20294
Question
A resort has 4 pools.
Which pool has the largest surface area?
Worked Solution
Consider the surface area of each pool:
1st pool = 6 × 19 = 114 m2
2nd pool = 7 × 18 = 126 m2
3rd pool = 12.5 × 12.5 = 156.25 m2
4th pool = 10 × 15 = 150 m2
∴ The 3rd pool, 12.5 × 12.5, has the largest
surface area.
{{{correctAnswer}}}
U2FsdGVkX194KTvjfCjYd7fLbQE747ntR0hVuOg07D3dLCKS+3+huVf2A1zEi1uhMgY3BjnXBO4nzppGtCNEXd14jEX/NlNzwxujOHPTlhM1vWdV3mq73ESe5XygvuCqSWBoKUn96Ouev8yoVHu04MI9Ik239CXi5emE1HG1qXO/HDtIJ8Mu3nPaZgZr387omwNHKbMFvdCnPhVDsSSx8WoAq5Q2KpHB/OP10Bb+Nnpa2Ps0Ok/AqF4qI3duHSovbzHjX9pSXDt2LbiTeXMcCcCr7Cg5kLQiF3Es1DcrLFu6EqV2Gt9yGDvkCwtYbi3B/OvazWVXsaLfw6vKGwz6JZlsCJR6x1fFJhU0xxDgDv65uKJktfss/vfMAS8+qTOvB/fg4CTV31StimIBpM7CTHpmI/bcSxkPY+CZAJ+9s3+BFjH6Uekru/LChUX53tczD3iZgTRgGcwRGI/dynT8b3ygFyfZSFrt8wEqsI47u0dL6hLyI7x1v6fyxydifn2v45Nh/hIvV/vWCkiej2IlF305Hj7aUeIk97Ex91msk8IBYTvMhlyxV8bDSQ+1l5MJtfEgzdvEJEXi9Y4HeZkosJ2FC1nrjPsA4aq/CbKlRpcvruweScZrxf6fJEkU7ON21TuE78oRh/ADj+amSfpbRP33lnW/7cIL8Ht15kHnZW2ed0UMwDhln23XoTYi6hL8gUR8alCGRd24eg/FhTGkLuwZIrwS+BaZDCNOOEyUrYUvzGkg/Jl5nzorw5lOTlX0wBhY9KTOVPNKuctXlGC7U2e7l5RAA/8J6szMfgcQdwjkz0fbl6mZEdUJIz1L07cQlczU8BnyBw307b363NL1WCFB32sEqskKe0pBnWH2MeRsMSQWz2zg/tfj1ZGA8GkO7GRU5BTbfVZd4Kk4ksihcDL5VmY07TMu4zMrbGjR5JpbvNnbMkmuPtjfJ81e5fdlMSV9BtQb+txhxJjwqtoLc5dU3Z6E+wjLmD8QpfiGjkk68FD7nf6ujfxW9xOtd1qn0BqE/riTjSzpQp2OZu3MWWsM4LaW8qwZvXtKxe2ZOCSd8c63iXlB11ZTwwKc+wTlS0Ax+kY6uUys2i9cW+ks0oYgS0cm8UyuKpo+VPJh96i1F9/dpzmFs2IgCyMfLDeslXyHdTRpVZIDGntCZN0gN1umkL7Jdlm3L5HZLdBc8JLOXHxSqemxWtlVyibd3fmaytgxfiDmJH5puKdMlE8sqkddV0XWH6IIzQPo76N0XBh2eMPY1QAF+LFvfB2aK//N3aPrIz0os1WDRN4+buwtanw9eybgYWFrgGRer0hsy1sdkmfL7FL7ZvY6tNuQQlYDxjdu0NclUOspiT39q61QXO1ie+O3Ys1HwIoojdjVxCXR5XRTQ81FpeWwyd+nI0su1B2241cvb43TbKlR6/QZbIzQVNJlePxDHgMlj6hAQ4WQ8zAtdhedvFktdE0GPhtImCs1+CiPboaE113W/Ou0y4IskTN+L1j3WzF2vt705ALHWN1ucpH2WB5zACt7RgibUuIl1zfIi4gwPRLhhk1Pf1PyMavDrqqdJ1UtvzVKTXH582lauRUdFhC5fYq4W7AxDU9HZXoipEnIySYcNXRyXgowD0wGTOGybDm2YbHyzUbVrv5Y+7LuECgkY3EZIIb3D86QZFZ2zYf6YXKUQfQxUyRN29qtIugbp99gFvhOPmGW/ZdXRnEZ+OPdr8SIUyPdRPMbY+rKOs7s1r+DzGdwv99iVMLlfyIvd9cp65akBibrwtIYW9B/JHJVVmZWurCjNXazxd+yiJ8TYLMxPYv8Sv15Qrd0ScSekFkjLMAf8kLxdkgAWTraBuPSDrxxAptXaivLkv+tEp12anbuPGT+v3earpDi+cXZMNCqIKAal5t7OZNu8Rujgg1bMYWEI7eZY/jKjFZuHDPnBI6Rg7jfpOIha1K8hJVtn0Z0kodai5TwCRti9Wqz0AeRX0wO7CRRdRU1BiVvGNV1zPcF2GYKYafcB3Uss9RR9MDXQar72pcCmyNRfR0V5oKkvjkOGTP4aqpfu4ZyghaufZ7/ZC28FKFmvha8Gut8tRmOZy1nIW8C3tGTrB+HmPsDQc9PtCT6XpMoUf/knSqVQR1UvDA+C8wg6Z3wey/wAum2Nw1dYpdCoy2RnjjiGh6Qpo20LWBAyfWV3lqrkI4lzytYkP7B6mqHZbtE9j8pqgqKRoMtVz470FcNraR+nslqtAsl+0nkIjzeAvn533DWLErheA7sEGBD1nICFEjMq3AUvLjFJG3JaoUMsGuixRX8uLp+hxOvuPozljRER6ZU9BMh7OBfl/d6Pf2UgIxq3iQFKhCQrI2hYmwe1QjfO/cojwi95XCBCcus/4QsuQtX1DRra2DUvL57/0Uz4mB7uI822osm0nJHUlqpLmTQVPWgqQAAyZd7/jikJRsuI/HVfQIyzRjM15e5iosf56xBiEWXLcrhUoyNXDxiASHD9IhPTX9b1fsxR3r2bfs2cPq2w58Yr/JoU/6+N9eUNED0q5pFMhy/+SkRYxJd1llAxblezsPPU/gOjHZXwvp43bPcWYCYWA68hQbe88+LV+9rZ6p0PQE5bhfqkjlGzP09emBGudOJR0pJQbtqn/TVN2y9QEcUTGxngOCrao7H/Y2ZQZsU7fdB1yX9P5Gk8UXCjfucQKHKMh7KfZzXwNHHIwlpy20cUGGruU0hVCJtClJqOS44U6SRl4M9S+YKWiuqTTIKsCQoIokdMavZYtIKZPooWMDKYGdJ2dx760+0K/pznwAJZm72w9LTyVQk7Gp6jE8IuEnDBvHGHGYse5C9LHnY4DZv7iImQC/wVxWULli3/5kKfwKvPS0dJGUQzU9t05BZE/2kEm59DuQ6i2qUdJDyauuabRumhWkCvxSD6k39v45HELcy9W6PBrpY1UZqBtMBuSOV2bexRpbJ6hwcms6PdCS0+8ygF6is/QjvKIc2COsbzcRAUsYh24T2QPJFYAcnr5CR/hn/XaBRE3iQ/huXeqEJ9cjCuBZNATvlWFIy9iDXHN0YxMPALPef1+SvJU3zBBF4jgbsTuU1M69Wfrmf3jyT2xlFDwLrW1lvO0+/q1nBn4L3samjXnnCSA+qnUiiTZnkZtfCF/iC4CYDHLiWrsus1q0RT/FSMtRZYvxguaMoWkGubIFh7LcclCd2V/ZuuGF8JkR8nXk1bpXe8eeyQeXb6bhnyoEjnMuoc/cbQfN6zWArmhkfmeFysZlXJxQO8eORnuV7VOgeQUOBMZd+s37nOnS9YQgvHcQY72+veYoCF765rCx8cziHP/AK6MHHNjC/c+umiBpw36NH9ocoXJdu3nSSc258pZ2kCbzSU/heK48vIjUo+UP9OPbCw+Plm4JTutn6yntDpXpVxYic3tv2mma0LwmWaxl9GRrFaLCZg0qdJcN8UL+DcqCYhMD2nIC5Bp1KivmbcyYJwYMt+xozcVgmoZUg1TmkxAV4h9vPe4gMXOGy8nQTDvM4W80MmMprhFK8SqVN3VvkzVyunDLEoSEFWDmAyWKJWyDsh7Bn5bj7bHqmmXcfCz/zO2W80SNXhK/MAuz1+3x5WXdx002wfoSmjLThegGfOQe5pudKjxJLEOur2wNRH4+6nQ2TG2dAZtGgv0TllGvsJS4EX0fKCOCQZI+5uhohHtNhjExRpoI0gAYvn/8ojsIjZfUhC5/fzAmoTGLyzZTOVJR6ZPiEV0rCJPfG0G+IN+GzXLGCTGX2A7Oxly/tTjklrqMSWFM1uJ8ED6oDr6+P7AzJ2HQ592HdMhlrvVIZ07P4YvMuOYXVlCyuhI7e8YtCC8/njUrtVIJBmy8cZVyKJBVoimF+OivsH5Jji640E99r9Cno5dVNogrSre87aND9x8CmLUSomvfR+ozmIAEhxEnROAErsqNZMFYSDbcEiADtqD8N5rPomz5mWzfTSoljY9JnXo//gCiPH8HrZ7GA+17N+wtrxmUajnOCyD9R4PVA3atFpYaFJ636mCwq4kfaDxAUl3lrH3wDBGRCoyVLemBhXs694Hn92sR/qdFBBgXcC2/Fhg7U1EgcRA0+LYN/nygljPUIGCr66risWZELIDGLbfLJpCGLSuiNdANJd6NjPM9/ZnUPCPuTRPOZm73Tzu7rQnrwKXAvMceJrXjFyYeqghr9e5+hI5fGY84Jp/7d5vTmbq/xyABmqO+qVy6cOl41fOCUzo0OJhKUZEV/+775dTdMx+XkcCMG3wynh4fIbcuT1s4LgBXyDYsY07YssAkJuUJiD/A8etsB02oQIhvYjQgqYXNCR+3i094CeYkw45j5SBRuP3w0yTb96AU5k7MZIrdFz0E/KZLJNe+l575dTVXkbVqDpYLAKqNWkMB+e0HJlFLpJ5aTS9E+Acfj0Q8TXUv3AUZfni4ldBsYpBecQWdm8Z6LSfJF6Oa/vXMs6n5yOsH+WUk5L67yIx6W/dIpMzcpop5ttGE6Bx3LnloB3E0SenvPMYUDasInAwXpVcVWlH3SYxbHHi2iqu+c6QWh5GrMGed55VUS3/D8+4XPVtZdB6xM3T5BvfSmD3TOX2JjQh5o5JO6dj7lqwVEo922G/DrQFSfnPuRqfzabcD3IzqrKFNx64rUE991MJLIjcf5WY26YqVgVxUunVRMksMXMhs99+s4MbIVcK5niVRLfZTQ0fbxBCbDKUb7dhUdrrxX5+8aEEk5SQ0oofHxQdMmHU1EfWYLQXinVrW/N8GVDyw36CHDQuZOvUZ+7nSjX9r3nkIIzzYJujqrOa7jVowYqJvqJ2R3t0BSos7aa3Svq3WwXxGNB51EuzTqCFWOzu6VRF045GphvikDTJCWbbk+N5gf14AtAwHhCNcr8/U8gMNcOFBFs6cexGRombfujSg/fu1eMttZ35MeVYTn9bFkC3NqCjGPiRYvylO8JGxNJDdgvCHkwx0A98f3is/jmKr6ReBugN2r9LHX3CeYBuj8K6iZ+7ccQJcH0IF+3O2XxaF5+OtFFaF5fXZqfVJfT1lEJ/yc0Hpmpiaiw1QBeZkojgdPZ3CRK+BoRirtx7SZsveNigNmBVaSprEO8bGrtge5qV31knGc3BE6LPmPXSbHShs6NjwCf4C9aY0AxR5CY7zqi0hX0eyjH/gHiPbMgGFb89tVwxrF+WMLBwJpa12rypEUo7/stQhctRes8dK6c6CrmNGckeRS7QBQGRzpbYY12r1RD2sd0IEPTrWsu2SGyPyT8e/ODqvJYHAfO1dHscPN3X8CicT+mjXK/XqJvkXOgb9y7I1r2Jwmyf41q8fju2+6Nxf8zFW8A99cQlZTrNBRP0VhXzsppVZXwlOPUkhKAXMAnKFalNuMFaorZfufYaJdTXlGPwA+OWd8/T8Sh9PMeO+36Dj85fT8WPvBlkDn9sV9Kw8qmALZKrgcH5WPIrXnypJb4IADzbu5z8EitubwcNN2LC+dJ7WEP4CBoOspylnhit1hOQuXvKa7ZEmvznxwfoi0+ZcOgHVTkcDWVrWtropwRHccviZwNxcBwq19aAv8u6RoSMDq8nocNTpDr28S1YLxFtel7qTg+Rc5sFhh/S/eF70D6EJ8LO4g67DaEygY5sRb0KrRXpgd4afYVoWUfNb8zZG80YXwvSLfcxV2+3lYmc7KKPhHrBkuz8ic25c4zJuFs7Qxu9mKNnwiCqwbEEQxBP9vnI2WYok+JRb1KKVnJONuocKC7q2ZKVc5FQhzHu+gx5TVopF+0/pfGZgrO8J0/LVzeVJg5FKT3l/NvAUFwaLLzqxZ5FCmILGVmBBSDo5cMpGWLW4tjDPdr7jmDueDzNs0+JRtZblUeyhTjNZddVynuL+fHHFwhiWtGvn4Zzov7KPq8088+cyk0eTTaIVXrMGVWRjm0D14L5s5j/DZqxs4UgBVz+w9h9nb+tqGmL3aipxNscpsNmGuWFBwRntHSVbHQYIti+cc9Pn/oRLI7Gn+TcaGLgtHcL4pRqa85V/eml8j4HMwDs6ZFK4DTGaVWgC21EjxjOfqkOqTkfE9yDa5p1hen3L8QqL/sATnVnxOq7d9wMNTMtiXMRpmWxMUkjNm6TMlvL+DD+f3fsxHVEJAVHmZhupVxfWutjvUNAX1GhAfI7B6Faerxyjb4+Mz4qAwYFDrfUjmuf/awtBmCZ/CkV5cu21O2Y01kaJSlbM0JscdQZtCqWSGXOYbQPrNt0n3pdOPPlBGVDvb8UEzE+3hB+G5Dz4EZLtf2Cbsxewla3GwRfXSNKJeMNaoLbouaDTW3yHT2iE+Se9dfYkuNF+LN8eSaxnN35S3yDWbF4QO8hjWQu6WBV8zf0DdHkk3imZ1sE+8cjQ3pc/mmdJlok40RDMOjElfWMnFjO+j9QE6x0e1+tDr3vprtfPgrqcqw22waODds8X8XThYpLVEg0MsvAaq9vpxARvgKk9p0Wnfj4bZ4sXjtNjhJ/22umNebkOJnycRk2qbHd35Sgmhc+GatpB3I+0USED1qCwYieNo/KdNES6h0M9dsf63GaZiJxaTfEdqaX+dvnd8sEfj3JVkn/03moEOo2AQoixlvo4SRdCgHPAD58lUytuWmjZfEZqz9TmQozbj+CZ+03MpArQIHLhXkCtq19ZkKb9VKKCiPovkcgE6eq9hWeJ8QxqEvu6ryoLEv/mQNN5Rmou9lTdTaSNDIZYoc34xnYfX8dqLFnw0PG2nh6nHKdGxjKcbtro0fMEBgMxvk4ig113J6uQ7G4oMOoOXdyTLuULWR/G5GgzQdikHeLA2lBclsOKumQNvnu+VgRiXzWDM/pSYwan3aith3j6AInkzdsvIX5cGy6V8wh34cbBG7xNAGx96aY2t4rbmv2awjaLkC9sY0HcQ06M+OLqaODXmoXpqr60FsE84bH6nRC0y0eTXZ62NcCxksZxQiLDbKC9c18m3J0LS2CFtOO/J01/fqFe/5gZPCANCmZp9VX4CrWXeY3P1pyoCpNrtQtoCLPIF67QqB1ERcXPFw2cHnV40T+UVKXmzCvJNtLcIEcOfqIVWurfcXH5NPJvtgFdblnc03rx6T7ZreW0yypxpwcwvSEEA/7xkE9F6dpue5FNbSzF3FEgD0RiSMBQjiAOTmwtNgg99Kt+y6DjlW+nnqplTJ+aa2Rp4EdSsXAZVI14CELTB5COCOGZE9EWz9orNV+GWapCYwDKMNahGQU+n8zAX9nNtbBD80Wghj85CWyv61Yb1XzhUhgEx4zO/dAEdZp8ZyzzPsikF4dnmm3RMP+VmipZ5/vR17sDweklSfv/iLtYtV/ZsYqOei3Ch1/Uz7+xJ3tqHE5iiiVQRaaorXN9hkSlXbycnnyxRQM1otLWnVhVSVN2oeffTll/hXUUdwYrEaKV4L2c8125HGMTLZyMoSddZTaH/AMYPc3l139DuCmscMgh6cN+39aMAvJSx53Rsy+tCCJfQVRmruPq7X5JMdE+wAnFU+i9SZ3dlq46pGI7Vh9vSYh6L5wVLQM2klHHCE3xypIYqsC9NVVzuy60ylQHDnvuDaIx6SJI8JyXB2git/QgoiT3yH4xN87KaDaDQJWYsZC6vyj6UoaQF0BxCscEUZogpbyYZCLSMGYUZ2FUHqwUbKsHrfeUhEmo8fAp+bGO8pI1h9DurkQMIDWDV2Bj5Z2pkp3yPdcz77XZemKmEPYI1As3mxiyIlVpC030hbzhbUqxj4KJ//N526G98WC7Tv5cwa+vmFOUrNV3ir8WccyFajzbI1zknRqIvXUrsRhKgyer3tYI7m3/3SGVV6H6+6/43v/jCzEvYqO8o5gLpQYwfgcRdvbiTdqJUqJ/v4obD8z3kX53h8H1yH1SHwK774n1mu3FaVsPMDqt6xnNuD7sIT/GjXjeMtOQG5HKAfiL3Sr+ZHDNZLI4K5vvTfXxj2uf59m6mkhT179TDvIwL0SR/zef/Kn/EXyv4/SMO+N0WtITlXOiH0dppHZxA8C+mEKLYbpiixdN9iuwWdhnpRBy6si/TC97dqYnNc7xV3jZM9mQu0/i59QfLKl7Q9Ha7HTWOQdOKoT9ooYlhTN3vvu8AAN1WlPjGc75emZmv2DWLWQy1+eovBAoXTgncNiCb2GH3HFbqV2SKrH+CgKFpCfabbAaVOWoBCoSreR7p8fsfz0oL0f0ZQhPzppRkQU8QhfzSYSbw4agSjbS3ey4cQkJ6D8ol0kg9CVJliwrIbCSQCvykfB2hzaQi9wsJa8l1qPGslILjodDef7DUibdTLyuQmOo5NujHfHoquudjS9p0ax0HXfBp0StD0fBz3z1TFbvAlkFugJwaSmjUnaFe86l9LHVyUSkz+U50GVT+2OyEsjnCHjakZe0lREN7hb/7fopcjNKIlW1LbU1t6GL8iFNSUy/jDiLAdR4GpHcGdmqQe7ws+TztPM1mtYy3tRJ+Q9QvfYfctC1uyMN0Qyd6uSsEEVTIIwoOf3M4tHzl11/wJ3mNBhNLi2gaPuM9dxol3M8Uwm8XraJlVyLyRWqGhHrLehIcoBp9LrBkVHvfNfJKKGuTzUN+nOdw0aU1+hflk8BfqsBR5UduOOyfFtEr0K4+84pGataXWPgujq9UuSRK2b4BL0vbzZXRXTi11xoby6DdtrcAIRSHsD/blj/Wj8Edca7Ql+H3gt6LbP9uu0MwNKstcLZuTH8bJIHjzLyDD82HBpJQkScREdP8UT1XYURtqqdAJjqCSqKIiH5WZG3CarH0IFChMg69TnhgGUKXvSPYHB6RCpm4l+zyun9jL5chiTQeSVWPuE1I6mg9X3kf4KKeQFPgYbOGmmPl2iutl97EixRLUOslrhH06kqqL7AQXKlwyIs5TQMPqvgp8pGrv7RaiPO+vM8+9+1IlxBqt+FciUvEy4shh19EkkilQtJY3E2NZBfZRjeoHJJg/zVIwchhPJ/upePxWTpAEcYi2pr2gRpEEp+iUZA9Tz0Qi+JZhf0KH3g2/jE/zefR2AKWOrw2BCH1jkw6YDE48SxF31ndcwudeC3iQpS+DmymGvUCEzThaxZutRETafl4vvM0AoBTmFOqfWYoS8JcYvK5MCDgzaJs/+MooFwf8/cb22on+8EeKwS8W8ZZIxX7//MS+nC0VF8TT9pixWvi1wRnktSU6Sbw7wP5kO8lxHArHZ1SFKIErDTxBGAuXGA1w5q1uX1MzQEp6tCwrRz/UqT05tPOsKFpMSE0bqhEEHgv9EMh9RSLOYh5eBtuj/7S9nT9Lel7OFeE26xXccyvgHYaRhKXvtdwxIxTBBQO0sG30COKNzGGDhHtcBCr6hASBCQfOlZ3B3j0t5QK2XzKgHSy5G+hTUe7N+kPhn5szImJeFDx2ESG5joHi9vzxLCahFuQ3OsIEkQ9tubrvAXFGVxEsakeanSN5nJPK3PcddVLPX4WfoCgqbaggjL7/cq7Dh9k+MjrLakR4KLKaEjvBwUXKHiY3m/TggQE3NuknjUZTYzPOiE+3PTxebStBTP2lQgv7pmlJ9dSvvIxZc57yfJ2Da6N+tL7sOzYEXdSdrPFnrJsz+kQBsZ+g+ThAdCwTJtoKHJ+UuHMF7Xu9qnbPkNO7Wi5Z/k5Mk5HjLZFHwTc86/wBCkrMy2o0Z2LPO3WaZIAr+9gKvTDpCBlQPMUbZBjLJywyE765S08bQlpT2Hr/VtkIt1uV6O/9WODPQKcW9ZxYHRSZW4mh7qNCLQPaBgb0IakrWArCBmpG1S+DN1Sd4k/ra1aqrUrkXSBFEd4aLyjAScVo8YpGHCLzNKJwQzE5aL8Pd0XrurF2OAl2/jYaSUVo2iGW+Fj97fgzJY0hye2iUxp9w2ICW6eeT+GBOxodvIo6VDB7ZAvJLk3Mf2C2rI3zMty01CyDMphk90IlBdHT//p1/MAiOuynqCAHWy/aZiIJZiEgDyqefjmdmsNUolAfqfzk/BatitGqPwtEe0N28S8qFVimyw6mqa5Hth1NsC93Kni2xbWS8xoIHRxrWZX
Variant 0
DifficultyLevel
528
Question
A resort has 4 pools.
Which pool has the largest surface area?
Worked Solution
Consider the surface area of each pool:
1st pool = 6 × 19 = 114 m2
2nd pool = 7 × 18 = 126 m2
3rd pool = 12.5 × 12.5 = 156.25 m2
4th pool = 10 × 15 = 150 m2
∴ The 3rd pool, 12.5 × 12.5, has the largest
surface area.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/02/naplan-Y7-2009-9mciii.png 150 indent vpad |
Answers