20197
Question
Elvis is reading the temperature outside his ski lodge.
What is the value of the point marked P on this temperature scale?
Worked Solution
Each increment = 0.2°C
|
|
|
|
∴ Value of P |
= −13+(3×0.2) |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+YyQJ+v1jrrF4zocWcVA8pwL5lmbV3KWv69kEXE3WIYyX1GFvmh63JU8XhV9ZIdmyJ1xKPMYzpZWYdbD5HeJa0YYPaRJW4P9x03JBMdATc51JHK3vwJYYuhAxmbInQoYBxZTa4fBqlCMMMezQcfLgcdroEeVKbsaRZS37v9mV0sRivBq2hy1b40D2PGBzVAjfE4h/aVaWx/Qg90fz+3VQD5zXyp23eHH+0GCnyRvQKFuL2amcmGxpkO3jUydPjntACi/YeLcIux9gYn7NPvnN2aC/N6LAl63HnIx0t/0xG7E3zWoE5Rk8rf8oUYPcTDYIP1PYHOsy646XoVtbbM8OiroFx0JSuVQcrawL17JJDJ/y3Zfc5s+fOJ4xCGGlKgiFnKg4opZKaWH1vND7uT78pHMIdjqzI2hJwucOsbJLJ560sbvaSl5wyermaFmgYh2DUX5VkvqH0eYEymloLnLFdkTL0LvC7bIPDTgef0tFMgyUjRVrFpmdA2Z5pm53mf3u1ecs9lSv+rdZ9hfUZAB9Kz1MYi2tRfJbeDyQX+5aU3uIreQTfavAotl1GpHC2EQ3NmRH4evwCKXWytulFaBpEDSYF68kyibeztiisBgxdEFQCocXw0/X2yziElOhJ02JQOuozogH/zBTKnPLCEsvFl3gjRFp8ETJWtu5PlAPlWitr7JZABzkZ/g0uzBR/ynYalo8+4793rD9CnRxxyJjw2SyJaJuPtAuED7FbP2QzCwKcJ443PnFD9rstc75mbJOIqEq/HbwMoAtFjMo3yIC5IZKXQQ8vNwaBFPofWfPCxM+LjkLZDgrjL+LAAHOFDMCrDsPQDTXH5ACSpPHUU6oBnIlPcrF03esPCbzl5OpbKQHISTJmiFhwLnMSfoRjamnxTSfWhnTTrV/WBtNckdzOJ4yvZuwwUIzAhuW0fatlVMiS+i1aOPf6/14tHxW2kq4SSR0Do9S11qP2UzmhWmVNUImkq3fv4YpFvmcgcd038+GlGdzieMGfg5X9nzq9ENLwNzDAG0SkbKwpOqx/P3QxBUJJw6EDgDddhxk0mYPaelByDbJwC4x7exCKjc3AAKKjxH/vM+0SWZw3dAU09TOR+szfw1xnP2RSdY+AThsEXl1jDwoZNvqkj/gBOI7QlAH5kDZoe3zVnWVY2AAnORi0Fwle7VoJ5drRfmfENrSQY81XAPJJPUBR180MVC2jM7NJEICkKmuYxdt0Z1bIjsNI9gtl3V8zQHIUAnxc4lDu2VYrNm94ivlxEk2THwLs8TPrA9ZxKjNL8mComRfmGC/Tsr5NjvhxO7HXENYS3w6gATngFHsdzlSEuKdFcsRu1PHA0gvgA43dExQGV4U8O2TLpuSHdrU3jJZqogJxsljl0DInykEzW+MoVHu5C99MJ6Kny9LL5AzNKan7A1RoCMpG0rsq/HldL3gNQCzw/I/iUr7ucnNW1z5GxlJ4gRyZXtXE8JtfvG294n1F5krWu25LvXVGWNxvK330C6KYEddcqnHKoeFfHogeWLOlx4I10pYVdAilUUHtnX1uda5+xJW3o6F/eB5/YQED2X4Na1SLSpfkK4uUXskPYSrua8uKqvTPdNk+MO+EtUL7wpCACEnDmj898szjd2NAXwAz2dujOA2/h71dFeE0PfkvDPwuIIfoH1rjIZ2FKPabGFSM6gYhT6oZ4ECKggEf4pNWHlDZzsjgzYcnC28nuHtx9ALly87I9AwHT22ecG/UmS6wl/mcT3jLrhJpyCRFokLUxXgP3lBErp3T0aKkzj4GtwipdoMEDvieHJLpaCez6nLYxhlqeaHZzl/MukCIHIigUjPYQ8SUlBQDPLbW3A90UrHwZ5FqWP9pikHzrGewB/e7Xk2LunL6zCp5eEi2EJ7RZ8rF7pAZY884mRxMD1y5RRl7HjWzo4jPDtmWNZST/fbk+HrCvTApdXl5l8BaysPTj8O+ero/06RmjA+Sm1jI2NS/EkSXr4yDOezJCwgZcHczR8u9xHkbptGuoIqIGkXcZaMxWKZTKrSgrmbPJMDMYTZhSgVwesZYdPKrAukzLWBtxz9TaNO9J7d4Tfs3b/TZHrH8pJrBLMjn8k2/rjz414l6wdA6mSLiN8w9B9jCG2mEF3h7sSBbcg4O/kAfRlgYQOxpw6WJAaT5mp5Lxfhn0khRtAnVR1BWvBWUdcu4m2qhVDRV7TA0kNGjwWboZDQdKblic799V0eoQE+5QCW2LhWsEGnKdx8nvXKww0fjer9FXBTDBsFpsvqlkpEy517zXCHj1bGyTcVzEcPTXgspWxtXJ2IzxgfQ15c9Cll+RXeNd47cV5eYyXONciB0J/yP6PvaVC1hc2XSTdMHlnIvS3WJEtbK5maWEVeFQqCjxRV/GkAj2O0CMg+JFX3n98XsfFUQQcJDHA3+QC7ndS//+QpPnCgbZuVaSAwqxvOOeMYe/Kt7DAcZJEAgjCx/YfrNl0kRuU/rb1I4vcadv0kDoTp3Dc+jhLRcFq7DxitqUVVuPiCrXIBZSsFkzWR03dxFyxNMamXlS0bdsrBRBsxZRsEc/BJlRhIGWUilLfeMYW1bhcp0yqHVmLAK1+EFuOmiyAvV1YO4DPFBGfdYRggObh0e4mqvkF3soWnSUkZzC6XOI5zKyKbDJ2jnC6ht5hT3JAAJ1be91PetnAliyAuAG/asUeh7Gx2YoIJe1KM4O9dG6GktJNOPGVmGk2NSjGHNXovbBGLgATpbK8DcZh9KqGwJFgetVpcZxBFOzv0cHixhwQ2clR/xxPMNLM7/RFRTrJx8uWflojLKUAUesShGFdmtwyXRfAxzh2P0dNjf5zqRlE6lkKVmeFTndRYreSywwEvDagLup1DNIS+VOWPqNnvyocDcP6tmllUcSRg9f2sB2B248LLaLyeZd138HOeQpmMd7+Qn2tmZYT988+hxSrWfk8r8gRfOEjg1pyWDBfFGYgQ8SHrn+dQwlzdLPfmoHt1EU6XtTgIYXfqsxr0muZQaeIM+uQaXCMrztekfCT3+FyItJb20tOcZ4W9krMOxDKdPibLMMGnITt+pvpairxJsLwvzvg82DOAYsL7SVGbAoR7J2OGsW1FGrdyiBApQno9ml8HIiAQhQP2q+n8peARmslcJfnvGBtomj26J8QzJjwm2cFGGXXoTzGo2lAaSy5e+sKTTQZ/kdvwFYvoRv2KTtEW4XtJW+bQMiyAGFaFpKvAt86w/386wvytd1EZVmd9jUTbwaPz5STirffIaj3Bvi30j1QJWH7m2kx4BBqLPq6DYgz5Uqu7jbspVbyN+rHKPDQ+/jk+0HsmXOV1YfThmKUf5tY390xprYkAHCssOM/wb+ggYs4GJvLFertyMxQJFUjoGPc2CbpDusz8eagWIL88UKTc5zuvZFhTmTtnj2q5fXSk/OJQxRh4772BylzHOuZur/vxltCfyS3scVt1ckE6hhCWVoypsYK/D+ixkyfeuiVFv0ZeTnPkJiPvZg2dXhz1GlLOe4CIZgTwtXvwr0tOkA++OJ9o3xpGILeUQWTFniR3YH+M3O4N6TNHcLNhhTtT7D/sH49KJ4VH6HJALMDqHYywPYB6FAsDK5yTWdfjfiYtPuWBjLvtcUVPcOIjdevF+kAfsFDr6CstfNI9fdwnCHRkpdgCQWk9qj/cpLkHoeC5tZhRqFIB744vmK69GBKM+ZWeGcspo3ZKncuQ3arW07Wi/nw5UzpJvOwajBBO/P7Sx8aBnEbIJxw0xprcCbuC81Gm3RTzODR5chy/k45napN3kraw5iK2qnDX/FZIPiT6bHG2dQYUwxdWVHjqaEUnOhBygnUo24nq6fFVkl+hDE6Q4LaOZumaGDFKrA1HcDyqjdG10HH1T6dKOLslyRc8b0HMslAze1MmUtl7Ir84lQMnsJQ2rkAJU7z2OLY6Fhsz/MP36SGXTlCrim7cMie2ztHzb2or8B36vNq/bpIFWu7CESlBvoUVP/0CePsVZ3jqP/YhJGiJ9gSR1pK43BZ0y3N8l5lh8duJa4RyYrWCVmWnCYyI7mVg3XGt0ut1U5h2SYIEnfHAUEDvhL5oJKG7DjcSPNVyF/MIjWb7zucWduuzhI3revLSGE66dd2uxiGZnjRtKMe9G644hVcVgR3LLQv5H7b/IkOzIaJ/nNSQsWccSlRyQP7Y8tsN+MvdDHcqYqs++wyViENQiw+ReGv1WDkqHHxgW7NZi+V83Cek4rr0mpMspre0diTWtNApE52o9fy4Sek/cqH2KFt8UEYfq8o7Vk0TOOPBvsjH9pVDBb05ZOAYMYyWBfvmATK5g7jLJxwO5LKt26lofE6UBUsfcA+2fwls80GSi2Nx8j8MD58tsHPKAxQl9CZZA4hBcDNaybNdbPXGiYEm4e3Il530iMKUFLDMMkA/WxQA0+VzGL+2RQeqsUBLJG+dCFsWptrfFPAIOI8JFiCHjgwMMAkwFB8TDnxDf6G/9vVOeWKN/p7bkAFl6V6DD5rDsahpYJtiHHhL/pr0E95/lsDj4dVXvsQoDbCIj2Wk3xZik3dIXjtbSj0FdS2kzz/bvKal5sL8Q7b2nn3S5C1F1cTRvI48t3pyoJ2OzVdXlPYJ3+BA9kzy4Pre/GlbyY5VlVDbS+E4AZ0ycbS/YLn3UMvQnmGqVlunil2EMTxvTkCOaF4DXXAfD5uu1Pu/ZUiRogS9vaSs7WxeqTe+dhc1H6BCXQof82IghqzmobycutlX274LUHe0xdZb73f8jvl2w1cHUfbSMQJsBdl4V0uRM2U1tXXa9D6FR9/+vmjz2EOizwBiTYyB3ciAy0fp7I1ZhzrTSlCXw3OLQKF4couKcrQkEK5XNMtdDj0xriiMglksp4PLhSRcYaUSElJF35PTqK1B5L0smlk7JPvQk1ZcaWDe/2jwPy0jzlTt5evA/Hs+bFB1UbubsrDUgXXhtCO+QKjA7aQdEqBsgsbOXsFfmvhk3cYX3UeW2mx0WWkwk/u+J2Al/6NZMv1Qa0T7bIYpNM8YfT9IfZNa0Bgfyu3641ZBy0wSAFDcynEwpCo8ghGGHeEk750VTPSi1MJSr9H5YO6SxX/X3axXqgwGDxn5U0cE6qEUo04mqK9pU1gwtXZM1AVE58I+Cy5HuBwtDw4vdaJxBELbAVu/MpbAozRxfWBVwQsaW2Fbxd9BU6Ws6Z1tXdwcGQIEOiac/njZhjznM7s4CJ2+mpAvWNiQk3tOM6BVwWWOc5mtEhnhAuWdJcrp1AgjSvBYgdY+S/hTt/HkrSigslDQ6wdTrbI0X9nMoEDjl3+fwnDW870gzvHcb2Ph+StM8Wgp393XNg5/2Lcn15SNgy+iacyE7XpJu6T5LRItRNn+x3821pb8ae3dwemxzJD+Bfo3uBRmocIFHIzFwDWlk3D9xfwi67Y+wQDKJKud+kevfHbqXMdT5fWq/cID311GZrnMcYRLlsNS5TnHTH1N/HjR7sRtsp0aosWkbSB/ItX1L2Q7/6u5qDM/kxk0cN1mlmNjQUn+WVCIn2fpXY7IxGy60e7I1EQx1yydjJ2yvuHfvQqEa9iRNrxvNmVwT5WX/nIcgbsGJ2CMgrvaET58jpmUQzbVFVdujQRZjAIlA4koZrDgm+FEm1P/V/Xuo7mu4vAdosVGpeVPk9pavauDaE9rxGer9TPnfE9PnpCg/1TAcPlvrHZyrzCaPyIlVJb5Kc9LimRh7B4O6d0TIaRRt3vJzY2XUDMr0XwHiGoPZBy/zshBdwGedDKcbg5MZJQYjdAX5vNmty5eUeVUMOxUm21lZDpfLe63iZgoY762wVYtLTh2Zl2F4Mgniw3uyHDM3u7QTWspui3e9RUBJzvALIJgr7D9/aXcN+7HLQDqR6882cdGN1XSVvcVUE1qP5HAvQ8LHXzgmpRiKst7eq0W9eQuq2Y4nw/7hYSKdaroLh2waGDHKL8Ks3h+vnfP1rWbPG5LDQj3p+MvcVV/4a4Df8tuwHsypJtvbFDklVK3FQiONuF/NcNJELsAkspektw/qDPUvQ8+enOa1huWwZJI+iYueElmTVUsCopEdGdm5q4fZaBIdWZJuQi3OmMkWGrDWR8avf7waPq+B9gWrj76wfI8V3GdC2mKT018BtKjlsm/FluptnuKkIIh2GJH8Vy3mrrg+FszThz2lwcR7ng611uqP252H9ND3ehx3jtK6NdjunEGxoMNi2Ki+hglJfGm1FUx9UOYmapOYDNrnzp3rm44otKYuF2AwMTmfWzKezd4jbRnNL4BXntoGKbioZZw84bcrHT5rZ0IQP7dSFr/ZX1f0k7p4b+P6S3mBQv+4LJ3k/qI0bboDrGYc7pTCP8xqnHIG3qjh9V0YcXDVNCGb/E/DlVFd+rFjgqYZrI7TePfKljS+dJERaaAcxGharV7v7mJGvlBeX5sVsqS8PcBF5mGZWwoWE29Y3rOi9Z36+OuTs1J5ZywIWKqR09wXbkI9bBo3kXdKD3KcZtwuDIAmzZgAyveE7JRa8wsQgiEkH2Sg+VMtQrT+oi9D9NkF0yfTE21L49IyRk+JbE4gaXiovoX5HK1NxtL7YVBdsAXTfMkOtwIXb3ytxh2ChixzCycMHEO169Wv+eW0pRPFhy3bukAJ8L9tlECpZP7C7bFQBoqBMjcc5M4Jtfo6G61NNJRGpMNtmGOSSawHEfkvL3seqTg29CcLW8yk/SgLtOEf0jtnMU5v8/u426tnLUHmfiZQ9Ssvvdfq1MZCpauH1xrMn2D4ioPMlv2h99QCz3ZNQkLZh5N9ASb95fwxxuDOk/80FRnbsExvkWGEVt0khJ4yPjKEPSNlZuMlVaNZH/kH7BcTa1IdHISwBEbyvm58XC4bEGw31HApj9jLxhjlugugugXLwjKVVX27etzVEkyG7xkTii/wBjaiQ8E05ujf7BvMSJuHXYgKvRalVky7403upD+HfRps5G+DoZLP1k7plEiZ9GQJyOXGk6RlQmFC9ebJHLhFdGCe20w773Y8WAXNHb9tSsm3krcncVlpwtIpBFp96aWw7OzcMMXwIZ3Tlkcxdzwl56lmzhhEOXEbFGmXXPkQacXUHxkcZ6Dv4Lczq+mKVbxj68Nn5gyZXhaE0PPSvpwUlg9F4Lz0YUqAcJ/AxKuKWPveoG1AHFx3Xt87Cul6k8SU/1dn/y/WKyGe9W6z79em8m+nLbtQ5F73/DOqr/5OsI1NZLefShB09f1Ni8EHqcHmCSanG9zoEncVTZzlcASfo2RupSH1OA7d9j5r11A3J64dTvBbLNW6yrJJFkeRNhEUAMeXClRWDt2uEo19/1kwxVstDR/aTce6itL4IcZMrCvI4nMA4GjPRlr9ZcDFdWxZGb3Mo/j1z5QHDklpNioGxS5Lz5M4EqKvkmot43toA+NfPDQzTpFbVObGc+v9syxVMXmFuYMDEZZWztLHPPisr6gkICkT0GHYOIrqvEufDhnu1+oWDror/rlNo6iQrqQjcTZNzF0Za2/4ijiggcutnvFs+NJ9ezQp0Vx6R4JGB9Z6iZeyV8IWrmrGCFs/aDUM3d21BZ+vONfRllcPaKUX0zJDhj7gVxYpqGJW+uf4ZAWf2aHEUyWJ7J8BTE0lsSdWT26vGZ6E3cZNKlVsjzDlvVvbO9eWitolxs+wkbWhnLVdS1UawXUvBqOyRWlFdKyJMSP5XGKpgC2MYAAnak6vChZkZ4WZrHnlpgf+9ZQcS4Lef2+kFR53GpUTXjTeMg0wSiJy50bvrykbhJ2ifMKQuLdkJkFFvF4Kq1ApCzbzgCMIAxlK1xwtPHPw6JFTAb08zIKD1/SMYcrWrHAaCTmqs5pqjV/XoIqA9lje1eyhOrF+GIVsCJ3vyB3dteTc3P5lrLMHk2rMrHp2t8dJYM1JiBZXwPxRzeenQKERRBJHXxh5CtrLCJRLrpaEkMCIxs7Uuu/DAlKFjn9m4JeFtmrDXimSrG+9VpD4v0wkZdALaPkiGuovSoRdiUGqJU+PPD6yAtVT4nogRDhG7FE10VuPt2ouO8XOTgpScTdUq0vJwsJaSe5vhXqRAr8fqQBeikJBvr14RempafpQNkW3supZ/wKaJQQAZh9ZxgnlYvmmK7mAfIUP/xjm1h/0FjcyvtK+H8hl5FitWkqMhsT38gYQmbyoOZkv6kgDrtWa9VTKJJhRQZQqoq9LCwc+lognCicdQ+IRDACEeQECiuINW1BIwtioIUSh6kIducLnhoU0BPa7WtZBUQd5OuA8XIkS1MVRLgth4kJTmHJEwnzNPWiDqIbW+0VRzkXeqR5HhPSHhGu5rqodajtEJFcuDlzpm46QhEgpzeXSZNz1DX4Ahn3DCO253IZDll0VaQQ9b3CO2NtYVtNDuWeRx1DvoS1C0u4eAGuIKM95k7Sa0ZQvi7hwe4SN8RULKGaceEdeiMT22x1j1mfQaBdPo5hWrNwb2HE49Koq/tV25xBvbieH0wPs3FlnPBLGElMeEVVsWy7vry5aCYEiJ0Ua2wQy9sAgfNDQooobgTNw1SWVW8qZEEHpQQMkw7Rf4bR0rYpefKS6UaH3AIOJcVW34Ce6d5fHQ+IPpyys+eWQTW4MZFToeNHPpBppUxueF8e/PlIDzS9xO440P2dpIoKDbHyqOZNbnVlEjPhivlNZEnGgLxZhBqIplXO5dcddiyr4GAzHdBphB7Ra2mifUfwWa6k2xET+pHPtnvGPCZVkWwzs4Gg31NdVJOzPH12KX8ISw6NkPotXyHAUcL1WoX31jCyTW4EqNocwiTefQ1Nc1GlkzfY02AXEHraymYXUIYiA6fskFnuzoOy6uNMwShoDStVsbPmmT+2kWU7pYb3/cxhSoFIrpIil4NHFged/tMFyhOZQlSPX5Ke5CqrE52/U8xV19QNSiS166pjpBcOWPN89NIIP67eQY7noTLjrpQQt0VpP8TpzBTLWS1Hfnk48JwJb8ptPHTvpKO0Ui8ypyr13ayyW7f6iiZXARA4M76sJD2A7q+//fxneKkftdOnslLVB7JT2DCEEXxf8K6U99SP6DAJmx3s4E/o6HsJTxWmRrBaTeBLVXAN92hz6dX2KWn970kY+XIUcJ2kx1AjtK38z2ugi0Y+UMBd4W0gH7f4sNSPzio7LjCBG+KWdOMV2Isej2SCwuzSGRanTk+tLhKKnFOE7ONsNdTvIEYfFPNGnCPyfsfIi3WB/torpiWMvCQayQ9TwsaV/ZhRjD/NLrVp/zpO4me4nr/DHLN3eIl4Qu5nNuUrNCbXpeY0rFzbQDzx1W9Mxk/Oy9zoevsmhorZyaPxG8osM8wOpY0DZCoyI6mbCvU2MryXd7T3/JbUJ7MBRWq0a6AUKT5I2+DUKT6M+/t3a7hEm1NXAk9VNzJgSA4stW0pLshKwuo5srFfLYb2SAmCnaV0kVyS0xmpyFZ2wSYUcelbkU4gDp4azGfylbPC+rsbmka6aVXs=
Variant 0
DifficultyLevel
552
Question
Elvis is reading the temperature outside his ski lodge.
What is the value of the point marked P on this temperature scale?
Worked Solution
Each increment = 0.2°C
|
|
|
|
∴ Value of P |
= −13+(3×0.2) |
|
= −12.4°C |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | −12.2°C |
✓ | −12.4°C |
x | −13.3°C |
x | −13.6°C |