Algebra, NAPX-G4-CA25 SA
U2FsdGVkX18mCvnBB4UKCfNtZNWmwGUPl7/oB4G2fgVJX5RQc5WdnKyb22D61s8nQcCEdWLqfQjlsfY3x5EyVIjrxvT8c5XOBD5bBIpFWBgWWwgQE3/q2ibbz7DaBYIkmRKN7vlTArSxF3rM/IVdq/ze42Fl8GknY5r4RCTc7H/CZ/jSct5kQ8JNaY9X6fkiQn1Xi3/sn+aSmj4BwwkDmk9hZeRtsZgWnzbUJ0uO9CiI1CzxZPa+ExYjOiJ1orA2Dh9AbZ/8fIoiY0n1okkCr8G+BoDjUKTAfWEl/afgGrv1r+Bk/TirZkMDJ/fuCJL2cXWK+2l8Eo2Q0gt+YvV8TRSeqzZnpbQku+x7WksishirZrRshW3iOS9vNfn78NBlfQp6bX6KVAkzDWA5jqoNvKJX2Qf1UJ0OecI2TbXfQngcFlplz5qga5L1IXpEcFOVLMh/7kAYnSr0FIuhZpIYeXhDZFOuJ2nC8wholuNFdTYyDjmm0DrALB2jm0VGhh2h3URm+M0MYyevhjh2mHmRbcKImatn5tC7Xl+t2/peFq79tf7Zkb6IN+7Ku7sWgO1coWtgwsYm7ktBxQncavgvNhA6V+HOo+oRv1gOx9YwnpDy2/5MmkLjKMukY7vee3hr/EfnplH7cBTHSti1PFg+vdaIBQkWlbjkCQEl3MZXH5rv21gWvLTzsdg4utyVzH+zyUauRtq/2/zSzCWey0+ICZ2xdWG3pyphLZQrwcfMbXC1wepshGcdFc8imjPOkAg19S4L1PuLTYFZlFVc0ZxByXxNqKBNQ/iFjRxerYkFSzmfi+lbwD8akkHDmQgZ5w4sHA3e9pgpHqU7xFabYsQI8bbKO0KIhqWkvAN/g7iRZVZkMxCNEkxFgJV2ReIhhZBUA/yVZDEzDITmTLa+Co25KNdN9k7q+8lb6O2ALLcoErM+bQ/ROI69ytRlipTe2QG3CU95BdmhBmmd8IhoC+8ojyGrwBuFZHrZSyIAFJSfNYQnB0Rodq2O7MBJmZWB71diR+623zFNsKwlo80+2gnztJIq85drlLxPaWcl4dHdK2stK4+EaJhEN6c2Hi/46wcdJGM7jrDCEyDUrPJy2Yr2uJLxmIJuGND6rzP9L4SMLqyT654wQDGJthonHMANAL/Gfxuc8tQlCGuBCiJSvWh4kycZluk0EZiNCFJ24+Dsilh86wxsC3j1cZZL0aoNSKcRGegA7BHLGLd20C1GbRTLgnjwaSp/W4c1sViK+MLUbXhwGnPLO9jTPs/FeLWPo2EerxpymI3OYJVlrXiDPZH3gFYNFF263JDM65lIzIBlvmUj2+OXM0avhA3qs35ORbVNURylNjS1XJ0rOpypM6Za1iAn68A8azWUmXvyfBRzBs0pU6+FKEbeq958Hwg9VSVDXArOB68Gz58FQuzEW7VKsDQYEWtuEM0ExqrVmdpsyoGJPjRK8YsT2U4cU7fWaRVjB1p4mObq10zUm9NoLKPOZa8fGlKqXc+oT9CDDZHM0yfM5KfnxjBDPZFAYFtN4fXIkbCZTiBjSMcqZG1IzkNBS37Yao9XbWXqjoJ1X9BmwbOVrB8P0WLv5vQcLD+0nfkFbNeF6/q4iJi8N0dBmsilKVeN0Rdq3jerZmtjIvXRnVMECK14t+8cFp9MbCgGFoQIN9EX0T03nEMdKI5vyEDQcMOI1TpwXY3lPC6jgYqOfL54VD+jKY8tji1LPoV220lWe1H3rPSM+OUmAYwQQB+jT7i9z54BlJJ8gg25gX/fImweMgI2XDvyzwfJYMU86AfLn19J1tQtoHs4JegSz8jmaPCCx06qkATEDLEV4ixhyj5usQALUJ19Ojd+tzZ2YHbKtw78meKPOi5FapFfjdbTG+/uxSsW1fAN7S0Ai3VRHLnf/vrmAMH3odyiWDshbTr6p7s1JeMdCmZOkFALroJpdiR5OgKP2Uola/J+dTmWofscm9dIoyTPiPT6Af5kqePS4yWv3/i66PCCJ/sxPQMw9Z1mRot/tY9S7+oD/BbxV4wnHDgqh/gG4w9JebDZmcFVv8cGpF1Jp1XHg1kz1Jc9sesgehTrwX3edsrUSc2OOdVfhmbQBZZk0PbFSFNoN5dlyoGNC8YEkwkL3Um3xMeICIazsO54iHmTbqS9YhwnFiVbUJ1hwZqAroRpwha95LiQFSpC+/pQs36Osf3SvcYV32MMcqsH+YmL5bp9KZYXTS0+uWOceBpVer3FafkAMkt+H5/1UaoxvlTbQ3ggDDTW76j+dGn9JFn6OQyXhVU5ge8FMpDjPjbPlzoPtiy4X//42php/QeNMF8XpHBCkPoQMy9qkySpZkt99FGYKeTwpi2z6lSanQ+47c7EKUga+aq96vQqPaPFxJXFB9QBj4+IJuQxpOjmvhQImPd8iQ0RgPwSCi1mWH1q+cnWcKY6Q/xoYV6FqYa5crfs2z1o4H085G334/kpmWSqi8r2VaG5NxEvXqwvPXIeOUFBkUbcewRbES4Dz2s3YdGxFB6Z3FgenevstlKvSPQj583RdD3wLRg8tstWEfWZShS7GRlBu9k4btdQ2H+Bd/BECprYTqn8tvW6v0QbhC/077vXDpL1H7ry2ICLjmpFduGldeXJc0iNkMLxA2PK+xwPm7i2misz7vFZQFV2hveaZgtBC7SCnA73WO0JHFrZExW57isPGO4w0dC7vguyPl/0tc48dr7QIKxOE+cLm27Nn6JL0aeUjl5Kl6QoGPEmn57SERFR73hw4cfS5/qv/EqsYivH0uk6iaoIP2w28anMRGbY9PZhPflSAkZF2w4+cioA+7vcDqZpxyTOtbiBXgCy8ADJrgHSgmE5bkQwZB7aSPjYcV2tAdmYGhTxsijtZp+GAcQQnVfoxKXBTLpFjbsBbjNZ7nviww857hAOJEBkQrSFV/yPXqFMFPRZrxRpJLMm0JD89KLExAe14nHRm4F+k++3vUDRZT9d+oVB6DkLvX3KCaL8EOFnrWoxpxEEzyA54dm8Ejskb1iOYXJxfYuf3I/ozxWCoLczaL580+0WSpEc+bmvsypTOJTZiWXaGjJ/FdF5wNYqfNmJzh1RkAYheEXzj9xD1ZsWeeLk9bCdAo+TPl9wW/zgjljvTSgr1m7LRx6cvCAjWzgjkYqWXZzt/mTIwZQHJgYRg0TAPvXr4K7y0zihDWjm/8DN70DS7BHM/dwHrvySajwAZMywEL1vuTDqydFjJcK75zDxO7WU2dNyZFr1Ts8qCMGE7f3aniy3K2gE8y8Qc+0v9QK4oL+79JuKTuj40FYIvpd8r9HT8TmQj7RCxuogmnoEoWx89f8pjddkKsDqGJk7HM/fz59f+EEPwORE3ZsuMjhbjTyhwleceo18UJyjtnEiJsRBwhRZ0suvajVBOtIxJKPDt0G4vDd/4D2A0f61SP6JEk1e9d6yhfbkftTOfj0AvoPugDX9wqDH766uXr4XymtCp34V+nIIfHVxEyfuXSLDNYAevuvFGctvB2H0caEevPuOXM/toFPODBx4hgl94SPvO2PJAXCH1QHkLcUQRI+O2RFCfVaAA5DonY6quB6xJR6PbT7ZuxTEUTWCGnfo/ncvFG84nsN8ozelp4JVdXyX4j6BGYf88tluPL/NF9h6aXawq4erSM6RrBUtDelqKXGzJlOzYTBcFPTvYoZEfJeSMCZ1jOsC5rZbuIAdSddM9qg7U8yOeprcRxbFuaRAyKXUnA22wrwIxm5CFB1xVUW12tuxExMOn3L2Rs/zdge3xrOSPAL7VQabNJfuhDZf2erIFw3KJ8X6ULyXKUx094jeVYRy3U94Z7yWebH8jGk3ugt5EFikZ7hZqIVyomquHGO1dQYF+Fr/AgFbcwlkz6zbhPcfw6jIaZpkk481JTh0G/cKlbycfIyypt9c8hif38RJd8NHSR5zLcP91BR/Cco/1fwDxRRU6IlJl0EZMsMYrMlHTVyRLVyJIDPdmKUaF4yI2c0GBiXx7xdz64LDTCBjfrheG8DgjE/8Iqh31c3VBsQS8PiMZoHl1LLu1QEb4LzQcSk3GHYKWKES9M/oGRi0UW50B+Uv4Biins33L6cwcOc+sc5d0JpOa8OVp3wkhlpkpNBLsT4yeVMDD4V9xZRQnWQFaYtsQquQqhp+HYQtepmiXJtXUjzBfFErk2HPJG69J2u91t8mgsmAqcKqctbB0j9sskGKaj2Q8UmrjATGQuxAtAbKQI1NeahgJoRyaMGOzaLK5+H7Cwpcg4IIPP/oRfEBI6XK0EEnUZze5la2hWYAX3BDSTa6uYHzwA7LSzwH7fDsm2ybX4YH/EJ73Xo8/F7Eu6hl60H+Ylp/2dKBsQGtL7wDHAI6/jyUGg0hmxoxd+7r3MvVMKUvn0W1ilm7BG8zfsrIwSqDUXY0CHv6tnnBMGMfva8m4b+uibEWgd13syuZ+nbOLr/co+DDxj943EYQnwM4DR8VoJ0bKSzeKKt+ik5QUz3J/ipRs76H3yXKRHdzkIK3j8WTC1q/o36QFgJNQ5YWqg/7q7AhC5+K/9kSDkDa6PCShUbpKer+R5DAJasZzValbb/hZVTwz4wVonYeq6fl/NQ9p7fsrfpsrWTC0XngVNBpPhE3KgMrkuKjMxKq+srum3CDwMj9n14+DfX0hnLGMXJSv3x9KKA24fBC+3Z8SCjAf2XlzOopUb46YgVQZCLlfAmOoGpWq5U1GGpyOLKYN7ST6QG4n4zvrWZo3A4J13EMrIkmB66y7fFuITL8CqQ17cmuSF8EanG45RXhYEmCajdG4aDNYuzo0jwO5d59o8m7WCHA56w+1Rl7oBgl+0wQrCX8RNdhESCEZUMPtBnYDW0d+44PtbwbL7j7DjKso9m0JDcQmAdp6lJt5ZDp0B2vzUjHkpF9xGGq6hyV8MrPUiq/gnpnrH6T6BtCcBse6pXASXLUCGBxS4ZPE5W9xyLzxrh/sm5ge2Iqk3srPBWyrIsgdGpOSyG1q7dOy69QSMJd5uC4AYfbhKo5n15I3yIRwplbN9hHtS5bh+oWUGzZnQF81/piECly5hU76WYKVWJPSxakCVIn4a06P1MQLUDPCPBDfB1auYnF6r3KbTupFID9XbCabnF8uhwvje2XThldqt1OradilikW/trVTF1bXfG0J1HPrjjKzaC0PhEQHPLOHWSPshX/tySM1wRAV/oj5+86kxqsSE1OfExj5zk+MKTIcp+uNH8vbop2+IAvZzNyS3jLi6SO0vL/ztJMbiYL7N8nEBuR/JK0sbkslAZgCuexsFWkNP55w818BI7Zf3l/XvfuXV6dW4sgjRiJg3hg5yx8xdrmahqgyQDB6LGPCx260crX0MpmO7lMWhRxwTQ3Wfi3nvhKedqoDCdiRI6upazAebnY9cLFGPFHOyYUOh+U4+0uUg9LSnmhU5si6LXT4pgwF7ThV3tAi/YKXprVxQLoQ1yYm0Jb8UzLgOvHnoVTN7fK4SoGq372j92vmEhVRvy5hwyTUiz0/aynEYrJ5OPjhMLzG567anaNizYj0gfktzERDaQxx1VOtqni2NzXZ84vgiKr7YO0TAaVlahBcqLwWjGXz3dTJs2tg/f/U4Z9YgGxSTYm8BBWM4phrZGe66OC1NoL5t40Uh4kalJneuYaaUZ3qnDUNj7FdsYOir4C2RgwiDkaabHGzkM9N7t7CDqWY0euyBTQm+1kNt9ky6p7ZLlI8floQ+tOGQVxQF3XT7DfsyhHSmwWy9Or42gja2Y76mZqrn5qQ+aTBE3MFsVQ8q2wjXu3xxN136II6KO9kUB0A5WmeNmzD+cxzE3Uc10ZLORmKSMEiGH5wEnZC7ImFb7DsgPLbN6mZAMf4M8ns/JwzOm5Ah1NW4/vYeuEg6EcQAWCWflq7mIFe9JIio0Bn+69hGj4S7/69uSfIsrTRKoJHmQuuVTa5eLMyVOMsY8/e1ZSl7ZyV7x+oYljjobbqVnDXk/D2CRm5xJn+WVBiqUVO/q/FJOQyshag7xmJVxLv77qNBIP+RkgaNo4oxReIXn0O9acecmkUi7e/K7YnuYZHQuVVSWiw0hrbk3cTaLXnx5K1jbGqWw683I6UQqLpbV0uhsg0U9X66FiOjj/aoQeFHLfNH9Q8nNVXAth2DcIiA6xPJPGvh2xk3ywkahLFtHEd5BcDDAMu5g5GzFY9nVWyFdTXFEp7uqGiui3tU/nzTLfx1s26NhQngAznaU6hZQu4FfLn9A0b69I0fuLHJaJmE2pHwSjR8cV9cwzSz0ZyN0dJMZeFJOWghYiAGZK8frNThsVN2D6y1oWNgKUW7RuVzCs2a53vlw55A8Gjh/SGfhcJb+slkTVmes9pFg1aiSUHzMadYY5qVXsyzix4KUoxiBoYUu7xu/I/UEifR25EDsr+ZwkmS/5AUTF3KU4Ik2fq3kuBVs1kiO6jQAx34jFIhZPyaKfPxR9WXESom4nAjNIQTSkuQqUrTH780LiZbVQQI8sWR1WHey+ZACTA/jzGZhwlGZLuVWkN+D861V4+mgAWVOuiZw61bzfBWW3Yn3myWowTLOyWBle6Nubt8aMe9KHQObWFo2mWr6kfRuiNsBF7ajOhCdrE+1sch2/zvn4Va5qwIuWjt8Jrh4WrmcWdSuo8G95VIweU1HzBe7816gYI1riHpQ+MCCn2o0CNpEJ3XBWhGGyjPVGEp0rTKiU3msAZafB+0UXXFZM2Zt/WCy5fhmjk/OG3T2CEvpv8NH4FnJfSnm+iXVEKPbme600Gg5Y/HE2LPqk3hOwf7JnArt8vurMrXvt7emcUtY+s5WWd//L4XCiPGPdbx13nu+Q570YebnCxQ3LhQizagvRkW72BtYJR7IelOXiv1WXWrDyICFYHdOQ3PgZHG9GCjTG3oan+AmFTfydIR32StkkslR9hmT6bwTTjNoqBOAIJ8XBzfQNPuGZn+6xBZHKZhBP7jAo+Jh/y/Mj2NCarczm5VDri94TIMnZC86cC7YaIxUt04eZNb0kdShwSZEtRM3ud2p2qOxxG3EAOFl+wWJHdLCxv17omwa6uAjUfTLcmNWfMsFxQ4ntgqSko12/rlyvIRgPdcrMUvP6yiIAOi6Go3DRr+jsVbLU1gY28Kl1gn70c8K24EpSNYs702a+c/MNfeZAaDQM6yiV5WW0n8JJR/E/zwehEvoMIs0A7TF2xwAMDvXxp9ZcL45tO13hZ9jd/uZSM4ltbFlz4jrpfon42vqcqCQ4chmaF8WB7EHvFrjdCrGoIlpzD+3bF8eEYwRm0AtRNE4CXy/icKLWHYECB1CzWKJ6NApVGDjanUgJpWBYsO9q7OcIxXGXCAWu6tjTBxYnEn/DKU6Zfp8AbYg9dCaL0CB1unLOf2sprxv3GrFBnUm/jNoBIjUL4yceEttYNSih2+NYqJjKLHpDz2agefifRvW5eSYEoYHzbAyOZfRQX2YaFUHwYGfs7BMbZLzzLDCWeyaFqUAkDXDR3WsP8LjuRihpkB9ZfzE1uTxjaIDclCGGn2DWi4WtCdzVPGrqrvf7ljPhbE6m8X1qbjVQF2R6h7kC/pAX/ccKLgOrz1E8yVsQa+J8E97hyV2A5IE0Jmpo1uaLO5VM5N1Frf7zjRTbWIJtYTMP8jWz9B5C1S2/vN3dIrGDJKdTOqREbtOGE5JDwjigv+9/ZWT/BLJIXru6tkn/500URy3qlizBogAcA4Z1u+w3oKfXF97h38CoTQeAPBhGjTnIhUaLOA8Im2IiXaR7Nj6FRh3S2iR6ZbZggjyrjG1BC7IUDqjEMGdsV6Dhk7U83gfVgt0ycnsRC6aVcafoR1UBeiR01ZBJ44y7vTDksjYtGAwbOa7jDAlWVYYpXEBr3UWTeiw4KhyKlauraqEq3jeNVAgQdMygbvfx+0bs/k5POxu5C3JtE/AB3uhepLGBptUMEjiokMFAW/8bsBN89D1YUpgdO7QmSw16q481wjlCT1qkm0qmpPUfAiHJILRSaXE5MN29cOCVSyijfXHcASwL3iRkIwVJxIFB7WA4VYPlUz/GD/PIz2ma8QLbsRlFiQgprD3Zla/SpkQgEfWnmq7XOXmeQF5W1SmrpxgW9n0pV+B9DnH1PO60o7gCm+clqDw+U3khpmElPl2rFgymPg2il3HlemE7A0Uz3kyBX0sMlKPQ74IQJiCHt0vQNHfBBjeg/RGF8/OpkOzjUrSNfqPz/3KlanCQlvdmmk8DMJS0LMKp83n5/QI1OZbLT703vllMoPAqvxutsBup6TywHaZKxrj5/Fq9E10R1VzHpuQj3mj2cib6/Cfgx9QdH/H7vPfGaghUO7BnC/IlWXFzWi5ughC8kvrkP2Ds7fcHhYbUFzP96eMdhf3cXYOgfVqanyqo2fHMyG8konVxnGZH6r33CEKNkoxfAiNcohVupp0RqOxhJSWNQ+atnv0IX2z+aYjQ9XZliPSU0cg6jfPe/SnEzhGp8jBEn8GnVSDbYPGKVtCIsqwa5q3myy9a5RySnkLbiysPPZ7c7JGMeWdyAshHfLdeiuWlG5ooHa5bmnIaidqNqPrEIp+drAx7vX0yofY/tZhxM8BcSDcd2wmmU28MvFERGX0Y6dTbkgrf74Fjz0PNdF2B9FUVxpdQm2C7VeTKBYPS4mR3eGJx5ini8EPlRO+hKCfhQOEgt+iLO+xDBPXFTOG+n3j9H6zKq7GFvikcEpImAxPQTiyjEnozTkgjlOV2bc56XN1A8209qrQzN8uI739H0akqEArRq4/eHdJdVPyoGBz2+VfI66ZoFlS2St7DKWP3CDH2cQGarAQ7ibGoZfU+5F6zzM/Np4XjdfCqtnckVcqmGdJegmlMwQ4yafLcEg8UPDA1k8mrjcFizaggz4tt9Brx0ShEh2e+zbfc8QN7Orm2QmpV8eJVMO04N9xqnTza+KHxMRcgCHYphWmxh4C28oT7U/77USTxKpVlIo69WW27/vjNq2/cVt+cnRmtfdlC+rO+QVBXfV83QJDez0d08pIw4LAuI10+fWZrNhqzNEf33/xNcwoQ9hOr1JtCX1wGY8Ja/kJuIgX7UMQPMQN5Dr9WkS3mJXzzugFEaHc12QBeMl07H73nmK+yOi5Rb9Ma78A5WYjJKAnhAzoiPF3MbWb5Pbo7hKHmSEqZIzfrbxYp5I7uoRW+thUIgbx5PszPyvJDS7WDCweLJTbmYSHgwKqbKCDxGIC6wtSWPxbfu9tQ2bMQ5v3G0NsVmQ6vpnTFZq4prj7fHO9qKLpLCRZYlgsChcw2RaHsp22FimDY6Rh/Ij7txMOBXgdxIq5Mtc79yhID1Y87evYW5u9vUThSX/snkCw/yy/QbAiBQtgMIglMTZkCDqbVrcS4Xl6w5KLRd5Yfbp5DOp2gGu1QjS7cnE4AXV7yIJw1ASYAwPMMpIW11BlmiR8xz6nCp/h+mid3ndOBW7CXCQ1hrK7GFbxdx2nSf9xA+VWZizqiBGA1xW2U56NOM43uzCyP17nWosUwlCvgBoaynnVjHbwhZ/2pJ8WDIKBqepFpnqYaUEzxuRmI8AYAKyGvDiQ89/vdl+YSgmEvdSjsAnhaJT4S4qDAfjgfgXeS8exSuV3ZkTCJ1qVYG+dvs4yNbdkQF+j5ex4bNPPcNm2gIxMyE5T01IMWaB+6tDrjN9AsADNyZ+quPyztp1d2kcLdK+deJEM5t7jyBKRl0pmn2YGgtKTtAIjz86QsFSO+6AvLREqbtxkfxRNcjVRUnq9JG9BJq2xEkKyH4Dw/nfh5+CnEspQ3Vw4VPDilpjQvYEyxaLOtcehQmKyXFw5PglEmESumw9qHQQ0Kdc+29kuLT8tbr17Tu+0y71zGuyQNF4bisLPwQm4uwYoQS/L28w/nAH0ljUZXNy4kWSrDGrfMKY7eCZ2S7w1an7x83e5D65zoOHPIyQXEZCYGUcV/eOzbeTGkPs0y8tMqVONkokgcbpLckGiPFgAXKwmCOACHsOj/5cqoXoQ2omHjAjKCRWVTkVNyxVhNE6eXTqwwAC3Ea6znkr2Zd/53uZi8LdYtfMI7Or9k53RvPqXna+NtrVLqA8BHyC/iSs8ZDqrQ+On2jFmw9LfCjLTjrvFGRicMab8PXMkCsyW4bCQ2SYZ8lB1y7TZpTvdh7HxyTiip7F+6XIhv7POk6Brnx8J4s6Nqk3GJuQDsjU6b7MIy5kcIqOl3dFQr9F5Vwu6vsSxiMI+CCpp1Fr2z/ebTGEUsN+jv5snWg3EopODyNBIDAH5RG+OpHRAmi9Dj/rla8okFc8ApdevTrd4YxGMXOCamkYokdZb5VtekqTPx/fBhgqpmwcdatiB+yKcqvaZg8yAmz7rljVaZ6W4T56z2SLJtV1EYlmp1ti8c2NIVaolbhVmJoX5p3eJHgmhPOTeT1odLrMztapI6qsxKjgWCPV4NqzipDQOVAnicO44Xss0wjQPr/OHmEZAeq/YPJl13XglStYYsQBxdobKojg1qq/27W3Qeq+/hje0u9MEwfrpmUS7WgwmjnTg2zuOKv3TRv30hvrRimt9bdJEKRgXwsRnD+49AR85nHIneDMp+yxnUAX2I3NZKNIGAE9A49qgoyurzOIIluuSzHdVw6Jf6vxzxRd5ON197TBQ8pNLl53DfNO1Et+op+IbdSKFxzX0WqMmRBB8U3KL0rvh+gYmk8JVqB719c9fCSOHtbXQr0Yel0L5mboKPEZWjs9sHjkB+GDXRuK1bUYeqDYMzTmqIk/CxZKSyHGtCMJuoODr8ZK4d6segL6MKk3iVTZscL0WCm+nTyXOrVINlzg1gj55Q9176P5I0VB5iT9NZ9TyTKLA/J8I/ohMQcYvhSdcFo1ZWR3o4aGWQjHgY1Om1yQCoQBkLpYth+UbIJGdQec/oiWkuPY3i3nRNP6WtcennCKYk1pSiBpLRoBmQmzUTqAfbIGJXALyb1p2h3M2JBJhgO/SvmF3PfWGx1F+YP5Z9PQjew+77pJDA2sIco6IljCw4qHMIrthwr/IeUUFO13SbxNHC4s7Q4Cs6SxaDzgdwz7XqMSy/gh3XhmJ88B1K9VzeL606eglZOdSGizh0o9VF6ZiVtZpegRN8JC8BjmGxUuiZuNu+4mB4ammATXkWnC0zfSEKzPupReuJ1oA4x7XB8Zempew25T0VGOtPiz8DZ6XtL+E2gW4KMYeC2gDh2yS4udaBn2icNWFF7Sigpqa2hE/L+VIY0jnfTRtYwq9U3iV8POmeBQxTsfCqNSjsnplzQeaoN+2cz3FhivzX37hAQobBwsf53KMoECht2tteIo4qGl5F8+ksFVib0NaLuEYY34fw/8UYZ3kzDWMZMoyQ+9jkldv8H6GTvc2O3aqvp4E9ipkAZsbv3/Q+RNjPAlS6IOE/BGItVUFKFdOe5BnucW2mE5R2Z95Lu9uQscDwpEiYtmfOdUvFVnQXOhrAt/gq+cwuVOaku2t9LHRF1LDAKJ9ItV+/HvnpiGZnL+jEUwotJheFdpx+59V8WjjrfwbrAKasRfwzJcgj/0LrpKT/gQueg4lbh3kPN1G4Xnf1q1S7yy+bL8/IAE3Y3x5PFDsY6gv1Jw+/G6sMo0LXxCHBvgQJxB9eHxt8ldRZ4xNq9uSeKSddXetBIr0uHICaCD3hdZsHTH5jlNxQTSFkGCgHgZ1O13tE3dHwBTdRDoSlLT5ER+FFQs2eVCRO//KNakLf5KtJqA96RgcpJR1lL6ltNeVfqLQnO0HI5X9ylsUIRf2Qpl0t2XKGEq2ciqGBFNZkg4ZF85N2a0QPquWpkY0wpq2zdLD6RIH+wcpq7gRhJUKYStQOpmlGyqV0ANyTjz6U5cXTnmElAr2JeX56RwF8xERjaF/rAeiXs4CJhe5UP/yvYA95BH/gfHkPUalf237im+FtvhXpImeDajqukNAduh3YcPDKpS0caPuk8zreljirjYyukFSSgq+N2uyBLKGAIfSffa0eI49IWSRYVh7n/UpwxJ6WLo5dpigUwSoB1/mTX4ZwMSpwSSvtdsuARpOFW+S8OzwV71fTQDsSAUNnuEGj1C5ZxECuY59gNO/ihLhHKoz0ATppwFHQDDuZPBhT7K29a7BDF1eDXgLi8QOJ465szVvm+1kkXHGwGRb8Rh0yKKXZu9HLHKBI2C73BWV5iuzK7Z2PCqJJRK7DK8wDLdGZ8mzBA8mQT4Ue4iIVbfbqAy/C7WfdsYUiccS+/2l5KwAVL5HYH8CHnUrqm88q2myOmQmIggyrBAHCR0NKX3r0+WeHvRRv2+KLjcVLfciGhqi/7Op25jU/hj2nbl7NbnzTNAxcj0oeUfiMgL4BWu1A6Xy/u5lRa/FGoZPJC7vRIeM2/C+lGHhgYFaXXF1j1Wqq2hiZXwbXLukC3CJiJ/wC6SOGA8UsJ/ZETJxBYHr3wSgHNmrPblIPSLWpBcwh6wIBk8lXIP61NDT9V7exEH22h8jdtn1bg8s+Xav4pxqaKABNsssoKqM6yhx19+kne4da7qn3JvmfRIkJ4Lv2mOTqH2R4JQ6NkmFt6B9Wd4B5r+XU/LFDuTtcjqKZVn9aRkkraGFInZm3W5h2iJOJHHCJaBtl+0ol/CeE3kaK3A9622BorlDJR1P8oRtRiEyqeRepbcepTikxvSNfUvOGAY4slrkOFPXqow/p2zlHpZdxCq4/x+KIVh/Ra8xMze6ZbvVNY0IPVORA1k0qEjgZLdNZ7lc0yol+0Ko7sYBVk4/C+ZcapfkOmg1W4fy/qIat/6XwIitCGD4YYUtucNUb4dkDhX+o2QkXmsquJyYpIfSd0hcawxqmx9XNpE3+e745lAQHBDfM4TGEewVUq/0l4sT7tgQw2KKrtZHMTVoFxNkSUrlU8OSmMQaonf8y2TxD3BMIZNd0fls8AEPDB1YxIjB2NxHoODC2xg3mc/ZyOVKWIANvjIZ22KG9gSTGb80MEpIGDCjDqcRkOphiugWqNEMgBCFFKLjmKXAiO8UUM0dMAkXT7eTINL1KOXUAIpcu4pkRABOe16rWqdHLA3mYPV/fUnI3j3tQiYmUfL9B7dryeHaW+zQO5EU2dn3FzIm1ko0+XrDvf2Mfy5X+OJOzj79O3jFXoZDRt3nVtOKdP86uqLiSBP7C4+SiPGHbN2qElYz+gDpO7JayWp2V6Qu87Y5enr5QluJT35+zEWK4Rt/oEgszD+bM9E3eiQtXRzLGqbUPau9gs5jf9fgqBvM/1SkbliOI4NNurCLymuibZxeGW93i6uL94F0hI7w2C8AdCwnYe5+LMx8g7/HHfDBJi9FZEUu4pbSrvdXVnqn1fHXfUOS9xOphCB6pL13hmTBhhwAUvEYrfAaLIYlbv4+DNVL/4I+TRkbmD3Kwxw/tnyJ2YlGyriugQJtjrAKGgBpQXJyRcbe0tf14brCw4LlTrQF20Ubi4oX/C1gFDI40Va93vtQb2lzCz7kZUNhI3jwdHDx8c+f/HPmA3TNmuLq7wAPYOCz3CTdWWJnSipEuvrT0zqGsRwzNSUND1T1WE50kS7g=
Variant 0
DifficultyLevel
706
Question
The rule for the graph is
A=kc2
A is the area of bushland in square kilometres.
c is the estimated population of feral cats.
The graph shows that a 40 km² area of bushland is estimated to have a feral cat population of 80.
Use this to calculate the value of k.
Worked Solution
(80, 40) represents one point on the graph.
Substituting into the given formula:
|
|
40 |
= k802 |
|
|
∴k |
= 40802 |
|
= 160 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Algebra_NAPX-G4-CA25-SA_v0.svg 470 indent vpad
The rule for the graph is
>>$A= \dfrac{\large c^2}{\large k}$
$A$ is the area of bushland in square kilometres.
$\large c$ is the estimated population of feral cats.
The graph shows that a 40 km² area of bushland is estimated to have a feral cat population of 80.
Use this to calculate the value of $\large k$.
|
workedSolution | (80, 40) represents one point on the graph.
Substituting into the given formula:
| | |
| ------------: | ---------- |
| 40 | \= $\dfrac{80^2}{\large k}$ |
| | |
| $\therefore \large k$ | \= $\dfrac{80^2}{40}$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 160 | |
U2FsdGVkX18ovUzl4pPKBs6RxnULyQLIkG2fQZihUvRcCQib+bzVaeEkOvgD20bnBBkuo+VdO7j/XjIDCoGQ1ZrTYaPLNLyYTbMNNXLQGRwxS6j+SYfcyIggppg3jKyIiyeRF0DQqqgM2hd8Sdmrtyo4kIt0Jld8fx/bBzKqi5jKJof31SqQOAOjjGVD2xziaph2A3XTXlHcgRbRqdWYY7oKh4ZA7FJiBz4Thhi3s0Nu9YNiVRoU3+NDx5xwL1oDIymWMSwxEmAP7QDPqn6WvzSEuh51kNftdjL9GYsen7yVxTlliLaHPvYjKfsnJmYskrS33KPJ1jQQhohXe7bX/LuEeABSigLdBDzUawQVgiCCAQp6E9JwS1vaexnOorD9zAc0jO5APOFw/5vZrG5AX+LRbZUa0iZ2DmscUkrzBrZxyTa3ECMfPvY6CQzOm9nj+2ox/slc2UqmtjPNdkJc0nJK3LKAM9FffMebStpi8quyYjzWv2wJr7sIndjYGN7sJctuSweeboU0jlUYtfsMGLt3YqCrSKtCCNyZF4HJpPYwtr9f4gB8kL9mX/8fTOeAiD8Osc5WDzRkPlYsd5J1mDYyDhnCciNSB0CFH+7rMBo/oShx2Y0Yg/XVIpphesmCOc5gpIKMyR2eLYrViEgCv9lEjm1267RTAFcDJrIFIQKH8hWGLEilICuPRW73uctc0lv/xBpWkr+EwkOj85i8hblXV6ckjFFS6832UyTeiI+2x/6ia1nONwR2GwTI7kqJjYASKB4yplEjd22hG4ZZlWhiMZ22Zwn/Yt4XR0yhfoR9LC5k6TVB6Ke9aTpEcB/RJWqxGqzBc8FnGbSOIBlYE7QbWn51Qm8Ay4OksfObYZUwPklIF1UKZbGSX/YdL54fymkAStwVxGYXcNeCKO76j90nQBXZMoeZ6ZOJMPB0UjyP2upf8WJ/takDbLcL+9Rn8RJxdBRNTGYLIZYNT5QoLabS2K4pYKW4FWECCG646pwmPEOsypN19ffXe1wDKk4vAToHGrLG7V+k81eW8nhbc0T4FIiKyMRums7e1oeYcBh9m4KkhWLK8nOp2qfCG5CaISC6ltt7+4PigQgh9IGakK+qBgHYmYGEMcLXNPm99L4wK5PDhrPJ4AGzPe0QC2a0cqtgqmJpUEaJcrEaAuwwWQLv5scTKvspokv0+/jObl0ljLZwS5iJ8WvAGnsjGzcGI+A/ZlKUPe9sN3f9oQBy8/gQzxCE1iI3KDTL+gvhMcPWgq88k1usD4izcom7wlE1PGW9EVIuLaBZvJMt9JpT+XSYIwPPOie8xKuQK5fVaSM4fASV02T2f+IVD/l+3FHU99X8it54YxdX96mT2xfSX+BHmUUoci7HU0GdtdE8gRizdssieu9gvxRpI0Uam1GFmqBDs2Uz9EBUqn2nCnWFft/fiUEWN21gHfTSsDEQU7pAI0dXl9ylfmpNpTcytMaYmctKLKg7o2zaYGDy0+V7zZJFDOBvdCKX+sgQCdAQNahbErBQtK/4F6kDWAVJl55h4u5lHCZcdU9+qOzfduiIECCyQi8Rb1AaPUs3JQSsBHmLEPP0W9R8VxVtattNrThLwF8WwJfrrX9rsSTRN/dLluBSjZ4tBBZAyxKX3FglmbYyj/V7fH6MyEq6vw2HZl3Z9uUg86YOL11I9vMPXILBJt04eAbDEkQyxVn8XcJ+OOqaqrjJ9JS0bwHX1jbesQsdmDxbJVO2h+dTC0hrYkAYDMhvbEoNbSFwlCGc9TE5KcWKfD9C6YV/EbIbiO+RozxLIU+pqRQFK87gUxH+ypROoBr1ToKQ2YE2E31uUKM8JXV+NLhysZEm6kXZ9WI0pLgYw0HAchu5oH4VGbYz5Ew/Agi26oAOjub1/pE7MmoYOrN3U/pVN0zaTOngni1VU7CN6mehhCtixqD3Qi81lrgnv+vgvoLL6Tv+Hp8f0h+23QPN1MBo9d+5Q1UwgfCbXFA9TYs5jD/rz7zU9qZKnDiFRnDRVYmAwgjCDHHAQWAOTzj9YW6mWgGaUAFX5UWNUwAf4MnEL6rqf985BKZr7aKOqC+eukRUsoMtRrLPWF4VX5c8Mx3WdKqJecZPXYVICt56K6Htqcxl2mlzSu9l/fQHQ0m9Zho+V6/EwMJZ538brYAzw2HrGlQNzE/KAbsrPBgoIaKwxoF19u0WfPXdDYw/LakC+tds1uls5CUzMI/vEg8Bh5JdHf3hOC9qQZ7bflCdWrra/dV+ou8LWCPapf1cuD/z/bjcUPkbeSoWBOzWWpoX6HtRt2qPEt47uddBrEFm/atQDFcxVi21iNRFj5pAvorL2kAwhNh2KaDzGNYBb5jptFFiiXkDjdwgkm8kRoiGouWz2m5TKXRB24KQi8xbuyQm9CxJE4qRI0sXMhKl9Fn9CIsoffTBOKaC5IqGFylnKcRfVvHYOetIUhcparG3t42mtxrRjHS/aWJXoiXW5MDvOuLSVNLpyRXUP1uhGsWuDaJ8U1FY5qW4k0DeWjEsQfbwkd+8DnIO79fo1FRyyCpRcnl0eWGzaKeRnDs1B2ZkBLt1+DJvSwuWOeY2Bxkjl/CRzmxdawwMmchzvLBhkOQ6Q4g03VPDV9NfAYvltK5PS3lOS+MwokbcETGEnJ2AxoVwrs04TpGhHu/1CfUGndM69NnHjblK2gXQSWxnQgamDg8a7rtVjvtZbcx+WiC/tfOED8ZNiE5GqEyF+V09JPD8CPq6f+kzxEurJFPXU1mVCxq52YBJVe1ouH1YR0eyOkSDvFjmSIOtDi8k0p9b4Y6OFiJtKU4vql6R5a8GazpmdAnDFj4zWtYJBjfjAh+wxXxYCFXNQWl9knQyw09SUCRxuasHgQTup5VdosmXVZYwME+7VLH28KnWJLdEsqGkh8u+P/irwpel84FezXJcAeHXWQeK9ZUzVt4FyS9097W2XbcBzHdw0ZAbna2HVwN8lSL7158ZEMUdAemD4VJL+m5/WJDk8OVY6kV1i9mmU5nqsRehz5hn4oGEKhzrfyl2CPCRY/MGWF2aZzjvVPL1nGwwB/vEzzlrEEfWT/yV636/5WnBwQvjP3sbceqiD8GW7RCJVxbuizozID59G9MCGp3gjHtTq/gTm4vKVMV61zUnUnJR1bW5a6448b9Vh5pbm2O4pRBq7Prrjf76bCEga3oCuFGNiEkrfQWTpMJKuVsFdL42vBEEdVswK4URSkmIoBfqJtb7dfQwriyJQ3ATjJdHCvxayYxASoGUoMClbVPTpb+8C9is2eJolWoB+Rx5HoVnTTM+MjTBFy8KrWnEDuAJIzgfhPdvFHBylYDcIOt53vl3NQwThEpOAWxJ06DYHL55jLp6ciO5p7L8tg/ML6LQ1E6SytGWo3H+ngKkHff3vHGkP+uQ1JOSuArRvlaRXr6Da+4WVsLUCc0APqxpOVekHfhpq5Pcjncl3kw4GXwljlbVlSViRqVCoruq2NnbqSO8SBHXlIkQ6VvxkkIFxOtf9KsOw5SAMfqESjYhtpWAXSahYFZHhcv7drVDIPaL3aJNGRTGLkDXO618POt3Qpiv5pf+f7O+jNqQXPUwz9NNksk034sTI1Is1Cs6vZ9SgORkw53NXQsD5yvw/Mn+eNJukxFu3bvo0hik7z4okBYboH+Dk7gGzHKSyR+3H6Q4fwWKOFAXvMKzIa8BodP6Eu1KntxbAcSvE4//Ob3v2C519Ys6WHW0xhTSzLH7I67YgngP4MrVzBzXk8iZemCm8SvzG9p62WzXJ522Sb+8k2vogtd1LNQpIWNF8vbd4LMZL9U8+nnn856H/glCqmW7VeRKgxg/Lqr9IoNR81qoEQ7krSdAm4gxuFf95XozDI8XyrPa6q70d6Hu5dvoPNOv8xJAUXyNY+PlFBqlV+uksVL5opIyjK1/TzGwDs3q1ZnQfnEH6OYG4Bx8pmpXWclMAmqql788x5RDM4P+vVlEZJ855oUjHFWQDddbqdbNo8GmxGeTShFvKd5ZPtv7JV9R5olH/CV5CbIqwvR8aTV0vZ0aqCUPSj9qQZ+SD7I4uZIrfsU8tYjXOrkrY1dAHL1msC034yPu0VbjCQXjQANaPvANNigaYNm8uBXDXiSueBlzl/Qyya6Yt/ddXieyrFQwNapFOK4Vjmkb5wyAV+OodTINQcFFmAQL+pMm2LlWyOWq53/4IXSAZ3cyya/P4GPCAFRLdOZ+fw7ydHtZgxguxr0G9brfOzjqS0m00dkom14d+0CYBUk71oyI9T3zKpgCN/U8Gv65xF3TB2AHuCSn2eFYwgBtyLbArhojJMoI0izlc6z3VE6iMyZbPrLNxjWZw0pd2rBwQtax0/18ND9GL9YKhBH0JMbEz7w74wj/LSq7gODrzlVWK/zdXplFDKBZPt0aW61D7t4E4Ezv4uWqr0v6UHBBraM7lnfs/1CUHljBIYsdWRP5Iy9sppvIoGyXpOb/wJWK9wz/hp4rMHi/ByylGtihliclr+NsB+83Q8OVmy9Gy7eW+lwNTvS5i/leRkpHcBONJg71DT2bNex4eSMw6VrVky6F0OpviGl/cgumD+DGl1MzITKm0B82iDUZPUmsnX4mzP6BoB70cTzUkCtgSR4dxWd1F7ng15ropeSWw3RIn/dnDKpP71phe0vJi4CtjFaR0LvB4Z4ZKy6qjrPoY2CclEy3p2/Dw4b8yA/hKIACed7mhf4UulEl43/V0wuZSv2pxipGFHLUGwyAMv6WEo97SzGe6TTvQBa+dWysD9OklfpAVOFML7eIWIjOe8re9mbTNt+xWBEoSPk0pbbaw0WoiZ13onMgK+ae5YdhNrj9qdpoyEOGS8EXR4XLf0HSYs3i2FBtmXPwvuXQiIWxHTsg+fSgtAkvmNB7QRGmdy87VuLMgUsSIQWTfZFSiNwH7n/I5QiUyiZt/zNeX11OdiPlTnbL8mBfMgrYHSstR3FAJrTqI3wziEa16bZMJtauYTITT831Nv6CqBL4CBkWtwC09nO+1cvqsXggo2Ftt3J+tinwTRbyTegPnHQRGW9UiPnJN9AYbIBC3hvRpoNyguDkgCY9rOjGT/T1Q3AlIOlr2dG5zBeknmVeDEVfNXxIpnVVXY+GKEBHg4rMPrfFOsVmIii+IXZ5Ou9wl2Hkqql3fIME+O5QsCm51Pb16DYZnp2fUTzy9GatixRCLgzWk8SFYqJnL4s51+BqqP5hla94wlWI/EWHvs4E+zWn4iDC9BqpXzwA23ORiGjS9tx5fkG1DCWGJrZm9Ze6+slMyhwbjnjHL+uawzGk8Yts9CEHQMXnpfVw3a7o69z+AJBfPCHLYyi6C5k+cOTEtVvNhpcUMIru2Lu+LjQhkLMrFu58I/nlUnvUWTCgAeI6hnrEI+bx/acchdqA8eLtsr7rW7doykpPKbYW8uEaJewS2gde7798wlfLTvi1K+fG74pKKV5a1fpZHWUU52fImpQm+IePCqgy6U4rVMB5Q3nQQG2vrEpCURJ/wbI0VNLpH6pXeZoG8I40p2ViFiAe2CGRa7U3AKlz6zSyKFOHP1DycOpfnRDz4FtnDClL3WKUIUZj2yBN4M4aucUfvtD2sZo/vfCKbQ0jbG3xYpW60fruXtN6OjEoA2dhRTSoxO6xowY7wDFiRjgfMkxUrEiyvgVI1rcLsU180zGyrx5rdAt1xVxZ1b3d1T4gC2E3BZD76myZXdHo81D3RiVbN4hAex3FIk/LWz5BnJJyCEMznkvBsmfVt4JRO8O2SJCCFH3Oa5wEm+mH+YyScSS8zf4pGrpPbi9ZO54fyRoJZc9oJfR7qxaC14oktujUR44aIwDqDXsSE8D1MNZxLnhp4I0U83P5YE3AA5JrPwscVJ/fXpr4SFJ6LJoGnEkEiSJWxQm6+XdrqaHfUGletxYbgR2u3CvoH5EVorA9d4V+FDeVE4yrHRRucVwn+qZe1hgM4S7VkL7TvkO2B6yYn3PKSr2SJueNEP/rPHSb64pLyIpykXYloy8YYgEHB+Vcwco/cJTTv9mkTjSxXSc5JkuUZaISN1Tufgn8orwG9+r73EcnfM9PM5tI6gkGjq0fm8K4mrpyJNobjb+Jw46x/6djB6K44NGgSxkcqBXqLazwLr3tkb75h4UTgZ9cvHjGUsi2e87WQXtnwK1I/VQMlHw2V391zvkTJmbr79+LkY3jzZt8LzY8igFrx6s4mT2H/CrECpl50OYS1+p2vPeuZTmtzRT+hntAg1x676qaaLKiIQgszwJXJuSXwCvyh0U/YpBvsteCZJXCwiGP6mvU8ZoZXzmm39hK5to6h3rBeJmp13WmbZy+Qx7gItGJ5s6tqxrKe6qFJzaVcOtcmLDQOgplQXadTLQiog4RkdYr/rgb3O0C094JLKr6TJbJ/lAs12di6LfgU3qFS9ZoOUGHeulSPdq2hzx/nHSLh3Xksvfd9HYPS4TuoH4tJqcZNIumLGsnwxyaQolquBqzbMWIYXxz0aIAmPIgjFuI7PBPaDr3FNudV0YC1vEhh18jlEuLcwBJKrNLkhC1I1UYSXVPuOchiwOM7Suz/pDHGD9ZfjliB7CYjJtl5tqAHwL2NZoAU+tEdbLXd8rSLUGhEap7X97k9GqXN9rQW8DZUKP3jSuzUtO5pia2Zq7rsTnBxR5KVCGpX5EbHBT5pdYNCqkAlJM9+eHTRrMir26jrb8VDroIbwJYSY94gHQQICN4cUZAbcYpZ8U9+wUx6gkOHTe9qlhin91McHHoH11s7Ucd8GR40y1YgykZTxhk7k3iOZglRT/sEPmTX/f0GtkOxYN6jsmqDQMM3V36lQhwo0qg4dtIAqRTYruqEOfVi5P6b+QJK/I7bb5oIH6bpKDsTR4SXw1gwXdlmNWiTcVq7VK35pLZp9K1ocPtzBB5I2j8oslCmi4Hc2ivs/D6QJgqJJlvKd2eaY8KTyrc+yQYWw7XLIcfKyI7VgdYRYhFA5mZIiKfHXNsgu47qrIriH9ElZvysLPC5lH5Rl/Ll44E+EPp9IpnSLQrNgAb37ZtXb2IH5s77aMOlK3UrVSPxtPzSKONv7lQiz9q82eJQYdTtotWYB8v/j2pOUN8TMPzDVowWFXtT/967WQmOBFlPi4wNQCUJddheG9oJHugGHxndV5PxZcCrnXbM4NIWVOhmb9/R864RH470/uXAGSYbTI5LJhmMVmTi8FeZhUSZcf05Ax+v3HsiWdKg6CH8jZ3pE+VJ2IA3OuDTdqi7vj3+gexRLj7/NtTpAXanS2ZTTS0Q6IM/faDhVO3ePSs2+KTWY0+kn60iZxZs2hZvsp436g8Zk+eAFb6Jt68W9PWsg0wLwDpddFhnw/7H2jj7kN7a3gSBF6rFIJTp/q98IutCOq5iT2MecvQqJpSuE4Wo4jMvt2AmIyiLek/XI9ZpoCrz8AepkkzhNl2xYrBQA4HH73Ovj6x/gOd8AhTYHwpyhowcM7NrzeNaRmQMw0hGRdh+YvqYSqFGWusZ6uzuvUkJqm5+caJKx4//JftTmrxwyteYQ0ZVuUN08RJURqmfBDkulzLB/oMgsMB7wWXG2JECTwDnRMTRViMuia/cI1UH5RnEx+CFmRhDASadnmIsoIbdE225opH0CGSZrL8lmwe11XwJ8Z3J5PwI/9QLin3m5bzzAQCT7NrebNyoNDmVd6c441I9M9HzBkfOMs4XkYGN4keRNQkrRivHwHGgJjdfCkgRuTDUeCjVzrXy+L9v7fzT+ti9KSmBOpRgjA1eIpyJrBw/FKLpiIhPAaKUVgnfa3VtH3VPpKJxDKuoGsKjfXGGn7gv0Fz7sqLTcYWwgxW2EyXyZF7Lzbx/b5tcVHvPAxuvsJ/Ifcz7PzsTSBmfvlmPf2DZvJ41sTKx7HIhK/LS/byrJigu8RJ1UutGCEPxi0+l5GNDS9tX6YqIXG+KcgLMT9dqJSpmESJDp3jgYlEcfsU/sE0XYJJd6Man7u6t4utWsWs/y/DkPHY+nojhBuQHDrhdr02jhgytJvSJ5Bvj+vyNgMkTXZ+mdDBDfj4QwEwHEfNuVjOsLtgYCM8b409EDp+gkB10JLfRPiSLUfKmb2qKEfTKN/Tchl37vUMYBUzyplwzRh9lrQe8Zx07xc9PImwvr+3VzJJTmOt/zMZatadONWbnyGwkuEcqwv9q1GvRABsDQK+pSNwaxnCmMDhZxhulo2oiPH+zqtUgXoSoFuyt19mN/Hx7INFOnf3O78bK4K5z51ZKIImTTU+aXM1BlpDMs4j9Nd7MRETbHl3s53JGhEOPp4KGn2B9jdxMw7tqys//L3RjoG3Ry0Bamgp9W6eZRnqfTg55y3DqVMeqdSVyov++8oRo5CcwnnEyemnSwzrSu/Oxu8Z3bjkPTD3GmGHtLY2AC7aUZCB79bFiz5BLI7f3EyRycSaoVbaUMW4GlSu6qKQG2VLldKbOIEbrp32aLoPyEc8moQZ2j9n+JVGH0tHD3TR8b9hs4PAVYwmrJbTf23Jm3CNaLggycgZAalVrG650EE2UofeEqTJ06XTZBJ1v2f3qaDevLqizVzTBeQw2K4AIbLTJuAJCplzchXbAstrksdtTEliJZrGQEmcR6rBYjFA3G1qgYxI+oLC9m5yk+SpbMH7nLMlC+ZSMGSRLFTDLpveFjBM9Pd90VQdLNOhjpbHmny7juqdyA+TV1NgJU2cJjtFCVw9nH9a/hAmlC3K2Sz3vkwOaAtw8qXwVBDWkyOHnhdYYmnkqk/zKmr9lwMZ0HNUuu0o9wjSvQBPF9muOkWAi9r1jznSL2gvX+sZPXts0eAqAtBhAODVleFAyFm0PsGxq4k82WmRAtpz716Fv8/Vv8koWteGbm/WF8SIVZS20rpbs4qEgEyo6ExuIPiVSqSPbUo8CSY4hXJ6jL7yJcQQg9TVenPDqerz0Eryiu08fQ4msx9Ack9ActHLtGxd1O936lzXYt2EsC8vAb1hPRyDefc891IyvT0Q+AI8Yeaw3/cxCorloC5SXKCw786QVyt7bx+o8x/z8CdcmSkF4K3nCcca8gnzsf5Lhveo+BCdOvpXrbFP842UICNwa2L4ntZKAXXSYnHKoXtmIxVTVsf5zm5EVTG3L7f0bBJXr1hnVPa61uqzCUWvQdumqpdDdJDlR1/8eTXFe0np+7u0UVMr0rcpnJPU+1Gm3GxTZeeMTn7JuZUFgqvvZDylZme7gVzaEJ268KXrNB/ILyIXNp0r1JWiKVzhxw1pWU6l4s84Fz622IwegSrupuJcMyv3ZlLjdaKyPTWrRhV4G5D/mj3jdNe+nVf4Gm7m3n3AP9w8R/0+ip0AF2wiLBrwijSLi6WXshG1Tx4P0qz7t+RvBwroPZulykKjCwsNvXYnT+o8cEq9gMHJ45kxyuDatjIlvIjI2l38dV3mowKH7tcDoTy0YJPDEbJOdSUxRniJKUg4s4cx+Az0kfKAaRf5u4OAbrVKFtgKwvLPFD9TR57tD2PJAebCcat4aL9129+DJtrH6gOAQ1RjzhOK8kheud6d4efI7fdb6TVX3QxiLD7OluXKdNUTaGGbKYku8ir/CTYHf9lo2k4s2NcVpCddl5aUNSgdPQQS2SJH3CusfInIuEZHlmYFM9wlVKDiXFG8ksS5zA8LQEmHiy3x6pkgkavTbriO9NGID6Bn5S/y4XQqYQk17Kzwt3lx4AwKt8fr/A7belKxsoc1+YmLqLX/RZ2A3SRZtgVAYaI6SzmpyntdQO6jN71pFcNOBQKowiKMsRVH1KdFXRZCZa0rHBg0R17bj5AUyi3t7/giWYNPo6H6Ga53RzaxI2gF36vFWwqBHnFGts3K8GwPsKjdFYiVc3TPRlZCAiwOPqIDPqhbivM6GD6rXfwzi48iTt7Alf8Bw5MZ63a/ZsSOaAlXj4FgUXsqTNg9sz2EaTplAMZ+P+9f8R5wIRCD/o7Qeu+1mt3M4eayuNbjEokpuh6w4lUbeIWTnaWb0mIk6f2Yvd6nzMqcovgCkwoyAA87C33PuL/655d/CCiM8EA9mbJ2q9jpcpUqYd8jwnRg7fG4/OZfsSAp64qQ5c8iwIomo8UcqQwaLe2VFPwyMojr3blPOGkxjS5o2b4AimVVzZDg2a73AIdBTgqCL23VgG5t+agqONict39ecnIO0EhKMWK5ziJY74ypiZ5Ftgwp2G/jQHInbOAQGEyOuK0O9oz81kh/4mUS2td+Clm+22yn+gLsdgKorOdIufb9aJ3rdDpPBWunBr1HVfnS/k4Pyga4OLqa71o4KEKU4KAH6ViTTAPQHVHsmbUCo0ECazglT0jZZ/I7tndOg/ffKpqIjOszMEqmqk/Mr/UP9BBonV9fEIqv4Ps6wTXyqCvODIIyWndjKD1HcgyEEmthN2ZCHsrNwvBWJz8LwYC0n4yRbUwdbhLevcoI7+Vx595i1zoHP6zH9sSRz7iNKh2wdkzHCh+MhNNNupkjjBonyS1Pi0Xkq81H8xmgf4703/8n8RN/SVX+1o3rqc8IBlnJYriOU/xnySnIFhObG9NilG7Vw2jm1NhefWMhLImS9NMJRM6Q5VupUWQJ2Lk5EH7HwkJMEJOIg++ruL+yW4MNj3Wtk/WEBECusrV9F0z20AnFhmoM2eLnKxrPn/hwfuezV04Qu4QVtJg4hrkXjQerwtC5oHdcThyNJYO/mzPFgxWDHq9vffM1x6lBN+3kraO4j6mDHe8wM/AKLX36EMTvDDe16hWfBEmEFqjcs0eTXyZ2oZfx9cPbNOsOj6/HA0Gtb7nKcmAbuoohT2kh+6QqeU9SFJUlr7S2wZ/cIezI9P89HRF+P0q8HeJxfmSkTwcRRl4OMjwH/gtdGevZPJpHhP+eI3S6tUBu+nd0Lv8Ehs9IXjVTDodByittD5IFA/rR3KMO/e7aflLg/n95seCkvfJCAkU+hZPDSNW/UW3vb6xRU+ngZRtXcLMpWSXDLw7p+S30HrKj/AJjPOh7SqBoYLHB7kwBNiAkenDJPNE3K1lLiFhNnSQQ5eBV29MeMaAL6rb6TJs3DkpXjHshN6GxBYVvzy128vKjg2aZp9zv3CIW7Q+5mOsbZZlSlEGxUFGdV682H8l9bV5vB92Lq81WIZDrll3J5C+MBaCYM9qsxnLbTjW/ijIucSLu+e6WOVDObnogYBkxpKY5ACsy7U7x7ostI9QdiNfnOhv+EiYRR/CP3c/QJHScdxieTCw4cktSh80giJjgbILULwhabPeOHY9/52y3FtRh3L9umxl1X10jasbYiYNY/CtLU4FU+Wfkx34YoVcHoDzMk/H1vrC1gfznmyvGm1QgCrWqYaWzueoXSKajO0IqXnqBVSG4RNXmrLT9JXrtwYWvD6rgy/EJWLlTtYeXuYlBU2DwSNlmRzbN1j5qbGl6tbq4X4ygkUF25mlce56iT2qbN//DalRhYDXqTce2A5XlfF++BA2QChloZxRgS9omgyhzV8tKWUxf8nEGM68QBA4m5N1c0wYF5lsFCqe4WjRklGv1hjRMR+onktFuREZcvGfxpEDmxfS7lzcIBKaHtoN5PYE2vkt+rehVda1l5T2PxXM4lUTjCClOc42qRHJK5SDpjSyKQI9998DoTlia2dS0G6BMDylYehwZd/p3qqPTQQ3JQ4PyjlvRs2oXIbZhbVeMNKTsHXfciSxn0cxMVy176/BaZLinJ9hQdeZZ7wQmVFAVKqSFlEwuhUdBS95urSFDhmK2KMbCP8bIHHjNePQ6ESOOeoZqm4YaN7pEUJlxia36IcmauXq/kneU5CFnGxKXPOMPDDEDayn7T2dNdNd32XGeqoFngfOvJF4SoxF27bY9whFr1d8QoT5fsFnSvs3rSft1afE2j6eZM+i5eFycxcWVAcklqmmCSrLxVQukjcLpwBdZt5/ML77A1X56oG4eRpdazFNkvRtRpWj4Z5dzsHJjNn3X4hU3LvJ7Mk8cOf31wH4mBAbLdw2XwruRNKTX3IN3Sm+kZoixEOvmo/qSdOd2WhAYG9PFXz23GdH6mFdYmMMdSik/N8IGmNdEbz6NXaQRJZjTofef7QfAIhAlH+t1XuPgI15gI+pGWQVgUDV78XiK2PO2zXiIxoIXGCSrnGB4Up+eF2d/eyFpEUp/K3DO68tkZbsDEM254C7yV0wzGlkyYcAzrTGXGo+gMY3OaA9fq88DSRHWI7aBRmAzM6pWWSStP7RPm/aivH1UaPmcXcDf4uKTJUAg2xtXWsLcT+ZzPNsZHOJEcofEpJfA6EbDzQA2eBKXPSB/NawrQ0s/rxvQrvX514Hs4aRfySiMd5yaxBypTKm0bA1+Q+gTMF7338obAn2O81Aqlyy4eJzSgsvJThcOmXbQ2opnISq0YKVMecW/ZfQVPRQz2mduIlH3sdVGWBZrMaEY5KRb6BgXkyvmy4PclE8bzRTjxU7nM3CavuwfKl6uIqMzG+yRlU1dXQ5azk3pbK4+/84h1xX80c+bB8jU0BMnkR+8L4/Xbl+kA5Bv7LjzlH5nIaE6ayCZnF5/VhQFdPmwTgfuN3g+ybRodILxPbAzmrA7Ayui8Mb1p1QUDDJ6iprIOulMG1HLVOMour0FcgWIwPP+2LTmeptmMVrWe3HFsEnXjQ3QittW+VqyOcMEBOGn/q72HA8Fi/s2nY/dTJ+1GG0Mo3zdxospBFKSWLjbYwYttgBXV/XfO95gFOGVw82ZL27OYEmcD3TMB3mUjh/h3aN0uLHbc/2t3mJjwx5ILmas9A0VHaZ9vzfbBlt5U0LU16ZpjXQMwJYmaORS40B7UpCB/zq9nlfTGzXtpnfXTiUCdNAbOc6fs+C34eHA+VhAKu8s5rsNurv7p4NMiFmus9coqQxyFrxW8amih57GSDLUTi4oe66XOtseWisY6ln2r2eKryH7S8qQVArnDLS3JR0j1Zx6XtfS4KQM6NbdgPWhF5gm6XMDU8blPcPrzmuUBN+2yBF89Y2ZAbvc0We1UZMBeFuwYE4maKrnwLMcbdYMTZV/r51QrWNuMnmfWdMsXD6f3SjoIBr55nceQG7f0ea0lT3Q5iOjdi7DuTNUGLgYi4K+r0MPR87JyTZA4rAsF7cyduOjlGORyqNG2KOkcekseGU/YpdSpmyIXtTJ8slIqV+wzFPRd5xpsRVALZLpk7ODCpq2O85N7a1n4Z2JY9OA9Pn9hYUTPYfYtu6dLvJ+SfAX1pXI7pE8gjHkk7Y3Sr2RddcjmnZTmk377nIaQKgLPAgLnXy9OnPhbbcsj4C3N4g1zODaA5vgknhZq90n/7ID3kM5z2aWkDCsQGRs9OJuhY/XNAGZrIyzN3Ijm/RWCHSbrrKswiUnQ7vikC3f+mikLgTK3g5q5J28vBrPreQtrtpLQLMfsduw/URNjxY2rYvLz7yIDgAI7KSmxzAFzwpltfnA8D9e4Xz39f0jEboNzAQbc2SgOQ7nMxo1da3Xi/gq0obTzczHVTJufRxkJn/4vLAXBuGUhasFyZVXaJO336pFmnmVykch45h6GM4=
Variant 1
DifficultyLevel
700
Question
The rule for the graph is
A=kc2
A is the area of bushland in square kilometres.
c is the estimated population of feral cats.
The graph shows that a 30 km² area of bushland is estimated to have a feral cat population of 60.
Use this to calculate the value of k.
Worked Solution
(60, 30) represents one point on the graph.
Substituting into the given formula:
|
|
30 |
= k602 |
|
|
∴k |
= 30602 |
|
= 120 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Algebra_NAPX-G4-CA25-SA_v1.svg 450 indent vpad
The rule for the graph is
>>$A= \dfrac{\large c^2}{\large k}$
$A$ is the area of bushland in square kilometres.
$\large c$ is the estimated population of feral cats.
The graph shows that a 30 km² area of bushland is estimated to have a feral cat population of 60.
Use this to calculate the value of $\large k$.
|
workedSolution | (60, 30) represents one point on the graph.
Substituting into the given formula:
| | |
| ------------: | ---------- |
| 30 | \= $\dfrac{60^2}{\large k}$ |
| | |
| $\therefore \large k$ | \= $\dfrac{60^2}{30}$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 120 | |
U2FsdGVkX1/lDNOFmKhk20hPTfEffNx4VquWUX0VSD169/2dZ7o/zVhkBX832TJJ0pwy0DIdGEdMQivwfFS+/IuU6y8ZJgmp7w6xHWtb4A6nVKF2zo5aAFutfGZbxWrSuBfV3SCs4rgLjWlbNjg/6JCF3UyoBUEzwc+vZhZwNRp3bNrqcSgTbmroDN3QXZubyghzedTTrhRn4UMn9xLTQriXN8fQfABFjZj1p1AClSyKkfRErY7dSrOCMiXHGxiNRs79eJuGiRWCmGBReVkH4FbDbNCFTAHWmkW/FlSr4lx+DmjgZE/dwHMUKP4xxRojF09e68/bJa7yduJW47AvrUwJieTY2dI6oz5IUfnh0474UCjJtJ/BSET4ylvyRBj9ROx006Y5wUd7D0SkCecN6JmUtPlRObFomgGpvQGJSXYWKNWEQFmdBH1aKiyQ4gsdZ482OFpViaSkqXr7hPM4V5Lb8c3z5PuvBhAOVhyL7xXU4f8eKBeE/IYSO75vqRcI4NckGz8nxhhONxTaEOwnmBX70oiM95Vu54QiHbVzOZW2S+9z2WVLTMZ5xgDNnkvm3ZGHSDNFLcM+/WThxTwD4PEJCXkkZEMn1LoPw90zlLsP1+goJ+WLb34qZKzY+oTzLMeqcfxTxJk2tpXAoicJimTzAyw9kJlP8TsBudQYvKNrB+TwAZUiwcW4N949rmQE3aac+N2TomLudVt99YvTApUmQlROeHksXoYZg5HDKFT2b3afHxrWvM5A1EGzuTi02+QX/JIKSvf3K9HGMNsQ5sJBQLEyK8fvBHSgYdVCAa6dapXEqlkeYw7Mh5IB+EWJiSsVXpm7vQ2IRRAOqd9Ojez0rF63q52IBo6O3Zoq+gzRVmYcmBPcG9dZOkkddBlRgw06dVpC6N3skk04E2EmIF4odvC7PYJO2+SZoJlAdEoxCHfDZ2BHjtkSf3n1300Lm06YLSr7Z53btv0qUh8ezhLn/QyYYszc7WS6ISpXkZJ8MMZxyrkiN0zVkoEtI82XLlUVt+iptu17887tzMyCmagZTiGb6M07T1Gv2l/9g3LNrD07LIzi+PGpeJnky4Zvvs08a4Oj/NXFVZDXISPfUZof4SiVq074bNHSy53GYH0MKIt12j+qRKE9ZC+ZpSJdHIsE345LTThxkgxqaoQ2pbaTVWs3mEeTeO/aIXmAJnsGEtTZC3cTpbOi3/AM7R1YYUUWm71dBxHB144bCr5rIRS3ZTbZfOuLdHy+KNMmiHk1pdpoz5rF08FQpkiTng9VRk9gWTNGShImwQcpPu8JYy3JpK5kFAyuOX+mNlBFofqxXFju3EkLj/64y3VYLlxXt7kynWKUxP+PzQOe1As72guhSGgrQX7TaCdQQKe2H8v4B7YDXrPQSrdmbtKi9qwUo2ziXwXJ5Fn0pevRLnItJIlel/DYloYArJk4cCkWxhosIOCGUa5XOH/cnSAt0RzIGhu4tQAk8zQ0uiuuyU0OWA+XWTjN6rhSbG/118M0Hid7eQi5httcoYnfExZ909QsvZj5s/r0YN90hUHwMQZk25h2TjNqDisEeViOyWjmcyEkElCfEeQAnf7seGbtFyAhrsMdXWxf1L2I76LfOEz905GMVie0uF6lxKUN6jiq6E0EIGZmxZPuQMxNC8d6z/vEKzrcw+xdN9HC0rWZQvxtIgY9OC/iUtHShAfDDb7kbU1vuam9uflwJ0p88bo4o+NyTntKkMzeyUwDyo4cE3rv1PkQNBtpgYRdmZ6rGYjHva96nGRaBGBvft51kWlSnUsUWDFVD1KaCwHNuxn0kgfD+w0a3I8ABVpPCHU/MJWTr4kjoyilLYGDLm7gBf+Wm0/XKygFNLmsdBsTYudHtL7RxCqq07Pcl9mFsSQW5hjmdfPkYITI1A+qPG2lMBnii+pxPXXTRxHniVLlZnzPpfWV43hqnKbk2nP3xFoVXyb3Es7lryTgQlw2gZATeVo9NYybL3QyTrQsfuYqN+5EJQRLdsf8MAJ28nTPyr0JqCU8gO7IAJaBYhFlFiMUwOjEs1AALXrSv6JCD1YiIjLht0s88G2V0cmtKL0XuUZ4UZi/uwiJQ/m7HcBw/xotTNTSOWaUWInHZYZwcE+7jZV2bOwKFPLo56knNJc9oxuwEwk3HE+NuhWOSc0ngjhYm/EBc0zPpRQV3KDMgOvY2C8fdiXVsrROfKW+edrJMa8FGhV3oGvALVlGbOR1a/CoUhooe+5lkCZfM+Ox81f7WAXvpI8Nv02fr57D1ki5VNHoifPplwScdynR2VwrLy0+evnnGOPlVg3Y3EwShXnyvIpyM0rq1sx12hDY+vjnMwcI33o9Xa2ihfy/RlEe4xT+vVw5WdF9AErgyuQDC8cckMyT6Pwl8c4Ple1uO26Med26ka8aZmsDtoIF8Iuh5jktkveNl8KxQXuzGTywK1k6AQHUzqQpk9AqbOR7dDvGNn9cIbuCk0a0RFfnf2igmEVlELGd4R5oTs8o3XFwajQjnougqlz7XIczG6DqN9vsqCuUJzuZyr3wDs7K5NdC9LvePiJNAwfprDYTyzJ7BN5NwCaOBjC6kRaHhBXJhU3wHqAJPqVw5uQ7QE7yrGxJBioLeawd12a8INh/M1EcIusncw/ASY2EjGtTXnC3oD2Y6DptzoOWlNQM3DQRs1NtkC3O9juoopJMQZ49nRwXmbMis1meS63UzPS5s3VHgpVaMElQOLEbdN44OPgyWYyOJev3VrvPxVP+Q2pC/L29EvfYQDK87RZTrvLdez9nnJsayBYsWDKbwIyuWddJafYR9gcAri87OB8fhdjvm026CXor4A75ajmuCs1UEKvMTGD1wk3p25Z2eK1xOG4CbjCKyGx1zGHMuEHvpeNkufG37Q9j8qaSPFKgNp9BqV0vxNRv/3FM+u0WTLV2Z/tFNG/HqjTsvx6RtIdZBkpx//AzxxgPS0lFM9TaLlPAA4UwfAajDLLyMDDfTU9x59JCPnuRcFgLk+GE9j12hPdSXMPVctVZoAOtQ75u6kSb50kOEWNEFgob8TW1jhK7HIWnNaAlk6HyX7ouUffnrGlxPBVz12xZxprHSUfNKNQCA+7JbV93V3dmPy5bFjGXOEIqwTepXHDRruoasIUqqWsyR7dg6X9yuqD1LpOsklAYoiPHVF8EwbB4wMfjRlm+5drabE18T25TJMpxLQu8vvy5+PqeFKgjh2olsJa30XS6JG6cRRsmb824HRcI8AXoJ94PNmjXbrvSqA94PC47MQ8YLcudENF/Q/s1csuSZ8Bw8fYdKiZ5Qnv9fgqFnkd7Hf182ikTZ1Whs5DT3GlTncw2PGLpIs1o3ikAPT333j9d+VnbTE2aHIIirq9IBkbnHJ/ZkuVU3dkAznUEOBtgal1YOp5ao7CEIeesmreHSGGS76rbIDFCHSmFaPtPGh28ktGqQAYrg7Bc7mqhek4p4AWcBEEw3ivxETPPNNIXEaDKw69SLZJ5fOmoffbISlk1VAFjaOK36ZfOWQv/+MMxe45HAbah11Dk0h3nyljabFdk9t+wpBIbB44Rtbf/w3bp3cy8apnr3plPLkkEGnZvKDBwLZly4jGWm0SeHH73eXZKxO0qA16NC1PB0Ib/A4w31PDJCBeoV8poiu3M140TQ+QIHhj2am/50ObPWaGWUmFyoKJPODdguHwzYueyHre9DuwwCAuRKzZTLxGIwgxJNyUOLSBbuDhztRXVPTBYtv/2jCvlgFW0Foy4b9kAf2Yu6vBq5HOOpXdgRSG3g70Uzyww6tt/8jTpmZLeVvV5rWXy3M15uZZV92l3ElvLZF2HmhGZBDOBe6KyAJbNU5N9d5iZV2PYg8/Sjc1ZcuvwimWIRnIueOK+S4OG16j+/hmkgLOyhOWbB8O90fDazvgOeLMZI/p/B9OMXGTSqmbDZcrDEybAsmdWPOnOjo1Fajp+A3vkrXOOcLVxpipefzw4fq8CgQGUJxPtWehDPLFkUf26AEve8HYptn0xYw2f3Nz5In5sGUIpLQBCAUWZc3gyIxbwGr8FWeWqDXhKLVZa9yl4ws4gGarI/Hq9vT1WeMwIIVnG3GJoM/nXXII63tuwp8TBZEEeGhZqmgqpWJSMY0EhiYUdmZv+SipdkU1QruNLJQpVX/QF6uiuHN6xQW5dzWI0XmmkQxrKiGraJs7PjkOGk9IBOsISL9qD6godEcbhxndlZV6EkqbeIleNwrW2ydn0+MX7FGO5ASK2tXJXwavwwAgrETNSXNJhgZMybvtya9555mbPV8EsmtYOy42L+95cS/4YabFPenhxRPPquiuEkZZO8imMO/CNVHPamXolFsTso7knzLPuy5x8/epYxNySwDTVEMy5xL8dz2s1oemKV6cpE3PYYoQxYs4g2fu9bDae3emH1E0k2MYwnenlAgXCn7leFifvzROBUmrjNnTSfhswdvx4Eg7dXlpiBLPaNry4BDvSjKpV6WauvMYyWkPtfSYfOtlzA/qMOaHCMMhRMM+kdL2xCFSKpYnw7jfHLZUbKwpxC4rrk0eFkfbvDl3dbMOQAkul6XDqn40DkqeSG+SOLF31P/l8Gn5ssgoAHrK4w63Ve2bMibGwfc0PGDaYqUmZ/xglEENKpF6SCybn9XekoNvmYme4GD45FLrYQ7zENIgOAXZ3auzP1ZUf8g1+TCm90Gzn2+5JDhj6FZ+BQaIYRtk/lJbFGKfP7mj0KkKJi3+W9agnOVGIJzFh1vpr/Q2fzL9rLfV79Z2c0OsHJ1+C6nVBNvcFHkNhKS7FQBPE2Utnq/Bccn3ITg2sNHoNqzFBrj0FbZpKDLXb7QM4z3SbAuLLdjtRbjkz3rPjAVA3LPgq8ahh8qXIW76w/ZNIaV2EKmAE/lUaAZYztgarW+VhS9Mv7cc7m4A0BoFA/kCzS5Zn/kAabTxeftU+J5K/E3AiqU4Jy+p47I5krf4EC7rRHbdc8Q9HiLZSkzXpCDa3QO1hBw5s1hm2AUpwMSPJCRMKBEQLPYGUe2pCFuBreisehtKkgm0988cTqhIov8dc5P0RR5cNT8oJ8TSh68ghjCxh0KVbkS5DtDLaZogRQIywk3XdyhSKRvS0FwW+sDJ8McjB5TOCPz5RvmJ0jCGslEa7mRiJ6VQH6WgVmJEOXBK2Ydx9n+YxdlRm+g6IQSCzkSCE4wJClvj/WmUF3pbG1eBnfQH9qhozgMzaqi6scL96VSnHE/ByB9VjpHTBGdqPuQtzSMhXzEhGv1aNVq0Mg84biMyinBH11NiymKIQ3hTtRV90zxDjm5WkSdhKvilRu09RAZMhbcIHh/FJH1MBcYPDaA97injkGl/IEuO2Gz1cFCVs4e0wq/RFHah2C2/Lykzb/p/fH4mp76dYvcIJxhYsCNShK6MFQxMdMMJBA2OaBoCVuVHhnUeD+kPVYojYyL8TO4PRXleUwuQ30dJ0pkGL3Qg6fH8w/VvOx9EDXQXtwtz2BcCZ9bACkT2uzSNrv6TUt0hH42jvabBSl34+yn+PQUd26fCvNbf3puAfKqpueZpbgQKJ0J/ffDZGz7PaUZqz21SGbYeKZHX5/wj4wE/08whsOLXBU12Ecvfvh5UIrjsZ4MdqjbFWEzqufx/Vyd4WEZoWKZgyG13MOw6iwSL5D9N9L7XwGbBb1RgZIAjQWoBBu+VX47zLkZhJ/DlWUkdJgQltXf6x+BnxbYxsVvI9GrOdEeN9EHuAMEaAi/d8CKVbKUVprpwYa5YSTtSZEeNNpIjIMWUvynqtz54y/8jCWsTHpI05w1dJ2uNhy/KkU2He0ejocQ5yhQWmAz4y8W/nqrAmlwQOdgwOsSwBY6Nti9XAW8las74ISXtxZZGLntcJeEvfwsHcJo/z7aHlCXrquTrCoWYf9Gn/MrVV4QjWNues+/qjfwp2yQ6OSRoRHrr7d8VW86x5Cy9AwLeUYbfMsACuiKNH/a/uZEZ+/EiAon562+BIsF308zxc5k8MvSfKkC43/3JsKmKQ0lomz4cyUAYGSiUnMljd+ShEQJ7/tx3T+jPJFNHSrWCTVfTA8smPY65ytRhWMBdS+RL11MH8l/nSVvZreD5ly40YKJphrlNAma/7YmpvYVdhF8x+2UElCdVQtXf8TgaACQ2WMVlFLGapy6G3fNyZTr7Y20y3BlarySdPbfsEi8Ck5B6qGR20l0qkoCka5xQbZ7QCIDRBFYK/HybNSBIVnbilaU30Qn3S5hZSSFMsJAMTKZKnOA4Jh0t3RnosawR8Bp5gQLWYlNVu5xKPGlgcHGX7BMocIEMjNGIXjAh+FOiF/diShbZGMyBwjxDH6qeWvXx3WfkfEaxOUIDLdxbRPaIMG2Kf8EKbrhrIE0dlFUZGEYdKk2sBoVOJqsCXlaGNyqRswpsagjWBx3BGBtzY9AsOWzQ50BLf5452o3+RK6FA69ZMU+/QFz2c9HTzQJKvpnM8xcYaEeBZEwT3RvbwMCNaezSc4e+urCFZBY4gjuxGWqh+40mNiRxDdRxr3ksujEFsjAkDPbwENX9cSMi2FZvQi7w5GqjQvO2I8eANup0eVAdgWMdS8cjdxIkMv62L/2aMoNRHrjc/1xC0Cr50sXqgLMNxC0LQlWW41MxAThBtMTQlNLOLW8kod/CeY8C5ZG3LkJv9IWvisn764grs7im2IMovQuKQxaV16A8d7lGeQEPayeltQf8nukqdHhSFuPAs1794Faf2pP6xlCh3gHV4NCj2WCvLdVaqFNS+IMjqki5KpSCTEocWal/Qkvyj19X/ICnLxMgPnuJhQB4b1bc8tfU2plcIpA+bZ/YioBP3+UuwJXOkZlMJ/AuvZGhdT9ltwL0PKe/BWO3gXJRmultxgdi9sy6f7wZce/NZtrtdD2j9KnNpGAx1+XXxjq9SHDXMDa6L2ownJ0sJ9zD95q8VaJUmSGFV30+xdnK5HPbJCzsGmitX9R6SX6ntDgb5yyxPLsf+e8T3/8qubeV+5F4EHxD+A6djVIS1ZkaJVXZfZteF56NfG4mhK/qxsmIE0WStDEqmUhmulGDrdCEjgHlfQXUFyHP/SZAzvVFXHcx80dLWFs70Q7KZnrKC0rdLJxGLN4gVtfakYGBiN9tI/7Xz0mzyM7ulX5GsZxjAIvUQAd4D2xi1OKsrKag6PKdOhncgOEHG6k8SE8NWvIDhQCzeQIHQL8Gdx2etykmR2oUe0X74Zmep9qiX7Kt/w4eTvoE4zRsxxH4VMvtrT2mQ8pIOWeVEAEADwiDbxFpdy/ISor0rZmoDW0Pa8PLRWSISOuqRGPDv535dHXKlI5aMe0MP90RG1oF71GS2TqvgBdMtKKHZZkNmOQ5pz8YiSr/VgcF8+sJxHZ26hPH8rLVvbpRYTlp2+urb4n42AnplWX648r4ExuQHfVa49SJ+fxtT1ibVcd4wi8k5ujkoxLUCYKugys1xSR6GSh9bH12eRBXT/+8Wl+4Rb9ZbEBBuKYJiRysMtpsNRkCDZVjTPr89bjGoeXoKJzH8rWCDrZlOypUD0ClWWTiD1IkWwUuAQE1tGFcjG+zg9fT4h7347sWevhgKhdPJN9cUeJzDMxjA7sBqlGJfC+oafg6HIlepf+ByUgFQeMndwTiHg8assBBBthphNTcPEurrxaWop9A4QHpLT/QTM9vxwcZ1t0HBCwWLBrYltJcqQtx1g8DjRKjQU3smvO8WN2SPyPwhNembYMzMhpwqgk7k1nvAY6YWx73aqeqV2qnxFtej7C3n5FftKqkKQmO8BRk/HXwuW+W61DwRakFp1U2A0MXEg9K8LM6qKSrMRu8/+BumgpJxzflr+ICcihvPsMqyJnBDTYuw9zA2y3CDSKB1iQX32zworl6vNd/YNeOo3Fz7YAsAnwNdMIsuEdrPfdPaeUlh/6XqFjJqc9E2uyQd+KS8fhc/5Z72dVmc9WhWZjwnG1kIQ836RxffZGElqTSmiBA4vxeBDvZJvJFrOuiaxDepmX+DZHw4QmVHO50a4hVbEqtOU9eJEEtydUowKOeJJHjt6EDUT93kB06wsTgz3l9oBevfMvyxD2VgP/7xOWFX4PslQTNnbXDUMA5PQKKlFBEqjNYBhrgNt+5zHdOzBmKu+s3upMZZFCCd3DaEwlkIqypXgeTnzGIExp/SPODMyXR3KomLDhY/SiAnIWqcK30DuKdHS/YMbRpknmZI3p22zml5Y7N6eq1qzTj2ScTCpLXf5ey9Wr1FMjoTUZnqjLEZdMHLx/f9Bfa1B2MhXqrPtjLtmdijMISp9+0b9JbcYfLSdMtptTrO7dP4cD+uDRqw9ETxMYKDFcJOOyQMzLrCTMzjF8AEdMHB0E2NqPyTo7dsRjLcKRDE7+PqE9jzbZCNDAWwfwjjU/Oowe/DqR7+GVBX5R2pn87J+0Mw8WB1ZPRbAhO2ZpZuAjClOXHhGv+GDco7bWBGg3M/gMjaCBziqFBWN9bOAZTqCK9vu9znFWK3AJPiK8Yo9buEf3fFRkEELSW7+v94k6DA13i5xyfVqVRGIQjKcoAQcqhw901vdzSmnyYIEawBL38kG+9CvGwJ5LaIPXAAxqFvm/xSSy25b0wwRNzKuNA9J1sTfVtBqCdBYLq3SPTVWl50lbrkIzMZFFtdLPoZNZfLHl25wyUeH4OWRJ8I+5gqv7H79y1badjIIW5MXJOAFtmwPKAeRDvhboywTTOUm6mo/mXyJJGu3+snF8fSF6a3NBZH2Q0H4XOYqHM3Xsk0xH80bPSYjQrnB3DMoIqVugvQuZDQFPTUSSRJ9iJvr0OM5KNLPrJt8+JEuegzwsivoa4L6S0l8DamR00LrBFQBI1qYOUilZO4WU+4+q6FZDkv4N8MIQDsmMho5vS1AnCRbTUZKeSac3H8R4j9RxjncGtCNcvcckB7bsAtV49UMBzYDXdpuMLpqNkBUALwP5r1Tb/pPj2bAqEH73+UXPUO6Q1XyLLXbYmPISO/+wI6lqRqub6Z4ol05yv6yK8bLUhcPFTiMyN0ZP01HiP29TvnU1RfsTME800n2bnJsOSEv8cGu1PqwKhJ1C5I6/XSQllyAkZg4EwTdk+FfyVB5tzf9wtbGTM90UKqTalg33fGvecrE1ImbxKuqM4V437ZYJbS1Iwghla37pTWIXwgD4viSTATBUL0zbNgbUqdvl3pJCrJBQsHdnkQ0gzgEfzjvs2dD/NSNbpXvXuOS+FoFcrHb7Kgb0AoPMqOGM35azLcHa1Qz1kwwyZrLHOU5F4C1a+o9gxpLZSe1F+VKOQWd9CthI0ZffNaf3cTMKJbrtMllKmMUztCCr/LzaxXdv3Kay7aY2wHHH8H+Ku/dtTU3a3NabXngAHfKS+Rwfo1/b1rb4nX2sej/6kauPMDTWVXtZ8D8UGkFbASneLeL1Xv9q5KHVga7OnRh4o7u7Ne9K5I8vDMmM9UedaB6i6wHG97ojnXGQ5yEhJkvvtUa9vyaB9OdpxaWjaLQjLRemaIXm7fjNu4q5+PoK3qBwkLw/3PPvgI9jnWbmis0JupFO1NnEVNvBqGllBQ81ZPjRumIzKT3MxjoNgotJzsI3obr9otHCHa8TgDRgA/qWt6dzQ2VFY120pcRBj5VvcC8Bitb4Ks0h35d/StkLY6Q2wKSHw10LtE2Oxfogtg9EjySOglCCHv41qaK/iqJ+WEToaKyI2peUo94/praTtHaE3/IeS3BZ1ErBbP4UrDl4GMrxOfS7eVa4IHuCdZnAxsM3pLErx1U+jjfmqJ8As/yDU7jaBZOVGj0QGYH2ihTmg4eSgnDsjdF++tijCJwXtsqTY6x+qb1j89hhg3vq1mkZFdc3MrtCzfhAu4fiTZj+68f/NdojgAIa2vzEk3pb+gFKRsPSm6Y4xwFmVdWPL/f2XQLQ5PWPIhzyMNfm2Uq+3ejKLREOaatrcIXxB4ta0b1ub0RRwVf7IluvkYV75kzUedxjtjLvgPeZrzubXovRNWimLkH5a9/2YagkUWy+cDOpo7Lcp/FPbkbUthpCFKL/LP3U/fpcu/zS/zwqFwZHxnaSrU5NhkE+t80/rSS1iA/S9xL9Uw2ihhMNV11jhekn6twQfHdybhvnLfHrqVNH8tUXcJIM8w9+XAEMOUI2REDgd0rvH9TuG+9WJWa/D3E8wAq+TkrdBFPyCxDnZlHddKo3TI+AAKNyTvmei0FGI+1byDlikts2EAwILK7/wJhySA1fuoLFNZpg8aaBuE5CvZ/w+89bCcyQXiapLmIyqi/J3RvuAsKHJ1Zd5i6B+rxRRSOJc9/Jv7VD5ct2a9ZbObwfhysFBJvhCyhelpy1UEx6pFiLz2Fw9T/FPdFFzD+g4brnisxcvPTlMTyNarpa36iH+JYlNdznXia58Mx3AMVkszqLL54jyAd+1/UXJIN4/1Cw/i2/dA14p5j+AeOICwggXeNpNqOm6yXM/nBZl+NcEOAalCrCFMHydyzZrVQkgMOIxJ6J1Uy5GoeQDy9b4XxuFcdTRBjdmNqQxKYO2DzpvAStV92X4bfXUY8G1pczQNMa7vGjF10Y+ABUtGI0yjloU+wKKkGt+anE2z96zdYaIOdBHn2BLJFIQpo9qpGokcsJnTJe0AOPjttVNZw4Ole3PNF3s7d6T3ifhhDM8oLt6S576CVO9/STB8YwWjq9EuXQ6DhbyPu7wbqq1fQvJwljbT1bnmA+eMT55unlahlxGi99G2jx4KwbX1HQ2kqVPNOJvWm/3XGdvdooJIeDWUlT5CFQc4TApt8JntTbCeU1MiFxkS5eKAw6dgFxzxq89JPOp65GIs44JHT1tdPP0HWwmknSNzpdt8MwMgRy8eZr7e5Y9rUVYgGQolEt/ZXqaS/n4rZPipgEp1wP/bzZIFdKm8bt+iB0TkDh6ydj3T2d+698jhJnA2yDQNlVxoqhyGg0h9GedAZ+XSoOeDFMuT/YeL0pdbgnY4biFHQ0t1Jwi7bCjT6aD+Sepb2M+Z92FLUx+TcbzXS3XKIUzFm8P0PV8pwWMCOksl8vkt1an1KLuT6XIJeGqhP6yrQCyWUIml2LgbdbdtP0kt//pRY8qc7Cx9rudVKwsol5nrKt3xLU/YwurztC5xzjZpOMx5ghgikKO9A0fcIGEMJh7SxKPi39znAHQLdBRAQTss/YRFT1nu89mb183bEfWQkxd8El5WvabYycWn3d5qZ0Ongn2ajOvD5nJNko50h/dB+Pgahg5VV6K+gd1rIMNYDUHsztrSyFQ4UniBBpYKUodM1dbHchkNLwDMeZw+GrgTpedVxz+nOrRVvgj8plJPNUOr+o1ZGygKh2iVtU/IRyDA4VzktNKk//FRzG6mPHUTLkOfMELDhNHuwtyz2Gs84rzuKSZxVwzZAMw/+AHImlgicTJ94g7zeLXkKA8IdCKwM9hE7ncqhynqxMPZ48gzbaOr4oYie/jcILd6eAjqi46pN6IWfADMx8TtPLYD8v3peO1pvbM3WinaxI5OhqEZ2Zpe6LciDryMp5dKBURa4OBuX8XLmVMKjFZMnVwVQLcNhiSF3e7I/5Xa0DbE7wqRp0zEIae18K9USDUVQuDfXkXtAVzfP5+/L1J1L9SKjxKdUgvAeQT2AGtGlUVfdhCRKQVR1vf6+wqFpJRJ5LtougsS7GQTPMQVpkCss2y4D50XQvQLozyQ+qd9qb0zY9S/e/IHcpXxuCRHvipZh046okxURpS36prDb+vBMoKlg2TPOs51lDes1n6cSSMJprQTuwTV6yKBWOFNPCQ3N+Ev80SZ1KJGyV7U/7y4nnDH7Mr1Y/U/q94f5+VB90TJNrtMNI5mmN+3IgC6K0ho+Cau65tzh03sBHvZPTMBhc5j6jTFENQFVbdauoDI4m9lF4b8Nzoy8SztXbvL6isbhFBTvfRyUi/P/hUMMZysNFcHRSy/0XM6/iZu+RYVvt6jQ+DsxSClgHxTLnObM4TIDbIqffJt9Ed/8f4KfyG2X5Uvb/uHLZ1ECzO/zuRnkrgO+8KuG+Huk3obO3Ji4VR/mmdNfd/HuIy1DELcsnggSUT1TcCa7qV1j4dv0Mrty94yMIijJRkp0sCP9GE9NLDgOWurL50eRfVUYrHh3EMAeDxkblKQx6Q3IXtedJ7fUOWb04ABWA30AOvwsalSBO0GwwkhtyMAn6BOrGWQ/63Nj08U3hiP9L7TpuDCX01J3aGoEg9pYV5KnXcWeKZcuX50VXrfklWZnpe/x7P232fM1qGAI/iI9hXPXOcUIPmpAsLs9MqnOiya41V1slUNO4b4ocV2s8EyhPkPirTxv/moxyqq1URN+08plQgY5lDLzSVDLLs6OCOVCivEM50hMa/tF0pHVS9Drdg0Bu3odjjdTIbuVwFDn1Z+TybFLzz9AofROLmDhsJzkMAWk2VKn6B6+f25u9KR02euYgg4Wbo32bwMnZYpmtdVIoXCBoxllXBnksXbEKHoZolnc0gDzAAUe63VaxJoirXvclS/ieIQbfjUfh6e2Dkt7W+g3Z65Vxp/KwKggpZHf2GooN51ftApv2E1kg6dS/wK8bdWW+FWLojEJXmgsGhqr++fHB1iHWILWCXXkE7bo4JuvDgmrQ924RxRhpaKe8K+GxfMyNRtK9BnGLLZV58L3Nzqo5nkRH/05v0W0PAIFCeGWQb4z3ot3ex63KUG2i1AD4+F5j1CDUCU3/hhtD22aN5txURV2vguVvbwPZtapzsMvtR32z9Rcvc2dM0ANSktUZXeZS3QM4DJ+BExDHPhVB5lGDztNhgCdiXN8sdWwwvAu3R0yLKJjShQNTjgwMXIPqWvArfEHsmICxlpxpZaLEfWbfjbSbyzT69+5uQ0NOZ8cXhX/DvElGZnSuQn5t6Vc8vcR96ScYAfBF217vxbWJelUeLfwBTXytmI2Es7hnIh8AMRrs9LIGMEm7IgVV34FxyOKjdb/PWE2ycmcpUYhNOML68CMAhldNb0P+C/jQLwJsSzql06rggSKgRz8TMrIgyA14jVDiMzpTUGjahabFrE9jYs8wGwoDrvVg7u9UBXe8vWptP332UQTftgzO4ORqf4oIG5tMhvtxDli/TAcE+L1e9+jdZuiDXnZsXOKcuhaRgFZfOotoOsV0A3XD0ZIyjqqjXYraSegQ38RIvkoOaYQjtSDFJkkkjtbdHUR+LTeEITpoBcBqwFzYQElDzK5VzaiH4+FBzSEbXJC9eJjq6cmxWv/E8csTeGt4HS86y0slwG61bx38wyQ/NLbUk5537f82jv+Q79KDiip9N133aJsdaVo0a3+bXJwb5fD9Xg6ML7SLFD/YAS6/G30uiMol6wCEe37boQgq4bLfyNhiL1CypRe0buwmzd3/3/AkEnKFYhRgqPq4yVwok304vJAQIZGIaJQqIcBG59JLRR4q4DCjv8tyHm2XkSJiJx/YvzqCGHuz0fZzAD6S9tB7pN4UhcHhAgzv7jV/2CK8E6jGAv42Qx3CvQEEagl3sGXs8vNmNwWBPJ0qd7DAvimxlLJqpeSX0=
Variant 2
DifficultyLevel
700
Question
The rule for the graph is
A=kc2
A is the area of bushland in square kilometres.
c is the estimated population of feral cats.
The graph shows that a 40 km² area of bushland is estimated to have a feral cat population of 60.
Use this to calculate the value of k.
Worked Solution
(60, 40) represents one point on the graph.
Substituting into the given formula:
|
|
40 |
= k602 |
|
|
∴k |
= 40602 |
|
= 90 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Algebra_NAPX-G4-CA25-SA_v2.svg 420 indent vpad
The rule for the graph is
>>$A= \dfrac{\large c^2}{\large k}$
$A$ is the area of bushland in square kilometres.
$\large c$ is the estimated population of feral cats.
The graph shows that a 40 km² area of bushland is estimated to have a feral cat population of 60.
Use this to calculate the value of $\large k$.
|
workedSolution | (60, 40) represents one point on the graph.
Substituting into the given formula:
| | |
| ------------: | ---------- |
| 40 | \= $\dfrac{60^2}{\large k}$ |
| | |
| $\therefore \large k$ | \= $\dfrac{60^2}{40}$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 90 | |
U2FsdGVkX1/tEBGgwOBVGsu48WQ3T4oLeZgFlkrcYVok+2jwpWhAIWDzsm0+HxH+DOKllQvC1Expuc83uTgS2PQ2DcCYZE/4puyodutfljYMx6KB7ULXbJx/uoWF3g7uZLVyaw6ou/l5gZzJ7ffVrR94xhMIxueGE4cJEoKgUun/rJ++ZADR2R5sv07RyYTlBj/kfhGA0yJBdS+WdN+4w67FHnCI1bY2p3HLrSkDeTbCmwF5rKE+95zFaf4oGNx/3IcwLjBDOByi1JoDPHfyElx7muKHEXhD/sqGXp6Rah8FYl6nZTbyObQnJhXVPAhC0aMOOoj8HAsbiZHjuNzIqn84tXmaCFQaqNF9f3lP8XXgt0avTd2LPaMwX+QXq66hr99iu8jrT9+zBVgI2G3Lp2jTLKBO+i9UDVY54hZY4VczAdzd2ssYgwBb+yHAJi/j1Iw5rjuQsget092xzGQmUgHLgFBipv1xQ8k+AYyBwPe4q8MUgBRxPKL8VD6ziaC3eL7d1kWqFBTbweFzQunzRwuxbOb95lBCDkg0A+YsK3TXzQiiGOBRhgN8DcJGKtcKM+Cn7h18gJHDgu+qchIZT0HplKZmUONnXjkov2ryRGnYBVNRCu56ZBucWKlbeVnKqmecH8QCx7FJ7C/7Wt5X0p9wlnnADmi76KRlybVv35XdkFa1n8eee8Mz/1p+qVh2fIh1L5pwADJfjREIP2z0friWdGPbULzwEfGGJRHd1gA4hDMiS76lyGBqI/A8yMVS1YxSkcs76NxWqmJls5OBhRMRmjFLLUAVXvMom/LbKEgXRylSJ/bRVzrXsqFGEnAFvbZl4ISKgI3nfEL2hO8G1jL4vt510ZSIaioFA8EUKGGTTvrP1m/Us4x/jJur0zqMz7dvJloyzUfQUoDvra+9Q1i8TDbvqodHpxv8Q00wbs0O+ie0R8xdmZkY/pXAcVvHQcTio4PuBG6bvFOUuxIDhAm4qZyClaEMGuykwhOAqNZL71IPr6KrXdDteqGep+iSCleF3cSc4cgyCoPiq0U4QS0QMFzw1j7U+LPlN9TAUXi8j8jwey5mpAujANclpyKgIusp60CykU+kmhx4XXSC86C7wbtyt/5sJALVh/OuB7wK6a9PUF8MGPHPURI+gQxW4kP1K1YvWw8W7bvGXxsPksmZFbzSetQs2gIqx+1J2F2VmjiED/cuUgPhBY6KUV7y/kDOAf2qnhc2fNMRrTNsL+a6M6wwvIEY+TpA6H1aVtysdhovwfMS1S6Udn6ZiucEAR0nSNHAd2vdU7KAbRe2oJv27rB6aQ8UV/m0QL1zy8j6XliXhPt5KJi1l75cdcDIw3ksWCHqZdLcXbqfeiCWJq9Fw9BREZwEwamaAn+wPf5O9wS/cZSyhakVaNaL8xg0hpzOhWidQHgvsbROOXNwR8TuHosT+yfY4y32luEySu5TJkL6qBJhZD35q2zilZ95wXmpDME7+ehE0DRBcCxUg6g4qL16ce1v6OM2PRhzWnp9HQRnvBoZdqKSOqh4B7c1aJkplx6fMZnHKe/vfDf5bS74ICGNnWmRWeAxXWrbGVv3KQJ5ApuiwAGdoA035wy2vDdo+AlfI0eAKJZGKKlvEgn+viwmXFhJ/zlzUao5qYtKwJpP8U++5t+oxLfuKqUQ9JxBBuNNCpxYkA5gNcVXnkz4XQ7FbtL8AGOI/Yyenb8cWeVuio8bkaHndLQpjwMo2/d5Q9TFbt4nmG2JMFxkFfeWTADGBMbqqjA9b2H+VvsnNrWKRaYeSINy+t4tWuMPdiaZwnjOZnmg79caLAWIzACwSCNMY6E7Jh2zGp/9G6UXfWOUMyFMwQzXQmFwaIKS7nOZNMz+k11To4MgxPaaatW52tuUHPOy3BIvu7u/8Vmdla9mMONtWN4+6ZaEonNTwPY87QIXGhqfR881D0sK5TcLit9Si6/o56a3djI/QxZly8Ff8C11IzYjl4Pp/WERnNsZYmoxXUN0khhLTXkdxyhJgVig+YNL8CkOpi28mfNNO1OqWBYKlx1rQnT7WAJ2UsKwEAEhTT+ZMxvoh40/bbujgSKEp45uPmzTMPinhLUFl0wlF1YaQJ4lYgJuGBaMP03aKU3L+/PsYcZl9kTQHzC0iA8VRGZ/sp39ZXIZGjlCfY6KBtsYZd6tbfVhLRfk8lQ4EikqeBL3aUBk8Co1kRWtCKVTmt0WVa0OqMXrsQzmwcKHR8JtdAVpgWENUIdUo6wl0fLeSXMRd9wtvuU+PN5KSE8iQeVc9jJQMGVYT+4JaYwlcH6X+DiCs72Z2Y2X91tdz1FUGvjVkq/At9GnFm9gxcAzxKa0lOlA/t37t2h9DV4ZOqNZPGcHFjycCi4G8LIOdGqkPpz4YYDdeVbXzGiEBP0I5gJYjP3YaSU0sOexQ7QGOWfP3MmTpUDhVd/KegBlq65Lq3GP9Zrb/Kgw8Fthdc97fbLlBYOxVT/8YdqNybXBvjkF+oD346vZXLop9PzF5tVcnP4nfTzZr5QxG50fPZv8Cj0QA8XFluue4zf0yp3LFo6Y0wE4JJtALso+CfI7rDl1qS2D7MPDTF7lkSO2cyOQ/NWrGoxQUGj1t75hfFyvt9s0C0cn6O1z46Sh2uN5YI+vMhn1OVxk/CfxnQgKjcr+9XRBt+27lU5BDHP8fq/AS08c0xAiar4aX8G1ubiC2s9dTMlgz9PEyj1PCobBBf5Ft752cjJPcawLyjHiJHaOEhcvYj5F0tZ31p95zoDNj15CNkh/V3G3nG0rVvfI1QeAv3r+ugIeW7joCvdhZOX/kb3cEc8gkfJSXKr3mqO84rP4DaDrF56qWt6zdk4U8xsdtXmZCWADGdF0a2xS+URyF9viLECfID87NzNMtUVrFzciKS8VVHMiEbPJmY9Ze/RjrhtAow4r0woCZn/e1+kGfcoO6r4SXGIMdsTe1laH189LRgJIexaKIwz9VImk0fYAcgWONr+X6HMT+ngChnepRRJxiEAbHCNWKT1mnlyV6b7KZde3FY1Yvti0M1vv0aHnPn+Hjwdqs5MKpqgK+kD9eOI6/g5mZPqXnzkT+blggMvKfmCL0fjpJvlkIhgFlTgVUI0ge9pOuOYaQIMZwuJqjzWIIaRAZQ+nkj2E1+/527cSfdpo/BQQz1BYi0yI1CqGwrpWy5fOgDv4gK+JhHAb2afOs1wHhDiwpGQKq2707bD94qRmfwyECfcPUSX2DVr3OllqhnY7vsSuLAFAvLTOUci8JbKAe2BvRKJY8P2tIjgiFI+r55eXgX7kbnMQwMJsaVo/U6eZVQDURei3wIwyaeRyMaEIWrKQCbIN8t6jJBb+K3/Jv0mbdLD5uNdiO1CRYP3va3lv2ePVqrGyqvYvZgHgMJHnX/kMCr/6zX5lf3sZPG6I2bzuNscjWbipdi+8mKKkZEF8xyw+qhSLGB/VaUjk8I6NOju3eWnddYL4zdQRaebKlF89QuMCUGEtDKXxKfZZw6/CZXOD+N/mVmEcogsdXud2UpJyPLaTO1yZx5Q2FIGRrBy0suDxGYrCl7ocxv/GGE93siLBvrmY9ze8q3Sycluep9/JnH5iVaNHsz50xRNUMAONPr+zErIXsL3Nu4xcaS7+AF9v03NZZMnThxlK87GNMQMwHiEYDx//4k9Y1vDmqgGF3uVdZKEWntSQh84WovHY+VmE4GR6VOuu82sj7iFng6wTW97zyfLhFt973XsqJ2/onCi6WJQPR0qzZ5oaIW/upljHjSZwTuPxuakBNeF+ofO63ZTom8b3OXavKAoXaidF0IQKouxAeFUlUY9/Y/zfa+bki/fzaYN+hgiuUdov6AqNC0lkaD2w4pb6P8WSQ0nn1YGTp51QicSi2jBORkfxQKKT/xUFVqhp4a/GA6swJskQ7WEFa3uwopyFcmgvQbIRjQyQVnr5zQuq1swGMdqZxqWym+eoZtCYz5vdIJxNcDpJtz/5BTgOBU52oTA1CBEof60MhCW9JvPfLQsXggzIzo8HXaS898EdkhQzwzGAs1WVKlEU5HCpqP7HN9NU0dhHruo1AWFl6e5Q0UrtMeolCn3nc+wdYtw7FZv4OIL93FCsd1Teu+ooLxQDdnKwL6Z0zrkkl8r3vFwiew1fDSCq/bP6+TDPql92sUpZ7k0ylOYy+wfQwF2dxE5Q3j2/r+4bOxd64Jj0lgRJ2Q5wMPBT755i9PDBuXB4ck2cVLrsPIrk1gCxRBk2NoQeuT6oy8ZYBE2kj7HIQlZDMDazIAGHO/t2NtdA4vNlq5Xue5SIXdx2y+kspyKo+zmnVRgdchp11Mx7sA5si2yBnYhmOjbEmjvsZWOjTE/JY2jfYDYSs2J1YMuq/P3Lb6MwkthLco0frKPCsnaZEkQeyeG12ypuib7DsuSjrYVaJLCGt/MZfIXrX67t85txqP6djD3g0P+tMVp+XfsyfEq+doumAbqVvZPIIqnbd6A7QNJ2KSNfGT97H71LfP0Xv+7jDZgXCITovpuAGTTl4r2Ktm29l582O4EMW4GNsUe1lXP7uVnS11bq0eH8DwYKXQwXPho9VQGBjhfXkhygt3hCOplzYReSw8zezmm8dFmh8Mg3gYfIGZdgemlU4HSvuhX9XROq++D7Z2Fp4d9CAIlsG+ma/s2dIFUABPioAjwAUjJyvfOGKCCUelL9OmhT7jLiexfKSgyA96vwR9yEFYSqkaWuec/0j+zpfAvQgF116+WYzlH0mh+rg/hy7MisWtOndx740kNOnpqZMlhfVKwkDM9aTaOd/1PvDMPpgqdSOEaP2QMuO46tCv0Hohp7N+L+VuP/yXQXCz/8QCFty/shETwgeWrGmnssyImjdPIgTwIOxlNQxSoQuPNPJftZEAj4mPLTjNq6e5t2j6SggKzK8aeumQUN4jbkNrC+E9jfERDwnPjAvvyWCSnP15NyPcAchcpan6nwpj/Boj8j4ySZQ+Bdy58pYzWtTiuPFASTAg9g8kKLhTmf0nvoyTN24rQrSO4awho/LXb7qXTTPzmNppKJ6OnvRLSaYtHdLA22ajl6jqZ1r9PsEWeNAJvbPlGKRXN+QZNJvCJ2DyFIWGyLhCmeAzwqj8Hh26TSu3bTACT24vZz5cs3GnNZ31obayDNyawBO5A17NbUEOWCH7Su8B1tp0ApfK1MT4Po5ZLpZb58LFux6MBV+Yidc8dhf0JYpNz8wnbjrEqVa+goub0RaW2yYmkWZL3nV+eSajPymKJ7oCl1rJCdF14HJr4hapuJowoCoixvAFpoYGyjJwqz+WNYgd8Hb7FoJTKN1SXjbWnAjodEGpZk1xBENN64i4UMqZYCwpbGoTfiYy+p5N6iiJxEFmlBQtEWK0GPdtySdritAU0Z80Rl6s5V85FNpp3t5PgH8OAiqOz67BzlAE/MyCO0qE8YctBD/cw7EXDBAfqYFCG4GC3iU0BAYnilK/hPp+pJkEQXDlwZZHw9jhm8g3xM2JLG5P2h9N5V4imOYTHAI/dC3YxU3QhDzDcXL9CZLDXCDwL400NkFmWBOhZxWnhUyljAmP2DbxHnBOkwgZW/5Yrux69Tr3v9bpKWVa06soQJnGlMFbrYdri0h/FJq3+tv0/ihcH+SCe1PerGbOd6SsZD3xxm5DeTiibixrAbZmn38MazEC5rkQ242mM/WEl/1EQZb7ENr0/HqC4YtLEgjkA3qxBWQ1opkmT6mUM20dr66AWZS36EsYFKo5t9Gd9eOEeMIbvqxsJGDN6UIji78lqLtBnzpv5hf5R/lKelnZtqjHEPZ552j43GsNx3Tp2v1wx9QlC5ehW6nBs97gD6pRgJGgXIKBOJNk9x0gi/dE6QUwuZAnhfBc4EFB5xdSemJcjrC3mARLmxtYFSCmFfEOyyqPduHpCe7ynAv0niT8aIQnU3wPhRekOxkqtJuxVhb+ukFdHOn2Mxtb6zZXgXO50T7vge9EQ7FREQTrx+iNrAjpxj77Q0oq9jl0nVDKLOi9V3b3Q/mtwV1XgRIreWHS9YGUDns06kmjTbl0dwMXJX7izn+Dc4ZyqbuNEfH9PoZl8dNZSsa5PpjTXAt77lqFgSKheGR1Gpr0evslr6c11dFg8YAdbwXKkdvQhGwKnO/+3dSThprJS615V85vpwnst8ooHgJWYky024KywhZGv4e7fg5t++g43gbZmMH0LrFEBFZsKt+OR2ocLiUbJggUDIVo3qh3tRJ7x72I+fFsqJLiJ/MQt/pAK92MKcANGag3/6Ga1jtJzVariE+WfEz2V2jzeWsmPwrJzzyCY0OxjmJWECbMH7wL/nRDmVkcOvjeuL2VrMWy5L3X4XeyMO2bN93OWqJszTUFXDTvwaLFMOQst+uR4dXODmefEV9pV0wmZ/vPXmKWGfOMXg/LUovxf1hMvbQEZUNjwx9GWdM5eWdX08vt7Dl3aSRGlOzMG+qaL+O0jMlNbkbgVwjrbacekONOtA9nv8/PTBLCxvympY8+0XjFNNSTjCocMuEftf8rkqMT+1bPDgOuf2ZspaP2bSIFiVpRTksyFTqGGwK6xFIvv6uAhOSRbNsdaD+Cz2R1UXzoJ9sVTW8WKGk7PHSowwGZOFkNrAillIVUbTNFYbTLEKXLum129T+rsuRCuXmw9xDK10+03qxYje2SxOBYEWTbVheRttVyS/XyUiYovvAn/kZdOVmLkgY5mGVT9x6RFXY89VtfW3OM+bcZd/1IrEsMcCHL+20W69MKwwgg8uE85Nm3iXTpmc3o9Td36jtMF/NqReRP8npqxSUv9VnioPu1cz1dhoUIEPFC0+4foWcNxfoeD4IqgzMRqk7ayLy2S7+BNJ94Jld3nGlqm1qgi41O3w5/tucYWOAg0zYtMumP4owZrz+1S908lV/go9kgZ8MymZ9BWzzvwpT75E30/TY8V33Vc22ONwu+y1du9KfjgO3lqH8vyVvyFqE/QSUBXf9O5X0IQEPbqGYVzCOA1/36qgEs1vOqN1OBA0leBtjFQKzGT/qHdb8tgV35Z9R5uBaC1xw4R7EtfYisOekQt0rX/oYx7rlN6Ku1GEhfY1H14Mdc3NfijE5ir45Dp9tTnA2PkQVafonqcAejgp+LTyUNa1YRPkoLZzjAYa97wUG7PSk2sGfE2awcjYsdjQOm3SdNyZhteH9JoL9gIjXRjBmglKPuv9Lg7YGMxPYsBMsdKQ1x5LDdNkDbbKRFVY+KSwgjrzF+PcEvIA2eeReOhnRCivyf7C89x7opxCQqRxoPmm/z2m6wBTLNO8LOZFJwRaYEUCUbaq8+tIb8y5HJFwe8zDdeWY4M6UzbmJPgHQ33wYIxKa/MELlACQjoiGSlec7i+o/D39ssETCVpGDeheMAWf+Km5Xhlq2f59aQcmmow3SzRQxBMZlzUhLbrQ4eM+bm9nsJRI7of5O7fnKVJUFW2i1hgf36PSMnWc9UAHMnDmfOKy1xkRxYglEPiSNWOW/BBrINnJ68aQemxoIiXyZ3XH4EQP2hfBOOUUPU14quG2zYOTYyoA9qo0cNSu+tj3EJkrvsp1plI6LtJzTJCoa72KthbumtbtB23CLcDFql7yggFsI2+9D/u9cleVAvFW+e9FMaFrgakWNFsZpeOadyBGTvQO15aNsOqmNtvPJp830DLX0JoJFKMqx26XrtWHibQCbwku1pQx4z7RlPphKvaME8xBRdSgV9BwIXF4AKk4zAQ9qyXflhcBhxtbtzTclnjIgg+YN2EeGw0rnaNJe36JN0wBn8JFMsX5ZHbnyZzGPqqji8u7uANyCq6Z7ywYqshkLpVuo6YKgAMZzkIDrn7FQ/MBkP+HBx01/9d+Khr9FHVQY72p8suxEMuKUK1SuiVprMIPXGuo9/ch09/oYgwn5aV3iTjRzGQsR0enoLnraf2zS+v/wS7jGgbS+ntVX5k4QLCYD5VvEaX2AvdyCcAs/xlsSSinSEBFOjrDeYFZTo5M43wHXRfdCnVFOaUHCTL2q0qaorcXNrdrctxZQ6oY77VYdooaRz1VHAO4lEFK3LLGDWvWB34yOLDo3U7IY47PM/4u8pTv3kE/hbXHEKA2Ch7Rmn33PcIXQ4fcNB6SXPcCE9wlGQdSL286k28+QDBBaJ5JVSwYlCh0A9qewhuzVQQUkeKVv/JEerCyS4/gd/S8AH5Bv4f6W/npgwMOY76H8AW3Sno+FBzxqXe2g8rb6UO8PquwAn2+XEdfnyj5LLqihb5IVaQ/iP2csZ1ChDRpC6Sv4GnGvAc98OJ6d0nzWKzw7MNRt8czy5iAeq1jTXCPnJCagg88D+lzurQ0VmIx66Pp8HuXqNMYAi/jFcRBkMaP4QG+kIBkZj7O9FC04/1/u+HBWlQCKrTMDcLg74adM2fiHPZb/Wj9qtVYnycXyLBoygKxgtg1ctr3sbq3AwGvZiJnwnz14zOzEYJSMcTpWA1fC7IdeqbELAr0w1LPSdN+wr3Uep3lZdrd0s3ZYWxTGaTjfQa7m6ooZiESbQTm4vvAgjLhvPz3sZ3BSlHzWR9Hy9lS1rEOUY2sbvHW73HkFH1kz6G8ihXt+Pg6AM3j1qqt+egTfs0my6rOR/kOLZun5pHUtcWL40PkvwEny08eefiF6iFkQOig+lr1zMM8fqXdffoYhL9qKjywp/EzJGrRB/sktukH8FiK9jQeMivXwu1Wvi1utLBhtnJWrZEESwpgWR7dSSKNaFtMGAtNREl5SOLuY/HTP22657JSmnYH1ZaUepFqPandEWP8JfHaxXtMIG7ZU5o06E8UqLkrb9/iyzkDwTY+qSRuowUm+Qie855etTpdM3KSa9ikkAyKUFY2C8gz0URYBEyt3Dd+d0qRt0gQ6ipoTeYgzyARs6iz/sKbFK6k+IabeHisLORqnULODu2VuamSdLV0EXS+dYTb3euKo2UG6WvJkgFnTrcEy+MEiQKbxG0Wau/263Vuc+8hSMJqrheStIwTaGsAm68X1VqNbmQKYiVfP0W/6G3+KJ+6XglYCD5ozjtCnVsZ7k3ybf67at4EwLTr9ZSA/4o0caRBJgP8igVqZPdxMPs6lmEqjbk003IyMeV2ylhTgUEkYb0zW8ubg+Py1R5yd0+FxlsmjIlmOuia2RlrX7nbU8b1RVQ0rtigWc7FyYV0k2l0/TRFaQwrUttxR1OhQ6TW2OKe3FYTdgZx1om4xOAgtMioP6VIeeyftl4+xYL/tSDzytNDP9ymTVnTxGiTC1u45NJp5JYMgB95cJa4aC3kVDUXSG3WtfWGGgPCaHV4bRolHWzj0YyjaxOhWN9L1j/iTbLqKzSU2Mh+9B9lAYvjIos5x/ZeZxqN5WMk3ajCjN/1cGCIghNRDtB+ujyxv1xTQEpqpMPfCVu+QKieFaubvGL69UAbXmSEhVJm6YkZ1ggyUSrVVYzqVXmfs5m2SDc9eic1zE7RG0YJd1mqjaeVRUNbNAwE333tyeOHU9RR5Qa4qeGzpeKfHVB+Wgq2n1XW9IAJ4f8extA76VKuZDXYH56DtOfEJDmNt68Wf+07zf0h60A6BXUJsTP7uTNv76XDaPHIi+VDEJq7+sC7Pm/9rKaD2oz5QdvU3gP2/WSgi0D6G57EPY5e8U3R4PMdwvL3WfKOkHC3eI4sOsp2iYE/jP/2bupcVpZYZ1FSvGHnrComUzNoyeyLY/Y6oUiNO/HmJbuZJLtoGxFAgbOeYqs/SeG5EKPOeescfLxYrndBNC/kWdlJ23KGYfc6bs4e7QmqsE59YlDyqiUB+YD4YkzR1efvzGtLapaa2wQneRzwDFa6Fpt4oWuaNhQH7v2QqyI9adFjt9sZG0+Jc2Y1es2g3qi63HpuHkoWXbtzqnz5Muw6EPXoW5BdBLozx5XsphrTVLe24f9EzNi0QYOQ0hP/6Ill1R98rJc2dkMueQErq2Yt1ly4l+qjMzV6Rv5OMa4reK0it2LG490JdE2nbOElT9zwraovkuAfb8CNMvXS13UPHsI9eAIHS07PiQLKPmmET/Z50IEbcwAmK2UaO4MFLeMWtUbJTI0K+kDUgvkQ79H42lxzANnDMfmV1MWPVsFA/6iIDt8B+sAtNI5yqmVz6XGAi6QSeXzSU4UOska2Y4b5KnggVawE63++yDWfks8uU/VsSBAQKSlYI1AccX/aU3/zu1zuVBPbtSXMB13VIbHr5SQjnYB2T6R510UMrKOgjJ3TwZAqzG/d/J0rbMVcFwiRB2kDl0tQsiXrcDfggus5H62E14ZxY/iMkWCIHxsTd22RJyfu9Q8DY37M3FYMrnMlAAY4El7YUw/TCqgsRNydW4nNw9FddXLNRodbijWwAe0vCn0qsTOlpHaKCATDmvjNSDKOrj+SrlvWGVbJiPLUY2FsJC0UC+uMB6+clrJvUz0UPtNrV3taRjwjlBIvbaelsjsiHROenM5XdnvMfEIZv2EQXEq/AnRmRVBFStdaxVcFatJf2Y/XWA1dtr2DNfBAUAKSP+3LnWjxYUqC4evr/nPekzDcmSaO+uP5oZ0/FAz8odphv60wYsGTPZt1tHmmeClNjie+2P4ErTNqvrhbnhJNx07n17QJxzQAWIxRBF1EdZ0Jnfl1qUPqs4/R0qF6HbPftO6yHGkeQWRGFYWxVVDZ3rMt6thx7SR50jbbOaWkzkMAUM+xSzZQak/eEsi19dENUEi8FNxPiqI0tNobkYETo7SE2mcU0hCIN7GtJNrGGOlcN2v8wXzLNRy4k4Co/9dyQct2dsKuGfmZSG3EIHVW2fqC9V52DjkZs8ja0HvRbE4j7ZQ7/bxgm7Zgeeo3/MIxBgEtFIYrJHZwZzxUtYDqAlWxof1sL2NGJlv9vMVbnbttvPiAGV2e7t5qb7eSvziUOOeZjTVGYoTMc6+9NYg/VbjlJ3NUOrRBcQQ4aQc8PYM23ZamepHNJ48fChTdBxhbbY2kEwVvxocr+/g3xt+VItWPeakg/IKy1iJPShTvLZ4s/7PxthCkUfLfsq503jmUFnOgJ5xsS53/bo/i1Ctj/f/nnYsUMo2Nr1LbuvV1F7QrNV7zvBZc0+7N4vCJO4viBxd5fPJlPiCyEC4KLd6IfxePdq1Bao9Jd0s8A0gfUkd4VsCUbGt7+7nHmpP6CtLz13IOmD5DKu0XmkWTXTILUmfuPLQsrVCYFAncP83Vip1cueSm6oPh2VwJkfyvv0iNCha9+RQ81s6COIHe46mmo6d+2lTy0nPSWWeBCHvwCuVwGYcwDBXyX85Z0VCQeW/T+gl76LYSD5njkvg+Qki44AE/+biksGcv2EkxT0DBpkhVnpPYVU+pM/ajkhxtoOPC1ooi0kxZ+paFRA3mdH99ogeqCLu2/KFa2tF4hyOAF7clWQTewMLc1aJ1PZR6FDyugwoWdovRfRJzFPjj71d2r84VBsSQ/xExEuor+dWJJx41TG9h337QQyR2Uj5B+PzthYCGTQCQQGmT6ykuW79rCpMdsbGNBWCMZYaK3kyUualmrQzB1I2R+q1pKgs0Bue2cCYKUGVgn4zmH3UtsI0x8QrIg9S0EpwQwXYdaxeIX8T2UucKD3qRQnv2aRMONKeb0KI3EYkw+klzcWGqMFv6mIxMh53Xb3dvqEqB9ZC2gk+U/6o99rlXqOKHQkfoSJU5bjPYeLnCsPDoDDJDo8JXY7JXK4/nqJhorkoqw2PvUXfPWGr+6w3ujRXSbDsIfVXzQHwNWLwcweVws/UvzjZzZuGwhoRuwzby6AOp2Zqqoux8tPXQb2hjZz/otV6drTyOiuBU6XAi6dQx37D/oFRTDoYH9Mih0H8K2vgyzpsxoOjZrUMZLRk1uuF/CJxMCtbNK0Vv+JcX3n2Rz+ZU4EFIFcAEdHDgq3vKUP5cPXZ1oTn1BAxq4M39m91xZMcR2o8SOx1+XdLybH443PUVFui4Pqqn1Hm1sbppkfWDyyXCjQebeMh04HszmCIdHilZc0aI6NePuoTpIiimUcIMCWFm8aXqrLKSjRBB/tCpxv3CDxhaYyBioIOuZjCIwREHT4pUoocYMJlEDSp6dWYz1zYXjZAyCIwi8UFdIv1PfehfeAitbCS7WwE0rqozPeC6sCbs2O5ehceNmbbImbV8vx+1g6zN+/TaU5zy7EUp1Bo+z48xnFbe/oDwco/eyX4h2tpfPvv9o0XSHhrUVOa3HcWqB1wPv7+y6nLaYRzp0BM9JxFOrHbX9kWjaofZCejbSmoTQUFoKSO+rsSrCtUhwmqmcRLgYGpcyrgYcMLdwO2F+9urwHuCs++1jWkhdRSfZ9FTGZ+3okph4BilOunKTtyXyQBekbpT3Uv0uhcYR8KigFX0wqFp7WcYQ88f2tiMqYqXbq/sejzrn4DOJp1tXNO/pabDvMJLqQDZnOc6yV8o7210Wzw3joze8jLuHbp5YdqoX6s9zxj2xamin6kapFRbQusly737GUJ/vLG9zQLRUpHuBjof8E+oYnmu0I5xJGBKtoM+axhNnQzvrXrormPxxi8MflryHhoUEjuTmhaB6mKumT9MIqUHcW/UCsBrbMvtmJellEaI8tFacew8TBEoRcIXW4Jdq9ZFeYibtHonYhj/vMdXGOl1tur7xqL+KFesFZumBy2VqoK33G/AEWPvgC9PDOuW5/9Y9eQGpdXwB950jiOOs3HpqSljBe8LZxgGwSz6QwURBJpEOEKWU+Zv9vUNaha2KblNAiPCk0CBlqSCX4J8h6RkoD0rREc+alVzcrM1fH8CuZDk4LCdDwlDiwRfr8bwDHQO/5vEJ7kcv8Min5WFulUbOV2s6Jayx42TM2grTqn1QeEDQMGwk2Jmy6CjnRDFhsyObdXlIxaEoy/hWw2DKSjo9Q+iBfBfmvD6KyF08S5zFe0lAVnxOOO3kSzFsfbhC5OP0gRgGK4B4oYijku3+fsKZOgry7559zzYyf1Vse3pddPm26n4EM0mHaXMYaNw1HXSzQB+qie/BJpDsFPt6oXrCWVhgq59ITehISrHgE8sW62ICBXMdHdf4PzKSfLXty1VOB7JAVNwEX3A4VwssYcN/uMiFR5ykEnCPlyrMwyp+uDERplNXGgbMf3sQMdAixDzH05yyUHkVnuHGUVkHa0xHKm5ojU7H4VIoP+AQLH7mmo5t/TnJYKgE7+jUe0mPNdGS0yc5hbYJE4X+KJI3U0pvclGEqDz7Q9oEkzm/qH7mWx/zTBHIJcGPbOcpwI9+8LbJDBqaTicSTeDT7NErDdhkYKHWTfigAxwcJRmv4UqquoWA2OjzKikmZ7l1VA+SMB5xjDeHdOItX/1mtYdGQCVpaWiVLwk2xDMkOwgYQMDDxIuhuWbeECfooHZXfh3wVhX6n7XRTgtQ7cJN0PPD2nJ1db7EujQfMH9UhPPuwUwBTDTdwg8yR6r7i4tHplXowfspyPWcMovw2UPJ3B0kdYFqsRPWbX0Vb7j3d64Ie2S5kBPIs4/jpjM7hQQJ5IRjEIbFT0oxNOsj9YeCjpp+B55r4LTPRdPk+RXTcgaUXplo4/sH10=
Variant 3
DifficultyLevel
700
Question
The rule for the graph is
A=kc2
A is the area of bushland in square kilometres.
c is the estimated population of feral cats.
The graph shows that a 20 km² area of bushland is estimated to have a feral cat population of 40.
Use this to calculate the value of k.
Worked Solution
(40, 20) represents one point on the graph.
Substituting into the given formula:
|
|
20 |
= k402 |
|
|
∴k |
= 20402 |
|
= 80 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Algebra_NAPX-G4-CA25-SA_v3.svg 400 indent vpad
The rule for the graph is
>>$A= \dfrac{\large c^2}{\large k}$
$A$ is the area of bushland in square kilometres.
$\large c$ is the estimated population of feral cats.
The graph shows that a 20 km² area of bushland is estimated to have a feral cat population of 40.
Use this to calculate the value of $\large k$.
|
workedSolution | (40, 20) represents one point on the graph.
Substituting into the given formula:
| | |
| ------------: | ---------- |
| 20 | \= $\dfrac{40^2}{\large k}$ |
| | |
| $\therefore \large k$ | \= $\dfrac{40^2}{20}$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 80 | |
U2FsdGVkX18jG3yGWChEsvoTuIK7fKJrMguNnwnXwJKK+EEE0AV/LEryqwdJfqtnpsdl+8hGHRDxYFDi5dY38HKdN9mA8XLQEVFpdVeBZQgO4qvcnZ15tcUZgQXdJfO02RK42ZxYGSQuBxk+QJCYFWAULeLxOo33IFh1bm3abTNU188qSXXO+P1RFd+t8HJgGH5Zw0rOsxVrLuhZPDguQkOZZYkhZ/7kZZXuo/GsX5EK9xQiH7pCfZurRwiVzHrVx8paKSajlmPfRwOQFv2Xk0DDjWDYgOHVPJamV9vKiMwWBGzVyC0cB4Ly79cGgr0wkb4SS60Deqa2g8cPSehnMGm5FGMLynh1eBLCcVIQeEqZgelg/Gzy5jH1CQE3MBoI+0DRdM8S+Ot3XrjBZxeR60I3J62+aRlqapXReC5xspu5aHg8LmNMvtLTN9MQtccoy0wqexN0tJ7yihMEMovfdduv7BNJxN8TxjV74yO3t5x8PSvLayL3qJKtuuOlo0qT0+eQKHvxdP3Vw8wJeG2iU1mbButOeEYvdv7RwvhdAE71JI4/KUxHQMX1u9IjyOSTrzENRLnff/kTU8nnT4VZmozHV28SFAeOMWix1HmXAw4iJGrx+tMqH1W7riqNWPQi8aLZDBe89BAim882Ad4G4PcmcnotCe/y5+2tMt41+gHJuamRMtdGyf2bEqX4nZRSnPS7HdvyRRYXQXgql1rznhf/Su6y7XgoiGA3HN1dL1+gilA5LR5/cRtAxu6nvqdQfkjLZHWwx7JJJgW/o99+MUyrTweem1nKmn0XaxkT+fyrnYZMr6fslHn1I3YTwz50Ya1jjclcG2I0IJIoY4acCmTrNznGCFBIo9HlG+sRZaG7RBlWa44zrqzdCZyJWDvj7FwlEaq2PcBjZh3/iXp1w2Wk4zIdRVc0u+mEy/hmWf3Jy56fX9p1AUOLecXMAvW+2TM5IetN5fLja7Nl8GlkdHiXI8GiQ8fNciKWevRIzGd2PgEYc9EnWzyg4bWtqLg8o2/qYvqTXSH9xmcTr+bK+4ZjpFzlR0BGtO2OPiRFm1dONSRrt18dWtf56Xd0AIwxXjGq2JktglEpDjG2NxMEn7ZYIIyytW3+XJj3COJ2ExA39TclCNdw+JTsdCXKUgG0SkVyrbYZdHnSuTdWscTuIvT/1k9c/14sbngd5LZGlkSkOBG8qYe7pKxxQA/yM0kPjWRECZuLwf8DjGDzKEs8QOIInOXD36nLr9CJup85+2VbZrIMsf2ogShoRI0KnCEj+SWrMfGAKp42D+OcRlyLNJCz9EjtjO1VqYV0935mTYsyOfU3as5eASn3tu0FnEjhpiQDyFL+ibwxPj3YVkzUutrE55a6Tmmi8hm0/cgN1PwLl44Zq+QF5qR1Ze0R16wDK13DZ4nbe26Ww8EgZ36tfD3zYrNqX1OnvDDKe44CXRq3qGC5XVtt9RojrnZM1y3lezMvBGqRkAovbeVW4xnPpkoAln4OR9kIYBOhXsqspx8zBwKCiqFkPngsnM6UFxlnd11hyOoEyvJZHT3jGe1FneKqN536+uvUoSU5kdXrX8D711lw9AhNN9TBjybuQhf+9E7GBqAep0iQoIBzgQefndCwQ+WIXcf4zOabP4zRvVw/2+E8v/6SJLZdCObcYD/GTINxhekCZXeJrDCWchKpJK1dys0NBnuRcuDtKlBKKFg15qdUL6RAUFLTH2FMy1Qo/N2ozQgFSmCbl1hVBfQYI+ZZ6Elxj7f4op0vTUMKEqDGIHKNGQ/nRQ4A5hBePBAcrTJKUg3Tq/iTy6/SN1oMtBVayk2KwXZLUfGRlrm7kjMEVlHWEej7dyCyv9V8AeT72KsPM2jy4tFemOf5aJnQN97HmkZ8mhnYHOhMvxH4GR6tbjE5Nk+XhBjIUP7tfyEpAN2lA7DiaXi6ffwmNnF7say2YSOQDaub4REWnp6m8anc+DZ34GJwUs/KCOiN/IDhuz9XcU0i2o7SDX7rcLPx2JKacapNj+S9wvzeJ+t8BOzLH+wz14Zx6/RuyzXd3wEMQcz34gelrUdHuTjJOgvXo0lvkrjtqESmJlxSD2WU1KArpnm3ZC/gXLdCG1ej4pnD+LgLQ8iuY0MAIuH705rZ7+pAd8dTjPWkKjghw706VSw33J02oisn4mE3kqE4fOhtQldUUptgrxSPw94MTSJHkWZgB7dejnhATocoO8XIlssGQXWwWkzvY81rJb/b2fLcY9VShQqkEN5b6x/yLQECj5jONGncgMgRK0Vu6ybKUY6cGyDrFGCjDevZyX3cGrK5ZdM5L4hPSpHoYvCivARQ60MXzOoteTjOOxjceV8VgUYN1+6RNdpuWY2cV6zOri3nl8SMhE/Or67/kvQ5f393o+hesZlTuJzZbwQY4zQi3YbpT5haK1ZH22XqqdS+E/glQIYUtNYbJ65hfvG/a6JmZyK6zkZyultK4Pezjv5nMU9XCvTHUiso/6s2wF1wKs4A1P3mpRfc3IJLiyyLGChlNfgHCjicUcvoug/BgiAOsyqNq+0uxHX4xVh4B0oqGzrIllXjdTz8e3gDNe9LCa9zrOw5Z4hIqb+D2cljyNfdoZA9xuvFlF6OtnegjkpFTW72I0PGkiWQv5oWOLR3+Vqeypl0oFdIGud7moD4rBTDiZPV8EWtBkEnxKOsyGzIez17hcK3TwcoQMfJdp6uE+zlatMknKBcOPiFKJuDUKt2OBAKQoEbTDnk2H44QsnQs1tdI2A7RD0VxjEggkfkUJqYKjGBTkBp9iKH6k1ivFC7WSOB95EkaNtvr2++13jhOdvbzmvF6Rt2yh/TI/dlLWUaMAakDoGkx5fiU5BgEm0JLZLFBX8y9NYP5qWQnU+MtV/ZQ3bArz8R30jHasAV1fmfybWxc9snFdkqH9o2+gkJEFZgo1Ra46ECiXZj9sfqltbLyvRYnPl+NRwXN2uenUwX27DFie8TmslTBiNAHmL0HA5g4Mjmvor37ZEi+wF6J+nng4ecN+VwFV3S+r5PXulPD/4nDLHrBdGIGWoC6X3jY+NgWeqwUnSHv8A4BdVf02qu91DCaNF09oefWdx0Iap5VOkTVZ6I6n68Q4kc6kArEs+qa0BWDZK70SxP/qZlyKlhrCnuHUraCT9PwX/1JhTnz8CnTV5roeej3O+rONMoPE/fbYw7uETHH/8QnVK4Y2Q3Ld0xUr5vCSD6gmYV5n8/JuLwQHLKAyW1o+2Xm7ZW7lUCRsvU4l0Rm8ui1+BdE29AinB8XC7GDWcQ7bvJnSa1mJllY7djVa1493QPAgNZNI/jgE2rjMspQRgk35bqmy2Wuvqsi+Wc+0FtWw2HUS4a3Q0f5oSLI1se2nv7bWypOjFXSDgx3UXjqQgtsj8WvuRR8fDmsBMEWainTpFqheMhwxbcmdV2HP+M5BLMZbiVDWWhj6jKTsiHJrBjP0oC0MSa94y4gcOOtFw9VfMdcZ4sUDe7cVMZVh9aRvo8JYqr5SpFCJRy6RUm9w0V14jE4KHTldwYV8dbV5/b/cFTU2XvW7b9+t+hC+1ueh/InkgLx5A04rhR3A5rjzdr+oOVQURV2GCSW+3iTTlChX5JB92DuMhQFgPNd7QWvslI5NxHvUYTJE94bxfCY/At09JkKEdaRxNcSLVa+gR8y9830oBi/eSuRiNtIXe6C2rb0P4DK05jI43Si6qx1tGwS8b8wSTaF5P1/F1FowiOCnUCDtmawOuIWWzTd40hrWDw5EcIBPKH8HIdV7ytSPRL6LMR5WBDa9oKMi01l5tj55mvuLFLkJscdW1/ZiirZSNPaTFfMceIz8SEUvzfoBfDGxw83jVCIZvYDSq52Pm3CKIPp01HNoHEINzO/i670DLl/wLwQ4u1WuZKtLYm3MLMEUq4wJWa7Jt9G8QpslNB8535sneWrLb1XBz251aBpOxMn5nGdZvy/QetKKopWdwdb7s9hshR/lj/ariugOnXCp8ZHNwq7hAe7jAH6t0xry/Ywzsxlh6iITB0e/TnnaKmuAQvdkgWLMwygdCTRSujwbOBRJi92ORtVgnt5xVK+S+XymU5h7AF507Y7fotMpLcPu75YnzbXbbWFeufsvptUzCI7I0U8crWpkB2+u7G56/0GkQIaTkTFWQlVicav/ZWoCx3evATJCaMSyqqZ0uVcCj6/j2Pu0qPtWV2ts5Svlx+4Qj5/ucmnoYj7+zZB0hjP9E0zgDIGwmr93nf4dD/3cZV2+osKCTKVezVYalzSB1zaOVrnLauCGoszf+5YFvvHdVYiE6WO1U41OAN399TCRcm88rnlMOuGMc08c4A6q6rUVpeKtvD9dXVb/2uMqcmatCqBz3WKflks8Bqh/RmKHtE7jbBCV6hB+6JvdXRqLckVaEDlNETqA2LzT4moPCud+xSv3qBT4XkPpk/BdG/UAG00sKugjSt3WMnAWHOpSiBLg3C4q3EOLxsJcuptOo6fsYuhH+R+BKkXLR7PdB9cR82TpppjzJK8Zqz+jqF12elvpeuZIhEFN0Z5rSrVw4ExdtTbMCrn96eqVm/vrWrpHxCvyT5fttwsecG0H4EmPSg3v+sq2unDE6vITBh0R2eG7JWvcTwkxpvHvYM41zJ8OZGLpCbIlWuq0QMhpGBmBBCR2bj1KFrRnbDTH26c8NJNSyP7T7tIewHQaQA+DkHDs3vneX8GUgdq+iTbMxs/YJXV9Y3mrt9HdNgdrFlJLIXEerl4i4ImZ9JTVJh5flPurBlh8WKele9By5dwBizJjz8ZyOVE8PsDrZFhcvh4kjuGaFoncR0CzkgszNQx9ck6TFLIz2yV08Y6qep4NV3xoVceEpYoCND768GuQuXbfRqiCzM/wu+1WOOjQBwf8cAUCfHKH8xB31drPb9t4QoI/bzHDi247KB9UYywEwBoVk+4SA9S0iZG1buZ1GfR/5ZoBymxihjuuYxF7T+wpuIVa911cwjOWVrSIKQcPLh8NAFFTTd5cdW3QXToSPFtSD0hy5tCo7UN2g1Splmv+uD6dtp8G/6RkQg0jl8hpMygC+QvBIHsB9tfk6wSWwcSniRnlLmJYB54wxvZNF1eQz9m87Tce/el+zFY/NWXqkfb/ID6lzZlG5I5GhZhhM8QWUqUu3eLWkUiPSb7oeI9L59Eh94Y3DzydRwHrjO9HS0/vC527CbAl8iKhB7GDV0KZJkSyxIDsEF+L0E65+FEscy+jfGpCdSQd9YxWWkd5UEeix9xesQkRnM9LLTImaASPcBZopd5m278Dmp8G5lMvtDIt1f8sQBLkWPMgTSGt/f157mS8LgT4o9XR/8SY4AVrvYO5XFvt6Z2ZLMV9vHwWvZ8sPv9W5eiFqBxqdZ34+1CrioprPT2DOoSrBk0QHAsSPPHyi6uwKqqwdPraZfCbkUNPgpwytPYU8mgdf8hPMNypQ/usxrwuSnMbHQxl5hWB0NOMynkL55rGuCk5JppNvJJYRY9Wz3n0S9RcoZ9Dgub6iVL1HdJadBWEcBKH0FDKGoKEdieDc5Sj5DzsNpFd2W745C0QVahNr1aZ5cKp85QJYtqPPkl1tHSzu5ZBa8aqkIkZ39HF3stAEWAApU1n24wQ3Psq1dWuhuiju+DI8cKj+rg3ogzt6GSnTRjfZ9wHij7cNTvweQVKRrSJGIIkdY24xwCfaF7fXm23vvTDapFtInu0TuhrSlNOxTkznB4vQEsrXmu/+IqOiq+AtbcSa5tq4MHbVV+KLoY9xm18xaZRPS4fOZnMVsf4OFUbv/VIzpZWHV9Ha2JiSNsgPW9lgU1QTOD1SVDszLg2gUZhM8ICSny1Ba5XXajUfiHP2y1ukxjzoIVgZ14hP3rTbQ/cyr69r5qnphnk/cqLWAzI/hXjjEj73S7M0E/PnkXb/08+eS/zUMxDHoF8orvXzO0IBJ7OC7AU0g/UCd3jTt7tw3Tn1QhcvYh3x4JPg+QI+Kp0hMqVzjV9p+TwJKxjxhZ+v43DXVron31n3Vmn0sX9aVNRwqAZ3k9BJmal4VyOoFNfXB7gxh2Yep8L/r2KjJZZRMjOQMAYwgfaTBYKOL+3tz0gDJgSCC2VZ42NFo3gBaPjQlH+/jJmaUUDr8vgRIjs4GMrB+rfSZ2TDDibNrTagPL++Z6OdO/Td4uv89DpC4LumkEz+uhDsVd9Wc/B++dqn01peomMZxIc+lkSglmxAxUFjQX8DOYlxxvX/CXEJiVCOJHjEx3z84lKTti2FYKPC9sXnVpdpmkjfnJYrUIqCmBbJRUa0gpMa5hXEDnV5tx04njY/fvxwKYGt7OZx4EBu/TnHlxmoDfidE1t/13+Oo1/dYTrXHPeSAwxJmyZMEjF/4z9563oZ6XhYvq1LCNVjkyvEDNgvycFBHVv8AVk59+rN8jM5ceXSstNSPtAID3cb+unYJ8HlRAGKWhoOaN4P3JmT1aR48JHROuZynX3VtER5Rdd6uWgIO9re7/vcSRL69Kjt+autD5H4uCzbjvy0vx8zkCrllhg3JbdlbLXXhK5mseFRsVPNWJYu3YobFZV46rAxM4rIpWRxhuPYIj4c0Tf3/i1wnLv0KCWlvR3Abe+oxGP1cDRKt87vRQcX5WqaWBcsLX5V3Nm1RKpjFDIoPkVG8rjA/4DpMK86+I+x9XChyBNE4MAWVrrm3oXZ5YljbIKI8cjFursoj5nUYfLP5JGTJNknbjrRHw6fMJNY92lxgKhJ8Rtp3p13GhfMKjwjQvZbQlDMIbRviqwDgNrcFO7NPf7LYcQTmP8/6Qph9004VSMUroXMf9wkekB/UqTxu6etPwGeIpBDUYYdOaaEiFzS4Pt7Yg4q6AHGuBNOUdeDFrPTPOlQU4CwA54xpiyWCPeSRRLVl5EuJ4lhbwYdLLzmW95XDo0VrMMHCnUadLBmxiZXQhGo3w+0a9Xbgj8+VXRemvVXXQ38PjbNm9Px33oeKgNbunrhdO2l7JGZ4T21CRIwIaKLukbr4donX6eQt9eWzzpCehpKDg22lh77UsDUdGCnHSujzCyYq9FNG9AH2yjH+q/ZAbXps9Q/zPcDfPbg+tr36DejFTiCaXpmWFchNTE9LsdPgNEeQeJpo3YI0Ev8PFePvl1ocauxX4PkqDp5oF3nupXt7swGVjLYnB3LHMz1cmCSKDrhTGoOvzwFnBO4obMS3SZgmlnZRG3W8INRzOHsBd4iAXdcdPlKatvd551MAVHujYr60OdSF9iij2meo29QBzrzMag5KXa/5nht57zktu2orjdrvzcjanRKcdxtAzE1THf7HLvIeO7nANN8qdimZbSo708rLvSDykn/Dr0unMpu90JpvL2Puhlxk/HYl05Nr3Ln5/R4OhM1/4rcEbvhrT8ILGyHHM5ycg7GDvStuXLywGnQKFWVRaYA9Mga/Azq8gtwVlpOJauXozEpwg1Ejomw78kdPw6rYgRGN8uiSyNvcHy9NU9z1CHH/5HdEWXsKDsXEDGAn3JB7VmtCV5navSN9UjM1WK5OzsLZdk6WAc3mfh6Cxs5ozwJEUzi68aCxZQfTuI5nVkPUmE3UGBi55hvDhdmkHg/IYERfaIzvNMdO74SR3vcvSOQEAdiE74o+9Iw83hhdmd54AsE3qOBbcxJhkXjJt+26MAXP2LZQqmOmYr2iuo7kipce+smJMSw8qUmapb5WQ8u0Ft3M3UQ7rMDfZl0ujWnQ+uO/Q5FlTm+gQcr2MeIoNMbuZ+2Lnk/oMzl6lrPD1O9dKIr+GTVs8QbNDkfGI6rJZSqWMt2HsBrcVTQrTwbf0wbDaC60EbxD8POhb1sR2y4ZgQRl6Ch01dwcXFQqHSDsapvrKevTe6++SeR0cJnkcfXeXERSOqocCJ5tyXNCl9SlLOlXPDMQh3g88iEFh/sXEE9uQkDNFBYwRc1X0SZe0C7IAZEvhkSfNYfNzqt3spqHBX+ki9y53qp3AQ+5MBN4Iu4STid6nCmLXv5l6tquweN47mqvKpKs7u2A2j6PAaUAE0f6V+6fR7RJuk9w66EJJRuWUFiBP3YltNEbtcSLlyzhvVFa+LQz3bHqBA5r1RypxUCeLPQ1+eoRAJn6WzWoYrTQLQIUVQ3gjqdGWnd2JyVnsoSf65Kh8t5F5xfbKOpPkWJAmROBiW5eufKQe6KuAC/LPF/Gp5isCjR5vLtnvEraBFPJXl74ZIfdOer6jP//8axWNv5sv+zE2jsoDSSTtRvnt/zjxcXMGP9GQaexGYm5JU61/lPNqfdKATtHUsQZGQ1EzxPvMWoSh2M6KISoWKvQ0elYV3OHNHszScs6SvQlm35lDFpmAVXyIxawzQGw7vudvTVm7pm/sh0MhDeX1geCkg8hoycN/xn+bgaR+hR2J4YVTV53ptZhBdjWqtk9iLsBmUSYPLo2vHXqmvucp5KinnzY0t8e/ax/Eif6qiiILy9OIXTW9l/0SwwLDDsedOl4HJ89dFmuzGg3KR6DGMTKJtVZaM0OsihuQgQdeAX0fqH84RFHP5apmQ6vQmY9vu8bh6YjNqSOJgSvBQ8BriYTcNn7dRCU80kAg/qpRg79+S8pFFSQymVA9Wl08IJLMxw3lfnceiXMoK13CMcOZXTChDcVdiI7HTm7PQ3ZJffXqWRsDrnry5TiTRTTjvynzd2bgAvXLBLhBDF52y2R5J/Qsw8ZHSefojHlEgVIst8I0i6y3L+6WKo8LRpOQ06PEMKV/PrDTmgMuWSgbDMmWslGMDH+XJZCkJThYnxJ/IDw+BBe7lKkSKkxTUp1RCMdNJMbIIMAnyzlbV20PweUe0ojOhtKY05sN8hNjQXEvGIbfMtUSGzxd8RXVHrM8YWWg3vGx9li7eaLUTKadQFBEHFuy0XDFe0JfPGY23tpOyTXnKbWW9TjR584KNa0iVPVLCfX5QrHdk4Uyaia9DHkk9ILV23UWorlGVyVRIzB/KkTM2LNOVSFMFtZMW73v7A7X6Vo9HdXYpmVlgroyMrSiDt2wquYbmWYib43WO2+PHhSgXKuvcdEuFiR3EanbwEFsTKG6uQ46Y6ViFlHRBtWwO92mbTpLYbDwd/P9iE2x7Xmqlf1Wm35oVTKA29cz03t/DKQVPoNw1Cj+TLGA0+0YB8z2lSOk+cKf+Sut2cHlKnmSBFPmou+t0LDTNuLRdMcuZgOnLaG7r6FWB4yfBrcuLLkXlrfd49/XuXOocJ6UcYbh6YOmztkCqjBFYHjEW76uC7RKfUksa40hPjLf8zb6TKNzlu5Y64MRUcoZWrafoUfDsERaAVBtZMQ3JkEoGkFnR6QTiYNuKqOARa3utFJ36bA1FFQV1T6IzDtfmh7eCHs+mtsVJG0KSMla1bRqYb0qyMGP/lnFag889W4QvgsquOIjOcCR96fRfPZu14/HlsFh9lwyDZ7KLMP6jsAfy2cp9L+WOepwK7bKKtXGEQyNcyZ483//ZBg5oFR4ASfeSoWzoBGE18uWjkBXsmHzhIIoE4nC+sVUXNUQZ7pVRa84aFHbJGT8BjEkvQ2Gh8bQyfj9ADnUCL97O+090LjbUDSnnSxaqYlMTH2qS33YI5SN/wyG7lr39vTfQqo0POHFI2pBa4z8wwIVFynWCDgPNj7sduGXRWZOzuFIDfX1Dg2T05JXyjFmW9ejohM6iajPyDW4SZA5Vx61NzNhAzg+0UYaHGPpWVzKKRU6mjzlrDYgQsUI932bNVemRQwe797JSbMul4K8pVtwRf4YiTwf3S3iaitbJXNhJu/en0/EAcn2J/57hXMWIw8TXhslpDCSmzNlyi2Idx71OE+EGgdZFg6bkxrsh/Y85d+fGixdiOzwMNfR+pDU53qFn8PaAo1NHOFzjYs1v7tlPFORGix8PYZMqNCwfRKTO8I4C8NljBwy0fgEZQcznv9+SLhBoZTiITSDUoRxeZBAUqg/YSZfV9vq7hNDS+Y874CfRAvy8SjLC1BYf10JGsFv8c/Z+d//TPj4N9sCGs3OCu0/VEqBNg0C5r3EITGdxkbRO6he4Ifbxe6/FjDu3OLc1mJ7DpmSoCaYtBSgIfRNn//C9RHcw1WhR9UwtgRMQN0dNDznL9lWlpCIQEXJ4+lL2q0H2nQhr8BdfurMh99Lg9cTWKJVr8W9qR6QU5eLEY6Sxma1WScbsniDfuEkbb8gFv+6KiB18NGT2qqBNfKDi1Kvp07xhnMgrDERRswFd9W6zwiKuZsgaVJUUbyE4WTlbzqetsUWPHXo2NqCS5xjH+dJCxpWj89xyJhagRI2Hn+5GbgVFfTienPEe6X1LPxJ6HqoN+6Y3NvggjYdBXDHtZXeSAz5WKHpVoUMX3+0yC6Q2cR9YP3R+Vm47Nq605453M8Ly+Xeva7KXd6HQ3U+pQv7R7PebJ9qX4go7jGy3Y8UQHSlei4LwVLLFPT2iVg+vhwibPOQWUn6MtF2m7g1hG7vRKBgIv9dR0HXZ7OA/+G6cMVsywM9SFEfBJUIOb/AzP6rH0gEJyTcyqFdWDQhOrOLXzNHENPjV/Vd1LAOY6ZY68+WQyaNezBOSgs7fmByF7mtawios1uDkUU32eQfcwoFrd/aHT0xyqmr/tiEOo7ZHU/VbDGzOcq4EiY8YtECnZj+2gP57ClHfyctpj9FOl1g7I7XxmkLFvvLLMyHGbV0EHwMEDfQNhFb0+ibAsiVwKUcqHWNezlTEOKR1VkPf9Q1y8OOH1iG4CeMAKERDHoQW4XSWRfMTM/CFtM/7Spub5CWTEDQ3nVR4qftFzty+NIng4K8dA6oq3HwAsQoSPs8as3vXpCijN8Z6Q3owB3/etnr53e1miJ3j67jaDiivRUHFIdpBgj6MfLbc3+hiuFvaO1w6APugtVh/vH9SGT3cev/4ZlmAMVQwaiveLy3m4re/hcRU98Bj+6+0I85WQ6M/FC17zFcgsDR3OqK5vYqJ4+DPKb0MhgP+p5XJvRC89lpW9RGU1ivPWpqO1ePOt/RmrY664l8ka1upQbHbQtuHA0rSQWsvwVjgt/+Io60JvMgqcYp/AjOsf3yHvzN7WWhfKeq80Hd16QVJ6VdANDxJNlpSsNp/DXGkNfn3sfrSgrpp+cGEWW45Ih5b6f9kEqCz4QCVdQZuuBJ4EnHKPRSP1N1Hk3he/TkLbrf8kH2evYA1f+YxdnkFdT25pnT/6oCoD2Lzq3mKLoX5gYEhFKiy5lgINaH0+9lnL6VXzvMDJs80tdVLIoNwiLWre/UY0KeJ2SWoMazbt8jyFXc3iKgQcUmIbnw0f5ZvcSEyCkyWxcmkdWR2kQcU01OvB4KuKzyNL5sGmatCmUwACo6+Z+5+t8Jf3j4MjWvT05VbbnjbltO0UZ2u7KI0DZcDiBn/ywL8yatowwbgUdnU36pOIO0y1lKYGh+JuQ5B+2jD5lMaxDt/tZLOM8fOt9dg2Vykdyk9iABqJMHQlt7+cJ0Ht6swjOmrni1Ox29dGe4kRyqnc9F7d4puEFRQV2fYgVyR29BGunRxIxgWB97IzgA64UWVbY+h7JMDvd6Fr19ulb5buFu44wfNNQaRt+haqj3WDFYnG+PCO8/iYJy6k6T0CkudeT0t9IG6w+aa6xOGgGK2e8fdy03y1ChWew9z11YrGseGdh3e2OO2hZkO4pdV5eSV5npP2BHJiTtGEPlJ+WEdkSYpb3/S33yl0jEZMHpfiJ1DFcL8adLQQLpJLTvZrQMOZL25SydSgUt555J270uBVqq7Lq9vwVRvfDumUYNUaSQXA4l9MhaRtbMPhASJYAuMu6luCfl5pKUCW91biKnbDO+CazbDagWUD6NhtvuD8v5bTYLcmwi1RBb3e06zGQzxkFJd6wIoU+IF8yh2eRddAc4kgymuK8OsuD0BU14AaDWGUis2jD4vBa1d+sbWsucl64+p9/yQmDvFbIi0ZBycsnSEx6Dzs9GRxADCJ0jmAQab5BTAhudn+Bs3xvago9hoJd3ZV8Ay8GgJp4llqMqWc4oQAO5MCspiqtTSpmYb9XcuiAM7WrZctLN6bV397ymivZ4m+sczg/qELvkBLpfKHiKkM21TBKwgVq4Hp5IxZmptPhibVDvXpNzxal3FpZZ6byepIx6ZGfsbV6cUUYB6uzLMCoeiG5DpiDci/P8BqspHZ6uEFiw0KOHcnLHwBe8KlT80TocOGjE+I0YERIZWdO2bieLNF4w4O0mrmF85bYiusRQ8D+R2n9QX+7t8xrBXnbOoXQtznN6yVhp/HCFCooTjE10PTEueLdf+frokk14JVS1hf8iYo+DlRW9UKIFqrhN1J5eIWIBzXCdQopFqfH3EwXBdart4EY5+4wnJYxdlgmsBr0OKgv3y4LrNUzrH1FZ0tNmT47/z1fUug7SRn7wtxoKzBtSankNMmbMIYViJXbL9o05ZJAPZWG69B/d0K95UCWP5t9PjhU3MYGibtA3KK2G9dk1l3/frqhXpQSOKPhMwIrPW1EeXKPHk4ftYypuW9iVyUx+4wkX7Ld5IHno+6lSARbin3h9Mtmq7BC08Eu8IqM4dycQKERHMEsZv86VrwX6mawE4RS5F5X0TONcRrb581npAZW+by6Kc6227zQc4eT5ygBVQKRe3uhkTsqs1n7tLG7um6mYGL62Bsu7/QRnYK3O3pKsT+6vpia3D7XnmwYR8osIWzGKOnq96GIb3MQZN9Fzt1e+kt9vH5h00DfYPUVRIt+WxzREpLlH71QdjUu/HmmbSE9uSMinIksl2qdH8MLA7l3nZvzRH8y28ieqDD5dgKLoN9opFDZgoIUnFGxnegI+WPMV/1F7CE8RjpfTbGBYsyGuzjELXWGqGKFcAZtqoQooeC6NUJnIIzql4SikNEXitTAOP4zYBT5BNsqGZybv15YC4Iew1Gq2w2bvNEZkr713nvhph1kuq5HdAGSZrZuF0I4cKfOTP674D86Lc9KqVi9CM3n1p7X3Qh0uDTEK92Ymkghf9IY1Gs9NzhwOqAaAVDrKqqWkTGTGoIW9Htj0VLrIv94zpavoO7m/cDZen45ir7frqYsIN+Qakzr6wnwXLJjJUnyDkF3SU1qihZXb9A4OMYmn03k+ItwesbZYioHFt8veBcSqhfol2Qf+B1GrlUqm6a4gFUzWhjpeOmoLacohp6hiYX0U6xGjJ/xxCLdjQEysevinGxZJ9Ko0DMdTCjNbqdiwdjNH1oiisMXVK2St/ZnOmWfRU2qlAcn16+2t58dmlLS4b0taXAwZ5H6NxFhciy7LS8vfSPWA/iNGgKTUMWeTSqLkPcyiHfWF4lXJRhbxQ2T3547M4sffv1otEyIZAtQAfH8Xhf9uxsF8T/o41crjLRCvd36alOJKCIoMXHl9rhetSzjMOADnZFZOAsmW17UcCKz3JC7mcaNUQXfF95N5BY2Upgqe32Lu+372WpIZZef8c73yd15+sgefOgJvs5gXIO1d1vjjYIo3SIJIu/Y4OJsZQ50oglQu+xrp0XC5EXFhaDgT8BtZl3I2+Ei92YXeCwyXDbSWOCwLRBzEE5GvlcJrVex3fi1GfXh8ts10guCc96WgzAF9yCMHwwUv4+b188aY4TxyJCMxjCyzF4DCaETOAmvhiwgdXC8F3Rq
Variant 4
DifficultyLevel
698
Question
The rule for the graph is
A=kc2
A is the area of bushland in square kilometres.
c is the estimated population of feral cats.
The graph shows that a 40 km² area of bushland is estimated to have a feral cat population of 100.
Use this to calculate the value of k.
Worked Solution
(100, 40) represents one point on the graph.
Substituting into the given formula:
|
|
40 |
= k1002 |
|
|
∴k |
= 401002 |
|
= 250 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Algebra_NAPX-G4-CA25-SA_v4.svg 500 indent vpad
The rule for the graph is
>>$A= \dfrac{\large c^2}{\large k}$
$A$ is the area of bushland in square kilometres.
$\large c$ is the estimated population of feral cats.
The graph shows that a 40 km² area of bushland is estimated to have a feral cat population of 100.
Use this to calculate the value of $\large k$.
|
workedSolution | (100, 40) represents one point on the graph.
Substituting into the given formula:
| | |
| ------------: | ---------- |
| 40 | \= $\dfrac{100^2}{\large k}$ |
| | |
| $\therefore \large k$ | \= $\dfrac{100^2}{40}$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 250 | |
U2FsdGVkX186pFq42Si4aZWqTMJrrJV18xkRljfr3vS69i/otHyD0m1eFgbLsPFbp4GykUtXEFeHwYDG2K/PT+pAgnpbrqLff/nqyMIzELK4TXLRrXEp9wT/oZgwd2oanqVhhj7afkba9YcKrk4fBRcdGlXlu9pe76jTme6bdC0N4A2gYqL3vV0hvn/qDPjpjA9xEnlx4gucBlxqbEBxGCJsPl4Z/8HYeIQpiCbu7jLXl6pXIrT43x3k9S+8XS5n64L0qOxHFYyVGlX855I0poljdQLf2F3TkfLsBE+9UZmJq9XwR9Hh/S1ukvCP/+xAcjWu27uLdTTGfeGrhA2Pmz1gE6O2rnDspDHrqce+LHHuURm4eDW+LKkQuIGbd/SrTe4/BBCmnywVc0Aoh/qW4ZiQqEqoC9oIkF7IChpOd4HF/ZsmcsjCFA5XzaIj4fTgRX5AKJ/B1i00DnXGNQZ6bzVjwnsclRdtgpDifnqhoxrUDEl97pMzGncq0FS7RKomzj9DIksKmVlWy9dudMx2LlnG/FEMaQ1iZiMQbuIOHoWIvEPqi7glIEyf8hx+X4wU79GIh76WW98hR/qV42bGjVllDwBGMg1KVVHcLS/BseO/qsidRpIQ2TDpwsOAlMKnRT68FDXKL5kypM10ZqKb/oLZ+KPVO/h8tHF5xQFzMdP8b2efqMGrwIpffiyoqrQHYd+BBMfEqmRIV0rAX+edvlNSBOrHHffCN4ArautCfdf9QPkrY7Hoaqfu6tPBavFTiu4mRYCzHyAckOiRO+gl5wOFbbEpF3M7FJe/SBpr7V+0SOtwjW2mDadVkHWF1maOcOu2EZxDL9otHqeMd2SrE34v5g09HUgkqCcHfmw5gBoJGzK1vbMWEhwxtwJrAWcos1jvqYW/9B8RRcSbj6uZ1Z8n1+KPGn1IrTPvDwNKqxUvVqaYt+5Fp5SiSE8NimH9WLwDelwGPYuABnWIvxFBml8vhCFjovM469laYjyP/iwmaUSCylfoa3fdHXGb0S67XPZIL59ImG4wagXm+MX1N5868X+LI5vg7uOHSTmYK/wdzUGZFIF5XYwCoERRLj8fscOb/afroQmybCRYrARasnFBN11pzj0KZKrg121XQeL1B12uz/jVBZdBhzsLFY5eH3N/p3WTHj/F/BfSg0sZyXgl9+jP0/PCvplw41izI/elGX/qqTVIBVBnJMoHxiR7WLBR9KFyUPMInOPbLfVP4I4Hk16MTSpcMKqRwep+8QKGGB57TiZHomo8513+2upPa4PrtreTWESrJCmg/DUdYAugginHyAgSME0xIxGa+Tvtv3MFS7cALVAPm8qBcDce4fnDz+lsEsBeAvlDHhCZMm4a9wG/s6vpi8ANqAguuhAQ3u5HaK3WEAFNTfQ/HFRDe5j/gh3vAxdV1jXp+MJIscq+iAnh6ykOFZPV7wIaLkdzIOIEdWgsn9pYcGA+5C+Roylug0+qKRD20TxguBtIC8+FieljRz9RsJXNA+7ob5Mc97//FmKVxEzNBiLg9oMjI5O78hT/6elbuWAb890cclIHsyZwRHMAg/joiiUkyCNm5oTQkonZ9ahov3aLogOb+NMlieIM4Pyc+Dy5EgMnHnILiSAyejwrO66tb1rOeFQFWXiuK9bsJ0aAnJr3kuxf1NodDQhdVOs8cymWFtdrwzb8FpU7G4GWXOodJeCYVKl1YrORMncDPtgMBY8dhQWEFxAcl5DSA02gkEsHrb11sLw9vBCCcZaEltdOqUxB06PWkJQKLgh8OzcnMgGEzw8jpdjYVknxP4eq7dKx+6U03YTagQI3LV90LQxu55rxJ73Qg+liUnb1T6Vjd6tmgTCDclUMS9kQG7H4JGwqaLcKNiJBQ2PI5S/P1I19Cb62UVu9boc6XCpZV0g1ssFwMJB9sbVGYGtiDwAEz6w7J4b1lR8UFreqNJM5BhbQGJ+6MzloPYGGQtBXR4MDmfPXoQRnGxX+zeE5s5hr0mhZqrovVrBohmVy6l8MLnfZzn2O9UANVxqrN+2CX6NfB/dRtFq/uXSUPspb1y2HK4PdObF6aoEx1RhOfWmDT3mTvJ+i9QEh4/pFSCgP34lkU/QVsefPrqAFTiXjCBlKAoLMJesO9MYrVQ/U5rS4jSvWvQsHQQvvWUIT2krY67+G6V5R+xvedM3X/+HcTPZm/UWabL/WNIQ8EqxmIkvcbXfT4oe29q3tsLasyaD1uZEfs/W0OX1++30fonUtin5MMOCJSLpxeiebgnjh9yKdNvH6jqzBWlYDFxzGxgpmjVh/XHkqXzxAM1Mh/tDdjLO2RjEqqBntwZq2hpWPmYW97/PR2x3qR/yv9iH5hGvxz7NM4kyAIb73jamHpOV8005MFPijgKwJkfWzvR5ZiDh/72Zx62rOpUe/zFyZ5oPFH+ukoYwJuFrQc9LqDurgaY9yoyeXYnpBiTPmYBPKaY5ShzQm1SdjLvVXghGLbJn6TpyTwO1b2Edj1Znh5xkK4RfY+cFCTQb+fJJriAGT045ZReI7gMeX+6h/KzVCD4Nefo2Vv4NzWSzWHA97s3YgV0U5K2NkvB6fg3GYdgxtLGtWphLuxmta1kje76GbHBLGsYZkGLvxoROf9d/I90OHkFZajCpXYCxW/Rw0HmTossl00e0ADDMBViOEqHDxcpYyfhz/pXQ7nl+jTWgoFjL+vmwGFr4xIqMI9REmj+pkGuHw375ZE6L4ubI1ttDhmbUAymPSN6IBaEIfhNsBpV7IWkfSpg9JcaF309H5BLNFTLTeJ9Ixpipx6v8DFYXW1LXYurDgka9qfEvi3iXGl5lItJ4VJzLLoeUtbapcTkSDRMZPTGZBQxnnBF3IFwW7HGkR1YlAHPtwZFGeOTjyEG6U6MPSmtYmmxrmHZn7WkSl+t/bcdkJi5lDkltwcvq2ppv5DMjgQTHuZva9qzfzFJ+o7/27sSWSIj12VmImf7PORQtTAtNyGJQDKSYHXDCf+LZ86MBpGaILM5+q9Cr8vVC80sZ90rh/pEBjjvgbloA5ohB4i88VO3lZ5qwFjVT5yRsAzs1QtGXd4DM6iTczLyp5xMQss0GkG1kicPOt8hVTmUXPzasD/OkhcKdv0QAGySXITdSj3sI8hPUGBN908HHVb2ATFHTrBCHdchQFkCpaIeNhmJBj6gJJ/1jxDBPpY3rTBqVVfkWKkIajqse8q8BAU/qwS+TUS3Nag203lGVqMyGQ9Mi8UpPq1TEUPtjW8nQiXD60Wnfk+zIZdgS+Xp3yKmhjQ0lPApIkXAcsNpfmZ3ORKYvohhOEjM4RWRHtmwNK4l532PFU92vT7SXet5JyKjQqQ6p+ty6YujRmYKdKTkbxZUa7mpXotAhTzDwvPCFUliwCWuDvNcmxC7aB+zAbSgpgcSZ9WcqbIxaVuzSshGlmCq6hvORto52y8HO/FKPYtSJdrXsjp9zldkIzmJI+QBVhNRjbBxSnUHpOHSmslo4jgHCctzZSOYugYTnOWIhvjcyrFJLpIYGm2/0VhiZ5EKfuEk7wMyL7WOtyymvmgWOG+5Ww5q0V37gaIkSu/Z6Z51cZACUrOWo56w8csv6zD8SQY5qqVt3Jzz93W9UZaq/khTDJ6yiIuEAVXP7jz0v6fUWeUuF58sStuXkGRSfCnot2XpEcZDxqxa63iaOlj4dHO31GMz1DBWMy525thG9B3yuX+/SD7bxPbyLdn/UPjedmraozOgVN0SqS5leT/XCFwF5oKSFRi0Cwegxyg2X0yaUnnwdciFXjaGcz+New078whAXh4O2Tur7I28tIMkR2SePuG6pR/KHN8g3rKnbfEJSHoRbpxQVeRoHxZ+D94EAQ9nmQvSYm/IfcJfK2FE15ocHDqrdkmMlDJl3qrFMCcXlBpGSd5VQRmyqpR0Pm4R2rrHAwJ3E5GmazvBEjijJlsTXxscjVABv9HPnYqogRDvfGjZpjlkgY3PFBza2ZraHXaEtSfeUiesCwS8359NcALLnWzd/LMX0vIPU7YGl89Yh8p6nec2WvGdPrCJlltogCWeyxhXh73AmCkpO8rl4nWRpEPy16mZ4E1iuKzSsocX39iGA6OEyMcRqehVTo0c/INjnALrndcVlbVuimgNUCgPdKsKM9llQ3J41aGHzASKDyf+8gqCIZNr/PfI95p6QftzK3yTgAcvDoZbLq4Agi1ooDOqsjB5PqlGGlVNTSOKc9t+/gIZaFT6IQ+pSj8DZUT8eJMLiUmgKY6JDbyD3BKutIHEwqTDJXLoW3ptUlzYXo4uov3BwS+6pHjGyfc4ZDNWnMuYQXjmED9bganSpm+TELacpflPwBNSv+OaSV5V1nGdFIgJ0hem25yydF6e/7GfyfG+N5L7bmbdI82Mk9aTRV5kjo5uomZKkkAr+W2pHr+t65lx2wCjkPkmBBH6P8nXK5hLglAuUZ32haF5A0Rasfv3e5fBWKWJ5/q0L8bGeZA/TjISNc+6gtwuCNRLgnsfmnPunvGZpV0kq89VvWywA0+lCVs3tR7sU+1UQ065f7YAo3X35hWiNERdBujU9bcNLFStbqVnTKPgazdII6f3IKRbKPw2kDpwb+qCi+eCmo8UOu4S9R2Rz+VOdBRtMCN2DcsDJ/slXtrD09mQvCKg6BvjPR3OYlD3A13sryQ5tcK0L/S3bH0PRTt6plA6q8Dl2n1dGvoUeDqKY4kHNwAfYqzaih0lnwB8Wdvq+2bl2alZqqdA7LdzXnTQfDVoWuDYFGSFCLeea3GfN5weRuJQmh1bj50Nj2yQ1fCVKjPGRPssrV5Y8hxw7lpeLCkwQCbKznSH1l3tG6fN8MRhPpwKg0zS5MHiyVSzml8UX1KpMtYGk2aPKkwYvgUoDPrcaZSAW9rkiUIqZlc4R+3CQuL/tAFBe9x5qNoN13H9kGcBkffx+/+EqfWNvRxHPWPWM2iU/tS6l1K7kjk6eE0uILB0Da6xF9z8moBuLcHfLdAum3VMlbRuwoAidxhO4XZnTIreh9pVD+O8azsquXORxBYDj3V8/G38vM/1PiJYNuLywxKtsuCmJV5hIFUnn2nv18q+K1yaXW7na4vY6rujVtvp5WOw1ZU5gl/yT4xZx210sIkDmSv2PEsbOGis4BoxnNOxt6+lz5V/PSa/3exykVRCb9P2COw2JdalEYrLxZOxYj86alMdyfQB/ljCQTBypmuqnBMDP4Lk15Ggnc5DvtIY24bR1B1XfhRVrFR2DHLsdOlaY79ypVUSPQcSaxu8t+7rcg9sfJqjRRZeZKIa4F+ac2i316SkpAdurDlppZi7VoEeYr8AhClWv2e40HUKbqZkPCiUWEIVgIzAzyJrVqZ/6yy+2lKcHGIhU8YH4v+raJBQA1DESXOnBt49GABhCy0ItrAZ6c9+EH8UPyteA8gk02A2L32zBD2qnYsUPwA7wH5O4mfe14ffECgy7CVaeI+t+19dKbg23X0ugpmQxSmWTQJczXejD4wQcucahuLTbH4QC6h3L0M8G1twfQAuMIBIZaUXYpCIXUJHXsB0wVNggp2HJz8+32s1ap3HTHruekCoStSiNYz3SiIGMv549xrzOCOudgHp369ueYSY5Nj0MRzo/ZPww3UZHUkPTwKXpQ5woW1XNmAHpyxsDdQocTO+vVO5XgY5np5ED1gfdQSHwpzAWHMJlhqD7fFCALVtrXbg/916rFPiY+Bn0tjBDYh4aF7bG+DUVm3TkZO75MIaNUFGMvBLVK8KLCDc9wu+T5ZGY4VWDFHhyuPKtL8tS1cmDEqOUeBAJltk/seTOK8ov1asKagcE80gkPdDNRIMtXJAogJB+qaVR0xasVLe6ME4p/12NhXp4/PWGHXUbaGkBrQ3bD7IsY+WqVMmREcvcrQUZCohxPYGs0Vg6mTJ3AzTnJIqphzbgD9YxPa9HXD9mno7tgh3ShL9hlIUgacgoBV97Sks/w6rsAmgcL0F4vTYv6+ws6nvMMRoCBna+al3ORyD+OyOWDq1Y3g47yEvFk5MHyQeKD/SZcby17RCKDcPGo7oU+lD+OM6CoNH/9utwp4VU7LqJfytffAR6Xb0IBhsNww+ooJoW1Ae03AYvhArT3KwWT0/WFtcAmZPMPnFWF4jAUB0BTILTMwAH7wqhiYpRSyCWs+QTTrcEDWkLEgNScB88+3lwd/PyO7A1Jpocfg7P4tvpXIRFdgN5sBGjeDeqs8qWJsnGD67hwZEpSTFIZ0W/5Khph00gwJDlD2wdcaXgoDWmg5jkhMwLdRFy4nCuVRDB7P0DWuk12WRiurULRzzfaT7hbTebY11rNtpEbO1+12IbR1m7RlaKgBF7crKuRvhA/neqqY2CQFdYCnKDM1IlerfUCt8/OBixUg75NKj0EizTw2mvypn5qcznxw8FZumGlrUAAFMVaFTYxop2kc2ndRkPaBwscXT5hbEBM1DJrfb1779+ETNPQ3e96ekdtQO5D6GBFtlTB2ffmaOVubmnAUwDogIQ8fdl8RhuZooc2Q6swjSx/6x60ONG4dFL6XPpEjN77N2UCu93iBEcf0T0dsh/MX32WgsGEEgNA11BfbREwR0jJcnfsUi0LbYrpe4UqXB7NR6dxFtaxHIAlJMva59YwC7QSpObQSmRD/rzThcdqqw4rumhTpv3jqNNpbX7nw1YMN1n1LgDlalKHcRCPXpApGonHiEonHjBS+/CtyhqLUFWC3iU5Rdn2EvI6wzYGZQNz5+PVocroKimBMF4hv3OxggcpVDalnc4o5hQqeoQBuRUhgBhI6cnRNX47X55ycRJyRoPs9QpbddoVKuO9cK2DEW3iOXJExfMVVtheTRsUc1zazJFJVftgHU/oQi3cu3h0sWZibXLfRW9Gh/9pvOfjjAVzR9ZIx81NFypqBKFkFFLqCLg+b/PJXsFaGtx80OpG1dQtU32YFP//k6NCp90qb3NUojR5QWHzlUQbA8UsdnaQ2fHCXhSYb2vhUX0vwUmODWCxynebkh8N+2qdWlDp9Bce57+Z7oGbIBjJj311qxI8hW1UeaUXCl84GDBjutLIqPl3l697zI7r619ZHS9cmpkHGDdlCks4x0mgN8/TUyPlmi4Dqz4nTBkDMHSGxzP9oAu0kEcY6+F1iER3tbCz/Z8JTLyp93f/JUJCooZfdvo1B5K//lO6uvHcbqR9+SFfFEIZ9zwhzTnv2Bi6K730baGn7J6HcUgfwfEu0NESxC3CP7k5QWFFxlBWHTxIrrDjFLcS2B+8nq79W6415Zw7iZo5BkAWUjDDpGv9B95iT7f/k7grwHlHY7k3AHZ8B2q//lcLgdl9C03w23X+f0+4Krrv0wlwR5u8QMdD1fwMzOlDCqcvIIlfDgwQrPnGVxzAth/K5oCe5E/uAdD/I9YrEckbNdevGp4ATna9sBin+9B8RI1qllVgFQmAF2KFpR7SevYihrtOEIt2+ma31ijTUJtn9eZvswZEuQz268TyuHRz+WR2pCYi1vUfLODwjSZexzGdXxEB0OZ4tjvCPDplRH5z5BWpLsN55H2LYM9qbhjJKX4MEZkEl62Qg3nCw3KgA/xC6AcXidd3uS7XhMna5p9b72/mSPV92B2U4I9f7uw3W3/OQPXikHFljhJMEXEHOo4bD7mVkuLfZ6D9qr0CV+JgR8hE/qp2lsoU+8QRg7FGlygnB2SwV31DipaoxeBQ+/+42gN2cm8GPQELLg1IQE6WNrXJ7UdDPq8cOKxv+c5vsIZTVO/MmYRHALLyKUnZUyHwFTZUsuaIarZ5/YneRbtnabnQjeYnTTljB0ZrFjKrdFX2JKo0Zf2EGtabV6oCo9Ihcq3Wy2ucp7zHa4fG8h6a8EIgmA3Jg4ShPgvhv8w8WWlljOlTURUKiPANuiYBY7NuXZHbZor2KVHiHTLDVRcA94SmbGpHQHfi5RW/T4Uhk4NKW+F3haolInAUHdvZ+hso2wllpWCZc6kQxAAkoVt1LGbQmp8S/6OIQmSIjFIZpQVkVM1CkGIvdsAFzvFcvGIyhXAYNfq0lsId8KhN7404WDxgAXjV8QQ9R5f97o5j7VMPyX8uu5b+HzjkDwW7puGgAc65e+M+70YZuCOuGHljGs3DaMFP1Npb/NxTk0jAqiA73l1GEZJFoyFHgJQWQECLh6LZAiH6TwjVEdNZvRl9odgHe4V+GazCFxYt4gnrI05uUr0CwKoBKDeejVxXlcgwjNHmrHYZuhpTMtfDLP4cl764W+RUh6yZ7PWvNXzl+UuOhxlGC0+hH90nbJiMZL1bCf7R4Z2Ghw2oq6G05FZz7lEfG+patxcNwosHXh2ZDroVatcQwZBYZnBmMBYw9neXxCzYA2LzHwSRUhuv/krBNYYM+c9HJKopGt0iKQ5XQJZEeMT3TOTCR4bgYaE/7y4pz+mAoJzL0xlfwyxtLURll6N7CoIB7AORzW1dn5VP2XWKZtVLgJc1ejg/COojH7dY+KP/Dqtwno++YT2tuxZQvxugR9v3WDfY5k6aHohXKHL8yq1sndM6ZtK6QJ3TFBwvEoZBLnRiKONkAy8OGYmNBCQB24OBWYPtvmb0SOdKv4JCJruHVsqSge/DJe36bIYXFJbzU7hD8Xkne2Moo8ZKoDRIHwRNcS1u9lGwffXCBOZizE9Yip6k53l7k1Tv7x06QSspHrppOhxo0inYUKiyEur0NyoFdHMTrs5Im2gydVOezq0aW3HUl/zH0iAhnQ1kSaBV0yBvLQujj/Y+6rklw/L8eVRgKs7GzBOTtEIhChiumgfihGM2ObKPrFtq5r/vAJo1ip/IraswIdcNrj97OEzLCq/VSq76rTbFfpEgC0x1mYLbGCyRq2vl+417pXUax+ns+0K1g2eY9lSVLDeu4awuyVCvlmbyzjHYIikHa/oUMqiVXRA3Xo0mNdrchdqEGNl/sD/ibNk0VLv3H547DWhZkD7tRWRU4TiU6Li7qeR3T2WHJ+CKPC7JSDbce5kezOg8laZuL+eXnjYfsFzjDUyRdSw5rFKyZKacIO0nMfqMsaBCSpjWIxjTERPnH8RiPFPw0V1Fd6AG01cHbSZolLha2nkoTnqDJJAxD4/AWhGDsxKuqja3kDf1P1rpB1I26fRwQb49wd4iEXFMktoYiCho+KpMuuMCUa7/oGzjGIy4pG3v0Rzlj04uZx96sZvdNrYQw7W/LqMzoKas2LyJ1V/I3H8T5eeuBXEGIo4SHMYpFCZT+Wajd5U/8FPXDu+vr+13xgnrCKxHYnzTCQ9Lip8S5BBLkTX83HprC2qmBXbIaRmgwkZ81HmiCNS5/grxPUc3LMtVqgJBIWJRyPko/9tnqZ0CV3muBxLZrbvZN6gmU3CEHapojwGvxSL84QIuwiNYrOKK7Lj/9u7nbjStdTfXHbEoKloQ1gWnhTcKL5MmhLXqfDintOmUfU5AXmX7lZT50XWjmN4EikoFx4de+2Xz+fali73074RqH4mRlSLgi9TeCMwgLS8tJfR/vGVfcZGgFWPg5XquGTdq6/WD0zhNVYXI0HkHEuKn+AmnIVMRXlYhx8xVhPiq29wMrPvJLuWNDMh8VqLQrfyLa/tPqDjA4yQgMU9rrHAKb21f+RnUq9UHq8qpdYAw4KbanLLq7uqN+5BbN/VMJqk06srcWUMEtZIJVO+V2nXiS928oABwN1Ko3iizBEPU3cJYbFZFL3xRrJ0bkAIM4+obRCbDWgp1o2+apy/hOgJlNamovqbQcMS/4RAV+hP94vnz8UgebKDeyFooREokP25YpvcxhKgTr+BufiXkJ4q9A0occ+/SQXZ33nSw2mMjmClXjbbk8mQfkJsD23cZw89yInAQS4ffE7UnFW+6MPQjOLPzbcXDQMOOuojpTjDr/vxgF0w+zLXj4FpvF34+zBxIpcSSl04b3BqM5kOa/iqXn1U5eA0wuJjoiYw48WnvpllDiyGFuJ3tywC4ll8OkJLxulBKMtzFq3pzRNETxB/aAxuIadLGGswoJ3e5wx8IIfEcGpPajnt3To7l9koUT50Bi/68k2XSvcqVryS6OzVa8Ftts25S0zJkUCX2BOLmKZxg7/546qCxFojWoxa3j66YYLU8IbJ2JZMXn6HnMcFQaG3hUhLIM5NE52YuaYX5xwbNzZb9CPYl+O47SGQgVa/tRFLBUCANEZ/DDbOo0Wjli3Kxpf4qkVwLzFhX5CvJR4lN/eccvDR9E2e4HkKxZqr7TBA90M4CCmprc8W8dBqF+3Na0Z3vbsq6mipLRikSZf8FqKdrZl494PhPtT58BzJMiFmFz/Pd5GhSGvJjMES2jOzMIE3J+PV2gZIAljjxzCn9e9vHJGglSkIAleDrm+tHUgXqIkzgJmcJ90OUR563qaYqDpkgsZQI1Ot+BpjMpkF62gVJGEaRgfP2ZRn5WBBze+U3X6F8oke6b3aTpConNRVOeC9L9RTg+d1JNDDE2nwDyIowpQuNugC1Yfl/n5k9DITpDDjO5X1YX4RZhgiqgkfFowkxMqsQuSH2QxZq9g2Vl5oudy4pqfYS8TdCKbIjXORYRHGJA3lZl5wAz4sDNoIcCMq0ALvzZzJfE303R8a8IwdCqbuPJCvTrHwOEOMr0YlAjSwJkIPMyUrkGtKabLc1GLTDrnca3DvE/DsMdzjN3OFl3WQ4R7OnGzmhN1IF57E+XcnRwixDEiGFYfsgaeU30SfU51SSwThyPU9mG7Qh/oQOsqbDDRjGHzsV1XMceiXYOq3qExSHm5dsDEzrZZi+f58JnHNUdW21fl1fQiTB1ik5zUrdKTBvB0rhOCb2Ty8SmwDI874nmWjudeeHhRE1+EIyI897B2JP6ddZ7+2JqFRYa4i7b1+M2j8oHIv0UkohWuQ7efK8Rw80nq4dPvSfR0wqinLO7h/CFl9oLNyMoSGRW7G4bjRtG0TZdQZvCqWzhyJJNSUxt1hBRszWJGgL8a0dexyO/zkWsBZmjEooOjXGQj5YcLEyQ1s62Cbs0GNqzinmKgrGQ6Y/66a0xCjikM0nzyUNptjnyhVYq6x/ImOCFKEY8x1EUl4vjXfPxo9gZSGu2T6IcfATPg6nnwuZJ2aWHH/MIo8QQsp22R+PbcpQSLVbThHKPmzwUrVHQuUF3VsY1htZFE+ZSroVT9AL51dPV18l2xgM4Ca7w6acBU8JEYMa5YWvBSZKF/k5d5vEnDIP9BDca0JGf9VLbrZEq50UursHwFlF72jk8KWmxcVGO0oc4PDpZF4CDS5enEBDiQVRqD7o0Uo9HLM7tupuBBwKuskY3hgDDn54gjzmak27fYYNG/98E2Fpx2daNoTUkwdbaYSdJu3Nilr+nSn+MzAUMOQ8NYQ1JN9d10Alz6EvyhWYBCcLdrTo4PlK0lM/UDvKwWE7UwxYs70NHvzAFOX8X+4M2IuLZmKkKyYTqP22NCSuF7gXyxHMSJjV8sLP5TiaMh8V4g71el2z4gKPVuQdVKP+VDeR8JD2aZwXhmB+SyBnDDS0+2ejBrCERA5FSqDJiIYdugAjBjxkKFp6fMiWToKMA0APZY4pdkUpZlKjhMFwlibCZRKrUPqoOwpzMca1pMXQj404DqnbXdrxL8Cwi08wzvk4m7cnRyUZYKJCRJ/4A9PDucUncR4ohMekoaPl/ONk3nKXI5S1/w6eillw+x7jqe3CiL09fzEvCOahToqWZnw3TpdgMtL4ArLJ6Uz6wQ/TC32hLsY56TKbbzEyn0Mq1tknwNtYHcKVQivorjSjEby45Sx92DZx5R2kgHBXW5FnFJA5/7LdHlnZcO9cugB/dmjS4erYuwdUwqCjYnfMk1BMJdM/JMXw3L7CBfWFwK5kM5+KD4Mqil15dvAtic0baHiOIAXC1aNQCd0Pw46reB5fltgCvPYqutlg2lVMqWD1Iszno7fnlReZKiTaFKCJnTMIhLDatqBWoWqGVnycSE0dKHTVM5aP6mEq8RJouyuRfhn3D5sN+K8B26BYFfBL/DdTSJTRmoSJ97bJMAkIStOZutDhc3hOeCBh59ts3zP2kvk4I69MZAVM7nWTunj5DVF/Ef87wmDuA1mNX4IOIbL1SdLHjqYr7ub5JGv7+0oWSc1ua6v5gPTMIcGRpyuRrTlMEQN1vGO9bknotqzIDbNKLSB2MCw5pak7Ap/aogxmGSFopWTAYOvP/Y95cIoedEhmaNk47Ar7XslmwCpUHSHoV0ajfolKeHGgDqP3cWEFvJHOijFj6BYj25XJQx/EPvU4qRMWV78lJWNJCduan3TFloOuxPNYI36TGZh97TLQwpdRPl2AkkqJX2fGqWoitvRqG0cLaGV2Y5TkOCoJhW1KCAsoOxPW9ANN0uHTYz1fjt8Bbsl9dxTIA9ljbUAv9UjVv+Z0i3/0zcBf9bLqwXO+UnusWykNgbx2XrPD3k9hEKB+4OjtTca8Ou+JUCP9CJtLUTQHXQH/2S81XBTBi/dQ73hYVhzIZRwA2jkprpUkqdjGaYABRe8ikKCyUEZKlqFv74MtwiU9y/s4ywy/U8pgfC2Won3Dvz6TmMifnKaKyCZdqxFoFcFDLzZbgMDRHuEn6n1wn5aHTyKuFu9vkA5rPraet3ThKD5CB0RIu8AZbWO7FwyARIC0W0fC2bab53Q9ORxkawqhUrJixi74JYGaGLkXLJReXvIlsJp0CRj+px+2G5YEi9aJ/iM2Au2yybmb8Hu4/g3Hgzda3/gkD85/Q/V3x8WH0m6M3M81aa6V5gQz9ugzzc72FXOX3/Q16XnwaFoyRo4hU4Wj/41zW+5tYAykALCuUnisHsvOJ0cFj04TquKX/0ttlO8nX+XVjtHvj0ue1GnfQ0oyPydz3AB/uVX7L6nCaxcEqqwCskFuVGBvlvp6Ve3Aa18EZGnYtlJMj1794SWjiRgI2R0tT4TelPl5wyHK2ZR5eZRpwTIqE6puj7TXmNP2GGZhFpTHWKyjsdpE99QDqxCQ5eu8PTL/mXDW8vVAa9BhPt8FYkH9u706Sifk+DIvtOVPJUn2LXL/e/tnkRYemiDaGSBIAU+oySU4v5/0NHC7Eb2XJiFTd8CuDCJskIyhRHnVwsyERPlnDuT45BiWYSmnZvIeZ5y/l7Z0IQrczLgCTHsshNVxtMnLj0iy87nWmio9cudX4pLyomj7vfkF+HqhdE0wKlixd9MoHzAbbU4/Q04pAgqQYC2BhH02rgBtyCr3ZaR6WnLBQTDz9xB8KLBIRZu7cqMiCB82zaVHics8Mrzg6zWowrpEkN1jdQ5hLLUN16zAsMqDbj8zUn9CaGWW2KqbZEunRgP/M0qvIWyjwKXijey56X2b2UcVuhKaTlBa8EtcG8AXC4PJqHL2LJCbPyyQoR9LVh7dfCUv0te7iXEC/0LzTvwi3iolIKb8vWvKJ/NHurEzOy3WWvpMeL9D9I4AyduyoCF17oHQoUwuavDsOaqfkJeDDc26hgNkkC93peV2M7E5Dp6oWLv9Rjlq19jAIWjEtmCs1vB4f/sFLuWgNhEFuMWaQW0=
Variant 5
DifficultyLevel
694
Question
The rule for the graph is
A=kc2
A is the area of bushland in square kilometres.
c is the estimated population of feral cats.
The graph shows that a 20 km² area of bushland is estimated to have a feral cat population of 60.
Use this to calculate the value of k.
Worked Solution
(60, 20) represents one point on the graph.
Substituting into the given formula:
|
|
20 |
= k602 |
|
|
∴k |
= 20602 |
|
= 180 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Algebra_NAPX-G4-CA25-SA_v5.svg 500 indent vpad
The rule for the graph is
>>$A= \dfrac{\large c^2}{\large k}$
$A$ is the area of bushland in square kilometres.
$\large c$ is the estimated population of feral cats.
The graph shows that a 20 km² area of bushland is estimated to have a feral cat population of 60.
Use this to calculate the value of $\large k$.
|
workedSolution | (60, 20) represents one point on the graph.
Substituting into the given formula:
| | |
| ------------: | ---------- |
| 20 | \= $\dfrac{60^2}{\large k}$ |
| | |
| $\therefore \large k$ | \= $\dfrac{60^2}{20}$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 180 | |