Question
Daisy is travelling from Ballina to Hobart.
She must take two flights, one from Ballina to Melbourne and one from Melbourne to Hobart.
Daisy's flight schedule is shown.
What is Daisy's total flying time?
Worked Solution
Ballina → Melbourne
6:10 am − 8:25 am = 2 hours 15 min
Melbourne → Hobart
10:30 am − 12:25 pm = 1 hour 55 min
∴Total flying time=2 hours 15 min+1 hours 55 min=4 hours 10 min
U2FsdGVkX18RO2wxsoQeD9vrKgKKg2njPz7/1zYyHOKR0Bimm+CXZb97wuQL8Um1SahIUdhDp/dRg3KelUsDlG3FjP8kpjvvKg72ItASeaOQtGHbbeAUcmgW3oy3sOG8DXavZdqnE0pL330HQtJGh1CSKvYBpirGLSU9UxZrvvpNDZkOW4IHwMMl4OokxcHvKnJSzEOZi5Sgj6ngb7zR1y/l2SYuzgsfo2t0Ik7RKTrIyZlyyI5WjZOO4PlSjmPlGgbdsu+wKBzLMUA0/u2gYZGQwIB8db68MB1FN5ipArQcM22o+f74y5j0ttlXo2gYAGhrSycCLPKtH88JcZKi4cQDr5QsmW475vVQEmwEZK/hm53IL4VetXFCPofWgLdad3256oDAy3F0q7e506lM/rKMEJ83Zgsgc41+AHTw36iZ8FLbcI9Ufvgl6s3lRVUp2qJ+e9pdHgw0OeOUNozSFmvS2TGnMpn1TPoAxtRSaEKrm+kpH1fGiUbfe1enHAAX/rBXAZtCK6caExDhlVyaX5nQw6KtFD/1x4yvF+tKJqAraSwR1CH2nMwkAT8CKcWva+FjrB6RPfenEl8mvq5JDART8cWDIvhcyA/A04s9eglCx1hiE8ZT4X22KTSl+nwaC+8Tf4dxoA9tOUxBp4dO2xd+gOlL6CUgROP+r0wkGYleHkGNixvoVQd41c14jPvTzPlU2W2D/9nvtQk7qeiYFnPqc+qJFf9jZW4CCnESgFygHwKpxX/ukfJssN1GAZDYoT+YsOkLTuuF3o+FO6/QGK6ffgSf7POlmFOxINaARiMt91P6ykZAK7Et/+7hxL2HzzrbRCPbtMfx8dtNESgmpo9qesYe2AZ9hFHpaSTeFPmvRsXgkFYyVVFnwZ1JRBRKBmJO3/0jMmNu2wZlDFOQoAaIZ6P0JE5fbpcvitKvO/3lWOv39HOf8dWyfWEFsQQFTg6aWckYtn7KHbt6y2UgVnhZ6dUDIPJOWCT32riZ5jWIVGjzRlzxUhigzIX9LV39zR77Fyn5TEGzyybi7wFB4dryl2CE7bHlZ1M2USURlYp6N4Q+hUvcN95HbNTXxdxXHwI8mDjyH5kIEdSH01Dj8tdlwDNG1S+E4Yyxn2ssShcOZ7HLi1NyBrrxMhHwPybLlnJWpW2EJxfYD+jml0DW0uAT446iksdUn5amx3jKQ+tt4Z2/VpPga8zpUxa9Y713rHHGgO/6ppjdH5DjKUCOefNzK8/EKZrf0v+HPE7/3NsX+o5bR9cCBwdL2eYAs06FqhOg+iMM5UUK7UzIAU1x0Wdr1AvFXWec+0TCAAj+B0Li71DhIvqR1qLVwVBC6GBYU/QoZ+HkO0jQAnStivpR5MyF+7EgZIupyLei0lQpvEs9aImFgALVI1xNAjop6J4JobodlMnPp/W0ZOmmwJSDDkHbea2Ds0Owey0jGOReJDNCy+uAt3B05vFxQE4QNRB8xoPCiZVwJU6m2jvEPNyX/40FKq7DX0sM2P1/pYzcK1+wsbPU9CuDnXnuQnu9XEQTHT7HJqTKSiljm0ngzGC+f3HCksDVpPpLdIL/wlz9o0VSqfj03OKPddS448jaNPF4ZDMmKY2Jbqj48dN3Ir9ggTQbEDL7HLf74TdFyW9/kO3oK7WDC6/cZX0O2EFZ4jNHPlX5ueZFc1+6Y0WwTC+K8furU1ecClHFgEpw4zf2sexG6AnAMZ1Xz1uXsOxGrdgHZKWhHvHJTR3mjbvGAtt0nHck7Iyzp3MMhkiIkD+TN3jZdCy5q705478HE07HsTgjhyKJ0UDRd3nC2BGGP3FoxOqpxSN4COF+RUlPSRJCm3rhdRmk80LYchfN43bO1+mNKLDvXJbPRXZbqiTaoRjYOVx+T/V6COnrnlyCOdUXB6O5xPbOF+czkqgTQpmo6uwPqzeOk9GocIuW6NoadE+BLYoQrMEfwaPy/9sei0/qdYFIwuo6iObbm94F8RQbqronnXC2RPwMT0ymfmFcmOq6zbz6OS/pAOW+P2bvyEyFGVlWsGPNv0AdezMqiBjOMhP+NZaoBCkGImPGTH0JdrtJDBJxeX6Y6OdOHpK97CaBpGLNi0CaYKQLn/+BSA9ZqBMkGlBsECdEFfQfKPiA4dtKjGm5kA+oaNupR3AHweP8+SIP6i8bh5Fse0kt6U11dpkdcdmxMHFuzew8K8OL2Ki5EzF6rl9g6VEcT5lgKv3v3t3ChCBSH77anxWnI96is1QTmBezhxwe+QukB9dinxdCMXY5rksW46Di1mx9gXjfWLYhlJ0DZEm09inBDL8wJAyQpOkgvUlBLhtZy75b2KWy7nERUDteZFXkykGH+Y292WlHUluZIPmuC/qJaCjZSifFMOJ49sEDaJdJvjFPH/UyvCxDJXzg4m66DmsFoZYT3RvNJOWvSg9QqP0yy5KFIXmAYlmEqWGkZyDiXBHq7zl6GJahWOhfG62w0EhOTUu5f3rQvb+k1iA5lxA1zutCGs+P9vZvBCKde4zHRyjtqRP4979sOd07hGOxzr5Vbc53HYw6wHQgzZAMyjdF2iDg50amWMPOMG3aqza1w0h8OcNRfbaLq5DCEkI91YVmUFqc13o2WzlTFwjZVKs8/wfNMMPCEAtK/yJZPgHZEXyZioGb7Ud8RwixQrv7DYtgfIm1HjlTyw9Yc7CJaCW8jayPiDAPScQt/AqtPrLGnIh4DQuYqLhGdttA7MejdxNsOO/UJG8DeFiH2seC2uZyX26KMAgz4phcDpNEAljHGqoHlkS5apMDxrajqv4rVK7Wisv9xupgbsOqtad9+2DywKHf7amjvEp9Ie9nHisJD3Ebqqmvzxa2OMrHLs+HZS8Dqd0JimfuiooD4qc1u8kAv0aUXoIRnUP7Ywv1dTXzYWsJQyo+16IPfOFKChj0wRd4qbvPeLzYz1mtoM9n+vm84sxabtngktbqkK/GQlu5cd+0ZkAhY7JgyqlJ3ICjZ7KRzWiT6LH/uGyUPQn31zcchHGtRKzyeU0h9PSiLD0DwYMxN/XgHYepsbCAkFq0Bj4ok7COEUjIfvqrSrBrK6XiXBb3szR1AoGL3Hkvb/TQLJ3JWXwJy9ZGy81inDtBDZDZLCkWgvsBzkoa0fg8/oJtGHvRhiI8+b+UxgDsefG+EhfTKZLxzya859hWFQ2SaHQ0+XFohSKjj83eOPK7iNVyI8mF/+ndAvOuDPU5oXmF5pZKYbUeHANx3JeHgfkHA12Ju9wCTHIo6IS2w1jCQnY3++fyZFBevqC8m56H10rKCoY5QXEbazsowxuebMNuMgVD49v4tbrXFCIevmPSC2t/6R/8igS4mzWZuKydW4bnRfgHha81WCBWqMSf8GlgeM6qegt99CR8lS+xLIouE4t7ImanHu3Xu80Dj6SNMoi2d5HIwi+oyPoCGlgSXRIIGUXb5McVHH6HUfp9zG/USATKyO/ns2HkSVb5l3n5H9RHgERKo24CNqO7vA5/yB/ghFHldxJiBFaGshrPypWQHIc5HTbyAFU3OBe5DCF5GpR3Ufer6YqSwbj2Wrf9zGtwCbfY34pGyhJb9N+tAr9D281yjNdKYVLRJCgj+1K2JKiHVs+sMVKAGmYkJcTjysMyEis0N/L7UWtYsQ1X6Ke3hXvbXBm3MYiOswQ/rWsk7P8GEy7zVywXmhtgauxnLLP9qKaebk3GAwZMS8ANMhNSsCfntzdrt0/7iDAw18hhLB4YSLijMyQ6xjDTpjqp2csgGFbi9ZsOa2W4UU8SmjatV1kKU7FHwIgLC+RH42OfcbzoarjeoVuBfaBzm40ZMSGcOqJzDR3RLioS5QU8Di7v7adt9LBXD0CtxxXzDfX3nPeWzzqKcex88GFSd/MDvaR8/I6Q0Wy0VWBuoP0lFVUH37Fr/HGajD1BOBcx8UqkkerSNnSKYDatD7hDPejkOtrtiFjNxvE9gEwpqeCmkHJ6q8/c+ekeRsjCFxEgpDqtdV5YoomzuDwf33H/tGuVkphW25uDNkYG2IQRXMcvnwgDB5EH/NcsdSPeilboE3JCw/RkmpwZ3QCq6TzEDWFv/DSnVA6w9tz9zhmPP1kkfkHx23/xvZQz+hwdRUpa6U5IThCj+GK8n0lEItHNCPWx4DuomW2A3VVQ+DHLcicqgIsCfl54f4t4pUZgLd0ZG38fZnm2zlP+jdfBGtRbg13RWBmis2J+52UhvK6DurVASE3erUOu5TqOzRbsSsnnirFFY9GEiDcaSOfORregv766Ur/5qXZdq85erb7jTdcAkB26o3Uil4mbgNYxA0o2DQgRCRXDv+Tns8hf9MpRUI1KW4Zv0Q3ApKOAN6Kv6VhrZt5T8H4vEoc2X5bdPXxnMNMratytRRydvG1P/XzDaPOeyS2d3N3B156nagEQ1gc5s5oOT88uky68kV5hZo7G7hp64dGTJCLup0Cea/V8rctKovHYsIFWAvgT2wDSpHO1SrYLQP1f55aVeTSAg32s1kGvQROT09faLUf4OA7Q8rT4iWFseVrBFfvYcjzCIy/gHf33MZoAALKgcw3v7fmuRioOGakGcbJVyMliuU0Fj+LQWX5AWFiDKuGpKAfav09lSPxtS2PHxLJVBlMXocGndi/FdAYnbpUz02sy6PWwfepxYOZ0EgmusyJkXJG327Q0eRHqVCETaxIouq1hN8bwnhNDGla+qyGYX4RNSE5XBVzDvlVQnZq1KE3hKjuyye1kSAd0IGMcSD/RtBaBOuBv0DqIWygWDD54PhfheBqUvos19VGeSVeSUJsUWzp9ZmZhf0ojgSN9j5MhoqZaTJOy8BO25ZqIwHLRuO4qAo9tQjg+kDQvy8Pn42NcCYr+ifqhEuoJj2iWkj/1QSxJW7oXvCoIbFovlRrZU98ukjVwR4I1bxGUAR2THQZ2UXKSmyt/ZmeAsMyLcQgTQSDJqIIikkn5Lgpm/X2XurX0F0fm7qrt0t4Kfc2q+Owa8zx9xXB3oR8fvx2PTTBFdisEqlSj4HS11iq1ZDTyuPwGuCOklcj+4qo3YVA0Ql/63owdkrg/Zx5Syn5+0pyKFJQmoirQwzh6QFP6OSfBtecFjyZw3wTMhtZsE+r8hbYD09B/8IDZaAIvx3ZzIZcpdd/TUtYpYldScKdcXF462B2uGFUC7Yxp0KP66Eei3VXn98MBCGjpFajmtfyKv7Vm/KONi6GY91EEJI86I85qZ0qGLANAX2Hkl8NmX3zYVu+SqGA/MoycsUlr5KYQU3fJw4+j7BV1E7CWzYy1GCUKgNlKp46+5ntc9xtfka4Qqzc8jYiLae5kIvWlpKvna8Pjr8JXgre5PhpFIzXvvAXMC7fokUEA9eGGfosKzo736MGffA3tyDWBpC9YmjdjDbr+hSURl5z+fTOpxg5QoLLqEWr1g/jnBIjKndSFePx4qxLKr7weyPG75T6HtT1vkHSA8Cto+d2baDNk4mz2oeb6Ks0u4aZPSwPi16aBkdDmh47uC+o4lDBEtZbKhPofl9C2j8C4NR/19vxczINxBkhRhzI++cbkrLU+mJZOdwsxx+YF7rEmaQTPBNN0OxMVCQHyYeFZFOSkoIWGjLLNYNoSJmFIz5VyIp5nWcMgS8hYxei41Dt2jWb0yaoOoh/hvcX9cLNxz7krUf+3y4ubyiMlpseZ+VwiU17GsGEkpmKhweDkDAYgSMvoAhKv7Tx52D7xA6t3OcMyEzf6tprdcVCubF6L+o5shse8OgIIe60VafFFkBo4fRL4/LVviyGLKXfqwyHV9hR0KCc4OO3+OPAeeVfrOYFxBgmMqk60uTz2j27Gx1eIJYnki2F3VswoeMndKvEW5RIdtb4vEMjHgy2fzQcQyWRluabo6jtXKLdQr8YegRgAH9oxBX5lyM0M17UjNDhmvzSK5UljjON8lT7ruIbAjzLLC29Zgh1qLiAFFIUqtVSxIGyd9YdKnvSw32A6XGZuqLZZTYTxqJ9OTCiTrLf/BkLAACGWoMDj7LhJy31WrJBd39EpWGgKk9lXajkhp6YT8+trz7Fz5Pa+nzoxWgurdbPCqMM72cC4Fax7J97dF3Loc/tuk5jgMiUJIYzHD6cp/Xw5Q6e235ByiTfF710U3qk06BeF6V2aV+hsbDQn61HzDQEM/eL6gPbsGfdjqIoCjfe+3NM8proLKh+gbixakEJfaEl1cuCP2dqS94pXOVnlNaoqqjSPrKcujlgva8wpKjjiwWH75eY9U8Re8r6OlA65adxLYqQD9EwPKKYLbfdppTU8F+g9vhEr1SwyjG1BhHOnurn4aI+sRYY6U7/zMfLOqyWwwsVD0y0wsXbaSIKPVji8GsFpYn5jzUdAlmVlfwl3c54JBV5HzWZudzIoYgaRfmlVUg3u1U1Dt6W/JmjxGDEQ1g+79TEwvtWzuputHd5TBTAWRJ1Zzo3UKUYUCmlnL+YM6Lp0dakct89II7X8/cpnhd5j4X9oP7bBbtBCQlbSK2vb0P02rjFoWX5Gp8XAAts6OQetB2ewJWsbzBtocVH/HMrB3vpg98zMCL5KfEEhKpIBG+35UwU5QFvVLzrq0G9dsv6mehwqGKbXCDfhVjMQMSAAG3rllmBTjuuBA00ow5ee+PHpQ1yl5WEi/qAEjXRMoZ20bHU1luQhwQic0uP4oEUKWVfIOdfWmSHiHWkzbU0iCp+A6/fN5I0jYSPSbBKRM0/kyGa1dnGJmdKyHy5Hciwk1MiQrHWHFraElwJiO5hHH2RAl5u5iGPvIepevFtmfd48A25OFQEkRnB74x+a0BU72Gag3hfnTCGh3tmQnMKgjN+g+V3AjNc2xyFEohoVL2IC1B4qP5mrbF4IOg22cVqFAPN9c3jsuVbUglJecwo20G6qVFeMC/16IqQ/SuZ4KvQT2I2ryP9BBDHD6wYPpiO+YkAyE1Ybm2XN0IZZqhZURmS4rAziY6UdqDBeT7BO6EXFgejrqC+q32Ii1zYBibbSr9KOhdRD9vxP/Aq4BPEQ//ucestGxTFX4cxllG12b0Du7Hkcwb89dOz7OwRqo6GVIqLcGOz6ONQacQ3U/vQ6AyuP5WBSkMQgs+nl66HliDMM4fMy+S35Y79HvVSNRZPEAmTLmkoWEeD7zatuabK08xzedp+8MXqv2/oyrhSdGUN3mw3Iy9ksM8AmZEh6hDKN4QLagwpJvml36XSXoyvPAKs4Q3vNmx6+2vVJqdbM+K7SMtzMMYlXm4jZ4L6OZEMRj7YqJRh6BfeFNTot+HmpWNZCRuwIjYnnqJENpSXVXOhOWcIzWdq3hkIJPJwWcgql/WgmlBfLKMGS85FZypHK/iVoRW8xNDj7OXygUDXkaj+hN5qKBxXJDN0aRluwXEUcYVfIWRp58m5DLx+DUxf9MCt+df2/5nBfQ0Z4KW7WFgITbF0Il/oYzjLBDTUlv4+6V6x2y4/yC5GMVQYOGyIyCkgdzt5JYbN31XE4JFfB5mTMhgTTBSfzqAGK57e4ZK3/s3spKjQTLOf4hf93mjhKwQpQebaKHHpB+26DjW+7yzRbkrsgZ41k5wPKFycjZhOeHAvhBr6Ow585Knz8vzXr6Dzhr2XK882Z9/PYBJHHZFYIZYtuQLrw26gQG92uCmG9m6yQsbcEXHJBIxf9uJEsKLw99QrqVdPZQ5bUZ+KXgRtAoCaD8beEoApUE9lzZ7XFjJAT8rVp+Ul6fZyJz9tUp/nahziD9YFbQHEQKjpyvz+9umMf3tysDuXLHrsmDqplIr15+WLyQHsJy031PvYaQw1GFHOpEgiYUmvF4QbOMXU6+Z19zVsBOPM13u5ij/srITAKrapvWbWoV5tXItp0PyrP6D0vOtaFxGPJEHYTF+kFY8TfrYQYkaE7nf0DLVAFdPsTzNvt0OMJVfloP7Ow1a8H8UmCG74RHw4BZK8Iyke4ILq5+WyN2M8/QWTclRJ+OQ0EdY5ib8XjXMIEIcTZd2t0D1GoFpcWQAy15ymGQm7bKGRUG+fc0cy9/4SGLP9y/92sqckuQ7iOssr1gjeeHP8aEKmc6Tsx8Bl5TUUyAnw1ltW2u7fjLYuH9Ny+/KCNoFfBP1DWMiNQn/eIhNt4ZOvNlFbAGjjy3XCZlOrWniv1ZX31guq06HiR8WL3HPPVSbm9BL/W3OpDNIyMZOaKkdsdWO/iog1JF8JaQxdBkibF4S4liDzHFmUQqwFFekvPiO7MNCd8PraSjhIhMvuCuncC2QGnSgQ7SisnbJCIb2v8KnWq2i6v8dk=
Variant 0
DifficultyLevel
571
Question
Daisy is travelling from Ballina to Hobart.
She must take two flights, one from Ballina to Melbourne and one from Melbourne to Hobart.
Daisy's flight schedule is shown.
What is Daisy's total flying time?
Worked Solution
Ballina → Melbourne
6:10 am − 8:25 am = 2 hours 15 min
Melbourne → Hobart
10:30 am − 12:25 pm = 1 hour 55 min
∴Total flying time=2 hours 15 min+1 hours 55 min=4 hours 10 min
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers