Algebra, NAPX-G4-NC27, NAPX-G3-NC28
Question
Which value of A is closest to the missing number in this equation?
( ? + 39.3) ÷ 4.15 = 69.3
Worked Solution
|
|
( ? + 39.3) ÷ 4.15 |
= 69.3 |
|
|
|
|
( ? + 39.3) |
= 69.3 × 4.15 |
|
|
|
|
? |
≈(70×4) − 40 |
|
≈280 − 40 |
|
≈ {{{correctAnswer}}} |
U2FsdGVkX19ukSRSXbYRjnE8PfUVINmiRj8JrHbDUD+COmUZRLJdcDUtv3UIrXvFj4haP8mWqGvQ38HzCOak6i+goxPQXbcNH7Y2u3TutsdhneKu1nB11t8cOBe5sZK/g7qk2El+3No01IZQDhy36AZsGs/9Tj36K/JQtSpGxc6M3A1tyUxGrEoCqb/hvzDagsS70xcpQXjN/BLgPEJz/v375K2aQefmYuEJNeoyt0xWkVHXkhBRhBSbuBYdb1M1+S+qE240GMfI7gKT96JKIJovMpJJaaz05mUEmvFNx9GPTqSnAqafWYeNeW3BRfLya3WOuuKIBaChcGaT2hrkvsc9ar2p8E86GPCuC3dNPu6sEAaUuPN1Zg8XMbbhGXIBT9ssxGZA/h3rghfRJrNkkeKLoLmnngfNycUmztKcWCS1XVJAw9GHIBNbNDINaU+lry2wvIu30Wc3dqIfmkjoSAQpTyu2W/mnVF8MZmfUV6ByIU3tyT8NOzp4pqKeBjXkk22L3fNSabZwKTUZFHAqmXCCIxTdXbkguJAS+bfDBaw1m1Zfr2wNte2Ohdj1o9xEKBA0tzVOIZNP2hXdOYvX3EtPPZIkzBxHaB59AqQ2Vd1wfP02r5B3npiBRV9jQDsr/mmzdSEjkEEPLCByDsHWv+jJBgrtasSlnxSSsfk6gM3U/sD6x9XqyyWuN987Rj8LF0cDluieEp2uFTcQ5MHlYXKuCAH9HTz+iwEQx3hx+k9fe2Gkg4kAKo8GmkmOuSrwzCuDmfL8U8OikBITB23GOK1s0WrfnpzOrCWga4x/32iFVkEQGUhHlg7JYWZLSHpTEBGvlVfQUGzy4XKSGOcnJYoIdFFeeIh+DBQL9buPopBKuCPwUJ4qTlCgxvTai5E3GyejI7Rr59HC7/17dZBBjQ0NDKQtXNEHnal6/yrGeRx5AJbMTNV+zRPWGhfLyKvpeYmKXe4UYu4tea0slezWYVqXudl3MQfNk75GPQLV1kzENtM3zNiIhSExiN+cxoQxaeRaRnLnjOOK4KLn05cw1UJkWekd6GGwtKyCU5+pTgcrlQp9HCYYdWPTgeafCIPYrPnWiUMHptA7HTeCbAH/ExV0l13uTOaqNl2ftCLyEVXnIJ3mIBWxhlzYR0urkVbMyabfeMxGdeyF0pxgaALWEaXJqaK1cS0q86MpwyNLYHS6W4hnjDpLCUnwMm7LAzwDem6RJaE3jolcJ/zik+W111kcPqrHXRvq8ZDVIuh2eT3qhz7PIDEdzL3DXiONb64qjeh44jnMZwYjFgBBQD9tnG2SGMArpzAdIb3Br5yGOljVbrBuEGiTEh+um/OLW+dCo0W0vBs9Hns3Uv49zZwkFYt+okiGopG2xcJFj1028G3hRGuCBMXb+s5r3oDVlECdaiDSwcAR6/EpbgnEwnO5CPPGFzOAZ21zi3pRUCOHcRERKM0rjO80s8oRPIXJDqAb4XvZkz2KocSO/mc4c/KKDS81exJyvYtKQyvefxNIwIdbOIS8QCoJLHKlOtpDnfQzt8ojf0T7K4bcZmQ8lh0pcn/IP3xDKXsdJRo4V/LU27Z9AashkHDbUQkjx8Qxjj3xED/0f9w2G98Sg6Sg7zKyu1XPhtBCBjwmyL2kL53VTUytiW2e7WAj5aJw538tqTLcLNCAmeCRginQEa4/WHSKwq69Aen8m9LeE52ErBwHgNgXI1A2ff+UsKUa3B+Vu/sduxDlaSpO23DeLP6TIZqkSW3wgecPIGSCcW+uat2LbcQD51mIAaHU/UhfZn/HFAEdJdsgWtiA4bEnoXZy1sj4MWehphsA9RdeqvWNn1IiIOVUDviOEvvwLBtGizs3txnRPiZUvh0WmcywaisDioqcbVDfm4BZMtTmvniTY3YgIHEtfqHNU0rtHwodp1iSzjJDhVWVxMdQ0/jxgV+eZTTKIZzipR3dmrTsCn0t8JaGBi9ug1duMmVFu4/YHFQHgNlAkXMOU+J5izeJ63t/SsxT2u7JXVF8n5kJBEoPUPUKKZRJujhztHS0dRLUXtvVnlfdSrEmKVvDLCAX50wDK3xavCDCzwxtkxl/H2Wf/eMAfOi++tFI67Szv1STrUIB9mwfNfJNms17o8ceXasxbWJhSMdDT7SCMvb72hmoustyYaQmymCf5CHg0hIvTpfCU3IPqasz2IiNoklmgnLZixDO7s8BP5fPot1S9xKJTx98sK/JiEGg8rGBMxMyMSce2CYQwxgi3sNuYTzpKTRT+gQb2E5HbczvlOG3ni9k3sLxM7i2atbfzHdNP8yt5S8JtmdwmHvBXXkn7E8hx8iEfyKBLJJ2Hrwy4PYm2D+NHR18rdt1OXVevK0zwxZ4N/RfZY3wpgvRnY+a0lFmo5x3idyUX3vjSwQ9/mA7uTXCG+dwgvOJMFNX/0L1r7WPDPPia1W0T11wgwdQ1icCb4Ldx7BcURddqyiU0COabwZORh2wRVvSc/yS1gJogkiOXX5tv4NwrBXZRTT0Cu0Y58H6fR5hTDLGlYXYC1sMoNt6jcxNzhQXxnmAyvNweNcY8rs+XZhN10pNOSDP0EF4MIlyV4+4Itqq+shNdzk/VTMtvClJLHBQWXIL0DZrlnkLv858LMvGHx8zk6YYcNrT2Nu81vKs7LaCkJIDv0LO5R8GLQWsACpw6KzbS5Wj8wqWCkTDKmw4moeGpNo/jkYhpSBSniNrE/LdJXMDmj1YjM0Q4jovDc8GjD0QPouBybq2fadgD55G6L+NgFUiOnuP/WRhMdLs8A5MinQk6R3RC822axD0FovO1JenXdFn/cuRjSApJGSqbhMXthuc+TfPeZFeCR6zU0qjz3MQbwolWYqPV+1GS1kdBKDOBrURCaCxMfs699DO5IvFhRy/YcAW91V8WOhPOYpgU5ummLoEXq4P9sJb3FmelNfbawas2Jj003ZZN11nhFsHsopbNGu5c4Ri27B2+hPwDv9Fwd32bGrIC48ITsaSGDTJ3ZD+VxtZZurpmr3hcWiG2qR+Sq9mC0g5HWc+fPZCph0kf3eQaDOnep3PKtD2AX7ui+W8pW0I2V+FLDpZR90QLw+8hyvai/0d/GmYB8bellIar4Cdi9huOcgYOWTgkH6l6c8pmGt2qcLctTq22/bgarGFfxRAeAWBQ/15qkwVMXRfRIuyFjFsz7vCPnmx79iLgmZhGx0WvYcJ+AgAT2cellT3pMfaWkiQfmcx6230glOXQdkeECW59C7QLcnKR6XvKyc9vuFLhJuFrBrQAeuoaW06tRja2rxdEJxdu0j/HuT+HYtzd42fjOchpYBpvsLvgilnex0yEMuy9v0qZzxle+pPC2ohjeW7XMS7hinnztNtqBArLIKywFXgjDVYCGpZGR8TDfN99gJTCF9kvh7qkaIz23x25ZJY31t5Y3YRBJaHwjiyyQReqVbvxeS/JXAedoXfg371eUuec1LSgBb7oS/Wj11W7Cw9xEMzg3HDb9JV1kzHkwSi9Mg6shIvv8UfsLYpHNBGCa4XKF1xdhRRRWRnWgtc1HoO08c+nHno3xHe7o3+NHH3yVyrqxZnV5YdlFsYWiM7xup+eONnVG8/4KILAH8lsm+SS0Ol8X91FXLHlaPqQhyN0pxSzEPJ0hWo0ULIkgph1L0PnVCTG/mtZEgdB1kP+wUxeqIcqcHGQKorzdRG1aPtyk4DU+hBfTHNt1tjGfb+TajNUNZE8WknsUFLLgNpjcocofACUxJUg6klZXjgl3cF4WXsVI/i6fr74uA8ODDKFf1e+2moBOJOhlBm3oiRnkQXmcc0DBtSiyL0f4S/sHTklFIhSLpc6fpXye5elJlWVd189drL6ip2MoWlJ9Rqun+vGzn0QRqFkDN0IXlnikIe5N+T/AHuEhxvt0uUNdoqTIo1rFCeYQG7hRzW7PLsJ/OD6C/hNn9GQSmc8XokfOF89IGrvjEOSJZH/qNIbAbS5K0aksrQz+2xmcGQgytejdBOFKpIOS2r8gp9RzIe8UqAKUPKYg7Rpgky6AsHT1ZO/jmKmpcVzlvjb7EMUsQc1YBj/E+FFx9YUe5WqRxXtCzAp4atEFOotTpATyNQ0vD6YV7QuNr+/8eS5irzwMVcD7pU2l5Y09EvXGiIRH74jEPYWiFyCOWmWMBXv7DgpNNm1r/fNxoEdsauOJt2eSDgrI+6xEMrHcLszSwV5UYZDLtG89h9npzpbaZiJ8rKZlzk0ALK7T4zzSxUNVHN8IRIoYoa/nRnb+vQRBrdrAOajdUWTptUo+BH1k1TXZOR+KOh9eeHQy/h4+WVhG881bBFMmB+r9V6w/k2kJK1bMnr0hP6EAedwVYl8W+iZtk8s0vraSwwgXbtDhfaDyzYyncvLIZz3i9841NpCRJlYSKLYWFHRQ9wRpFTLsPJvzeY8L85CS2PyIN3stasi+cOO05APh4Oj2MX8fLDGHhz5czmDyy4Kz0FEhKKqGrMga6f3K43BEJ4hPbpq8bJo8WhqASO1G7Gkdu5sQGPXkHtlQfeDXMSJlUJPxSRgF47ZMaxuoaSqJe4BaVdkzogjLOkwhGv6aXGKv6Mz/mX2wI/ca3o+Arp4xbFMjFE+xLw0itauw91qVNIj659b5OVXYVvLKJiTbET8vMPk75a5J0nhyFYIWwo1X9PSjHdlBpHiSsFMUyQn4RYWkIDTfxckXKHS/w+M8zf+AC1GbVzuU6ny3mxE17vEsGFkfrGXmPhCIYftN1x9CCtO3R5TEFRSXKgrdf9w6c72nchTYx2ZTJ5C3QwiA1Smi9SK4nvnKNwQUKeSW5tpPNHQBhvmPYfk+GryNNyQzZZKzbVUb5CscKePJzr2eDNdCBU4n3sh/wJwcToLyC5E2e0z3CViYnU4yiRPaJOX8OGb5UZ21wxdw5dATCDta0dXEhFKWqlu8wXPy4HhVLvbmxfUaSmIJ0LaxkeByoDdh+ZjNhRdNYbb92sblgP9GZKE589lQEHepeU81YL59M0hOFGCDchAc9lD6rqZFFQcAGOoWG8j+Wc0FvEyxNeAhvYcmt8Cw6Nvd5RoH4Vo7h+OliLShfBl58VgXv7gFsOWRHyIuepPagQkaPR9Sm0+fU9PU9ckx8rw6fjiTtQlXxoX6vhaNP0ffq9iCvwTzgaxJZTOFf6DS9IALnFyJYvztWAaMGWHdR/puiFbAd2DvtNim7b1siw2fBla+ATKVbdpeeP7P0fU+QZ3+3ugXm/NX/qCNAnveUpEm40nAq1JU8u4KAMn/B/45HzrUWwWNsCzbVOTnTXhWdf47eSrx3AqRgGBzRQMGqKjZWvpdcHlDNlVQfkf8c2deISgF1YmDXct3mDfi6U+fcoXQetKGSPaUxdB+zGXPmZHGi3rCCdSaAhPcjTsJdPFklXUuxVylKXqfocmhGDVEU4o7yel2QsAmXcMRe3Jqz7+y4QS3c6PbSCK4u/5EAklZv5h9lbmVG+Xfpo8AilwP/DKsyjACNGl3Pvh5/RvI5rV06t9uc/RnAYhqLVzeSQBojk9wxxzxt2xdQ8IV7uv4sUKf3W1je6EhMMqvyo6v4yj4Ri2xXDQw+cg7VFRBOHwWFjXvn4HnCCn44zcUi7l49/0skKUeWNqVZRX7Fic8sy9t7O/+Pfoy/ysGLD8KqBiN09Ib31OpH0+xpvhK2vo9S7xNn1EI2d56PxPLYdJIDY6M9bJd2fY81qm5LxX5xQkekhqckeFJaGjAsjSwZWl9v6JrrEBVoP5hnWFheFgJivwlLuQGEzPIgZHLwtruewgSJ288apbdTcun5K3Sz3oZYsQPNbvnqaro8fHrkHkyL6r1w4vBTF5efvrWvgRwbDs6kNr7Gb4ECDxbD/KNI237Dv28NusW3MGOkZ4suSoh0sx7DKeetXJw3gR2JkGwyuMmfRJcp6E8Kq8ro6DopCrVWUB0AAqQyIFyzs7q163kEcV89SPiH4B1WWfGR5ODnErmRA/ZpRCj5zy3tPrOCuIkp6yicR4nU9qeHxI1UBM7VrEhNptB7r6LFsrL7wW3YLuRhbi/H0nfIpGU5O4DcnfGBSnrtCXOqt0/QQRZT4NWD2UunwVsNpANgfNFZQkMWFS4dK2eAuJkEMMGeA4SGUARmrsi5Y/K/Kwx9p/z5zoM6x1/JVTHJXRpdgHKCbRA2hhWUha1pNQBciiLM4SBU37prwVT9yfGJ07SfLW/klZLM1BJfS5i6Fc3/H+q1VWQXZwydCmLerByqfthQFlIfOFHKOnL/xAZosVQy0/rf8ch1rFKNnM/FFuR42/x0y5TnsX5Yp1mbqI45TklUlYWrsKjxzLO967bYvUGlSG/aVooaInE2vlQDXu31GPsEzG9AD/y5uYS+vpxe0nzT7sO33j8rY6i6WJCR5EWPo6TvbJ7ckQP+OixXUgIUea9a+q/pG2XJOPab4+tN4uz23y37DKqQmMfmxbU2OWL9tHAKKcQ0=
Variant 0
DifficultyLevel
685
Question
Which value of A is closest to the missing number in this equation?
( ? + 39.3) ÷ 4.15 = 69.3
Worked Solution
|
|
( ? + 39.3) ÷ 4.15 |
= 69.3 |
|
|
|
|
( ? + 39.3) |
= 69.3 × 4.15 |
|
|
|
|
? |
≈(70×4) − 40 |
|
≈280 − 40 |
|
≈ 240 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers