Number, NAPX-F4-CA18
U2FsdGVkX18pMKg37ADy2WPF1OVJt37pRMaaojTXI7UbjnJaQWpJw5f5djNE/OaCWILCoZrS2H/dx42g2BXqvQTUK1acAV6IY5ENQRYCAhIjkMoz0cCasCRi0bVbxHBTMB0eXrk3kYGhYy6/uD5047LpCak03rwhrt/nc7WM/s/mK7iW+jj7EZQRuEHYgK5Qs9C4ns35eTqZB3tPFeUNjLYJ0aus/07Et7uwr3k/0xuH1N3EVHyDz5lacU1IL9QJMooKXoY9YkU76chDz6jK4PsC/hfim20xfTvzs5SM73edpXTorzlx6bEoQwObs+qBq3mJf2sjSZwp7xY7y6I7gFoaPdWy1X5ysEhcKUe3z3snXLWogO3wUSpHVWN8xDPxad7MjaCUEXoDB6fuiwsQVAiRAYJWhYS1moeOLvSI/OmmnMU7RXP6Fh9x06XdGjSvwRW2rebaJ72y78pRDnUmVy9xcaZQ9ku07+YZIJYFnIyklnMfaOhJ5vfggcIj5c+yzxhQFrvnO8seEVpTo8DybpVUAwQT91WKFq807O84K7nOe68mC3LClhyoUa6073Y8DSyvBpBZ3Dffjgr3zOQSVW9KBjoOMB6oHg9sNAfSK1++GOXg2UElDLiJBEf3E8LHZTIm3eGe0ctDIT8nDeIToMbi8wGPcnz/JmO/a0moygKzTpeDFWcFq4Fy2pjbA54bM4prvhO27uPn83RqR2xbFVQ6i7vxcOnyHRLY6/bQef7QeNQVxGAZxWiNzbjdAO6H9gzm0qWxDm7jNRJso5g0sZF0JZZQh8l0mlKLJjJL86em5DUwrs7LHO3YDCtqc5SY3ICod30sBvMGfdQcgm8g6wBm0kp0G1o9tbOEabAmgIIEF8WDlzvYv+X8LOag+VjtPpkY0TPDIjNCXYUbRb2HXr8dKV54e7BDjcg0o2rpb3FxDDtlaxy9p8jCd6aw4RuuBXMKjYquJeOFY6EAS0Lz896PMMVEuMQbjzxMh4RDlBomhnH4pkPrf+ezpak4Dy3p6mofa0jAMTFJHL1vRL5lt89Th24cSztZ5geqUan+gmSj11hwas76dmJxN+t5XsasquR+ibFR/JnsaeP8w0J9GSgZlIu7J8RJ1uInmDQaEwjScAOEU4e4yCpKrh6R0ZpZmWdpqKWjENCzfGWfLPJ+qYA98kYORfk0uT8wtGq9LpmhLLKlLO/sFY9MLEnSxwsc8EKAGHJnIBEM6D5Lnq65ns4g9XI71xckIYQ8AMGOEpewqomLEAb9GYZ6Gx68KD+hHyuehO8hT6nOjRs9UjCVr4Zq/iC53zeAg/Zu6LM7e85t3A1zs09wQTowE49V19thTU2fnVxyk+rqpoSLpywEfXUo2ryUC9K8jCqmRBikkmvjvM0DJNsZYsNd/pxVK1faG+jm1IZiJNpIJNEjX1foeq2uW9czv3k+fME5Vx6Pz5NCesJ6+BwXasr7RaLCYQwUP3VyfVboeRD3vXrzqeUs+fVlHvBPCdjAgMvlWMugZqA1XY8HYXRaWyaLJWG4PKM1PG4o4Rn1iR6IEsESMhzjrpPZkwvrkyCwdXhG94Ky8FcS3C/gO93U4iTXNgjIyu+F5pVxGwFRzJ7YnCnZkr1DzlbzIFHth1OAbbZlY1599TN6JnsiFSgMGmw/7l24mhmQkuq2GEZkD6EU73qO2VINfxB0/DPjNimBYnhiBJoUCbZ6P2LvJWtfA2RPxcCeT3eMn9cOn7+me0qb5q9vpvh12XcwSTmV5FivhGBIWMd3nJ6nLzwLQ13OMa/A7zUIQaiGrihQMO+O9+FlNsqr0JKPwFfPwR0sD1GNB+JishoO9fzwwUn/pKMDmGP0AayFuTA2W2EUKkb84XPW6hJvJPd1PMRG5K92dGqM/aWRGuWXTgW7ACJukxR6YRR88kEq9wzeZAXJjlcKTTXdWhtQOWdnzG1ltmD/L9TLcrqvTnSntFx4keOFwqeqel5AhCMmRGt4fba58TAjPOAhJBPXWN9WMS22Q1ng/wvqPXGtAknXceg41KFtVGMxoXtrNpWabwOVEyu61kDO86DF7FFXxjBUMiBDARfvRHUIAPd/afsclMk1kTjhMw/NpDumqB4QG7XLXV+GDU/UwF8/MY2y+5rJHaiew5MkZEuWfL+qEMwRKiXfw7wqR428oQBHnzroavPfCJwcpvuNG6hxR+TdNYXLLYrEzQOsFSzSK9usv8/WzNCABtpyNPmB87kQ1P/fVLeEaqWEYeCkjPPxkuL8om8Q9AsQZW20hUjdV6fLE7DDjshmNg5BTw7LzM16hfSHFcuUbnffFxoGtkk7XEVmNqqHnmSyyM1slnI/USpxgve93Cnk73wo27aOxuq9sv16sKArbnG/InQUMdgm5DtQe6sQAQ4K+11Hf1uPl5OhPl333sFIr0c2aRQnwakW7+wHR0MbgzcJ9x0KYZy1sPNS9WmxSPW3wpKvtVcbpk9MsSGm/yuC2fyVIhfwPd/bbqFshvLrfxQgGkj2jrpu2HS7stVWyssj5Kk729zb/PNzr4i6OY0CWcID03uEaMtFvq6BP8OMVq3Gzm8UEKCD/3qUwYUtdL0aZVpYJ03XSYrZFtjtAhFHRuqhH3toso29FpT7bj2QMcoWHFQoJPzr00sm0dRZuXL9W4bXE8Hx1HQu9aET7lbi9d+u3/zsQA96ymvN2FCWXwM+5GHZ+OOEx65yO2xfKDK2PlwAWZabd1dyI0XFEpk2sbI0E7bAqMM2JpTMdjmhmpbHdH6hWntWhPFYmOBx8pJonvQOrH4gcxxMGx2MgXVNAk1cCxWk1klxjwwsgIfZnREKP8+6P+7YI2MkCYh76j+3tcZGQhA0z9PYJjbavR9BgyK1FPu6mb691BTSPelic0Bavh4FYqDUIalOBIk4lSw5UBz3qdFpBn8Wq/3x5WC5Mwez2LWHPkKOk66zdwrtccKctiTO4pNUXfi5wa85e3kEJZywTr6nAnycjn36V5ycXHSTKrixt+iIZEjLIa1me3dIhJlsyJ8JBfx1Wl6ziVskFEdedhyWHEC2aS7xSkITpW7dxSTn+TXzNBWnEzdCkmwBZCQhuht5qkw/SfyuE0tWxHaKhlNRWLH08y5IHXQpaJlYsbW9fv7ykYxtc09XM8/HZd8bSBD2En48jQu4kUPuQdrQu7yUFBES53peeKUaMFoeBs86zoejivCNX4qm5ODFBos4tYfEIDOA5MDI5Pq9iYBYaTcaDtsF13WiY6kRrvffsB5kczN5RLQUp9KwkwXSBMOnmzD7fOWDNgdicncCPfliZqMrLyigSsMX0274OReh204iB2EFG3tXR0b5iHnmBDwljpnUk0xnbpW31auhDGxIZTy0/gx30O5Erf4z+K9AwHOovH4MXT8ncdkG1qNyW6gd7fB78WMidqYrLpIHgdmHofxzwkBft0GZ5d614QGeO71d1gSKrfd5/+ftSaq6i5hNz/Lh3JAsfm53jYZ10xaWzkpWWloD+4dzKN4amSKJIk2xmnlqtNrQ9Ck+BabJBQylCMKQ9ugSULaaQM+I4yF5t/anUK9vd5ge/M6/N6/RYhQtE9B1oA1gOce3uOEEclqG0HwY5oRNFdwLKM9okDHamWdtaFE8WrsAjEyQcE0Ppt7eM4Anc5uqyhN3Hc2h7J97BFJoNThm6gYHmfoMTjPZ6AvBAx3mlRKSiUfBP/MkRZsi14Op+kqBF2qpgDNcmkCUUZXdTbgdJL6cb3C1yEF/heMGdXgptt6VtxO8zAYsWVrVBjQ8oDzkMd4l+neribg8leUyphAGGprQc/MHlmGNb/P9PyTKcTl+upORCZTDmbM71NdO9h8kQEzjIEPeeUtmoD+A7IDt13sHlm6yfCuJ2r8C2M7tmFSg0OIf9kFDHKTFLb5J909e7VkMFRD5ye74+gFFsc+omJ9Gwd3u1QG39B2Jm/6dGswFFNYQSVvUi5ea3BL7t2oezcx/qv6ioLmQDTSD3auKyTY1/yg5vf1+NJ3demU+omTliiWN3NxRP9LX7FX98qH8CwwdhJnWvRhE5tG90Lk8rskv0UVqUdARSisO/tc4DPjm16eM8NZtOr+rZqaD/K/2GLG9WQdCjuXxall/9TbNTRGN6CQ/CBFVqIw6S8DGM8GyMPqAIoli0YChUasr1qGQfu1SkzDTQfnAP2kKrvIo2eA1mSByb900ugwcm2IwfrPtXa5aEMP8g2ouzfgqYwAXQYi8lSeNuR9UzsGLe/nP6HMyB9OXV053WasZUlD/gqC07rB9hni0yOJEeXLFABZThqZAUQrbwOTq03Yf213SxirAs/Z1xC5Yxsq6zDMR+J0Yox0G6dUXJyju3vul/AlRHzvjNKw/vM2KwWoTfHH+tStUKyf0M7c3AIdn82U0o5mE3YLBvRNQsGPstiMDOupMUVnZgjV2Z4HTbHuXY9E4Qov7Wsve2DKlkgFLoNpWBKkKvBoXOjj2G8MRHAtzQMS2h77GUaWVvJyx59I2n2C+bwCWnQ==
Variant 0
DifficultyLevel
595
Question
Sachin's cricket bat is pictured below.
The handle of the bat is 29 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
Worked Solution
Length of the handle as a percentage
|
= 89.129× 100 |
= 32.54...% |
∴ 33% is the closest.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Sachin's cricket bat is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-F4-CA18.svg 220 indent3 vpad
The handle of the bat is 29 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
|
workedSolution | sm_nogap Length of the handle as a percentage
>>||
|-|
|= $\dfrac{29}{89.1} \times$ 100|
|= 32.54...%|
$\therefore$ {{{correctAnswer}}} is the closest.
|
correctAnswer | |
Answers
U2FsdGVkX1+3dAYtxDPyRdSE10Y5BrUzLI9n/bg1JyChiDH1czRL4fupDn+1UPRZJTvDu9Qd11q1enU4B9Gorxm8NnB3gd5MK9tjnmUt1Aki0CCZ1VmvUiSoh9hcHXLsLBap6TzjoSaHy+7h4ZeQ7Ju8KTTIZWpGq4aFOr+26m77ZFZdSe3/fix8ashcCjE/ADc95PJaWRcd7P0wsADDfJ8AzD7agNA2eT2LRYBYgbrhzIkDFWvJTwPyehfyTqLy9CCjzG3oqhvYTJw1D2AE5AHFfgWfd09qAq3OCvkyCQUg2AgtdaNLGrVP6TNmY67302EyDkDnODPqHn6fZfBs1bJNMJNUNJ1CkZJPjIerLHbpOhswtsdUe9ASgXuUr78swsHqedUSBhR4D+5VOSrThurXDdtYvIUpPUp43EkZ50xTGiGOy2ffkT4F2Nd9z6uCixlCQNWarEE7LBQhfCObraXGmLJA1o0LJO/CQ79N3pXXWBozkPQNrnD9TtduABHMZY/h86pn9ttwwbmRPjlfeoFfhrnCrsm2lYZHWcq5LIikzWOu6QlTXRyrx9hmy+4HFuvLBP8E6MELkNTSN9HGW9GWVbE5FCe1UjkdQWkA7ClFZDoF8UzB8la8ObdL6pc3D8ddZTsT3H+HBAtiOhjUqJ6RfwdGIpCJwY3CDtAQSbd3pJg7GcMUWwY/RO7XLcJJkFT9utcLJVSBE1iWtz0JPObf/WpjRswOgB8SN6rO2nfsXZmHCDbT5ArYsCV7eU2yV3K0ET0muqlyNvdZOFavZAvtYLDj51Qnw2wWKZjMwY9Jn0vAiqpD/OyOdR7vEX9Gu3JjbCC2uH0ntC5jgcaW0oGtAZ2Md0DqCZTUNPUIPPtrCshp7gUPpI2Tl2/brydy6qRoYEN8bD5MRk+sZXfYd+R5DIWJou6HiZueBCbtnJ7xn5hVALc0Ylf9jItb7xM0ZPz8YVKXKQsomI/tPeUbglnysj7/W6C+MWzj2sGC69O16BXU0LJFrll0gD7btEMPz4R3jaSYxEvNnJNN2aRP652g0Fmruc586sFsYTidfUVATl6iWVSeiw+LDHbp757qYdyoUqQmL8Cx7ZMhe7NOVG4jGR9ht9C9sKHR84lJOzrbBhYqoyEQ98ihjiveKxfjCtS5lEfwPbHQ3iazQO5zT8xQOhM/z0U/VM1Ts7Kuv5LQJiTmSKpsMml5u4eIBvDndXXGQquL1z65RSXqU53zZfXp97331llLJEF9DUiNW7ugHUfgQvuqL9EIXUWZJsLQNh+XGYdvOMzTEfO776iP/M//J9yidedOvcw1tMPe/kgldtfvGUOihYRr8Ulwzz8K8YVgCc4SXDppoVmyJY56e4NmgwqDeRIs16n3ufDFK0WjrHzrLTsytG1w5Bxzb+p38ykTkS7whQ6Wgbt62I727iZqr2tu0SKDDRTlEookvEAotN8Ewhkued8B0jOcJFD/7rjl165UyrTTvnh+RLJhIw02VljmT4GedhEEhioixQ0k6UCIdJfdOviwwSBtGHnkuudQvxeG/ls0Oq8EP6P9zKKUZLC7Y19Me1MZZZpVoD8sHnOsVuJjm+0pTsCOAi6xT9FrXH9d607uvvjISgS/gbwrxTv9AZGodFtwc+WUuGp6jx/4ZhFwX+n6vJZoCtpCDZ9pTytq22cys1cGOK7xprXbmy/euwOzcMI/GUE3K8w6AbKXRcuwH2AmB3o3LWWG2v8d4Eb3r8CfxcoTPZRcRxIH99L3GHpSsaCbWKOCCmnrowB5u+MxENMe37DQSY1qORIi+Kfz8u2jqG0kztvisN/Ko3d24z93Ywcs2j0IyZ+k56ZFD5QZusQdpq6wxILn8QNafErzenwYhM6qdeXboknWNfSQnM98m+ZRgjm/DS91dqOBVob9+Xp+VPjaNb0Q2d5qsOK5oBa+Mu8nTPUSjwiuhwnzw1dXlSU0uExftIygnks0h/1cyQDnLKUE4stJqAqkARqVbR0FOR177XW6cSqQlIZtg6ej4GYUSXwdHtKUqGGYy/GqM1ezEIvEb8u8Y/D+eS1hrIVSADBjYHcrh93wDdPDVRyB+dpaTehKt5Jha2beqFcxuREKKObqhb5/+0rX0dU0cZ4JFu0j2XjSydBsmhWSaEUKArdxblWIh4oE3DHFgH4MrsDHbi0R6fJ3NXvVEY5bQmsjGnoLeX9ckMeUeNSUI0cCMP47s05jX97cKV9SEl6wlqwOoUqtUv/+7gwXpgfd2WfKpARGCeNAxHmZCVPV4GKUFCk+maT/JDRsFUivOAkIKiVfzuDOHARvNc+gptkXkYhZubJAuExZTMOt2+InM1Bz1CyU+kIlVMco8ZHNgQbYQMbO14gVh3OKfd5NBsyyIpHohE1ewzYZoFnW+JNR01wu+knA3xfvTAqMu4KNh5pS3of+ovJ+3MWBBWD9KQXf3BBmFN8nQCSMTjYMEc0NZNHrOAwpLPrf9Va9Pjz2HThIJaoMNfBGLwlHbC5PyYA2yh0pwnA86hA8Yn4l7e3t50Jlcs771Du8BoW49tAjsjHcQkYBDXv1bjpineJuwyM9LFGbuFG2nEkLa9pdH4j3xWvZUVg70uCNNVssaQ9L6Pfa4NPZtAP2PPhORkQtTrvZpt99vOnSdDVrCmIW3yi9uBJjBwzjDS4nfDHj78KiP7hGswYFial768Nk9A1WUzw+ZPwXDQKJ7YZCFZeqcVTLPNr+zgUcuFx1s+wpJQ2sowUfi1qGEp9k3ZHiDlnArnVcWqKovK1W0ecMFAScgs1tBMpJ5XG3wV7yJZbp7tyTe25Mwim/FtQikF9YuWPOeWrnWQKyAkvS9MNIq6u2F2CKGni7iBksQ7LSFXcdcZfsMrMIFOeHd4AwpAQdJMf11Djen4KrVij+RoHZLPlw7NMRPv/a48xQuBdD77sbi/IOplwa/+kciDK2EPxXxisnW6kOoBwzK1tHRZbo4cXlXj3P9zjYXsLz5TcTEoiaH7A1yfU49NlzVC3TT/90YY/JvkvRnrLKNp+zSCjZuHB8S7HK+dsCmtRZyrzC0AZ2QPB+1ezBMw7gPXm+mf8c7iXX3nK5wDfo9gEELqXWpjHISoK6og6P+bzUkhsfOy8b+qqAIVawAF8mkuAPIvL/bmcPkaKk7Wf9thycVTsFdK6tDE2oCzXnLkr49uBNwYFvK1CgrQVb+9Oj5OdvoyoGwZbgD+xM6gcjbMKtVIoTcxvKMv+FbRBu+iUHBfN9qbfJyoKhKybG+C0JUOSzRsqZOaxyZW1UcLOQ/56oEpvHlFnQb3JLdG1QQYfTby5EkKrJjn+GA7mtpQoebxHLwgi4Gtt5ogtxA538cMyWqGvEZhjtUCz21VdMM1RNp4JfMafGy4Sn5zxQnSFNVTttR2W2PtrNWWt2am7KKM5duERML1CptjWkeko4MFrcFFwc7yNyHD1H0atraLSKrUiZ8V3JygZaWgYIVlfF6xwzCufdpMcltYmjo0TpW5sAYArVFd/HPBUAkHt15O+fxI6qbOUyG/2r6uPCMXqDRMtyVMebWrbF/Grceih/SxGezuWFShhb+H8Mu8XZxhTs+OaZRHj4fKXfY5VO5+4BlNi5vVZJdeGC+lNRlkePGNgTR3RT+0JSWN6Vb1Xe0SA6Fz6Vd0yiQJYf/hFvFS/u5xoz5Q+17YpqbxX6LHRDid+iwbeT0lMX7st59T8hFwGQF4kuOXe+neeaLkE7m2hVAsVCAxd0qDqC3wLhMT+BfMxlzfIACX5sEkj0t21ppQzuUNxf8jHG56g+sL5qf+WmBRovdXWS4JR/+nVVnlnBsR7jF1z0Cx9ErwZZLn1635gexM1m9ejKwsk0M9cZYemZfiqX4lKI8Lc3WUkRKaThx4ISKP/TYGUuvKOWrAOZFvqUaxnF+zbghet2uFC/2xmoQ7C6u+TNHyNq8uDDgQ0wL/N3SVxNccWhXSmnIWr5LKPPS+ZgbCsM08b/mlsnV3r7MfOhTRhcQHrDSaCaSuNGaCCiw7V8HaFtie1SLE1VwZFOVPCsWYkwkibxvVmXbZlMWwOLJa5WXkhieorzlV8Dwi0+zViY+JZQuyS6poQbPiFIfU6CxBCRdJRwZh8iUf5T6/9FbKd4OqKpEW7Mi9hyAhOrJqPi6c7HIl2zpDt6eQ01/UgzuSMTm2DqIMgFkSkjbXoMMfw3K1jxxBABWF+w2oFi+ogTsYLoy4OzvK69tq16+pwD+TfYw2FJRpyRKpUXDsU7ZSs9XfUeUhN50Vmh7jr7SV8E2jSLH9DC5zcZHnkqOGe+nLaPiuTJsqf/py+fpl9A6c0bCugNpUHZTNVvgJGzADeroDfVSW+8KVB2u/fQSbJQEPGG7y6sNXz9ven+iX36znUUGnPzd2HjvAn6blYfSn5iVtzpbtaJIgC/Znfp7SMw+qAl5QrWw/t4IY2WptYI0zEL7XYw+T9SpybhN35OwmKP40Aeufy2hOJWL3FWhix+2GC3Or7BkqUou8mIOd8hVlhkCw==
Variant 1
DifficultyLevel
594
Question
Ricky's cricket bat is pictured below.
The handle of the bat is 31 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
Worked Solution
Length of the handle as a percentage
|
= 89.131× 100 |
= 34.79...% |
∴ 35% is the closest.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ricky's cricket bat is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-F4-CA18.svg 220 indent3 vpad
The handle of the bat is 31 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
|
workedSolution | sm_nogap Length of the handle as a percentage
>>||
|-|
|= $\dfrac{31}{89.1} \times$ 100|
|= 34.79...%|
$\therefore$ {{{correctAnswer}}} is the closest.
|
correctAnswer | |
Answers
U2FsdGVkX1+PCGSG4rpbGX+gVlydtNaj38UiuJZLHvkbzL4CiAcQEmpJ4a0W7fCrfk2UdPwCYNefiSvjTv4+T2LWkbc9mlpCDHbqAsVPjE2GC+pR5yGnTmsRRVk6lundSJp256TZjrDoDxzYeua3Xu6HxamYAbum+i/xlm8OC0j1a9Y97f4dSTJmON8/IOXqpBsAklVBiEyPVA0xJRe6UMoKfi6c7bGTPdkOtPO4LI6DsznJ3iP0a9wiyQvPBxhDaeylr7kNJeU035a06+RgsTmFFlvOsayIgo+hYu+secqG3VpuSIwFYHgTFg5JJIdFmvvakM7Cklk50bB1LkDpWpwi4+qjcajmKFZ5rnUoohzid8koEOxY5lfRLoA4ONjt7qmRY42lkOo1CEpd9BuOyZKcHlaiWYf0QeP2hZ4wQlQlBY0HqIIIZ8Vj2g84qy+OYSbtVUtFnQRa/pRFFf61DJ2uIx5W7VAWLkfFA36nAwdXkMmD+DWU1iuUANjmj3nBZJon4Xqo22WxY5XyvXCfCscddu1AnvK6qcen5FtpH8B8lft9zdztS1mipcP5o/pxhpuFzeZNflmhqHQ40QdyjM/9F7DWgROYAZO5LbCb0PV/BkE4V4J7swBO8ZaMpgUZcLO5kq3ssFLGXP0u+9HJYUBIHuTMIPkC/suBciRM5YPhpkqOAb20BiU1Vx163/zQ7R5IH/hh1hbbbkDrhiXTpgFYkVibGe7mOIJYZOe2eed0U2KPjDdhlLyTprGlCRaASBvv7I8q5IHTcnHiXSx5wNuEm6qmC3/DxWOEI4wLRAFOyroTPFQvq31NLI2xK+M+sxt0IifGMBeW5d+yn0KZPjNcYPLaJudGA6Xy2wTD7ZHYfdPW3T2wjJ1InjO/SP15W63NmaOpWkWetXLX7IY6CdDN77wyFU1ZyIsiWxhriNxkJ+bit7hqhr2tSz6p3nVOlcC4N4SIZfy5vzIOOastZcuQCplqozS+Hbi2bxc1kJuevmS8ywk+Zh3Y0rQzzps7eC4h/abL6gSpy98vIlb6KEyBmig9HddLecHCjBBTwIIIfS7vZPRsdVhbaUX7r2IVjdRucUdmasRAp7xPV+AuLP0tSHqjyOS5SluFYYXrZlArzTHepV431EHO+K5xLmEhc4h8jIhtfEsY+IEMpWu35XbSgSz/l3FC/k5UjgdWNW4Cra+I8VHugcW3hXKKR9Q8hGSqP77zcixiUkDfOyxMSUEooSN1cG+0BEPt6uzgK8/mBOUK2FCcx/kfyWAkH5HQzRFI1+dnnKzoxZCWT5KsVaihLc+Fwd7OIjhvvcrVq3nhSZTJk7Dotr6FC4BW4ilc5pcvzL0B4xUnf023C+3uwNojQHZDqyByjxCAnrEqjbMMHm2/57T8CG/EYaiWK0c5hwJTl+acrqPzSyRsQNLcrISt9/8tHDZLLqYqhRjM4ub7YG9Beq7jj4mMpqk6X4tmbxHrGh9gruvjCsH24INTgSjuOhoSUT2mUhcozIGXl4mio3VNk+RuS9srpBCUyFG1410GHNDMx8qjo1cMKUWy/9Ejsi83y7jN9K9IdvPLde2sV1jx8UfeCJex9T80cAMphyUMVVOK/wrsa5nUwBFtss+zo2djXNTFKXkvJS0Y87cPScU+xlxj9iCBIgHvMN9/kl5NN1wUTqtxfPUXpmhrFSJBYbOj7joM/WBqTfM2qzTnQIh9LvTF+dHQcc3KqbT7ksAOu0iI1JaZGGfYNFBJ6FHGy5YYGugm9l8fJ+74PrT3kaP93M+UiAYaaDKIk6FUNOlL5O6ezVszIxr0v8W345pBCzhR/xNxHi6/vMighRNpt0uK0coNYkU/NlIB2TZnTW+Kf56wfpI5bJThdXafeT4ocP4TU4zeKlUeYo6XTZlhPXsxy+kX+1eqb2RkcagleiZTID+8lmk2yh0CvGPDscChUdlmSNXfpmTlROQeh87q4y2f1X2IooK1/+PfnGXB+aPlunFjLckLHKjlVoh5n2AmekGON0coFYkuQvfuv9zVGV2dV7Z/N2NxT2ynl0Evp9caJKgHhMkr76aetLP2eUHhy99dPxGUdWrUuMYjYI2vaqM4+Tsi949TeH449eEbAnkNdjrY3VScv+vYyZPjDx7WLgi6s/EUoS1J30UFFRhH4npe9bN6z5xbWSBHDk79PKjA7sasGPRWCV5rpidVqi3kJHjLOWH+j3hi2VZbGyM8H2IzWrwfBuCYBAXac8i0kFRHM48cXJAe6PdXfEwmkqerwGTVGC3taXeSqTTOluCAXckFavMWY9XxHSgwLE6gfM2VREgyqH8NhTsjYs40NLUQBhCdyxqI1WUxBllhng5JeNJLwNhmQb2AyPgpJsEdouYGatYX5+f1nuvbXS3Bkt0CXEx6+y2KQ65YTqxoca1QMOvBVBT/ve88MXmwqBb1alori9Ayy9gw6agYgecPDT16hm3Ajhwgu4txDHuzzdhBPOo25H9ZrCKP9w1UZa1k5iWfuGO4BvZRhGWESwGdWWBkRfIz4ITyywCPQR0qr/ERkfnbkkFGt32Q4/x6eVo8yGKoIh57vtkx4kgNlFoe+UMIvMLOi5VE6o8wG7IdWfEgJmxWyUYhRcWCn5KHrexZkiZYCOrBYO9xNrUpWA+4TVfEgOYDWEP32AduCXEbi3C3nmkumhuaQyhSGRFVcujuhtuzmABwPEKNs6HsGpWosEDGpQAlCAMAzz43PeX2Rl26P43sm3b7GKxo6ZlNwflLzYH9yZsHLT8BrFn6nMaeuKohw6x8enaYS0IC+gh1h21bpYXYCalwWT/gxq0/VofkHDR7b87oRGEocedDp8JSGnBBhEiu/kBBE7bZnZAdnTDa4MD2uylTYItOvQfLK7eM9arNRGnxtvvSgkIxB+0J6MfAnb5uesEukcjiUSZ7adCh0s9UuNIien60wZhS8qrkqYyoMhoA8qIxxM4+gY06llXCKqJJuvhanfrFr9Xke0LRoKi5T6yr/CAtc0kXn+Tf/L0r0rdWycmDBFx1ilqJ61NJSSzWw00n3Thu/iK/uu+3Ug/FfRKwHQP+k3y4Tc9z5pBaABBJGeK+t1WCB9XOR+fJ/2RW2ll3vIflpvyLzN7aGgT60VlKtIaRPk49AHyNdR4UAyIa4u+ujiW9NcxyNWmzv0GrHisQdGRM8qVQNEZEfGWq5RUCejvk+czeeEwmp5DzflSXqmJ1Cluq5Bef/DzENmfsShIfx7vy5vri8x7AMykvHwsAe4INTl/gfTLyfYxYPgMrwW8G0jKn+sJX348c8kAKfCLs2cGp8OQKW1HLhFtLheSjDR1roqYiF50vWhErFDxvF8u3DAwZ3TMXnlHKqktV79wSZDJgfIXLBWjWnKWLu3IkeGe/3WmSrIaJ/cnTHZbHXF27OoKPuwvLp+kyf9fSJZyZUdVR7UfRtseZvvmXjKlk1yrw8DxSATT2GjqshediM4uM0OMHy+BzasL4y2mMFkfLun4IPgT36SGo6cN6s/PXpgTgrkwzudQcBfrFouBNTcywEoMOYITtMoL7NusJh+N1Jg4n///HhVglFkDzohrOKrE/jS7EwuUJPSruP5CYKkv/1M9e9VkC6gF9lqZIuZf9OCpjJUY7OtX9itJ9CuuW9n2e5PkoCASISbBo7Yho2LOCud+N0d23E5iJXnH0Pd4lInACKVT0UznX9ELTqqgsxODfe5IHNM13VZBQEpzrDCqRLA0rUng2gkar1Hyb9sQAc0G6BKLHNkw8YhHNH3yRJ752e4Z3c4i/O/I050N3cb4EqmQ+q8SX9czbMtmJ61GTMPbd1x5s4pnH1k5WZytsF48++p99Bx1m5hq3oh4j8Khzeo0kpwej3yf6qcO1//M2PzFPbR5oHor/po3y0yoFInmHR3NnCcnSmaveo+a/UvQr84iH4t6yE/rXvzOYIJS55Gq24GIraoninVUk69je8Mz0oy0PYKYVXqxgJ9sYoG7RqWE/kzbsDC3144SQTJyLn+qq+As3/3opkAKoIVagpSY8LxLCbIn+5q3wm2ucfPggjJnZ7kFJGy3c1c/4mlvEWdMaVgWYXvZ8qdNSPxE6tC9v2VbtFVyZtNZbIuz2ysk44s7O9kHJ9UKvRXysGZiWa6cSVeOuDn4g/jLp95+8V6sOUbjILHUxP5zJjyiDu5uu8QQF223ShSyDPI7r+ugzzNz+HiLgzjWghHvpO4KPZwz/pixwbMv0f1MLe783pHSiorjGjQC4SQRYUKLcbyFgWXsZzlvSp7YTO2D0mt5MkG2fPi0822metBlymajq5Va2urgpOGzLpEuKwBGsM4Lmcd/27/3gG6sccf1SPNV3PL38sIXM471YZ/IuVGGleWNe11KHZ3ptJzqoO2Ji7W7U+mtVG7bQ2p+UWyjy+Cz1ZkHM01rgB19vycXrVDyODqz6KnLJshrIvlZAF53aLhfMknY5+UottFfSAXcJ08NHEZEMJt5M5Uryw1qqkzWj2mVD7qxACkLXgA==
Variant 2
DifficultyLevel
593
Question
Greg's cricket bat is pictured below.
The handle of the bat is 30 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
Worked Solution
Length of the handle as a percentage
|
= 89.130× 100 |
= 33.67...% |
∴ 34% is the closest.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Greg's cricket bat is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-F4-CA18.svg 220 indent3 vpad
The handle of the bat is 30 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
|
workedSolution | sm_nogap Length of the handle as a percentage
>>||
|-|
|= $\dfrac{30}{89.1} \times$ 100|
|= 33.67...%|
$\therefore$ {{{correctAnswer}}} is the closest.
|
correctAnswer | |
Answers
U2FsdGVkX1+aWWYE7+05si9/QQSpG/LSFnCZ53iIpfkCwn5QNjoFwWA0pscmoUCvBSTqeEmS1eomRZA431NKavf+8j2LHLYEb9KpzWdiSzFn05C/qOgbWTRPee7ycJd4Yf4+YhAFoRodWnu4FcojPbPJJGTITHPryvumUUTaZqQ4ThYlZ572V6Lz+WNGdziEETaQLE7b/32o3aolkk3R1N5ymLxQOzQH3SKBCzDrvaLIYalqzDf3rNsmKp8hpFjNBNHbEULQgiAdQToKdkByQv3tqEkujLuP8E04RaFxdHD6TizMDdGlGhUyt81BUQnKVK6j5jv8IflEEjLaUyo6q+7xpD2A3g6MB0TAZWcIv5AkpsV6Ul+EpnVWykIGrQ1g0krm70bh5QwPxWIhnibfYS6CxF1ckd2dOTDyBftaH5h6+gd6gdnB/uOSjuNoldVKs27B+0ybHxANQIktAbSaj9FBd3aiSc46jsezklmPeUUih0TtHUMPdti8K8r+qyzScMsq/ihhnU7Er2clbXJ9J/B2cLN4ORFKc8EUcx/D4+8G8aZXUKJFywpCZki+979cX1GVXVr+6YTpTMhm4cKv1rfjX3GeoPazUYSY9VK7l2y3BACfbHADW7OBHJLyygQGEEzo/RLqPA6/DEe8Zo0OUl+jlvixSiX/bIiU+G+xY+MEk9Vy4jmqUSFoEI8/w4fqKJ04LIAwwNVlnVJWsB16bgzbabqtLGhHqG6KCDd2fuVeeAuPIrb6veAUwYyEEe6bulejYiITzxTRkir7LkA8EHZNbLJA0A089LJgyekcCOdjdX8UrKuoPN2Qvkd9k7X32UGtCXUFVwWUqfllZZwg4CND4Qse9QLH7is/QGx+sDbX7LiKEYLQ1PlKVTXM64YtNxF2DnQqTLNxOIzjS7DmD8Tn4+mHlE4eVeIoK3XJq3ypr1NGsVkugn6n2boP6vv+iNqOhhRX9TlBQcyy3knE1DOGHDqItxxPD5RxtCTE5B9fnhuKH/JWSjseCvdUnltd/MRwxbm3//8YF5sWu72iQ58jpZIIcAh5qelOByYFym2qfJRVgPqLBkFPEKUvzNLVyjQ4mFKDBYmXryIAAl9HMLzWst489db1tk6WzwWpJDtB+eGRl0GDXFvSb+YKXCt5VvpEv4r9z7ERu5avEBJTwSvOBF443cKhur+tKlWS0yT9z9ztsmDY6yjfebb68FLMBFiPoJhDDQc1skMQ12tCzKDZijIzmIhfkVWncHjj5elC/xjj7uA9B8jQdnVQwxTo7QOSEaR2Us/bgUo3sxaZD93MqV6/sThv/nM62g1pMC1dVBZzE+Bd6OZd1MI6aTtEDnRO940/GWuW/PIPt2PVs9uAYaADW2V/XLulWhGaA9wQ2eMl9udviLZHPn+5YhMcZEWzZ6fml8+F0fgbkmz7Gn8ZE4amJO4QReWqthMhXeiC9scWUT12yJljRXsdYOTJkf54Si/WG3sR/lm0Qs+pz+NxY7ZUI+YH42Y96P5wj3YqNZ0nWKx3yGUnWRGmM54CAojKPbv7hVde2lV/J1JuFqJtKL8QcaQqZZJptdJHDt9Ubci0jOGveiwBmMk6it4Ec9ruWqEfSy3JNwgk4weQOLGKVqTin+PcNkgzbs0bV6rZQ+/sl+6yZ0H3E4CjqYESlmetBoOSd8JziRFWvc3tRbPFjneLGo6UTuwgmMDydoWwzWoB/9bqt0OJ+aljWA8+usbasXBpUOrpbeWjjguc7GbI8WKUgGTplA4msc9akTnexe44Kumzz5fLBfbBbCqGUsuQLiqG1XjmDidb14lNsvQLv6MP5DiCvhsbLtfpro7VBQXYeIr6X4pAH4n7+0BDncE6MxI4cRDcAn+isZLVLpVcPrwTp7lx3h2HKlA3NVNiydM1O4UHk8Veu63d16Ye/buDGmjO66PMNC6pfNbcuIsJr6+0YnLc3V7fvOr1GmqvXWYTyedT4rF1Gy/t9RXMP4p1hKiJSmQWwpahYFLuwJFfUi6+RCPwgOLLj1wXTm39OqXLGfklrbiP4lOYYpnoq41kEYghOCKEdq6PJsmjfzFcRNeOPYAJoXc4M3ZBfPhYp4gqAWbwpJm7a4HPtsYWH0rX3aYzIs5bEzlfDFSiUIv6AA9jtfbtw+h7pI5ZHWQ+ol50y0NFjErQsKPi+x+VTS7nP9CBlAlQKcWlqJ86XljPcnnx4ezdw3VW4m9DPIXjV/8PeJk/RQC+GjELz3tLvN5y0ZVEuO7i34/h8XvhZQVq6cUwnAdeiU5gfOUZ619KSG04Mw1FULbodxmvgpBj71a1GFeLgSaPfmaUrs4J1Sz85bqTNCQIgeOtANMwAgspJVF1qdvejBdbOcQXz2byqeYEeIw3nK6qtspHM0zgIJ1XrqKX0T97/DRRShHNoYb2lv74SJXKR/lOj5KrTtXHbrh7Wf2PI9Bnbu4ldl0GY/0MeMd6TmUZEID8UcyNB5JtxHdiIsNymqi3wqc+4+Fi/vOppWhftVmU3jGg80MGVHC1FfdyZEEAxBl3ydKPhU1UdTFgCOmOSt2m+hNob/uxDOSgY+PY9eC7MKnsexw/P21FUNlG7zh2ZfxDNWY9I+GaSKHjljPtWPEo/3LgykvjqZk+QzL8NUOfng7atWdG6hKI4l8vj6U+3Gtvt4h8KphYO5ZY0Dn67IYKrRbHk+tmdCdhnfxoB+qtSKnlrLoIk/Lf57SO22eu3b7LhCU1r3qbpKLmCWgvJFhZYWFI77MhS5pm3hB0zyok1ZRcLeTMf3bLt/nOF2FCpa/EkBGGyWMyfQSVV/dF2GlAnOE50SiHtUlTGteZuHaNczeiTCuNp71y0M5Eh+/bWrq6RHVlEjtY6Z7QcEV7AxKjxdc4NWAJd/3tYwsWGLUjF6Xi9KjcvK42D23H9ssvrFMyTk2DYSpNG30O3/UzFLdk8SxMBTfXKvRI5kNtwsHKhlhUMrnQIAMP3nTmNotCIn92sB3K9j1V1P4AaW02+kdJdf6FZyi9r7G0wkxUpAX7kpaMrNPetBmnwh1mg9Ug0CWXP2566zyVGXYYs3JpI49Vh/Jg1YpW5Drc3CUD6ERXOdiRvYUcXqTGRiTu9T9k8WKVGm4vlwpPx0AUbJDlYI8YiPqHwH9vQjV/O3X24H3N6HakjJGyGxVdZzRKK1Wqw8hcqpsYTkmw9M9VWJVlWWCup+gwegGmvqWUk2lDkU8dg4D1qihgqlNE3syugR8TLloW21wOD+ew5YOYXpfi+tpjrqx535qaTZgiHngw0zT+l/g48BiqEtHsoGyADEiVz5C46TnAOvHiri4eBFzX3nm7eG6m0YDupmIFNFVR3e/JlgFwf40BHsZAW+fk/b2j8p7V5hpxf4uMrNG2gYlMtywFAEImmWvIuQ7Zur7rV3NIXK7a4HVrzdxZnFt6zs3tYAyeczPunt11BYwjEsjDGe0O+prjRCsSCHjvT1TLD09twEUbzu8k3tPx15ZtEc0cuiiBMuCl6SGfEEKZmXGlVasf8nTzP024aSB0ZxwzPPpumS/LpaUUgV4XcLtn9Fcqz1zVPBn888SA52VWUQv6lRkR0ea/bKWi6SKyi8uX2gHBb4kkIy6R6EuYFz21c7a2gv3TzFe/HEpPHze+UV3PP/4H/Qq1S3s3KvtsbpXJLNDZDWeYXGTNbW7KZbqVpWRwPuFyyNl0LqwQqqbUPy9cJ1F13IhWCEGLDutBEaZQKg9ADcOA5EfSIuQJGXuebux+xpIC7tclor7dx2akCjPYJ56zK2S0smRYZ50nOZ2Ptb6qowMVupx0O5BheMCBBoRWjCMT+E4H1q54UQgpZ4+0J126R+Xgoqbhf6ir4gs0sBmy9p/p9iz6nly5pgyYnX8KCaNdktBMCi2042lgbQXmFsaC3GLOF89RSOsX/E0U96Y+ikfinaVkgnzVGNGm6yNQj49qAAll4zn+PludzKwCTB3GIJ0yR5vKkxfEI+c/sMvo45IhUxKOKB5wwvf/lYHydFlNKX8dxFzsfxo+lzJs/r83L/0H4a9z13PdcvSwWBGr3qTYVO/kvex2+iuigPBgTESZOE63/q/4hWzvkmcjx5AKkw9prJAPUm5no87bthQo5U4WPfT1yOKwiOUSP9gz5J6FfsHAmOmA6Wg2Dv0y9vgfpJ2YDOPj7zt01U66tWiv3wbqkbF71sjeLFLOAVE3KIy6p69K9IlHXVu1zBcZnpF0B5MX8UPvuQLrFe/j7zrbLCwkrRjdJSC2IElbvamxGFmbMNNG1d6HKtKMGmaGyAJL8l+hyy6sHuCQ8iGBxZ7aifBWEIkOfFLDcjaWGzVlpqrFcTG/yklyw2cQMXNagrbKlmBzqS6vQ49uBYihIGVwYOuhrptjEWhGiTvxiGLsYc4LzXQ5Iv1Kdz/EIk0KUxka6vsisTt8E7IeNahNlHmpWu3N2s1CB+mOruKLHltxOKbOhJ7IXFG8YGUTXSz3UuTc3CZe5jHOG+6fjn6H7yknUCGdv3hjh0aev4XAYMuXcRmveTeAVKqijLERv15KohC2ca+nhtLLBZmPxoyonBw1HlxGhv9cRAXseEN7pelTf96nc+PEadQ=
Variant 3
DifficultyLevel
597
Question
Mithali's cricket bat is pictured below.
The handle of the bat is 28.7 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
Worked Solution
Length of the handle as a percentage
|
= 89.128.7× 100 |
= 32.21...% |
∴ 32% is the closest.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mithali's cricket bat is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-F4-CA18.svg 220 indent3 vpad
The handle of the bat is 28.7 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
|
workedSolution | sm_nogap Length of the handle as a percentage
>>||
|-|
|= $\dfrac{28.7}{89.1} \times$ 100|
|= 32.21...%|
$\therefore$ {{{correctAnswer}}} is the closest.
|
correctAnswer | |
Answers
U2FsdGVkX18JYzf+zcBQH4pM6VgRfcWBGUH+yxnHTE+tYlqw1g5Q+F0q+OrSympEHUdsgl9w80UxNrsMTzmnfeMtk9V8k/u/hci5oZp2Ltp8DU08HlUt2bM7esr5+YSFQhezkv6YM3qg4mMLdyByxHkkZZQjeSf5L3+eSh/gV/tCenbG/OPfIX+/4crac7FocMjBxXWmj11L61gek1Fdyi7e55+NOYAJHLFCoZFfKEzXZ2feFczirkPhcR4YcjdW9nAlC+Lf5PSGnCRuO221dsgcsdRFyDJd8BNSdvDMVQEc1FhwzxDRc+/ZPxRCdBZkv4m0R1pTkDY6n5DwhGe0EyE+rU5f/2q4mvYXP46Mng+aXt0g1qI5LX8H6/symgHV2OID7Fdu7kCCWZyDPn/p/CKDJ4jU1vVwQ420tuvSDPTIkjbPi/S60unmu2DBcFzKZ4GTyFp2tjbZpMheAuApRh6RYvlWRXVGGZ5Dnz0ACw/NsJijeVKmBDZBAnJ6G9465kI8BGRF+ZqV7or2qsg9VIGTbX/IF3PgcsihCGs5SXPAq1K1XAUWps8ajYTq90sOQzUVAUyvkwQG0ea93kjGy/06eHYdtfykqTK5SrWOGiRfyb9Owql2pd+OrG4vjuKynpanqed1djnlvWi1BIjvpC8spePMzVGz16KssO072x1pmsRDk56tvZ/YKdZKBNgroALnVpAXCQJATxNEVbfJ8YPFzDcdBBO1beum0aVGXLX0suE5zhPzmqQ6Stj7x/Qw71s4TDgzjksLxMnIyBUj1vP9BeNR1IvRGU/louqHLY2vzusJGXHOubyy38fPA235wnKDMzk1OpHBqn2dz862xPLzK3s+sPyWUUk8p3e5oLevHQbC0kR37/nojvVS19TEYUfJUV6o/wtVUKSYXkdIj5SAmu1sqoR2m8dh/IejsR9ywaSJ0jriyPBozYr+rIDBppTp7tvc/e5eZiuB7C8ZcNFoIciUSB6mB+7YBwzIo7D39p2BqaZjf5VIqW6iHf71AYel8D6jcREgTQunkFuISsesugN9nf3A0uZuYDg0oIxAjfe+hoUdXE5cdFIJnrP+lVm35N/B5uulJ8o7T680RjyDpH94HgIyODLI7eM03ZUIwURX8QCKQr3vkrts0ose9GOx3GjgOtaC4GYgkB5G7+epVwQn/dgxeDvHfpEuihpcJv82AJJ2+gvWfrGfMKu6rabpQ09RkOcPYT7Vv/L8Z8quQouuVd7N29T9y/KNr7+8EKoodF4c+13uvYtTN/Zz3y4YUeFoeg1sxHizuT3QuYlzpCHtC+0T+vCDp2Kvs1jS3fCoaEjqT2mXvQ5TjDjcCpa/suuZj9sxNl+CNVAGNP51+gKVxK8VF30nvbWuAw161kGqy+XBRDxIEtYne3nqjDDpq1C//MadyagmyM5ED48crFfunRUShdU3kKuqH/U30iT6PlwxIoQj9uaxKDYWjfJSllk+4gyoJ5nQI8z+U7/UDJOJ4d0/lTH+7g02Wn6LsTxDlL9QGfk7FQEiH632usQtrSj/hU9BjQieZ6gUcHBpTff2gjbhHBUaulnmUSTiqS43OVQnQq2Ibrx9sq8rN7Wvaz0DvpgHZKYMPKosU8a4yQqOmvmVqKCfPWwwcD4xnK3fqa+hrhLjiIRV3uBIGhd4E3FCNpqc2Irn9Q1xAa7mDoJXlqLQZBFs00TtjecJ6w7/RiYecdHJb1O8TZ7+SftU0GmZ0pOoJbn78zVl0GDjDoyakkA2etW6xU4TjdmcMDzpVyyUsUha2MJM9qoctguCg+tefKtCZkKEDJ6SaX3+c7EhCq6xcKdgbwTN8PxXv7EDLLyqWG3Gzq0vGqA8lTF7YCnDqclxxUk0Q8dMYQRBJNf7uy7pL3HRrb5te+wmBk+B4AZ2JTflB7l/4jK+aQhLQXxyrIeU4TK1bvq66/Wneh+4LaxQVxltJTONFgqlVpQQOMtpRxL+ecS9VhM4/0bt+nmAyY+snEVg2VCH32H50HVJCCah5qZdG+M5r7V/nYtm61Mbd/DLZc2R038AvxUWYjpob8XevVbaKLkug6Ydr4BAKsIjpN1a/wQiEqvL975/zWH9qgc7n2r0JtxpVW10xQ3FxUrhNwA6Tv+4WbEPj4g/qkQku5r8lxZBPSrWngCVwkl3hVC7+kqjDkPLwNzZoW3ecoH8KAV0riR3eek3GSE7IUgyny2z7mWsMo6d00siPaEFY/QId7QCx9NXCi4GMYdIb9GkGLgFTjampLAgCmdPaZeFqBjnYs8k7fbc4McyGGNWhsyUX7IC8zX4k4Biy+gRLxlvwwfGsTY9TQjdayS9rCIhCRB26p895zPSuLWkbUFxvxqWzoTzh9GOVzLlyA253BYxiD2ZwaqBLothN/K2c7KN4GnqaLi+o9DrZ9SJA6v9RzgtwRIVn2GxkqndquXNB0yRvN15PQ24RTawLHd0YIOItxkGxCxUlbee6UE9in189QRh/c4yVacnsN6nsRCvmysXnaGfzvX/hEotkx/fAH35s2K8wohxJdJlKX7vrNo+D89L8N+iUxWL3K2qmO/M9CA8dwiYoxXKptFmCCtHuAWl3A00GoFY9pMpglUBhjbEjRfQmLRTRHa8ogpuENG0IzSeVxrK9t5WTGIUN7IQfDgpzLK9zHn1hRSG6eQDzU26hp4R1BeYphvZPV2zFwb2FgUzeRcFXCdgTTxQlz7LsBjl8VJySBME1fh3MX8F4GAMDCbh+x0DRixPOoJwiUDAPujPLcHkkPJ6XBCtyo7o6ajpvwA9CoMf0ROCP265uiFQnyjCYHcZSAnEmGy3EWdrcJriQqA7PoyM0YFD2KcXiTq0FHrQyVk6LZwfG4esrVtgv1vfh5jFKHgRPL+zYjK1wOd/5cPhfIJ0bn0MQZbVnhaU3cQCgf30DTlGcpvMi+SeMarrmOVgOMlODutAWzAXbsk+j4URbUrfTIogpTg/FxpUWmO+WSY14I2ZvzWKnLNipDWK/Y9HzrpiCwsoB9UFdXw0CTjoebsCk/3KQz/RufxDMo9wWGTS58S5ftXYaDK+JiWjTCppnPnEf8GY+NodEEygskonYHXRG38pri/NIrjvOHeydAH50mNKBPd8P7+yyYMBBVcpN6jg1fhbPuYnDhSHtn7sDKbbw87WHa7jg0eowjyQXYmaIaJVmDeWUEd+dR1FWP06Ei2KS+3oU2TQW9hLdMexJmjqyudyYmXUS4dnpI/HNlwnJJKqO5Vk86rL/nflo7V9GGLS8a0+yvF/tPum77kKt4ApKage5IBh86cIOVhtCD1wgmiInnqfWzZiEODxDmHWAJK/fkFh2vHsKKJEqsnSgyX8HpByegZO/XYc6JNxPgtvvMnRZRnS1SgpSAv4FO6dasESXDShEFeI60GT3Qpe3YI19eCM1xVSzdTh6MMitNTFK8rxcHlYvN30zNSlrQTNhJcbHb8chVVfZeFpz75Qp0AWdETYtm1FiLxAWkn6vSj8Qj3ik7eX8LTxZKDwXkCBVpy3YTGcKKGZjdc4fyiwFZmwXk/uk2Skj1nkxQBR10xAcPcgM+vuye7bNhY48Z+sMGHMLGumO/PQv8h5LZH607V/czP4me6pEqC4lUG0SFRO90IrnIV8ewWjFYI+qDnhk0L8AQiCY2qp5bq/gKyhHNl3cKw64agV16D4JwPOcO7bNQjMHC5wO3Om8WBmIENZ062viY8q3GHkJy6tMfj7pubqkHuL3TMMe4B8XBnQiZIUofG/J2e1FTp1rf9OWBhWXFbItNResjSaPfuuYIJb7kiEEF9o5D7JtuNz8MaOMDmF7uZcAoL8Rqf2AcRzhutUgstLMCCJnxk84CfQbj+4XN+Cwi1nSHniovVAbFK0DdD/todYyhhCLzH3zjObDtTYXOfdDsdHDx50Tbkqbw7b5QtnGt+qCy9J90o+OXT5ZGSeAuwo1Vi/97zkcKMcGDS/nFlXVRAbfIQ5yKXojgTLKhyW1GDjmEny2JipCKjPcHBzVg+MI/2IRA4V5Zp0XYQBcoFGbejOyYHBtGEGgLKS1v1+CUTp7IW94FSyFcxdDLCsuVTjDMyJKVyrB7yYPDyG5vUIbYIMF/VRYVY24Xo5aqf6ISRhhauZxobOWTFMo8fYK3Ru1PNFYAe+zqA/QyXKRlZsX/3JiultwZo9W6ESB9bL8aeMC/6Qgp+p4HY/tLYyE+OjJepsgz9BeXgHZEZf6newMsMWdsJsnlhtTtUz602bTwcMkNfNGxCMUr6cUMAyne+HHG6amckKHn6GD/F9xUP1hvSOKLpBp5JsLzs/h5cZEGQ6Jt4Y6tPCPn6E7uaY6es+MpAseBDrIGWzXQU/HBTJU9AAI4nHxOxbN5k93LH7rgC0g7PUI6ionPrWuRVdAF4JKRia6orsXQJwD/XYumbvH4BPeSuy0g642NJaxlKOKR/+kRv4PV03+UroyZM9bOWO9Cpu0YK+vLcxUnFpzqRSppU+bLpD8NP6cfxWicl6Vw==
Variant 4
DifficultyLevel
591
Question
Charlotte's cricket bat is pictured below.
The handle of the bat is 32 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
Worked Solution
Length of the handle as a percentage
|
= 89.132× 100 |
= 35.91...% |
∴ 36% is the closest.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Charlotte's cricket bat is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-F4-CA18.svg 220 indent3 vpad
The handle of the bat is 32 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
|
workedSolution | sm_nogap Length of the handle as a percentage
>>||
|-|
|= $\dfrac{32}{89.1} \times$ 100|
|= 35.91...%|
$\therefore$ {{{correctAnswer}}} is the closest.
|
correctAnswer | |
Answers
U2FsdGVkX1+sklNN4dFRPoCArpdyqiYTEvdkHmpLamRjZJzi7CfoOuYEyAlQivAWTOJEQUeKKQ6dXU1otOSS3AFwvpTXEV+7OkhqWK8MCqJuDZ+6YzXmojSB/q6WOAlU2E7CzMITw4cZ7MfIHDe9fFa41X7f9VYsYUcyvfBQZ5MIoKkLJL8tO9Ot5K3hIV4mD6s9MHl6fxj+8SwTy126cjaAPpqVCIQRXmJQTsw/9Qxk9tQBu2GMGGH13BeDjXuqNQNhI7xf4iY6y0Io0a1soVsq0xpXrjqwHvSOO3Qtr5ty7LIaz7CWaYG14x/l1YBwItx6pK6YLZyuvK0KRzYuc38sMs5/02SnELQg/M2EDGrqdEr34JvOmZULkGlbYr8R3p/0br0N0JjOxAfm7wVepN3YVPHTavImoT4NE4ZDt3DBf4D3Ohw08EJhWG5BAtFKPO0NfkWN0Ot6HVEs+uvyBTV5rJetm2TxpmhZRBngVoJg20SPfH4nHD9i401ZtPtV1Hp2C0WKAtf7qXs/dPn2FAZKajKvDsXNkRxTT/i7sCNDmEy7wsga+XCyh+OtNnZseHvthjnUYOBft0SzvNWaW14KFcaX/8y8KMhH6r2Z3ch/3kpmSuo0DzTEb278uSRAGddxSDovPLwTqBDeXwl9EvpinF2A2Do+mxnIwsqoe8nBVYP7jbn/A2SgKxpvHwmJDqsdlCnT9He3j8yGc/blOH9YM82ZogXlLFxfhzxjqW0t9LNcSYm79ADWs2LY5yvWCuXmiKum9rV2FWD95rOoApI1S6SARjx+rck28sF2vtHg8/qh2AmmhwZdabh3S3JTWSTKvdeGWyw+S9f21rJJBvRnvb2sei5UuK9iyzi5e0uDvzgU7aqhovsM7D/hgFzPYTJSzFKT/9wILfodw4pxqlMGDz5HVBI10VfYk/uXd1lXZ3nlhscRNafqYW07BKyWhcMJ0ZVhIeO11oyRqHgEv3q7wVy3APfxan9dAZ8EDFYYKytTffQ5IlLWUxsGHIT1lG+NALo0GEOv9sASwUao9Vc1WNvIeKjPT45lFYg3LvdpxTflyFd8SpTO5Pu9Jm8WWTc4ZrWZhcNV19GVG18BTdBHo6YkNphu9wSBpi+eswy3rMMxV/ySSXr/UG5XE+tCKsFleo1gtIbJ9qESXO9sce/04JoDq3xb+c61w9jH0778GjYgK3mNnkMfeLJaHvb9J1wFWqC+S/KCWiAqt0RQRzfOvOiNIMnleBicWOpitRQ7Awi4Mh8nYpOkwUN0Q9P9N4Dyj3GXtMI9ZCqLNkVFNtjIKh72rioa5qjY7UDSvq+pVLNcnRkCF7vJkANYbrUTCOex8AgWxIqDDl+N4DWV6X81Cb6f8WJtJD9gQcMmrzBBJlABTuY97YaiAS/slsr4DfHmC/zD/as9hfs+XCWsbpXQIWIJJjxTsQbZf8wTCSYzbgCONdkR3F6mimFxyZgvkz/mMBwLxgXxhJKzES+IZ74c9wyG9Dt9z8eLg2xXLBSaZPTna6EmBGRbgCHk3xA9wLm6f0Q2pATkUkbrLbPJtJMyKhB1JtU7b6CYvTSz25GmoOW2PoESaJs4BzBbWyLUN8L0OdTyJ5qMLX86AZdt/RGLDwXeQSc84zPLboBiR9wBr/WyQKdGXLATol7eCM1j9monSqNL2S9JXONuRJUPPri+eJV8c8hIbstBnxLoRiL79MZQ3e/I+UXAJyDCiRcjmdhiWdHxtV9k6wEEFS/H7QC5V6jbMi75X9dBMFudznPL1VdSKWM111wkFerE/R65UiWCNThTq5jX2aHvTR7HfN6Bu9/nk1Uj17mA2CDs2R15KCzfZBttBR3dGG8rYQV38pvhiVGvqpXM2M6mabRhLaEWYRDgvYCMRYXYWM0ATlhjvP2NJZrRqG6v9YqtYb760vGza28eFImIld+Tot2Ii3Zz6bOStbwJcd1G3AdKyv+MET7iWsaCR6eBn7MqPKwCRVx7lWGIqQuxIAzXDlGGhLve2SrHt22MQ/D57gMkhNc2Fx2AuTKXMl2sRPqkzSK1+aj6E6+7yII9fz0YfQ+25r/MGk3EYyU3Vn+P793aHvUDciwKuiDfoLeJ8QcluP5fE7UBKxGROhgtwhdwrdQgN5CWXIeeQtzMda0LOTv4bGZIyHpVb40Cbdk3AReISm4gW9VTtSkDXF/GwXzT0IRjfij3kgmZ8o4tmVfuerKg7euDpL2RTW/W6Ihw+EfVyjH8Zz4PRTuqjPfSUqsDicYC9J1Fpsm6S1LrsQE2LWXiwgoj9BMxZPk2Mwkad2NVX1nTQthd+XrNQghRvf+brNG7grY8cCmvC6CgDKHi/lPSh1Opk0+VTl0TvGwzFh3yYpldWvs2TyFqFb9+WDZOoVTyvYuisDJ7aIGe8euTvmJcbZeyH3OHLOIc9TlG8B7sI6y2hwDZrpETrqo/RVVCQINmea02ko7p/Jlq9rnHj+KovmWSGaZT9gFQ+FLGGeTCFSNjFJ4s2SE5huwba2Z3CAPeKtSuDltMad9K5yHcWATjHjFjzXT3uRh3WT1D/cwHjprIaGAWPqIahAGFt4j7X2dlpqoT5HXYXighFzDZBHoRv8ZHHDQuf06rg/OFh/SiYXV6eNK30Kdt0WE9EEJX1q3QL6w0j6dP8sfmPt/qhj4OEmi+MynFdlzaOE1t+QmsZz3csWlHe1TTSPcWyiPlQl/fnaSUVlDNi3TZtb2Yc1t29k25tEvQ+iKcSETLoDBhMH5A4DlLr0ZxE9gB8qKjiexcK/Rpn045MoMxaz2f3oYtwxOLJGujOGF9yCvoBHhCK2ieaaLYbptf4R0Rb6tUtZGv1Kjis2y/wsULsXhB5OHwJ3TZQlNFAmAbKWKsZ7AGi2H/sxq4oBk2jsqexF+zGbtePBMso8P028SBi01QV5RwgkGB7UCfc5rzHiccJyawNPZhCacI0/1C9drxRH5WkwUx/SWqPnxei3bo/KeKI9B++NH0pCaz+b8V4HO4U9eJdqjisYMN0YVPlkP7Z7q/O+B0ENQqCN97j3JyBNLEv/n7t5dM/22uLPnPgbD1tcCbbi+8riopjw2wbD6lTca7VGZryMw++gIWjTUjpUEQFbwmM3VJyEZsYGV26BArhDqq+pkEsRMZp1B6aZeoLMnaMOHrkoU6oVLHyHPKCcIH+Rr0J2PKIDtMgo/duU1Afh9a6doVonv1/UtyNiWriKw4wXt16TWOPZacYK2whOGrjzwmBxmz5BT518Vg5hQbyXQ/M40Yi3sRhg2z3q2SkaAxNl/KXmCEhJ8LkkxI5d33uPrK4s4xqrXc49Q0T+Rovoas3jpLY02HWMCFrpHL0cPwVLh9BzYnjy0cGiG3dnO2D39vOHZmvmxL8T8RQJEPdkpJqGzgWXMepR7xGO2XJQ98bspQYD1DOjKXWs5Z5cFw3lwqA8NV8m4Cn6np9V4S6UNQByh3PdIF9d7X757AfGZgDIzWtu99tvspKqj3Y/L60X0vxZZXVVYOMcxfEXVJDZJ0ea3Xn+wh/p3SkzruUQuu+HoPHXLcCWKbwveHAY5aXTz3SB33JgmelMh+fidw/v13uMNYqv/l4y1hTzWucNj5kwHQ/uxhgCxwft56wu/8asGHNLbA3kVqRSAZygXuTx8A1ASpMPseGnK0ZbexHEoFrVBnSP/3xe21v7AhBf18wiixKe2zDdFwIfQk/NzkMIKEjwpYl+8ypcCW3aCbVaE+ReKzxMWdQ/4stONLXll+4fPFO+5n1XU++MsyhFrBfw6vEfD2jufdFPiMEAN8dDRO3RiQm9MBB0PZ1mD2eag/t6uLZc89n1xIZpox/OgjHucndui5B9IOEcGdxe/J7b/MOa++zz6/cRVmWHcq9+98tFTr53Cu57br8Z3guO8QLXfB6nXuL96EvdMWQ/xzeCHHFnWJCskl/CLYtvRPgji35Qs6UncZw3wXXcofyirVGocho/52iKeD+T5uaiXmX0kI+gFMOrlNor4PhRJJqM0uD24scRL5jOMJ6oSUa/JRqCx9qmjyiDQFezfEb++qtfEu7Ie/tICHbGMaOfVdmzDTDq7tXG6TWuF+TUdmbbqHbr0RnKzhWoH1skzg/4sc0qDDZRb+KVFLbKnr5oVjg2zTBgX0+9UxLyTZwqFd2LSb8E2ntD+3WlyxdAQwV4OPfbV8QLbl+27mLJNqvI/BOmuTGgbvUHi0AUHmuETXoOfFk2zl3SaMcBh3ynx9IB1aSJiYkfDVgyxkbdDCCvrJkkVbg1sXtu5B6z4LgL16qU9Qn1WTd5D88tnKDt+i3h/YOnwLtuIgEHt9srDOVthFqhzkiONx27ilXpqY4kgzaHmCtqu3hFxH07d7xUD/x8Yrat9E75FwJKDtLG2zbFfDlM0RlT6mx2+mHdBe5Gkobkk+fhbXPeGoNqAoFhSnpXYw8/VC0dzCd7/r9dHnU+og/8LhL6Peu1ZkVZqZdSr4r2ahGsctIi7fYIkbn6dJVxOFtbvon7O9iw==
Variant 5
DifficultyLevel
590
Question
Alyssa's cricket bat is pictured below.
The handle of the bat is 26 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat?
Worked Solution
Length of the handle as a percentage
|
= 89.126× 100 |
= 29.18..% |
∴ 29% is the closest.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Alyssa's cricket bat is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-F4-CA18.svg 220 indent3 vpad
The handle of the bat is 26 cm in length.
Which of the following show the length of the handle as a percentage of the total length of the bat? |
workedSolution | sm_nogap Length of the handle as a percentage
>>||
|-|
|= $\dfrac{26}{89.1} \times$ 100|
|= 29.18..%|
$\therefore$ {{{correctAnswer}}} is the closest.
|
correctAnswer | |
Answers