Probability, NAPX-p109746v02
U2FsdGVkX1+NY9C8nqC598ac6VEchnJaVYrlodCjADivlJFMuigZIllrnam9lWwKx0RulgUtDQk+C8N7lCgw1nHQ1UlGCp0oUKx681xWnYzurzhoFCxJF0bS4nXLrrpzI7is+sLA68HZ02+ylRiogsThLqsKdW81uUNgHm7dfOz5iR/21LHpaD6IWT/LQpzfAX8YEB1H/Yq4VBnGhPtJ7jYQCZqaIJTp4iaDZekFpYyNBX1KC69YBSH2Kec7E/1s9P8jY3fdh8mLexgz+0a45YqMqcmGZkIHCdvC72AVwIK84icWUiLreppAnYKOcy2I3TOG2ijTG8S4sykdwcsHhH5h7UiqjXml76kx6kyDNbuPGSpCbWkJ0gGpsxXXKXXeyjW3IiqP/sXaDuQAyaIr+vZ5jOgCUX/7pX/a9AfkjMRGUuPDqBjmGy5+/5g0aTJLiP1uQP6xu/djkAHkb04PWJfcCi47IknQo8bmXXquaOkbagiARLU8Bq8jqxbaELinOQowZ7YSpfVH1WoIdYMZ7qWdwGiPEgXLqe/Wup+5Jo4XDPENxhlzc9TSYdiujATbPRv1C54GpDCGaurSAikCsujCcsDpanvDU7fkVbamNPx2BlpvZpCSboyy7t2vIrxs43A/tqGePSUjvdxoX2DjGkZMjW0sXZWzdNfhHOTFAbX4/fCn4aReoxYb3D7SWzP0AVIIiDgGf6plQeaQr3RCopxOzPBrssSsNRHOfsnvf2TVhcb/eP01q5VxzlLSlpWevz+nhQbQLhqeDLm7DZX/pyzj+8aYBFKYSu0wyVh7fijaBjjqLkP9PWNEi6XkB5NrWhBpDGoNX8ebuuuHqqzTEMDw7WXVdGVohXoiWuki2/cvS0BZaz6l4ilXs+xNJZvEFv77RcadNdGiOP2rjqUxrfIExyRGuYHI+1909w2wWf0mN/mfSaOyj0y5yWPY3XOX9uGSdEsQtKmsvPGiMylT0GHbj6v9zYBOg4vfKLuullim8GpGXs6DD0ybr9dWc1iZtDhPifP17cAQW2IOzadTMBF7F4OixeaoAXxZzPF/Hhbp7pC81dsdUirkAQ9jfiR6eWRFpwVilA+BSP5/yzbNdbEt4AEutadgpQGyTPREhtloPutCEmZkZv3ulToRCb6dLrnVxhmu3ZX6v3MphCBcJGeOZqY5tmdW+u9oXGAxRkiCFLSeBz6xUf677Frd/wb8tLMvkT8Rj1Mj7xzp/3lpqPDq9wKkEPFfh0bESHhA6wnT7kWj45X6aZgZEZyV0+r21zQnq64F61EbqeX98XqINbpfMhIHVicvpHuy9sUVDuKPt1JMxNbOsbhP6+EH3ygX9kNpcqZ2Tdropfj8M0bUlunCEeWZ71zU6yzJHtSOGq/dYa1F2jK+Zk7qpVTP50btIPN77a3O1WPPk/xqhXxwCHUmpYkpQLxDvih4ILmgX39lDuYVhJAarQunmgK8XH7NLfDu9wOTf3pUk53N/QdV45077B2MmhNzDxV7cLvFP6Wlg2cLix5b1RXC5J9LCGB0OqbYtGQLf7+xQ0EHt2C6hKwxD2x7Q+FF6DBtMAgHyWikGcWUVVnKMLjAs07RhZNqG/k2HeG0vbUunV02R4LWcVa7Y7Aih7fLg71iAIMxOJ5skwMczmcvHag8uDu7aPUxCrt3hL1J5aE5fvHQwgwaqrSaIvQrgQOJxcWoXyCm8mej/e919EYLdTfjES2burVY0H04KXR+2MQtozyu0nXFWGrvMz1jnQ26MSp/3Lwb8t8ENNEe2+CepNI66yywYXsH1Tl8i/u0SWR5JCebS6Agz+KlX+30x9ISJG8GNIvd9acBFHXdfJbGP729je8tVg8eMAOSnp3gFtojaKN5tzEloB8iZcHKs0cVko7tdjDfP/NfklpVwK5Vr1A4+1BHpyq5kxOW3r90+3idKBuGSF57/BX7cg0ezJT7yHWDmB6XZHNk7mAJ58Kg2+VcW3MwzhX6CzJefInjCfG/cViTRjhm3n4b4IqCHnYl0meLivOGdrGuF+HFLr/tAeY5iINTi1WJjEMUCncXaUxksSTmq0gVfAABe/rXrn4gcztFidz7fV1G5IyflZNr3hqkG9Ie8h7Nm5v4oyoI5vlbqxKKaFX9dKEMMv/9dH9R6AWG3JaOGQHxISId7b1Y20CaaBz+2UYhKn3imAYgOYotxCvc/1PhPNrncSUgg1N1nei0CSB3La4MGmHTky1kXDBNdhyARkA69yquUP2MvbaL4Bu9IzgW2HbYDu5zpVhwWpghlYgs6HXr0dEzqszPOsOq551GpPm0Koq/YAawEL0ZYk4qPmDoasDrOMmuCJP7Eo6SrxmeZlzZyOg3wk7KCEwpBGGk4iJPOslSak/c+FFi45XzmcCRIwEalXR948E3XCLypACY7Up1CdFJl7bgjkz1JXQJhhnVC5siqUtBHzBkoclQp4FgXEQ4LKv8RG9fDh3Wzlx0IpmM3kqGG8yviLICxeSVNAg071xJDrbMskpspfPYpPyJgksAWqoERUl7L/yf0hnyF5+L+hXHeJHwOxu9dLC80vJ9g8xT2y10XKz9I97X/Wdn8eI7BiUc1c5wmCmm10ETq6p/xhnw2jUlAOO7FsTXOHjFvqa7DvMrg2TzhEiMYommYiLg2SFjyFMEmaIu5LWZxNE0i6FPH4Bv+oyIFOhZl6m45a7sx8Da2M9FE3fjjPNnL9bVMf52fQJjSB9jZKG3C7qaGgtYVH/J+tkbOB+E8P0wB+YGZbbgXv38RoAub2Dd8qB8YACSRt3IMJzX6TCE8T3bFgf+fr32U4Q8Zpk7gtjD/LFeHnwQdGiPS1kwFHScHpq/2uRImtEm43/ibB/yXB6U2YfbCKIip9WnzOj1OymcNYDPiqCeEDIyZ2Et/yEwr+taH700MRsVnXQzBEOobr4wFJvEoqE73hDeg9Y0FfXhebR5IhuKoR16r67rcR59lwQHSsENpC2OklM89Cu77IRCsZdo/J6QNtkUsNkMsRw8JnmAYCTN7TtqZE5nLs6pOwEGibvW5geAm1GurAiysY5e4dcvHTkTdDHfNGCko79Ed9C6p0jQikIXdBIBpAJJ8oMP5H/6543JAeIQsiDSvnYYPUCntG8Xi8O07ITNrignYY7wXqqsIIWXKmGgrc+nflXJ5JAe16wuK+Wjj0kL17en4Rp5MDG2EpO9jamljbjuOKChKY9rmg6EwAFchO7n7FM6oDYERzPgd95MC7/++hzUO0xsi3OMml+AMj9evmSyO4tQAszFuxAW73JTeT+gMSb1ppiubaPW5k8uJkXS7f4iTpa14C7ZXFLCWIwQEgsv+o24Be8Pi9arFUP14m+smDPhe1zJ0G1Y5WEWvu3KJhGSNflWLQgDlJ0FOGf+WLir1KykRoeNc6VbZmAdU8rWGyghE0hOgtcHEGqQf7uyp3VEJQt6h5YP3tsIepWsiYfAgFaEPgQ8oJwChz/Wsx29f+/B1q50V4zpJY1XkBYEZ7Zcy2CAbtEjlMQZJCJV2+2kvgL+wOjk1goPBzSXI6tQYRkudsVHp+8AEhYO6IYjZnB9wAwDkPS8Y/0Z8TaWxz5xlG2xjd8cd4kRwhw1OlhWv6O6Ie6JrntqGfNHInxxcuHbdOP1nEZ+GftJ3ORPWdGYq+OQOimVQTkhaEaKrWr/qfSQ/X+KodSrFLDdew3vjXsG1tmN3RMUTs4ZnCvop2aeb80iGKfmdvOgPf9n8wxCbEemduRmvlQJAyFDZQN1yKrNfa3HMPXLZqnpJb4Uiiu7gUMl88GcR4MKtwVCH927tiYCYN/8TwjjgMIpfgHWXr/18H32ncT+1jozox9lSt+G1m2m/JQJ3wvCHWNpjomHQ3GNSquWHxjZLemd+KvwcKL2z823N7/o2cfJUwpPA3aYYdQVxTPwwHFOTFMVcMZXqs2IwrX7FpDUNWM0gciharmSFx0lNjS2WPp9RuNJPZdM28LEoedV9JWgvYeWzk3WrVnnXS9Zru9EkIQeY1zmXjDLMM2sMEOy1bmFsVAcI5xWtEDIFQU+JT2nB21J40/7l3QiU3McqQfXvEqOt4rIIALMMt6WbjmsyDPVQm6FjnDag8GYKODgCI0TIEA5NkDUiLX9SXqCqgxYa+Y3OAeZWGLAbdXWfywGDesZkRVOkx3M20rPz6TXSz2EuwrC/HK58nD2rgrAWtn46MiXOYTdNYkuu1mN5Hjc2oc+BU5ErLbH38ZfROe3Zwc+R4qocLg68O+ekmBgN/6z/0WEA3pT2N+KM0cAeIrQZ+rkBOtlOnQYPtg3sAkbYR1zXA9eeaic2L+Rdvzs2oQzss2pr1X9krnTxH76z4RnAUFOwIKmKn/vYWOG/GVsj89H5zKxEZcwMNP1wVxtYSrlKEeiXLMrgzJ1jo1gsxUcklozsfGStzIdJRgPwJbASuoCFvdRKBWdOrBSoV73dQZijQZhZ4UDv1K+mXZer7Qx9MzKP6muz6BgaZb/aQ+I0nkNiicVNMtBQYVgT5NbcFx9EJFqrf5FdYS0RqymK19y8yoNlwnHW75GdfKSB44zFUuuF7NWyzYysxjhXOpIesgdNo2ui04EJ0re2jqcgIX1/JN6zY0OJaONp1s/qzHTpm3ayIw+FF8+3wdZUrb1mTbU7EtneQkOhWnsIzg7jG/dGPxFZTfqktcVuh2KB/n6NH/vObcNa6sHTF0QKasWXiSi4Nyj0g8c6TL4ld/F2jcN1JOf7xd89K73prUvbwIdXxefmoclvCxNWaagecVJpcKVzbH/vBHlw6lswE2ySEuA0ma3FPXIAtDH3rMA+YAJiRLJMicNlbdr7B/mXQMqN9aNz5/fXmhQx6bZhgLH29dJftltLrgm1oopP51VYgMEkIM8dNdFdKA4XwmuSvWS2Eae1ZIBBlqi8si7LVdqdCMHMjke7kQ4tdpgehKz+wQTopC1Gd46Vw0ubIUV0xOtJ/KOBOtWMTBn2NoRr9dQRVHilN/zDttdaDyf9g/4ByUMPhc9FeangYSNwhbYO0xEjFSzGN5GkyX9SuEel+G4SfqX0LSlZgGKN++rcn4iwaY3gCWTfVRX1TV/49uesl8Rbxpz+kSX3Tzdr82h053L8eJkxM21+V4OaKcoVbSLYl+2/UybeinSNHbKlDkf4nHTJFq1TV18GgohPD/MbELfhTzl36Sw3PkxcW6g5VqI8JgcNpa7h4m17KRmxoHdKtaeFtlc8fkTWOgv8Rcwe+xiWbohp43BKdJJ1sg3nqfpG62u0kFydZUiwKdGoi2q+YXkmOUl8dDuEVdXbd7eKsSWH0ajY1lzTN43BnJcyY1yGxxiDHsHXa8mIKdg/nGGTK093sWg4mA2JcgXaPy76llV6xWoxAhENXH7axVRZFBSmsfF3EGVgPpBLqyKWk1PidvSTqpZfzmLMSf0jKLF9ciHJEHxZn5jkv1ytJmX4onQjexPm7ojtQpDB00+d4jqId5fHg77vIzGqsTXUFspCszv4QNvR840hkYY8+tbjPm1+uIUa3uHjL/Z6Lle1FMxB8JU1V0KBrKR+e+wPcHUKr7IzJxff9/TUNhkbxaEpgsuBdxYNhYyoGqqN46mO9wlb4eynS/c/z2IsPK4CMh5glTtMCuk5B4SescZiZmfN0fyoTrCh1vPqTkkVUEbfTDXz7WbEx4iWnxtkXfHvVg3nlES6QfxapRlqw+hqqRPdx0oc/KMv/3na165c8ywDzwixx+8JK9bxZ7cN7GRbMruUivbl7v/j6LeeoStgLuSCRULohrkdpuxgmvX6cTATdWqcxUUpLpAIUYhS6isv66I4vOknjOtGTp5K5/cMpsiWwFjeX5m6tb74PycshJUf8J+qNB8SXCPGbG3yZvqcxh1GWp3fMF9sjzAZnuhn1Czry6CNgO1L8KMzmw+3XwxYLi0d778PUgEPauv1wueZWjBoqqfHXB51TV4peqNdkzyC7R+YVItLUAO6woP2/0qta0+fSss2zVpFlirFn7Mv9GF3ttH6FLfVBzPZ4HINTLuJCiwh2OJPrX0ohdz+8tQQq3eQP6CtQd6PeLwM30CQPhucbE/DSCQ/Yoqourd9I7CS7mNa/I4+7DI+L37I88ZAxj7aYBBgLUDs4m9JpR+Tt8V6GJYrQ9xeM6uGXhxB71QbJ9PjUr0dhwgXe/g58JZ5Cl6QrxKnXcQj1x5tgbPhephssFIJ8Llp1offeWVbOHgl/fkpRQXXeqzZT48MuXv+qxNq//oPekOjWJh6lw3EziZa0+8eG7GsY372awolmIGTmwbeDsjJYPEIImyuml9ONLHexAJN1t0f6jCTZe3yBBY6JTbBmAGt2T+nYE0sEWSJmuhtoMAmVxedR2Sn5brW815wQ5p+REV7mz7fyHLIX59yahq1/2tNL/eae67f0nBL8576c8SKJGyQUp8WYp4js/W0UUO5HTG0hvDR3KA15FeYkL0s8nEJMYaU32yVxOjl+x35M4EE4OAb6WjDBuY6PDkxqYqq4LIn6MfI/TYn/v0vMdTj+T/+fGcgp9nrln5hksyVR7kwWSS6c5pJv6VO4j/wkTGSw1mUuCziZW7fHGknV4VJVHGfjEwQ0c0JkcXuQ4Bb/eHstMF9ikpsXhrR+CN+SU4MB0qdFX/uvJ0bH6yaYLj5Jj5Mutx0ZqcJo61nMQurShSdsfQSfrurjIV1BDlRpfRgikmSQ7n6uJZeksSQdVPaOxq/Wl9iZaUxrW97pdKHEJxwUeYzKGpaPHdSRphtn3EPZghW8bf5NYy/tunU/TuqpYpASECKn7myi4tzXWYxJQ9wU/AZR2BItXDt3zmB9mtkZhI/HE/Bwz+AFwDP0Ozoq9/D58neo8zJNwz1p1yxJTsE+aP09EeS/RD9LjH0Y0FgeXXDj35hLD84Z9meIyP1goptLwtyfbAbbFzCKzKeK5idTsOYWYmA/0BqpzL2xeP278Zua7jucshTI9Dw+ZsXXhsGKin/EK9R1k+D7M72gBk0vK2StODzduqP1+Jdgr6/TmYgPP41/MlMUNjagBJeOg0u9Mn315WCrINFri0b7pUIPpWOwsugZHlnHZ4gH4taNxfeTKEDDvI2BwCMMWgcxcFJlJr7rBvTEJqONmSIhSzcGopcsc/r7CZ5Y/xh1bWBKrlwZjV73BlJ8/oaKikXGcPIZreGC53XvdK0mOBQ45tcDyEwxdfh1secV2NeZ7bAnG6rGFbQXVW/in69i6TX5LKZwioGQeOist1p/4ruJ4dpkmQf2GCtpoYbZkT/3ASKPUUO7kYVSQG0vl2j+6d3KXS9kho4aesMGqhCAXTOjwMgVz4euzj75dac7W6FVHirioVJ/PJYWz68y/tHqgojsGJi9IjZliGKJGLyhpwp7HXBS5wFWaykJQ8++L613WQ9+ixJvFDoq9yE0KElvayAIKJoY+9fpJ/6P71fDXDOYrGWJSkEj4bpUaph2KdPEiw99zfIPlYMtpmRwETXSh+ahwJdxlCMrD9OilHFgX57pblYk9fPEncBuodqeBzVSeywSGJkxoor8A75vc1g3w2I40Z34zEyQrVF11HzO6Q9cGevlhhtBmUYDcr/Q==
Variant 0
DifficultyLevel
546
Question
Brent has a jar full of cookies.
The jar contains M & M cookies, choc chip cookies and gingernuts.
Brent closes his eyes and picks one cookie from the jar.
Which of the following could be the probability that Brent picked a choc chip cookie?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is 111
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Brent has a jar full of cookies.
The jar contains M & M cookies, choc chip cookies and gingernuts.
Brent closes his eyes and picks one cookie from the jar.
Which of the following could be the probability that Brent picked a choc chip cookie? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/x5fCO6ybJNlOka8JGF/ios/01bw4xMxn0h1Pqw27ed5o1amedeJ7rL7IlrQaPbcQACJlyRuXM9DUf4b0gMQPYx+Yju9yCQ28vd7lQEfLAWuio/Ohp5ZWwiQgtP1L8tRSQoqSGfQIV4kI1echVBU2c4/ht3oxXUF4+Lg8NVu5/FiL4F2aZVd0JbPSoYlmInRmoPqrv4kOcJ2rx+uIvrmVJwG+x4Du94JKyLtvnm0D5w/QsAHuqisKFakSNrTNSwb/0e3uGWcnIAZMNTH/kCmZ1mzzjpH2XTKJCRU1ij49BCXDbFcYTvPZ9OXFveXS++B97ESMxQajH3ud2WvB6aGWwaygJ+zLA6n6Cs9VKy7CCuofRkxrOqh18YtaTPRqRFQxdo67YKDnMMgR83Fcgz0pws3x3pxKeBG6MlFvXW26QJXKjY7AyqsDWuuJN/f9tcN90+tZXBJzNKkzrSMCTmVqoK2/nnHUJRn6yzA+XSTEnMw0EM/dio0aM1+X5/dDfRUjGo6mhLlxbfeNz1WIH9iftf476VFR2NokGV4GqPPDTZC5nuqAQS2MUvUglXDObS5egTrL/HBZWWq6IUphh9jgmuJW03WLhEDWvF79tIeEnoFe3nQ9BFj5xnpvmRrFnKdSbJgYkYzK/79DmyD+S/bpYrcRf7i+3HROusE/JodwxS9sFpC9LMxwR9EQkw7BS1ZWr5C70e5Yz0V7YrjbqhX0pYU4AWmAL0bjxBOlkbwvbpV8jZA/Jyxtxqh4R1S1ikgaMxfSvi/UYhKzO4eTZNtULmhmL2CsoLQCwxmT7tsBksre3rT8WSrJW1OYWV4MDEqUJwS+jfeQIf1y2pZb0im5ipPQkDL5ewRm20sodq0KaOM7A/6fbaDjql6Ep7XcJ+yWbo1UE7EODdv1whQ3ru3svZTCTk1/TvAuu/QZrh2AH84fT0A19hSMijHi/UvsJsITHWpduXlJgDlP2OvcSDNWe3hPGzhKecAM6F8XKOpLpmxQJlN5ITyFEtFPjKBDXkmE5zXCNpc7p88Gpk3In7HU5ByVSMOMClaDn+0aBxhQwfNAp9hlI0P5McnWWTZcvBDwCRDjLGssew+jSqqLNeihExKLjIggTJserEjGO4ucciJxjC6QqmrGUd5x0RAhx1xssJ5YzBzOzLhyiGOCD3dKCcOV+vCXlz5i3DpRDW00M5Ubek/Kj/Apu5KeBLGEnQha9HPuRh0WZGaRLrv4Z8vJ8y4h+y1BbOIvUOVfxkIY1vOpo3fgRUOqmlUBcwI6bJZkQXRudxohB+R8a3+7+L5JBimkPr/Vj5uKNZ61RVX75CI2l5wBXM321g3vHgG0XV+oQjwKwKK+QM7xP5+h0ouwH5Di1jYMg8FlYe1esgEuVVg7oLXwQ4U6EIGJspi1oPRsZjwwfy6cR65fpgo7NQLrPrrz3jC6zE7yWPFzVIwADRm8Z0+lvtGoeaJUhTKzsSJRyjpAk1HVq2wNvbVGGgOsQHl0KK/NJS1Bpyu3tdpZpvbVOKAsHR5MZhjnImKHQyfvxrdnEltvTopoxVLx8JysQ4uLRPC/qAQHqsf2IUUjTWsBe8p0fx0odt8ZoZ30rV6wE55fCndaGn6OpqwL5gHvICx5DsGQ/4ZpE+jJx9lWwotq6fanZSmOmWtwKUmTa1jZ4ZCQXDNZyntobGJgDPkumIBiD/liX9nAjNo3l5TvGFjXawAaRQb3xjrlNUC+G64fGweLPT0zY6tXan888qDa/8ENdElGHHgRl6bGeLKfPdvBosfWHjZ/AeFIrkRLM2Nyiy1fb51yyIcnLcPnnOWDtu4VURaK0e126WgkqLZul8r8j+tJr8lir4/jSFsxvOC+EcTXhUWM4X4zOG/55sIUzdPmFNY3NC/fLH+dAtc98YpKuWshYOjQCZJyx9ATHoqHnZwlheUgwg8A9DOJZNO0MBVSzhc5wB8lfLTC09Spz8zZKYgkNMkTwQHFdcGTL5ljRfzJwGJjftGa9AqU/7eYC6Ymtl00h8pelpTRlH8gB/C8b1oXLTmOzwSeHQ4+Kxh5iN7evRY44s0QMcO53KepJoJ5knjKr4IhiOAqyPuZpk38Bz/eLr3OYP2Vj2R4Em0sCJJBX+mWt98oUDXk4J6G1oZRsId8++nzhMkw5u2gCo19g30a3tt1mIBcQFpusZIdoHNySJ6/8BzlSMw3piBcu2lQqxrD1EA3nI1sEQ35v0ruJyLdBHyCVhiKIvd6L8r5HShCLyRn6FQRyMaZDJ0MGJAouiX42vYeRll6yBRl54pYjmTeqwJqCbinJTDiR3Ca57Iqklcz5q/koMdN/bRtzZ4vX53nfgcw6SYa0DfAoikidCjgXnaDcVwvHWnQnzL8LXSdQOt2D+yRdo5sX2Rp+u1AB+dB2n4uPzvJvVUngmz5gjL159jwn6sw7FHYsk5kzworrrH7JcCpyLjuM+vMkVSM6R8VVBOw9V0B/wI6lSz8v1siaI6+Rg53DkYoa7/7Ht5GWcHti5UQZh4uJuapsfxNCbT4VO9tDdiBD6x08WlLxgFSBGpx8iUFLQg/iXjDOWk0cbgrjMXrdcNl/FbZhKSN0HTn2uHcD228XwEE4X4KZjkwEGT7Lol5Q0IriU66sc0JK0WyPGRKI/pdeov8lnBlobKigtoHhd5uzc21zMsdKTuwCa1rjQ7+aUVPvzZeB454x9XYDAMXXzxqjrl3uMcXtOxSCbsc65sqDTrUqBz3Rpz0LrwN8Yb77JBA1hiet4ZA899VDsiWXVUBnr89U2tm3wajW7u7azjSyj+DyBqCRMFTnia9opJG2D6vj9hONYzJbDDF56IUMw9BEgKKrF23Zw/MeEVR8qKiNPn6cbdBc6VqDPZlUXiXOfBTOTuEyAIJj+dU7LcdzfRtb7MLyR70bYIrL5JHMyHkCkhhzIOUztznWC+gt73QQHTeTA7ZlJupBqjgNmC5B4EalZRDXNgZb3h2+QjbMckT6OdkBeYygCHPdEAWJaaApPLAwR//D1a/wnzwCOEDvtPZmSSbiQALAi9M1/LGgVc+pHbYTH8JzCfWJFSOgyBdT26m9V9N+Qz97aSWNCcVdKs1cgmY1L8yEKeByfxF/C8VtTQMimGF2ea0LJmvsl6skFbNErlaDY1mg27IMw7YLRL+4VaYLkkl0dS8I02+xR9M2v/5e1dwGYJHAz2sy98zgxrqjn11Alhb2jw7gyNUVU6Lz34xLXlr7BQHDX25MKzEFZbfUHnKHO7SMDjcqAXhmrxkM+1UR/Ss5exvdenJcNQUYHokYa7eIiPwgpA4qTwGdFJD4uY6zza3fEaeYykQvkfw2iHlSxxeKOnYOO5gG5fjFIOweEGswU34dtk4JD3bcf1jNWeD+mWHCaxve0eYelJiBolznaY7qcjDW8+/qOoAhPOAYRaolbdde71MwgbuISn200Xay6prb0g2T7HLk+rNMFTsiurnFGi/NVNbMlSIRx7XOH1cGZZCIjYxDTGEy/TCPtG4NCtPOz1Ffdbn8t44gVzW1b7xKXptxWDheLaNUAQ63iOP/MAgboMdYW1g2tII9h196EhFOlPBKAhmEP8UgQ8ZprurEj9PVAd9trEyDNA1NV62pdQvRlvi6iK5jruVxyXeJ2ueJ0cid1bhZvs416NEgGbcUTm+9fw8OqoSir0vI+m6dzD8OHE519X+QWQP927JoZnGxkJ24f35m67bgyHNNhoEyE3iqKNsG0C9JPMwmXHb6HvSdHoI57rRw3bImhpaJDEDrlMQDmbZxtMa1Cvs+zEi/IGYMfJjO1nheIncLYLzt3bZEtBMKqKI/4i6h5k1oxJZEPb8wv8v/iTEb68giZLfmKxpfeCz2r7BpdTUYNkOt8LjDJ7MeHmrIHL+FiLt8+46pu0xEFSGDtWpvXXF+yW0MpI9S1iW37536yMS8DRxYJURbrKkk0CTiKHgF/4mAYH2pVhVx5XlgjYgS5Esc14ptsJ3TVjB9lt6qBrTXcNDzKzFZVhDjyVSC29qiD6BXhrL4G139fkoc7DtwZg9DLrIxE0oWR8+TggdPhm7Z7C2vH+xPxBJHkXpxmdOq+6W3BGdfFRwZ3mNmanACyahXP/wsfBkcY7VCoKSA7RV2c8JrmgPC84YzQBdoyqg9arX8UsBOvOi9/G0wBlur7Dw60egRgecsXEXMHGks3pBWjRShCC9r7Be37x1E+CJaA/L22tV+gRcV1scE38lYaXepwccwo4GLK8RMmLP2dzBSKxga0hWDBbIbcCcdO1Spd3AJdLoT6K1l5emqXCN14SKu5LcLOFm0t+FIZ2bWq9Y2lmihrHEChighyou6oCHHsro/T6n7yAwMNfo0m/GxX+VGiAiEorBIPy8Er5549ZVK9xz+C1SNgZIkaMKLU4cU3LOCSeYipiK+ZIxrRhhbaLTVvsKWCu5d+HphlMDpeY4gJNG2jh28IY+k/crwKU9cbwYXS9aLOndkKqshPczNa6/IIMhrMEkPxBednymdhwocZIvgU0foE4J3XbeBB778Cp/DxhfaBg5lH2AwaOskPOdSduaShK4OgEjiRnT4M3Vd9L9Qy5Mx7vVV3ISsV4KsDirN7LobeSudPGbL60XvUsr4ud+rtEsBCdJuMzE73JBHb5a4o2gXizEI6kiANuq0Z0l/vaQSi4xs2h/VeF8HBbbircl4AHuNGJf3dUKrqsa+ezCHNd/2dWlbReNi/e0vxgyheE8GUZtQ/Hun/3Hauw1TIUhHWMPRX7UFATfJGwCnmWpLe0b7BVbzapcDf+IZnZBx96Tgg0f0fWoMOjyQ/2W6lWQq4ZUNfcCDOIDYKkU1aTOFTQROmcAn7vQo3RGDDnzCYt0OoxaqibvResbCh6e9VoK4ZTdyfyCA4wNp8yliZ1iNi4hmot+0BoQxTRLJ9lAzlHOqsgzoYGvBWF6NE2mQfEQ+HLPeuqt7b620RqLtBwhkYj9yFBDKuX4miR4VnjAkztNA5VA86yJkaeN2h18cMyDhJc6F/+rxRHFhmWi1Jzptn2vd/Xhsgdmu3eu/rVUyv1FgxwK/y8RoesHT8OPXdTwlzYo0OBchhGhKHGeXuBIJNFRO1PD6MoNQ7KBKNKOdSwylF9U3QWjMBU9GsopIdrNDsnTZYGuiVJRpeSzEFmlwPz3E8JNTiaO7xss5eRy18hxADAqsIBKEIQTyG1ofbKED3LdS4e9An3G03XCv1FgvRT4ok5Vmr2lDfy9/5/smM3HKCJuwKx6QNoQJ/75QRApx0W6L62dV4nfnGl4QgC3ZHLhvyDQfKlaT+Dfla0Gnt/BmouONDA4/pUjt7+fOZim0my3XtffMCdEoZA9cE6Cu79mzcDBvNQ7VGioRZjnomhwbRBxnlcKJeDI1WnnWKNGZA/Qa0Ij5EG2+IIcVtgv1qjGUis1wLySbG8HguAvJmyEJJojYHfSESV9I1/h6OY3eOUJN6BiGVR53gNVeeespjG4G+xeId+V0jmTtd/r5oq1Wm+WINjX8gGRN9e7kJkooriP2JL4VWHp56kR6n3h6szZ0CxiAqXOWBUCX0+NVtSZzBiqhFoUmHDEuTfFUCe+d0/uOn7MM38/2qTn1Ht8XJB31TXu7Sr6zvJUlCFXZ31SlX/y9gImOO/um5/iL8wv6swYAQ+MqnFWODXPs5OiSQ/jnkdjKa6EU/iag/xwUlBUmoWCdDy+ZImvNHSsFihs0WE4eI3mzvoX4Fz+pvVQjovFt6rZ5ZmBe0ZiI814viJt0YILdEyOswrqdUD62EgEfu+Jya3JBpCiSpU/PjHm7tpY1v7PycSwNHk4kFDP+ncD1HC6Z1tDqnOaWAE/fY6wIiX6HP/ukPA+O2g2ErpmOQCLYzibu8Hm9qGIckRu32bCVZJyni1KSa/tDME4TaJ37nZ4ulS6c9Vk/1P3Ac3RZVWx0Ws25c3S+vXCNJdQE4J9iyKGER6uJRClyVysynRDonzSedZh/1y8HUyIr2d8DZGctVm2VHxUIaZIwuKcII42+O/VuSc31x1dNc9IY6u8y7gqtB4OpXz3W/7/kmnu/5E9hjK8IUwXRLT7EfqsfhLT1IO7i0/THhfT3P4P671C7urMf1Nkmx3O3NTxGONL72BUQ9cZzHZJWitL4XOGOblBS8U7o3JnyHpAyrO9RaW8p7YE1n9lOLf5m10ya8js0nR9l9Dc1cKnb8hClmZgx9zUvcAzyVvRrn/fJKxQ+QaBKo6+hE+ZN5hdlVjNwolYlO4LPntliJJGnilmUkZwlt0vX/IgZ4WWekeRta9SksCTLY+8iO08690IsNeriox6YjSXQy5xKRDuBSSZ1bQrNAABgpoJrOtIngnesW7cj705rSPY0DbthjRmVuJpYXi6eGEfbJG/m5pCTcYtUCGQbXNSgEoCLMmg1iRPMyAehXDRFrRnhtws70iii4GvyC4V2oeXt67AIup04PL3cNtIIMsON3pm6D4TiE1ANLHHAtHuOImi0KUJu+VSt+RoqGQ2aoL127YDJLqFU20LN6nc5zYzQk2oEfxVEPnTYKMt671lJsLKArWcj/HlN6KvIgCXtKOeft9HKhcC8RqFw6hVcByb6JHfTwtrqzl+bLjIipqZfzlPFoEnLEoiwgPJkC7zhe5snn/yivfxliis1LTbZCx1vEp1YhE86/LNKlSg/oUkGTH3vomp6G/YbRsacapIBtr5lkHQwMMcz+lj42l2nvNSZtSe84eGRfKFBhA0jZOb/sTCu6LScm59ONYZK4HEDgKL0wQ+ik0J2oot1HPj+vBMSIKSPg9p8ZeW06r0ZGQQBjmK+H7Cd5v/hI1Zqxp5VWgKeGl0oac5es/CAQJ5EhlmpZkISoFjSF5pwuz/Yvx/pD1uMN9ZAMVbgMC+HhZXaly4Ql7PMoz75T6DtlhiKLGoHFNPDwrklZ9UayNvPG4GCsz2t8L8nqG1lLr+2zg962/6xRsLoq05qJlS3XgYukc9IAh9oCptUnJ4Jf77V10dsieqPyITSgk9NUeYqX3lG3T7jvGKxNjP8SN5J6SUtYOnuuq6kmjqggvio399uhaxCmiow70NWKWsdUktxGfJMfYmZg66OBNxliFJkMiquO7WHNL4x/cCiJhx7JPlf+UUBmmmXdCNJ+/I2+6M5Ow+/uuX8ti2pJJi+cDhaFfOYAh6UBNcSqcwLZ+vn6yugdGrwKOCr93gIGVSsquF3QeSOuF6IyiuF1jbL+dUcuEncz8rWZ2gWfS8sPTk3u6TL8UdH8gSnX2YhBnP5vu/Is7BiqOdmXFwZELhttU9L6XRPj/XhwsfpEdzZ8m3tbRbJgN74u7pU5wkQqJVV/mLnBlQ7Hz/zlSceQnGYAud8MoMPhphMvuh4XfgPCEOMrqkar/ylWa+DMpECWeZLdLqySENXscA4G6DV9VA0dRqO9gO4PHsjlPrPsnDjJEUkdKHYG0GRTWXXEOxzn3HLfN5EbL4KE0i3UtDQtz582mcsJfG02IGTWvFJ
Variant 1
DifficultyLevel
543
Question
Billy has a box of apples.
The box contains Pink Lady apples, Delicious apples and Royal Gala apples.
Billy closes his eyes and picks one apple from the box.
Which of the following could be the probability that Billy picked a Royal Gala apple?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is 271
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Billy has a box of apples.
The box contains Pink Lady apples, Delicious apples and Royal Gala apples.
Billy closes his eyes and picks one apple from the box.
Which of the following could be the probability that Billy picked a Royal Gala apple? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/aPpyQphYycDDMclhEb+7l4cULS796+l640q3gpwmUv40s4x02drSp064EhojwaRT1fFuJRtvg6poFUihNsr8VhmaBjuuausbEu+dNhdvwM0X7ZbUBaklzOcXMDio00z/6BAmPzm7tZwpN+ltPC/vBNBE83Of5+q9tlabEhXmhSA585+9337B7YeSke6na2b1jOfrAu+QQLcLCWrpBvz38/hKOhjbjyMuGKpve4jP6FjZFTd+zSeBUDinFg1nl1rjh4M6Z19ndesAX9gBicpmgkdF3L8Mci0rCVcGl703686qRwyF/GRXXSeiM8xxJ1aZIjFUixMLVjoeczUKlTtXtiuRdV/fbaRLpFYOSa7Ud/f+A/5O1PzXxpvKPMmloikst0yeUgiHe/eEHpUmTWU9wzm7xqpGKHEvO49JxeCDRDVi0QR33ZPeEfElTl77PxRdT5ytK/UOHkW6LLeGGgsOgYV8nitwdaB1tBX9gGLcwU9ePFCHbvPNqmxrHUsmcpIBOAkIdXrJt4RhdYw6Nkk5LRUgsB9DsoBWkA6D3/vCrR2jmbn+MFJuJ0rFf5GRK3AVBFYPiSzVkjjXq3ownmLJGrKu7ktsxKbMKoJEylvXPZgIt//4Xt5HsKu2E/Wp2jCzKgGjkv4NezVbjY4+sl8Z75gJGHsEFlqeb9kbOaQIk4Mu4XzZWZHQCD8nnk8yFPBOInZCnkqjZ+LAqfzW9z/sQeMh2wuzOfzEsEnNQshopPo1EBt1P3fVF364Hpqo9D6DsvIjpFiwubbtGUKkqsirs9JuTxIQMNTm5vRvZeHR5hP9dMKRGcIH4rXKXFDFZp11S8IJPI4ftyAqW/iTeBowHgc4NkgUsu9b0piOhUmFCoDMF0g5GIYf8oqDkLAL9hzXlMK3Ery70KyDkbHNv0StrrIVtM+l3V4KnP9HRRA4WZpqWeLprevx9NBuHKgNdOra3W+ca8s21aOiIyQjUxV47znQQpKPZib2C/1HYNP1LPpmnertZs/0uhSmtCUgicUKW+8jTc1i/I1SXKh54h5W2laxx8y//bs3ZQyatg0GZudQdVWqDhppsfpS0ca+fB8vgWLn4+6hstCN8RxHTe2Ruf3nXJDZrw91M0ZHhme1auguchjLeNG2KjkEo8vBP98mOfGM1UTECF9jVtcXwVlpRZZGOrsHOD5hKr9UT68R67n1/pGmDSzQFtBBs7RrrAdSo9HIibtLXlnTNm/WFN0Hu+apjQFYHBxZc33uhXQvVUarCxK/nSPd9n7ufH2vd64FaWtyIi0/6ebNnrqcveNgz7L2SNRpFvHwguXOF6aKzIJa7NpTqVSqtHcwgW0rm3SfAXRMRda0p9a3uXevH0btsVZzz6LqI+1zz2kIafmqDmjas/Zx67uFX1oUJEfOvi5/ak7C30qm3PfGww40wKiXB5JfDLRtdIZBRiWv0bjMLUNvECraD/Tx2J6Y4uAYRDuKR7EFBhktQIy+XoGhU8PmX00fLmGpemzppPubGBfrPDJajRmmT3QthjXYmxl6ah4QMjOR0qvKuVBxhdqRZ9ipNZG+BsS4si+q0gId9lL6HdUcKkUb5EH9sRtUD2fgoOmnlfNZf9jJONOkg/wrLfWiUI98Fyf7AxWMfKah6ZKOxYS4GlEI5/ei7eTddiVDzYeNmuuIo7uv30zwji/nzLCGr5KfDq9GzpdJOUI+SflKW34NJLFEsYcanNZLhKJAwwpcEujzsWEXK42ETo4Clmysq8wSQdThwYxOtXUbLPD/bBCffpwaHfgtnlAU84FORJqiGx3CLhKNkJZJS9Suvq8Mjg+oIHTubxmG7UOGHI7YAH15xHjYjtb1lH/B2HHdcW2gLkUTzkr2XAry5pzEzfKspxg4sQaR+jlVd5pxJ4cXGc57M5A9FI9cxuBR1WZOvAYaZ7L6Qe4RBjEcWD1/CxYLI0HU62wZkHVnjxnT0gFNQdiTjWtAlC6OZmm7QnHcZWVxEZJiBMKdQWBfSbYplkq8QeaervFu764dnPNatgQ3A89FWgwfBaKSMHzXJPoPAxqNe5eMCMHf9IuziCMa6Sjek5B13KrW0ZaNrmKvyK0pa3FtTRobgQkR3QI+ia/MK488Wotw6VT2jdu9qU7kIzCGEeuAFix/5JzrLnxV5k2hWH7yECwG/QApXiYukBbntHZOfcHoq/b8T8TfLTdbIsznNFal0WAL/YNqajIZytwZvVCWR+KXviJtY2jJ/Mgue48XBitBFIxwlM4UWgOh7ApIUrrVj+c9cvC6RjFRkhzWfPU9blBen9icA0qZnb2fILNWfQgDIbzAgK6fKgOoVdulx39yh/SV2glp5wjZVBSdwUSBCeScf3vzvgoDXMoUdAtQUnliKbplooIYGjb/lGDFgAV7ajMpcW5WeAM9Kwm06It1Wo6X0BLHJn0aMslmZ+BNzA9jwXhkDPDnnGPanAHm4DbNpnWLvvOsSRG7XCo2M2/pzLhLAhysPQi93Dj9obMFm27B/O6xdxIg5OXOluF4Hq+N0S5B0GjWK0b7flrzy8dZ2/zczxXmyMF1IYbWypLrkS1cD0JwoYpXrhp42Z+W9rZSGBCxZhW5B4Y6VNHkDwoHDfuWhUK8UQ1UdCcquKu315L1PwkMpOP+7wbMITcUyMJjAAjxXyZzitaU1nMSKEVL5J2RHNNU7fkqPzUUn1UGeJxR0+Su0Zs9ijNEm3zjXIhG55z+TeIfdLXpkODcF9PeDAepfgYEddWzPLstiJtbJBSM7AGC02PnJkUka/j00T7DsXYOgs4KOWxdp5AOYdY3g02dvCNztltY36GnABqdZvZ/zWpiBlRzSWc2L3+JjGIfleaLx/5cEwV80fx2T8w8FVE1fbt7IHCfmPRzDwZTMaWnYigvxN1VpHEpVqAf47RJknec73KVcT8siVQr8sMoSIF/95H89sAOdznf8rp6laL9CYQUpyNIT6lEbAtwgO8SbKCMcyQEMw8KeMvQ7BY9pcX+BWt9dPMMxvvzoZNcm7xGej9FYxSB8q3+u0JY5uQfPr/B+yHytb6XzKKLWW8Eb37RA2q7Zp3jCqjDFI+YE4qAM1Cs9uQfDBnBv/fOmyZFScwY34gqHo7WIfRcEh27bASsHU7UtEmZyY20L5CupkAPPYxBQKkhevElm3h7KWmCGpWlpRBYPm1C6w26NwPv3WeCWTqRJa3enEndDiPR6YZ8qJZZzej+4g/Xn8BDkhKGbPCRZHNShDc58OzW74JzormETNsw7T+GX1Vy4gXlLatYkg9CZzunvmzZq4ha0WvS/Tss8NZmOGcCbp9a5N1oxU20ZYYNeZMLEkeDLUFSZwvqBQRZaF5c/hT8vaKa6lnRJkoLlofJQpm0wTyXxqLyaTqKqF0mZZjkuDsqzgQdR4kA2+X+/EFEleDdze58Y7py4319K6XQSdqv5oPDWoPMNxm4435g9rweTPFjcJWNtZtiHQ1PCztT9YUDFF8CM9ZEvdBTbO8ZYm088sbu7ASqTvEL+K/PtV5MKQkhR7l/BL/H8oyHbbwnJmz5AW55lyM3yqButfIQ4EYxjWXJXsVJ1AIMCJcjQtXoi/ljFbuxUy17+ttUtkj/wVeugEUk1e/fhAtoO9h5l0hWIdI7u7ChssCzAS/vycD1EfhVwMIcJrkLB6qPmKkBh+r3JT8od+mn9KQU0K4c3ynn71lkLnBYHkYDEBPU8ANIQCYL1BEPTAlHik/aKzsokep0ytuFV8qvIXnQs5dLFexfxO4E412c6o9zD1H2EedArmEHdIJXgKABu4hcqsiNasCwVk9DCx6y7LXI+6t4YgDEoZc8vnwmwwkaj6q+RqJx6DHItQarj6kXfKAc5d2IVRBex6Mg+oeqDr3UTmaM0+ANaoKp/FLfUUVu3jSw04Sgq/PGkZOux9HjYSwmNycbXkweJFAkm42++q9Ps8i3XAsLHynWUWzpuCd2FzLqU5Qa6nNLpk3PDJoyFID2P53Y/7jiIDFe8J/2k2XsaAbfbIhzRRIivL1BhQ5ASONxvw9P3A4FNcLdOVTMy1g1dY6Xvxn+ReIHzn2IRoHlzUSSdnFh/aDC3PGwu9JS4OIYBLfGkpl2jIR7KBodCQZsZs+Xhfv+35ivKjEaHXr928cjHMn6ijBZzGNOd9um/uToMGHoy6aqRDUAYxBvFTNnbOPket9tu0pqaBOOnM+0orun+8peHq12Hl46PDAfITKNa4WYGQE/tPLFSS/pX6uLnLk2gkN5W/s0ItuoPsqUqMdpEiD92hBS253dM+Rx6soArXuNdXeC3Vh4kU54iYmMTDFqXW73sggmDjLeEjTV9fOXJQDHj2SLbV2f5jlEVrqzsAe3xWIekqrMT+lsSGS9DIp9vH5aFYipuL0TtgCiwa0v02B/Pe/x9wRZEP0dmyBq0R993aFWH0H6V8cu7GFjaXXGNynRoVTUyGOQj4FiXwm1nbZxgO8iTvZJj0CdJm0xXlhU+N3yEbL/nzxKfiyLgsKAuFMpYA6N3R4V2ZmErCbACZH8bzyplMxbS/epI1LiNtMvggVtMvkWYj+e+AQQJJooAUCoXlQ0qOJuKMymRr0TJ3CSGl7Ds8H1/7rqjZR3L4vMq5/C0zKplqPy04JQdCaUR46sO9Pds3/76WHLjrdzFi8szFrP9NNEdG52ySV/DZGuv8G1BAgYRiOT1GH9pq4JkuzSh/TiB2lb9tByr98e8j+IYnh6315u6m7Z6gUWGYZcgw6dFCimfKTuqxNF5KUZYH52fPG+X0uNFH4BpjMt9Er9AyDXvrpEnG71sEucusfF5dH/Flo3m4oyYJScHhhw674oSHExoBMtPBMI37dQZICHKXOjqxIYkoadnDADIABwJYzcDkMHdl4sI/nAtvXREfjFMlJh/+aUnWyCZiW2WaBHyW5DfR7/tmI5LWIv+V/zwVlRdt73ZP09GMOxEjvBjCCoxZ1dnJCqDOiwb0Twi4kWXXihf+xyZyjPZ4AfgPrhRFbLVDvDC7/RtCoXZGZFan2yZodCy4bdvAKUUocsdS0ct6nv3MEFiB/I1/HyGBOS2Grg6DD5P5gI8vPCK6XsS2+clpoTCAenOtF+sbJkUJKOnfkE302mITSb0Leubo1fBr118pBtBVDsUu43m7iRdnOjYQV9yS0LYWA1mLsDz+N6IWxnDt0Me3A/0wcBUf85yuQ1NC1sttsKyfHjYsflsqVyu0bnh8FxhqhjRrD08uOOtWCwO48/TypCfkkuNqJZyEVMjO+3oDb40H8RaS64asELODZN3SDtitp7/7bgDAcypBuzfm51VQqTUVZQqVzLmjafBEzNxH6gCX7I0ioTtjtyMViwPNJOTsq5UuS0kRM4nOnOvwDLiJ0DgZw/s2uGohWtR6SnRRPsvyZFlsDH6R4LW4chTCb9/evA5b5wCZerC+TssK7IDr9G+ENCgiaNumSu6BZ6z+jbTJN+2ENC5F5dzFJ4CIX8OpwSjZDCAHosNDVko9ySpcBZy8Sf1ZB4GcZhTVvGfRPBBo3SyhtpYYAt7/O1bbrFXwhOP3mkEHGowidhCrqge7MOLuXThyfrtNLOu0ku3FKoZZrREmoOF72UF1RpOJ6Bfrh12y0bH6ZjMEb1sw19K1n1sHRl5R5604qKQYQYUAwiXFc+IQVGSz/6phLtkk2Qeps5xbcuQ1rV4YTKfF0Ce2e8EVEYduP9hI3ReyqYsBAKzSEoegBbj/3qbbY4IHaEiXVR1OARYOAj0qeomg3cO1YQBVsHzOXti1mz+xftwmTW1On8g9W3hIVeg66H6KRMBo5eslZMmtC90iSGfF4Kx5lvuadB9Nn0dY8FoIpBhGHwSiEDK2tppY10pavdRmhYVQ/5NdSym8n0iD7ys3od5Uhl2gH16P0lCSzaTe22rUSav2/Io2RnzuOW6C6z+hpORuo8FJdpwTO3ucsAPGyJYoD/xqzOGwr9/ZwFPctU/H9XK2Se6P+vEA7JWaAyUTpkRGt1C/rdkpEWJ/dtNOyeEZjzA6rkbnLLoxAt9JxWtc8AbExJ7/wzFwvmPR5uG49KNsZIrWgm41vxyRR/4bXkoOP2GFBefnTZs9r2S8ivUomFDPS0IF64xdRvrXjEuPy9fvSxuV2t7XvZdY6cS17QVzRXlA8kBDl67+u7AGYjguGOZbJwepB3RA17U8pYea/8hl2fBFHt92FidB5biUEkP9MFuvN/w5BHXgEAzCLYAKDkb4kJ5SSzyNNzEC8EDdoThUz0zmOOgRXlupiTRGlnZzOkTk+ugI8CrbiUvBrm26Z+uxIZU2xc09fISX8hHPQSIyD4zjSNBUfdSnUKTZcUrAhweOkLeWdX3zM0nR3TA+oQfkwSyYpF1nfmh7u4yCmukIJakzWTcSP8Gnc4RLk6nbQJe/2tXHFB+cMp8lr/fTDmkNtdQL94ynIuUmUOWnWEOuuJg2eqvXvS/KxHbYu8qkGEAo2fTtlbVmaFnhkZXz9SUXmIcgta8ZLRh404XtvN28LQixXFsr5Y7MjZMIhD8zpgt/SBJsjbUSPkigndi939OOKK9yUNSOtthlw75fg0LpTavXNr17XUrUY6KPzMaIx3x10E3NWIVXwltn0wOSEfp4fpk1HiqM5XbP80N1Xns2nR2GXcnHWCbtql2JEDt3sqnyVtuWqllXBtRy7dbvdoT63mAauLyoTSXeqBX8eScorriN0OtqigOpMYE/EAmg/yB2s7dZo3I0mQ5FPOmkQEpSHq+6mmSpSfZ3aPUWJf/VrQh0OAGO3ZxL53HxwoZDGgLZDzM6QZs35VmeCLRbSowG4Ay4IpirAahrXsqDE9NS6nOEeaG9h3JdCNLgivREXtN5MOrcQTvTG3vDv4MIsVbxI+UB5p4vrdOPh8xt0YNrfZHrp4+mDLjFKSXO+AmrbQ6sacs9iOMqrvPWYffd0HjIUgRkkehjhqnzsvdNufJLarodNiLdLh5urH7tLkdZa7xyVD9nL/UO5GdefrchOdijkU+S9BMUOCSwEseEma67ul5KRw7Iw9I7j2shxM1NGhXWlbXB9DiunItHm9ihzhMOq0HcX412WQpYgO68d8aiY/C+x7aqzSVKajDQySrQ6YoerDb0NVAIwseIOi0gy+822RAv7A1/KB0KAJ5kuOpt2ByqPtioMvlUYc5edA7Cp90qBVRRrz8Ngv0pQhqzRie7MYgPiCzjM4UC6hZfIHh6fbAsOIF+84GnbK3KRoDCx7jtkoZTcWt/4fSVzFl327W5A1BQAcKmW70g0PNfjTZWPQ7lzVEmgFqtRGRNJQ0FQsM+b2pOzs7d0b59fPz+KSoA4tPY+ZeXmhFDjq9UICfyvy6zIRzeaLOfmc5feZWqUA1ponkOLR3jNtZwcgyuiyk8jstWBZ1E0YDQuaxRc/W37Vk+Sn7gSBhQCd7inPQI+N/JTw3jeEFPUL9M45oQfQ/X6kgW92Ur5S7ZS1PD2V9Fj3HSg4H0PP7v/IR0TrAznGhj/aQqwtWX1Xz1OdmiTzd2Rpjkg==
Variant 2
DifficultyLevel
540
Question
Magnus has a box full of coloured crystals.
The box contains green crystals, pink crystals and blue crystals.
Magnus closes his eyes and picks one crystal from the box.
Which of the following could be the probability that Magnus picked a blue crystal?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is
251
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Magnus has a box full of coloured crystals.
The box contains green crystals, pink crystals and blue crystals.
Magnus closes his eyes and picks one crystal from the box.
Which of the following could be the probability that Magnus picked a blue crystal? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19p02RUE0k0T6AydrMiCkXOSLVIikcs6wzTyQkfr0gRKPKx1vBF4sIAYPXR1VpmewLiZGGGzVc4nLi1mgRuQMReuYUPY6rhqHwi/ZiUNrbsk9CFkRPHyesz5elQBliBuSIwqGi+XJ70GEwhsUEMv/2QtzVU1hJ+gz+hmqqFUG5I/t6pR2y8oxPQId4btmMvphu5Vx9BFEiTlwvJ188+4k/p9XRGUZWM7krsNubwjc22IwDMxA3FM2e5zdYBCrApt4E6rkbVTLESjfkhmW0e5t4Q4bVQNgTOQiYBDQRotRtv0raI58sLyht0rzR2vciV5+/mPQzqYiJl33M/HGiDta2Hyf3i44htEgoGujhbRwWF8KfRt6nfDCA00oggR7CNIhKtVcJg418L1NHkBfzMojruk9heKA/AjBLO2ZkmqVxQ5Zc9Kmg6tllIoQm6VlptXc3v4G7XsJyPOyG0FWTyKuKEHjqSUy7PJx94EIhQo25ihZFC+kfDGilBK/tEwIZVwN/flY6naOw/dVQOM9ccox/b9d2BIth0sB9sEPW1X5QZKUgdy99ni+oSWyjz/zw3Twb5qf/VbOyfW/ZUrbFvzGJPHFHdTI3CxS1JkUT+2PLeEyu9gaF7dgVxPZTrIhtYO6GoKdtFulpMPWmC8gv+6PU5tn9JO70Yelv+UL7+euP1pZsyLacaZ1vibP7sqSFnm6nAzJjxcGwpDCLjwbisEuQhSR1zU+ux+kBfhDi7fJ/u1glXTUxKnmnwEQGvb/yb/bOp/xZIQIDnqZPcmatxtWaCEEGQ6kjNzJ5s++1juK7+BqAhSUC68CBaVeW8S+VM1IT7BRGgy9PJ3rUP2B5Wy2f1bD7ihvLqmNyTEO7DTnc85eghbhzkJxuA4L4aHDk+TJsMYeJe/2b2EXaJy5BNp6LWFk3wrms9ABzcLlrgyeC9DOpImT/s2BFbKj0SkUQvfKb/8wNLz/ohQ8qc+G3vnLWXmuxIurDQxAuCWTZZTzvxmbVetNm/4MvA9a9yaLGCCYyZcbriBfMMY6MfNCLvqLPRc1YPg99Tepwlal4jrhrMGYpVYhpvjl3gZjmqRua8baifAypuPYHXGY4OrWt3J+U1ZY5yGNms+6jd5kLUEENlWGUThvY4+03+u5uqWAR6274we8J/QDgsa3nnnTBSJf1wJxmSCAXn7HTwgVQ9S1Y7D3Hv8nzBC1tGP185i/ix0mvkgRXTwtSKqqIR8VZNHpbaAoQWm0Y5A+0YalcDTh7EU2Um3uZRb7NnVtSFjspCv9S9SThU/3J86eLNqYvUaI/DO2TFEB/3KqiN6YelXTIc1ckaAQQToY/LzOf379kwgCVS4VhQr+0XFmTmLBdtqkkc8cjgX8iiVR/r/8Mk6aAVbwXcjQz+u7it7h8NobT8tvpC8AH4dwIKgX79Yd/IYij1jNZd/jrKwtYiTlBzQCMGbfI7WsoGKmhgb5eBr8+1snKPLKcYO33Q12uRZlLBGG7GHP86YExgP+FoHRM879rPkRAFiYPkR+F4qsWBdBNcjRVuTkUiz2yyRBInf5DNI8B8p/0iFpFfccklBG/dmDoJWhsNJ4JxL3T3n/NZZyJ8qXOEtY0CuwhSnbirpyw7TF2oixUhup83ZZCIMMjduTUoBfOLKKl3XCUbn0Xjo8hfdu+sY7ozMRob7rBsq/pB3RJETxSJ/vj/kc286T4eYqcJhYEKzTdHm8P+XYBZXfwFETDinm5XQcOHS/YLbps1OXY+ZPC1SqthWAYjRRaNTNX3m5G3SBTpunGp90HLAclqxLIFR+FHqXU2b2VN7uMd0MKQB+CYy0WcS/GiF6P0iB/ZDqSNTkFRQJL6wNjOeJSoWiMy0s/SZIPyzccuA5ZmN5fCVyfGq5hd6Z69eCkAOMSWYN/BYenbktpflsndGW4H1SLsPpnExI8gHXdH6x+YKE1M4OHMUH+XJ+NBkMRIGNCD32pOOsthcZ4O+47TplC+dLhdq0pzQJ1RKJcvOQVWdJs8mxgAnXWNHtstQYPfQMYxoRR7a1NEt5Enx/BvofBJes6GcHs1WKDtqkBGMHvO5GJ+9BoTOv4SGoFsY9ifrpcCh7IIrvOLNuw4Vx3G3phZpEdKKuuwEbfch68UwT4nvdoEFqkBR1ZKP1KoeJFCBXO8oftQQXiftFLGAbYwqUL9GU++sUW9iRXaX8MpbRHROD7eOEe7FeJ8acJdUBZNZpAt6wo8O4U1tQL2a58/ZuoPCoSsEUJx4cvKyTwb24I9OvRCWglODdmbOgh5INhEofbYFvV3xh/9EVvf9pAlLXmIYGbXNpPVTpAa4/5O+mUdB9zqqxZl4pdigltI6joDCFeuPAEYrH/JONMz7Up5rYAREBT1Z12k3wuMIjtG4MuX46v/0lkMI9O1c9FCGTwn10khMa/f2BLt5HDZ4y2SL2II5QODSTmKKK+GJwG/l799GIplu/ynOZkDBmNxLC4qOKWSysMKhowOZkdzcemerK6uWA7y/D56dwZ26TQduXSaxlfBEfmB/GJ9sk472cJ6fEC3pSamXMF//S3eFoDbU6UiEAP0aBYbMvxzE9VBRZwE3w491e5mZtlw5LhJxjw4U3H2i2DhQfKxaYLtrkMTRtq7mcwTTwwlr29+hNvcLK5cFWB5ssUVQvf4owRgEa38pnSNZtLacMKK6Pm+RyD9XLaGa4NEaSBwOYK1JnaTUN/xzYrqqmwhWuccXF6WSuvy6VYQoyAC4OyhnVxCm3K8aoHwPkgLpQxbBPtQO+JPD1WQfTha8xQITGg1T5Kwu67GykNJMov1nFZvDvQ4CyBJ2UTB+0yJMIIRnWdcbX181AXh0MtoxwJuXH7XXEpdUJ3WZjar5/mjkYIFf5VPR0QuKTTe0CyPTk0qy007MOb3gmkSuCDxnD+eo+S9oxKK6ALdNNPFZXB5EvwxTofMceR9Xrft17s8wjccU17V2vndXklzu0gf4pWLC5FSAiwCnrjx6t+dGpvrgCAOBscbMQ7PSZN5aV/8o3W7Td0l9ePXeZI6T+Y+RT3DvcDR4ACNYJCQCE8d3hg5FAd1+EB8h+Dc+ibGgdx0zXMdkkqoBvSgxgFA6auP3aG2tjm3m91qmmSn4FDtOXDywGrGHFSAovlfNOcJaphR97eNjXQsGAD3OBTuf6ptkWlAr4P7Z0ilsIS8mnZMqoihYlc5oOmwozQ3czRlzZ9w051nH8vUMlHhez51SN5fAC9gj1nUH0FSnC6IvlGMUhKatx+PtA9z/ThAbM+euoufgfC4/a7LIxaA1t667IpHKhETQgQOvItE1Qw69fup4mvEmriHzMIBc9DX6+r+Wf7Q8WRDnREKlR00A9oCOQYaRae99HpsSvPH3aNGFjkzDyiOS3AUO5+IgntgCg+NELFeWkAQGx1M/DxDbXFU+ChUpdK0Ce4kjAzXcNYT5iQBcNlDOqhr2uSJ5v1sQmhJQScSov7iBMaDymzMt0wMt5YWt3FAOMzFLq/Gtytz2DyPIFIkVxrqKkH1PiSr96a353mnVTVDHQoOodpJ0DgiIeDSHmoQD23YmH2iBUIHFqas1baHBspM9cfKqQRgASRTDQO7b/4T5OxwcXaCEfaeYzAGsWOsJU2ISRuiD+i73C1YESbdY+EZbsdnqTr2VoRGK4h4PwsC3Ja8Hy8l6iE773c6+UKgw9Qpc1oEXRbalHri42bWC7IWVGf7d7PquH8rj5OKEj7E8o6I1F2+Fe4ZaGP68AAyLJ6DzmbnLrFU2sRrFQBUeoN/O4rhO7SxTPaiwTxRCgRgsUGOSn5Sayb8qzseTE6YhSaMM0eyEe5QdfdBOfvj4k/OvzU4pkbjXOSAlhG5/gucu9y4FV9Eh7crIpKDuwdkilqA/XtlqyK4iMf0ON0Z2hro0xJvPry36LRM+JshJzPVUUHpnL+RBsR+RwqBAa1Zb/Prn8nXiSfttQnH7OgbXw1ZbEx6T2y6V40/89q1pazuS27qKscmAjEQdIzRR3+ySN4ulidAsa+raCtBD31zNbc4NnVONdToq4b7Pn312CIEfzyQjBw2kJH6LcJTTC5aCbFSlEvhBd9byw5NaphLmqU0p7Lz9Xo7LflS9lK4p6k5QpOOpOnOO0ju+7/4iJSNQlk/jT1nAveiRx60MuIekGO/gkp18NpK8fOZYClazvlwm1q7e3Q/XAs+CgWbZDFZWnysf+3p9r1d0d5JN8gacS7u4JTaIE8EvwILP2u9+RBpfHjuZ+TGjZvUVpoxnS6p5UN0WRau6AqOl3sOcmHfB2EH+oJb3wJOUdCZ4C4JvJlz1dJwOhKoT3kfo5tRTJHsbvb0uhfuVLok7/Ulmfh+DQ0i+pdzflyZPefqsCEQX4addmtGCX7LADBiLVGsBJmdCiJ0uLbYyYRMPwAJ1Z/8W2mzlsx3whojlBMvwpdw5XX1Zqisv1lgtqlaNEr1C2BlHTW32d9XHqUSy3EngMO0uscrfIM+lqGzJBwmDioH1ESi/ii24a0t3F6oJsq29JKoDXGKrvGiel51aWsAL0xcu6eHjKJXpAsjlJZ44t1pL/DN/BiwHkOH6u2r8BXYCuztyKqHv2kZ09BcL7mM/uqsc9kQbh+HvJXC4Sg3dXhlCy9Tq7hZtRTnG4YrkrSgAKZZUGxfcQZ4I2UaAfeupxZV5H1Q+mTPakZVrAZXLrrNZuXy9tAHYWDI/PjV/g0wmdrYUPl+eanFTPzISSMU73ZAe36twd+hdNVFO/KuirMqyqZVSFj5wHFMykdUxu6EMaugZEoZC516oEf+kXYQkEuIvp4O2FYabrjnKg0Etv73xo3O6btUiaRpFaO+uf3tIPvFztiA6aEz0Yls3R8MJDn9s9d5TBJ7DQCuNKqzMz6p5uUirn+gBK6dI/CI667KoQUO77CPnN0vKOQqwe9oxgpCOlCpOVDEJoxVUJfhsb1X4LZBBBhKZmX4mz/tLOJ6sEcrbtNMFCZCCfo8ZmE3qmC3gfuID8Q975NYn7DdFOG4wIFtG5bnq4avkwDFgfsE1sfxpxn82kvMEXgPwHMsJk5ipPfJyg+0i2do0yxlaOyHGb9134R3UfNNTouDNWyVyv1Zyrlv841UPw32XTQxsab66A9Huk0dQd9euQtHg4Lim+NSXKU+flQKw8gaMsm6/q9lb8031dILKgbMFGO5xqYI75AgDyZfdxb0DpBcavqd3PLKwbyNWeddcnq/Vs42qRS9C0VA79kJBAisuBbWVSReJTrlzKKmoWJJvOwgdOLzc4+NtvHQ1qKy20RXPZQVGNbWvjNlayXW46Ustor5y4aGuPNVO5wJTnGIyvST3+lJUR2f9RP9sMW5KKLNoVG/WEQ54XkXxhKpgoNhulxZvUrRqpPnbVjfqzjXwQpsIAq2bHWcZFejgW1c/OEaQ0JGZWO0XboB242Dzieic8pgzHpKv9firKIrqbOsjK9+Y5lOgqn/rCbE+HgIvRsfwvonikGtRFt6Vt0JJ1rEo4O6/sMQdZWuUjBiET4jCw7e5oBpzXzWV0y7/G84NFlmP2SuU0iO9MRrfS/+5MzqW2X4vmRCVf27fCqp9+nM3H723Y8E5G3fBtznEu2JsB+/0m424dBWeoPs2CZxdCtDcyc0TAvCVVXjzZ0fbonB1BPHDHoicZRkt2XmWAE7FHYF9cg1EamWLKUv+VayPStkdIblNsIBHB6tx6UHSZxLXEkAqr3JtWDJRd5yxUtm3D7XrelrFsQbGiqWR+Qp3emvQw3YLlo/8zoKTMH01Tg7cnGT7SACWxxbK4T1lTu4w6vGgc6xwzQhmgvcQqm6zGMrXXtC+KpFImrHHrZp0uM2mSWy2JjJJSv6/+NoakD1BfuM5lwzQ1dX/TlFYjwbn5SANO7IYsmQglOOMNwTL0CoE7DZ8E314jySQnaLQaJUqsyBAooazBgajFQlvE3gjBe4oc8SeK+HPHqYVvOqn0YRGva8e2XjZzcFkbZyDTJLiueX4bB3sbVSF7gSm5hr4jF4fWndbYTl9XssZYkC9IqOUyJNYnwmWqtgvck6977Fx+jpWWyHPOMtTHhnXSVZHRG0ZXfDdr/0NHRZs16sbbkBGhIq3IDxjT7RL2m3EeW+qV+gKeV5/rV6LotV+4qE3VISY281Ifcdp5fEXvF7I7cxnjviTeAZDIsY83Zgt41Qfs7b7G1wzXCfv+xoZQKO4Lgf6NmX3IPL2iBQpGJ48i3JYEnJBtG1tZ9EDjcVImu3CPee4nNn1B/lXzNRta/eE0Ie7xF5RBig+fd/YBeoyBESAn36Sv47KeDov+3c5lYfrwKjMoA7dK3DY05g+45p/FppZFF8S1Z+hbEG5xINF0sAWUUKMRkOaihH0dABSfgAHEAG45V1KSP2RWvGobb9sLrMZjOs1O7qVGZIq0cZnsgXhN/pEGMScTeka8A57lktevWbOX+7ErlyGBTA27k1gU44lx8hND3/edfT67anaTp/qir8cVjHjYW/2Xc1mAZKYXCJo9hgQlncgV8/7x776a66u6iCAHe2OjkgZv2f/+MSi7HQPIFMx4Q0aLMo1laFojd8Kzmcmfoi1MDvtMQ1kJoE2ONNIN8uqGVS4976+J6/bQFVLCGWsnIzi6gThE8JNxgzhy+S5IJdJTEvYVIG+gb+PlQU/RLSJfJvLGDcSnJhtdQiDDeCmuEpNPEIxXj6tMoCRJyPk4vHPAVEieTFmU7RLMCZMMwAG5zT+l7e9KpmAnfnSzhpZrxqsa1lmYPMy54hPXdY5WumLYfPuzyB+QDm3lTS/fvLRhgYpRMGM4vdSEGGNou5ftTIPHT9AvK8yO4lFoN/02bm0jTILAfETODSSncGq2mZOb7SlJ+CpaUDyaA66xGn62oG17Py+Cvzn0JCAPztUn7a/EJUm9OMzOrQPAFDDd8VOPfQm2aLL2jxoC+iCP825ZJDYaeGey4knC3TICJsBsaDfPjwWt/mRjoutqhWqgX6iXExVoMygR6jh7I8vOBHtv4I2SS81LfWr1vzkWpdq1OYuELbfszPic3VWTG2v9sIFURyoXo5vkzLOUv+I4RGixuOQT7lNgc6vn6fTqmDTEDkpwOtkvufRrPJ4/oJKTnyHfY0Hlj1afzACLXMFdOTBswmFRtRQ4aqZQVePFQkPLwAMSceg55zVEmhH1GVpbgEykpqfYqQYrHwhRB9PejcLd2UQgOd5QAH9+upTJeX48NSWMlGh61RtKgl891vN4wTN4rLB21TEfDuiyfnIFw1GvWwgGgNiwihNfgWzIZcDqdF4+bYF7/x986QbwZV1tuSMfBt04qd6IbRnWS4Rru9IGU1qTvqaODpM7gF+eyk6AJX6wEE88R3YH+PMZz6GDCb2937iwrfpw4FPCdva5St9sQN9Z8FkuLWbWtX+SqfdDiHjulidTQ=
Variant 3
DifficultyLevel
537
Question
Bjorn has a bag full of tennis racquets.
The bag contains Wilson, Yonex and Prince brands of racquets.
Bjorn closes his eyes and picks one racquet from the bag.
Which of the following could be the probability that Bjorn picked a Yonex racquet?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is 51
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bjorn has a bag full of tennis racquets.
The bag contains Wilson, Yonex and Prince brands of racquets.
Bjorn closes his eyes and picks one racquet from the bag.
Which of the following could be the probability that Bjorn picked a Yonex racquet? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/mvVux3HZuyQr44/6ojjuPEKH8fkPX5LL7KksG+AwIGAQQve8//XOOmICViu7GdfgfX4pAOb4Ub385PGgZ/qzKNZg/xCEFDf6vPWzU1xRXrLl6bW/Lm4mToyYibJE6f51dD84PmESfVKybZAdg15rRiU4ytdcOX4VLHDD1x8mr09uk4APyJp8muYi7u6OvHEJpfB/ktNQDZdsCtvk1RTu1w81xLxUKS84bT/ZkXPbGzkEzNCmhvGDFMAkzQ4cMAQXlbb6GZfqyjadlKtA01un8Atzp/spsnV7tnIB5+QdD/qDbF5xTatszE0eE3GGzp2SOVkYdP4vnXk799JI9Fyrast6XdTbHfH/dwYnuzo/w536EEU/NbBxzZdlNTGCS5QdeBnhAxP3+Xb2FHViF0VWutT12d0Eu+alUIOQkkHYCQxHh5I/bYfU31rNPMJ+MfejJUcWCMXJ3THXYq2R9uupp7LTtRSQFJvJ3ND5mzO9O+/0NqEU2ecSy5/aeY6I0l1aI+iA9VPPFbqdf68UHlRs2UBgPAaw3EVtbVwIXSCB/m0dqXyk27lyonCXoJVphK0wWSfGcIMSG7wZ+2nwnj+wxkVx6E+0LTI39HshQdUSr3be80W3VVxxK98hSlT3pkxvIWfXEQgKp8ksuKyA0SY8XN/+p1uqNtYhiD4EcCZ8BUK0+4Q/j5rT50pbGhKdYH82+dJeG6av46kv5nIzrUNP36xydLflDZ6xAf/3MSrPUIrG0bokxi7tR1UI/AyZrPlobpeiy0CGdrUV5bVR+kFaOsnAbN0x+8WVRbi4c4mwuFvJf77P8mWg755QGp9XNprOQ9dHLzvRfUsAby84VpmqqjNrtm+dmOhWVkNtUKjb6bRL409ecGwJ/ecUnF8kNsN98gQ39Ut+aB5YScsgONzbfs+QlmpUQj3R11sQa0HXbb8nY3+Mv9EznoZjIrvzzZ6sfKOyXZbRIwqnGqpXH0mmitiMc3nw1COf5IS2QBtgdyQk5zkwJQqW/ufoQo1Oyuts9aF3RJAmWzizxBIXXTz0feWJyddxuUUciZwMidbPhBQp7PEc+01ivuyAwFR6zyf6WQaF9r4dS0MLulM3AdZDvysuFzasQnTEpggoyoHmnKofnuV7iV4dEHplzDK9KBNRK+DbsA0ueNxZNwEQoDaFb61Czb8HdH7/N2Ug2ODxHSozyiNi6YwSeGFVaLpaHk2JjQzWBQMtylK5SHrU4nzrznvvrAqvRYNVlf9Ak3oJOE4X3umQgfcHkN1KC6NPGcyz0f2fARQdNFh79EoLB9epdlRuNVKmu19721MTvU/xvV/0UjNSvK+AehEdZT/soWaUXMQa4lC8/J0ON6zuXnI6U6uoo4Xks908a7iytNlCvCLSEr82G4s31R7HS7kdQCtirMZdLKSncfsTrloa7qe983CsdW9bGPlGJeFQqFvdTzImnxHZL+V/qgqD5jwtHI7XGncA6aPonzsrDWp6UBjDYcu0jG6Zrd9cdGWeGkyMDzl3t3L1+/RT/6m0w/yaZ6wirnFXZuqyTR5BH0tifsuAtgWxxaxsAqolWnYWYQkOraGeU/4MR7W2TyJYUDuq83+94W8P3Mt8kbQ8Prm95UfAIadLhBlCNWOp8aXgeZvN+t6FTbLUcNtopQltWjElz9KDsf+CxUyCgvHOuQgS7fG/8rlitZw0NHvBtSAN9jpprfxJDKqN1a9Kx/jphXCgmAX62qXD9AKintsLF7BigP7togfd2j4LL0ehzkM/U4UOLFsw42AAiKjErHKhppgsGIyvf9ozau5yO+WDVpFSeIZz73OyLa08HU9+y2BtGXV7vfG+j0RwGY1AQcU1VyL9HWDt1y7fx1QtmaIq0zUGYiRDYOdGySGr9I6xcBqvPViLqzXyDV4BZd4OeQNI6OilZ2KqGdJtd9sW60OANeR+u/P+FP9fi/1olZyxNU3As2GMnyTVCrnI925hyuJ1FkX3OprsARD/jSaMQtoxo3OCk/X0cc1Gn5EPeCYdP/hF3BTW0jSUbpZiPqOdypkeCZ0gvm6jvE0utFfFpjb0uORK6XjlQpRF34Yw5FiKHnaYXqn7K/lifhmsTvKq3ocwJT2D74+3T+w00JnIIL4HVjfbc73weun+StUg8obWpFluxFSbEGNFXbh0OUrJ49xqMgZJt+zo9FrjtrCgqK3pEXAR9s6kqrRyMAw0fpgRSvtznRI5eLUp+Q41sahLofhmDOnAyoQEFnghX1LIYVwqjW9qXEULCAaR0kF1sghG5egokAPK9thR2jXg1d+8hmIB9kV3FDlQRU1HMPvPe2ZuYOG2dGFa+xwXGRVEbtlyUQGPXpibStJFBBKtAjS22MBUckOvPsg9h+8S02ujV6Yk6XnxHmb1RpD10z7+N7iSgP6YrJFGu4SdIdmQ6i2KIGdVRYlp1y23bTShMNi9Uq5HJjbulQVsFrx+UiLrs0xR2zeEhXhNkw0aKfwyNOPXPN7Aqrso9VUHe/e9zf4H40sUpqIGqPGQQH7pAinCuVbgxrZQO/hFMHdBV8fbAyTo9QHE75bm/ie/wjV26bVi8nuopQfG+Bbd6ZwIKAgXK+sV8AXjByOCkrrn/MLH9SJ16+wZHVu8p/irVk4Avi/KPNrR0kI7EARsoHmJvBRKgxQsMBKFXb72EEVYixAQMZ1biPrPmoTump2huANTJfTpKcGE7IAk1Ckh+KWyJn5BxtQJOHrMtoEmrqKK8ioEh4pjIuVjzLwtdS9UDO2d8FeAKXz9hOyhWVldOkWs27kQskxPJMdpCu0Gc6Z0BuOloQQZr0ThTv+6Wl+v/s+0mz/BK2s2hy0J3yrXnXlpJGgYhmgv0JbjKpSpmk6qdIe+GUkmUVK8gx4iI7Ofz1+KSlYbANRMHzd9dgGKVz0vQSdUGhYNyPYWYjSAx/Vvn14e0ldRQeKMZAyDuTv8kKvUvMe3P+LVhhFxxd2RvlH3JHvTjW5IuSGW3RqVpSzEMUm/UzErVLj0cWwk/0ERg5upyA4bN7CAjv5xuymTmCZ6+o+chvQAxXohGEueyyJbaujf37E5ZPRgZhgjb6knwryPwc9bKPl5t4utBC6CkessRIt8S5XI6KrYVqXiTdn3zp3pmAFn6GWsSDkhU0mGXafNZ/pnS4SbSRBTYf5r908eSVvaezuMkUFcey9Z8XixAeaPJlWILalb6ZbGxTIG4jW8C4ODuwzbidaRs+3OHF9A62yuafT0Gk7/1yPjNxWSpY7HVLzjyjZHtSaBO6eGY/ewMJc4aU5w8XAMhT3rFZCottS+hmNBfIEpK1/eG+QfG4ZtAysHEwhb9nlVAXIMnb4/co58VuyzmMsiQFle0kfAuYflI27vvIF8r15yjPhKuad/+fOsSvbiCbd7lIPEcE1uXH2KH2iLoc048Pn+euTBgp6tgm5h49WMrzBQGK3a19dg4oLiDjz45LrjvRU2fsoXLvruPr9VMPRFbKUW/fWCKiFcO4qnwRgN78lqUevb4vOIc3WZ7iFMmRWBPpkUMAhsXRL9jcTWp6R0BE/h8xxeq4LKE9qRkqDZr0a1RuOpSWLAn2+4CtVACSjo0uGeancwWXr7XKJO9JDu7QFMNuz6yScCPBi60wVlQggeaows8PlU3OtVD2TTSCuk7e28037pM0D3e77AOeyC2NP5EpxliugnaRiOGDDhhuhh5J+g7W86gc8ijp9OVqgfJL+eHwoO4AIShA3sKFi8Oi7HxWLcP07a+QjUBsoNeVKfpabZepA6AcPyii/SALv33aCTCo3B0xXtaUgVoLAcl3ahHO2CdOSnqHNbw5QBKODb3InArBz0fgxWit7wF1IUkxPBkkbf4THW7Bp9SOgETFO0k2PNx5HTOeepJv9eZHfsAtTB/lnuBinX4S3pDvVQnii/1a/CYSWZ7dNrWM4eEWCSsE1BHjh6zwKzDTz2XumwHIsoC8v4Lt+495WXs+2ys6nrfSm14ZtsYlwMG9syNvdHhMpbtC3t0j1nPIBTO+QSvaBaBFJ8QIQAXRn94MTiDXrnnXsl7csEZqZsk7aC+JsHAo22zPU+go0eGcNhbpPbtsEH6ksstvYG3AD3ewF31jnUynDZ8GQ15ZEgjqrTGETedyldcuX1YHLi8S/dMcppXW9mLbYdcuQ4V1ipBm5Ta1LyChbmEYGf0ckINHZ7ObSl9NF4U3qIuGD93mMqaoUk21tYq7F/w+/DDPZLvGPtTMTX1721t2J4h8d7K5wsuNLG/6P7wiWZw54cjOa6lYhMf5YJxjFgK5VyMaAIyhJcbeHmfny4H63Zp2NuG+YeasnMMWqoZHqBLgTHKs5+sC221BYaeZrGfD1TafABsZEHgMEoO6i7sGMWyMl4ZBQMPKQXnGfAraNPqFz5TUj5JGeKtPemTKieAgjjI1XmFz+KnyFoJWoh03W+EYOpabXXo8xjIWjAM3vcYZp5APjtCCxOCdPZadXiaxu/jawTNuYzQlvF/NgAh1AV2kH6JKJMj2M6R4Ct+JR2hKKKNgeNbPoo+0vo+QgAgO52xchxiB4b+1AZmx3wJkf46NyQ9iSUlnOltKPK0cj0Ym2ctl2vq+RiGQ3zU7yCkDjTwISkowS7PIjyuoxU43y3XUtRFKcBbagsd53kZzHt2N+tVHjknVn0RR7m6jzAdXmGkaCudTbB4nuSuMKbTHWyLDughgrybdCi/Zk6FfJ2QmxGu3xq8FtVoVGwvP68U+VGBpdmxwciN7e8bKDXLulP1aRNqN3gxm1gJzpMaPQn2jhyetr9hA62WM0/Jqso8SdihDSzbsZw+/eTe3vDIx4fJNOA35s1H/CcxdxdjZLP9MUs/7AIUBbp3VZqHWP/FUQxuDPum/b9C992xTYBixUcYG+m+YGA82hgtPe5Sa/n6o0x+Yr5mVZhkhUs7rUd3/mekmdu2S4Cb0A+AvCdv3ear5Hbe06kZoDGn3E466RDWO4Qq5zNB8B9gioF/Y9zYPdBAyY1OosjYxqxPZRVojiya139QqgRLhJcmOp67wcy2H5TvCR69fbQplbMyhTtsiFsZC4dpz7WIWtdgBhtkhPcX8OIeCCD9+lSdGO5XEhAtbGYD8hhEfZDY7aKb2JUk9wj1Hr0SYFrxJiWgid6LSZF8LixGa9uwTO2pj4A0x9JhbMNyl9sqGn9FK+Vg7crXgjodzeJZi9X5B7vlL64xm9ix/XjkpmqU76iljU01Su3pLboMRp61CmgMNATreng7WcMaR+4gxR+HqdXXSvJjUrDdmink+LB0qdTnUcmN/wZS3JSxK39YzxOU7UozG1+h+sF8JmkcZ0GGhmqEcCfmmtZtNY3ItTyIs9/EmdrG6vLgE49SSQ2w1QiwXjm3X1eYjmwAxPBx1MqQZcs6BbwwEcIudana1wkBW5teFsvIHZKVJ16rfbqVWPVb4wjb19iuA1G7ZLtXEQ1bFNBnXNbNPbiwNXX6n29K8WpitNLtQzPdhyucLIrvlGvMHxftW77hrdzNp0BKAO6T9DDIJEha7ahE3gIUlT+W0SURmCFyKTfE7RrTJ7p4LF1cGVG5UcVjYVUUx/KJ6TZ2gM0Cnvt6fSnheRZeC1G6e2jIEku0Ps06KHaUfwewUSkBvrK12aFqI+YdH+fqVD/nQNYJ3+m+df5eAgPW6LLCg0livIgHI9y644tPUJXDTSa/ZEYc1XkRDqUxpCOk61aYBs80pY6pHYmgjFm6Xwex/640XglStvxZkQskOFw4mg7xyOxZ8RdVzLDgfM1X1sAwKYZcns2nb7vLCx4WF+5s9CUG1H7O7+c3Z8Hi8e5+zUnJqm8161zf5QA5MJQyo0u4mX3tL4a0mZKGrubVkdgQ9nzkz4qNmtq/+MFNa5LLwGkYlg+nWP28JBsA7H3TMeEjEenTWEs0dUUrY8nn8Ljq1UHqemidvcN1ERr1q13JlHvB1K2IfV4coolxJv+96H8d5zn5u8YA1H+PfQf71LQ+payfC6v6rmOkJ8zFJjs6P++iYnCKYmtfo6q/ChK5bMCB50oGGhqxHLXA5cbAlUUaddv4/xjGSxrpXXTcUa2JVPSURRjs3bgTDWRalccIC3rTINrfSSVVTmy8SgrMTjfZLefM8AQlyQEKpf3IoNbuYxTSwi9XqjnpSC9qtEOE/C3+26/A2Lb1rhsvsln6T1WYqGKTliKdp0UH1CQBXBAraCzdztE2WDsgwpD79gBUXt7i1kPvHNvCKaOGpmGNnfQ1ELH2o0R7HJdYPpE57DuXmbMvL1QjlBbPWaAerBuQFo3MxBRb5WNF3SMKciaFf3qLuVUh1XuogK/ulnNf7PVe6VrhJ0FlGz4jZ1H0748afthRAZeiIokqfmmwduofkHaRPprQK9rQyUQefrn4Ogl8VsUKCadRCYn8ZSnPEfiEaGA0H9vHmWtyYH13DQKiiHK8674p2nuvahkzhXBts40A/N4lgRDNmTLDM6ATIy+ppuMXiyHWUdFZMQzdgMSyp98AE6MKB+20mLvSeB31wUoBltrv+lLs5YUau6sAstwh/CFURwe01q+yZFZVB/amAlPzFiUqCVYOVtEmCfyYtfefn5Yixt/D3ntCvEvQYD9w0RDVbJ4g6q5S3qBXLInZss7V8Lipuzt35F4idSSzaFfaX8XRPRcfZhz2eowHhY0aBPccd+WivI14INiNJq4qiw8z5Ax2YRhsMAiTa1PHkwlmpPqCjVNFdWaI3Yf9azFZ5amwoN5/coENjzKqI1GXIPbVKAuE3g3KVOjO4+cNt1W0q/nFUAfJVYM0f0sEYdyms7P7fZ1qbtn9IRITAoCsYRh6w825GKWjXxBRqwDiDJtzMvNEWZJcIi9bvu2wlDlGscHt8CWh9T4syO0OHmF0hEvG2bJbd4bOnMQ7q2KcGWu/LsFnNYxiZ64hTqwdW/YPKKP99kCc3p41MA4aCBZqks37+I6pCE4OyEDeUD60yYXuaWcR/bO2ygfMDofIvUdDGRRkF02BiGSa2mpjdg6AtYD4z72kgQEwDFeZc+7BR426x/6oPNs9KxgXCbM5fJW8cMK66GRek4EA2Dvpe2Y8rmMGC9AvaxteoHBqujm/YMkXr3adouOmMxwhtRLrKsut/Sy762Nx2bjsnzc32d4yfJTLWuya1FfFDZLAHW6EaYEsw/o+0TfAWS+UMdRNhgKmIWxQzgTrmL92SvmM54BKfrPRKovGZ+C5qJHpJx2yhAkGma5hcWxWnto7zo8Gdjg5UimSTGV03p0NyCkLJgRNVGser0j0mbYLUC/j/xEICH/KYwnfwjE/e6jUjWa3IQbvcylhkThWjcjzdIsPbllj4hUTn2jCv26yX1CO21r1iHoo+KnmkBfeEvWA+Uf8eXwvr3qJEA1jHeiqExA+KmeyvMIOpC0tYo6nbq1IlcyTFn8tsvzm/ez0fkFN7LAR
Variant 4
DifficultyLevel
534
Question
Gollum has a bag full of rings.
The bag contains gold rings, silver rings and titanium rings.
Gollum closes his eyes and picks one ring from the bag.
Which of the following could be the probability that Gollum picked a gold ring?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is 71
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Gollum has a bag full of rings.
The bag contains gold rings, silver rings and titanium rings.
Gollum closes his eyes and picks one ring from the bag.
Which of the following could be the probability that Gollum picked a gold ring? |
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/xr4ks8QWK1hgrXci+T0YXW2a1roCNqV6iKAeC6f/YYzJKbWSUXx/Vi4i7JLXWtKDwAaO0aLDTGt7A3KEiNsaoeARPiky0x0pXPnk1oyUgQyo4CzKTRhe2hTl2sfSfRwkW41tj9Em57A8TmVG8JHUa2qBh7Po8RsVJndMjtdme4pb+AwU1bAAMq3QvsMvV30MH0J5qoB3IRNYCDeN2XJMcybvl+Hbvvs9iaQJTk5mhwXsHNjkdPPosMDQHFX0YTyFejuRo5+DRoq0Zk1tz5So+3u1fst/YvARbY2paPD9GoR13vOpOdUcbMHwQ0RERWJmP7bUEevuSK6U5SJTPE3R8tepTtYLOdz0apjxbP6NXj9RzKLeYOd3faokMUb5fpulVUv8eZyhQLv+opRiJXBvuosl3RzAZzja1FFOJlo+t/wcDLUZTVmt6ZofIVnytRPhUpdwkxfe9h2T761AW1Q3gKN+erT2yOqyK3rXgZemEz1yet6CuwkP2K1tcCk+fBltebkunT+xkjvAi/tfYWEMQEjePtxpkZDKoIbYKi7TKjUWkbFLSJEeROvzXrUZ8iyufZ+Yeey7Vi57VdyAevp9M+MSs9rTKOApfKT+sxQpLm4zbkCddPc0onnoqdeKFgl4ONWCK8k2fKqxpzglixw6SBo0V5ZOgDDhuiPA3tCVA0wi93j1Sx/iD1SEt5lJIQ8oXwA0mQicmEoua5rqDsvXGNik3sSzEaLetPO0MyMEamULmhOW4KOFpug4ly/botMRPhcjQ5hB9l4vyKApj7C4PXJX5VKJwmU+4QHQHU9RB2CkRpfS0GHk1/t3hqOJKjTZ9FVpuFz1f9IT4lRxUtEUyxR6woQmP2AvvHAXyjAYLugev0szRr9KWIWlazYXD5eJpFsopDoZrrB3hsUdlUNWtt8AKLUEliHjjlSWwDi0K37VfXakF6V6kdzYPIgCGAGnPOz13DmDFg1L+jImBGj7eAYJfeQ4ys5LsMpJjnsbwvpWAnlVTGcUkOr5pgtVAYXfqgB3qn30+ckhNDdvFZcmwjtTRd9v0H0+nfsIsmTCfRVrajoPJDUIct/8X/yNdFzlRVm/dhbpBdFEoTVbuffv6/ZjWB4K2vr/PyrkEq67/1n+kNVG/KW0elSkBJesKP42xdYo+BhZHBdTAVHIbMN8ETnVFbRpBhbC+oCjr8CbLyHA0/+unjkB4U5B/YIRit6EVXLFcGBeAfiTk9qK8Og5aYM9gp3ZmwpSYMj0+17RbakpE7UxOTg9CpTSy2vUeutwnHN5gXb5d45Dxzz9iwf8t30/F0YC/IeoklsblTv2b5B+9LvyhB30rWNU1B8MY3iygecP4+szEuu0Sbc24aB9RU8p5LUn2OOCLoi0SGHLvd1CV/0YltSdo2+13ViGyBfORf1VdiUbbg89vRIorEIgcOqMYSO01zOMboMowed/I8rGrq/4zCYGe7yefMII5lUrwR/99cqOtDlfD/iNjs2cy0vAWjl8rDPAXaElE7CBd9yJorD32E39RSuSwY2tOchO5BQKtSbkn5j4HgppHsk4EjzeKzA0fSR4hnDaJGjgNPVTI8GQKxon4VIsFX1RgU6L1WzSGDW5Dlk41PG1Iuk3RonQDha8nolYLn7fD/F2ACPYKEiSLZgUxVtLlBPfKHcAW0gElH8ooGUvR5B+xzJdolK4Pons1pdkv55FBWbOi3g1xY0VxBHLAPujYAVDcRvkbcp10gWi8pT5cujEPywx61wdoASkJU/kU0DSY16klw6y5b1+++TuJuYUvdT0+DcmbUomklb79FC3CCjpAaYFsmp2SX0mGFg7K0A10nTeYj5A8A/dxesoVnTMGr3vuv6sMskDv7R1V17Ah9FjVFzLaFQyyhcrA+gXlTxYq4VXVJPUJ1IKWruxgiGzek93mjhkITECmu/mHKjChqTnjrkEruk7N3bpz1kyhhy73lhuzaA1IiZkwrsmrffu7OD1qIWkRPCOHX/XO8BQuhr1WmNo2MH4w83niB9kbHxSHZ2ChuFDrDqCu0h/Ygco2Wwk4r+lWI4m4CF5UWs5a6Md/KOJzSFbvpEtX3cpuvmpoZpZe7igUy5rsQ/qcSNpvFQR+sXFyFALRfmU5Gwv4Mu77A4l+ZbThiIX6HAOjcWfyaA8zpYIjXycnakNQKuKMJPrBH10KtRN8FdtejbD2OVcSm/hbRcR4Vs6tRcr7gBAXCVxait7lfPCnMI9lNRhFwH1nFhROJ1S5sGhHB6l73kDUH127nXsOk0QTxRKjpB0QJ9AlJzbmt4q5yp+EnCW43rG7d7LOzVXqj4/2ShjTQGikZ5rfjgaeLSx5jfjd5g/n3Mn5zJ2XnuAHxnMpt5+bgdIhAT8jxz9DYDaMEoXMnF3kh0qN/k/tp9wbtmQWv6oqxQM+L/cs2Sz0/kxYVgQ/ToK7lOawqRXmDVNGcMsuAmJHQTz9L+mi0rdVJ6tRxbD/KC0Zv0lJ8C8Nb8U0ZMyIYVVI1J1k8qGEqw2UA1gBBcFKU5/V/l69JUghE0/5FsDTYYxR4tJrlL2vyfWoZFjYdoVcmhMsCWNAFiFB6Z0Cjm+VKiRSVxFbmwo8lunDegHLu5OKC4+fMOEKJlB8cINESaPywLUY7Tp22FB6mqZPUtPnTTXvS8jyM5KlBIORUjOHdDUGpNT8yNojrbVsq5PCcHzIqE/jOjkkyhGfXzhjKg8nBv6lvJGfiZdKhskRHKesvTKEMG0zCQAL2PPgHBYMMoPhMZCflzSAsOLm9SlOknpKh2tzmpOajR20stWCSGm0ZrBdeFdr3CP39h1AbKeVGd1pg3br9l3CHToWpXXM1Wt2lCXZ9hfnyts2BwCqWVYY/nvxGkHDoU/E1A4SvMMsrRRfqF9JwlxW1UbycxaJbbBzDNdP8z/6yojc1mJ6nRi9Y0nypk26ECIouSdkqgbhp2QGDUVo/dd3blc+zMvQ+YCLS1WhDatEKo+HUiqYAXBl6hJVhpvK6qosL43TnjWtFpcXWnB04lrQmbDZDsTwP0UvzLvP4n7BCrRGTK2UVKnfP4OcsXjFQ6sOP1to4Rh5K9RqE/wHTg39OCUO8LdU8kMp/rdvAJiIcTv4tF+MOCLxRMTMwoKV04cLPYvOzGEwW52Jh/JKOwjq2ZOahylZnuYjOHXko+qtDSczGVrTya4lzYiER8HYd9/MjxB8gnpbROa7RmvWbXX2MfeTvY7sZosfGhwhTTtMFcIYn9M26m8MQhITg2lYNemNxu5cFvgwWF2mTpH10OT+e1dpTwHMnou4qXq66W1HorrAV2U5wgAm/Q4lPr9KYb6Gxc0SkDHsO09ltPX8s6mUaj8hSPBWp/XcaCWtrtz/W04GjsGm56xX3Z0kho9yyxxEwyq/LD+YNmoAUa81hz137TUEiGXKH4ycHNtwyQznpy/JcYBP3zWVyLntdE7T2XkBfJbVpYroh9/R+mHclxMLs9geSTFlHr42iiBr15OigyDdFJIGsDPjQ/MY1RdcYEjQKic/ctDVIXKGzUiu4YR/X6irUGJfKMwOSvBSiZkxwI4r/oXTbeNurrfkDdfdADZusL1Ei6bRf2I0sacOT75MKDyr7Rh+Y0qr6UkCL7qC7doUHJ0rDTPpRXsTNS/7WwsFLxyNBOifvAQIA2c3mpmD5uJG5RwBy6hKPkuL1NogWNBvoYaXcz6iHQv27YiJlx7MiPudF1SVb4Ndx5J6iIuLa/BoENdhgiYCWCoavTNepsHGBaMRYb+FnAheJblx3+XCpV0BxcC7AZlWIb1XfL+mWW2BlaXR9xouP9kWRVDkj+uCcY9GuYcRex98pxlbcUTFMjC4sQimJTw/8r/8aIPq1AmEHnwa6cWOAecCDWJ0l3in/vdh5PzAB+isRVXZY8IioIdiaaAtl2xlMw6wz/Fy0/izh/Zs+Zmtlv/bfV0l5cB+6IQFubGpCvPfzU0mvtp+PzBpO6owP1osc7NCiiGtCcEp8XbWCv6F2rcHXXxeIjsK14xPYzB2Gty0Z2SEyfaOpkUJWUndnGtZ6b/rCnu5ZZ6mWWLB9vkhRrapqDETwFa5/lEOnCHukskbDjQrwhXSIgYuoxSn6FDGf1cfFk3fBWNfnGg9d+jAw2WAo5jvZdX+dDgAnEc0qlEc7/0SwmKABqYhcHsx7IKIziL/5+Q1b/Frcf75gzHaZO/WfjAUrsK/luNiIg5Maa3xDb2tGYHIx0DOx4p3KIEotpTPaAjOa+wpVQOvAYdYO3f7SrdCX5ES44ulzRIeR3tSlMG2R0DFY5fsnB5TLrP5xt2ZP1unXD3f3Szo5SZL4Pl4Wb+/tdpeYi6ScKYfhBbbTyu5W4+e5Hwj5SA42e79GgWNGk+xC5IoIiYMzu281bhDRStozd4wujordxXKce7QpBBwAC5vvBhzgWx4kWyG9NgrgVHLtdxAnn86x9mUQiWG1Qyoh5lCwCjPliwOS3uElLDXMldcxoXF/7tRc6Ki0/1B8cPWr0LhXARvLrJkRvpt5TKODV6TmLpxgo4xzDj0kAtPkH6wJPrX50RRDqWmUpDHHt9TtZChKYDW48C3hmJeAfp2SpXNpsXBVTHdajChvaUTzMascZPBCuZVuVzOMsY5WkWaqX0fF+gnzkQqias67X10PZvebhaGqieOKCi49Cj4366JJjhDMAJfMtUmIlhk8faP8QKByoiROvoAM/vTQr9O9+3g44HXc2gX3Tzyf9SVGzgNBg2rjSZ5bQZGaZua53vEEvZfDVzqDYcQWKy9SpU4eYImHX3AauaTibb85pF5MYH1xrOlqIeTk1QUf9q/Q33XhIocEU83/+5fWlF6CjcivD7utpAiuNhOjIP6Sp/vRwBTvw+StSFCU8dBPUEW7Yas47VaAEaWTgDrQNJ1HwSBOHcF+kjsexcXu82vXNpZx/3uADHZUjBcGYxZeVDyX2ns0hNAjIQMWq3ERopxjnBHeGIolDOqMgWTfOli0peKcQpt++I32IuDhqYqWvtO30wkiltFfo8PnHVllWBE65bA7hCO0xx9Xz99hlwgRy5ibTN2PwvFr5lnllUOLUlZKBa8sANOiydJia5pXlDRDy0IlTdve7iqGpm3wQyncxXhpTbM/ILMJcnyZs8kDc+zmcTY2yQv/5YwRzlYzxNr/uIqJHTyycQ3C34iKuulXl/Fl+ifRwrsAgo+tdtwNbV5qhsOvpyqm8oC/2/l6zJ9tMwSyf7hJyS7SgUBOFWf77lBOzu1M9YPyV/HVysSbyLLM93Akcbj9qYGHeNb5ixGlzN5pv5MHtWY/ouI/YINf21ibWQLvVe+59HsULuCml+WaZcMgjjB0qpI6iOqhEmo6+mQgXsyELbp7I+HuBh2Djko4GCCSeGIBOwIKhZKeHjeyVXRjghMjH0THY8ei1r49bBKKmPExXBCzv0WJ9ccSkYM6j4KxpRFsGHEad6BKeN/hHewWpNeZeq0K5DKQBj35WB3tDTJPEd8bA1f0WqPfN622Cy1s1p7QhSfObz1Ys07p8tzDECtNVXW5dhlA1PjfjNnpxLVIZ/2JvifWH7rnn7hFBmQ5DczJZKhE0YUe1w2O+YPbMcK+ejNGJ27QyghGTcIv8lSa2mCdc8sO7XfPawCgbtzHcHqUWMTCzJ1si3pMtV+hGm/RGAHYu1bvBOA4EHxiny5Vh4dIJW6UUzAd71NovhD+ceJhZ3xWHI4EjvM+T5k0yMDWBRlXsI1VJWEUqoDOANNYyvRctji8o7l8tu5oRKKLGaX4N8tvUnLBcXhA9jBBueboO42npTj++U+rk5/FmGoLni3hp+TjwpbpKGgzhmcme8rPpgOBMCfz9NZ88eRyd6DlrhF7gGLpl6LjTpzvuYjqFl6WvCt86GN/09oUjUXRs5rapk9GsAg5Ta/vPTwoTmeS2hNWat1VEEBANjV0ICUFgJaHWd4rhidwaZhHefcZgqBc4F55XPaNYqUohNYPcmnSWfZ2fbA5ZRoSYHR8SxdeDu/+uC5YSMInNWSpgFRgpuWlc33cI6wtKPEmaNGJCzAZDFWAmqkCt94ZQGz8XAOYw1T6pS11ve1PDd83e9DXMqd5yxrkE48csR+FWgV7kjDrsSCrvpKv3FmXr+i0/19KchTsmZhWx+wxW0wDq1ZYyj7vNIygQwxIhtsHKyMB7NozdvXRKl9q84t60AoOW1mRnUgIEjaqtwkg2SDjXx7CeQ4kis2VxAlXpkTL8SBBccQAeKHF/r2wcNrIgAKsAfPxW/VV771w79UuBBFiW7cNdIk9lk0FQAAX3bHeLcpuiEseW2uZJfNvZX+WqnXCIOWLPfLsHNsXUlnY5YLNQMMmPMemdO4jP0wGkVy2LYRntbcOM4uF2ORCl49jAN8JFSz6K1hw4qm+ge1oxFJWwaIK1oGe0PmgEAXcLolCR+BvuwWagP8w1OzopnQ9Uw6jyIVOpdpP8BAIag+USdidph26a2Sl+aeh0P7RtW2Dzv+hQn4vkOSHJmYLapXeuERhINBOEM1tL1R7yPvAYIelCPoVfsMS6uE9YUsat2acnFaugf7h3aP4LgLiF6o9x2hqXuW6XDs0mXGrtg4CATTEnrWZRqH6I6okvTvBTbhDbUeYYPxqfq1y5H34bxpBnj43jCOaUtB86ucmohCSvdXdwEz887rqwA+zMyZfRfwd6rgNaN9VRmESgMAtcCU4XBqeSOMI4mZvv87GzDHviM2ynxcxU9XH9CmBZapVZDEOuWTzdt6zhXvwqUy94WValBwB16qEuayU8+X6sDnx4xM2GmmYzkbMoIvsr57e4gFl3SJmObQv/+SDrVLC/cMEgie7VkxANCChaieMTcOpxXAhJR1DkaFFHnVvm3MSwvlLofrYwSM+O14GIyqbHiXUWGBVBWZZGtL/V8LpeF6KiAYC4il481RlJJkewGvT17JJ83iQj6SHMvMLJnZ3WMnmS9st0+wE4A3av4PmDnbhSy7tqQQcK0O33dUSiX20q/opw/Jyt1HMvtLaVuTT/Epp3d3emUNLjiSlbD3/C1c1gpLiDNbgCKIw0/RAsRx69qtdOX8vF3mnxm6lzaiN9xRpmbSDSzVI9A5/FqtaoVoPJB36nrtMRQajwgbfFIMzgPkLiKhcCoAzR5+kxiqlw+75ZkfMkY/jdg2m5LtFBFFpSIvCRIoXh8isz5RoTGfccg0J7dfG2ngMGGjEhZIJf/VIbrG9iQdstyW8cVcABJzfXlY2gtM/ypkXJYriaTPfP02QuL4vRqJYthXe+Q5Sr+5WX1ot94oKIXggV/ZPQsSsWjyM4LCAp8pbGWmfeEH6txluUPYW4Nqkur39+sMtDTQFFzDfN1GyTVgBFm//5e32oPIUutWzyNgrnzfd3LEEfKSxg+8C8L6pJYkLVZwEG5meDNMsoD1441DGyKDG924QM15NU1KXFbXWRhR92xZW422AES8xf4ZbWKjWyeSquWeIm7rwW7OZF8=
Variant 5
DifficultyLevel
531
Question
Misty has a box of old comics.
The box contains Marvel comics, DC comics and Phantom comics.
Misty closes her eyes and picks one comic from the box.
Which of the following could be the probability that Misty picked a DC comic?
Worked Solution
Any probability must be between 0 and 1.
∴ Only possibility is 211
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Misty has a box of old comics.
The box contains Marvel comics, DC comics and Phantom comics.
Misty closes her eyes and picks one comic from the box.
Which of the following could be the probability that Misty picked a DC comic?
|
workedSolution | Any probability must be between 0 and 1.
$\therefore$ Only possibility is {{{correctAnswer}}} |
correctAnswer | |
Answers