70030
Question
What is the greatest integer that will always evenly divide the sum of three consecutive odd numbers?
Worked Solution
We take 2x - 1, 2x + 1 and 2x + 3 as three consecutive odd numbers.
|
|
2x - 1 + 2x + 1 + 2x + 3 |
= 6x + 3 |
|
= 3(2x + 1) ⇒ {{{correctAnswer}}} |
∴ The greatest integer is {{{correctAnswer}}}.
U2FsdGVkX18hm6orTd9qIpR9y8S/Ltiva21rr8AShVErnROBTKPruRxuDAv+eCn9pl/5vf9yXGyw9CPLyJtEDNqhoksHIV90Ls/kMx+MBJYPKsOz8HViRLEeDYCuwm37n7c73U/XwSb6tewAesMzaAI/vSVLhyi4evcj6AJ5Fgxx4Uw+CPsJZOchxqJ/8pttLnJLjuhTFj0Srf1pBrI1OSCxJCRMe8MHFsXWKsyL6hi722k25RwxLJoh84ipGO+JFk7yfOnZEIwHjw6PkP2fUy7lFc+9s60HHHYhqudH0LYC/ZlYjHAen89W2IM5YLdUvRDzW+0WZEQkX/UnFj+NoUExyF/5DhnzXL7+7+lvCuD0S8+bm78cqY2Icw0m+71ZW3BXcPKUJzImwjpL9pP+J1l6KF/voMs+cpt7p0jy9DdoFQ/7AazIGaUKittJW/O/3y/sQ7wvESr3zckGsS6LKRaChBMtN2mSk6cv5ubfF6vaAu6Un5H4EU4PaIUHckPiO8sY//KB2MNwz5vD6zn8Tle0r2zbuh+6UYTKHieB+gZ+uIcVFotS5CqZdDgEm1VBZl7TdwSQp48m3yKhZu2HPBKIgv4+cJrPXKX4+SItrW/wSQsicQkMEp8nfme/wGZWU7bX9BG7JQt9rSyjzmym/IAjNwz6Amt3yzm+CR6cYKs6lb8i0lot4WJKQycox0orYmqE62q9lQEfaTlEv6GkLM9jXRQ+CqRMarWE7kt0nBb30kLqamfE5WS0xenvEERli6/v1ZhpDqa8kq6dy6efK1nc4Eg7yyIJn9Av0L4t02xyw1e6O0xJTRFquRmh/KjeZHbpFSBP6tG3uWRIEqrAKllK9/xxlppNCBCS0/bYY3m/MzojSAV/nAU/RVk3OLxgGcNQKk2rkPQYp5PmUz2G2tDtzRlpsaF6csYdwzXotrWyscM6IHPJlMvB/bwms/eMwxKjvVrnPMlbtqzc3eqzHbGCvOdAuM4TmbtLkv78XE7o6Ww8wg4ycmkpYsczyQXLymfv0yPK9vZxqXX9bSmxjxq9ugjsydU3gJVluD5P3/EI4f58uLzs6OvOy8eDi6RWEATTAlLPlOhK17XN5ncYO4WTI3E4weFdehYSByOuVFcDqHh1gouu0cdKzM/WyDg5O1/2xD7tLnvhz0WlySgnVpJr3LKh1jwpqi3Q5JQ+xXQTu7F47RPkDPrBmZD1tXcy3iuxnpMhg+rn5a4n86xJ1RjW8ye2QBYz7Fyz/B0JVdzFSH7pKBnlgKiXswvlah5POWN//qEp+O5NdJiTpaWmXWi8SYWsp45r5ey59L+Mgv1BlqtvlT7Vw9oZ7qsrZRJjuAZ/VbzFKMVTfd3l4Ut7G5I+fqZUu6Wi+48ptGRA6rJZEPdi93EX51F1o33Tm8gSQo2eZsiNtW8WiAevo72jmKQP1SrJiWR/CykIwP6plaP5WiXFMDnJ8e29n+OhX5IIcEJKiWUmh766sL+x8ivaRjpuQl2IJTU/27JIlNSaI46SqPqFfE1TG/HIFvE0YUM9e/qK3DtF57+Jb3BBKFWKUE5DjKo4y8zHTboiM1sxyEfHEDGEzrM6P9Sk4utgjOY3sHGd0eIcpL8sSl859Cy1jHF7g8sWVUmrOo9LQ9Xjt9Uk6mQn2SG5U+uSEGThfuEGaq7Jl/ZU6DmyXVuFucUO0e1aI9R5MH8Gjk9bL4edxdBkPxTK/d6cjuEzYrH8Nop51XlwOkcmaw3HFcDHotJumvgr+bVYVCtjsVF5LszaJDu3wID0h9mZ6CMZVlfQ4lATGcvsd/+ojVUmnVZMqAKMK+vOUb4NXPTY5zYOY52cbI7gfUB/EuHAKT2rs04KCHuCPpD/0OHgwkZoAArP18iOWs/1Hr8/zdn01t5N4qW2QwxKNvtXY1ysfip/xFYuKi3zmb7Vl1Ny3O3oPtiCmPhmVIFmSfCsb4QCydJ8jCnNdKKbSEC+/75YmqjWpjJt+aPgFUDhB+J6fx8Ma1dcx2un2/tMt6sWLLque97/woqmGQTJhY+1DSAL9XUpilDJDYcrQsdDzcMSFzS/bz7RMY38f4lLgqDTFCRKRVGvFvYLpzEBW1uJcFmUUQQBMpd5qRwZznOfMbrRp1Jtu4Lw5fZJ7H8N1GEDg1q+C94SnlF/O5WXxoi3+XbKRsYuLtRr6kAaIMMmRtJ+xCKmcUTE1+f/b5L4NDpcgaDWVvQVLKmksesX22QTWSPRZxwCRZjChAgqsKlx/bq1OTLPeWZBwpAU+GhYdp9XjmpxQNSjaXzZ3hPKTqRoqWfchVdY5JbS+w27czfV6ZyeWTOdkqtGQX8rSQdVmznds4v6PuZ31l6g+ffNBQO8Oo9ey72eB4YutcpkTIsI8W2yqxJx9T0nOz6z0nf81SNbVaRJRcde6Il/m7c8l6+CHLNT9lKrcCYFSL+U2VqtrP2ohxg0zU3X9iRwYf0zBxCFvZwox5SAo7LtX3fTgjkin0SYnbmJCdPRoM1ErMJ3tJnXz26KyQ5dXnUD7sd05yhcDV6GDsWy9Y6c/hR5ihaH9OGACz8eMwLc1ckbbEn93mXwIXsj4FZpYmKZBERn3z7xGj0TdZJqkf1YJBJcRfqivt9O3TkMFnEJfieAmYKS8VM+w6QqzCdi17MxIT17MCTE8+B2lRmdiezQsGNqYRMarUiWLRUxXwUdvCnu9D9xhjMQOHxOBxC35gkAEt/HVONKiKvKsy96+zPyi0dF0TtyRnfdeMmY3H/RvQcnU8x2LeRqwuDNrz4E0Sj5EmAGwZeF753+ZdK/FM5JZu7EOhh/eDvpN0+cCzOGRPt5OclA7i/VGP1Jtwr9RR79Vi0Y4mzsoqXsuI+wvw3XFYlP79HiOd8pN/JYsuWuj7bAQn2Pb2rHjDcTFdcfNeanoCUUHuTaV2cwwmnrlhZTxiBh5spneE9UhzW3HBEM2EnYg5BKiIZAtj6ObpbyNP0ZQYR9ArkolvDRMq8ZC/xF0ki1hmdzoA5D243AM5wEgdftA8bPQc2UzqFucIcfLKlS5DsqhrlcWiCVpTo7bASwh435b7zZZa1rjHX2J4vNFSpcDKRhy1AGeqUS3Vkvg6BMqquBj/1gm2q3V1gJrhACZFDqgblORWWUzeePhgstEdUZmZwvK/929W5RPLfcVuvF9Xh6sIssFU/6o6+3wCfdK4gyxebqtJjV3tVzaVmH7gLUpWlPuJx/TrZPeFjf3AGb1KCHALHAIxrTBhc5ZtIoRT9z+evt7R56v5jl+47uI+KW4K/GjYTZYb+tzBynJVlspbue92/NXCVF1lbe5dBV6YR3BFlpf3D2yK8Z98Vr8roO4LtLXSJUKFlu2wTr8UxpwulcGABcv18a8bdnR8gYAQkbLNk0PYAf7JIgLdhVr8+z0lX+KkgQMGRiKidr8ORfxDXW3U5Fv88QQguEBNYg7aq4gQnEAZe3sNee7yLYlOyyEtltNPnKqvyJZzpr6xoM8a2CzrXO5VBZFyoQpiG1OiB+g4sapsMtg9wbuKo/KX7qBY5eTG18QBrTdjEC4N4JK2FVdE4uND5sWHooiTnL4R7vywQ2zMA4VjYk1zqHVU1P2HroAEzd0RDN9mf8mN5rFs3+wULKtFFN4D6fuM7SpP5syLNok23Obznm6gTTLJVEb/HdlrHmxKvBDxJYo332h6cQR4bsqs4iwxXmST2WimFE8Edd8Wnw/oQ7XwTyxea+dytK6jDzL7eT2Ht9GpTmdiH0gyln4Sk8I0/piM8gcMQPbtTN4urB1a7UhOxmMfc5jQSX4aKIHHa4uVud0NvdQCFrjiQZtW1Zk2EGlIBsRIuDM0ljmnasDbJbVK1hD6RidkWULGsE5+zIz/XmzS6c+BftoCY4B6NF1aD2E6ns3GNyYt8D/SeMCHAalsBpoalBfNZvDLMz7SJumRmEIUd0MZ3ArAdHs+IEh5sarkmMb3GwsZnFC3EH/sFdhA+Ze8C95SA1Ykm2EzldeBtMq3p3U3sE1fi0eVsSOKrjfjP02PukNEsOZoWQGEOI4Ozneh5q8aD7DJ0UF2XhQk9Sr6aIOyrn7Q3rZDChSxRPFBUPzVyYHxGKO4XpfOGg4fQAV3sCpU+Sfgu7ebA0RHZiKNKtHkMhxORL5Xy9eGdbDDZOd+LKfqJCqySERhhme7KBPoM9ZYXT+MSjqHsB0oIzx89b4pLuw9fYs2yFs8P/ybDNbd3R1GZGaFQ/ERcXOjrKz2+Dhhm4dVBzQjm3TwV67rDPVHbIGPxENCAIwjXr5RHpWkP0e72HZwd+7QRyJvyhovAvlOJ1bo4d0QHbQchWSOJ6n/RIyLB8r3ntHzHgxfSUBYIGT1JJoDDGLMNEzd7f8jbaxEcnd43ifPkuXCr9QlPVhele79fKL5sphXRjQn9hM6CTvft01Ka/hrqva5BKYtb5w6KmjZq/HY+wd8KEzFZRipQNcwtZFp1rWPAibWiKIsm29NDNCok4ag379JeRyhnfL6SU1e1la5gyvi2yvS2x1BdKYnazfHlBeWLm/DFRR6AJB4cTeDzgeVoPboJo+Sbd5JVPCC9r3UCtbUdB/ixU7344p1fdSYHz34pd1YZ0mc4e4kq2OWU2kcuv1SuBKx2VmDLaXoM0+9/b79srN/HVNh5svz2npG2iZHsE5pRyAUQMkIb9JnwwJ457EPnuw94riC4w5jWSMY//QsLc2cILIA41XXnPFCXaQUNV2c/ey5YDF1KmJLGXFGEg+V7KdDdDddqUTLEGQHHtrYPx+m81HTCDHbAnaEyV3tpPdMNBaaEKCfTKlWvT40UDRgJbVZfzXvEPiE2E2W6JtcDpth1PciXHwfM5UKK67q7xEpFILsjkw4eN7vwJjS3HzH6PPWOvoKTeUPijYgstZ+7+RfWuQjSTdlaRDZa/1NBJHWmS7zOuCYw4tPVyHwaLeHERWDeBc0hFkmvjIP0IjgJfpI/j4gIEw6hXN7Aj7rRiMvzf16NB0jt87FvpVNA7ofJ55W56y776Qp9jid9MOU/bWaeYeWEu/ISNZV2KoiPN1RKWDGy6J69FKU+ERFTEJ94LTLVhy9LUxECunYmvaYgWOhtZSRedbyI5WgETi1QbMYNWPB+OeZtPijDvce1x7FGHH0ZdAxJpBcEbHV1VRXUxFkssd4rXtQjoHKPa8Z0Mhl78lnyPllxhzRoGxXaFqn27SYDq6yQPHyTiYFZ7rQObA0mEphuXfOiF2Ps0SDtVasLcoqpsvWH9Fb+gQ4sas0gjFVGmT/8pRQtzed7AH1VdFzVfQml1dcA7z6CckiuXR/Sy+mzR2j0Xd7oOFWTSx1VdpBdyAzh22sV/CS08kSMl067RAVnDAMQe3hqW0NJtzwXZW2dde5jdtrSLchPk81ulQj3FPFssKGEF9z1TpfUfroL1mJ7TXnBVq+CYHPela3CI5mXCJPwBCClUk7gfjU2Ub41nDhT+4IAfzFMqN58cMGVMgIhQLfsbVayPJJsyGWZhpeg0mvOQYEvFfkIyxkT/DLUQ9nufVEP06lWv4FzeqvozdgltQgBr03a8ks+VOa8YQCVzTzwlXmGeRgQULABCsdZJR7UBGRrBxFjBHk+jkxpf3q8sO8Xt2+bQ7I5+Jsz9Du3E/Hg1jQVrZMjoR4k0Azg2NIhjAg4JH5eOZXWrrO9ga9kTmWMoYwXKm+81WbzDmez6YnXQmRWhzIrcLAzfjaqPb2CLIEr1Fl94EMhpR+c7e//Xp0y6D0NxCK1u9zFr27Zs1Rxi4wr5/vdkmzcPqy7OPuGw/mK8TtCL7HR2NMoUCEaqqEgdkVhTuh06GbU8G9SJmncmbidGlC4G/d63ar81fdmQTuvDQwK9xMZ5pCIhupRJ//8EBjf5DzuSCLwcz1o+ay6POpXoXp9QmDFY6US4kLdpSQ7zmoDJxlXmfFsdbT8ZcuzIKYt7nPrADEi+sQqRSPgUsnkPYw1bWe40s8QQa2rTS67mQ4svF0yA0u4ll3aEnxmRTVsvyk9hslkeW6zHXdLay1sfAQfEBJz98TSaXoQLd+RlGKM6bdzi06tVsIoBrA2JnLwQA5We2z6QQDqJKlnrAHlf6Y1xu0NTSRiGwdmSHXWAWC1tZmKXzXIzLSmMetOepQRBGvYRJaGg39LFQbjK9n439lZGHU6cqYsl8y5YJZoucto+8jR6RIpzLdvUdbPnm6hkBDH+YiWbIioo0u0ukLzuU7Pkr83UzESp+JbDiMlGk1acgANWlf0X4YbbrnlYXPJCvYYXm9Yy5SYkqJuU8zlIrp9Ax4AWadWMn+TK7PACDmSJgEopvej7clHKKyTtK5U1DT4WmmMNEQuOkbbQbUlT7aGnxrisHY2cwt3tvnX66kTbwsQakxU7OnL+1zLYz25o/LWMAOWpREaKCPqpXyMVuyM0a5hMOzkU7FuH8fcIc1Ly+1vH2xiQEstS9uH+lcJ2ibm2AAFvtujAny2v0YuN8U1EyAiBMzJwRbfP2q2HatqiNLCacWcvpmNhqDSaoHoLF72Dux2gMG7h3loVhpeoL4Er55HEX0zD89HMybzIpvzHe/goEDXymvAFIOfVCLazXyq49l/u+BnfF6bGQqV7ZNoDm3+2Fsc9UrvmmD8ZhCn0Eb0OaQchoZMZ/0h9bcRjI6gjJ5Qd1G0cFEWSW21QZIpqoHY5m/EDE8bz5GZasFjdvwGjTjVlNecuQA2DTxyOnnTvB/n+J+/UN6tu7iL3bfHdody3gHfingN5zCxNTbGDxZW6ofqbMK3JUcHd0b+C+/xzhtAU6Mgx63+cx6z9XAAGFB93sYdNOIWIdkl+m6BoGZZR5+auzWNJyUqdapGw2Wd/7aUFhNnzISwEvwZBlYXPkJB6rzn5L6yTcYQik4RIgo/yc3ps0dbFz47BmW6kSRDDDNTsT9ixLadOdMlkmAKEoBjzdmgkouffQdX55ort4k9JYL3l6QVIgbSaJWziSvunIXGXmpoGHoai9mzKcpNDu+KoaS8zSU6AvjL1RNO4vAFUQv07i5LoplKu/+PpO+Xke4cV7Anq1T+Q/UQdAMaCsmQTNRASpwOpLFKA7esjD9S4iVEE455ZcNXNlml0asZ/eE82rnLNuVyGsJA2vnXvpfqVf+/EQaRdmwf2RYyL6gvfzNXaUEHlbKBiw8aQbAUf/6U1Yj/+7pv6Hl/K3zdXhU9b4b++pOZHK+W4nsqW+lT+Nn55k5MSbP+VH1IQMaKxkt+lMnFOSbAtU+z+/gmCAG+a5gu6+bYKI8lz24C4PVtY4FR/D1wfAU0yu8vyCbElTUKGT5mz6UQuAcycMCH5egWczB2Mcoi1sITt8EpPDantoNrVFAMfhqI2kqPZ4syIMo1OYxFCrK3FMSddlh9Q34Ox3hTQlOEU4YoMHKUmcZhKCprOnFN5Cd0Hrvfxdw/uQSbakhELuGtETDKVz1se/py2WT4s/Tt13R5JEsgg9BbLeM6Y2Povd/pmZmqfzcR3f6rjYBEp2fh7ltdM7BaLbO6rxDqGmu7wE3lispfnWaP7opGx6sT1jpHxjziOOE2996VLW6bb9yJB2l1JCHvdxq2EAs0GBMaF3TYF6KYFx7yZocmOIspJHlOYm6bHsC/QZuEOL58mEY4Zfu1YL83WLtlyBUlR9JbIIVIWZB99N7LTs924alJhkLuonmgmhohrMfTyEXEnbsHRbrLIPkeymLNEf64F
Variant 0
DifficultyLevel
680
Question
What is the greatest integer that will always evenly divide the sum of three consecutive odd numbers?
Worked Solution
We take 2x - 1, 2x + 1 and 2x + 3 as three consecutive odd numbers.
|
|
2x - 1 + 2x + 1 + 2x + 3 |
= 6x + 3 |
|
= 3(2x + 1) ⇒ 3 |
∴ The greatest integer is 3.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers