaB/dVfCaKYuXmRdBE4cl8cKGSMUPYSgc1Mv7sFw82bLUwm++rBpxsaYTwDH2FG8IbyxzXS3ZyNr7mkH/hikSXLDJdTZ3vSKBCqRGzq2LTSFa9lYSX5hybWZu+V4dQP2LXQenysNlmkvFd4qX8kxO23xO7Aa3c48z0UPdaN07Bu3pssYAjU1EIry9BB/DKeMVORWs/T5qCmV+Dx0POTUXAlp1t+iQh4Zz6J36yQO6w1r3t3UIo86qVljEJcXAjIEX1iVtjcMBbX4AYG6/S86oEdc4vrNjkJOsZachjjWxZUMw81ytqdHipNAQiG2QMmLfZK6r2o9J2Lxn39NGeIH4+bcHqNHh0U6fTUlsEG1Ke+7e6o0d0onMeZlhO64ETeKSAAZ6t5IzxUMphSWPcNTNmXydpMnl4dT43ukEUIblcCoimuJPRl60aV+xp7fThS/FCrBT3295M6HoTJpQ5XBtJ2o6gkT3L5a5yicaIP/30z4STptXNlnHBsZWYFN1YzD1/4QObXbNy+uVaRgedUpC0+5VpxMXPGZTTrbNSFpl8amf7P/zRZobe81zODu7IcUena8njX8G97XrOfdsInXIHf1vR4I6xY5jRwWZYqWXfdCOczGoR7o1PNPN6R42BWY31h9hb+GJ9R7Bjn6ff62bbgGJc6zSnnbQj5c/2rd1mAlzjG4zSMQ/o2/1cHJxmxb5FZXShyyVAEtlFXGGYnWd8jiRgoMykTAC6Z202S9ty2+nEJN5DUC2+rQNgJvXBuNQx94NLKQRPwCLWBjFiYiZmKycuEZMFSn9uaV4fkq6gvxl26CVfSUwCbGm12HDmlvL+Ftm0TEDCW+YjIer6DEdMV/Uy7K+Obt9EykCOGpA/e93+Am338x5OaMlyerO4o2wOUuRYyevaTOjTe3N9lYwMK6LV18Zi0vzp/uJxQBxlg3WftZsspqJKWrfCqaP/lIUA8Cng+5LMN4gbUPA0oUg6b+8+CYpxJIp+d/h0GhlkUv01FkT7XTFERoKdpuP+bD26ewJUxZxBt/pNLec29+Y38bVpLxU5EvWURlOFl/S2sNWMRXezDQvnUR4sIYbOZVYTKLWcTSRvwaPirXQYBvP6FCL0xGDkxkC9lN0RkuCRf91Om4kxfc/+GTV4o/5G1Zc/57cdhzRFVWZhvE7Qi9Pn3UZR713ot77IixdZN5mL0DdX4UE+iJ59PHoXlyzjUIW+jcZsyXCrZqiUlmrI71e0lDiT3MP71IijKOdSe/ayF6BMBHK23EK82ULwzoptyZ1oZoPSfpZyXZdAQ2gV7M8MKGnWaATwZAB9UL5LbXbg9x+nwj0Ne2kWGDPp08+18PwuiXywksxLsphvU5JAXG3QxsauWmSHpKqB4IvFL70a7JzrA0mGAwJwlmhpW5R2ERm4Wf2ldTmdykRfJ7cwj6O3hxtgi7XwhjqZ6tKsB5yJx/I/9WdUhNhKU+K8R98Gku5PJNylgOo8wTZwZWQieMTXE1TFhG7ovcv8HO+Cf4XVa4nfvE8IMX15U3TFiPwzmjlaThbnKPoEcqi+Ww5MN3fFLVMGMskmccu33V/96520mJuQ0NmEeqHV58lVPZYk8Yow/sdZFLsMkl6UynocI0cNLA854hSjweGZ7Qt7TnXq75ApxjX5tUL/IzgV9cfq/pnBsuPe2ns/myahV4uILcEhtChrgEUbGjWkWV0zH2+CKN/wwMGtnS6dJZMwzSN3g7bWKrijJCdQkrL3OZO+aboi8KLuMEZUKX5IFK+fPhg6XcnnGTfcjzOyS6OqtRZyNYoGqVgwVAwEGQKN/D0+L5054NzOuxljBLdQFdYoo5HS7vM4Ew7lBBTvpmQwviNdVl0zT+74uEaXfWvwTxEWvAUJndEKy16hVdL1lqtLXnmn6RrbcvCBBxwTYfS8nlvTa47JrQ9v+V/XQj7aeOfTZGxTwGJZ3wWo27ED2C72BJQ3Yp+7V2erkyA8JA7HpgqbNFwvC/WE0ivzI92CSEwQ3re00Kos7JdiaCYjObfS+Pda87UM4x4aeThUfEktBTcffz0hLalvDIqsBcbFXLJgVIy2ygN54bXlu8vBcTBzzsXsGIdCXGVhT+VsMX6RpLQ6hgFVitVjo6e7B5tzu6VwlliobE/jBfbkzx+cd8Mtwz+G5+bg23Ty9Cy5Fa2KFuPs3mawyrXfuPML2lRieuQ5pK3Ls4rSofcBUqz9ap+eLB041KLRxcBA/Y2y6humqDyYpaR2H0VjxjidCNmJvyg64WNi08la381JE0k9P/rNjSTmv+ya7xheoiPf
Variant 2
DifficultyLevel
576
Question
Roger receives $40 an hour when he works weekdays and time and a half when he works on weekends.
If he works for 4 hours each day from Monday to Friday and 5 hours on Sunday, how much will Roger be paid?
Worked Solution
Weekday hours=5×4=20
∴Wage=20×40+5×121×40=800+300=$1100
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
wage1 | |
number1 | |
number2 | |
total1 | |
total2 | |
total3 | |
answer | |
correctAnswer | |
Answers
U2FsdGVkX1/pVKgcmiIud9nhbTjwvRQD5l+lzxBvhQitrC/WZ1wLrha5+nOzvH0urIH6u6/LcviSKP6p8QWRI8qTl3nYlTtdqZKQ05ihypQO98qGSRpsO8T1y6xiIc+68vgMQGnZeInDQZM9uLDHxTQcZxsAOq60CSAqK/dpnIfCAFdC91K17g5kxmCTlX1h60l/aBNOP/xTFoY0Z9nLA+DeZLbiSOVjTgf+6IHBcj1S1WTR/cl1WYoWy6vJ6N//DncKTeeX2wNs4+oirIkmKN+bd+zDfZZxJ/VV+gjOXXO1hiY+D5i8X/7XMg0fQLpR44oYn2uYMXIQ9vJcQH6o/1KV+Wc2UHaz9QRdu4+uABD+9bUCS9qAwAmtOBm1bo6lAADhkr/DC4WvCPCP6iBvqfvSAOvh8ZYI9ir2UiupVde33yAVQNY0AyyGPDcjNEdSTIfZUI8ibr7l0JcnuOx/J8EWKu+/VvziyBc4ubureH2jHJouz2dbZN5cNMsA4/OHF2Qj9HEgOKcbowRAvbGyQpvZQApsLIub2OVpNJzyfFIHEXpZlVMpoPQoG07m+aaQR0CZIApeT2floJxR161X8ujwvADVlMoLFsYdD7vrEhkkbTvoMWsSl7OfSlfgEqRPGc+wWlhPsWg8jE/jZtjPkMCe3LMVhdQVSkJ+bNsCOabCXtC17zaVSWc5rhfpp9xpOIhYZxPhmRTz1v7JLSDi2YR09jOoD+WGekRYLmeQzeR7+DfSOq1ygQBzw+ft9TM8VC0ArGTRP8GFYSynIHYNpDCS9Ay2wq20+T25QCaC+nGP8JhLAflgzajprDr7x5K6INNk+p2ivoniFCpiYQj2x6MJReAiFqnnm/BZIlGzCG8inDbiWgFCmF/ztdLUlgzjR/AKB8T+rEts549wyQvKl6GZEpJSh/TLIuOebip6UVZ9Yv5Slc/E2imx+vdzXuDR/kCkRyN813p0fG8sWEc47AfhQz4dZjlsv6F+bCJ/x0+B283vMUCqEg2MU/zfajoUM1vCsDdwORUjhucE6kANQ79fDUPIKr7F+FulGwz9A8lVkhYGjXxM/13YFP1pMP1N3G8b2zHJvgXIpmDms4ZE+JZeQAv4wV51FrsYrHymkyW1+s6O8KWsHnJx2ZTUsB2d9EBE/yW9s/gYjpT4pAIrqvBcRWTEn7tIdh6ZV+E2lU50L/y3NzcaE7IyT78ThU0Ubl6pQisHHqi6q18gdEgCUQ+deOdBFp+vubsnnurLhpHpsdLzfMvPGBLfzeNigxQ+1pEGCyfIkOwHlpyX2v/4W0h75s1oHIR/Bmpo1bVKFadlujUQYMq6rppewDiszF8lmh4RBZc7EtCMRyGcj+KqkXum1R9jXxeUd5WtPSxSqiRRZ+iEGa/WcwxXWU1/VjQ4NzzsZNR/JEWhWDMVPR912YNH5nQJX8UcDEPYCbBzuRKx4KXyqEZJKPdi7F0O8oKbPeQCJ9t0245gZTY1IDklJ5uN00XgTl+eQn7n+P3nivGKB1VbTjuDJp2SBNqbjOjSmSL4idoPSP/vatp1XYXPxNuMa0quJA/NxgNzQ3bDJsCALV/ZD0R+3ehWvioI+SkNGOiZ8kBy4nDFqvkTzJarUNaDjTHzxwgvBh7V2o70bjvljsY7ENtnqbudhwVA/AK5OAtYh/AUWNpueM8TIVnbQK2Gs7N4PRK7ahYNmXZxbnUvCJ/B+w7EqYW7ocFx9YpX4bbg16MtCZQ5B1YDqtkfcYh5M/Btb8BmKu3MlUJhQlHIfwp1M7m/ZvzeND2DmIrov9QBAHL5DMU1QVMI+7u14BaJYsPITk2rnZpmN7Vl7JbtuiSme/vMOI7N53YhZvtDL5y/Ezwia8wBbx56y82dvVWTT8vjx1GK51IqLtDfbPdcZIF4A2OfwaPvbFPvGO4q5DET429ZXPiV8DCNGBg1Cw3QgpPNirMoUnLxZvEJfsV6CX6KvumiP7TDkA/1TlJVhXe0YQexGWTBLjjDbuwRzPAJRZkbZI3kAiDL3x4nAA8Fjm8TfOBqKWYmdhoitGGzpwOjhvwuzpNoYFUWZLYSb6S+8y7DCkm8dqU0dnFnz5uM4hF1AEoxkppUarB+86lQAy6USnHj6GcVkIH8rt3ct9PbgBPDv6N2ztYytTC0X2z0dMBObVpienLZCJFAYEWtXppZ9HT4zEeFYeI1SwSTbrfnFeYSukEKQ1VuCikxlInUyB0r4LhF2G8LOsPLxcL4ON3MTn8sk2C+wAg53wbsD+tsyr/EBSCd64EydbcK8EtOHpckU0OYsyDO3EQuRems2eKB/qJ/Fo/C+8bWsaMZp81sEVWOlrIZRKvXt6OrLWlyThV2mgaFeMUmy5TRh+qTjyxCZ2WAkkuPFJ3dSM93D3Nt1cRqAFEOycaQIDY+A4Ec3ySc2CvZpwnB04Q++PoTDozBafPbK9DK2gMQeGvBkp0E0SlBpu6Tq+sCoMbnvoHriet5D8B7FKsWCO33TAE6mc44La22wdO8Kl8HSOOrXoA0Ll3+FJodigl04jteI84AZVeLt+AhlMzjStATOqtRoAprmsXNivlIARm9ZxphJG7Q86ZdhkgONM3AAs6Gc4Jm5oBhffwY/DCf0FVLtyoOdsOsAZguAYOrjA3377QDZeMkg1XznFsKgMFQCJWkxisalynqGJy+cGvpGN8zD+OFCWqUkFjlkkTCr7lSm2dUFsZFGSi7m8vBz7j9BN4ml4XEahLK050B9vfW+6xK0poKHdsp2nQ3OsozDwCXJ63BioD6h2zY4kL/lcQyEm1kS7TMr1g8VvbV8aK1DdBTOYzHCN6cWWrqzrqhXF+T9KKa36qVphdHiowH50tyh9eeir6pevsoUyfOhiadkwaBga0xncJwNCLuna6Qs+QVPnHw4a0ka+Itdj/5zM8bmY7BqqK4dnvwXuDiV5hg/bIvuJVHHwj4QsZia0AoIvY1XmrdtQmzKlN1fpqQunYbifm28TLjMH0Eh9RPriLUYRgg8GL+ETnOrjc4mCl+0p/ldqqc7H0A6MgmPVTGAj6vt60pkXXAVcpFM6ToTH6MQ3+I2YUFtykBiTEilOfHa8uS0FRSCjwmivlhfvQZ7T8JygG39zHGXLKho5a69bx5pdopgurZxaRmCwdmkq4cyhiH6QKSIjePcitOrs59mWOe7Vf633rDe8LeVNx5iJ2wB76sbbdGD1aUEJ7sc9I1tuxds7qDeuBzfBUZ3iVb/DutdRF3SrDB1svQ5FAPoHPgCUdnKEY+w/YA0YfEYjUiM+X/ezZ90zqf9W6YPIYH2ANy8W/Nv7G8yKGv4qeNfhKdrP1aO2kk2f9+Y1YXCVrRdZFmCVKrd3zqyWsruAS5UItHfJh9ZRKQnDYCZyn3h8wrQqNur2HN38ObbD7VW1S5s4LVNjdY9lwKpgFI236QEsGgNbRsPZpVzYYedxXgpYOp9jqjxZA1a1H0II11K/PqIZTiIGi8DvCx3rLVjAT2JV9K5r2W1cSdZZLUsmvx29363fob+9/5ezGDaXm7K4gUHFplmFNPzRie2Cw0J8/WVL+AF2Ca6ZodyLUPziC2k2MxRX+8pDzUxL2q5tzv+qx/vUbkddToNJQ7E8pbJAQCVjRpSJg6lcNWJ5ECuJDb/+YHpy3i6JkJAbloBKyhxveYihsaREVNLhl/ctPqW3Kv3hcVldpTTeM33osy8fCxC4j/QVji9qtfkMXJ6b3uIlufO+bEDLXb7TJfwMvkAMOq3pFTaScidDmo/ycnNM+FzQFrjswCrHFiWADbQBQhFMLtpwdtB49AGrFEaMYzK43cLDh26y34u2oY4n2KUWXsUsCK4HAhf0xrd+gXFAuM0lkpfNyepxIZVmAPSsYuec6HR7X1XQUOr0cD03woZqOkpgxFEOOLLZzBLRfXVFAFmVlJegycT9sx5VJRlO4XbbFF+KuqLXpgqmNU/0sSWDmw1MPvksQ0SLI7B5w/ZHD6xG+WSqBi0zFI1af3tWK8f/fleszMpVdMVadKjX6gC6FbrAf0r3Bb9PGmtJl6/IbKkgPDSjsc4bohooRDG/G+s6UqLdFGNr1Jqszxak4YcIjvq2JzXDPQ+52jVWepFL0OZlYsUoWOARrhjuerRR2QUZsgdVQbRABjMmZHQAl2I9uHVrPFdWy9OfiaIlnEJ1uwS9zbDBCyVQuH0rxOU/9Mq10d0sYzc4LVxeHH2CIrqvP8zEFyChucRovI55foJ6/tDk6QQvvEHVTpL8yV03VCJms4IzY/51pSs84K5zf/HYMUeamTijA33i344OkylBhFQ9oTzs7KsVH/URjRziJwyB+NncHI4N7WLi18tBiFCNsng/0bOuv7PsfTd1Qj9aJ+31TgMfnO6NtI8NRuuAWrjHcTJFKMMespZDrVya3zWJ8ht5vaTJCfzXh13F1sT8URx0WikItvuhfwxssCOlWgwIOWllfuXItgbyyjpVXeIWdye7zwfmPAkLEn56xU0rKeRi9M2cAjGpX07CWw2EpNJKHgZ8BbLGGSALQgVe8cJGmOj5KBT0ZJUEGmP5HUPyoY5xU+mnLHiw+Q4GuyQGMuFdvthtTYhH7J9FrGFvgazw/fDgVFGRxKtOu6Yoa5LOD2w4ghKeIEjnZCPAO0NZhqzurifjpyJOLoXBmGrMPO+OuG2jXhh6bQ+W9SEx4R/LsQss4hisabAKbExuaApLm6dDUim0aTdRLJbFPIYPee0G42P+vsVTxFLRFH/y6d+MZoYgeJMdPi7YMEhUids13Vw4qSHG/rIySvHvXbVGPiMMvEv09SfuDtzyUoy4SyJ9q6R94PcM276QmeMkU0KR4eczaMB6S6Byld+BLxHEy04IYg4PQG8zDXE/y6MZHghCBdnSp2yT1bzyiRpCDIhRdAosxBp5TeAAOxWtE67FbP2aHVZsDSzZBgki0yhbTzbNjeOjPv+jDHN/snFmP9iiZRGB61cD+4s4cvPXz9khSU0SJw7alHipAc3XW+EZ6sOu1LX8uVs0+FnRPKU3oQW7Dn/L1Ww2YT/4EobzwF8bnyMGKcgEdTapMSMWOyX80HIT1pYmCEPG1UnAIYIpgmn6AtoqfsyzKfdEVPxYy5WENdLsGPOYMRXAoMW87STdVaU/05YRNxtUw40+iZQJi2dvAATlJVl1OfUW5/WjjiIyaEpzYDopyRyy6KkdHJX6X2qi3V7ktGjnCa2cFm+Xzx3ZZF7wDyfZNgZRN2j6p5PHSqTPnNf+c++n0Xh1mEW8ozHrN7FQj43P7UyIOZmEPzcZO8tbqODiR//IaFy2AQWGT1jJDbfW/v0JZ3rK4dodzDrPQVhch76RcccpHHA0Z6BTDjwy6oy84ttR5OPFaQ5YKbUG5aSLJmyJw+5+nPvxbvkrUnWWzMD2vQUUEbXk/cMmGLi72gC2CQFWEfyIXOfFywWrT+AVeqapIKrMXQX4ILBn4mIcW5Yv7h9iI5ec82Ja+3yZpZI/5wKYrHxi5NLyZ1KNtRaV/dsRnm4R7TjMWCSpkSoewhPXABui6sVw765npaCg54WDvVLn72zgjLuBfzzQ1IuDPdWrSkPseolkuPk5bgnlXdJErPGCRNBQlsJzltIr4EbQvhsSUkkid4WxfyzBFYyxZVj+RxmPbuKVil9B5aEhjgzaMVwxTSE1tSIZ4TAuMdfG9jx13k1hEGOIqghiu9Gr7wXAuLc6pIAElPZLSqph9fOz/Dg4ha2qBjPnjI7fpue63q5mwFdxuaJiNVPjqLg2M8Y8h+jp70x5m7AZZg1l7gAX+Ml8pJbDxgVuB4JuUnJpxFOUqfFLx/16WZ8UJz68pb18fjY5Ud6KsjoYT2Yz9QsyZILySTPATssyIRomfi/RS3ZKVzXCwdwJPUQZyx70Dv+dkP5AULfZ/O89rbkVFNGDye+7mfCoerlgOpNQALzww0MIwOUTdZ4rLScV1bFdgsc3ajaY3O53FQW6yK4Ik/w598JhfqoZKHz2c3EEzd0R6BuVDThu4FYZHEQdWgdefgIMCltGdY+bHWVaxH+Vln4MG2KqFUbAioYCOWeIyEgZwz8zjhz38VyS0PLf5xndMaFM5xKnBKFv5H0ENlC0eCZa+CZzhH7oKNG7UzBikQehSMlCRwOiFtDtHNRHR0/4mlCTbrkp7CWxblOYci/icP5VCum4hrZRJuq2aWKhc5btY9OEbveMjEPFcRf8C6A86LnXHeXt+6dNkwiLDki9umYjJQst2TD0OVcqSteDy0zAGys21y+Q7qQf1/1XpaXbVLkmQBbarGfO7bbYGVdJIN8dGrspL+DKjAqGazERTyRbRrAN9edLKJUCxVUrUIRspet+bMYy1uoEKd9p5ihWohm7bZLBfOK1XyuAVgVEBTCaxlencGM8ivxD9KMlVfd+NZ6qDRybDQj2V/p6HHm/sHDHMTUvcyIocZK64Oe+hNky4Alj5A/BGDbQoBb/yv32oR2QyVAKnJQAGluabCgylFSmH+rWvw/zHr2QOyOCmb8im8YFsiNxgQ0l3/cdPyGCus83ruVccv2Wo5xYBByxUH8Pw7C0O4TtPJXjOl+ud/AtAasFBLpoJSHjBEfFNljfyiaVw1cFCIzzlyWL44mEsIDxBKZB469TR1fuPYOpn97vEOHM+7A9Ndr7J3XVLoZFi20KJkn419LIZhmnmGmik4+U2kEfT1dpeZN5ehQ/hsEwSziB3+qdKxRgmOvWLmBpx9wGkqgfEsG+7jBdn1NNRciV4ft/s2YFBEHHIUqT0/8fWAPHx/8rOfVBjHRgAQ19GzNI6UKAkHd3vUimJ4aXgo3kh7C+7CyPKi0refCUbtBS0z3mvsSWQ+HFXGNdMoEC+7dpArO3N6HeeRe4umlMOkAWwPcIRDkhqWFSgPAKv7J0te70ateGnMaw5TFyczTPdRKl7WOKDF7Vy9v6r7voMi42vIsOx2wWsZqfxYuuL/Mu9tWWB4pHRTbu1CW67GM3MX6KkMpy1B/5F4gwvEB9veLyWt8UgNnkrBMbZDpxCCh6vE1WRc6QT5RnYj3Z43L0U0CM1S9987EWtgsAwpGadkMtzaEVgCfqOz9upzIfOkUPYNtQidHz4mSDaINfx7zVwHzUFYl1dAjy8A9IKtlCH9jQQwimx7ITcLrglJyoFIxy/OBy5Ty90nAuXVuioc5Y7xyrVJNcieuQSjuZpUiX/bLWLT3FI7zVSDVxVNwwVvZoiMJ2nGFTTqL9LGJ2fQEdBdSY1ZOdXAUO1/KSzU6/5w6iP7pGYpE0aMo8uFUkXjgatpB8Lblscb/8NpiQhH6KNhIVnQJ6Tyi1NteeAq37174lPez6y6j1j8v7yDLadmWufZUFIYVWfFIx4/Hzc+2m2DGQ5JBjzieJsn16hvAHw50co1qV37es9/J3SgdRvw5NjK4k4b4v51em3q7yxzroQEZ7Kra/BZqP3Jvpozr5vdOl7sh7rzMcrVDDfpWZZc4n7PvARGYiK0e99RO72Q1VEsLUbcBtwDtjBIptkpVkxKgPyXL6yciehnOu9IJtGgaX8pGKZbl6pHjusATgupKuJwajwGjbio61vAUd4FttkkHe/W0ZXr7fx0/wwVP079niECuIuRKteQZ5JDXVxGbCSvRv2qP1Dw8zd1+f7wht1SmmC27sb2z5jMYNhfh/jMHZjyzVqhV2IDPoJ79EmYngcf+VfmGv+XW1/Ig4UUcH+HMxI/v0hnPHr9P2W/VPyVLZmbHvpaaT6LNiDfjE3J6DadqRrnL5HaBiu55tK6uiZ5LT+xMyIcy8euKzZTmKk0O7xvKY0P43D2Qk0BdXOD8jnLNXI9y+78FwXeJ2VNEyjOhqhFaZdMW+r376D5Cu+x6VcBlGSFfnvB0DK40veGH6EpW+StYf/l/zfOa0vqmNTlaBMk3vW5MoNokfNuuBX2IqxTENzinF+QO1nROUQ9VUHyRaSl0HFcUN3dc4HXpiUKLHmTvGTTTWr4GcVrUBfA++LRXw7n3pD5krs2+GZp+5bXD8X0XjUnez+so9iUMKfyxnTJYFMDhFdZAujmiNmLcFXnbRF56ydnCPl41rDwPli3Xdi7rIMF536SaS29DMIWIiGimgGkGsCsjbE8DWxjgjVK0lbFf1XKEpl/PBFNh+wj3eMjqEWMl75F/Y6/uPGAvaBssfKsTzwiHWeLwiBtXu9egIgvKobbgIJM7CKauXHhJEw9VLQaqPxmwegueVWEY29NgptDvIV4RDyFaCfuCLATVwgb/h484en0TS7aG2ie36vP+KbCMT/eIRMscTpa2liIab9OnZIKk/oWhIw1t/2gOAfPGjPUyWdH1hdbdr3Icg3rw/B+OZFAvymBQvZ7Kn7dKue7IGGdg3sSGaGMO8hxLcf30j+SSf3+L9Io3vLWrOeV9P10dX1cvMnK4XyL0Iq6YfRbdW5FT9qB2+b7CB2ANu6Ph/B8BNwNJL5pGvz2E5EP5gPaTcJT2EqrQ+OwIUw1uYaT2WpyAlgVvTJrWMxAslUmQTrfV/AhVVpqRM6yUJXJzaWl1qfmztoUDzISTsT2Map5okUH+skujSk6sKtvtPQbpm8NdpaUgREISKqFSaZg3gULKaQgn6xVjbpdbRjxo7q+2xthuPMpJAgCVK3LnHSVlDc5110TqssKE4Tf+3NinVfjwtmQRtxin44b49ozMk/Ct/FqpQM+K9xg0CKQk+FU4D8fdEO8aOiCuokyKf43RoMv0NxH639UXJ1WrcZzHrhB6WeSnI7LC+iEScH9tyt4Sbq2zZ2YReyqQf8Ao4Flvlq9JoSTHndYKIwZvgboVESrhBmts5XR3KVy6bns9CFoApmU+OPBMV0+siW9M+WJsnp5Pvo3SyOkTvvW7k0iA4oJAbsvDPYaRoY6c6WksOSj8Uv4JLHCoEsv1g0EQYG6xrfOTuJ2Nbb6rbRFdOrlrY1U7p4CQC0yj3E7xbJzP5Ul8ixBAOBVfRH2Np47aLA42ZskqGMidHMY0IMo9AgyDrX+Er4AFWz24P5wMvB5I0vh3p9Qh3HUyKw0gFo62QKSVp13jYQ10121hSTas9hUmAG4jlC7/PF8WnZZXxdwqfnbWQE2SwH7sqQEKte/I1L6ywZV1LZlwqT5MpuFgk0ok/RPeTdOxHQCLEGWNcQyYAhYiq1YeXeB4f+MnyPxDZTQGiWYr+q7XwLbibbfuMsFE9ed4ta8IxeNTlgc+8CFjt3x28pcqysVM7cOcYUoWMovDN5K8Ry9tllqj7mE5wO5+brnqoUNO8xbl9n0AcnSCjFZAtSSHA9xZ2i+5m359YVePlRHUPhfwszdHbTBjUDWFLTtjAjwP13Zal6gE5n5Knw0lSYu0Uu3alukOXEwMcgV7v8M3DiHOdGqPgU7LGTO4MeT/9tdYR7Hy0ZpUB/J1X3P9mQ1tcQ6QJGq9vvM+p4d80P2cQsKCeZ18LXzCNW9kbBDUnnomQPABEvYdc7SO0nlnKDW4XVoMZ8D7nKpw0J8zMdbfg6uWE7wDY0SDsY75sn5UDV4jfgorF5/uTj8cHxXwo9kdt3xxZ3GWHoReinh2oTPu+qxOxQt68hRSigHGf7JeP7M/65RzN7xFuukxahyR6qGIgu5Ivmmy8MOyx/IwbyYicJpthA+hW+knIk0xv8yg10/Ltf/xxn7xLKaXJfUYEpbyY1JE7YRoRV3T7VBl5Zxpml8OZ5tWvXOmDmCRrTj/ohNLk2JCnXN8v3NaxYRktNYMlj4wYSB6JRKo9pryB3dgj1lyfE1QDTG5ukMw7jpmyzZ6oiDPwzJNf1Jw+mT2131Bbm5tnJDD2CJKVxZ7cp5LDj1lYiNufPhgPbAkLLSg6eIq4Vpnehl3t6Nro1AFO5/FUDVmGuGBfOiggUPXQTtiE8IHZ9/u3mrT3yzbBMehe5ovSlX9Je4POVCjWjUeurzUQ5vu2oqgT32hVL7KaqdcYN8KLgj/2eQkrKtGXMwRoSE5IUj4EUPsERY7MwHKk04pakNg/gPZvQ8iZNlo0kXlAB6Sk+M+Sq7macapiEvCWHw/2AwCccWZU7SuVsxlV7hAlDO5VBNVmKFd4sq0oq5jphRWI6VadSFIJnnda1c+ldafipQHOucBqXAPxk0i/8+YoIVKYBao9h62LH12DY4EovEDELQGxChWMvxbGy3BHhxaf0W9ZiRCYDeLjw3zC0cu342VG2GlpajBbuTZ/G+qMu4jmGizx82vMQrZZzrxoEFrKHcLkrVAlgo2I64xAbkXIIrXwQLugt31IVJX47RjIcm/JwGb/hOUnpMDZrDshkP1CemenYgV2e776KAZfMzWTks8mnL+NHkaWUzxgECmlclonXRZzl7Am7CTeRGRnO82LqzdhKWOJ4TxBtYW9wjE3blDrYzc0gL8bF6VUnGRtE9hYyVkRr+3hb3gyasCQqzL0/sWYVCoBWLI4vDNCsmrivf/VRmWKslJfAVbT8jAaxfIqNgdFf+03bro7AXXen8h4PI7jJ6+K6gPNvQj8iYIuU9wmD6JU5snIW0h0oQUy89RPSJXGDd2fHuEMDMeeU/jEUnQypTy5rFOsTLHluiXHHamcbnMrBVkd9qcSmbmcFO/didEdjqdDrL4vm8LThCx+ufY38k3Sax/x+23umRclHcarWBgeHCYOoSh6gSXRUxYBM6csUZ8f50nF8UH3U/JRPbQdGCNidSWV0yYnH/jewgu1dgcgQs7cMxUNH3eMewxyjdgDp3hWDkjqCJFoCGUHxx3JtcxwvNJjggLiGkTWVbA+Pgjiju9sTAwoolCtipi28jA3JOvBUqu/YHqlUM6OFAxeNnSDZA8H3nHCSO1aOAjkqQcLnw555aLBeDlK8ED0o5XJ/niRdwT1qfHTqe3Bt7GMrEznnbOKsVszp6+vrnSHfZvafVp5BFLnkzS9c17j2mPIeE9IfbbCRg7R/MwbaNGdnK1b6+9cSVf/4tOXM8FB0lRha2oviQ40ZGm9/gP/B0KbB/11d3mMS+nhb6d4WQDlSAl5BMUnUVRsEBIBGDTlfeZTRpJAqKoUM+XvAmnLC6fKNAXWnmDLIKdGMg6UIt+sOeC5vpd5X26CiYKOQuXerErVm3W6RJrh8Rsmjp8xo36Ktbpu1n2TLCi1mw9Eeptvz4Bz8zwHjw1cJ2uHFurc4YZt7FKE5kU449AZyYuMHNaNb4Tc7TWdWJJzD8jrIQuckRe3MmisTY+YMaGtn8T/2D6FemdT+TbbhL3//mIku8yTxo9y3rp7966+MZQH5Q1207uQYJn0/FpoQZnwKaJpFEf0lxObNjeIhazjN2rNtTJXv2KXV/NWjY5hhned3SN6iV/in7ru+IO1Ar0L0ZP/FwiVzNv7Ipeeqy9keV0dVwLtm9imKdL6uVQ+pQTO/CzsBnnNR5gDgw9GYMmW8105KFVrt9NdMET40+5YYZFLJCEUebNT2SgDlao6s9MQebCsvPbrKVnmSYeTqO+iiuf7UdLSKhPN4V2hP754exOMhXDBYlc82XUwthjmSiAiy2GECXzQt8jdqeyJSudcPxBxW/Zfd5aQWkJO3DqJ/mY+vG4fIo9XrFSyGwKrTaDla16es9Ae+1+jgalkuzD4Dgm/lAMb5Dm2TMVYPZj1wiQiza+sVRUyHLm6B1oTAGW6cgQHkosVnUD7Q2A4ATK/ZYxrOh+XEpJUmagq3wqnw/rHEvediE5qDeNymQypQjYX1oVRTj9wPHaP4w4qayhuqpHF64rdBvI2tDjvcG9f2iv3eqjkQTa6Uhq/4H4WDbGCjlJ/koZ9x2S2mJhxGSvbOVjB4CYN6utpmdJ+Rf0w0x8vhADXcCEOeIdK87QRwo8b5DYQdumqsmCqqoZD0niH8FKDbsLNCnuKp99hd+IU39eRYfKmnVln1whgnWn9/bls5X2COic+8kAKqg7/7kBsd3eXLeLw9rt+VAb9Cu8NAPqaVg6EGITqseKoM1ypgRnUITPP7ddNNHSDIDB9p9RRyLg0LzkRqNLO8s+7QKHrd2B8gUXanOb7xva4KClJQ1rEehj6L+hQteisDOdUJuPUaCz5Ic2fRpTkqVtv3tDgEdHCiy8lxdOKwfwj3xP5fr57v043AtMAYPozrrlrBZ0yVr9UyNE+vA5Frc5Lc7VgisMpRMNPm4sIwOz4EOgR35gosQjGqhNwUpKy+Loyuru1+8hcJeA3t6sIxhQ0eJE/J8IagjXhL/CpExgHSCW7PtvnGbGcfJNsRhiih4GC7oq4rPIsrXHbzf5vYU858SHt4WuvRXDHQop/H33CrsmmnlSy8nYsGKbozocwDzZobJ2JIyjYxc+eas5JON1Jfa58uHX1zmI4LHEo8ndIeEiKvIzNGHh9bhj7jMJi24snW2kuM2NU6ZP2bZe7YWGN7QgZYjdypdVqE2yisgJv4BI+2MQLitALJ6PGJaLOJIacrEAJ5qwASK2V4gvpKC6G/bwp336F2fmxObyl3N9xKa2bEaVZ78yu7UBzsv5fU28qPwb7AjCoHw9wRv4tsWk7015IQr5bMPDX5bZub0Xn/vni1KOCCwh0JavlxSXUXq7XiT4nMk95/bE7mI7Wta1RAaS9iZb6VBreFISOQh6bxmKVhZ1uE1dQA7Dtv9hB1UWtyPusxmEcyK4o9e0PGOsOR7l7zxnqXhxFRvCMhwEju75e/rR0yJFNRNE4eXUqdWlr3Dlk25ZQit/m2NKnht9/WkYemujj6iE2RvXFTTBDHHoDkRyOTnPMPtjd5gyWAjT1RKbII/pCQUT0R4k7KJnYPW2FQ6/PetzhnGFZlv8uPoXMTSGQ0jlaFH9+SN8aYfukBp1fzDEOXJVK6TOtOsvXqw2wEngy+beyQ0pAYckYtzhZb7w+VjJwqrWwtkmbP1ksH8U/BrObhgQ1PcXoYtYp8B0LGrp7XcbO4MKjOxl6ZqrXdAtbJL1JeDGU1kNNJSNU3+s6gh0N5KCWIowWrCuqMOYMOvVBgWOPk5UQXGnN+KRs9jwfxLpBAbWSD8UHwb9E9lIAS63jz0de549fWObVxEpax8yrhjEsdW9XODxOKaS1I7O0F1tSqWD7LuqpZONXLo8p0a8vjaIP2gAxET8C9s
Variant 3
DifficultyLevel
570
Question
Steve receives $20 an hour when he works weekdays and time and a half when he works on weekends.
If he works for 6 hours each day from Monday to Friday and 8 hours on Sunday, how much will Steve be paid?
Worked Solution
Weekday hours=5×6=30
∴Wage=30×20+8×121×20=600+240=$840
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
wage1 | |
number1 | |
number2 | |
total1 | |
total2 | |
total3 | |
answer | |
correctAnswer | |
Answers
U2FsdGVkX18cFsuX8nL8ieZnAgXKQHb//2QPrkIPnKlxx+tbxVmWEMVu4ANs0OST4WdsFSyIlLNTqIk6IkOIAyiQz1RLyQ3fPawGGWTBXjLk2AJYtE5uwF7wG3AsZnX7Rq4HWiq34wCn2LYM4/fTCxlyY17ADooDllsb5Zd4qHgMy/3D0HMj/pvAwvRdlCwdOLQH7LD3dBlCMhkm6HzbH4RVOdDDltFItY7GHCyOuREV3ayYWxak9CIeZoF7iciNdAWA1pYe1i+YyIU0rUS3BkoXocnxIq30LTla5xIUpHecIj8SF3NmeFwohY66XiW2r9CiQ9LXOA3h/Cep+F8XoQC07GIH9Zy1pGOS/nEKK56uBdd9PQamqPGBe5+pq1jrUzgAG7LX8OKFuvOibCj/KSqXYVraicGssnxZ2L5fPQthbBBBQWaZxkOJDZR2oAbwsUIRjMjM3kWYQO1adWIbR9EDV10bU3ftWNnYgjWGJf9+bRY3htoAVPwq4KLyuKLDsh5H6Rgwahx8SJNPl6FhbPuKVIMWFsjBhydRaVUhosoQ93zs4rjdXjUAu6GDC+kUlZM4Q4Y+Dd2qOA7zfi8zjMCHaeYdEuR35nYAEbIU96BQoJnNJpv12ID/BH3ow4fFUvvVn4uF3+s0j2HhNh/mHN7ILABQwEiSN+o/zKqTFQzHsvOll4aQle+0GQf+AAUZGbCwikpyBhEgdcF07pT7BGuN73p1tfhl9R1N8GyEmOaqXKoJCCyU9ZZvSsWow2sk0oTlJzvZU4dWIWWG423l7GgbUQJBgWCPLQKAiKOFilm2OjWjIEKzW9UIb16W6J+pJodvh+IpSTINtTyNezsPR5PIVw01kPdWS3mSn8lVZs66XoFXhcbPqvEmEtO/h3hV1I/E9hygP0tZxFi38hyxRsMJQpe6yJvr5Pk3rQh9vsTXUsBGUDF32Hgqnjphi33NLgFc9nJlsjVfAud2prByqBpZzh/9b7U5dvE9L5mIwdxP4PZbpgDm0LqHN14EYhevw8vQPBK/IIlQdvJPdwj9PH6Btt0yc2BqvKOZuQWgyojpNoHgJzTfmGHtGDRx9PRhGZU2ph150LU7V+36rkonSderosdBmh4Sr1p9662Nn735xUXB6VoiVAYbXGwen8F0qmLDHgDZHOOK7uS311ZegJ0ugb2a+xFWf0WojUZfKWGDy64cLBXVbUAFUibhAS5mxgZ+coGyO38uJUtY8B5lM2CwWAa+ZLjyJBO1pEyia0pzFbcYyVwK8Qimd4VB8GKoEfJgwKeooN5q4K1ulGGEz1shMJXzN8gqQE1genTAp/vb2xEOS9w0YY8jZU4VyKytqFhVl9nyN5VVps1KR88D3BGSWxE+L1whco/YRMNz9v7pgY3fYFcoHxnYWYHCNfrKLpdE/Luz79grHkmtSX2toBdIW9hx5abxMlRVUWx7Sk1eIe7CAZacTjEJuVNf10+i++hgOzupJNWpnwRKROAd28CY607WtYwQ50QRYSyoYdI2Fu2l+g3JMYEi8gZQ5r1FF7BLFjtdo1ywptxCr7K9VWNWoSYSdPj2CpFWXJ4xC/bjIQum5vlD/2MJpR7Yf/keV464jyuZEBZxnTOF+0k7clvWvyk/zgq5JmRrQHjKh0wAZm6KkLbd5bPCBFTyzWSmHamlO0FAlUXb3V5P6/eOkjOCbBDaUvBcJEYZUd5XJSK0whuP1gPHLw2xDEmCSNl+7S+tLO70PhJdJPRIS8TK5pcUK+/9M+68nGBSGMZsNOWy5mcBgbjRH5jIg6Wj1UANMICs2667EH8WoymSrxOxe//zjc3Q9Z3wL/iwyS8V5viTBExmzFnyA1fOp8CGXYodKoDGE7NVNUlR869Fse+TBPlOCp5GfjW6q7M5ePiwxTtaxVwH99zDn2KSF48FhKivACQuYd/J18v3Oq4jBVYWZqq+1tT+GWt589qxa/ioW/nFEhuoUK3rkpJUflteDVBphMk+BhlAiZwaYczhH97sxW+lxkfUXOOLOMwo6bbZxBGTH1u8yStXcOxF+EzOljg6dDRLMcF6fFtvOSj17pB/JGiwop+CeQxgZP5MHWvVefWe0ChswLf5MngU4jkmy8rtyCqoMPTQgCnzySW6tnkByrLk2pHQGyNXHNgiMajTnNPuVllEfIMahpsuAylFru3pzaDVS4mWHn+skLtwwom14e9G+cytsJC9uT+KXsgponyYo4Doip6C0Sl0ucOR6FF2/RnP7QBUeyGbxihRCfWbhyYtgsnIeMAt/nCk2aVXZG9WgZXbgf4OhOoLHQ8o+6XOT3xwnExiZGZKWmsJ+TJFTU5jjPM+HLIAvAD5+oIdGP1chkcJjRjKjIWwTDjiyAuk7pt26iEilZpoeOFz0bLY5mlBOPxbja/qqhW+Xle0EdULe87WWShW20jHmfj5NCwrti8G1LyGlExJyVptAgKZKp9O1PMWX5gB6ntH3AqN+hgNgoZC9tFKemqBH0eSse5X3UtwUQ6ZnNxnMAe30qPjKBcu5EJyYc+jP9f0ZgTSLiHwNKqWLfztITDG4/4rsf1gQb1aR7U6MVZ8OWX1GVQdeiHpzjK2z0zaN7tTP5N1/bXbCGzPRxG7xdnKtyLQlG56DpQAmRYCVsdhsVpka0rSR/f/r66B4+STs/+ksXSAQbdWvr8HTR3LwgoiuiputOPvBGJ94GBE0cFv1qUzi8nKIhMGuVVv4Slt/PjXaFYMP9J83rtAL4scWpkw7Wm6U/5CYQWqnMa20EQvtUPZ+tp8mxJ1iRVo1W1zSPjYHQcVKnMygoyalBzTNwGu8r7xwzi41kjXlTDSXl4W3/AGpaoK4EayVmucyHR2xDB6YPPoOD/TsFkxRcFUs/Y2kwTpLEP/IXmEByvFczPGGqgZ5Jt4yGhAKiJQMrInccUsoW/5HqL8uscZ3+TKXDtvzuVSaviBNtl44K/LzcH2pb0cBbNN9hgbTNkvTfBSBnstuYB/PGsdc6NgvbZwv2W51QxbWq4onsXyauZd92oe73UGdO3Po12a59FJ1sXbsRHv0X6kucrCt1PzZna4KfLSpJ7pW/XlFELQsiTU50Z1YbwPNLR0IAgHf3slPrAPT3cj4Mw2OWT2WDGVRgYkvUfCSeIZK72FbtLq6gy0WNwXSTcGyWgQdQQd8lJa+gTGVX23NOyt0+rcUIfVMDtKuYoEhdRjH0FDwluI4UDFVyo7g7yNDnh1vB2LYRLaLXKuHdr7Z1v31Kl2Jznc984meJub2cy9aXZLyEPgE4hM0CWYIsUZDqK0xy9Hy+u5nm3SutoJZNLv7/g6FnXbuCgNmPeSKLrn88FKFcFIwGpDJG71HRdgq7nQ7F91lQEhlf7eVQY7ZfvvfwxKXj8VQ+/p19YPMeaAg+p7WEJWyIoJs4NzYe/4UiFIUPzSNtT8htK55oHqKOcNJLnu+mKzplkWUUfBlzBY+ymvqZ+aZ2NrHzyMVEE8dMdEBumRN42v/YHExnDqHIWQCkFLval+Jk9tDbsM0e+sBeZcxr2KvBAlMTljhTfXFh8hDEtQrt4vPkgWbmbef8j5SdaS3VNntAic+9hvoFUiLLDEcsqKV6BsbnYgvwfaY6oY58In2B2JV3zy4Ljj6ZE84C/ckMPj8SHpJU91k0dUWQc3wZs8mauv3nltaQH2zO0bE1W3jEUeOeopxyjFWV2AKYV6mK2AivSHK7TU752CD9uDs2WAHIY+Nt4nXipJ2yn9qJU8ao0AR4L+ANVsDgpZn+/L9O6+O0IOfVwh4RKtsd6hCzVtsRF+Y78JS2WxXt5DlJHg6SAypVOQceP5QdLxwtdIOn6CgIw8EGj80K6mAvOg27hEsVqcVV7+KfyfL5KeZ4o179nS7Fw6cMWLGHSHf8T1Wr9prnCzYfnU9BHi7WadKOXaPPzd217knUT2sagfsACmdhZkTzXlGkmmoJkbCfIn9s93mef/vC3vN8N9M/RPNj1S7ZUXVW/pRM5smmiP8Vc+IsDFOvT/uTaKZ78z86a+X9QQ6S+gqzi0GfwXB1A+M0mgneh8B6iRqo2FWu+ggXE56OyyRAlTdJ+rUUf1aaqNgwnIrbtMzdwRetOsYzFFXUx1Grat4A/yHj1J/xZ/Y/44wbr22rdH/njBfD02AF+BvgwSRMTgxoJ8G/ani5x3acnzB/yNGkAhwHuANnsDdxAnfesFro+r7iL+H14LXogigVTAOqNuBPECPiFcDztjP2BwTknVeyKgDr6L1bRANxgZK02UDjOzd+M9h2VLDUaOl4u8zJX1zyf7QViSOfwSkW/ytKSQfo4H2KSVedpfX6CH3+GEvZcD8sTRsbqjZwlk8frEwDyM9Yp5I3A7LWHaggFwEbxgfQcHKwoSSB/6iYzZWcPZ9GLgfKcdm+ySxKGFXsAbhT3vvUa6/wy7aLvMFgh6pGMGuAwyt38hVHLUnSceo8DO0nNJNOWMHDeRI/Mm/bRPvkrcMLcUZrtTCheEOgo44oIjroX7pG2AZCkv8+6r/1AU0gQCYJieo3Rmdjsywa72PWf6oDolCRZsqP3BzXEP3/+6jZh6zUkD6y51ROp+bE6/DcsMe7/1bK35OsPfau2EUrNmBhWpdx0X7SfcBOUP5oTRSI0koWLbVW+Hs+d3YvsPwRqzCkallSMcVKdHUsvBJRgGemF2FMQohlie7JN54uTrSdTlocWRieGbumQZfD2Ib2/NXNdyRCVjLOSzPZUpHTRYDikwDqOdFOHtTBqmnyU9lIGHtjQCJT0AiCRpXI7T17qS5jV9knVfN5jOX5tJNT3vQpVvxXIXkX81oCucbON2Wf7fQd3CKOWhIazhcnEGhDymyE3gGesZyg+kRiBoXJAlnQ7Kl053SD+OYkDRNrwr0O6T3wOUyHvdw9FFFd2VrM8ZvnqYktpxI9m/Vfb7nDHj6n7MEKO5CEW4BmXzkCVohcIJ5GILtd2f1NSQfxl9MM1GyWepj5fjtgxAd1G2WJMY09x+UWgFoxWsTTeYMBYYki5aI2btXxg/vE8BT7FBFvEX6zbvCC8NyoSmNrIM8dwzArH9LWUSj2q+nARB0Nyk8X9HoHx1MLqTpo8IPqoYHOtIfpaTm1PP7UtCV8TIvTCAfVyjM0XrJVzhocl8PMpkOwZPTsAPs0iL4MmJ/bBmM7tUbvD9OB68el4W+xAgmq1ILkZ46qlHolkrNG2cRXcMz8A2YHQ35PRpnp+wbT7OAXVitjSWlvVAT4hDCPGE33TPHrBUnk3D3AFTj81CaO6r98LzIS6PacHcu44wOmhXYDx4BtAO5cqmPjIRAKZ/jyHuMay5IsXY3iqcW65DRYLD/aTYipbfJZOEZBFKoEkTiQmnuAlT9TpWH3N7qpKnvmxsIpH9TPS+jorzIrvlIT5cFC6v/UiQMIP1fSgDpgxPmrnDr1urahdYr03ed3sCVfHzShu30hu56IivwKWCnOMl0WcVBQxF/ezpuFUjim4pALvrRA7thImH8s6Lgt/ICIxKKBfeS2i/GjTdqkOUIN+GGUE/GA1MIfQqUP3588gguJuUnaQqcJZ6CfrmRxsBzdQ5ZSEvGzzrDuo1Y48YTUysR442jQIitHY4MJm5mziA2VMk5jg3MV1guWdClnDPboYA+TFgZKFHRmDXVn9bo1f/caoBhAwufxXEXhVteGgbR96AP21xGBstDEExUTRhwiJPHyWMRjbVimDzyWorCfJGsgzzlDAlgil5Nmhgq6GFip2MLLdN18uE+SqCUeB8duELJWU2jDksVoPetE14vE4jBo8yF+3W/XggVCqVn0q9UX2VRapGyzUZTo2XPCZWQPQrJMDBucN9Zxgpw2DAkZe56ZaDoNaYUjga4dRfARLTfntp+YyiBSglLIDVx3UMFDZZq6GScwAyH1VvG9FS0ZknSdzz1HgyyGayqhoPMost5BpcqJL/RhIfjWPJ4ozb0mjKBMyuYuxfo4Bid8xY22CfPcqF8QSEz0ZL+ey+s66CgLSGtGZfddb4ao1RZYgW/YOzZjsrX05uFB42qIxqtrIsn2MC8LcbpzfK1EUmNAqrJOEC0xUELZeQCbhqEtv6nFyCATNemQlHOmKhhVU1yEnMWszkngXv0XIckHGeZt5rX5xOP4Mne7pluB27jnG8WzJ2PbZ0cU+xniv4FVQPLHWqqSusevKifN6qdiDHjSuiDHcWwWfeQ75ndP/ZjSKIqC7c5P/kpukVR2N2KfdLb56FeiAW2znY7JbRaWulr27kX0ObALZsiVHxPvfvW2vcOc+MdW9aNhmTQwpXeoC8t/Ei5TL5TITq5nSW+rEaXlMi6Hw1MrNmt8h7jMiTgHGsPmfjBf9pqL8CPIaePYnMR0yL+lphWu/2BUHu1uA2uXUnQfmRtjGvzrn2Xo/p/uCK4XTAEpSmWJLyROIrzZGxSg/i6lrCSQAQqHR5yZtBVQg1VKGj/MBYXn8Wma5EUnlizdQwx0Bku+/9fFSM3Ozl1+Ha4d97iHg5KswI/A225sZnkMsTI3OXNKQGTDXwO1dWd2JsVmAH9CRv7I6VXfRQMiSNgsj5EdOelLOei2gZpsBUVR71HlylOvjPBRsQONmvj0TajhKLQfprD+X46ex399ngISZAAHted3O7+rQk6BHNmamvhdikOZvmQJ0VjRHwL3IHeM8GJbuyF3b8A2dTjWC85KWEqluWL9uv4csuwHMpnX5Hc/FYxVw7j/FHtOjDvvZZJQDGoEKt8pHetbsQyyBht501eFWY1fr5vvotuMZdzZEScBx6eXx6WIj9VQNqlXMnVLrALyyxSMps1vAH1ZVPm4JaQ5ZDu2yUdXL85XVV4B/IrzidDFEnmJl7EeBmdHLSgZWakf0HQA3RmHhnv8KzMF1yl9+ZXsHc7QIK+6kUknuHxd+CqbXAwfgTzD0OtHByM+VmuchCP3GtyEFaAWWMLrSbhRZSqsBCObPQhnz2kF5mAGXJdnwE7qF+09fWY+tbqruIfmnLv0tH9MQyTxXGTt6L5xi2N3kJtGN4cGFUWTW9uKx2YY8jRadDk0kdX8lI6SsDMYOYFA9MCFyQ61NxkuukWp1T+09h24l+frTCp2GP6lRU80y0usZW0IpOzdrTOaRdyVQJdE2yPIvqQ+qRYuJZnOzBG+ucGd3/MPpUkLoH9yn+mYAJVLMIQOaED/AZ5z3mdwAxLpNnTl7i3OQw8MEj6rtLvASP6GBI6Otx79x4y4r5tow8aV+HyLYAmV19OkLMIrE1nffB+trHMTaDHV+m2/w8z8fDGLmluepbgf6cuC4cKg4faAR/bCt8/jPAz73ohcUdFZrUvKiJ06JN6IpvLYC/s76WdgGmFRhlrygGBXyeIk3xwKGogXe4kAJRK4xE89osNbqmWJZz72nKCdLAerdYnQn81aP/6kGN7Enz3VxtsKd1St7RvVTGvbrXrTNVQR65mr9lxkLT0lCbJSza+EL9nuZEzFvzyMEcAm0s47dSybDTGPbtD7omCR3CJJqKPk8ob8cDFm/41MfyX4heiWZJT6C74+0c+wuhH7ULmFuDLWPWTDeNGXz2C2Fk5RjFuy5/OjD6SOJzWLZVeSbDyYjCnm9IQjZ0vX5AEY4iecJwMnVLlXyDc532DAOShG3RVxkQf2vTd8NhgjpPZ5WmS9TOoeDmY4Uls2aFtUdEO5IgOvmqfd0HIKpE854P/udaCOXv3PnbOKtMGkpfKYYeRZYAWnJVF/ryaAz6EuY3qhBA/AYybO/KG8ZQbIfdIp2CTjEvTLL64PzBj2/ViuBzSwRhkOVSQc8aMQaZdp2UxY8p3tcgBrFgRQD0q5DnrSfsNhHAQTPQdaOCvZOfn9djHOntiSW536eJbEIOZe8DfB1Ja3hLfmfC4vurNUNnLPUFscYHCwRGXNskryP1n6D3u9EVp/YZCAdZ0ZHOJq0FM0qH8q2w47CHhYYbGp+7E9qGxLAujPeQKdxq6Ha5OwD57DRpTorRKvyXaQbDigXtGaZXuKZYw2ZxCt7TdajjPdEyiRNolOQXdG5AWvA9nG1TfOZiKSqRAsZluDoqQcpLuAskjt6gZgYxWll7giXw4ggXJ7sra6Bpim3wwOoHZKKlMBv4hygzReLXBTu0Bgy+YHgwc4hghGIVZ6R03ujQ7DNW6XnlQeLKAyI//6o0K8f4hyzLyln+8GKaFRlxzoY7s1EiHF9JAa+yYU7uQRdgtYiQ7v4q7UM17T0CRidOZl24ySYRlM+LY5R2RG/Zku7baaoSj1nI8A6dJKbZRR1yJP6GpI2tpewhCBPt03D+PXHAoHp0kQNbLly9JGUXjCLjrP/UVa8av1Bj1flZifMAMGEghMEN3GB0ul/pmBpyMwrrEKVTJ2ZXU44EE9VWKGWNBq/sUJBlKOGMma+6ohA/7q4KLz0cWGHv8fKeI2+fkdi48WNbIxMWI3Phu3SsoCrPhkSSpg+3EYCeQYfbURrUTVDWJV9XjzMzqr0X5drGFlk+/MRfk7gxezEzP2C8/Cm7ZY2QHzmaufdOAlI9iyp20mtt2RAPJOL8cMbNz83hn0gzHIgAmA3tZ/3MqFZnBIZalFIgzRUUy7sFjHlgD9LnQfdNFJn1meb0lSw5qzBtDhKry00zfln6xm/gZL4dHJwjuEp0RwdqQNUspXDv/kyTiKVUmdOV7Y1a8WQxc9Jxj60IIfl/Xb6QRF1trC/j2BmOZvCIoH3M2EKZSucMC3nAvEDRheSMrIG2FOehI6HQYOuTKJtoJNYrAbAKmKxCNeONvSWkHBW0bRmt9+2zT2NAII+YTJw4evW2UwDx6BuhEIrb21Qy4B2reIje9+ea9AmwDs4nvj8L9zOH2wTMGWtdTm7tRIJXcO6NX6ZNpoXtkUUL8Ts5IAmKe8bEm7aBz4DJhdeNrmsSGm498NHxc3Tc2Z+l+BM4t4i/VCZk7vxaAQXkbUS9y/lSqz1VlapyS1ZZTvArmkAuIHQ/vUb9zQogXP6iGGFIapA35/X+wmeT3+iNDeK4hztrVX7ywofnwJvA/HRFe7a3X6Eh/iOTdKSQ57RjGdxJjeXu3OHvrX2WnhmIei0td9oF2IY6TE0aP5ZNEJ+nzFs90ETDTOEpnryH8GhkcBFC6rfEqDINxrIQEhN295lyigc/LA9XpvOYmQUYtDAMsCZ60VoNnmvf5XC0haH35f82wCvcNbwQ6iuunMw39SLUL84NDyGvcA9Fv1UZlteP5THuSopjt1jJBMXCV8KAt1Qn/s0dnDlHM4zcfe/GerAPOZtMhvHfTO7uxh1ovyN6k1xV1GyaAkesA7ZW/UPpjCuxhfMiMYuzSHJRcoAjzmv6kushhFuGq/abg196WggiSU1e7EvXnnBrS4tDGg/alNFWm1cvcfBYy+s8oUBbHiIB/PFzRkEqnqpyLADhdIg/N8gGN51rPZRFwhON0YgJotsWiIBnCxpw+WJDfQTV8PHsfVNtRa6ebpjcyjExAK9YETzb61TlXO8FrCkqc5IO2W0RAf/1rlUKgvN3cWZMUE7LbJ1EER6iG5/mGsFXLxHQdL+YPEtPKFDj9LQJpBMjeXRCBlFdCHV2bEBpVHgvEOS2JZ6dcJxwGZeKFh3Du/VmXn62W3KUUjNrEyzjKs8HUiyEK+7ZX+md8qPSFJpc4I7HGVy1urh5DVtSdSKuScD2glYQRMMKo3+/6GGTTKdV+H7CI2U0rnrR8yRtyE3JUL3Wq3v/TO+nFuN+EmT9HotRyyt5SGQ6G6o9kquILYidtb6cRs0e8I+nQ7FeQqa/UfvJYBeCWHnjNsWHJeC9+ic5iUSLwqfzQEDGApguFBI0+gcCurLY7/uMaBvtZaVSYYwgoy/bKE6ICAzQC7h5xrfMiQ04FYv0OZM+KL09aexIOgzqbwm2vkcbqsaYtwjKmBHBEeOLyjYkPqmDsx6DeGRQHjxSuEVHJuZEzW35vHItkQ9/jTG3442QPQJig2bCPnbqOgsLiB6qikTQb9P8UDdLdLnVsWS88oqC3WCnAtqZmJYN1ZdqExFP5H03sfSYrxJtZXl/FBizXuhpn889SOMFQuMVUVFLZXEulOT/vBxb1d8vDPyZspn8xKZ3bbkdI3aUwlIAlfDP0t9wb1qAENfhlwdY0uH83t5FRA8FAsD26qpaCZbMWr8vskgrwbTrU1oMmYb1joOvvyIOnRic8ssEZvdM/W9DqTGp3HPEuPBM+cAXvBtrPsiV/ffFpU2N45VYR1Sgafy9Y2dqkZLbtltYO3JyktPj4e68fV5ozv7ofJ07QxYJnuh03q8bo37k2/9RVE+9AdB2qGqC7VZNq3di2uLQPf3+0AEQEaIhCv4HwBnR4bR0Ivsp32OwTVAwtNtdz2h9ys5NInVeufXgMwKReWEaEmSZegyN4P4Ba5t1NS4BMn4gBeVUCD4jcCgxGCvTW2XFKbzrM+WOErvemZWtY6DKf5CuHsfWrXm/fvDyiAh3uaShD8ofV89pJRsCiDN7HnG5PpSX3etU/xbJ/trvfHlzxCSjLTbEKiwt6tV+fgeZRjyhTbDvVSYetmsyyYhZgwoeHhbnZ8+AUDwQHKVHQXQ5a8bjYTDP0feQxaERW8VA9aLjOyn3OEW8QyYapH8Jhr5J0/QTsNDLS/222OHHgV8YP41hX0daeOXHMSFAMrCztR8vCFy7XzWlmaJRXjztzZmbn3HJnoZP3gF83s9hr7/zVVg1eNOcxKUkcUrvPhx67/5PsNUkJdVyFO6KkXHY6ZNE6+J5TOEfoXO0i9jq5//blPu2MnZYM0ilPcYzGpavltDIje6NSUYVwEmYkS2zfE4fPDfy+3ruNXrjxGISbIiW6ERo8sTa1wQNbHqC82H+6WPE3JfA/WnuSoClT3KjS4UHsfAFG1uh91/gBWdMu3LEBZpZg49juZ67+LcNUHnHiqSw0iqcwQfCy+O4J7omHnx8X1sKTLqvemzzHRzifO6RkO4VT3jq66cz0D/k6RQCbAhmdLPvzxmu9XuUWFH34GfibCDpBHpwvvC5G7DhUdpPtfkQdYrkk63cuGtUpRWXKRV6dd3NyOwuI+FJY2fA5XkercrID4pCWM6lxH0hcqE4lt149gIWur4myGVQI/3y54hKsa4ClEKCyJ86r/ZRdQlb4Ij6Zi7zHdtXNhSHQVnbFe99bamXmjRoE0rnukRyshiBzeRFA9z3OmX6Pi8+uNT8IgbndohyRrMWKJY39AMu9MWi96JXwfwEKhOk/wfMC+D+rYRDAjOVTZ2UuUv1tz5yg4v//BDV8fb7Twg0yJAuNdCeDrZzfp+b3i2ZGIK/ABLNx9ue4QQyhRcEGF2dNL9fgVhufpPztu2DHZOtIaBX9sXSeXXbOpAlRE9T2Vat0PPhPBnJMKoyLEkyH8a7exGn5Kly2RvpFqk0eEW/hhkelUmVB5ubNumlpPKABAeTqsAm52JOFW8X82aajlSR1Y7ZXWV4meHRUg1tgAI6gGhnBGEZ0asChnOLt9m7CxgPWoepKug5fwDOi5n7Uy2Y79Zmg/6GukzrcJ0JjlUVwDzzJgYPNtq89hISuPtnFTb1h1LFZlp/C/0bJ/NiVUxNKhniAqQCSxCA4zMtJnN6vaLlKLwvS3jDGsMclBmeKj/gaRmQCGFzNzKP6yxGCsLDBUReKD7LxuuJHMrSbOJBRKEORgHzrpXBUabn+i3FgyOa33H1ojMM43L+lU/nssxVTu/tpZ+ZBkkqzTCT3jC2DuZi/zdhT47qPKo4Jgp0L1oEJ13lG95FakLarjpn28RoCLL7aBQd/q5sV0iWZkhhieu6PlWs63Q6RmpLF0pVgxnviWmye/L0ArC0VDSrTD3LmVqGM/SeeijUKe79xBywIZUcBe5qr/k5sX7e1X4CPL2q7Q3nuEk77/HHX3MdwdRKiJ1Qra6soJbStkH3Ge06v9Y3H/SL6tFqFtdTtDqPp5ReJAWLkzlssivoMnLVHkFcUwC0vV2GRxmkpdHbMDT6ZF8WiE3fpsUEgVUdYxbYTRX2KeytZ9jD7CdC3RXxB1xinlyhGKIPlrCsz9hE5ddz4PgKNSr0BLBOT3zDDElns7ifibCZnjyLRoa+csJgI8OC7zswxYue9kYrvKMEXbyBnwVpvaAF6rdIT5RhNBCKbqMY32o3qY9lmsb1bl/DWrXFtD/EO9IYLi0mtBDxVTiBsvE+rAjXl1TPtL/xBvtemECjlQzsXrozeZDzM/8Vm/9kYvZJT3JUbu+TflYPIhuIaIHw1jO3kPjlTiiwAmV063wakoH6xQvHMTHFMTgBU6mCvpN+nxtl+DpkEdK6s0i2smrv8LPFlfmFxAC8fUK/YEiOwxN7qxXordlZCs65v2WOPugZxfyg0I09kTCavWDNe8RiZ3ogDd8zN2GDQYVTqxpGj65cwwpAByBgmWmGtv27u6viRLr602yZ5T9kgRZtV/1601EKbFTFwQ1Ijlz8hhy9U14fg4NzqEOt/ga02JZRSQ8Rj8OM7EF7fWhJJdFsXKow8zeSC/VhJVOZl71OMQz8kGrn69cK6M2QG4Zq+Qm5swaycsfG0ziQ/05D59s1f3jmZXqbVjcAvwzFPgXin1jqJcT1kVke7pewh2oB+uzOutgezGYfbXn+C1kp/vudbPEH+2nfDPf3AHvAXqu2seq1F13Z4Lm+lhTPam8GcbbRc5V4q/1dO1yitp5QpMv4KDXziilBquxuJ9rk0Z9g3NAs1/Ta3yLjFXtol1FDHwNOOBYtxSNjn7DI+VYOywZkLmTvJmDURxiV04BmOQVjgRY6MDoiudUpY+FVHcPp7nQkzjNOaaCKqYSaUfI0ZxNc2k4ZJKC5QEqwualIAEPVQqRIhlbWcnj0N/iLzku+9IlpL0g9y+gZRa36xLzzh/6NhrSkmCeaeQVs471k9//lVS1FuC8/rLFFufxnO4xoDUNGlYVj5z41yBHOBvMjIyf+xrOrAl4pthmVKfHkMPLw6oTzj8tp1jk8ZTkXc6YGxBCnMdhqU4aT4XQ7xoci+7/gpsINWLGjzm6pf/3Kxtd81ZrsgXvh4Swn3kyVSd8EFKwpegCnz4bh0W1UK/sWictqjtzMA6GJ5/gw8dHCR7WqZh3mmyZpe1NSJafWgjYmut6w2efbm+uK8dh+yzIW+lZflyaL6iY=
Variant 4
DifficultyLevel
578
Question
Clem receives $60 an hour when he works weekdays and time and a half when he works on weekends.
If he works for 4 hours each day from Monday to Friday and 3 hours on Sunday, how much will Clem be paid?
Worked Solution
Weekday hours=5×4=20
∴Wage=20×60+3×121×60=1200+270=$1470
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
wage1 | |
number1 | |
number2 | |
total1 | |
total2 | |
total3 | |
answer | |
correctAnswer | |
Answers