20111
Question
A bag of flour weighs 43 of a kilogram.
Peter buys two bags.
How many kilograms of flour does Peter buy?
Worked Solution
Weight of 2 bags
|
|
|
= 2 × 43 |
|
= 46 |
|
= {{{correctAnswer}}} |
U2FsdGVkX19ZkOv4baOeVaZ5jnzIJuxqtR9oAxoILv5jezqglJBwuSMGZaH3YmpTQF5lec75JQSoNFEmLoCbjILP0nVpQId6v6I8IaKc/s767oSwjM6fPbvfKygY1+tZhpfDnlZ4i3C29WibDRXJ+YEkwPXPa5GJ6+WKXLW1EJu4KQQ39r41JNPH+AAFIXEIyJNC+SJG0f3cpv/E87oFzUhvpxBGkKvfccLhmfCCHqgCPSWServRPm+xLzGJPHrlJC2IVAqPHgIdNcTIB9bMOYNa8JyGT+TJTCJgh52G3T2Mb01fKVgu7Twmt8706G+H15tWtltFxkgZzRl7tyBgUPDNXyKDbiPfbL3xU4tlp4dYS7PWZ58OdmCGjWWFqF6b1zZNRp6pCwFnXe3J2vG93fglDpPagS8dXuftDg2zAOPpZcCmfIyVJ4bSn2PqjzQOYR1lBEg6L+PnHozCobYnGDRvYeEK5R4SAYo9Ec8QEZqqJ4Ru8w0tEILjbrXFnztHwd6GxmmkbYm8ugFqu3116pZS/vMzj804jih8HBTTqbwu5rGK/pqusGsqXMdK48qWxeppn9ujzXa0Yyjc0RiPZI+OxtEpK/5qhYghq2wVaSZtWEPCke9EGwBc3rCm9KvQypau2FERickhF1cuGLjMemVXJKXVNWcDrbb/LApmjZq894soyttnwTcsJCDhLgsJJEqUEowE949zZjqy7vaIHStV+G14pn9wH1Nfb4YyPc7cRRuaCuTx8+SMsobL9zMfpSTcGuxG69k+B1GLMl4JMYM0IOfKLI0zVhguvt+SObvGKtoRg8gUOo6pdWPXM7O5JFB04KhQ1g2Xy0uzRwsbA6B3b9yzBba3W8rfB6p7GbabLXZk2uF5Cpf1/yZkumDPsHWZJuNsxfDKQm74TTGVSgo7MH5mJTeWrY0iPfraB/ONcXaHmaKTwKLnb1Us4vD7DlPJCsGvhbLWg0K3pe2T2TH5OF0/7roGW/wqjmyG1eCjhIEZlJ//lwqeVe+MEwsY3DCRl1XfzF7asR3QpJQC9gfeWonDjXNcZzd5Zq774pdpCAPgRNdSPFwdQTXFGxTz/S5AcU2fmwToNeSqEdZKqnJNco/Ow1cRh7vn4SIWk2Shprszcadv2PReJ2yzbwYCSsZIsDY5VPv9SpnTzlRrFhi59WfZghwNNrTtFE+3BvEKV8Wm1XegIdMX0nXierAVHhv0ysv711CdIV5TIVrlMVng8GkKvBQuigs5SNXWmHDe0wYhX0IcpCc8/i1YFPgn1yycJS1Rm3M4nqOGSRv20bkpcElO6P6T2xJxcnzRiC41odjNfB4bee7B50kFGhVNKpxH2XAq9192I14kfie4BDBCeOdEVBEyIjJBTXONTDGoECSaaYOgLC5GLQYZKD790OeTszyW7uNy3cxYoI1iN1QtI0fFEKzM71l5u2uKgHj8MndrUkyzTrUUKrHxtQ31ntt0UdzLh4BQBYv8k/sJl/vA3aHXEHfSDUgYSosfRA3bIGczKnST4dbetxTDJrHZP95Q50a8oRhlpmaAowyliq4i2UTZbZ6wBLe4pf+GupYXdWA4rr97DVajuxSEdKaXt3CWAdpU7JKfuwTVn1dpgGOVmUXER/r97zGvDcM8QisFqz8QOcOJwdi3TVqWwq2QXVjd7PqzsTbPuEi7voVLTxDc76CVluJ8nrzr5HGzMuCLTbBXWohOHh2vlChZBqqxjlQM+CCu0czStbMhC5smLAQRD2vZu1pfLbAjpwBrvG6QuK5+aho5sQ8JGlyQpzbl1T2YAdAF2AGPftQCfBEgtx+GKyv/Nz/E4m7Gs6L/4dNPOgLyyr1ktUO1nJDytBu5ZFlrCcgQR5lyvA7Drs3z0L7mB/xOajUqNNVV3Ba5mctJaZ6PzIVDl8+2aNIzKZLzXtrHKNsLAbYWha+luw91OaqFAtx2/xtTVwgWVyM0YS/ABTeuIwUTefavb4mPr+HqlXUmiI1JuaYbmtLBHoC7bsfYOlw6RV6ApRvpvVKa3ykzimQK5Tl3/27GW1057859OCGv2PdlKe89sjzre12l9qdYUEYyVZcRTg2/v5VS3yI+a9FlYL/lCGtuR/dBTgbyYiLRaJskjj5qtTwi8ushyRJQxWoZt6yRCew/6GZEaLZ2NXiErPJTeh3SbNgzkp5/s9y64W4bimsUBu/Wp17IrPRrUL1RmhA7Qis7qhHBZds+0eZBOqm7VtNOyM+db9vbT8BLYZGbPgppE5sC9Q7rlDZ/Zu7pJ4KYsqHE12QQtZf6gJxL8bBfvrwIPAeJTFG8U3DSBGGoEiM9rT7YqYnlCXTHQZFXCeNgNATPkX2Jn0eVeMVL0UdRwUjVDaeA7EP1440bAgc1c8T92Kzu9/J8O0oAlCLhEaFJP+29XT4vYeHDYfZGVfVsgZ2w0fKi9yT1eAkhKB73xJRpFD3MBn9a8/q52h+v2KLFBaLKaeE8l8ET8sFc3JktampYn4ZMj24PZMQgbjoGtf53amQcAnMShXx8Bv+hMyEfr84++c65bu+aqtyO6WG0lbMac/VV8HR2GicVs+0Iet7avmR1F8eug0uDLiXh4/BTpQRvXyotHd/DlJfcs/jN9Y5XiufAkjtpdeNFKPtGMpwngC46QH2yH1LA1d3rKZf0fscsUCNORCL368w8JDWRgTzedAOzuig0avB0wcY1WkLfpI8y3Y//lhwPvhbLSblA99y3hstcJr6lRIuKOeiLofnkGd05idZTHlyg10D4z4ULms4lV7bXCD5tOF9q73NAmCuY7PVVIz+JsedUAac+6xBUOZLZSu8mzI/xY8WKqYlLEBVeLYMUrmvv5n4m3u7hckcFc0UD7HOVOWDWNdF5W/qp8UvXYFV7xXdkuhDkPhhtIBzHUpqU5jOllGC9ke8Lp32dXgkhWz4mblTCmKuzKdNU+tytfQ7HRUBhEY/qSpSz3qA3HMv0CI2iml3v0Q4sxjI6jAMVHlPhm7IZruZ4N7ckKvlD3VuoqreOPoByVyOUvURCuK3FvAYgDmM+ZcVMy7ddT8d5gIH5+066ABpkT7RGMlw3NFrujMBFwazt9C1ZYs35nHv7RLcPDYfxwY4ezYSc/4lVpS4pbCfU4V64DNEzt3o9dIxvtz6KYVHorke+bQGKkzTnmT4KoqPVhIDT5HRfB933gJvCMiyLpFnu0Vd4NEhB9kE5/0G6oMaC2K39oV13GujDQsiSMWuYY26dm75cD4SaTYgfxg7esnwsjSHfmMndtqxH4AUCyz8culAleGQtJRJkMHJGmXZcf3PnpqtQeDEZxXot+oWMI2jAMlCllkA2GSpW/9P6RYkmfbgU5gq/7TazIFeEN5+2+CVAMJHcBwV4OMcd4E1wp0x915IuGObPEn5HxEZBcVN6W62/uCMGpSxV84RNBi3/fDu2LGBgYg+ebkDAoEcRrbHTfD7WfCYbLP9hdEyY0adbq8HL7bC8P/zT2HztulRxUb1DZJnaLLaCqRfK6dzq7eu5GySn70R4th5FcegPz5t/vLEbn6iJGCt4IqF/kLhmv/ElHCs2lziCxL4Fno959L46ylzA7uCg/eHEAUtYHKxiUjCdbbnIbfdQSDwe69IZ+N2lEYQRX9dWpj8ph071rEw3wU3MG6niOQtlF8wvulZN1mhCypIoAZPagOBRQpNK5I/2IYRDlBthk+mrY+yYrRQimvDVbeKcQni4uE2dsjZM6LXQ2qDiTq6zqRKJHXycr81jUAEruElI2mMbw9h5JHvmjGJOcZjdScjnvHBm782FrhSUjBGHxu0Wb8DECyAQ6PLiwFIu0ame1DTWLN+mHJg6nz0DbAMeaRbWQPkqXufe8bqlo8LjfWSKv107aEPXsy5gh8IIVjdJQ8aFi0nRWw3mZz58YhLQIVDKnK4eDdx/xziL28y7cLXVyF3C8xTsJNVHIMQRidEC7xf7LkXTW/aesPDOOBHu+yPGwjm/OK37F6sDMsCqGHjTA14oHRLq1+tYuQKubpohx3V4eDZUmGqOjdSoFyPawIPIuT+fAKyhbcVq65fdDY/FwExd5vSNs1DRYOQVeodPJoLSjnq0ntp7Fl6FKFWDw5DjaRUkROoEtioJnZDzVOS5ribi34Ol1lcWeLXZseSgXRdz9Q6Kmt/Wcl6gvmYy8Wr7df1UzFzIum3H6Iuew8oMAdK9p+4PwDlnsWIoeCYNmXOXtr9oogZYkM1meHC5hrnUV011jgQvlVEVtIo61YWQN+rydUkV0ePb1uzd6jy7GOLiMFdKWc3OeCBMsgjzjCY8bj3qAsUXMEF9zkwJQixtkiYkJwKEspcKrp7FZd/82ehgPYHm7f+l2Ak3/Yq/p+qn7R7gULZmWTIviSiF0m3cBp6JBkYWz6YhHrdtZSHkH2VOefoUQSjIdtCq5Uj7Bju0zkEtzGOyvA+sd1vAR9GmidzEQL3nMFPc1oxnP3Lojjd2OlNzNH4ozcaKUquyw0LjQa578s+uwcbewnO1gSvE0ThtxEk2JLffI3AVwY97bicOP1wcZsXVepXSk+CmLGwUSH7zq2UhltYATzT/o9TN24qClZmoROUivlpms2jrCxwVKccXe2bPrG8knSFnjmRiXCKBZ7UZBwdU1MXJZlp4CPYgQLo4FqItS6zeDrjh/38vk1nEHwTyOmlTQyc9FyPxcoBvZHkxUGoJWxqSu41x10VOkQjnDOQ2kg5Yn2Bj7UrdM/dqpeN6DSLKfyfbo2BElTWOOhEfGfhhJwo8DGZ802b7HaJ2poTKLPQfg1+Fdrl0pOOeBECf4/AceVNOLL6x4oMfSatAUgJK8Q4kR7yVwUSFQ59yt9Wit7XEo/mjdWazeYyLgbkzxnp1iWcLsxvTjh+Xf+2dxucVNuPXh+0EhFzx2jdZrZcUy4jEIZ2qTH0x/zQ1KI9VRYDhBiQQ7fjOA0PNYCNPfH+EkxIhKlydQ/FLOGyJo+IVzMTlvIjL7uX+vaGQISjTzBADOr1gOu7v9R2LJE5iqWjHV0lVHFAf3JaC0cLvk6gVZSPwWY3+EgyMbSmXjcTOL0DK1VjIOe66pNY8kPZUNlJk950cXWmcfRDO7JFAp8xpCMwBzK4XxchGgkts4Q3WwTQON/e1kRkOt4mLxUrs0WEcSCWxBLegDFP0uzJivZC5fYetWWcPnosBiH7dCu20nIwoiu40SVGMF1BzXVLf/FEUGqLoVpSxo3IFRRw+neoNXUEn9fwfzQnopkHNNcvyEPgtCAHR2EUzK9lG+KWBtgE6Qx9uvQ5obQnm6yEZNaR7I3pHB/OVoSVNEp5JfOUyYSeoXznFbY7Au0telUT61eKqbK0yLBcIqwTi/HuyddgLFKQIgv8K8XOyriSRWfwerABliKO9v5DQ8EJqREpMyompQCAhMMaUAbb9uvsWjk4bjY7MUGSvHCOljouYdmTxU6+9hGXFw4KXdvjknAQIc1AgclScfHydYJvWni/kv2I7fRuNwABJPg1yUBQHO5I9f3wSD5YVYYDGhX1WKKv6sFG77s22BDvGVOcNEPFyUNiNa/sqnHb4bCvNiykD/y3zWDQVKQlzXw0QhbHhYWsAyKRUSkbPr8vyANyY1dU6KlfkQXCOWS83oP/QZROwa4a88LqDwskSgoFJjgaUu7Atr33sF73F4IjwQ45z6Yjfn6CCPgynYe4FawS6K2zkLzmpA0YS+EFx/44jEz5yyUBJjWUzCa/eAsCG35Bipy0JXDiQjFFakFWexMFbGIXay/xCRth1esxyRziYqys1oIEjR4qRu1SOHAfGcx7GA8z4CzWPgcu57jr0UAApYjmfnnZhjMGqYdTfPU63oe7TrpqRonJ45zbX3y1WnoMKUXuVaGBqkLGef+abDbs1MtbNPB4ad/9Cg1DGvJI5UABAyk8i3fL2HqLZ6wRsIAIadl6uhI2aCWlzQmlQy2lJ5Fnpp3dns//LhtIXc6fwpMzibCloUXxn6J1i+hhGgs4Qv0l4j3T2HAZz6dXtlgpe3D5efOSwTfCwXDnpYsOHknMkE6QwV+6EyZVLQw1Hd0c45YN2EuW0s5i/koD5hp2TYXiq5Z6hYMKyajE/jXxFJM2w3Z4CAVGfrlKG9zjDS0YfTU6yeIvL6uEm1CC2o+CQXQ++vEfH1WUNJhS48dDLD0QABHqOi2ZRtUD8oPYdOAeAw2P36xmrWGS4Lt1CmnxLSFFxt5H7lyIy1CZ0KrMRiCWSQhxUdMMrwEQUZ46QFjicbwgVEgDtGvvyTgse1BlZ45+IrNw8TGBAeniK9SJPsaUiCmFRQ/H9Dzp1bkRoUI5lOlX2UxiKZM4T6EK3x87mrriIIRNHbBONyyaOT77otIG9crlj9GzOEJDBVJ8hd+7YioXjPOSkcCaLZHYrcKP5yG1/q7C3YcGFOhjGbI+UaF5nrhD/XratMA5YPoPMzYYLdD7mF0MxuGg+ARkmH0Hpx3HTnZYQ1gDm0zU+r+39u6NsAzXjefQ7fIBo7APCoM/Tud4BF3qE5UBAaSd5ob7VLyro9tsZqWeER0mEvzdSS/XvS/TY4raDmSQYJQgqRq2Wu+Rr5FZwjMs/A4v+BxI2xVXQV0PoVY6BMh5rMdgaU/zOqVwf7Fj+OjgNWwUn+dZuoB9n2+cJbRIAbLRv/fEtlirnp8qXC/SLHpzMmFZ8T14EW6M4yfFLq6onV5f3bpwdkUz+YvA0I8C7sU1c0gmZXAN6RFjJy27RIXHoNzHxBROAGbvfshHdOZ4YqrDBRry+z8lWLnaxGjqnMrcPmSGaEObj/IklUS1zM1vVmmRy1rGalYeBi/f3PQ1J83gmIWVgyK63pa+/qtm0HvYgVrWhR4ogor21MHCe6rAbRt9CX6Ad2IRm23C3HsRRkxzQTG/GMMHGy3/soYhmLzexCTLkLMlDAUdw9sU4t3E1g6LrY1776hvD3qVRbpph+kn7NsuEQ4SmNYmfsi988tTZpo/U+vCmaMHenTJ9EOOp7mlit7Y/BfuquMrP9Glj3znl+rlcigMiV+qJKTNZjHBBnXPk657wliSKH85mpcifHQqJ9CjILhwDJba2WLdFzFfBW0JZBzmfcso4/DON6+Imig8K69qpc6rRBSdOVChhM0gnrbg0Ib4l8CQnNrzXibAB0Gl2hyj2tc3bPc6hUVkrIRngDmpspXW1qke3bAmXCtPsab9jXG++UNgpuK5nxArZUIDBKJ09i/qFGYWvpg6uaJft8xgSv5srpjsOBcHwYm9QOJNpJ33Chja2mBMAeV0i/sw3OE2dqtALLo9GhJULBL5RcDN6wETuPZyiMgoIbD9L6sD8vWR6N9jdFMuVRnVLcZs0rp7VWwInYngNjlbmY8/Blz4fEogjnPBvHtvvNRCiA0l0h+L6XKmHa9sm0T9o7gYnbwzBES5mKf9wkqGdxmWzdoMAmG3oawV2jiz9f9uHWZh+hDjdnipjQONJNf8IJQ4jiQevbxyS2u2EW/pOkCM1u0bY4BtFDt5KZbH2UTw/scf6xhwFEqYSmZqUYjIfrzsosULvxCCFMTSUMrf/+Z/Mapm4TysBmIc23voM+BaNW+vupieTOb8XO1n9+0yDZ8IzRn2wkCZGQPP38ywf6C/mGZfFk1DVc1HDOdW5ksmdUVOQ7/D67mhrG+yA/cyVRi1wjz/BGAQX3TsSBuoyvavAwvLwtHttgTuTTAlbYb94PtGBvbB+zOjhxy5ppLV7kXUrImfJMEATMuElX3vPxAuN5Eir+p3n88eEBLOrJwzBLiCswqs21+fZaD6EUB7mY3cuo26fXbaAYasecEt1Ql34XZ+pPIHlkPq2li66kmItLVEWOm0PRnnuXga96X+eYWuX//tV5HJd7BJ9f4ely5Gwp/ywfVQM0/HSnUWJDr8VutSmXA1WXR3zwo6jfLoS0+8hRocFDQKW4N2U1/ZQnQ0FeNciXKx7az29KlSXy5pflb50EbzFX8SwJW7kqJj/7JO+odE/8Kl3Xk3bc0OaTxdwdnsbIeJzc41tl2IXTrT67j2kv9RQYfBO/pnNapt7Aq/iF0hsLxmmzs7/TvZaijG+nI6CDLK9KtNvWkr5hOrt+M/yMjfHn8FGov6aaeu8IM5JGRwOqGDKdTk+FBacZDX57zid/IG0NbUZBW4UtvSiB9+e9oXWE0doHl8w3ofkah94vKmKNrmMK84GuWHKWGR/1uWe/k2EU24ASrtJodaPVCSjGMubgeTZXs5uIhOFVKJzYPzkStn562xf9rP8+tsTf9wGKKQYb8rbiNEIxGPcUVT5CMvBhvVFPirknqicJygcSOlGdEivMF6trX1UbqYd7aoZdmEtXvzer7vR0YDVqFIEUbJUI/MicNkySFy5sXQ0gE2yO3OU/kRmyXwNxm3V/xhfKt7i5trOzDHRjehyNS85KNaPd8dEG8rAmbQMCC16m/b0x1VO1g9MRZP8GdfP5jCX8vpioEacM+oxxsFF2ZeTuSFBAzGOVvysg35ojgO15eGz9Lp7tLHXPvVDLdAVK3ru5P63JDMUPGUl1cj3WdgwAf3SJlJ+u876Wt9J4GhVGSA2UWo3mPZsXbfa6J5eDWmkR8uhhFRSZ/pTz/SZTnJeAS/zxejQe2ZdfVNTCUaR0lpj2BxT4jzPzpd09RB0suRRfx/ppIazXRECG/KI+IxLcZxkowllm92GfJlcteD0wVUhX4ELlTbO6UJqyzmoFr//Y7RQJzzqibIMR8NzWJmACUVpHntv1IRBjVW6pbyVU42lbS4vEEVnGruWmQZkev4qxbHWiB09YQ6A0Y0LTmnJuVMziQ+pDfTgEQNrO82GMwmSwL6fKWTDf9HPH3RF8sfvIXSWwS3tvPIwzeJpT/WE79/q4uvTthbgAHtyHWy+Jz+oUHw2Os4oPMtuASaE0qakAfClcUvlPmrXg+UtQiAicQQ/WSNge4Q8jDz1/7SuSLc1nlSgSHjzq2qnWajq2eeZXLEfQ4/afLOjmEXVlY+vA/wMmX+NBnk35w/wG6wjwoJe3j5u5rW0lrxaYI91jbFCKGpKw+qbpxDtc+lhI0k19jN3omahf2tZKfoo+kII6rbUrZesE7pk+dzWtHZTPdSNR5MC6YnPbZvgNuIylusVDdVWEPtq+uCMMHtoko4Q2YnPbs3ir/T0uSYACL3Zx0OzmAizMuZIwkLj+VNdos0NKK4e2cBU0XRmbl4w1j3ZOuJLs+ACJcNXNhkVnT85RuSgyvMRlA20vF2kWi67YNQHpITVdfomvYHRciZUqk9J7QQvXo4YD18eWCzV0ALM3670/jGsjE5+VX2WiCYFLj3v5g8QDYVTWBq2X/bJ+lNmiCfYj+bv96plDV6RQCAznB79v8MwdW4OzPGgd9u434DrTKOz52/F/HQTp4NH7ul0E/j3F2bFO7YCu0hrucAJWJo8TMTFBuY+ojhRc+1BQMaZYLL3ohMoBiCZOCLxq5vGijzvVHyQQBI1mbSh0U1UYPvkdQjU2by5DGS9AmXn21XSV+ZQ61EuIl1KDHPJXESigg4AWU7wZvv2/AhE2aNnanRgug5wrvtwCplKuAV322nO9CXb2qXhNv6l5bRdgV+gLgWMziqNyWpKf+eNH90REyyEljrSYJKpNX+I+cW2xJ9YhHlEm1zxZkGUY7jXxn9iPHN3MBLbGSc4f+bD5eXwpC4FHsjJD5KEUy2y8zzG42h1+4VfWIxP9pOKYI2PJhAZXVhGAsoZBmeIGwtyZC35/Olytjhuq3vSPzDD1fRTHKp7LN6hF5ou7W8O35LdaaVwkbnR34n6ocCa19X3EPLv5tm9nlocqtvE12FQ3SVhOPcPJWe0EiAHWADW+SAoE6/T9Q379PYa2i1Vvg8vAqNy7tlE6eemHyqeURF2y91Zd8H5ptQEzESFsQKJnVoVmJjK2EpAWfI8LNxKnECx9276DbrZm1jSrqp/N0fgIjAcJ+2zU7OW3HlZzELNNuDqxnYFtRNSP8jHp1wVIG09tKSj2hz2RwAe6AHAGDrHPYPbXxx+pl88jPi/fkjHR45BhKZ0giusp78iEiujm73+anQ/4Fw2g3o5HAqRUwFtgXNe3qxvXgT/+mzDtdkfIETb027L7bA9UeNP9UQAgeEtdEWnkFgaDx0KTZs0PWYrh3t3c0F8peCO7h+nE6U97dhdBDh48uYcuyR3hRspEE9Fm5L1a9VcFt6ahtk0SoQYx6Gi8hbOUunBR5cqtTZF5O1HS5TyiS3UjPRXMdaeMqjNxIDmU8S1Lewn0e1oV2D8512Wh2RNJmB6cxo/iIZcVGOyCYFPvh49lCCRU4JHtatAzcIUUNQGEcF6uObr+9pvSI0Xy4kX4yOFrV67rkOJ/KtHeD0/MLby5q0yAMwVJyQIIPWIln4IPLHEpteq5891U5ADSbV8zGcQhD2u5OQ8i8A34oPJr3g2zg+gc4GrA8o0ODZYdAC3aEWp3xYa32YAkgrPOg/ndApzxa6AeHLQ+N+oNPMi2Fx8K5cAXjDFkmfbbuoKHxwdeqFP6F+AiZ0g5r2SvM8uW8Jo0BL9w0iRpIm1KMEc+nGqEACRqOU7J/EQWJRusPul6nSwn/TxBgdu8QNIfbdGIOiHJk9sMaca4IZ8EjFv2RB/RbRWSZ5b+LScUvOOlLjYNFrm/Ze39IOjiCQMiW3eDj+lnKdEdQTKtCKDtfuMUMpMgDzBOsCI/i8ThWWm0Q6Txzughonp5SPay4iH2dhiLtcJNMZSc1CyJ4hl6BozHuZg2DMdcR6i9UOhdWn+KJQeFRbcwFmj3mSiU1s+iirFE+vYstki7Lc2T68x5nobrPNAQ77WOvCm/Q7fVxHihbyAgc0xQr7R3FnQd76kxvdvFO8GvC5S/3JTTX7zLUvJvL/fOlwQZtHxEt3HYMCy0xTcTGZa7g/vn1upaCupsTRYs1yIn0SQDg1FHwcbl5XAnKPz8dKvi5fK5eIWOxznrZvi/QZDvV2DlzvLo0OwM81xxl/W4TtQGk9t7bOytQ7+S6mK3AEsUAY1rjAvYysUAxI+0BFPKf9C5miRqxi12bVi0ieu6TXlSOWDK4RR+Crhn8dNd0vq45Vq0b1EnzRhsRXMD6DUqgiS6zewqeoW3mdfDx+eU0pDYgScFd5HLfo+MaQHMFIeXmgqoRQ/3BBkJcFkR6+PzVtZ0RRaBC4N5wk2eTbw+k0eiatkysVBGTdER7hkBIWTRQvpdGGNeOocuuBvCtrcjHIrhFGEAMOwrJbusuR5dZ297+ParPXcqXaLwAdujLKjKahaYWWZbkr/9jluK/pEHO4IC0TRnx4A2w4C3mEZEAdFoB+/tX+NTP9ClRiUU31YXBmKUhbPaP3JMLMEyhjVpVQIcvQzbGdVHTgtoqcKnDk94/82P7aPbXdQAFqtG/rfu3xEXJAvQPgh7r3k7+0CvAWWCwbMNumJK48+yc4xypdLAvUy6BL+9N4A+PdUUDI1rMT5KsQaFu+Wso8KiLO/nJSfKyr0pdFnPa1FxTGRWG4qlAs6iTHe8sffDA99xfI7yeLVDc5AL3+o4sZ2W4U2RSSLM3CmsukLZUoTJU62nnSllh0dKwGvCz7YZSkvDuZlEzkveOuMVZ/yEoGdGKT6sEfOCWtb93d0a/prSm/z0BEBkCEsmeMZ4BYWUOjBF5gbUQH7xR7UnRyv5wBuJnBGpOTZABNIbeRyck2FPo1RVOr8zDLkuIyjT0XQ3fDOda2TV0jf7qawEQP9gd4cuxmO+UHbWEdOrtxhiu81T3dB9d1O8O/1N7Q0wuZL2wolIsxlpMCsE0fPbs6F2yQK38Oc6PWrFhk3AJdhFGflz10YpiAkUnbVbnXP1/tUkAJ8AJ9BOAMDnsbleQMNrrAKaNELiNsB9j2QP/t0Maqx+ucS1dFuEjJvOJ6SXqFidcNHII2Ad9NY/ij6DmWlxt4E10qjRZtCOlDRD3csBg59cUdysr8FG84UrUalwGLX4E4kOzdiyVS4XhUZqOGvwVF2nmOowL+scO7Nx7UftrrTtdGiW3vC0x0Dl0NkN4ZfVkI1daHiUE08RYuRm9D8nzH3sF23jX6cnQlbVkfhDaCT5uKo5oks6NEC/45+2HjyxdmY8Qn6GE03+ZAF2Yvcmfx9KP553Jt+9N9f8Gxsj2AgYq3+bEj5p4q6Sqj7V2ciOqQMnN4/q3a0CGgCaYVfVWBpnWtOzlsC24baj/+fvkmdDKnbLZ/4D8IasBs4fTEiAMc8t/WmdIo/0H9975aisPcdKrXMwNgSiSlQ2e/eAZl4f/+d7wDVWGSXg8LXySwyqZlnivfgil5t7+//ioxKVlU1RqojUWSqPVHXMX68ZK3tmqcA9f8HL5M3+7JKocA+nIOXNo6LyRIAK3P/uEz/GfW7is6GMI9Kv1Gdc+E37F9wK2kWOd/YDq8lf9UdUvIugO8XpaVUbWY/nHEYR4lDtTsrmi2213u0YBmwoYAKypx0MlzdETy5gFjSmIrIaFPeXsBmoyaLRkdQAnbNBZOzZVqw6GT1qtrvnxKhjBe3NKOWXXvgFadAaUH67VKwEbH++2CmP9hooG8MArmJYWx6dIuDsyr/2IaiwBvFupuCMhzAhf0219x/4dIrJmcIDCcIs0aJSPdBxlwvrbFXxwh6FP7arYHpXl3gC/81qNarwmFI4lna7TiV/3spyWGDfQTZOP2HlA1++qVNCjtWqh+Nkc99iNzlQpKFS533QiTYHeQJyikiQ7dyUqjdocFC+2vEZ6nIiWs4ujHaBtdzIppBbCIJLeHiddXxclKz6khRhx+vq6wqtVtQSiQuocDV/zJyIFKZMAvg9FyJ7xCrGnKVLJuY8I2/9cYcVxIew4mku0UyvK05wIP8jxOEkqnNNiZ5Z/82KNZUqeL6jk2nn2n5EPuat4HCn1e1aefl+MbOfPLwe771AzD9eof3ay6LWjMyzmd6WTahK7b+J2t6BL5nfueRyyoeBRrvmeOnTlXQBJVUn/3XO0st0G+jX1vrWwKk3yu3veJuOGM0g8cMHJbP9/4aXdyBQl6opkzPdJja9qCv1+ARKjjZQp9LhBb6bdxDMoAmDNYXMZSsau/IZjw5eaVKccrT1LEYVJdnTjQ+kqCgT+pffXTBK7e/wgbM8/hpHp1eZDQyjlK6ZBXTLABo8h/wiZcfbFkftTM1r79iEX8q/0B52cjMWdInwYM1g+yKQqBl0xGz6nmklFdSKx3YaS+PoO47H/xq4meKq+0wkZv9Lbd+eiAgdaAsgxii7YQEm4+qSOkDAr3nB1X+I7U8bb6Jg3NgEkcfM3OXYHw10bd5FCPnWSurd+bQWSThspFQ0o2rkzI0vdV3b+8KESPLfvR8uMBLu23zFQM9aP53yu4YdqBERddXtL83bOpOY0QmpMP5JDZ6/nFacq+f2pFXbPwN2PmYLwOgweg+lyQdLwPFNuTdGZmB1kA/GM/hE0EbTGGYr+wV8fDkR07m4WA9IWg/VQ7attFM9VdafkwN87KLEIlAIa2DzJXxBoFXaCt17fFtc898L+2v+LZ0HroTfBLaTyVv0o/wfcs3WYxuRXnup5wZooTR8MtYjzRAtaYjW/4gMVdZ0KVPTJIjMRHXieHAJ6sPbVY+QvEIhS9Umi6vdPaTJfh1/ZdVM0QIS9fPV2Esph+Xf5sxrr7zD6qaVarwR6UHn87gl6Y31sQHyuMfLVIVCu1j9b85i+phj/IsD5vh35J538PPYqYd9dPIxgZMMLoGVmTaLhd+hTZPo8yrx/xY671nH+Qjg1D2tspb+vTzYct0w/6/NL3whn28FYbo94sBI+Jqmsq4EGTw7+NYaR24S7RslfQOCGOyxDBO+n+7pM1x8AWo3ENvqRRbw5x0vUmhW4TJEAq7dQv0uqMFrDMI/+fK91f/m9gebuPpEKBisZVn5Y6DBDoP2uEPXPRC08noC9EmbQ5MRSMer8TR5Y7qZDzxC2V8N6L7btB49H/A3ygJyBfqDYsmAMraTATPEoRiT4t9gp6knes+nyddG6NdO/5qTuiOZNWhJeBvnRutabawNRbl+iauoaUkK5/YRJ2Z6UXObeN9zg99VhBLfNEts+mDekMj3pjV/Jb3k+MpuEJ0TNFc4PqImbIKfyvm5KfkW8xDIFPWiQiDVRG3dMoUL49pIn7MxC5/emEiQHmcOPaIjmdTQhAE6z06jItKYAACxquMoLqL1yrSmLC3+9nX3dArgS3ifnG8gcUdB2KLAx44BDJrS/OwLbAabyTSdR2sI0YLDdT+xod8z760RCE2lXY8DqWOznJcDr1PjK49kNKZbCcKEZ+MWuvQGntUcAoxcIytQdrrL4a3emCkUdtBsAzjY1DRk2GpuCa0qjEYsP0EYmd2ycXZjJgP7vict+kdM9hz77TMy6EgpOkHVPykP3qQb3Ywu/UV9GJW0ss7WZlMI+llqilD2KClr/pc3/tckjLtrVnovQYsOMxclNHn7pVJiiwsUGCvGMF5JOzPaKXSDhzYN3HclNOzEYD26AgT36w6wNff410E/ecpRGVAI24jr6bOzN5M62zKXwHZbSMDQfTWqwhkjm5b3P68QfWosn3Yw/yJSncf/bR/VYnMLzBJ00Nrwhf2K8aKef0lRFV/1vSdZUjhoz2en7+3tlhGRamrh8wBndMuvf1B76QHAnZNPXLXfDl18MQM61MUT707zwgHPdbgoYec7XKS8zZmEj1KYZkaFRc6oEcdHbGk/6kd5b95pijlmqZCGJe8y5M23JUjqM20/j+I2WOw8ZK/eX7iHktvgeXDewdmk6CeJ/CMIjZSR3QhhNAuqZYBuAm1+1donXTrP+bsVxwy5G8mnDuNEDJSdeP35gXxq90r7vQBUIKoWZS6Ms5nYHI78kzM8D8RD/QkVvBTbuYIsOw5nVsBtyg4Ipb3UAiL8eobPM80f9It9gCGRIdCkZG05vgUYC9nC8mIJxEhAIVZy/74LtZT+UT/FM0KO0ZGexr0RUuFmIAHmFdYlY/YQ8BeIBLAu8SkZTk5UXAa4GNDbKO3q1SSk1c5hf0/kuIkFTmjCiT9BiI36tFu4ujkQ/N0LgFHibVUNqmHnKS6L0LEkkyNWIF/mtztvc2V/tNFQDcUMfX79uc5TpWTQ4JymmU6xwXq4rmg9RU3KsNsIzXFz/LPi2LrAmJx0STc6969lFLyiDas+fAUA7mC9WTMV/JgSfhTDzpkVBKeiTUHzZyqsHc8jSt/8BS/9hS+usyCps8qAqLSnKhYnFmt0/NxvIzKJ4FcxJMl+1Ax/71KOSdi5kGYffyNE0uGEUhxMMlAf7JtTISYrOuL+4/rkVZCr0tt9B7OD2+bY/33bLzfAkiNCkUrNlwZV+pdtTmjbZkqpYxf+SocNJsBqDrf29jSqDPzbFSyuAGE1W1RKk5qjhxe4ylbzSwPEQPHA2aUjUMbmDb0rVKnMLQSu9UyOASScMpuq6b7gSvy1+Pp8mBVKzCsvtaPcGV602AJ1FjSmTX4u6tb/JKGNcijngT/9xfEhESqniBLiJR7eJplTweaB6KZeTJrdrNkcGC1QI2ijXoDCnIZvpc/+xU+cGhwdgPMxvM5EO712Iaj4GqYII50n1FSLA6lLFB7ULFb1iOc3eFSjOmA6eIYFBkEzu3kWUn6lfPciJ2mlNd+EqO2xO5zHB48BAogaHEXA98Md0/C+n9DRUv9509S34qhhzNcgDq9ivHx5ily+C3pALb4tQsMTHfcNWaXGpH4uIlRfvNko0I/Sbtxjf07ydg2Qi0lEcJawT6xc+f34w5nOcx9BcTLwISsmCQioK9Jta39JAjBjDj+Bxaq/M17PVITP2ZWqBOgtGfPm7iQQPlhHzuabV4P+Cid1H+glW5mWNy5j1GuqWlbdeibCPLoJPqYExKENx7/55nXmna28zOoZnOo9cdJDAZgYhtHkaq5VRwb9PWeJ1vnaAyK0DdNxM3utwtHTXPr81djwgRwznrs2addn0TK1tDaPL3Al66vFw4eXUUJ3WKWdrbkC5kA4zxhtbD5oGjEof/tBpPVzMmgaD6P0zmF0K3lMlyo76nb9KdD0Z3VeZR17Zk2UN7R/feeOdsyEzZzyFLjJVG0RGkfP5T7ThOjfNSWQ+70jPXWsj0vd0g9EcCdk3zLjIQvObx2reIg1/1ddkOC03+RySJSNEatu0SCfVPNILHPin8o6BePrNiXXr2TxE5HOcYS7w6OHnKN5MCgJKH0US9ynPHhv3cAI5RyJaqsbvGI+m9OHsMNDaKZQRnwyP1PxqxdnG1wQfsftCPcIBUodE+JXCkPj/Gdsu6Q7osZfZHuLNlh3Xfn1wB2AbU1nB2gZxemXyp7+O+SRVhKk5GhgPZLgQ9iUDPrMJDDVgh5c251Ef1H8CC3dHAzAzYsqU57QzzI27B9R93+EG9TfcTCXwy5gG/csP5lZ2zyoJogm5s4TCSBM6o3tzLbW3lVI3PhcAWDxul34ZB9PM751mo4jB8xEZm+2LEPVadtP7/WuqhjAUllDerXDkK6pLc9fWJl8PSjWha01QqvKrB9gdrS/Co/OA0lDhJbEayqMFS6d2Azgepjsmje+4DJ5ZZPNFBR/4WtndEEgUO+ZzDz2/XRQtdo6F+gCehunyGNUKpGetMgfBRV4YLiBD3ETzVAJ1G6Z6Xc+/CvhdkdgOYRz9vTq+jfhvtboe5zwJWiU/UAx7sq3mig4TGTc74MPZVUtav2mCfYRjDLkm4YbA==
Variant 0
DifficultyLevel
525
Question
A bag of flour weighs 43 of a kilogram.
Peter buys two bags.
How many kilograms of flour does Peter buy?
Worked Solution
Weight of 2 bags
|
|
|
= 2 × 43 |
|
= 46 |
|
= 121 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers