30256
U2FsdGVkX19XlkolIxuUUlfEnNMGkD0TMkBOGjFMbFXsjToCOcHMkZn1P02rXS041b/2N0J6Q5+qp3esbMvIkXR+IskR/NYmzdMBaXH0tA7R8uqG3cc0YL1p3j04Exgmv3CwtbwT/xzXL3kBnfp2jtSFzWDMc3TqbcptT64ubt2ArbD7aRAdukvicW8IA1gAU8JZdKzinEy/58efJOSXaQwEvlU+3uX8l7Ig7GFGRu5R6iFfZhwHif2Yw8oZ5sZ2/4id9Njvgh54L63cyVFeVaocfYgT7fnaDBgXIJbfLFq6+5bDC2HpwNGGZkCuesxkLpIFWffhjcG4jr+gw03zgCaLOTd+dVcPKGyf5QYBDBxCidv+OuVxgpdJRbIKhO8fDizaejAO8Uv6nM0hdEpOqg9LTxfNLzlwMAhqbAn5b5rpnjx1qY2vSeaGwhhUpMk5zWkeP4Gm/5nbf8FgtjqBvt+UjDTWoWV/ocLE8PjjaMM2jBX/DfenGn70m4goVjSECZGVV6dhJh0UjaZP8xuk1wU68qpDQhLQZRs2HORpR3WliSnaXGu08Q4ptutn0Hv+z2FZ2lMo0aSWjnUT4WbPusWDXZs74Qvn5u8du4/ff7GMa1KF84imafIlDFokNu29c53z4q38rxC5nzRDmaTSVRjb849QFQNV1PDygwcNVv6/47/YGb+TOvwJYjwyUiT/eTPP1xVeYsJeLaM1qM+I4/v92M1BXE96m4bLFnt47HRJKVg7TevaU7sKWFM5pAHyod3didXmU6RTHENgDNozs/VM6zdEypLBbdT7PV6pcm5rbBkUQeYYo72U5qYqJ2efVX+x966roy8nJfu64dq7UN6e0bUP61eHuXiR0W0ttG4E7q9hD4EFo9oHh2/UdhZf/RLcvszvekXxaAEnZm9qlN6Gu7bLwRGnxew85Zbu+/Ok/ziFTLMpm1wWDykxH65ujWJ3US1R6C6P+GsHRWun6uOQhNMKkfaKSRPGZ9Z9w8PgGj+Rwa1bUqLvjWWlcZm3xNqjKkNZucXqseG9q3/rmy6hYdAv2ocH7yzjCQvZ55OupFFp8dF7GMEvBzXPz9h/ibtrHAzyV5n4/kblkVgDBsrdFb/fWpPy1ITTu6HS0npgpEI1LRycPCmNBB8vE06Hdbm2l3s3TYo+lDns9GIfuupfH5mrNXifez7HTMjdhbDsdC9sfKQ2CR+GiMlVjsuyUEUUofdS7tLt/YDS0uFN5Y3ecOQgs5RjYD6GW5TEdFcirl+jm8TMUUuR09eDdCAkRFuo8dB07PhvsFpmCgTwenS1ucuuxOaembL7EurPMgnPoo5ITPUWfGMdd/rwA+8O1nukubdkpviX0gajidnG0JloGL5tC47aApk3TuQcNDE4o+n3IGF+iNeUaYzxpCKszK9cE5FmUpLah2PeYT8lFZ7Yr8i3OMc/Q/TinE5Bhycl2/2YyeXx3/qJxeVJzTXmZX6g4DI9xuVBpcnV738F847qJ5HAqTeYDtmqu/UVmDfPEKKQD4Q+6BoQ0kbUPGAzCfRidM0KO4cesLj6TqV/+5g/aswLtyFpTiEHUwG6hXZWL4IygMzXqzdTQdItybkOglkA4Z/gNsJrlQoX+qB9eIEb/eu3LnfgFv2AWfv68xAsC/nMQpukwynw5lDAQ/fDnctQSMct5ido+Um8QPSjjvLkyVwhKl3WSUa0GWFNTMUT1TCQ0q7vGkYZBoZFe8e4cefxq2FemXedAEvQeH2NXKBkoFj4g3zC6soofR9YDPkXvxvDUuskAVypPQcTf+GbuhAgIl1vVRX+pYPIdbKFsmmnKPKgmGD701xbPFclQ8nMl78VFctpw+4y09SZLXmJLMzGT29Xr9QI2C/DQx8O89YdgKlD1FB8HTe525TbCjUuckGw6ymncAtzsQs8QayU0WROyen5c33cetBSTIffTNLBnEDEi9grrnfQi718SucuuQa2LirbDjvRMbNsgsS++NLpziKAzyK2b7RhhkY00MwIEgOR9BQV2Tu2UKmCpjFkj+0qNnvvOrYcf+FG9AO6E7p70iI9m2eyzdOJxxNmPpx4kSFCtk2+F9smiFfi8dbetcLS8nidukxmyNEtsxHxr0eSGogMbCE+Pxy88pHhMolNIOSVKMxn/CXJVDmXQkVB+vq2HJciIDck9s+zL0HdzEsKOVf7MCu/bXfMySwr0oXo+e1eNutu4LAWFWtjTgDJaYXfzIZ4M+umMF/KXcLqOEELtYjzPTx2qk/E1IOOeIJjIAVxxnn9XOvtvkPyOalcqcubsVSWzJQoX9q/eAkzPqkWGrtDSBSfPzmj2iSdVxPq4Rar/mn0E0cusTuwS6z94M1jRaJ8K14qxqkiHT41KPIZNJdvS0MxHSxJER9FUqhKIUdvvVIEzCya0DKuRxxdKj2j8BTRcq+QC3BYVzrnZGiV9ZB+DOxmB8aCWx2KGjauMZP/wtNEQbC4i+NJqxZTCPQnYExoi8ustTnE8zOJqjXgrAH7dIJzowvlPp9V7irnUJ86FSEz4cYqUXrls3Kx80e+RQrxqQSo2U3sLFr/UPUzeSG2NakMQyzIR12ic3UczY2ywjuQScyNzOVnFQNyXtOOBthI6HQLAB6dyWpoMNmeywZS/k6Rxf+rTiGHAVugKxA/ydpHl2xIM/Z2F/BCTefDLApgafw4gur7mP6UZRwKUdvSya5univ9s4N60Xb7LThq1whYrNSLkjktXR2i1xAZAxz9RAu3HBeYvf2cAU9L4MD4YpMd0gTHPGK0evkF47xSoQG32v7yE0zmk4cpSBA3/8j1SQ4EBm9wwb2cEfHNG1s2JM1X2Y8IUiphlNKy0pV2YmtjFBXu/IBC886wBUjPXuccDq591l6jKCnTf8JuzUK77fFwOQoFQX0RFMfV4FhKiMDlxFXawmg/Igi9wIYtFYaPPI6L2EFxoDtEHdMLxQifhGQDvban3+JdfSFZMWDrenxWZgH753BjTXDBmbNvbTGlu8FmojnQZTrqmvmcspzi55r+WTV36NZ3VSOgWM1I4FkZSUZugO9Q3N5fYdfGGqAbvQ7ibdUbV1Bpjb/ksLwJLVoTpDexKtEniOxe0zCnI5aV3doNvjmMtM5ovIF2IzlEGGOtO0V3ugRzsYjz2HKVKFDnEu9zEES8q7ax9OsqVrlSWTsjaGQRMXd8MgxFV0UIuf07tugt/JltzOQyVo4fCjNYQI4vH9rXoRloKazMlIiiXjueqXjd9WCwUWeVX05+DBX3yevxkvVkCwJn7Pu5J8kADIR+vmhk1dITsk5BZFDMlyJtRq6V1Ncf1v6g3dyq4AuRMlgPxWy1MntoS3IUIZfUyAGQdXDr4+OiYlqB9XdG9iZqbFAniNxluNVlGgbmy6Nzoxnja70t8Ssd3MxPdOwvt9zPXRlhva0O7jgCiJNC0rNFEkTxHnmpS34OLE7VaYwZaF8wpf3LLX4HgDnHK7oG6NJxtX4sMdWOx68RRreV39XoRKXqkIyLEgLGOaUMzwE2pmRFnBIt/sidUzFUbTpDAoqWoULCWc2rDy9wjdio6Tvj1DbYNwr9NUNsb5g3Y7mhMSXXtoM6GcfVx6+f8H9fEYh8qrp1cmvUxOjaJgKfZiHa63PH4wasT2CKKY0LHF8eEIma5AC2Gu8KTGplgjmd8LpEGrrymZJSqhJrO9fcJmNQPz78k1G6eewMZ8AQi47J6tuuxQ2kMfUWyLOoRw/szZt120HG0KA+adtbgK4agdkBXr6Ihkfagjj+tEckb8ivLdqlVwYdRB3GswWTr/m5r0nRF3dq1s1EKPryYkUSBMRRG6yfxGbL9fmPHGTLUOHdD/24HtxLIO+WXDqJis0JpB55Z2udHSv53wRo3MMvQ9Z4SBlXjPvmjnv6voDxyFU5VEmETXWWjr+b1sQRz7a9nTxDFQysiVTdlNcnJOhs9oHsPtmxIHT0UQBjD/0P4QrVGopCD7Y0mroaNHR5/GCosgzcMpmU6CpLXDqo9zgElvQjBPurG10EuDsiwPlEaINuAqztBjXUl1LBALE5kUt5jmvm336raZUIq18p+aAewDc4hd6uyzmkxAtCItc3yZQFiKET8OgyimeyAeU2kFm1NMAerrLosoZJLyX+ziXgQ2EpkACRCwlYXkW7FzJf9ZUP97aDLuWW9Z1LvbYeYTpYjpMJmjLKjbUkMiHFQk1QvcPK/syAAP1OXenVVc3vPGqcVOIWtCR3lYvGvyYEcZn0MwgdDXW8/9UlqaB+tqequlY3vyxqcEiT1DUOsA/+3P2pdDjRc583TIkZGwz/EEV/4poU+kmeRbFLEGK1HEp3QgBKgwB+lLz5PNb3OxNAjUN9nG5efhtgFA1IJNK5VKU7RI4DWYASj3F+4D/oAOSz2Qy1qQd0OKvkEK0duZMenB+i8IfmLWqbbwNDJxvQ7xedWKt4TOw20qB2QXUVu8+5RgQf/eoGec3eIs3vtebVh+25U2NTb5QBKFfglrSIYXqiWn8Ra1uY3jxor/AZ1WBsP4zbYCOoZHs8NCswWU199h7FQfq5epE055Gk3S7hcf8leqk8TvU+a52AK41cPgH1457ym87m9aUMbe+o3YsKB1ug4cfuc+K5VNKg89nTjNSROiFL/bDBsoIOZXA2FUp2/RrhoqZnRqEWHPoLoulG+A0GKP/7sCAwixOVF/OzLtlIItSuZF3rYOOLo4Q+cD6T5SKDeK296iiyS/kBdgGNL53iINe60loMnc7JzVndZvF4DTwJr5p1uH5aZ6gfzvyDL27S1GLrzZuj0Y6Dw4AA0x4Qx8LKZTBTPSnNZAoXSrlO1QrqVVhobWaYAlSxYOX3K2LPkTwW4X5ovJemivvw7EF3xv6TtcTdCfD+tLpod5ybIl+e5tZXyKPdlOp4Td96r4lhtWqe6eAWZSbpWAIDNh/NyyG2FQnbHY+jQFVrIHtxGm2PwALWJfrkxgzstuh6DBrCw9fuOqIQJwt+p2WVXUpx1+jjz6M77ifTcrcWcftncw6b52Z/gvzTuV9HnfJBkmNMCEMc8g7pG3bFZJr5EsYpQkC0Va8YMcleKslnSBmnvXWvutI04oMNxZWzXcB4ft9l5A0R4eYbdkgOVOoxJBWIYzfKc8Yg30ajzYjC8pP62YBwvdj6crzsLbA+Ty1LK9OjmPMwGfVSx3n0+rJ5Ei8v4wkks3feXNQ+7provS+kuW26hMxntzU5QXjabpjHsURAXEU8UQzR3ObKQKG455K6ytZ1sEW38HcfZxd29L8DtMTl/QKXNvecgyvJZui+ndn7jc06nEqLVji0groQMFT26kSM7/F456XCii61GCFsmCkF/Cig8rTk3O84wpwxQe//qyX8GQukz/sUxdlHje4CwAn01uvDIwy0Wiq3R45GCIQr39c/+/asboWKOQvJICSNqaPB3VVq2fIua+6Nmva82rmiTIxaWl6Yn1rlhzTlRjzV0bgEdMydhR8Ua8LTGNIL3hzqlWp33uLJKsnBNz+hd4bteCv/LnYhLSuWH9QGZ/F5k4BwoEvCGUGmXKncfC9pUg1XhDBSyFoMKNTyvFyIyP70LFUMb9ysxVGfO9MQ2mZdsfsvcR40yvGwueNZ0FbwNkQweKeK3wDLuZxh0EGaQdGx37/2FUIb2ZR0Tuj/np5BwLebv5OvYWTNIzLUd34Tt0bt+WiBCCCEPKqwtI5kq+eVx+7uOT+NvA/F35z9Ni0GO/197Oq5TuocXBr2RlCBTm0mLk2KT5qXWYdu5pmdpfD9sh0msi4MCeS0lWLeDxn1oTzRLSNmSle1dQB8P8huLsrQ8lgJ8k6X+AHRIYDCfArditZ67nIg0XuLFurGzSdzQ5pX70oCaKazoLnHDwyEGTU8EjdM+TX5qaQfwUAbkZELtQ/dZb6s5x4xThz4wYj/FkNgzze1OzNRil4NpjY3/hKIMWGYx5yWObMzGdqGuG8T64eyZmqeIMq7OsO7NWSa+DcUw46CRXz40YUji+5GRYBvGKYg0D8AQf0st7wd/CY1Bts9GgEv2s5oLOqWY66p0HGMYMthxtN3hkftDU+FRN11+N/8Rpb/zPIkVyj2RoCX/knpC3DA7bYv9a5f90dkA2F+NUDLXCd4cjQIipllq9sVA1/EYHQfdsi7fw+c2VuvXi/9WczN/hhBwBrr4l2VoHhgSI7aGr4ksCc6ZVUg8EKRnRVTNauZtikDnvre8lJ9+gL7ei8ytBBzNBr8Lei0wi97vPbS5kfiOtfmS3ffoSgmtaCrPz8HYYY73X5mlk2Puhc5eR4cbl1Mhb0vDRyS9liMEuHGk6+FRCC6rbMat+USQKF9HwUzrHtC/GWUZhqqOM8Et9rJiOzjr+A5TAcHTmsd4JlkgnDlrBC9dIyWrxkp/jyYYOcIaKvai60Y8cXzcJxSqWLSDD3TqamIhYTcQSiGwn3HZOM2QsG72zg9J2IrFW8w/jv/KtlYzcydw+dFbwMCHYF7sKKSmvZG1dmoMe7+covm5HmG1G9X670s3CpzIft1CP4vSA4BHMedaab6hqPJuZgQyvifWQ+SQwu3vK/raRPskrETyEEzx+EObu6qvsozpfjQ0eiedggtLRqvtOFhn1bGbc9ewNsMyfwxEZKBUP8inSoD58hl5FvR2MjIaoxiqE8TGA0/135mw0hHXtLipI+RQADtLXUSUrRHYbtI57+biURt2IQ2STnY8XqDd7rO0K+Va3CKAQ7guICG1bTR80eRnBAYxWt515qhDaIHbgRJzXI+NL+xtxBqo2eZaLM=
Variant 0
DifficultyLevel
530
Question
At a market stall, lemonade is sold in 250 mL cups. If 5 litres of lemonade is sold in total, how many cups of lemonade were sold?
Worked Solution
|
|
5 L |
= 5 × 1000 |
|
= 5000 mL |
|
|
2505000 |
= 25500 |
|
= 20 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | At a market stall, lemonade is sold in 250 mL cups. If 5 litres of lemonade is sold in total, how many cups of lemonade were sold? |
solution | sm_nogap Convert litres to mL:
| | |
| :| - |
| 5 L | = 5 $\times$ 1000 |
| | = 5000 mL|
sm_nogap Convert to 250 mL cups:
| | |
| :| - |
| $\dfrac{5000}{250}$ | = $\dfrac{500}{25}$ |
| | = 20|
|
correctAnswer | |
Answers
U2FsdGVkX1+x3V3cN230u7mLNhY8wAalRCL046hJU4Bc+t9YoeyY6n/688nhfKsKBsjp9zjYohNp4DYMd4dSTfKLGuf+WTMGnK84uAwl4ZQ1z4mdENkworRoyGPSy/Fyu1x/NmW+7Yhy4SrVibF5yX8ObssY84ff0JPDbxbpcqgnt6ux2sQXgUy0DaSQkxG0D4sEUNJVJ9zjVT8gZCPNEm2q6aP/PND8r3gYJDlbLOkIJ/ZAgZe1vPdam9yqgyjg/Pea6gU//cl++8JSOVHw/R9ceRaJ1x0nYpzcY/KfBGIz3S1VIpXZHWSbuU3jgk/beHOHQtKfiF6BOxRYCPd9wxfL145YbSNeJbFBHDHsscG5Ua1T/jHmeD9Hnn3P77JV78Pju9Qf9UvuxBQeV6KvPmNfvqWA8SUEQU4w2L5mk2MR2D0SjijwgvikGp4nbBs4It1BurlClPZvh38t+i9CsmNaIK27OIahVyU+Gprix7s6tWqWGNy9HCUDOK8mDWw+HwfNOaY/jvhbIg3LT4McKzqKAsBHuK0a39OGMrIV0rUBknxv9RNPhS4wiM5YqzScOGUWTjJVV30RsDIyHBuuOV9BiPTImtWD9v7davEcIZwkb4SiLDb3TM/8qqf3w3oEk9r2I9PkXpgSuYEtzDhYzaB4Wv8jgo2cSMtnt9PDGkeen3fFdMZGVnOHMfDZIvNUpYFdpfnPYeXBob4KD1QkNzbZEykM9v9H6NHWhJ/A7V1zMc1i2XR22JgvlSq9dEObzr0+Xg1FiYDcILlB9MeDDLWnJRqBroZYU340XSu8beX4rvKcP79VY/SuQ9H5aVKzMH3B4cOszGp4YvwFEzVSZfUNtny9nqOIYnu4gGUwGOQodRmkJw++6GI49MrqTGUicMCEY/5LdS3OZfRrzkC4pC5fY8R8lGJ/BbFExZ32b6t6KlYsa9PZRvPp66j9fysszLrnkOneSfx2aN8lmJhuaZ3Pce1OINFDZa0/Az2p7KTs4eWYfloRbwI246z8fS1il00fsEJakByJXJZbAf1/WEaTfBvOP41M4KOV/ksF5VrcWbd/YW3X3/lkFymkCMh77yrZUC0Dh3i9x9UvQBvrmiaAVmzYT9fyeA5rmDGMyAg9nu5Ucqi75GAYgItmAw4buccXRYrZP/lDWtFjN4rgJAWXZbLiC1yCGB5hMta246tPha492sHV+a//fnQ1or3FBQRuHs57Hb3smyyvmGQzCWb7VgjJukoOrAgBOMC0QIuyM6gPgLy0FY7GCTj4sYlL6XKCJeqo52VYNStme/aT7ivPFRafKFyt0sQe7unpOdA40kb5799UZY35tTI0z4xlhEwERlFwmHgOw9VmvOi15Ozyc/RrFstdAgXrOWP4D4HBnkuiMuzIG+HAD/SWdGdcTf5NFU2VV4gLpJshXm0S2UXdj58u/ECMeGMRsSHr6jh4BplMXAARQwWbioPGyh2ByT+XWMFgCDPvwYCdmAkgiFRK8VPCVH8xvO+4PvMs4doOZvTlL22k9QaZQbW+Oi/zbgyfc7XVE6ZXRmRTJbINHxA1DHVflufxNJnsTmbg0QD7/nKh9QO+/5oLcWX+DK7lBM2cVxE+UaA+R7/rSCQJqHhDoQB9kosMdr6A1tKU6KKKIHX07TiNiK5ZyUzAZ4mRrtvLKq2l3F1VrM3donjKiZefeFWT5bl5L3gj9zOX5mRNGMziAReo0GsIlxFQAP/77YWr5Slvtjd+z4jh25hDx6VPbBWT1N3KB6JSpk4y0zSNurpZtRbp+1V8wXRwnnWZFjquopLJ0IFdbdYU59qV5y2Gf4tSKb9ELhV7654BBymd7OaZqaaul10rU/dzS/5SYhO38zKcXAqUeMFenoUnp/Q797O/vqEN2PH8FMG1pOKKR//Ube4ASEBGm0WCXcZuZkay09GXI9d+kG6bXzZCBgwd7KSLwZ7ucdW+Xb+17Q+BI+7Athmx0UE6FOiBJ4SLfu0UDxulXaOqys0j3tpjqj+Tyao1tEka/9GdZQP6nzlH3XsCxgAGA/7a09ImYnOqrop91sYwTRLnGSom1COYhUHr7014fA1cYqtOUDLULkueep+vV2Ua43xcJBxWy3CpTgLYhL8krhM6k53k3QGX4bxF3eluNYQvqUtojIQaXpdSDWcE4SwEvjiaWoFwVN1tjMu1etBVzAnit42EuNaA4g2oeH1sF4cwLrBlYxaMf5wvHWV8CdSQPF9go9p8n+cwpNY4fKGPwJuPGBhhGXgOx0QUvtjk8jaeEHzJ/YYboD5DzpzhVcBjrPMcwnSy8nBdqpEXGz25SULlIYsVMWx1euRxSrlxcuoYff7xj5R4+G43AghPKGPndo7NWdSUt6/p065DIdPy+q55LuDZgqtSrVjAgr5so5It7XGm1CwH5J5IpkbNZ95OwLuH3gnt9nHbjT3wTkrNqXbq50uiuf96koavrD4ukBfW1nosMDKrWz1Z65wOv2oN8FPhxXEpWs/E5nMbXpPVYYb6bjE8lPmkIIEsAii194qaCbPT2oy9s/31Lsz+3YCMldyG1ETbBn1Laj5/3/Qi0tv4Y0PLjaFMAMxSzCKryvDLnLA2qB0GuWUh1vxwGv2fWemT04XoUnkNQQ/STRiQDaACNCDkaQrvYzg4FZpitHlbEIV9DORIQd68vSeUsD0gFZaXivowAYmJA782C0KsSr05kZJ9T2AGopjAbceNh7PKgzZWFDogeuhtgHlZrUKJEzRhOkuXpChsH9+aR/yr38KIYyEKSxpkHSG2mg7+M2B82/AGFp1IuaaS1j/Pnvq/VzzmXbeNmNSJ00zA37cp23ChYqYI44P8WXUtkAotAkhre/uuEicVWD7zRwCNls2sr7r5aF+tLyB9oQ3p9Lw5V1cMTDPMhfyo9agBakQssfkdqC/1ESa7gnEnimUEukij3K2u/fsE8Pl1U523aieH6BL4E0IV2H6ygf4aKg9qtfmIKFqYw26e/E7J7y/E8U8yieyiojRLMKDdZr362tXnWPQvEPaCFbOJROTDbRaWi6MfsDkqdGpBeiGYH0Nqrkj94tIUo74NoagM2d/pNXwv2mfuk1X8bKbe10khm6WN/rbCqe7XBxoBwtUhEkvnIPzT2HGkGpogNKaihQkygH68SSs7kG4iV/piqxEziQXtNY/ciJXFQcgsAMIhJd5my0nMwe0+c/ecT1uQ3GMjSfQeszPmVTBohmjVOHqAeoX1mlZnNxTigWfzduW9dwj5HXLcz1nWiCOMnbEFeQlilQLVAcS9sE92FB/MvUKo4Z8kHCIPHDIlMYNeLxyJxAurKbgO6viDfSLKkXlwKlnrjbfT8JBQFCQi6GNSrHifZLw45CkeeDPiHmPQFfWGZhG7+7r9ku44wjZILf481FAFkBa8g9C+h2aFkQIFytWamO48MWFt+dX2zNPgwrO5K6N9cTKWDGsKAe3loJFNpxraeOuSaNNJOFlgUSTME0qaPQHRS1L9G0VLnwmX8ndUGzNS/Pr23YrnZJ2KKtxBeBfbAVqE5Fjm+s5w+7NFo+u96cZkrRsKNN9HrZ6ZMadX76ItGRMLdzRSDO0oJ5ZwTuEApWHCfycAPXhNZ49MeAKrOjjUHHK4fkknX1EtyeNb4tghUBM31U6kVa8U0p98KGs4ZfT4zmcOD5dlXHH9z1NDMSNjrNIKemHqKQuHiiGZyw8EH0VX0kDGSXZ15VBecdNMuRMR3qButFmLCbgkrme0AwL0FCgT+FP0O6NMZCZ2ahabWq040GJ1G3gB9cl1sL78PYBZnXxJvXuU/abvHjAXbdeZPTWitoflHX9Kl70zoBO1ig4qxk0SvHWXfP7syZ5qxaeAViezxkuD4hEkbfYE77I5LyjmmbWzQazWG3zpzGmoYh5OqIc4r1O3vDpFKMOnspThixv6KJm2Y0H/xzZnsl8rVLLtIl5INKU7tzUHzE9Y59GFXiBUOdGWET/L5+au4JxPk+nwLlJC7OlTY8ViWo9vylinYT2N4CkDunHasb3ILlwV1xYdX8HAkkEoSaDZI23nLKFH2rEbW7ZGXTfqEgxCI4JWkHaAePv6WA7nxOrmb50KWn9QJQcK+myjxOiPHUv3dDyB0w2MJNJOqOiEJqc7PIpjcT1O0D35yB49oUu0TB01QPWsL1RrS8uVOwFX0ga+41SUXfq0KTZfezbF4zntcRcx9XHpA7T/Dxc6HYUXgrGdhhQEVNORYsZsZrrHEQPbu20skwCKC1teicGxZWSUi5oLlVY8v2YNzahphj9br2OGdQ/9REd/D6xw+msqLkIT6a4HjwVH6UcHvjbPS8UpY5838TBtXMxRq8aT1o794ztzJzl2k6oZ20gemYxc+pU3C0yonw5aKScbsLu4y3qoFrkxgtkAWXiVaD3kSpTyh+m4qN8aYvfa9qKhmX5A4/SxuBdPqiT6r4v/tQCh+FdNorwu2J4G07kJmLcKfSKYrjtbumBfM98M/LjrmAEO28bgOEYVDBtt+7odMU8vdSURWOagUFuSI3wnRBrqc354RXrtQ1k1juM2n3vEVn9FOIfEDcuAkRx/8z03Fi36usIKd40061S3ARIWxb9IUiFX0RPHNJzMD2DvHsI93CotWGAjMO9YLyMuSNekjUWI92nNbHiZgnuSuCXg31LyzbfSLdK0Vzx1MvdfVvnFa7Ww6AwsgXoWce5ASmk7/d5CflGutp1MyMUopWorK3v4fNvTA5Ue7wNi0Ss29Jmw7QoxKcN0kOcZDb2nt+cO6inoBR5L0ToSHc5yVljocNcJjnXpNQG+PEJOPhxoTZx+jU6x5aDw6A1M67vOEe/3D/gqmRpjOZgUUhtAWYEjvtT1MLR2DmCHC3XgzcooPBPt2aHcjwwje41iseQXmI4Tq1qm8SE1NeNvLtdh0yWs/6iTI9Jms+DCMRwbLYHLfmG4IWf3cRORR57RT0e9xT3dMky4whMSrlCjbUSBEmHfmKor2OdRKzEmDvsP84hv69RfOw7kLpg5AaZ6bDbKzwU/irRoAOmkGiYCQt4BwrUVUWIRlnx8iQUqD8V8AD4EVS0ny4S345uEEqhfRrS1D2TI/kfHTO8CIqvk4uMk2qb/JlBm10WYHZlAYEsG/GhpxVyYg23rPFDIPHT2OktyRKj5SUqkJWEa6IZmbBth1cozguWn6oW68+1ACkwBEFVQ4gx7P6uvEwO9TBd2PArFe57m8R1Qr8gWZegyr3BCKGMj1LsTV4NQe+EEs+G/jitmD2C9U0W4dz1QQvCP3AD020rNFiR4YtLJcLa5+DZVgKwR/LuSkLvWVxmhzaBjXpEVAuKECN3D3HnZ0dBFqDSrA/t+ICthoTBpBWnPF35lIJPaQQBHkZgnspXgFhPcVy8LJLDe7xFmsdy0t6L6PA5FF4fGIHrjgQEkxj4JtJZZXGckpHgBdADw2/1Rlg2C1wytWsJDk30wxK8S6VnPmsIpNjdI9wa1sQh1Iau3reI2hRNmUkN2dGLW0tLZahoLJtz/IH0rH2NVgZsnovPtkMdLn9lW9ejAiXrqmotmwbXzhSm8AH85COjt90DF6i+dwmHwj7qlmqraC6IPXMFyl/DiKWMeEN42ynyf1T1Al4H3AP+apHOc6lK4QjP8I/rWUMAiey6wyFVG9NSd9Pzz3vdJEIhiV+Xt7bfWnpqOFqhA0YCnvpfkOdrgR8iTcRT5RXdk2V2Zdqv59E0cGF9AJodJxMtBup8umJUGWl0+8TpBYwshaR6KUy/xFKlcLjlXjQVL6ZGth+7wb21oe51q/ktOLe/wW7XZyodZKIcZeqsEmlGWUjo/IJ++DBz/TElVCqKe2qitadBFBR/Fc1hLusit/zLJb+MGtVLB1Zl8gVZFfjBv1JKkdTyfWrp3fSGajrOaOMpMmdPqE6teZ0U1bULPh8n52h/JUqkr6FeZNrQypAJSgehwoeLuWOrT7Jt8Zksubl3Qma2l1PJgXpwSmXkM7AQPSnlJpxHjmCJk69j+3yI5afzBDWmrArMAmqex91J7XSbgIsao2X/OyivHSJ3fT55xtsQUfEbEef+88e0XclDuD8QAQx5u1GoOt3HK70LnGPwzfnR8NaHQwNNboaVX2O8fhA5aFtw4y2YR5Ok42xMF28VAbLzUTsiOvGVJI7hp4lOGSWxqNevz7xyesiLGGXwQ4FUDJjHu2+CyhLK92QDaJeiheVXMdtYS5f4hCNFDSoG8TrTk56akCRZNczHgYrh/arN/VCxmBitZyCEcFDkdRVVxv1x/I0WrHvTO1JDxFxAbx/Ec/9zZSbvp6gQ12fKayp1JDIpXCmyVKBxKG5vD6/HRBtr9rC770EM3ft9V44VGxPQ19qTp1Zfweb2CEhj+u77KcczdiV5FW8BFaU1AsbyLF3D6hfLJzEMFBtgrn4sBhfp43+sQ8QJDIkcmh3Sb/f5jQcggO4USazZDmWp7nodHIL7HnKPrx3beHwek8Cbnz19/GiGH0Dlb4Fq8AeMW+jdjq0YNfvYAfzjk5BNr7hqnsc8ZtPXUYKvzYG0r3pqxXjBZxQUjAyO9kT7RmOmxGZCk0F0QoKqR4LSDMqbNBkDN8Azh2wEyKN2ixL44PJlUuKX3dRLk6/gGAVVYbc8J2nqR88qJtuLtEupjIGmjZftzVx5KHsJYfzZRPb6CwKhu
Variant 1
DifficultyLevel
534
Question
80 cm of string is required to tie up one package to send in the mail.
If a spool contains 4 metres of string, how many packages can be sent in the mail?
Worked Solution
Convert metres to centimetres:
|
|
4 metres |
= 4 × 100 |
|
= 400 cm |
|
|
80400 |
= 840 |
|
= 5 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | 80 cm of string is required to tie up one package to send in the mail.
If a spool contains 4 metres of string, how many packages can be sent in the mail? |
solution | sm_nogap Convert metres to centimetres:
| | |
| :| - |
| 4 metres | = 4 $\times$ 100 |
| | = 400 cm|
sm_nogap Number of 80cm pieces:
| | |
| :| - |
| $\dfrac{400}{80}$ | = $\dfrac{40}{8}$ |
| | = 5|
|
correctAnswer | |
Answers
U2FsdGVkX18CLwuOwdpRYAUlODxRdgKwxnGSp+5VbzfhlLdBoE5fm+96PKH02yRB7+PEUxIZHf5aZsgkQRsEL4QdzjNHT7NL/oWaMukPYVAyZlrhL6usU+3ZX4fZuakUwiujlcoPZZ1lWr0PQmThJyf1ml5eFcknUJh+mcpJo/p9F9BrTfU6AqTslf8vRodwSlI7JF1ZziESTy7rUIbatg2WYac7xnor53lG4ipUWakbNnBrKT6y6OT7uTxoYkDb7pH4BTPFEE++YDAZE3kyzfEeQg2Mwf1eSm233eD3V/lUSH2C5vwUXEKXTw1Sk7wo0tHqybLFmWugheulyGfHmHTHUrKdioAbK28L0zFWC8tU0d0rwIz0LlQWBQ2gBD9Kreqy4K6o1u3b5XsWvjyUDA6xV8+zIsvNUVy6p5Hi0p1094PuDoMz1vkmwuXGS8LWu9+EfJa8BxkVydtg0tBe3F6svOZd3u473S4L8IGN4vvwEkYuAus3I+BwnMv4RyxQ75AkilKJZmo2KkQdKvhe7J56LN3aIccvaoOzMK7Iu6S/YLju6vwGUH2xIr6gfHHacnWEKZOf6foTpFNtBN/NBbWblOMSfid0fAz0JBpKiYoirUES+/NP8umQvqZU5jqZg3dIgN+DSY+jgNWjQ5ZkGNDbXDo82c3jlVdXi3dF7EdjhTmHG9Q2ymHWmKh8YAoDhYegwIpV2N0to2Igpik6DXS4N3RLI4DVw+V/KXi4xKtqAdXfmjXGJfflYXi6NtQohwlWT4yCIa2aiIKmYNOi1Ey5nuobtm3dtnu2L8yvsX4JivFwpI6Z0DMSvGeJ+P37/P/oYOkPNLhT1C3HbK4vF0QaSSp+xqTAEqfr2gwNxkQEpLU/eKbQqra6urnfQ8fCfj+r1N7t8IRioobUqM78killwT2UiaSwMVCZzfBcek7OXTgHVpPfpmYZAksRjY/+uRU4md3UHnY+yk5sEIhELtZ/59uu40oepIu4WhwstmM1mGJpqhrf8efhltnduXnPIlGQsF0ImpU4PeaevR6cNRs0VHGpCqfZXGcsRuEd9qL62clE8rINsohWHsiEBKXIddZZEqkRcQ6Wa0U2cEWYkDlQtczV0MtCPBA5tkThZkT2lkjIJx3gLQRsPh7QfDaNvR2P6ThCbt8lGfvu4SVzRmXaHIQ+JTgPjG6Ox2kO58aZheuaYvZZzht8jyjlUDZEdXeaE9V6F7UHZr369PGYtu+RjxL1AmpIeOcvpusM9tUTG4Y1VflwAGJIzptXI7O9ZG/zRlbm6Npel+kYntbD7NS6UQ/IgTDEe+octnaSdcXI8b5wsNQyJmkBzEC6EWe/K0Uquc6hhcCveVlruo6htnCIoRXab5PNeNLQG4pO3eLUSNE7TVHATM6IDJQmMTbGzZblhYqwbt3uUnj80ihicfYOMYAi5vV7AMrI9oTWfqmI9E1p0GPjcYTZiOdzV1+ncrBLciGAzPgX12ChZCZT6kKQBYUjo6zwQQKxwu9tlNviClMZCUnAgc1D9Vzg2T0+aF4Q2aQVz0iW5FEbsgtVLTdFD9UKHRk5GojTALwwiKev5YuGttOmPCm7NV0cX0zKQpVOcNK0cTqiWUqteWqaVaScH5X6VEDe9BD6yCb1ijlmVAQ4CgkaEoO1eaDrVzA2ky0+ZA7EJAu0mHln/NI1w5E4JAupRHE/WhHYeK2HIoBdSY052j4SJ0wpYdphbAZqy5ocFaiGOBiYInqJozxPS4+mX62kqYv8Sg+wVTfIPHAS3w9tAPlg6SskqkJmU8UtE3niWWOejEU4JxqR+O2aFJGxdiPCUp9kZYMY/m8wxpK8wW0mWDBxM5zcJHIvN8Acu6KRS+jL/Z5Nt9/HPD1+7N51lyibYuF0Z0/dWtvwxpLLboDXoSbXzQh6zK6D+tGrcJj0T2a6cUi7YkHCgCNWSq9WAsR1wXVybNHfoLhT7A6GaY6oIO59DZnOHqkZWLk88iMgrJNnwbjiBNNKfkWSzvMCJbmg3ipnSTnQytOm+s6EqLE1JOMGzxTR2n2yHuEvfRFi8b5HbUiS+dpyauGK+siEhSAt/Wg5ATYdQ+HaGmS7/Le3nqAxW8Z07KP6rBa/S7gNubaCdtBk8Po8CmVdmN1OmDz8jv6IkTxHsfQ0IgbNiUDJ37X61SKf2rurgDyu0PiqqGBc6ALPYzIMg4N5l+Ci43/0oevxtgMW2GvXS9E683520dMZzCxfGE0fy8iN8kg1y2H2rsHHnXmAqGgJQvgThySOn2IaNbxAz7OfF7Aez52XLln094DuFxkno4NhZSJhXqF05MLS1/vEXsqfXiZFgGj69VwTGWV/YoGviPUYl2t73tcvJjXE/GAi9nrok//jcSskrRkSNqYJs5ltKOeln+Fe0PrrRdK8pfwpqah/9XeWrZJBvYOZJFg3Iv6S1l0k+Nrr2xVa7bjO2i7bHJUSSi/KbRNFPUfymnDrkg9ArpD40BkpXkZUfwudqCf8B/xkqNEJu6L5ScjqrCRK7vFHLUVveYu2Jka8HTEGtIyoYRdO4It8ui3erlP3XciBUyg6R8w/WSzbOShKn5b41zND/vnou0YK7G2B1xllbzF1aLS3E9faIJZD9OBdwljQ2rAFXwuOx5+KzB8boELJ1iqXTf4QDcHW2XGs96B8DnuhCUZKLKQXFtmijgEcuP0bPKCr81LK+t7jRk0VmC5U+sdJ8vdUbzPoDttHiwSGzlkH6DpBGtiGEkdYj4LNgcgiSs44AGBtOA04rnxBrSZbvjk5w506nFsNiIBkmCfQE8Dhlat/z8LDvpkMwSNFZeMOJxsgB5P+MrnUR7n0RI0+STrXigfIGI/105JwoQuPXlUG9KUrNYYa4nd3uIESeTmP+J+zEJ6A1oo16q4OzeLwcyKMZobuuR4LOgf9Xy6bHN3LvVM/wEEcam7F6nH+jXP1a+u18ECNMqX+ZlCDPPO+1sgnL7KWktN1vgQ3zYqh+rLuLOgWnGEeW/S9VgqlHr8TcBh5v6wa5uBJdD8uJkZPb0VQ+lZi9DAExZ7bWg6fFY/+vtU9pg3rxSAiG6/2gv046NlYtF9D96MHQsWqvo8yXtggErKMsPawi+25PoIEOR9Ag+xThPBkV7lGLF63lQH5UzzcrQ5bUZglTMqa54ijjQFmkqXl5xt9ClTQU9aEpkVXexnApALzGWt06yf08YhtDUqYSuQbMiXO6riBUi+vm2UIUQ//ZMZLKtJkeO7stFh5rBh8Av2iEHu/ydgq72LhPryRTPYkpQfoJMovA3q8exOdBVz9Vdvwu4oLaY7znRHfRLSmY8WrNHmAz0XddKA6FZHgOLhXr77FYgamiDC1CslyTEvYa5gZg6cOUzvB41kxkxttzkMpHtGePhy548LbL1AEQp1MkzcJ8zbsgtOz9ozM0ZWPDQiWgElTjAa6sRicO+U/G55dj/sxOFpjOUMboLXxXFtCWX4fmB/j4if6b9THPp372JmLVCgH6Z8KRLR5jRj+wJ762cT/lmIpYVO9oC+WhwFeqzNvsBzinhv3r6i+uK+3KZJAFmgp/6sR2l1tmd45PwJx1hG5oi1+fZG3tUlzZIuRm8pjRzjG9yQRBD2ojwMYrlYaCZ1sTW5BYwTFXu+SCF5jLrR6nkc1B+vjTXeu16QqVSW8JVRQ/LF91Q4E6e18DMwOFti0ExsZLVR5BRZxCkBG4h7Ob6fX56vHzp2NMPnGQ6gnMAtcmXeGRGDIY7uyd7ZSeCxPYXZHrtDarydPXT2P/IaaFMUzckJIiw+hi38wWwFw97q62Cx5ZBP7urhwxtJyNOgO6K5QDmlMPJLStVqmPwme2+8rAKJFcpnch1bWVMCMJWQDkiW+7lQWT6aVChb9G6Cx/tJ6ZCRlbFFBVO5DbgECv+T+orobhlZ3CUDtGvnOyR4+6vIvjbIrugeFfbF3ooSQivm+V57GPHrj5rWfbbRJakzX4DZyzlFebMrI9boLkURAKFcpJhY4PV6ARg1HPbjhByxdbVCyLy6h6paJwuAmSQGOinEZVlZLqETQ5rYdHbeJspUGTKSV8/GUpxbAS2bpeJsn+J7P8r+x5Ow+rUerHs7C50MS+vWND8UKOsZefBKN0a4Ffv97+ElK87BPw43tArruOeG6Zzo82RbtI9ALbhLtE89v0pUbLKkugIy2PhXaYPGwNBh+fCdDTFHd84ofjhL6B0SZ44Yui6n9zbT5x8TWE+uLGd8bCDd6GTAuHU3s5+HbYw0yzYWVYDEeIQRVbzS70N+k4+mMwyRsXUV0/rRidnWLfbW4yHaKPqpm1396hoRNlD0tcpw5O7+2oIIvx1AOJoFObNfONmPgE/NGSUkkXJ3an4KJb9ZcjJEYsiK7LHglknO69fRAn17/Ouz7OfDHEF6klq+aFvpTFwRr8s8cI0Rv7yBesu7/qFpPfwRIbFhWqFXJFsgTvoYc8RJ4J7K5HfDsa8D7/1j6/bXnHd9Td4z+elO75XJfzLSmh5xM01ecdZ4cuXXoPJjnKLeMlJs1eFwQ6QssUbCRXcKUDGhJG5hWghWBpHsLiqLnnwhNkLgJfhwtFRXrWaH+g5XWi7JYDQdBsxDYycBj0arTKFLyJNxSpB5uEHcdWmJwp1B6epsnlIkou4zcvyPQj5TKkA+Wv+IJGeqAnLH+C4KXbs/IZjZKfrmVA2CrQdEK9Rr25KHPUoCVZ6G2x98Mo/x15tTX8G4lzHPLqfafrqw9tQl/TuBJ+638og/j7PHK4GG4Sw8rEJP/9un6GguUVhAHuxQ++3plyTVbyjULriJ8gnkRSgwyyHqYJg9WOuoOVFKrZ/ACppS5cXbfguM4aE+/mibUDgmea7oxUhGVxsl7N1ALee7Y0rzlnM6QIqs5Ss7ZWORoY2P+JABTUEIZzSA23HeHS7M9sNo0j/TFtv5u/sSN1fGBgwc7ghvthtCyCZBsyZZgQOY4F4KSbIXTam6bE+XMWx+BE9MEF9MFyqnvkGTqdViiR2+qijJIfyKoxGx5gIyebjyMg5luVCM8F4xxg2W2+i1f/E0EzW0Ocy+E+nfXJ2Ai/nMFVwl/GEGDfEc2OZxunamqRrcChJIDCRRqVyJZuQ/KeOhnfipGaFkXnCMdlBzVM4AnSiRP8ePp3bzS1i3RJq0dWFryAsMMS4ABLXa8MD65I/aqhVcFAKC969ObFYWMfzQfe40QtOAt1MuqurGQTJAMAMpdrYOVJTE14lTP/ok2zpKvh745NgtJVXLDpOaU4Dcp2sL1F/qVF43liS26Oq/azr2X463HINeFgSpOfvvQSwx4L8dZg9/WcxwgqKAR6r8u/fP98U2qc+EP9PGaun+gYkHfaxVsFHcl6X3ur2x8j8lakzpPvbNk1Mbt/ZagbMclrePtWYFZUxFsr5KxxJMQnTAwR8lKIAMFfdny+D+49qxANznXcuJIRjJ6ZVGAI/MaNY6DRb1cmcY7+1ezihOsJirwQWLqugNjwig9/KjAMrLLiudajqF80dCyL5w0+mTDTvwS4YJIpimcn4RAgIOYB91k5nGx5pYnlXOw4uqSTc+jqMFMXkD+s5SQgZmURND6v3fudVoI6LE5IzGNNIoxoqCaqif2nFORwavtbjycponbNGS/GZ6EM85abfgytua+3rPUpbDMyCYzYyF5Xc+gNSVe4cAcY4CCNJZLhljHfA6etS5kcvItbQfYltPLcJjUBKmQWjO6JdvIB2hXVucgCKZsGn4nYO2CNSLLVMzWGPAigyL74Wd3zqrR30K1flZDmS5pwVxmFt+/KsxC1b9Ivd3Pk4h3zNV+I1752NJ/s06UUUOBFu9ypjoQQJaXUQlxTMFUOarP9zvIQUwbC3kgSQbAusIb2P8rV7fOQUa/RH6XqCyuTe2CIiw/MBwlQG/OF5X8UTe20OPS8+0xR+G5mi3zRBdQq/qOZhxviePIspup6fOgYkyf9e9BmgXyTqUyLpvdzT3XuCpSa2sbCPlJtWegFepTnpbI8G4oGPkLiqJ1qhXMLrPURRlDOrs9XjHM7KdJkXSpag6iA8WogwQG1czZcXd3XoM46UwAhSIVZiiUu/A2aQ/KE6SpyqHGRHSoidMgsTrgqY4qJEPoj59QZRFY0K9M3MUeyc2Y5eCHBBMNtAnPgTmWMR9jWdcyi33sd22NB1S84MElO/NqiVV90ehyxF6ElxjAucGX6QKcFngL6CHWZ9k8O57D9C/dAQ+6foGIJbaFgIbAsdtPjTlf1wB3beUEkewaBECGmJGpYa3WlfJvKPFvQUmeb8feR9A1AVxGfJBttFwkqgqDFaLzL6hVfGX4weXDWW/wbKEsbXxrfYj/Fk9jLeqBt47CzzTfrIb1rLRpv9gmWF9x/zn7T5Lluejp+6g+XgdqK+WNWR65z1O0tR1d853Cn6nwcpWiXA5B7hz79X63m8596GrTsTmRntPAmd3k8vagw8nBh7fLHCIO0/QMQ3/bXQ8psPdpgcQp5hShLygMEVRxqkUG/gD2BFr5JmON7t7PcKrEewxAEi3ZaGUQ7axc7irqQgG7uOwgjzC+c/ZhxKu1FKxFo8Wg5lgExzV0wD8FZ6SjA5IbeqEZ0QCVocQ6rXtRi2NWbKIJ8GFaaC8lYEHumK/FNjK1cZO8uQYfzCgMFONPzMWgW6vl5c2qTv/vlBWi6m87NJ/SzeG5au1pOsSiMvGpxFpwIX8MyniKs1ZXTwbA023eW0MqC2o/D9cGDZlow7EK77U5/tHgv0c/HRPtggDR/f6avU1hNGFQSSXMoxXn8aJGWrX6rculMYyKQp/lQVebm9Bq8SKGeUEniYw9jmypaukGoOJ6NuGEGcKHG1I+qs+TeAL7gsu88KPljCtN3bnrxPBUFWiv0RwJrnNlokdtN1ogj5LQfsP4NLF7mrt1duqziJ1Gc4XvVQxYt+jPoMTyD+aQOzLbRUC8JLzrUnx8m3WvaL77g6R1lxV2HunA/K45kNSyglUUx7qSaOhGvzEpgBPT+3GJb9BqJU0zukSG6lUu8y3ePgyYDldjNFx+a/Li23a8RZrHXAyq3RINhapv6bG4Dexkrc2cXj2v72aVkCbt76saEwjs/TVpoH/hVEgExoYU1iFpMzBGZclewSqeaE4FVCocsWOJi7E1ETMBeAaan/RHhP2aCyhz9g/KdWY+sMZaKt1GhvsAdXdUdi69M80LvWvQtqSo4X4sK4m31NU/s453kmOwFziB5gocykLqNpzj7ybpHb835Xf7l2Vtmgbu4b9a9geOIn8W9ODFAvJ/mAPSXqnLy1Pp2IogG8QRqKIx8G+LG3CDuBy233lTRs/WtKDyIuY/cb9u6ZEKBB9yg6gAcDYdoNWkbtwXWPawWNuIslIivTrI8aTHNF/FIPWPNm3oC2S9jRP9MVMAN9nokrDSPyGdEU/w5s0gXqPSjHbpv6ZQEW5J/x7GkkcZholXU3dblcFJW2Q/q8jqMIr+2oA84dmhBx8r/Cf4FerqwHLgeMl0UNcSKjAMKjWODdDzBmYAYHSiF16wM0O6ogJAWoztlMQjJr7iKhEH8r4qBIh5FiEpAkf3o7XEoW4uGTLSNTwUKXlRI09On727jCSSOf5CL1aWibQKvf4HVViMcTyyVSjThLD4abl6DyRj+TqWsIVln4nHcFJpOVWJbqphXbbRW3+7S6EuyYt7LmLHA1HYXFW5h9insZsTYeGa+eWCYoMruOfxCZUJc7XpzBz9XURhEAJ5l1yFzrH8nD/nlFjKF55l/uAxuywg93OVC8NtjOq6UbDXXFfQxHB6jOmX50bTZcs8M8FfFU7knU0KF31MSie8Yn30kFayXHny1d+ZYSm3W9IaHhdS7Slqg8yAHLnAb5oIh7mICoMp9RXHJHBrQCOJ+911nEPLRrDrsc/O/LGomsJV/h26yHWhsBnOhlDhRKhQxF0ZBbuBneb4P/qpvcE5uxtHNNvEj6+Qe0tCdO/AzCOC/BOyjsv8fsuWnMeB59+2mxLUtTQAhHuSra1ha4aK//bLibFT4zf20kklaEZ5AicBJyHCmYQwq8OpDpGgMcvKRIacOsTN8mLGeISKz/B7VYOwOMmeMPcitFvodSnrC15ANMoRaaTT4taPJSR69DvoXu7R2xqbG5eIKLWvLZOVc1/KEUvTcg8MW9PoxyFkPCsPuAYz/IhB6x3lyTjkrPy95z2EM6Dxeu/liZrDpc7dldCn3dBWCKteHpX3F0OnjcqPXO6s1utIuKkJs9rAhqhySwKXllDgK1aWSc57mSC2E2HJ9HLH6hLHqOpv2IYVmoZO0QhIFR/T+d/YWE5Z2vI/Dcu4j8Dd/q+AOnWdlVbaOsW6ysp/4irIGpJmOhSNtkBdF/foTDn9MxFOsJ9SxngogLyHipyA0ZzrPtwcbothc3s64aU28mD7uaLZleyJtOa5pzBBWo/g4uEZb0MGtIpjSEEeZv2VBJextqX5M08cn+EHVzN4Xy9t+zXibwX2ZZGgFkxdiiarJQjfzHnlEYhp0eZtoOT8RutGnZmk7Ra60KaIL3sgDINt8x8HUS+lsWWYIU5Q+ROiuXblfNiEyhzmNXQhPW+pDFvx5u2VOm0CLH5PBRS3cFLbMkCTyjLXZVHYT4At1ccPHhXfHnBlGnnHHyX8VzDGGXxb94+p+9wrXjwgEEek3c/pXWE1FGIWVwDr+a/PCobfgTET/frzCyCv0c5ywY5f6UZquNt15IZQ//4AU5AN6pQxLO4JD/g/2HZ53hkGPdaU6mDtfgvK5L2lXXUFyHqIbtwBNtj8xRvFBe54M9d0zdvH9oR2UyZjFgM1FWmtoUuxNCXK+z/9MdNQkt8UUN/Y/JAd09eY6mUo8iKUXAk7MEGoDB2wGrjFOx73SCZn/I7NRb6eHDd15cWrJoAXZ1t6bsms5BuIA+0/AsfwvVCI
Variant 2
DifficultyLevel
537
Question
Peter wants to buy 2 kilograms of bananas.
If a single banana weighs 125 grams, how many bananas will Peter need to buy?
Worked Solution
Convert kilograms to grams:
|
|
2 kilograms |
= 2 × 1000 |
|
= 2000 grams |
Number of bananas to purchase:
|
|
1252000 |
= 2504000 |
|
= 25400 |
|
= 16 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Peter wants to buy 2 kilograms of bananas.
If a single banana weighs 125 grams, how many bananas will Peter need to buy? |
solution | sm_nogap Convert kilograms to grams:
| | |
| :| - |
| 2 kilograms | = 2 $\times$ 1000 |
| | = 2000 grams|
sm_nogap Number of bananas to purchase:
| | |
| :| - |
| $\dfrac{2000}{125}$ | = $\dfrac{4000}{250}$ |
| | = $\dfrac{400}{25}$ |
| | = 16|
|
correctAnswer | |
Answers
U2FsdGVkX1/slLn6y3hMDouGzLjJgU4l7urntcyKT2u6OOao6ttgFgFg+/4dF4tRdmdU9iAdS4Q8h3mV4Kmhz2LVw9utDQLYCKV8Xk3zMATDza9THULTVk/KkjlwcS2imw//cdfHcOw9LzDsyPCs/dRdXsVOSOPFtqtCTZJXk2JWmk4Woo7634UaYQ8+PBmT2t2GSLwnUn3DAnyZw9wsWwcpgsTcGHFRhtN34XrCCw4HulpJEKeCxQj9hbQqRd0TRx4gv6HYNJPVW71GewcLWrZ5zVynMv5gxvisyCYgaEjHXJOBAa3YB9GCE9tsAzgf0uLfqfQLN89UQxmi/fWmMiScWZS4CTKyIcwKlAWNWgxZYNeHfixRTrZI7SNIduE3y596yOykHLorYQh40cYdoNHQ6FwIU59n+Iie7599QuJgfTFxns3Zq7EoPGE8OM96qinCR8mTm9eQYVlbo+dep00fRE8sMCByc9c7FUCq53qmCGSfYf9lIkm8immcuQoqmbycXsNmog4wy94/+3aKvSZVIIHKIZV19EqS/X+I1+GeVCLJJt9HUmcDZ5K2KvicdNowvjtqGIU84QLlo7/IGMKjvACZyZ6FHgRnq15jV3NXQy0iIsILvTDS1w4N/HM1pi1WYp2d14kAVQR5zSvYe2bQypTlKIZoJu284DLTb+VOIFjK5jX6RgHuf1lv5Hzz6F4iwwwMWP7VXMvIvLlD/mQLuguOdTtmnKMP7HugnLzYmgO7u77J9J6lOYUtkxIqXqBFZyZo/WHKVh+yKeey4JvVj60G6eHVRHr6z5dbIBDpdqCtOSojU72QSqAlSJndO8Q2+mqL8ovGnzZimvSOn+Ez9NSeIPh7RP26CmMZFAW6UXrg5xzERrBL4ZFvxX78r1iniH8fJQjNE4CwaNTz1vRczNaTzvOofQjm2H3E1agF3JFMMZcF7RjldaKSBjx5lu0OTq3aL2BQgO1OBXpZBHDW3fAuKp42cARXenUO3VStKa/clF9cWkKWfn+6Kmc4qoVRQP9ymHbU+t+iNHOHtCTykGIUVtUuNq2N6SySbw+YukycgNyiXRdUGkF6u3ZZd9Xd+VRa31QDNoi0srwY7oN+3HpRXOEQiZMjVp+S2kt8MhNecwlmg42ywekDuq6uAoDqqTYAwv0/EtjG1dHvtBS9/coff59UgdV/H6aSLb/Lse6nQ7CcI2BZTonCdpXEh32rbE6nhJ0WleHSJb4rOkbD7nSHFTGcdwVrM9Q2rN8iOCvDJGq1IZK2/UY1JOhGvioEZtDf5SNOybTRoVv3+3Z7OoINIGyV2+LVVDlTMvwoZGiNRCVJGkm2sC1c9bNFrVDkwbD6WClOhvgbt7tdi5ODRJ07DhB47XwZ72dAq+oMDgmemU8l1L+KB9GejZ8Dw0yzCePaRRN2ctpciQM8UirGhvg50lpJjBFhU9TqawlDPSA2fzdzr9j1KeVVkTMThDdk/cCmlXNZPdLM2BGEFMkVk85+vN1l3TCBaZz69pL/czMq2jSXu8thZtvxkICnl3Ag16GLznEw0YPcc2AQSRn/WtMrJDsvANX48L1LwIfQmBZK7NGbi5KGjSR180Q87pt4avy1F/i23AyIIUGjqWZJx2iyPELpYvOxF/ZYARGXU2L5UmhEDGIvWXS6dnN7BBi5u8P21sGHff7UDtBLStLdTiK0w1khFvDNbJUsm6iYBhCFWLK9EzJEYx2hYcUjZjPR+llxLR/0I6XlEtec3zNrzgGByWGGB1cpRGW4YSeJztmCfluNhy/X0gr3IgOYFEoqQ7JTHr/HfAvNpF0q4OZYyUfzI4aKexyc8b17vjGnbGVq3I8wv6P3DePrSAuh0/QwZPWR1v76yndjhOvIbe1U1tZ0MqMIH3P7nKcKUTCXMUsosvzyEmObZFtitHnD+a9XmpWswNDQ1M8sxWS8s72wwWACQZojqwOini5AF7fpF37bjGiXSIABJT7LfwxyTz4kmFtp8cyc3vVP7s+4mFlEq/5mgE+FXcZ/6QlHZ1u/kR8tnRevTQFSmWfNcMtIcNIPq29Bzj62tzGDQcxCMTepgQ005IE7tsX0olOve/ifUIUk1zJge0VkfAHESiCljjlyECKqc1PlUqLpd+qeoe5n/BuH3GxBtwoR7RU82rSqxNYuRU4AJv1RPxOP0s5ePY5wsmJGcq86nwgjovACfFKUvRN62RMmCr2JDeIRD4LE1KEkknpcCERmqyjaF7TIXFyXZ/NfQkrgexu/3QcodeCbRhYBZREL22MCKtGE7G4lyxO0e2bvwP9zzS2upqR2uNOSc950Ed2aTXRQL1CrNfBPJsZDjB/MrsOf/10IlJ6eWEM3MzHFeNf06w+KVxA1vTb/IINbh4b6w/ZPorzefQr6+cDuO5k3G4/6K9o94/pPFdRKFhmOc51Wsy8bMhNljrHEC2rsT37yheeDwZV8zndhv++rh4oXa4zoUiMBFtEeZ/zK3BikC5Xcz2VJdbtBvLzDsxq2cLo2et5p0DH8xC+jiq3C1rSUYt4ymu4RksXzPaDgvjYzKRSmnnU+cYgrHHYAWBdbF462+JPqW+EzI0Z2hlZwLtLPSq1OdigbqXfpwWY1BBTJOshhvWjrOf33Jvn2UwLYl+fNLUYdC5uv2nFpkDIGwLTa2KonvAf549y6skRyBXg7fdzoGe9AxaL+nyK15Z7aRQUabX+L46D7Mx6rRICUay9ugqjrOm1Nj7uTHViv3ZCSSY38LbSXZE1hkqXYgGOWRonwf+Fx2M9eQjxp4/CaIbFmSs/8sFhsPIVYa7SLxLWKFz7CBt2jJSS7LlD8eNE60Ls19HCYoP3DCN57vdMsJ+Zhka23B8SjLp87azz8WdlGoyOo529acjwgdKxt7e9rTROYwDK3nlTK8Mrv0OMhKBDVZs7TG9BTHiF/NOgX7PhrAsyY57aYATn6Y3DZ7Ae0bNxMXahKCCOZ+Ydq2fYd5E9ifAEwFj8eQMbSp8SeT4Rt+YdqbqOYtdHXF0ZwwHcwTgJ90Ua1TkANkYLFt5kKZle51loKnkF5bK7CK445g/jqHye90rJ13VF937kNrHQcaSI5ce7OBq8QUnbH7Q41wiT+YEcYjwRF6htxeeeLAR04yWqPURLS0x4HtBY7lhhYeAM630qG3opc1Fv/+zzM/Q4S787D3aui8CJenOO4/qfKBug0QxBotD9eqTrm5Ec5DIar89aJdDhxDr5cw+szqqmVYTKtCfRqXoUoGLu7tsMCC6Rt8FDWNBwm52XwHIuHtUSem7OaTEVn8qhRjV44R56lu/f5LIKnzEQo9dgoSj5vyC9FhHHCoTg0E5csNiXm3gTtfG/iJ4eTfWBhOkMdOmrCv3lhl9yuVEH3LbZ6TihPX1ooEb9rSsPNjKN5a5kU0TJPqRYPvQ3vEMOGhdIvzgmrN9MKg0+XE+PoJuIkln7W6dam//QeHPmQcCWmhpvEhoo/Bmc+Dij9Hkx+6Fe3rVUJIcOC/yCVo0dTNHXE17xbA+Yjb6wrroMoSOYTVSl8jsEya7Ly1th0jCJnRW0uoGHXzLzO8qRd1xLHaEtuOvqu6waopvtp53ax4S0f8gKTDY/4cAFii3jx4iQkwO6CZLYDHLNQoFIGBA+NHUnXHqypWuosTxe5D1HUnHpEwshr+FLcIh9P9yYWCEsK1tAYIFIL8KZza84hQyzPn316UsCGoT0xXlLYoXh+afPFTsRBzsDfHEh7NYVAP+q4QYqf2YNUE5UOQPxs7VpplMV7tdeyH3RIpR2/VlbUNWOVBPEw5K9y77IJQU4eMUpigdU+5tH0bm9hF2T4N5VKYrHjdXO4FJVCaXCg6j7xj8UKgKIMbusGf/QfDXADLN1fl70K2113PtGOHyvb9pMcNp/ohqfBEIjWakKRg7SEZwJ8aSdLxVR9LxDh7ESpP0KHvMifGToqH7+8JKc5OpuMsmdopaOs2si2ia82j6KV/aZKK5vMnr/aOkCT3iufLjOGWev0wotH15emvvH4cYQ1n7Vc062YNzJPJgpynM+vJACkOenBc7ZjRLMmb80xeC0nlhT9+Na/nwiIYQgh8nafluM9f5r9PIasKdSfLbs4ztuFRk7/FemXltztvhtYi1K89lzM2wmsPurOZtJcWr/zc550zoT06CZ1J4rj93mX7DgdbDpLN2IvgPubHDPRXgO0GRtahjGRlRa5UFLLMqSNjudbb1k+5TKuN4HWFs90CvL81+axXXwUfJv83p+/A615Su4IO/p30xbAaz+IjSSO1d2KzuuMx0Wn4636UCF7KVr+heTxUGTjteWNJcWbeR3IAoohv/gqXKclh0cWPc1NYBmJHgePRjN4myLRbJV4cuLWOn04VRhp9SUf9jTM126yUZxHSwQ4Mli7Nb//rOhffSAKiqSCQ0D5PXE7E24uPzix6Ho8DosYOFBCONclGZooFwQcmXnD673DV32HqfsrzYva8cSj5wxf0ubcR05L05Hx26DtLY5FTCV5mjgHu4Bj+tnlUXQeM7rboXz4O34a+iOHX+9itcmFxXgCgl4O5rLv8qSqWOvQCqzmDMjnvjQ7W1tFqW8jRPJL0mtG6eoQbYDHMYznrQSpgrMp46p4fRT8sy7WI8IJdE0Uzb1uRunpu4d1h8gnOJPQA8M6hMOvOVJxU39Wo+3YkVl2oE263sgYnsOLsuw4cxG/WEFNY5HjwgmnIxcxpARtvW+nkbZwETiSlH97onRXRHQpvIuEwycqdOP8bclHa2sQtFfzWriQU7pxXFDNHt6OvrelUHNMQAJlCFvUF7HfGsxhPG3Lma2Yo7x+7YQwrQpA1+iAmUDOuKhLccmrH41EAGMltK1BQPtO+IGdmxpOJIn+a1TSXcj/7NyzCd+zAvKcF8k7iKA49C17W86jIhTCVAcl6/efixjwHJXPMRaK2FhCQxmDf6TyJs/ZgA5XhcxOASRyxZhV5eBG3pmasHApo0vKHIFmh8qb0Ftv8z+vRl83T59R2+P7HKYvKwK9nd+QOctrST4hxKCqhGrX3qAe/wY9Xt+PPQzp6oMb87OvH4+Q4zurBeY+FlBWd8HKmAuS7ClquO2NC3ck53N+YISxHUwIRMD1Z8y2VEdJbkYFUT0r48nEu5hBUUOhTEDBepMzo7mQk1+SD9PrPgGlJNHDPJJCIjSIRm8JtNFhLWVyhhVi8kUeftqqciDXdEkUGaFMBNTUh917S1MhDQzlOpPbX4vkr21SHU5koK2KN/K6DqsMSMWHFFtLgT5WwCbN8wAG1Yu+kaQpBZmSx9hte5clzNUfwjy18XbO816ViF6hSwAuF9k8OVIBhBt5/8EghtxcPo6Fk85giXHvEFhpzt0LFSeaMtdR16+UEfQHvS/t6nqpdt8dgSNUaqByJEHAZIg+ShWonDryzQKnMnQaFD2ecZbkOFaDWlnvovLImPPY/HJKmmGhhuR/fBRDPpVOWHlso70q+6h0A3JdrGXyUZJyZXJ3vovvXzVFhMiQpTT+c8AeLmmho2FHdenTK6JlXT+TfdQaLYk8dXTAaL1YF0f0+5UD0E2UIRBAWkeawogdMOITbW3FDsw+z8aSQLViFbnMe07oGQkFjvr3S21sjw+TqedAvaPxmV4YI08TquaoJgGNFYgHme8Lt3G8ZJPwOT694SVdzSxF19bYsfVlTCkASJrfPsc69DJ2tx9WEN5Ta26kXOWAhd2ZAJdE6gOIFzv7bSdyWRrTF/I5q5alufQr3opo+TOpcmuoyLpzWdaOe8UnMTDJtUobLcKKUvAA0Ks8MEFr3d+K+G7NV4OJzOLrlbskwkTuMm0j+s4pCl3+bqhHd/YTChH6N6qXNS0FrpK7QGLYvsbKzPepEZhCrC7YEA8ipZU3paWdt9Oqy+xemHfmFu/hto8KUGsi2n5T4DfEpu/kKGRGtiI4OG8+bET5W/xpJfmSOl96gsF72u2VwWd/ILBfeK9cClkEuzVOjCIvnny2+vnoJ6DzWUqZIww2afDMbQG2A1rnmMmBO56YSD8kwBGHxO8Diesas1ogkEv1arFpHaVQHqCaerRtGOoLqSvdkd6h08XifyYkIFK0iG5qMYpkqk+ufchAzpSfDW+a7N/dVVsrzfLYElnI1PwDhV2MNM8L32Nzp0tDsx/B7ejbz8EJjIpCe2bApyDEnADNexKf7M+xxStG83ZLqktLLOLzPlrGQ9U7ZS+HG4cMQq1dFe1lgq8vbcUpsUaAxlRMfVDd5QCvRhWIMBuU71xhlvbqSxodODqFhi1x0RlQ6n9Xs6dgHmIGhZLt5xD3wgLRkfkZgoO5mQkogqj/FIIoK3tIIukTcYyLWO95emtQSSO9BgQR5Lzz7w7wdha3/PGv2JdRRW3+zbPar/cA/dNedQSFcacxx9Fb/VFMcyIo69gXkB2nslkmcrxkVlwHiuT2pzXIZxy/015cnM+Nlij6oWHEBL+S0MU4KSacJfvT2RLvgBGSynCJEVa8H5AYVvubUAng47bPpL6+enLRxElv3BFsOVnqddHZpwn5ZFNdsV/V1MxAix5pjEqexNzPw2gJyOiM8nensfGesb5iXUch66PxOeB5Scq7dzBOqhsio3KGB1y9NXlT+zt2WEovOb1nXywjsw==
Variant 3
DifficultyLevel
539
Question
The battery of a medical device lasts for exactly 20 hours.
How many batteries are required to run the device for a 5-day period?
Worked Solution
|
|
5 days |
= 5 × 24 |
|
= 120 hours |
Number of batteries required:
|
|
20120 |
= 212 |
|
= 6 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The battery of a medical device lasts for exactly 20 hours.
How many batteries are required to run the device for a 5-day period? |
solution | sm_nogap Convert days to hours:
| | |
| :| - |
| 5 days | = 5 $\times$ 24 |
| | = 120 hours|
sm_nogap Number of batteries required:
| | |
| - :| - |
| $\dfrac{120}{20}$ | = $\dfrac{12}{2}$ |
| | = 6 |
|
correctAnswer | |
Answers
U2FsdGVkX1965aPDf7/T95PYfwiNxGhs1BrwZkr+aHVGZ6oO1iJq1RGTtfPTg5/CrnBT1vFCWjB+52jiM386lFeMfUyp1WH2Cu0vXkrjmm3jgFB2BGO4ASD1y2DXz1jWbb7yzDq4b5p9QJgW3Xx4HyHkNPrxZwkdpFJVoaXuMRzd5kWktFH36RC0N6riQy7ekGXEHTkQnPWpqAgtpCv/nR7bKltCEPNSg/7t3XKfU+wJOGppU7Sj8ejrrbSaXea+FEUbokEIjzX77/5cDPFz4MRYy0koqhAN8ueO4FttL+gJA+mHMNq2jFlSs5SMDjgXa/VlftxQVY9DZ2BprW1YTWZXeXZ68ARVEeWgFxz3Mal9WJpTQFKONYWkaUWcyF3kSX1/bGNmaVwdtOvLbCRDzvCycpqeIWTlBdMHfvNT5+hsrH3gLq6HQ1A/qAknP+k5wqPSt+eOXOwZ5Bb12IMHGL8h0qSK9A8KukoVmbxyQyT9cD8izXparKGzjCWgGrstzQFHKvwPiy+Cj/Hg+FtqNy/AnfpzHF2hlrxjLa4I8D7g0k5Wmf2+QPSQIzPXYwaA36ZfW9kPXqXJaGpKeb2CBt9PEmaYMEDPUqc3qglXZqRk8c/C0P8SI4d6UL+9qh3pQWX8prVkhOwkl5xq1lWmt1Tc8ABIbS0ZCDYf5NPlROe4Zy/rlHcElDxPuCqTq0a4NoikOtXFn18tiK7cBHFCWCuFNyHDEoHUyyDIcOYu0FVQqk6MvfXuCo3kBwX6AuOuWLVLJliQWSCB5H2J7lKrNyXUHfOr3DvCqwS5GOLOk0GkOcV124AYA1Ife1+Yvi/zyjAeyDzZWzIwOz2FmTNPuV330ypW3x9fyix59IMEQpvdikCcPzQZiwbigy1pmXHXHKx9tuP5iJrD9+zsDPzZiX1FIrSKEH50GFjaG7mNESgGOE+di88w9x/CahyZBr7i2ZiRC1W9+PRexB860/Iyv7spz3IXG7hpSVFY5ejIBkZkZf0EC0npBsRzl+kPuGS7mcQmuRxJunRaW6+O3o6QxtBWO7GLWycJlbbXRX1GCKxhZ8qNUIYaQdSJSRU5WWvdG83/unbfqfO8V1m+XwbKurTubgsmpboV/cXtjtz7ybUS++JEi9AGTRlVBIiJfUzm0rN5DSIOIHZoCV9mT8EjBw7iRT5FjSoPnKLXf+6HzZj6FA70R8yY5sz1nHrEJwYsjL7OTYj0Y+n7WW+ClUrxYtxugn4TsG2mqejbbSJANSWCxujRFnQQ2CgC9uXuH7iI1ieAMPiv5Eiwsp+Z09o9xKAj9rt2AKqyqQ/4fn+QcOkSqWm9yq/qcXLtjXy55UQC6WUkCGpuVkq3mm6pi2ZDw34ZvR8CFppH3lFgCCwL6WA7akWmz06pDn6AM4ysW7ka060UU6+bglOY70wuqsoEWhCw+CRtx73tqi98+BDeKwzkQQ7ZcDTfYl2TgkOH0+A4rEy5kR57b9JhCVCzSTtCCQ8FDFopRgDZZDk8BzpICttdMK7nwh/PDQlABeGleZ9sqBVljaFYM/CMzra859h6O/30Iw8gx9SfCioKtdRHNfSvBgI7BNH4VYpr4Wv71yegLFceDnZznjDVzhfujWX0m2kQBMF59gAzGy8Xd55UbRAxAlcG170VpDojy/9NS9IdghZgYEJmjj1fJjYZ1pwkGG+AbDtm/TNiYMtBDTX5rfOLQ1jNfLBs3A6C/q/YZsEGnnHnGKn75GHUoVEh3BRrSP+oR8cJWsfIxYrUqmeQtP80siH5rIpX6JVJpSn28sy2qL8GoEGV160+qFHb9hNWNjedX8DpzVuKe6LOl1+fjcTYPRWwFZUOGS+u50C6MomCRfHsedl3KmMUOlHGZbD55+7jiQpIpKB8ntpEwCLNmvyvLMs2w71qpkwHaQIWdl9+i+Q5WePtzFlBGnswovuGB1YQcpi+0MgBM4UNhC0m737+WCvLthuybeM1abtzESbtdaAWcJaHXRjswu607NIGMTVaAJCW8eEcTcKUPR71NA4lRsweWDdXUPKBGHwu88Deka3sc++6Er+xj8nerG2A6i2NKzoLNnwhEDBC9UkeuBW+q4hGryicMe5SjuR5dwoQ+pjZw0cUxJ/by/uatiBOzNnObkOO9BIXK5yUUSzQ/HSrKWwdJn890Uydx5uMzuMtmYbEM9UFrnLG96RO1y6s7dfwntzLUZcau8cF+tMPULRr2DmQPYdckgYeq/Hg8dCuSUmVXtpq3CQG6y/0xzlJ2kTbQhf4nG944/QqqD1n+Vi2pnFDymdmTa7zYlqcfRVy4n0Zmt/ysP+MkjdIDIDqQ6nR4zOre9U1f7zJgZELDp8mKSMIsYXIuvsfFh1Y37sfyb9GCA0LUY5NZy294a6H6nXnNv9kkW4ibM4pp/bm81ODOuIukpZCEfQMBl+QUXvhb7L7hOmDprDCE8kshe4f/nC8vykOC/K3thHNf+IWEECN+SfIeiuWM14QV746JgZXHrmcgJ/VA0X6k+SLjrY4ZeEZrLvWdqAxGQnjK56d0p/TcxN/JrWsssjQ8cGCLbNXmoownNwx7ON6fB1k2vjjpeDWuWTrmuwY9ImqwD4Lqpzg4lIT+0hAa86InTKLhQJOF/evBQvzlu/n+lN7VtOlV0qi8+jZz6K8CrVldx68vQXShcuZNGAfkIAIV+1kBjcAgLBv4sUeQpDBfr3QoLtVcEPfzX2E3sDNi2N8SVUME0m63AT3Rur/NiGCeoEhkKcUTWQ1Z6LmSxhu0/vBxe5AJCHNHfp7wLHDMazjpfMO5/HJpXAymjQAwu2yPEjxlK/NNFnqD1fPo2oKACwgRgIQTD4DmdWFdgyCTFyxcWoqmM/XOAahzbX3xtLgHYT8r4UeoOnHxmHUN31s7lPcMvuSWgC2xyxKgqElAKcO+cYORkET9zSqhaSfgAqEvFz8FBVYAeifDGZ28JZO4pJprSsUtGgZWYk4cDOhlK9BNGJeZP32vEo1ee/3pQb2gcPpeuX+DnvOUQUuiu266zbZlWDbSRvLeWu9/BdWP4m2tKNIRVDI9uwHIlk/xJ2Qmx4n/JL0kMDpL+unkmDQJoNE3JdZgNWev8tnNPBMo33/nSInPCxfqZXhyVOSG0v1jfFMBSRDL4hDpmixTb7vr5snq3qhHyY79wi1fFtzYsXpxw8wnErEO6d4u/vpsnB/SWy1KEOYIS/2OCe3IFsw9SEDwPIdNFgiT5IUGrAggw46EtYvxNMvvuYYhakn/C2W2V3AUrQ3YALZCkJcv0jvIriDJZCMHFFUwjEzd7/XhnITsNmGkEXiMM8dyxImdUKxuww5R21nDr6H4CN2aPAtKZ2x1YKcbU5c8xnQkEi9NWjTwvKobvvhXp1g0A9YRS4iRfYCwLQ6O/I2dtt+300i0e6OCyigPym5bD0cENFtvbMGIBmCtvuUWNq1IixIn6B3t65f90JmQLp+R46U5lVBbvv8JDDcyo0+sOkRPqQtWFriGW1lPGnmbx+CLCH3arkgnD7aquYNbnULsmvShSggBb1VPb/z0AJbkBh0JiSmh47Ezlaei+Svm2yjh/C9GM5pFZC7Jo6EQPNorXSNFcvV0PX0ac4t3NdqJ3L4sVG1EmjrnOeOiIkD0N51KQnpVCod5Q/Vmm1u7p0i34xSasHhNvMWL+kFd0nehBJK99uwGp5TrS+/81xgU2XewGPVlWlJsU4UEsVgrdj4E4G3bEUsPEDSrqmYzEBM6g0xgv5Zfb3rRAR//zd13HCY2qhj4WP3guMBGL0gSuuZEDhKqaJqjYxGnqbVaOTV4YYb+jFmUETNUAV0SqNSLqfJFREuH4Him52DortT6NEEs+BpHLO6YvrcU1rBmiF1dr0axiAwQ5tNQsIIWFWWJP8PcMPikIBixDjY3+IiLGr0i3bvtkUXTwnr21EX1o4Y9YlzNuAu9VfMMqBX0oq0V+l+OfhVW+/kawbmYsJkkPo/+u/1Thwymm9d9W5GZ1+3zTdiuCN0es+/XI+upQnlLcCJ/UE6VnvWcqDNCdtB+BcR2t0VTEY9z/CLh8VtfnSANAuYA3iD/M/2H+wmIEkamWECYpPvQEUSoCU7EoaVcCBxqbiTOIN73y6BorSnF4WcCecRmJ8oIvqhcyVBicv70k54+0iVc/xeuwN5z5san4Z/UxoPtiug5en8yDTdDtQbfdlDh5pBLQqZc/R1SApnfX9HLF04gmyDA/viej8Cyt5T4hhE0o/MPGAbDZsM9eo9/oVxWTpNdaJAYbKxdlCDzhey72kRnIdLGejg2nck74HK8kjR5L2/xTsRFQjsx4PuMcZ4Y/IqCPlewNakDYURqx9vAsEd/iBjQNxEy4Im9Cxirh+qtjkW+kB5UX0WPuwRQcNPFydLmPrVtCpYihHmjNNIGhgpjdmPHzL/wmis9ovz/OGkLcpyvgWlgEiRAl0pF1ccsUpat9KrFkT1mC2HtHSFSrUygBgsTjjCSqiaQf6b+X3PKlVstSJzmkIWV6ov73mJPzyJpN3dAl5JLRu9b+ZRFzoGt/Rp5tTU+b7yDctOoJxxLQ1Z9Y+Zo8jkfJaESdMc8WTw2HwDmnHsnhGl7VrGCZtW6s9RRQTLMIEZb0Tm+l6Y4Xi+EaIM9G/Ow/Y1w6Ua60m77/dLkZwF8CAARyhsWStsYhxfxFc/XCcySasiQ5+yYix1EP5sTKHnlc5J5vW8QuCmMrVxwKj4wEGI3X9QWv1fPLsXT2atu1xfpvuAP6LEsyTOORTZmnGGgwOTViMIWcZ/z+yFbz/FXGOP6g70sJO5+NtHD0YQSBive9ivnVHfXSpsEJHgcViHd7BO2xFw/g1zUzclKO7974NT1ELDj+71kIybzDF1XT1LUypij66s+4HLg50/jpBiBVBJPaEtETFxWZbtobBMCusiPx+Pbw4nllCxl5QxRSqyRg3dAHmXbgscuycO3vPS50BCGD4x/toQBMmVPy1gBit8jMwUiAIe2nQjCQDrGPXYZ9CdlyQWFdMe4M8AzFRADgXlSswz/QmHkE9dyQ4iyosPZmeK6m2BL/aqLl996tpUmxTgauXSPCzBRMCb3ARHpuHSG4blBze4318IlVll67pZb3SX4Nih4SJGNJoxslhJHIaZ0GVzTLti+aLC9WBA71mH2yM+6U6JxgzsGRnh+xVDZ3m2RDyDD0XN2hqBCCz8XImoMfOPP1QVWvixCFY/IbMeX+94CGmvXr2JH7JIvnuiauWMMKaVhHaOEHzl2YfLOEmdJ5QSuaPcPgO423JU7AGJNCMp16bblkmppOc0IkEYYVQiaShHbBhPumT82BFcDJrrQqwFHZJK2xHg8EDoUsNvbClgEzrhW2LVMQJ8gE6y75YrQsXGGGw2OsVzhIBo9pcydDgSfCvz1av4mYABmR2Yo59nAtWx5eXU9mH18UHUs25PvcwPgh3lqk8qCtAZ6vzMwMZKOOLLFcxv1lya2gin7ZE7wMXeTCOFa6C6vUvc3bNTdBtaGGi/XMWjn6es0es9LIfp1fQl3R4xvQQGRuZb93W7eAkOUS7n5QS5XSIEukUJ72zXvwvNsS6FStj/Ktg6dfZespkRlhp7r3SJhQnIya6qxLGYQV4l+LZVTRNQi+vqAOLfPgn+oF2S47SPXbNeQ+lPOXWGmdCTaRJfz9bTGCrozgUqzp8DhgmnjVy3gaOhYHrG2IA0wQn2o8r8WvQK4X1HTSZwtBkLdnq9TZ1+EQ9PWBW15YkdRvsyLf5tSeaZ119VDE+GeA0N0eir3fWyixxOFBkRnlYfPPfpDfL8XPswnZ+CFgU0olR/90rkcFGPFz+lHcxlsFk+uVhLJ4eSYFjEusRwQO1MC9lW26StAHwG/R3D99DbqcazZgNwccQgdqzS12KpFL5EwbBpVoHmMMpbtxoMAyxA1Ll8LCDlGjGLvgGQ48XvRiHdfB3VScozqJdtYHv8ek5fdBvDt7p+7Y4WgrbhWtQadkxCgq06bYELxpjGHCFio35byRLvDgrmEuwDBil6S6a1iOiR/5NAeo0ojjSi3UXql+BKSM9ZR+hWy3CTYbuiWKdiLVq/pDISspfo0GEoyjArAIa7JA16d0KC9Rji8lhQJpQ8/aEiOnTp4OapFBK57n3hcr52eRwuD7HdZ1WPruaJ6pHbaPCpc3vRkJQGCuj4NsexAxDIfd9mLb12R4w3nj2vsD85OwMWZOAZSPkB+F8hb4tM6kbRd7tn5vWkjUPyxlp/ebZp7n0yGdX/loVfL9M0kohDozjr57gSuEubsUzXW5wSI7FlFRXEKGJGDEHtjgaoUB4kXLcXzUWx0CVMGdIQMQbLejTp/Y8/eUsHwCK5MUvrDSEN54pPAsZeyLuYkIkc/QeYtV3k8d2F1YfQCmqEJy9lIdfrODluvqLAjwqTEajfrbQdYKCI4BdBVhoLf1P2cqMtQFqpRPStKOi07OeCNeW5tJ2X9AuR9WJbv+KoExRrQaBZqkL5jDjDQEBLX+0uI1qGUBHZmiBg3mYFQfNBPgY7EsDmQ3efpZiJ1I6jKp/HMR7okTnjL8Z812HbcPRFjlUdTeHjr1HDTcl8/MFW/TlJg/VcUz8fqNNxoBTWAMc7GZvS1B/KYGwRHGsEiyo8OxOlmrcn+Iv59pDvLNCaZJ45X9bvEtu5taAlyuqAzFiIQAJNrs/pTp3HfeAwLs3bAjWonHzsz9NTDTPXdwUO849EolFL6T/cRkOjyQjf6UJkUuhzn6EKJA5NMDJ6TZXX2RSY9qDrMYaA0eRRLztWWAHgO9Sc9xF4C5vcg3mvcJg9ur1JUxsJG+qT07RNzKLXiB21FbuoM85HS41JC2aUduc=
Variant 4
DifficultyLevel
543
Question
A cross country running circuit is measured at 800 metres.
A cross country running event requires competitors to run a distance of two kilometres.
How many laps of the circuit would runners need to complete?
Worked Solution
Convert kilometres to metres:
|
|
2 km |
= 2 × 1000 |
|
= 2000 metres |
|
|
8002000 |
= 820 |
|
= 2.5 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cross country running circuit is measured at 800 metres.
A cross country running event requires competitors to run a distance of two kilometres.
How many laps of the circuit would runners need to complete? |
solution | sm_nogap Convert kilometres to metres:
| | |
| :| - |
| 2 km | = 2 $\times$ 1000 |
| | = 2000 metres|
sm_nogap Number of laps:
| | |
| - :| - |
| $\dfrac{2000}{800}$ | = $\dfrac{20}{8}$ |
| | = 2.5 |
|
correctAnswer | |
Answers