Measurement, NAPX-F4-CA08
U2FsdGVkX19wt8ZBuEyET68Lynr01+YRKXgOPbeQ+wO5s7daaio34I3Xz14Ze8Sn4ZypQI45BSPRPkFqjDRVzgfXbtDoVVwxFlPHLgJMfkomEfontVpcHImBx4vlz8CXTq/VOWE6TjZjCdU7zT2vFvTIdLuprrvBGS2H9uCrdEl3k/CcaYOjchDBd3XEKvHwoWu0Es3njRfgV/oPo+PRNxs7ndYzijT0yDYD9Rj4fyjGaCki4J9wzy3LPeIJdSOxSiil0C4QF5pJnPoef0pO7hrptz7IoA+k9lUcNr9yVghPmFyjGUoscJzG6M94nug/oZEI2BWNnLzSXWuHzODKoogEK0xhscI4WIHvl6TnmhnyFeV7QqPzCgTjP+Oih9HzMGLy/Lw30UKyMuzwzcCpNPcrzvn117QaiGAx5Gqa0cuPnbGbAcEE8Q1hWlFZtcTzIHKvYBwK5Qag79qmi0b9gcXPc0pyBXdIGK+EHxnU1/7HIaVl8RgNTKf2XcE4JsMe4Nb4lkUHN7+gauqOSWOz5xX4AOEIUiE9hKssu3n1oGIrHIAfqHsYM82sMi6QMx9cIRqnlHkGStg1pXlPG2muI/1oEvBxlHJ/5QCR3UeNptxmM2NLCIIKAyPLJRx1TvbXTICpJFWuu3YhDZR3KoF9a+Z+NUteSMkE67bkKqWXkX8B3bju8uVpHGfxu+yxm6fAYmzoRHG9ge6H5apS+ykMvJJR9kLpAnUj+1V62T5Sp3Y2Hcwa3PJapjT3UtojFhqEzQX0TZ9WgcoqAXVtIsZrF06NtC+qtfxTM7HJb75cF2+lrhT7LWSVnQf5YRe8b67ucUfzoCR//2GZcSDnYtymZTSRkFwHQdYyoHpUD5QrNJ4e6/Nw+Bm1mu4X6TUQlFb6H2Y+DUQIXoa3ErcoQlMTeP6fnDNagDhq5tlnyY1UhhbDe2RRCxVZUZDfOI4TLSdIyID27ztmuHpzFUTkJEGRHraweHBPOo96YFWslNaZQfIQ8a7FXXHOhPlaRVDVL8XzBOGn3Tjpcrg0deO93CMzR1zV5NDZ/DMtV5/JM2OjQxpes6I+clpWbbYj3706LRzrvKdfuLSVtYcSeenIQ664sVh7cM+o6bEs6r22l2Vvq9Tgxhjqvsz3itFAQr6zbUjPFKsQ/pipuL1v6lBMOCHXgV3oBnDnyEyOX/13OhvzNRVZrL7wBMh+zfpawhq92+29h37TssemowekC5Y1TW/JEEqJrBkijsFCjv7nfLvpztyHZx1T8sg0BWp2hmPAPawfHOhh7N4VqF4vCRF3WwMG1Gky3DikNEP14V3j6CconFelDJz9/89BO7duJxcJi7aFeEaK2okYC9kydzhZyS9/BN2S96vX8K03oNwsrszBEZJ/eUqDghY9bol4asqNt5mY4nq6i/+PA72YaXF0h9JoKQw6wUYjjft/0ULGznAw5AOFwhu9ikRuJBSw8xGgISSAcApvC6bY583QJYYVvyYWKtD/hK64m5kzuUGFrrPJj4U4kyAOC1a8b0eDCk9vBuG5QkHCTg0WbghV5q4rc7MHvptilcDqgVUbkDf66dGB5SSL/xJ0iupzoLgnSgiVUGMMHP5xsom0r/GiM8209no9p8boRBrmBJspfQTOEkvxqOCKssNx/UcRSL+wRJeSRcgDYF+vB6hWZQj73WcxuDuaoEQj/SCteqGsoKHmyIO2FpdM9+twOsmxAeErH3Qih+r8/Er6VjEBarAPZ+EH7vUyMeW5E/CtF/V/aX7lrfLyLW2dsToNqDKuDVZpD+mj3o5Rs8rapmc+l36YP+iOITPLSmCgPhAjrsG8hE/6v3OfmkDXQeXfiAvAfexZ3PcGvRl9hJjxpZaCZx1ZuY2sj9GGLAUO8HUTdv4FVzwJpgDjPau1hWMpUHROzuPyJwfSFvfENoCPo161nceTebdnhLkSySLCRT4a7Mp7GtplUsF56QNtPiWET0sLFGlOyDMB0LXrTqJEMyUIH7q8pL9ihx2c5OTEdA7Dvl63nLdQ7SOzqvZcPsBW49VB5T1CxjNXzfgwcW/hlmZ5xilDqwskYvafI6AzdI8NIXnfi4q6jahXPS9XOJIf+jXaroN9IqaaOmMPZnivPghyE8XXfY6FVz1IOqTxtcV6eSoUDLUdoWu5z8RefluHr6oX6vVx9eud2s5pjtjHxmP9OkHp+ei42Hq4Xi36fMHyEsOEJSH9o8DOWrB3arVASzMM3c8uvmKcDKgkjskm6nckjX5ywYFJrkPCleivOdahkL43j1Bg5Et7RDTLJm3IPXS+C0x9I652kDgD/+myjOttjYpVjPvDQjMVcG7Cx4zVsz4EVnIQwr/0J7dmjm/vFViXI02H2fs7oN95FlLbzUjqEvClHa/AsHhmw3Z8tYYff7DGU51hgmXR/eWqd9wdO+IMocTealfbevFm4djsRN/ICWPwPrDUxU79KMxAVLd15uBypW13xudNIxm+OMKZbI8ewlyYebw8h/6zFKi1hSRKc0/TSWAMGKaG+ESswSvDVEPdg2zQ3bgVaNTgF3uQlQHA6lwV9ePwOo61Quad8nV09juivUaxMkK5DcPEYzZXzlMkKy/gGq4CNvz7LJfGEmwsPn5wOyLQoSM1hXiDMEmPtokgVmPJSQRnBYApFMdhH6Ju9vWNMOBGS6S+CbEWgH+CXqmcUbbF4jYH0lBEttHzRUsCZvcOXimGLmkLa9bH5UaCYb9CvrikLnJbPuCNB1I+Y8kMWV6ocfIM7Lxd8ymQwYmFvKLulWZkuQH18k72oAdT6L5LZGvfyr+IFQXV/oxaLjBxEJtRBBvykUojfm1+hTckSkYEVOE+KVRVthJm5e0WbTbmmFHx64lmgd8znV3ZhikZwhkoHys/AvdCGY/uFtqGZBOfOHIuypYh0jvKF3+0vFIpJsRsPF2YvzSoUnYwfjXS/lFA+vPCTQIW4sFTJp2QdaNZFmnYhR7gZ2EkFOWLxh2oTXi2ckiNjkkCcmhOXtCfD3Yjhhx7C5jk4QuDu8L1+v+cnWbBtOMqpz0SbYO9lrgwHjSr950QIj20SAP23KPqkHguIej0bhtvTZO4oTIKhzT1udarmf8fYProRurkYrdLtPOq5ROFShWDQxNRD2XdtjTOjWMpyIUuNdZcMP6/A2y6FYvIDBjmSFNSQzgiEFZZNlh3Zn+8YcQJwBhr0jbMrzsQhORXe8nB81pemECbk15XbAKolLae7rX945LIll5WQhGdY360pIMlBsah6mSBJEunoWhxArqWEwMVz8rteC3WCcCASMuVu4eD3cmCNjgT0OsHq6OU3I4n/MMyjCkskFY59f05SYM62o3MMzTLNGiX3PMX0GtrrvtPWG3T+aRkMmHNxTdl0U9mEQSrlG15Fw+c9UIZg4cc7qGr2mnL4FtvCkIvHRTyg0/ej0rLr1xJe9OhnM8d5L2PkHFPm1DY2HlHNz2g+yWTz+4lVTIx9Np2spYb7LbJl57krdhu+Rw7Fka8gbCC4CXr5McpYRbT+bWGbyS6hFHtrKz2OTPc+AcgQVg4gFHq/hbTbzJk2oPsuJVKLGiVR9s7HiCiP1338e5x3EA2xR5LSIUBT8vQ/I3zRuhONFNxoiKvJnjl/5+Va7hFh1rwmpXFQGSDeIZdjwFyzSpmcp0f3JyDe4kUXxKBQE8MmqXYMc9o4rzQH2lCcit6PzLpatsISHkinX/e4ueu+uXFvmepqMfwL1ES2L7zw6PLk0Yr0IvVHiP3Z0HPnypY6vlVVeC7jaQZpI7Uj/R+Lpp5+zq352BWS295xY/8m1dVPHfHfQOO7y7KQJoWdJ/UlSEyelAq9COr50bkI+klpFgMtT4LcMNj9jaZruSPbp18W+p4Ox9Jf94rcfyyTLIq23vCfPHwxQy95giPPZr1gS6RxjkZbluz67yVLUNsDy+SskiiH36oMEkp9wdrcO+32usWFaLtWB+W5yHJunmYAeuA78KTRGSd8PZ+zNE9PZEYSte+EPtPaVT5uNEFHzpADuZC1m+VOKHDsnC30S/awPf1clxmSiRX2rtgKYjqOPogOJPqog0GuMFFJOsEGX4v3tbsQodDq3kPlLCwvpZz1J1m6j5FsJJwgnUthPAw2p0sVrXGADkwoqzXfQmcpClJEgrf+6VLWP+TmlDHcl3szRgPN8VsozWeQUs3FRwjAfvRnddcKianZvWp7t5aIKnyZ8xTEBRb8wsCazPew6pIA3I69WdiPn8iAahujZapskTZrjrFLapQ+W7/BWmP2bSiiwWid8HxL+Ff9kDdgYmmJ1T53N5jlbjhlK27dCknJr0sUY81T9tBg2djD4/JNWmRrNfcN3h+Ae6sjU2+4a9H9o1Zrjta9c1R+Plkh3nkPzWscUMVFu/1AQ7eVTnB6fp8BRX44fAtFIIczpCM4yAQ2GdRWvrxtES8FuwoW7kplr0rRRw1AyIwUxw1q6kAJ+O+UREHFhGBuuu9JDDqKLuk5prBzHwb1/8dbq1Xl3mTDqSJ18Mb2KpVCQ8pE1DxPQ0SGZOqEJBSCnD14ik2ONVvSNtqFIWaZasBbEDt7VPoC3hQ/JPrE4YYPFPuR9l3nE2D9dp90iRgIk43vb/nb7vSfLJPqTHBF5JmUAwKxhqJBG7Lmi7ZBNh+RItkgsz6gBeasGynjVy3oiWJbk8qxuGHkiqP1O9dPiaIEtnp1FFp3hOem+s8jyOibxm4O3LDE5n+pEimQD4RkH8+iDUrIT8DUtQ81h+W4f9li8RgZc7Faqf95uNbh3BBELMcOU4fgFnuD/5QHRrayP8jHSZEmmegSjexavXNYYZOKwR9R67T4z7xVCAuFMXgd2XqEsxt+bhFkVRO43zXvS/bNMVjLjSXohAva/4W5Y9obUIV/irAxzW4R0XCsKshIdBwXHtYrU8q1ADl4bEd9zAEgQ0uabVsEjETCWNhxHJXTAobPgW5uKjssEpxBbreuE0Lzpe3fTHr4xEtcksojiLRwOyHRorEGJ3k1VWVWOEipl41urGqtrsnrCmcxjlGWAoFq8gXoYrfA6WibI5QIvrgsK+Icldx+JX8wh4UHYitxSiebLfBc3H6M/DqNBprOO48T5vjK/MBS6g1CPipCQZ5K+d2O1BRxm+LdsJOy4QdrifTrfrhtci0JCWsxT54yYNwW+ZcW/OrPXmb9qoTliv5O79HawGrEgV1ZY2747dz3fDGwL5R09w6KmWVIiox6jAU+eJV13RmpMM833/wEbPuTypwX6+lCH9Z1suyXzisNxARP4+O0iqv1RjNJpuUaaBO0JoolD/7ZVKokm/+/sHEUkkydllap2lMAqmvzX6bOQJ1AhRDpcHqid4vqQp79GgkCPST9G0nxYhkN1ASDYhc4939CQaEStnv8bjyoKA1sULWzkEJeCcTztrFqjyrK8NZKvzjePkimGUx5Ln23Hu8BTlDqH/KUjzXdFoCwmRdELOhzmlhRzeCvPjXxc1xO4M3BHXJlpqagFWf/E30msAnpa3KZ3nEKXmKPsbG3sRnJTVpBwgwMe8/lKpTKuEAgK02I8adzhgdkpCOIkTazGatv6RW6TpDtACRrYyLmy0Tn9B+TbuFT1ttup7/Ad/FCDzN34aDNTM5nxFBBJT0lXPhH4lJPk3R9uUev8WX2i1eypmdcdbAIxEM33qvpJ0cxQIgnWhPHsQiL7K8gLOr8p20XNVuJOCDiRHWUXK7pW0zTWGK354tr8726r5fEP+eJ3QYa30KWLRiBXd7zldQXqDvhpPofeZdqeCq35O30l5Fk6w9y2yKDDYFSOv498Qri9RiI5N3saLDi70+wQJbix75V+mw59d4Y/KA6Hrg6onyu38WhodMy4I2aMxg2P5R3C89eqo/hcsVU12q8AndS8jEQ4Hmm6Hr34rwPVJGSBSm1CbwneGmHsYojBL00tShU+jRs4Pfi2I35LmvFJx2m4o5HNOalNHpAa2JDi+DZeKabgfEuz1gGzctDjYY/4LbseHnAM6gKOpmBRUeUqxsnKafrTvHWaW/lCFt77KE4huJYTWKFhUNbBcWPIFADFPxu6QaYlASA32nozQh4ruZ6rTrxu+tcQmpd4TrJVGbHUm1D66nIrnwE+4Y0YcPeiYKcwmrTI5pOV2penrcGNYjZfrcrDZsY1kRtES/B9soJt/O6jIqj28lagbVTtmEJ0CEakw5XcJP3DbZqWGn47i1++5Yt9XFsZLh7yMkKVKF/2teSk0PlVw+hCaDf8V0ksloPU+tDZHcFWJaKPLAdV+W5cdVHehg5bq3jl3WwYwxkygGcj/UbWuccNdTJaQ/wehownYk71eiWh7PgOlLlPbtHefz73YTpIB2TESFnznGgqkEmaw0IxpzAxc0s4Q7i9EF98V9hmGQNzHWwTlBmVV7AgVKGvusI+1wfGA2CEVoGefQTxo/UQ8oy59WknVqomj+VRYeUQIRlJ6IblaPAOX7uCsltcP+STvxEt2bOPsh955mA+IZQzO4La7OTGAouzwlBnWpBSQtCq7Dc1T1irUPzOieFLzMYnBsX3J0nJRfbKh2Ms1FKoKYU7Rxq8f+o5szL3EwyhYv3EMVxIQIlNBnyLEA+J29ck01a7W+/jdav09mjBymFIonQGO4uan110YgiWxFXXaK6A2E8XpjTFlgCFJF2Yg+528lw28pX2YjkFzWFZ1CoNS6krrLWMSIPeSlFGbda2PN4HqNtHDtXGOy83O+f1u5mEFISsDUYeu4TweMVr9nsxA0hiRu390Qpfy5GiLg+NqYd1Ss96eMmun8Q0FT/W1EYmK2A0ocM47h38T/bEfr6Dkx3GS1ROXciYpV2v5yURgHNwBDALDtfLyp6DShGssrDjTY13AwULBOpR6Nx05xxEfpCfc93KtPPTHSzbNyVjzvuAdI1zH7VHg3PvHYCMqjTuvLI2epGxoRoTHN9kzd9UCa73ZpQgEswc9yPJf/3DUF35mFyHvV7qzeZe8UnRQOa9EueNIaGTQUnCgxtoiBdqLP3QRcrE6CFJlJbXlBTxJAcX9bKPvsvmhLfWuCKvvhU+EIDZFwBif6KQ4stWVdmhsLcXNfWk4uFBuuOOSSOI5W1xZIWf90DrO/1oj5VEkmWI0xrnXbfvWYcqGzZoyAydA+73LZLWF19Y+aJt4lb5UIUl8whnWGneF1zeeq9dX8mutL28vZ3TWezWe6WeHlDkR5BE9ca6zi/xk0I8L1IbJvD0+28AEn7p6+8/DvwN4PxujbXA2OL9rviuZUHhZpVOWvwXTceogPVnmSsiLhiNDvJh5fyDMm7hcq6cf1nb5SVsHVKuN2nQ7ufPwZmVN2IrzJUJ7WjNqzcsnJfhqT0oPxXoZygtA01E/+7zNoyLG3KKlHsnGNU2XEM0tXRTfDpknx8fiLfiRcakL9dvTuv6+jn5RljeGzvoz7En24B0bv3lST0f8qgSNTqtWE2Xg+N1ebZOk7897/kDmH5hPXpzehA6JLlHp2hPJqbQCiw9RWymH9OTHR5xyrqKaDW1sqFcmwfyXdY/8f4YQw1uP5CtqBh0u0WZCdk+4HrNQH45sfmKhGDTEXRBqbCrxj655mf8kR0iE/KR4aeikx0PLhErA8rjrEYnesp+yv6rWCIOcQ+bY2ezD++v/H/YRHP6ZOMp1Bjy0PE99vpldJT3CyqFcrrI4G6+Pggih3TMx/1g2sEkc0mdtr2KV7B96/kz/nwG3HmUD1jMU/baYoK4QlXyanpdGQVB5andwKbSLsGa8kFWvtoAZ3LBzV2jXKr9M40/bMfuMBBedJVI6f2WPqA1FG3mDdyIQQMYVdFSAReUeAoXSSMuQjL5GOOpzQhOOt+JJXyZAqO41BW1uxHIiRjdj+dvmMY2HBcRMJ/4F+cHYYaFLntnhxV49srTX2CP/g9yWHr+E9Mpj6V4HIto9Qc1kUGikR8vuu4XZ2DkbbgcGtDG2dm2ltpBxP5xMQ9aKW5hWaywhZ/cJYGpBWKaLULBaq10xsroaVuYevBJ9MkAxzIBM9S2KJBVtq/WeZlmrTDGMQyVGxdWiN7nmlvXxYhgyc2afs6MT4tnQjl8Xp22lIcdYq9z6d1ye8yAC+rVNUPLankJOntJFOGmlPKsI/i/kV+59SLc0TaddLGW8NdBtz8wuNfBczdklykpfAtkWuKW7qQE2Jrjp/959ohNlso7gcK6yvSrrkn8Gf9sUO3vHKq5AdvRIEOLqUWOfN1TVOFfHIku7Hn0y1wVi6Ty/DLmcbloBUCoyuuyCnYZqD4BiQZd/F1u4u2ucwhn4URTDyK3+5gvDb0OxFreRl+bpUcMUY4XY5ZkVNbKZeyGMB9/hib0NHvXRC9rnkcCv6+YjoC19Et76ERcbHO0UjMJspWKqFS1c8qG/z0MyJCfcP/f1pqRRfkvM4Efp/4g2pmsIpErvUzp54DphGl04V+Jot3QDLMPjMkl/wO9wPjsnkbsjorNI9RayfFcWm8DyYbKB15hZQud2gtt1j6tNzuJwrtV6LQSRgptwyTpnRd/dcaGrzhiZLw6O1OI5H2zMSSxsVxNJjXcNCxyXfWG86ItwhhLrQwydlDB51eUOLEs7HLD9j0dFWYyOae2ju9Xd9oy6i2r8Itps2fqhIRfOpN8mDqfJe3GdeiTBiB5PK5uAketu488IQfz9aZDVJ9xJNi8bWo8uuSdT6A/NSPqh4Kbhdniw4Hz8A9h5qUeVdqq39wQy71I1UvrdL5ZyQM105XLSbn/m/h8wVKKoXjs9RpTg5EnqzGjmIM6Cq42C5fjbRO3xGf8CP4tpCHVQ4Dc5JHvVQerEbxzsx1SJG04e/Ju/uMS+1A/nWVlcnTT1sNXeGd5cDkXvwPE6yOjgz2coHfyg8hKY472FkdiA5WpaLyQmtRkwELiEqMga6endX+C4Xrdn4puWmKDU5iV2UR27DmEr53GuRqYFz2q8QBHXip3+cwzdmxE+LrET7h+JQ3eXt2TdeXx8kt7MH/qJIh9zFmUMNCpshcl+L3JVhvBepfcKBf2prfXA6jvHq89dLJX7Y57oWrmnqHrOKZpUA2PiFa8WtgF+xAaUZNXszYYpxoIcsQnGbmpdQsz+SzPGBxOoFfnRLqJuxAvmB2VG1lG3fATNNPNxIADRZsqFBQwWF7KSGvOTLlJqe5bZ+456Ff2udv0Bd+ivjaFAhW4NoD+4pqe36CmV+EVVWoO8oPv6zFXhMQQYiYlt8DFxS6Fzdh5ykPMTEyKS1Q2hb4HHMT601ESOfr5Nbh0ghNuk1FlbTZV6xHU2AIgZTVa7fUvOOYy/SDe+x7uwElQXL4n0CZEzim1VaumnlBsvrEPzGwBeB75t1BVAUzraR2q0TdfugHZQ5dxEVA/3sDNaK/3+vmsJDnThOeqAPzaVWUrK4qY3cQm8PgrVoVvTwy7SLNdVCnugGHbuXVbbN+dgKjOY8Gv73jgwT/gHT0Bc1PYjwyTvbxqZIlK6vMdtNXbHfJUpPtt6x31iKLwoCZGfFo4DfFI9wQGN8/n42XhFqh/AhUzbFxmrHdu9Nc0YehktCAwXZNptuHbmdaqlIaQWTi250b9wHxw2loe4ISSUFfnH/IYGaiM2l30f9iLVGNA5iwzIa4xclObeTDRCyKfo1PMy4UEz2upjhpxYMw1GO0JW+CCDdGh3X2dQTpeltFPxYZnUgsCHbNXg8ZtdnahEageEIHtld8p804yncuSTft+bF0r3wjaqi7eZYiV2wcY0ifMb9B1Z1cWh0xRLGEXA2ytB2XuqMpgKP8g5VPXSb2E5i7dQmVvoPnzBmR8OZU3J5UZB6E7RKhdoR9wlTZLlTyyvKle4uAS0a1ERiDWlvudZlX0leRGjgivhS3W3mQVst4EkuwRm7HmltBj4OlMj9e6PWqBik9sZUixHqLviUWZVyle8xLEhm8Awmczp8mrivDRF1Bu+URlkRBCH71TF8WEzdIsmBNQBSyWr5bm6sx7BA0GUrhaIFS9AzeXuhkD5Ak1aOx3Wmk9rBtNxV0ypFnzbXm97rJCLIZUNg9yrl70DqlA6cNByiYo0C0Smdek7myOV9TpuXU6zn6w+0Flc430XW2OyP6FkEhAgRDf17B/aBRsJH7xmxbBSuAxAqo0Qbkow7+LkjoF4/0DKfzoOnDVTJ9OAYkw6DCOMO/sfpqG5GoDXznO/xVjN/IO1qaW0wM0gZ75AebQp+jUs+s6VNSwJZ0GIzH1MZAL6vjWGxAlbGffj2+BJCT6dcKxmvWRQc6z85iwuOqqvuQz/f56EXc8+3RgMMmayk5LtKOOCN3VcPKox5t+slMjCLwHTZGJ8zXT7Q0r/aBCr7c0Gx63fci6LFoJgMpWdSq7bolSQGUcH3nw1MAMp5IUosfeTO2PRZ4TdRFVTxzS/cKsJvWJK5oM8vNielk+3xoWY43aZHO4Pwmuj19pg1riRsmTBVzwV8w1zf6DNSW7Gm7dGncpbIVow594tPQtYBYH+VXxsNl0WpqIvpfoELY1Sfd6XO8bqQP8ctah5K7DNoyOgZyJ+bUSQ6LTgqT7a4vRIIFY3IoX4gi2Y00AiFIXh7OtTz2gEWLda6r+Ybc4sjSgAQU0/76xqc6PiLAmfhB6C9UHCdMbKtMjhYJ/jnfXxCJQnmlOq0isFFs5qy90t3ch2HpmgQbcJMcVhwefm8jeLtktctJPEi+YSk5iB4FO8/10u8OPVOqI8MWOs2I4MRByKbVxqJ4tRJ9AEysbQKW+Hvxq1Ms+1qxhS6OdbqS308m9zcfxR7EAJU9ema/Pub/NSTtpwCgvdtQ3aVCKUaBJRXmkEqzQYwF6C5QQKDkUhdMhHgUIN5cLlq/0gq86CdZGotJgitIw9SW4gfs+EjhzRpPovMk76bQyDChxCMoHVApOT2eP3RL9i2VGfZCZt6Wy4K0tgaVPDWbRT5BvqFVvz4YOWEkAnbzbGtClXcDoP+vn1deky+9v/LCgBRj8bzmUa9pO2pYsOGlqDga0O73Dx+815Ev1kAYGm5z5CoNOC7IY39mZN8IisKUcJfvfYH0Tn80XSGNYIhT3KuxOaRt6mtNX4LmBl8u+cCjitvM0MMy2dheYNagZT/50I2xpXq6s3Dwaf4Rsy0dbpP0zpsDyXlxw6WxuaGK433sdi0dEEJdR7UsNAkEo9qJ9kr/IDgR/beaxMkO3ak4ERW7gzcbA28OZlvUADdhX5GoQrWHoGTx8NH21h78InGwUQKMfElrziRpR574vHu9DqUhQsVSoq/SBRtHWIEk/dy05NLFBYglnZ1yEWybDSYwEr83GyB2jENtl2VYUH+mbP43FPWZHqkbK8b64JTd3jzEHQ1Eu/o+GYLKvsBoDkgarSNYoh8srbT6iEp8CoHR2R7IqqjSJqpvkCC1bAALVLWId6UA4UxyT21USsyKMOCac1q9Rf2GEOAgHbhQLF1+fbzHlFlpYvT4w3bO3fovyAzcHKB/Z00jhyJ2rng2QhzhXyvcX2vDBPvi/q1/XoS/IDZ1J2t9t+Fco3vRQ/TdlCQAYQl2tcOE36Eh4fgdJi/y5TqnqbhUEmK29iN65M0z6aLcaiDdXQhwPTzHAXYxg8LyIZpBTj9IHyENbdQhu76BC12eOYRDIyTOyu8lfce2GWisz3r9mHejKzwJdo/XFOb01wPaedml55zdXlh6Xmv9nf40DJlkybpi3VbYxsUEqnsWWNXmdK+asS4OyvqOpHHMVWeu8qo9Zlyva8DJX4iUaKICmBNC5J/Ixy8z/EwbH5FmnM700fpSBQKIw2NLsHnzv58BUX/ibxP/iEdJZNuHkYuoK3R2Iku4LvBfZAGtJSSTvjYz3QYXVr61kAxRC1ejvRBpIhesls+9fVp251rksuD8A255R++NSyYO4R7oy1qnFHsAaz7ODe9OkSm5eH7nylikEtAzjvgmGL1/pvbhq0y2evKRFcqDgRyYVb4ES0wjMcer4naosNBDzOcdKjqOpwnIPniiUf4IQgrpDWW75Ln8ay9Noz3CADZxBI2Uw04//HqEfeA8dtBOsAfDHln4hSo/Q6RjxqMKXIEJC0z3b5NCwgKE4VGc8OHLMuqdy+7yIs/6oZWXDTXRY2QiJ8Hc+XHb99qvxzcBZzJDEjK5CWJZ4fOnv5YQhldmixuxGTW9P1onDZSgyFvjqmuRF1hmGqD9JPdqAbnIuWCf/13uNfE79fwPMv+T7QzjLMaj/KS56fivog6U+2+twYX1FRfPSoNIi0/NP15x9NpHf06FmF72oq/1nEGK+mAx0PG+vF/QzfJWXV9PWiVcwk/qQ/g3XEpOLq9eXejK4cXqbNtVOB2QOlxxQOBrEPJTC4LLk/xHwliGcPvy0mfXKRnZE/D1T57Mw32KDTG/heRfzJf09eFNR/p0pJibRgHs7zRLGpNm2GFdvQnjX8lvh7A64dX6dUV+D0vYnTekFwPk9PTk+hVGi6xlZZ8rndGHPQqZdHXZ6d1nwSaauTBvynPfT9G2yTUCGFa1r+Wcu5i34jg91JlnScTRClLDB6I18+SiblAYYwJ2Jo8Lbk+Jsvd9kve0RYpNt053txpI4l/xjoE3+odelLpB9RMrJw0onZgW3fBwOOVQONkkXYGOU01NGfO1XTjqfLQE7NyjtGzTNOdM7oTkzvRS8Etjbw1NWfOAZuNFOsAdPRjehU9aiXBnxaQofyJyXWnhvU3HuUoxdtDcDWHmR9z5KNcYMKvutGwTtnwWzdReHIBPigTEIIWUUzxTKFrxQ7hj5+H0jh8uFQOR73Ncdp/x1VZb5VRuK6HQWnIE4Dgg1hrWwmCCfh/Mdw8CN0sF6LXI1fS3ixgqTdFExbQSOdTMCOyZKeN9fVO0yS4xs4qRvt/wOl0pYmVFCb+z93SO7AevzI7Qzj53oH89Dt0JCkp83AL/yokRzL4Ob+NQG7nGgWYQq8yzjOiOQW32FujaMu4Mr2VPjd4Xh+Ei1I+D6F833yYmjSewQL/Z73dVPyX1C4VDRMu/JzzAkUFj2NcY2cNlCtAGIfJamUyV4MJwCsfWnbYn0eSy6xLHmyds7AG5rY9j8L6y/dOjAHmKzH6b/vcIebaduPhhtxAX206IxtsylUSXV3yV40OX/RE0XtnBRZUB7DUQx6C48WMdNr6FRlnaj8BPflFa7PtZvb0i6IhO/a9BmUsyNgiZse+Jd8T6DHh4/8vW400lVMdBnVu6S0w4zehWbADi+4ZxdgCWhM3KmIUqakVWPkuXrNcL3kmI9nvZSlIlwsiy8M0C+SlqdlgW1dJoPsdIX362HIAPfXiCk6RlaMhkHrzvvZGc913etnUeOevs4SKgkIz0Is43p2WwjVNRV+HzzGmmLuPoM7zEaPeVDxebCDejN5Go1w7+qeCTdrjSs3+91WwUtpMrDaqvOlGfjQVXnwO9ozanKPX2LLQkhGBRUZuKuLz5ADX57/BjSITbwYcEWXb8EhzoOgJuF0lVdTDWJnmkGvnFSl6P0vUG23V4xej2UKwr2w/m2sZWODPUsOLbVq+RedNHsi0EQR+RrX8pqMxlqEuosshj1ebi6uN8wbaUnOWjZcNoDCuNKvKkJvbsi2/nfoDxFJR0mSxu8U6nHpvz/uyLbyfD5S7YrhdaP8QnJMjZxVfykNWFmz844MT47aHYQgBmGqzk5QEJFMZRov8tfF0sqOWOvWxTonbxuroYCKAYvI2EevuQF4A9mi7poo6afz1zT87BcSXP8760tNAlKm2iqh5iXwOnJD1O6ifW1FUQhMoyEiaoq6kJzur3hhLt0SuK28wfSnpo80l8lInWKqP3gtofkEa8AxGImclXYWkXp4m+H+/C65bBu+zbuK72dzVCSYtLLWu6AvINBaTh3PDeXKBMDN8B7JgeCiS6Iya/ph1IG/92XKv9mypW2DABKY2QUmyhbHx7Fc3CXiQHa0vect/cfuydY34CwEJj1gjolku/+h2sB9O7HjwHdjsO472VbhAUfhrpU/+qXeSa//K/a5IihcMBj6KsydZxtFN6F31fGtiVml0gZT86upp2jWt92F0DJrk12XBJcltJBhDwUKMCv1SaAxqccglWAFqP+yBQ0YN3MQhrw3c03vdBQsQ0znRMFy1g/1rX8kAvcftiJY+Z6uK1flBwguXtENvYLmT2jKMPGHmV6Eeq4qtQUjrfAktIIYL1vAjkp9p4bj40XR/LcqllHsYn6JBR8y7P0u5BYBf3o6zrcf5lI4Vo1FY+PId6nHir0DmNUcfFayMkS1Hxlp2Tz0Af6qKtoZwzi2AYIQC0oiOwGg2zMW7a0ZDnI+XTQmPCFYsYJhFFc9VtrT1lOR6d8sPMq78AsJ+0u6+nAAfykxg3hdJUlkB5yx5YSdBsiHHRMPqDUIcl9fS6h/EGi+zJ2f+5xGM5xW/4E53VLOhwJ9C6KKGFLBSb2e1mM/bipr39acVTFW9oDcfoD2Vs0GcmQPDNs2GVByAd8Sedkixr/N/aClyYdrqI7YQmb4rwcg+TRTervm33qRC6Mh2WNdzD/DETZRiZ6vQKm2Lpw3kb1cBbZU8TMyMeaSO5KDr3ka7GT97bJY9kKpi3hYIUnT6M9el3/hRnBzvmCj7Ym+Jy+WSLTxHC7Kq7bwet1W8XUlawPg5LS5v5PAw+sAo2p1BoE7M7B2FLbrGIklg7HgeYumG7tx53f7TyuJ+nXBXdEDAkZdI+x/UL3Asq2Pt8XXsgOE4vLlwxg0H5fQ2t/Dq1BWWNc7XbHw4JHEY5gfhiyhBxJwRKO8lWNxVG0zGB0C3PDYOdTz6U0Gy9CwBUH4Xl72tfruUY//EHmPkW+eZ55aT1Pca04EGFbz2yNhwjpLT9UlV4GY3JJK+kjh8/sNsoKFj/wwRClqR4UWV4izI34t4DJABn9URr9X9WAsc5SGhrwBxgOpQ/IAVGdtQVDqSyWhiYkoTNaUTvxoylYJ/m/hHkgnpigjDgqjeYNEUojmwGS1+DN685owiM+5hI+do5TAeg+4EvyUsYZJ8YU6l0R9uuQbIBu+o2CP6CTPODtvcMDW/7uxeTkZhGO6Vly88v4Lih4Hi5zeVi40y/OGmNG7gWo0Z9sL+Uoh2NCq/wq+yeYzKN54wTiFCQYo829HqBhZkUid+YmKlIR5e2LuScENY5GCc13BfoRWcpqwhEVEpTe45Q8mKzUGkiAqqX8M5tuNsmANfZGwZhNqKw2JLM7RQq3oNP1MNzXFoMWwACVxOtdqPwl37FmvGheAP5+pdKKVNaTy9Ayi4AlU8/Tk9IqTKBvNVJ3IICyj7Q63rRfXHvbdEI0Jr+HOeFETsMOxacQU4bf7JzoX8pGJPwVz31v43k4jif55QgrFHz6ooqxVZNs4rgEgpi3jDNxeX4SrhPs8trysPHdvbvuTL/m2W3aFmYB9TqIRYbnBq4qJBvVaz1P/B6uTJjSpbkBG11aOXL1RkHM9YHZkh5jGf97pMnJ7uB8adFtBGhVVw/u4RaZ9f4sP2RrdMco787G9RvEzC9BnHH6W7nMhKu1SiIb5vkdrzQ6fRc4ICWMN77HdNFh+OcWuYCHE334yUI+sNvRS9n4XpxEcj+vZ9Vj197z2w5Rfj9h06K6isX3v92RYyCd8vx+THiusnL1PpRGa3jG9uEDjDcDW1LlF5UY/szbrtZuKc5Tw2529/qbOm8pS/ZkAUhVQ6Ul7S+IApHgpt9RaHK9x4fCYc/Zq5JPSi0PgEPnMq++JDzXlcX2Ugt4jjTdnuVH1R2YYeW8/bu4tyv9UhRSUM//xrIx/41OwCgdM3xfAfTg4k+vkaZnHPsO05TTeUewcrD91bmGyA4bKsgPY8tBiw5CObTJRbRGA7APUmYsQ2OwH7sof8yOpwTFgNlawol2IBdQdPHhcWOfPSVRmAFlVCLRxB7YPiRFns0hqgbJBZYp75yRA5B2D1ljJAStWEmzqJurXBrdNnomIH4kHEbRn+EvGHNdWu9tEX7FhhxgX+YPSyu39U5CnYSwE+Um8W99KMnH4zMuTSrHMzsw3piSBbOC178Hy6auA++dwTSkmkO+tU9sq4s8nDC0TL1FkXkW7cjwDi5BdRixFxi7B/vSZj+z7DNl4IAfJDG8Dm91baQ2oAbjqiRaB33bBzKCvp20HzKcVrtWEspVBxqj3FTgqR+/KF2N3dnRCeulnuywLULdlaZCx/p4t/7hmPcUSbVM8TAd/hb+nvwcmIpIJ9LCZohzzxKSveDH4CwTIugYdEn1U7Vpjmuj8c3NQa/OJT0/y2g9lB5Lwn7UPCaYDp4EGZXEMOqM9u/BniepfaCztk9u3WpMO5W5aL2AsTPnQceDHb0TKHtsl31lC35wmTYb1HIHiErgDv0z9G6ALe7WO2nNaJiPyBgKbwXspSpWLnAlVzIbd7Zojwh5O9C2EHdyZlexdBzWTp7L61LfmGPWSg/ntzwlV2R8lWcOXgNZfUjg5y2R2Xh+r7ZcIc8yqGA6HGuntC59l3UXHe0oB1iyYLEoXKgyL0KhZMhfQc0baLq5V325yvtAOqHepMl+lJZ4SXx6nykR758nioYbpHTmL5DP06YK9FUZwvt0yJOqK9PpXSMnNTMfe5oJpLb1xirjO6a/LJrPDvx0feutgP/Xscd7oHPPjEwmwtrdpgSJDDj45LnT/l4zaoVl8v2hlXGKKjyZn2soit3aAFpTd/wMvT8sJGNtEgsGWnmHrMmQxV8wnevLc7tF3MAbuxaC4hZgiw+KVAbV+9S+baKO3dND0j6Aj8a573S12qOEBJSLHVDM93OnuBrWW3AOAh8NubqZM3DqC9r5QokvfVppNtnekGlH2aSQFV/tfaTg+kZPAuctJYNw589KK3JaUWKKoKK24RvnXIh8MvsjVWfX9spr/bwp8U08gl9bqAwIwti7CQd/hEoG6gmz7Rs4jVhH5L84dQrheiqBRgPiWa48YD4PKzq0LuNfNFRya//3GfiZi8d7atCPzLSVqScK0f8DJiIeQdpnSaA2s+8AFb4b9kAiwr1dR6jtN21eZXjjFTNSU/u/d0Jn7C/rKWgqtdMTOF+7n1Cz/kOC41BGe4Y8M9sgBg8b7tQKaSUcIlmNEmfaA6ac8xy7TSQxt3nyckCTapMxGQE2dAJjW6kFCUXLVZ3QZPXNtPRxlwcSt8RC3DfjS3Yax/Du5c3Nc/AHY6Gce4UYpeZkYlJGp0SZGRYcCGdXC34TUJ/LA/A/zvny8w6i1Y9qFYfZDvRulToPI3dg0/qieCaUim91bZmKeZQma0/kAAThzy4fHsCJHLUc8LW3SEfnflTPpVgX/T+I/V3wRc5qO1ROX17KwCvm0DsJ868IqhHZd9Eut9NNhcZdgq9weClgZbV+dqI6PrML1+kLipzFtX1L+HBBLm+aHDMRvxpsdS/RnfLJri3XEgY7GY+TIQsgrBId9bSXWrS3Zz5gTDKFLJ2At6bTARqq9vMQQjHEgqRN4OK6xWEcK/afl2UTg0zGJ5wrjCkR4eEhAggwclnQiUeW2xM5C/5VN1Lqk+xJXsepP5kH1ynoI7yUDuvE89rlnI7vtJpvAeaMz7nzaqbPd6ddPVirBjMBrJ9SttP/Dv1OW9SezL08YEFymTWzZGkbwgWeiXx9gvbhxRTjn2P8agaFrBX+5npdjQC1DkDZxFbMFbuqftlZ7t9y3MFXSwWkC2B9nOcotG7Xym+kBqcg7B0docCNboa5pnAyLFO7X8hrj8l0g4hRPoxi6GfCz+e7rzZ+S7nNe7bZ/FybTtYK2eQTWHDpI78r7boLJWxZB8VLYCdQ4gIYhIvDpTLfgOwkhkl56cNnvd8zR0e9KNBf5hPPXM4xOZQOJO//xsOLyyAQSLJaZ9rRO7UyWT10DC6+cywwnEPK+DUsq1MWVNornrp1w6kt7TrMUDX3Wh4r2FdshgZZg9mVwbwMKUUMxey8MILoRzUneUK9Bn3pPizXVCrGXWVbbf8/y2hVjNmQQoGSJYqfouJrbh04W5fdjBZD83r5Msw813u3hCxsgl8fpqflsj4ylseP/HLbenPwA+bmcJoTsI4iagc4O9A4gJv7+c6Qj+Emeh6J2USdZbGvy+ssbMvDsHS1JH/i7wUAyroAMypR89hO5UGPGJ+ne0RN1tpAiRcmvUhU7iOa+G5f1aklwNa39SP9IOE2NPz+/VAP0QHoCM4oBEMvHjSvPCaZB9zR/ru8BI5CHlaspzrymHnug16jNO/oTIJD5UNDfXrtJh51klGw+q6lxp7SHuj0FeFlBFOk3A4pNJzYZAGfT5u9Reb3KwBYq6vEl5rotQRYVvKA1W06QQF/Ox4Kz+fNu3BMtJHhgrdUNzUQNp8FapCYztI5gIV1yXs44Gzrw4zyD0vtfFcOr8TuSbpGxYf0jp8h/BGQEVpAUP63XFWEhPnvTTOnLV1XdvtlTBZsXoqZURT9v32xzmG3FdDxXPvBPu76p5oa3kTtiLcIRfnaD9DvCErixtZ8kkk5JHXXbyz40a4K7NzAuZBL9yoZR6imFvyoZJ/OC4YMp17GFBGtm3cbCad61Yfr6oC9tQRivMd6Td/NnDVIH6H8xGdiXWzW0d04Gpke6M/y3JnTnTrVwT9n3YPSFvYAkQbOafs/68Io7//FSaYjuyJlytiao4vBcHKRFOfNb75py3FzulZt4hrZmwuJmT86plaGkSjKPdQBNuBMKU6mWGyt+ha1ffpl+3AmoyePCSzjc1dYBBlmotaPnBkPaYmVwQmGaKbtfSuLfSvJS6mgUYlRRKtg2LVuZBIsGdwEzoE6Nm2ibZgleaA4AaahensI4bF8wvFKjj4LEb+JizzbgNMcjNo8rzzkCFEvgXeyL9ndx67T42LzizgFNomT3c594rUnwzYgpC/Tg5RiNCTIbl/GlwNWI7aDJq9rpReq1ojJjHusnGhDF8Buc2lQEgVUfRZvga/Cl1TBWz12K6CALqyeDmoLgw47p4RnFdL76el43qd+o/usb2r1ZN6UnPZdR0O0Rzf5+y0do41dheCLtf9+z/MPEAgNueaoXBYljNC5b7tT2ep/hIT9D79ets1HoQ+sKjes+vaJtHmQzPViD1r5MTUnhPnUdOxYk6NO+S/7yL4nzhEZaLE0/k92d3xtLTg8T1pF8EgQnpF1NeezR7V4bKp4E8Ixati2GBZ1o28692EFs3HFREmxi1mAFS6oG9qYJ1iHxhhpcUoOmLh77tT01TCNdDgcpY3gGNFS40YhL6MEVYBwxrrzHM7sJ2xVTJ2eo8vjxbKgSMOi11+UpltczCra2Ml0dlzcYKVm048pnrHAfUMGLnJj+vVzaiCVtHkFuD/qVVcw1bUDYY37qKOSh4cmdyapJ+MubCYghKndHAErlSeLDgLf9Iyf9G9xDisQECKpsVT2ckwl9Rq/MnbSh0Xf28K6NOFVOhB7bVD2qufYyz0LtaFKgWr4EF+CzpQELefxBdY0kSBXbHeJ+plSinYMkhaLbSJ6B3jY3LAx4eS8TFT4sTFgI8ptQ9IgYCtLFQbEUl3i2965kijNfQGADGdlyTsbakURxdO+GNgEtrax2l7x+SUmEfP1/Q6NnvpdfyR5umyxi2maar1wgwIQnom0+3KKYnx1G0scq5biwrUQ/Ug/o1zXFEHCC4JvBBe7ncDJS5f1LOHdPh83r7yMS7Z9I3jODirG3eT1Ecy34ElnFQEylrUfpxxJg28Ga+4fcz5xyAxlYUYPRIuMbIxdMDQVzLcrOYc/xorOT9iFp5VUzAlnRjDbfuW8yaNMO4NMIMVPvUwJWG0YnzSjzVXXc+vedto2OCDecc8Omq7jQkO8L6KMlUW/vdjUYe76hocMPrjGoa8wBUgMGepKcMqNq2vusOfX19BjUKYNtcMSyQ4ripcukIzJbcGzNyjD3wa4E7eKavAA8rS8foeJybEaenA7q7uKehXsJtLhQD+yeI0+vQNLYvlpx7tghF1eW0bP7wCxKi0gTlWjYXkKvrjJVVhxh0l8mJhTMhhBtsJo9xDMyykILGEVcq+JnuHjfcvqEfKo1KPQa0Hl331W+K5oaz+7OUL6yH0A/yT0uR+/xfkUrQwLB3DpqapH2dREc2xTNsYTES6tc0fOtVHw1HHwoi2Tf/NUGC2WGIGDtGD0z4QSALshYQjE7jf6Qm+5Euz7ejh+Dbqc6e4/RMi9a0wc4PccqV2krHLC89tLO4CUho2uion53WvFBNAlWhO0qvNI0085zJpBKtUTvt6uC5nJZ8mqg98bqxFVan0hzx5jsgCy5jcUfSmi0o5xiwyPAZ4NdI0xqCLT8jVMS/merm49cKJDtzwGGjI7B8TTNXSf6imM6gNgwdRqW8aaWTfnK2m1+70M4kYL6f3bUnjEwifsOu/X9o+TLvq3NLnF0GgAjA5aILVcJZ9Wjpc8U8nLX2sOjAAmms35+syp1R4P9cwZeuNPNiptqZg8v9wdOXMtDhVL/aNS9KS0gLVyMUjlVm5WIxGBL2gDvMJQOx6gKHWc2sC0ZEHVBq6AaKCKf4ibhMSQLrIaQITRD4FeYCD+SYCTmHwXYMukjsyFgfnrJbZh1hZ1ekn4qTEH+zo+LYXS1lefM/n7EKxMBnMhKE9z6eadfjXgBi05biYPofKYdkI3dr7EsDXZDcHeinSPkvcOxkZOrCTYgZNb4zgqItyTOK2oJHKEn3PzvdAv0FVB+74MXzRnYsPKu7+cJ0f2IlaS+/wg5ljUivqW9X2A5VkxwAQWVu7Dnz9lQfnk+P6PfHreVZSSJTBGe94BWFrdj0yWMUpc3OgX4eqIa3t6dF5tMlI+87i5sIUMVxyCJ6hRjzyvIM65xLE56uIz2jinWIJYMU5iFFKnH7+TU6EAtkgMmM/JcJ3sllWxS4bQDI+Xf40ieObVcxdXBuhFZ5W0Xve53Nccktk8AocKW9k/sjG8V40HHOjneMnQTt2Yz6OIcffWj2knWlBEcVJzdTnQveO8MYfb1jUukws2l7UsBBydCm/y3jYYLK2Ad+nRjT/X+3Y5Z9XqxeGDGtYXEURsbz1Wh5kMW4HScl+NIaL+xCQL8NIdJsoeDnQO0B5RKT7pbtFZy1O9CjtS3+XdO553shN0atcqYX4Q0RtdqccrKu9RBrCVgfVqj1s457nJYthhFwWh1uxEvnJPjc9MlkRPzU13pwmdQmaO0ITIoZwdZ/61PxO9EOqVygVyng3qrzAmJ9QXX5CeRl/FN+3PKaIRSTKcM2+2z2tu2qC1eyBXeyN/LVS606apSmT5DULS8NZKhX1k6GEmzTOPx8s4SR0huRbscVYv5ZNv14kJ6I/2OYtjRZlcabm2uSMc0JVtyrdT498dYqUYmVB6yWr68fwwGrqr2cRKJAh5sm/Gz7Jhfo4KQ+lyfYP0Ec0CBFFoe5lP0hR1kLKmyj6DuLgP0gBTymNG2yE474TSOE6WAs31QuC9sfYbw7j9WXuIoMkPTW3NZJxaFAk+0yg6cC5nHJJgOJvVZK9saDj06fERgPj0hZrtuPA/zxNMhr1XCBBSmNjtR7CZiheOe6ohTFRaTO3e2sgsYK+tZjsZe1fT9i0wyJc/+fZmlyNkevX9vbzuFed4PYsu19QpCX/KhYz42J0t7nK1Cv2lyBcmKorUGQU5X2HVLRaOMuyiwJ4EUmpnWeomQ8x0bPNiOCcXYMb3Tlm83m3UXs3JJGs+ZrYYeudn4dwnmPzSXFJ3j/tAZN4j52+zwO2N3GfegvYvdd5L6K03ubh+y8B3PRpHKE8AaOBNOI5RgwGNtBfLrNoldq/zVd31snWKMbdcrFhVC2RMtg6XXI4/UsmOhIB3ia0LaLTmrMdp4esrHWGVMfpFA5EFnw4Rv7j/hAh4JBEFgZ24xbrC3kD0fE+fNbac556T9Kk3Qa4/QE/NSFrj4vdXPSJkPQERw6IaIqOimDrb6+i/gjE8gBa1TLyTuGQhxDzaL1DBYG6c3lP4uJxXPQ+/TcOe9TOYxYLh/Gw4IzlmDmeyRx7qbFUnq1WedjQF3cTDPQAd80aFRdFucx5NjndINQ0WgXdcXl2TR6xxrISxpC452oXyUxwXiCmujRaUCjqA0fsnRo+cMyQJN/H5bnNvQT2M6YX4Isz3gpjR8e4incAm1Xe9tjTpr+XvcmgLgD+kFHnPZdxEWNb+r5j6Znu9VlT8ZdWqMSaHcE87zsX5gNaQz0SThDUbHZaUF/+OYpzCH1lqFu83sPZQZRp4d2j4wg+nZli4R9ye0rtaoAo1Jo/sfxSyiTlA26PvWE6IVUI/EEONxDYlDx0CEiLWMPptwCCzsq4oIz+cMBhTl5YaR3RFIIM3LPb68hvShEAKS8rKP7VDNQ6IIS0dk2gWQEJanKdGF+uAsyP470ifU4c1+3k+DacnMEjv9aDYYbITDF/QhvJKdSFQN5hC9CxXoAiuSH38Cdyx2Sq4ewqTjEjdYo1GIL08fM7esbPfTDTiENHwMtNdUMB0LgtC7EuFC0otoNTMK3uztE0dhaQeN2x7Lz/3suwqEiRzf+hHVjnPXu7HbKwxMxBXCtyBeMsE/xbws=
Variant 0
DifficultyLevel
562
Question
A trapezium is constructed on a grid of 10 rectangles.
Each rectangle measures 3 cm × 7 cm.
What is the area of the trapezium?
Worked Solution
Strategy 1
|
|
Area 1 rectangle |
= 3 × 7 |
|
= 21 cm2 |
|
|
∴ Total Area |
= (6 × 21) + 2 triangles |
|
= 126 + 2 × (21×3×14) |
|
= 126 + 42 |
|
= 168 cm2 |
Strategy 2 (advanced)
|
|
Area of trapezium |
= 21× height × (a + b) |
|
= 21×14×(9+15) |
|
= 7×24 |
|
= 168 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A trapezium is constructed on a grid of 10 rectangles.
Each rectangle measures 3 cm × 7 cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-CA08.svg 240 indent3 vpad
What is the area of the trapezium? |
workedSolution |
Strategy 1
|||
|-|-|
|Area 1 rectangle|= 3 × 7|
||= 21 cm$^2$|
|||
|-|-|
|$\therefore$ Total Area|= (6 × 21) + 2 triangles|
||= 126 + 2 × $\bigg( \dfrac{1}{2} \times 3 \times 14 \bigg)$|
||= 126 + 42|
||= {{{correctAnswer}}}|
Strategy 2 (advanced)
|||
|-|-|
|Area of trapezium|= $\dfrac{1}{2} \times$ height $\times\ (\large a$ + $\large b$)|
||= $\dfrac{1}{2} \times 14 \times (9+15)$|
||= $7 \times 24$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/uLvOmAlMLjtkSIlCsN/aauP5tNqKzlZJoczJ7U8HhEmh9Z2VvmPuM2sfXBK6qrgPoNN8lxjSFsjfskSaQ7RYaY+Dz5lvto17UWdD13p5k6W0bS7O2KeqocNe/HAEDpkOMFXt3dHUe7U42IuIjdfvON0EunWdGWKSX+QVVe8H44OGjyuLTPKzHEn2IlPsR8dYbkDCRVsKiNH7fTA4n6UmwhrVYVf4QT5u1vV/yQmcWCngh+BbzkaEoFRHGAWFf9lbTuawWgHWwZRFzghxhqDJ4kXGa9wInUrOGNHk3YHBRybxDqZ2vsYD5YoZ76jHSMaAnpZTvpeUM+ssTmna4KXH6XmsVxje5OnJUzuVzeA84exS3koJ+nej2gHBYjmluXJxDD+xf5IeutAT+VL9aq9+MIm6G51cVhUH5CNbGXLsyGWlfp2yVowGLsh/WomPBMVpNz8awqJ0EsgLNchoxuvAs4rQ/na1Hzj4En+ldLx6zY+omq5pWoj3uw9AgMDJ9YM3R1ntGSImexRit7nkJzCc9Gwddry8SfJfDE2c64wmNnq60wMi5CSC0jfFgPhy2wHgDaHhoNtvDQR1p8wOJ69ldP6UPRiIpxRP123P1OuP4jvqwKBCfIt6wMiMofCJrrYJEXDyhRHxTpPeDm+hTCWF+1UJDVii3KSNP05vTOdiVB8qZN8t2585qjSq0mj0JBUF7XJeiG33wr/58rWYsd/Qj3bOB5G0wiB6ophJbxR0HkJzqly/7Ak0AYS7ZUsgqeaE3ohJBpbKm9wmAKi7xT+Wdz6jWWz/wsE9sn7BeJ3btzZeTNnYzFxvn6hbf0GOTo5YEOi0pOQzH1k//817UEkCHRF/Deymt0bZjCpNuQ2jYxbvZEX61JJ1cnhJAg7YDGkSV9EG6PUE0qUwSTtoyF0eBnUGR6q5KZ7lsmFm2ba/ZaHhDunq7h37zamHAuIfnu3l2LucoGDlBnGtxjGniRVukNnDwg16ISTNOrwviZK5iFd4p4Ge5P9pNUrNje2cQaQjbjzo73Jin4MxfLLlx1hR0yudpwUWWuvD3LsqYnUtllDzSqp6bzX5Cmi6GEIysUcuZTqBqQ04os5Pi/ffKnFM3cIPkor5qpuiyFH6vUesVpGr+57NuCgHY6sL20YXPoTFTaVRiE5uc1gX6cJDZaNoUIsOPrZ2Z6VRlr+bu8/GZ0qoRITOrgUHToEFEaRGeB1n0J+nmI1tl/cgwgMLNJFWQX6t9VEfe0t5YkEC/MpMH3TGSpqR4r7t/gdFVGZaRwjNTZDlQgtkeXeJrX7VagReqJKFwhYpHI3xmuUHjP8vGtXGpA4DMH9G/l/6YujKvP9PjkF90fZwZ7WiTiOKSLJyo0X2xhIGuS87Bk2SsxTRhchE60D8CN8RVl3ogHMhz41Cz8lhQZA32fZ4Q5MV97OClCSTAzCr63FOEVtCyqbQOiOOOva7YVab4CXxhytOIbFIljGMgM3fSZXD3vxOc2sDz1mTW5bnZagwAt//6BQ9+UneGo7/Odf/WDArqAiSpmDUoZ7Ley6UYJJ89RsvI8BjYJe56j2kVwSvXZDquFm+GzLpcKxZc8xkS1FE+SEy5icaAspTrtG8Nprjzrn8BFLS7ovCA+OpH4w/8CJHNrvBET1n52ZSwQP6IjsqzG4LqHByFY3nCPKH143VMy+wwBnWjpEbN8rz1nhKKKa2f4kEHwNATo6lgqyocWKfq29gf+Ddv2tn/SeuKHcJ8pfQD1IZQaxw1eO6O5LjMrl+QvyUqWb2I68lmlXq887lbhx/F9yxcHaj4jz2fuElIuBqdvC038orqedp5W9GX0rrHDXoYF9DlhGVy6X5sTeZ5oCj6Ne4o6ED6zgVcwz8n9cqEPxBxIP1pgLL/vcqzIiDEAMMEMskLJrkaHix4v5PNVP7nRmmDxgTDac2bzCo/Xu3xHEDng8pLNfck4oEyixWWwsOv8C/z5lzOG2EBzV5sQXtwYM3bdHCIxZZj3nTAtKFkFPn/rMc8Fbmj57vBJ82NM+on//vmOSb9xj+N1f6nQUZwUu4BvdCkLNxlV6EeAvTjWoLjqMIGqapb50vJ5QKYDXoevDMcQDCRD+9VlVZ5kP2KaIMHznaB06O7nX1Y2wLC+pOLVv545pzBU+ABdISWCZ8I5adYrxoaho3YpHFV8ReyAY/HqeTZwA0j0MH1d1DemISCzrsuHPYogMMMRbIYqK4igHlQrAysPCVn6MtTnMhzimpdgsGIjCzNnOCRrUcr5lrJOZDPTSVhc3MmOirNqzUBbx5oEjd8Dsa1tBG/UOd0grvmEwqv687crmvXwo8klB3NoDCCjEapFE2BCTmskxjrl6NI6bcDrkkGjClAgraCLqILR8oLFQ0qytpYo5wfqFcDYJrzhnm971DtX/vtH1WlzKAYjrPCs/Fas+tYOYGGU/Vca3+aTwhb96CV406SN3YQuUuFpJOlxJf4LJw3YwbrHNhgAWofuGuZ3R/Kixy+AsAnAdAgiWheuLozjIWl5AuhVzU6F1nTVatAkC484nObjRrwRHWLgoSlfiIKo/Wb8fqd+w72WXE+8X9dW0Pn/mbqMItlkwuSpEzXJ/aZx9Nq69PwTAlE8Lk7BzKO24j6VPlC2zFzEa9Ha8Mun6QVu7AHYopFy9hSImXFJFiWPiT2vuzd1jrWrGmpdtssq4/qlpOQckXoMCuH0/5OxZtL0sm8mzrdN95Y/Zj+c47ccZMRG4+lXNKlgsrb0XeIxTua09VHiPikwcGQhYpL3ZHI2QRXFEjWSoayCza0MUtlOC50oFFu7AthYON5mbcbQN8gPxmyXtNmwz5z5tbS7pY6LvshMfZdtDC8jsbd8CPHwx3PVlDwvezLxl2C2a4JOhzCy1P2uoCSQVKdqLnRCA1wujW3VAYzMyqZslu3omKP9u9/m10GVIF6SPpapYZS4pjolxNUJUz12uYNRpCrSEoY0J1odL/xrozlShOvt7RAoSTRcbOJbgJocu6cFHkYj2iPZrH1kLvhPr/tLI/iLjZjs6pYCg8h2l3ZvBwUA3L/r74iMDSTYuy4/YGUdkLj1pBSiJ/anR4zIUCVqebcNlPhrbvKfzg6DkBMB39BA7vJz+nd2wztEg+Mdp4417vqzzr9X3F6aZeXkSNg5h6SBDFdoGoqS04/qar57aY3GN1uGABVBr83LGRNda9E9Y+4Mk49Tftewk+uFxVrkDmupAqOfgdZyGB4BrZe92l3XgedUG8VFBhQqvaC2TLlaYaUfAOUJ7PgJsHw9DBzSlNEusKMvi/Sy7FQNsR3aK0OdFEu21T5iQiTM2xrkarPoWB8nqXjUIw9wPam/jlQq84O2Lxj6HiohXDX6Dkx/nj1abQEUZhNB8OEx/1TF6muDUMT54c3mvMKO0jNotSgJFnImVK1DTNBxmYvMpa1JeXbktjBwpKHwGGFrZEyylCL91sb8VhWwliJPF9rCkqhByj17SWCt7dwJZ5UWAI08yaTQaXFPTejLbVNVG20FpAsQ2MsLnrSEQeXIDdzMtg6WZo+uUroibqUOR4mc1DgXfI3ybdvNCkzK/o4gv3SlFWUs5qyasRuBnPjpwP4XO2F5vZG1rxzLQS9Dou6wPBDAEsRYuRkPstVNndVFYMDLFLF2T5oXvbncZCiNqwYKAhewxl99VujiLRsiNEtzhuXL5/Q9aypVqve7sl5VKe4bXRcMHD9FkblIg2FwQvO6+WXvDzN3wTWPox7i2pKlbXZZ2qTW2uiwRHt/3en3EhNQFR4BtTegNB+otyUz1Odfm73wx+UUQJ5POiXHBtSaHXRpd9zcponv/by8pRGyphtAj2QDjBq/WE9GGrKbMGnvgNJnI3W4J1nxY8NGDFizneka1pIYLTUq98fwH+invHwTDP3hod13gwVhdGHMTHSXaXFttKgx3W6wKk7Sw0nCVo48Gl/DgFrecR7LAnjYtWt6XkjzmYx1kWyIsCcdXexx7J/0JpntesrnvG5HsoPRjrpyemk85nvUHjWejva3iVPx3cDIc6wBT5e2umCfHWYqQBceXbC5z1At5Q4qgiBPTYZncAtmIc/rA7OXEV/XEDg9vr15I4DHIr9vRf6YSc/CJZc6A10dbRPPvMfYY8yKULWI9D4jAcFv4abSnbHKpEGRtNn/LwQSkhLtUOvJpr2WJGsqxECg+gNtCNPtPb4a2LKBWTBiS7P8+RD8MpYHHPayiG9sMF1vcHdCUOlDn/g+jxX1dd1pNbn4r7/Q79Mmw+PAGVOtOaRwDpaGxtiYZVI1/U55jfAhXNgCFmEuq+s93/pcWho4pTsEntN05iCfAqWM7fdmwqd4j+IW3EEAtbK++VUBf8lw8GfwH/SqaYgqElpeQwG/rdDldqabS5A7C+puTRZy0d8/EkRgyUO++Aa4Qi/GAkSTSmLjTfnDB2CBbTt72qcw9vAh52SYagEVWD68+OM0P1bTig3DoxxeH2jplHtbyT0Q8pv3SfRDVjhmBa/qroX7m423QxpMKe7F36b0y+GEuO1r/ACdiKbX55evmiB5l/PHFlGZ5TXrpBxW1omzd+25EE9xrv2vu8js8QqWDgS1zpgPo6jssPwnbw8ltZm/GASR3FCB/bcSSsAPaWJ7dFuoVSL7jdNudw/fuso8TK+HXjx/9wxVgE1XjG2v+zUL0qqNkKrM0AxVSVndzUk2IAhjjtOVJU5H8GvmDLac+2cs+MxrDXB/dsJYBwkWEq+Ow01D1uf9BNnqytfuWaViMAFvlKz9QpwlEemeyH9jif0f/TYQ5HG8iZedieWSWzZd1LR7EAfwlfMVVCY8B1c66yV3LMeq2+AJPUfA8L599dBlCKWfHAmWZ5GVcm0WpwXCeERVTxqp1d59JuaWM5YQ+UAzhHyUdthIAobJVFeRIkQyOB2GUpit2Ux/F+nXHTHGQZ9B0AL4Q+m9J3SeGmPgTAan7Y3pIt+oqn/PdEBTzRPBZJemRo3IOWVvUjlg/89Q+jewF0kFEXGtTYQmvmRJUibS0IO6Skd6vcb2yyGZ5S8dcUqlTGa+wnw/zUm+7Pz94JPLU2tOe3SyTZ1n8BWvqcIQSf66jiap4BapBJhCgcVk0A+HQdYWZdCX4SqDNxfNdUeSWkJPsPovIKENu7roeOkBoMdYEMyVwgaz1onY+sSThjX7wuCB1qPyVFNXLBFrdP1848tqdtVXL2RrNzgTpb6nHvDOr8r6ncZRjCF2N9bqGZXunDkn/31iPyPVTJFDoNNGr8HKLbiiTCJJwBauedFH8OE6TZr3KiczPJ16ZNMwntsZFBrnJTcOsqff4vjZMNNOAHYGCqNUT3vA7kIq+ObnFmsFoffFW5ZhZDoKdpDHOUVKl0WM6mQCCxldfBZfX+JK44hsFeF7DneG9FDVAWiDRYgCfNAldoaZqvobe9/T+WtqMWqJCM2RvIEeQyoBLTozpC3A+pi1xj8i9Frug+EWydkpp0EfoZhg5I9Y67OOZu2evLjqR4HDso20V6C0NXFuGB+ypnBBiU1eXbNOUKffP8eMIyg6qpFUWv12kOrWicZmflzlAUOQAdPrYNZesswqYAHOQglBVGBmdpXRffrNrY9w1iBnUDogNl6s8BPl4pZb8qIqtZFVyBhq2XG5XCDDTP7yBrql4iccodYTIcbFjwYcDsCSE0tmxY3jqj9B196SbnTwAViLHuE1zfdqIlVdYC4jaW6noDsRBZ+oBxojb8wW/GXOKRr6BB85bb5ZCdfSJY+u0UCdA7oxBQ/nEoCM9OdUfBcyAb6JFAMG/ZNpPvS2CMHAX4TChlxXogCpKb5KqFxohec3lm/QVYlqtzQFUpqSuV2rZuL03CGIeHD2pRWH+J2RcgC2CBmcgUUpAQ7PzIF9gXzyLtuXDflQt8AK24WGq9P6w41rbcJ3y/xYTStVlFEar/vikmFvAvs4bMzHSVj41s2rpq3MQ78SOkemJPZ7OayCtv3U5lOiODAM/2RAzgJ5SKOAGTOm5RbxvPFjXxuO92Z3cxPVn116VYmbtBszZSk5Fy1Y78SVfJoPyHkj/MB/Q/7V5nis4czvEtOm1Az7B9QXlzCD9AgVW1LMBYS4EglGm/CZ1fvT+Z4cfy9FQ/ghi7dfAbzXVZSWI8jHnyv+snlcFzvzkTrt3KFqHLWK5OtDvNxFv7oYqy28NG4IjqDwhNp3/w1/7sG0brdbql8Sne8w/eEmr3uswIYvWUZxE/QgJB72XYNZWeGV24xZMOViNRBOwKytQZn2XLUmKnHGSz3F1NNRR7vbg1lkEscTq5KDHM70VNLTZ9qYLlQmvky3s0brRq/I8EC4pY9VKQLjpvaaImCocWumZ9yjc2QdgbZFJaBjNuXyzt0U2s0bMSyDWympsUUJ/TI0PnXMiJo2zJ1hJhubLSfvp1HW9Q76qxdcSaUrQ0lhyI5RhLxTh9IVlyQh7rR8ZGTV1Kn3cJ3wVQE4zfMf6gJWJaErEvzSpn07MA5ViU4/uoL4NLiOdAbYAsYJTdUDc2Bag+TEncKFv/oaXDizSloTFdLMHSXKNK8SKHpo+62E4vJ843wOPRr8NablE4m8MvR67GvJMzlBkLjXRZJPBfw2RUKjrSXOm7QNNgQLF/tUCtUX+/VjSJ01J9XrFvwWcMIqGjMJ7GQO90L2gFzIQ4a5dJ+PkuzmLmBbO1hhTLA8bpSrd448ovwtFZc6N95Ny3mHtdXgNrTsBptg+6PWzsld9+txsl30DvGv2aHbjOyw+GgzEw2ZSUXul0U9GOn4bxRM7X1uFi73kh9YHXWYDkXxlewYZfNU4CzH5SUK+XjFIUi8J3+SmpwEj0wlqMDaZJBbd9hWOqgyu5aH7lxZbK/IHdAD3ybs3j+WdWFmfB2xgum589NO3hHfYtogOPMJQRSmfBgXW6y3R+DZ9CMgY6XLTOjOKMH2GQrSCqaXs3GOvIcJjp53kqZvTjjfXRymYNPSmEsieSs/11D9JdIyWHP5I8vMgCihm9bAQ55iyRDlcRk4vRijJ4axU3jzMHGtjXz6wzqZK9jeoF8aH6PFRt8YaJE42z+h2yroKKp6bbzdsJMbH/le3uGUgTVSNG85HcoaX34Tm2yOmuaDzwYI1/1HTSYqHH3G2eqBGp9yLTm9LzHmv/CyLXyu6HtI9YQaqL0zgXCvbWlX5/x0uvnlTOAvVAc76g8vyycLjtRVt/MV7Q5gjPcNk4ezw52MSfTpaaSDT0nm5wg2rSgd0Lrk1OLd/mzSDqO/1FS8VCttO2lY3L+immCl8h5qSDOy5GfPPZ31sKZUU6K7EFLWpmIRRTJd0M9q0tKznGpYzQYWVeDpLsAfuN2t1m+2W/F8nSyJyHUBM8W0zVvNAgCF1yw8gyys2CFodDbE/h2PXkVTPmL/0aP4frGTiGFJNX8qTpBLj+qjwEvY0kZ7zYMb7uZalL/k4yMhTUggTugJlRQd3f4LwNLmZ0349S6DYQBE9dedn3TJkNQsk4X5pOlSg1kzR4PP6/UR7S7iAyx0o2ZbL5zPImNNwXvu8eBn7yAssa2VSYbPo1x7XNMq4KgWvf3v7mnUMuq1poXDfcSAYxzWKMCbr2g+C7mkQzQlFfSsIOLTVJqpyKCtfWqZWOaqmhkdz/TeXaitVmIvKbIkQIlJmwxRsbGcl7gNVWXsWCRhlApzdM623g3N8gRWDmzNdObS6+muoSagTwAhAlDSoz1xOWUb+OblacE+5pyqT/k/5EVdyM/H0TBl3ipdvMQokutakthFoq01wW9chJgWM/xMuL5N+/YahQckbwadx0h7YStRJvK8WlGi7MGz16fGm7vF5Jc+uZe4HIbeScra91Ja53ifdcXZNqekbH2CNSiEnEdwWuxhrGtFeM9lXKhnc71fNVywvvIDIcAcuOZFa877OMNqI3GEYEZsR8qNceJCemWpEYIKm+XstJkT/NFGYkDrdFWrr3541SApZD70eH3t0pN2kvR8+Z8teD9a1sAMLbbBuJSTmCiW4mMFY5IHzoqL/0iDfrvwdiN9o5CtgE6MQ/lZBHFj/XuZe+MJx1JrO8nHQEXNgp4Eg4zr71g58sDKzA0srjDw6ow4s+NTezNRJ8s+HVau5cJeas+EVxiqBNEEPUdWQuK4isjyDoZsqdJLttjnlAVLGeaXPwNQabfZPrXZpRfIRyuRErd9A2ILI71dmcUJLWy7u/ojcAjb2jF5JVsIltUmShunGauyuJsDLhrlsnePrxyBlqlcaPaIiSqNjtVTauVwpW8wTHzsSLabpyLRWsZZXimt+/e1/paUIMT+ylCZWMzetOZQrGvLCRDdBBbnzPKwide7Pi9A6rnvBUE1kF8ny38gi2MCYLo/MCCM0g57DdyrYyhAd2hhqjd5+S/clpxRyQdADTqjqsBk+Z44ODXBMn5U7o4rxRlekAVz93iUAr5x9Hw2I2fKY8tG4kajfK+SoPZLmnfrOoDFxpNyiTMr2zITKSxx1TJPpFe9r+jX90P5DokPpjDJeYbxohyuiEpBMrCYy1WFA/zGb2gaB/+R5ThI/5qzhHO2nrLwW0xsTW2x/ip76bMDIQRQlezfx7gWivH4wUruHBxchMzYKByko/aA5DP4wQek8CNxYb9Wp+5WhxwnVszt4JK9xTDaF4XK6E8yCpWvq4R4UZMLS6D8MfZw7SZYnudXGESmczB5tMhLqh+2K9uqI+cExQmC605ig/nkoIpwQAyxsJx3C1Gems9f4PsJbenUEgqHVn8Wa3NbWoj6J6Gj94zfv8OnvhBvm+FUWtm4lXAVXmCzURKwd6Pr8F6y7JqvBYPjy7isHJVM07gHu7ez72flrzkR7F0kVggEZkpJvAYXviB9XNeWAC9gmEOt6XxwqxPQLmWRRfb19o17GWv4YJEad7x02Q4TOnWTtQxiPhKixuxqDT0uNIj491Vn+ajgNJtIiY9alvs45Y5SBkiU3yyyzwbw3xff/p2bhjM8UHnC7m2g9d5eBI46b5yNKSZ3x56i7f3wgvwjwTSNe5eo8jywqDtNW9AsrSOpwAcDD++JDYlIX7VdGcysqHubsasmNkmOw9Rd66Us3KbVQsrnzNHl7FV948f8E0AuM1ghzXCSINonhxvYmCajGXw3eLWVqYHc6431Wh872cm8GHFlYpKgNOrtQnWTg8f3hL8uv6CexBe9nUQ8cgXVgmLSaXpUfBryHo9VA1R1kDR00rlQ5HZ6IfRqQWlDazoyZHH6mASYaCM92PzhXBOwEzmG+wHIR8KjlsvvQxsHzPQrSNX/unBty8M/1FbtmtyJH+9yh+CxXgmzc/qgEvUtUIcUNADNJYar8HlTeLfs0Gzhpgjky5AADuj59bqDg19QCsnYwAGQsj1t6lE6oiqArw7x6oLNwn40grvmtNW3HlFX8xB/J2VBssFNXxIWQvbhOJkl9nBYNr6iiNz7fvm95gsJ+b5/Ai7Nc2CRIBImd5exGJt4EXDem9kPy3+eGLxugeKfc7SLx+QToKWOfF0pJHqIIUXUhUZ2vxNLPQ9LIBiqnehF+syplMRme5My0pvgyWgXYf45K7XL8rPZVyWy2i1Qmo1nSP3ldAZYTR9Av5UcWri2H04WqgBuLn8hQ1Yp6DxHNfVPBDMSly49QSqwvYrRHDg4vAYQ/03Wl7e9PDa+X5jRWbJ5qyJy4VfFBKsmHqjXnHG8oSQYdLh5UdN2jMqVP7Y8XKEb2YbINPSFg69Y/FhPRSwO70KgZ10Dt1iZ6LzdgRaoqSsVppNIGKnDpD0aO9jMQdGghtb9vyKWMqgNTbYxnljgkjr9A6fv5USTA9YKDB+ZXR1iAJjXXzrANkgJDlxVsfqzlhUH6MaXoDq5ri79FDuh9Vyc3hh6CRAelX0wtFOSr3qw0qKbrpB/HISprB5QLiLfZCZ5+v3saLB6keHYopMrqf9Xqj8owWmx6ZdCQ8jxtMhpihaukddTSqgxe78BjzXN5rsbETX1Sp7QK6cnbPddV+zoeZDyz3XpCUeO7899PJwrevyfUHM49iBfW0kefnC4VrFoHBMlAMHRdrxqPmzjiYRJOcO4U4iZ4UrWeTHiZZMivRENWuHfTW+LEgjlPRGAG2RD5Daj0VxJZQ4Y6sywl80kZaCGV6MJd+YVKZi0jSSquFoNeqReUyelixNEqud2+5i+ElPhVf3WcFufXjaiwcbJR4l4np99iWHzFr23bWz2vzJhRa1K0IF/oIeHjUVSnVHioQbmp0Y9Oy23mOxzr5klii/vEwW19hIv0tHUCMcnuYznQdQAlulBJuwInLVaufSAERVWqt+g4R3S0ftcey8mCLANSJgwLMQ1FIV2kWvlKuQbSD/uA8PEmhlAHWxUaeDvWgBoMrPWMlKnDMnDUbEeGw6NGkR/ycN0Oa4Pq62mtXPJiMSwr/JxTPzBaSu23v4bOLWOVQbYv9ZaVDmhHT9XkJloN3o1W/MxK+0QmrrfFvxPVUIrL5cuA8uxVG0DRSkzig+6BOKXXTuOXcxDh7i48LcntTtIN9m3UEY3QX+LZrstIn7ovjbf1VWSSVZB4jtsBOgMNOHoKMfa9TS25abxVsGNmysqIHpLOmr3Evq0fO4jHJ8ZrUyQdTxyY073ECvanoDVnLHdzVyxqPuETlb+INnRaA1XeArrPNIdQDX5NQaxU1zP7W8cx6+uDFPrJxnXGYCDYfRFmieHZxbrd4KG7yNph1w2ni9Q7BLRBPDgcrWF+e2mRITl1E4zPKEP9QghP1+PnXh1bt1584F54VVByCn5nWJ0aj5JlIMw44QGVauq8SL5oqW4wfKxp0ZPCrvvbrZaBV7uadRoEwfgc6BlEu8C2OPPHX6aJ6hPAV8WKY4aKVdjg9OyFfp2qjX50GPSjl5W9rFd8UjwlDA4qFhUKXR03oXKA35MOr6P+8gTAdpWnWs3/ZbKgiy8rKIYRD8J5bfT3Tod9eMB62QtTCSdh+iGvR3YzyIX45PPMSDSnm5PorB0kec+tRDIc41c6JaupbMfT2aJLgfctfnfDxp75hdNK0mrr5fpeAp9lRUOB4/l0/LLetsjWXfiDOH6Z8zANK7Q1P0/WDfhmhNe6X+eBG9JH7+L1DgaA4b8J5oCuU5vGdbxECikKXCiA+dQAfwupLGTWH2IkfgvViBEQBjHk1ypbGZhJGMpWrSi24nYbLDBuokBeEQ6SWmg7M9nsRdqq1+gLpW1QqrJckWJgvMz7Ylab/P0lAXzXjnXk3LwNAohluQNBjOK0V7mu37V2NcUx9NJFyQpXwXjCRh5HZGKUcnhRVzwY4kIp429PKcInET3GyqEDTlQmAdGu7CkTIhAiGhWPpN0t+kyDqRuZrFxaGnq9yPdwqVwCw1qVcYAdgQx6D+zmfguHu3bDHJlCg7wlblr1lKm6b2RcQrYW8PvfIiQ+kebiTzK/UcYgvys4+EJMffv0q/iuTd30qJ5lrElWmnjgXQbX+LAdeHReK+pmBMiqHzYLEPphZ6xK0+S32XQCQk+xIWQGrJ/tFS/2NOX0S0ijXMDavPbLuePFpAkrWx5onO5VIjoV/t9mrXyqSRO+PKdVaMxKD+I1tUKcUHejgtKrQBkVWWYEh1PbOX3IILuDqKSAFOkpF7mtx0Pscc01txLOL80pqX6MN9tfb7yTT3GuxbazRH2wQYOFNblmIQ22CrCz01zfC/sDBbBBjk+mkyxyjg4LjgnidrGHFCpwMwAAOBnCB5IjjOIv0RQi8z5TuC0KdhDL4F/QJqiQntBiGDPKoVIra4EPoL5iz6c2K5fkyBt5PTSIbFPTCAKsyceBD+gL3p8Ao+6LFz4YVWx2GHEFrJ1GR6kyM8JPrtI2yy8AVakohA/mhBPz5k3fESmTzJSfiX/D/sDvyWs8S7M4E+NdJszND+k//gxN7RJLLTOmQmXJBSIJ1l5NmFEODQpTyoiXS6oU1t8ih7fEGYt3khHQp7EZaYBLX0PfqNN016Q8gv44TygIYBJX7s8GQMpkorL0+zbXwVEUd4UG0i339kP52nDEB7tMkSyK/w6nlzFSQih/+bi8rI9AYs4YPnQeML9mNtDy2GFw2UfTtQMO2gi/aTP9QQRYxdFTZ32zW08mWGpnQNPKP/H80K/eBxWC+hg52nqp/buyZN9PlNS8PbTVqKXYpuwgpiCnAFdVxTXAmjPfu0UuPum/F2FDbxR2+JM3/ViwP+w5FVD9w2nXo7HxVCUzyrDXXaBEKOxSD839EBAIA1lbQRbQ49rxBAqkwPhCVGvnNdqMjVfosRx6RFfr6btWJ2FKazrvoO3Mrlp2gXaXn6w9RTzIfc629cChSuJBu7nz42VILYt0dYt339tcJMjW2DrTi/g+KXTc5AM7uoKvdyhj1L8LjjXrP6YKrUHD4UJZyTPV/UvTdvNtrKO5e11xBvDCkSq4NIfQ1X0z3/O+lVC2110kjGHGHs0oMZ5JS2uM48/za5gZT2tv/+Xo9CqCFHq0Enu1N1Z6nki9tDatMpym6uJbS4VlhX87woou0ycxBnVBZMCz20hSdU9J7wLWOn2d5EupUrhHKKHVAVUN/ir2+Qc7lQAul4RMJsRCtd6evc8pbnLKMbBhMNaQTE1jueYoh6RE67TTVj8fugtA+1Ur5KIAAvjSzNZ3gleMRt80tf5sqaAHaYjr/sLBPFST3Cs42tJc8plbYDBZZayg5j/TVWAGMnolHerClD12JQrlFrromi0KTslPJmqzmCFSVYH6KG/f2YWiHF7Xjc2oSuxlC8TSrQ8HTINL6KMjB6sgCnngpd4l2e7gIkDKNJT4dHWbzaJdxdYDZDrXc9G9elvCtF5wyxY0uV6c/3/jugM8dcLQwqij17GCTBOOOHzmM2LVt7WApsoCk69GHgsNWgUj9X2eeNwtSopdl7PXugmYL+p4KCmLuwShZJC+EMLmH6949Lvx/ZYZm+HIBr8CPAo+GOj+/UB0WfkChG0riAzCjfnbhHzibL57ZwMJ/sT1ZkQQAx9wJVaDChmhiEAaH6f5nK0rdcO/ytpBqKKBoXn8sJmWwEbB4o9/ro9KA3AaZ3+tmDedjGDl8HGmpWF92y4pkPl/aySmJHgNGWZTUTWyOWavhfc4eV9+z8S1kg20FsTTOqfm5IBOMUIPws6/beJqbDWc091uTSsNChWFO+oN7Z5K9gOOZJth136qT87QVWbMkCnFUGOAaoyctvpqrQbbxJMhwI3/4oEdp9zmqqw5NQZmZ30wsqMsjvx9bC8TBYSY6yPaBA6OG+VgMLFfXoCLrBvnVWlaSEEbbH0OjxwYyHvKjbCBKdYHcl9yw449QAGjruSvePzEHbw3jQtMA8vshbwFQ376u1lRSe0DNDnS4jZEB3Pt0peMR+QduLk6A8rSq+KwlW3edSsWwYIMPg/c4LnvZY1Fxa1POdqoXYXnRnMpi7ofKTxghaeDB0MLmsace924LWos4ixXhz1l7CQQ5R5xb7+/J+PGzlAzuckiXDr8JSAqsKIc0P6oHZWyxo3zRXC4VbG7RCtynoJ1rPWSCr6PMGTMqoERYO0ls0woL582Gt0pbsY/pmx4+dxe4R9Vc1rY5uD0e1Ba0L3o7nEFZpEPTsBqz7XX/yGQpVdn1tGxHSgkhJ+r0eNE8A/v2Otch7XgQmFqIGJQywctU0UH1SqF0UronwxE7ZuPUsGvDqLcIKUXNv5/Ep+YtjNfXBJnUSQsB97UZpCEn3aA+AJayPKaPDnTW+IcO8T8rdkBslLPH8EuRwAtmL8xXFcPdDEU6sPeFjHkFZ+ryNtwO+4RoNtWHWPpXg49J3xKnH8Lp7InDIQyfg7pcGcJK6Kk4HXICy9Eyw6phnwL4D1dEoRcsvyvTU4J4gt7t3CeTlvuynpUReyrliCTmJL3hcH2wDf+meH8OYftGpDqIBkcxB2yB8m3+Y+SWR33YPe3UH2d24nX6xkwTksaP2x0GreFKhPgGJHlgR1whC/cG1s8sdTV6FC1z1HObHjercPm5TmZEDgSZHNdkIvFtfvQzpzRUXFL6oX7frNeWRHIHPlAKnYkZnthUBxHQRY7Uox3Pf6pB/o/6L6XMyMzaxCbWbeldLCSHDJT+nPcCF/CgWZ615UTnx0HeV2zerxfZBsUYvlJ87qQQEKd2Tu72zSugeQRf1X4aTRCAlwj+bX+LDBidvqOhUqQOGwi+S+3TNewib537MDLZQn3kGQChwlKk1IwZtjK3x+XtlOJNQmv4RXHv2Wv8VqPtAT9CRivx83yoYyEDF9NYZ8FBqu4Wy2z2d24ZZawOlchJ4RrXhMujCDT42R0GI1xKH4AyR5Zf1APrvEtDs0jpNKtFtBRcLOm9mNJNqpuFhZdMyWusHN13e6OYEB2utY8TE4IbkoqUF/0XzZlEHe0kvKSXaBMhQhWRobML5WnCEfebHvZ8HNLSZEN9K47I7NIeB/axIdglIMc+SDWT0GGh1r2UHP2NCKX0+Pf20tXRB8JYlRwjBtBlRZyuPNzAUqEXzIo3tpsZ/lLtQLkf/VsalDchrUmHtO+c5gvDzvmSp7EN6ygpjWeIybJQaeTH+jEKI+OBAp9ca3p67aaXZL7dRdbEZvI2MR/20N65Mscd9k3ibEdIcYZ75QK71lBtv608sqF1MLb/eyjU/XCceVObOxrb+axUNlX3swMVsSWW3qw8HzPA/mSns1q/EcvbVj3bwizyRnlSOaFFCuoj6PFIlMfE5Cz85GENViO5BEw+8e8UVHMEbzsvdKSYaQI3x+J/16OUHPOKkJMwhwHLeBMvH2BYyGfxfxM0VNHU1icL6dHjV9iiBXKYGU824SUdLSx4Y4nkudCvBgocE4DeWTdZjoMnCbz5KZbkybiT8J0oQpt4uf0bjPFfa/5r6hTZVe6Eawu1Sng+TAWu7BTn364jC0o+hfm22I5UIE29HKH5tTtjgMfYTV0ikev70d/KDl2hk156bNXuai0gx6wMWdCIb0jrNrkYSHplXN2iPzhaIsgQnxaFMyAaR7JMhW4xLUDcE1CtVTsMZPCsLis4PahBV0oiFPAlX6TzEJr+I8CJx5vw/LEVw0YJZzeRkuMDtEoBJyX+0TnX5Pbr4Fky6tZOVQuXrsZuySIHEBVl7ZtFhMVHounmYms4NbBUGRqWGYfii8iKqRWZOTTAhCLP8UwtUXtkCcRmSMZCD0OXeVIEH0uMkTGslKP1M6rG70KyptcJTpDli868yFnK5GhgK1UqV2/iHWSsHUATwF7ZzwLgWgn45fUTRjJHrF5JkXDOTF0g3g8uRQ32ZZ0zXpbt6c4Cb4ljbrOWX8w+8u//+vkrX3o9WByMNp5yyQzKM2122N6W3Fsz1RfkvavVA64tKqkU1xmWnxCmIRoiQe96mfKbPtEslsBjqcO84Q45R4hldf7edp8NsSl0s3OHIawKwT1d2aCbqEP2RdZVN5Wjd0lzjDslQ/VmOz30InaMgouN5fs+MoYBvuVZYpRRAE5zknZDpcBTdpbDuQ+vnYxRTWK6clpeqWUzxW7e+CoaBlVbmk2BFHF1RDfTqvKKQFmw+Ntebsmgv+PtTnZDgeKXw5iJ0c75i3P2owCSURGuYbGcbsqmvRiQaL6NCb5Y+C/MJKmb48Q1HKUBEueNgM2Kr6meKdsZ7i1bdw9tnL6D9I1r8pRG++N2aBzPU1TgPXxz9/o9LGx3x/dSbj2qp1modHesvF5o5tDgqOKvAUkJizJzfii0/OLIinnFGdn1rp6sITR0D81w3K5zIJHnwpomjuZwje0JVylwbwtLF7S+YZyEWVguWsYs6xVqtiVCvhjp0fb6ph8rKcO3wmXT4zAhvTOFs6MiHURsyMe7DTeha4HGQQNUpmvJ9dwwfK3b+cfRrQTkVPHJkTGfTtcG3C7loNfAxXjbLVxIv6Aa9LWgAq7UurC+h0KNQ996aRUnX7LS5OnbpulMcBV/gDzKljy1nSNbC/Tqwn23JeNHRr59I4uTXbfNE3GteyFpCMMoRSeLd25+4GGClF7Q4bF13QUyqH/UnRPh3DfPaJiGjnyoMgG+YPplnamYI+ZVZudGRGIseRpDvueRp1rNZmPbPTmxJDZRo0ZfVqQETuoSZozQIEpfwL3g4qa4mE3pXI8ky0Xumqa48PkJedhZVLuENlGzO4HP4p/0ZskNvAlRLk134JquVnRhiFd6acADo1jNqtXbSqhRsg2guEBdq6pIdf+rx4SL6y0HcaF88aicARwd3ZPmhctpt8By1MtNPMPuM1YopwCzmYZq9nHsZZd1wGtD04IAb/X8ePDfONpS56WS6Y8/FjHoO81qiaYaZjIW1kd/vMiLeLEeacobuKI5tfvUhB5hCl8miZu41eEgPIPVyfGsxhco51ZVS5z7bdXA97lRrKec1E+pRmy0rLu/obY5TzSuc4O9Vkqj9chU2IBZjv7QMFKjNr5+v8Nwv2e2UyzYLTtvNbmaQBzZRzeVWg84WVAJz6vnDWOr+W55XlMMeezP/QkXA0Tk8pfsTSy3MuFb6uCiiCdEGXE7ApkXnZjC7Upth24kzp6IWHMJL4pz4HptU+LGk+4c4sCaMGwpxx2XJaTzr1nzxSaxi8VNYFNBOjp29sIcZHx/WiQ07CTd2/d9KJ/RjVSn3SfwpCp0Zxl43DUsIBZY61EBi1jNUvUvnxtZ0gVhkOgPyuRHS/LU4liskqvErwed/oQn+japnArLZvoKX0CqBO+xmVfnEftl8F/jTYMx/8NIsVwAV7VXDotIcwkuUVtq5lTTTD4S7NR9EKybE+MtvMJQrvmq2e/yqrqFFlJrL1dpSqPwKK9+LC5SAFNCjQO4OD8qPDJgT4wyk65jUi/aqjISh8nIjAwOpVIYSt9WY+OPhwRBvek5Lk5vpjBSSwB01PxZHCmxGpxBMRy2ZFZ4BJYAJRSePsbaTz0rkIOSDTEznjeG65QO66EBskV2RUDudmaKtSIXIGKJ8M4tLtF+RE87kKXg+456i1SCTY19kgBA1I/JxDmJNnB/Y7gIShNn+aE8QDCCcZQTqcHZ1fzLrUf1Z6gSvodiJQKOuZgKK85R+tTjUGkVRkYI55ipJ+VcaIdZpurNSE9FICzesmrATKbwVabWBeiguRcbYvDNk5aSbrGUBHr4CLgNSoPTZioDcqdrSb927SURBJuKtejnnqR+JhE55lwoS8pvstkcs9R57V3T1OUyGaIXzBoFVrIHzjcbQvxkVmkypIHZWFpd0fU5uQ6QOBLOFcZ/QGzWxACuturNZs8rUEEnskf44jXJIDXePZ6j8JfnN5q6n+RVhtTq1+BWk/RJsi3NyCFDaWcoTCn+E/dVtfgxaCWwimaRo3h5C7pa003Ob4jNMdfEd5Prp/4Z3E78rTfbJSn/3WDU9mokMsz2aj42pbYaXBDlyQoXf42bXkya62flQPSQGMdeF4KzqEthmLksP7VZjMf2rGXK4giXpRPnLM/yjGRD8g7lWqfAWC3rEprBry6yc5MbMpzlsXNHFy4ZtKh1O1GHsma/+McWCJrIpAOGaYvUgmq6G5fb795w83wJ4D4ZYIKWSv+1XEVT7ROsZxUy7knltBGgcECaKfRdWxgf+ao2ElhAYPVpkPl1/56jgQJxWmTMAKflvNcs/WPdXYqsCi9zAJ8/MzYDYlgvcB/f7JZ+XKipTE8P7PzFmNhfVijWv6magFkVDLaY+UgKw95rVB/m7hAnohScW1K2MGLHBfhc4iSjwIdydl+1AnilUPnJ8ATiQBe4VBwZP47pT0+f6zulCCJhpQzgzrWxROqL+WSnqcwlAqxnC8MoxTRhpKuNcRbnJmah00AYutw3Kh7UAhaOjMMDDfoaxSQss6pTWpa2JcZVZL0RDuy2mmErZY1qvhuOsrSH2CWwEkiMJ5zArgL6l7h8qrSo1tRXzFgrjezFi+M3/cCxgBKV833lThaEWpaN6i/OpiEo9ZgBF0O34345bYaRXmf3Gz0yRCQyl8Y4Ki/C+iziuF1CrcuSQzeYBzunq/UwSgcf9SAQdN5ubLwoKkb7Tm8sDh1YD6hRe8hhIOBWqZtKbhsZGc7gUmSFgla00rWWKr/Ym5KX0YwPGiJx8kPEn2fTeWfkU8o43Qv9eLu2jlGdAERc3oEe/w/PVIl0GzqnK059c7bosSClP5pmE3QspvV2W1xp8zmX0BlIQHdVBuTrBcMAG/bzs24RNKM17F5C/Pur3NhMnaF2oFNek3qgS/C4PyZE1vXMuWiTKmP7gSUjhwnhjvhEsttzKrQlC7IHzdXV+h3dUVd7q7QdFVtIEPDBXlsetVvDZcb3SLl7OZsHaCtIGRRGr9flUJ2XvPRyjTvYGTAfKy7c+d0DR/6IJ3DFM5Jqj3ym4PkPbsmvlYWNkFBKJi/TNwWdbqk9DFRLJRGlLCP2eyMhMw74RXYB9lt6d/e4YPyVozzc9G6YX8YZ6F+QcwEn9mvcSBf/YXVJKDgbUTkARB8b/SVWNn8zFl3gCXtecHIXfTm4mWUqnfomCRUYgDY9GjwhidpD/ki3qwTbSuopH264PpLqvYMFhjfFbOn2HM3kcwwnE0ESNc+VgzOqKWJAf6Pb9k5bU2BhFXkdsBCvOOWFMds++O4O1Cz1/jv8EYpcnNp+U8Wk+f0NwLoSCp9K951AEO01AV6R3dMoI9YlNfPUePoDBRgz0PrXzVhHYptCI954olmZRmWoPMZYd5iGdSp8xmhnxQQbd7JuVmzjFIRu1fG2O4ydzYc7Lpyx3Qi9bV0+MBQMHqhmQhwf3dMu5qzUqjMhEBqWJ7nLO92PngRGgWQsaFhUPFtGnuwKOgO6vDyyc3+lQgX7vedlCCP15mmjFeIske8ZbtQ0s5hk1W/bIscYdqw6Fgld/2bBNUF3Y45r+ej8yTxrNZWyoXFtT9NFddIJ3M+l+Pp5pI7l9BR7jnM6rh9y01NnJYXgtxK7VXD4dzoCIKJxKhy30MqDvhHFPZWNS+xFZL9VPeBe0vnqkMxCnvF1ceG5rVAX7mYeEh5euRgRpV+tso2Mfz8erXboqRJhmL0WvPHcrUgsffi8da9Qkec0EStZXpPMsz787R6qN47PY839EnleejRbyBqujzitRMFpDZcUKI1QkF5hTj360MbzC4eKJWfc908ERtIFN6gbdb0WNENrO2s2YxS8ZPpWOgkGzX6VyLUylYbQhQqLjX74EsN9VjRw5kf5BDY2jo4p+WDen4B0H/gJy8ff+7rei3U+CcEV6zc0PlgzWk4Oqo1EUjgo03upPp9yQeLZ/dJR7Z5/yRmJkBczXISblbWR2ZjpC2e5GqYmbltUgUPwwtAscvOXZs39s2siQDK2RaEyVN+MsDRxBI6C/GJSM3pD7p+NaLPNUNfCeZdlyKDGRqTAtqtm+6NUHGRo01EaI0a4xzc91xDpz6Q1q0B6Ns0JHUveQSvMgG1KbHthv21N1cX/9jCpKprh/W0Y/TNSHrAyVV1IkT4WyDaUq8YwMx02Y+zzLPRuZKAtzpshvLc0j/8HUBxSSDazyf5riHoovdgC3ogr6tlsC1Hbr7CFbunpkRf6q8Yw3LmyW+vEHxOmqoYRT6PIVw9rp1ApZF2+jZf4upr/x+LyuBo7wKITjGCRrB5Jk6cX4HZzsZWxZTJVRYT8pZfVkMF0uIUWVm2Xm/YGVwHdsLhBM8BTiQVSIraUFlrLPTXWTCBA8viEV3c8WmFdqRgRDAG1nIgJZ8wPvSgJV7VHg2+F7we114pgsStkodWhFqi7Wc06SKkygHbbOTEdZ4eBSiL1l4FcxN3G1cYTCBT6eQweC5IbsPnygppCYoI2SsTAlUqP/wxXaZFBy5/WJgJVl6G178JnZ35ZruTeeq7MKWz5QkWMKb6A2MkyPgEOCV9HQaJ3JACi+GhIhfpyCloKpJ5DvZ8MEBEbYVIhuYV1NWNCEsH64CBZi12Jcs2ynu7rWqmBfuevD64P61nc6tZEXGFQfGp1MsyTPmcPy5saEGTvqEuwqmiJsTpJtaP4DfUaFfOdSaImBbCgs13b+0BxK2YBjXh78YYdiX/j2gNVrG0S7fS/iGSsW1K20ELV7Q4+kQsycQB7P9kBfzk5acHKUZdhkIlR5bfneau95lC/BXzzqS0Qranx9RFYHLE3jOHhkX66SQiEDiAUjMXTvVw3GSHSsfaignanpy+hgztlRESLdQwKIlodtly43a3gYd/Y6+6R9YIZo0mIfpGTBngFVrOLVoq9VlHQh/XJ948Xyi1puXa+JnKqrDerGPf2IS9oxw/yUzPnb8eJIGGDlFLJgPYm1Xtlwl6hzkN7fH+D8+Kw0P2zSsOuvDDUt8cxQasVY/rsKCZFHqRdWlftAnJklSSd4W0ejoAnVAiZ8U8mlSgnEUtPiBc9WOccOuaF2k1cEmWc6h3LqOl58hp5d1QrweB9F0NH6clwKjg1uBw2iOAVaGwZWqCu+U4ZNm7Myy9DaseRYLVJxEa6yGMLgGs9h3Yiilkp8Cf+G3ReUciWbJAzIIUXHs3Yp3V+hWmSLEbOFw7QVGlJ4EPMHWsLoj27ozMApjraFuFKo8WAWidIUnA4AubyRE898waFUqUrKNzfcbErDfsAqv3G47cGyVz4EfjgQw8SqfKPVat4ZEYcys9c16h09opOq9n6Ndperkmi53l6MCfAIqBRiGNY5GiCEu5QecQPunE/NtJGdZmITMzUF0QRm/lPsPRF/VZaK4yetqfg8cgmRxmcou6G2M5uPiwzUXDXwE9zPe8nSQBVZdBXjMYuMwz4+LPPpKegyITIInky9aksCv92btwbO/Oqxra+fXK4UTRYElb7kt3QiX3XXvRP0RL4mve5cQtLtkHAo9+PRLKZLAlErGLelXEWZClXied/Mu6i5Hz/N53Ua7DZUlyHhG++TRJAvYUKhJuJ1GOwYz3ubzhKhar8OKsb2wJSIiXKZtEZ+RSPaD8VG7cmUXoeSKwuH0x0C6lU7RmhG8LM6fb+yvGbmpwOZiTFePWDVbvCpwOia9bNe85lGaP+2jHKfqJoNI+lpM5LtzcNDOwYEDcTPuj5+sWJ7rfj1khaNoqnIC0cUspt6EWv8+E37xpFyN6Hjou78QFLVWoLJGe/5oAddzT7isreQxqg+scxj++hkFlEhdVRjNRZRA6BTty8aSyxLcuE/RT3VL+/ZhlglADYgpNLte7Lwcbrt6zhktzz4SJP1rWLieNBX7hQHS86b/U+rWW40TSgn9hc9mUwPIEPq+JFsjjvnIV+fLLWOL1yMU9SAAlOLfqTA0eVIBeoZRxY4f6B1JPEiwkHT73TJnVb5cil8JMl/745nrYCTNGMGvw1Y7lLtl2eXllMJocJ8AoIWpO82InLv55UBsuxFzgTdjeMyIZ7sFb8lrIkjg2mQaM56Dn/Zty1l6SQFFWaRYPN8SAwF2Mg4MuQke1EOlXESDYh8/LhslJ0JaaXM+dluxavspmAnXRlTD3okQnIitoUKBZktHikDI463gMNU56UQpaHtUhQoKH/KmS8oNS9hLtJ376sLnqGCwPAj57dQiUD7mx3ZiG+NSp1IlconcG+x5IjeWu1M/+4gtlfkf9nTFzh8UoIbWikR1kkoP78uGiPTCrLoXppBJxKzvV6FVvxmZqXBJHM0uIN+rjybgRVUEz3OjwWhJy8PIM5W2gxU9e2Uv5M0XZkb/RJ72O4QC6nSK90DRGiQy3PhQpSPAJKdizFCC7uKLnNCl5zlnicI/iHt6XVEeqqrLYLsfGp3SwDktqBrX3YkgZy12r69dJ02Kc2vFCQQkGATFSdAkIM0kySw3k4Di9Ch0u/ZbVwwrLkfR8/t+ZgaJpo/QPAwZSJ0XuuBoIES0eaU4RykC6O/XCgSnquQZ4/YGlhb8zIWdfcx7FocisyuiJtdU6Q9EY927THhE2DYK/SF73JhMry7pBMSXMuu8tsKJ2Qs3mJNya7bDknvdwTLTFc0pHAApyfBxH9NIhKn/moAA5UpRoPb8ADB+knX6N61un9tErxwqJmp0X54x74enWTrYayC3WZJ4nJSDQLMf11yM2L6lHUlnrBBvLJtOySWXyyvhKZ1+zmJjeLCWu63C93O409JHmpMC1SWfV5/WVasF4EYracoVxExqsSQiPzIrYohtR4fYYIYgNHDhpPhyUrd0Z1wr71ozyvzjARLe9mcrcHMU6FB62JmtWroBOxLDoY2sLmxOt/vSqCAZ+1L391TFyZ+OO30lKrvmwrp7mv66bQmHIs/iSZbGJwR3aXiHmTI+IBajtR0zw6qXwpGm3pJ/Xe9YUGwoGLOhgcdvkupUBP0zHCxIzGx12reS3en1M+N5yMm0Fno+CtfIOKb8TGdXc4pT4Ycan7WhHVNql/J5KDo387DKG4ZcbkJw+lew0F1V5xf8s8qasFQn8MJsnm4IMwJUJU0mn1rmAjXcIfuU9/QDp1MES1C2QWdJBHTm3DiC9DDpxOQmayShC7p5fPv85AWPibGBZ1mSaScA/7AY/VD+Vsy+VgnFEEbrrY3SlQ9/faTI9+gaGfUHZ2fCVg7P6kzvWaz4AvTRdlonyS5bPhEwZFvOOdFhaOJ33CzhIXm5ZmSOv6AxJxBaL5QkUEiWDjw/B8=
Variant 1
DifficultyLevel
563
Question
A trapezium is constructed on a grid of 28 rectangles.
Each rectangle measures 2 cm × 6 cm.
What is the area of the trapezium?
Worked Solution
Strategy 1
|
|
Area 1 rectangle |
= 2 × 6 |
|
= 12 cm2 |
|
|
∴ Total Area |
= (12 × 12) + 2 triangles |
|
= 144 + 2 × (21×4×24) |
|
= 144 + 96 |
|
= 240 cm2 |
Strategy 2 (advanced)
|
|
Area of trapezium |
= 21× height × (a + b) |
|
= 21×24×(14+6) |
|
= 12×20 |
|
= 240 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A trapezium is constructed on a grid of 28 rectangles.
Each rectangle measures 2 cm × 6 cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA08_v1.svg 240 indent3 vpad
What is the area of the trapezium? |
workedSolution |
Strategy 1
|||
|-|-|
|Area 1 rectangle|= 2 × 6|
||= 12 cm$^2$|
|||
|-|-|
|$\therefore$ Total Area|= (12 × 12) + 2 triangles|
||= 144 + 2 × $\bigg( \dfrac{1}{2} \times 4 \times 24 \bigg)$|
||= 144 + 96|
||= {{{correctAnswer}}}|
Strategy 2 (advanced)
|||
|-|-|
|Area of trapezium|= $\dfrac{1}{2} \times$ height $\times\ (\large a$ + $\large b$)|
||= $\dfrac{1}{2} \times 24 \times (14+6)$|
||= $12 \times 20$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+0jVJ+nukByGcvXzLjZL13x/s5HiYRgvuYcsGxVoTeZT6qOmiIYJDjWys2hqVXDYFxTaDeP+HSZzN7Ngza9esOtetLECuk/E6nPWbLl+Oa2w6ALtFeCXm0c6TujTCXX0suvBgFQTZgd6+4WcfmuSYlKeX9l0zAsag0RpGWXv6ngpmuOcIYX41dPwr7Uwim/b/bVF/iwXCZVgcCt3bQLMXcMxWUqCcT+pj0G2w/fOaM5KLYuSZOC+t9vzMDF21ZYR+X5vLTx5y/qAx1PGupk0hZaVfNq+OBdkMyx7LyoQzEn9RjZdSmmYiS+jXTc5P1pCN6lfyyVNAh1bnIFNDO37QkzMZMgSHSP+6PSpaNz91ZlSqLvfkLmS8I1xDylFPxwLNrmPyuX1elPlYQ/hGtGok15t7BCWRk8JBK+WkxHgLzNZcQRVIn6KLDkkIhOM0pAGWySdDhOknlYJZ1e//WVzcctDEQR3Dl5rH614HNNyFq5roWS+djePzFLWp11rkNKqwDHa6ivukPTcZx+kIIIvxOlaZcJrPuAsK7XK/yzALKhotJrtPEdx2QMT1dzF3VajThbjarz+Vclm+3Ic07Zp0XBG9iTleO8C5lXjSCSm09QaGPlLeQUWze8b79Shy6YH4Moubz8nOOlYD/Ei0o30rmmbNte+xD+lDztzNH+JYE25phpW3o6T2kxu6dcZbpe41yXig/VAJcfq14zTcYK+J/dsakhK7BYbnFk9MxN6f+PiD/9Tg2WaPanRnwf9oh3/yDMHT/nLAx0niVbh8/Hv4EA59dS5vb3wVQ2Yjr3E44o5Ux0CMY1hz7Mrlp6g0+RElDTAju6sGANhO8pUDJUc+UgKjf1YYJe4OMJ4CTNEx/keXn4TGWibwwPlbRCOyGLSj6UPJOoiKZ7atg1D582dtsyzJ3VVnKqbZM+9/5uUSlCkLv3eMvsdi9pYSEUfiCXf2hUdMhmSV2KvjqgEuKYrF+mQ76Mn40BMm1wpbi/mNO2xcp8iCZWbw2yUEHNZngaa7Apk2wffj5RcoE8+iSe/oVVrd/hn8ysmMeWHEqSFJhgxxRq/mcorFBJBj3+wk8ylJ0sMisWQXRFDKAlHtOa+Gr9CSoKRb/3EyLNRVqhW745ObOra5t1dOA8szUI4mTtDP3ZgawEXB7PTEBThdjZzylHzJbh4vVSOls4CrfSYOpX1cPl2pTg3eog5K5NrESbDb4FLUFAZOKrI3d1tVcFBR8+kJPjv6uW1mB4pwroEAUs3UJCrYvnevoHhj+mC2zT4+eOnG3VjUgDwFYltGoCnaVh748ChnXmIzlsoHr3dn6yn3DEwhBAQx76ppHum0dyo2H8Yc85T2m2NWlmrQlyAkTON648IPJ0Y0DUFZaqz1LvQw+GLfG+vUzIEdod/YZXZMAcb+kSafyHWEKwUKjeGL76Gk6p4J9K73aRDnjpFZBVlRmRKdKdD7a/bVmUX0pIDzIO7BZYu2THSw4+EC5/mhG2a0DYiQqcZW1Kn7Ji3ShNPaC1zx7xnxhx1/glmlib6EuY3EUd/ti+tupCzJRT4scmauGUGzwyMJ+b9T2BVftG6eg4fL4KqW53n9K+FpNHiSP2kTzgICj+gvh1OZ2hNp+m25Z9OrfQw9SMXKWJtKgak4umvtt8xp9cj7PnLhv4IXshmtoRWmzSpW+qSneZ5nktrpuLKmMpdmuQutY2OrYE51pvrzRLFrM3V0j3D8fqXtGiT5myoZu6oysrG5a2RCkGmeYyrmNAtzC133U+LicvwbxTyiBQ6DRD34dftZ2j6n7d7SPWKuxgaiKvTGwhJGeOPnWDUXrgCuD/BvkArAFrAUTcllt3mpvpFMgAHhwWPM8sDX3VL9v5Bxi4WyTUSk6g9wov9rOB7rI08jrPgWtAPqViqljnqdk+UOUc8sZ9R7WYObQLVoIc0GIA0Z8efJe5wXqHi+G4483e/vyL2osN7LmTaM3z2M20+CcqJPz9eAelxOCn1bEDPmFUsEFpAidZGYeJHiwfUxJlsQHq7Zv9dguHfEWNt0QZo1BO1OezD9MZjdVMZTXkSGGmSpJ36vnqWXF/vHOs9qljRIKZvGh2p6m5qMD8UD9vpZZZyEF28lOaGZC45rK/D0OSPWqJ6AgPPtpEcjD/LDId5E2H1L9I9vzWjXK+KtpLYnJoO4/7pDjJMOTzKByaZ4bCPVive1rxuYP5kI7CFz8zww+NvGsehLG2K+TlooxY/qYwluqkai03plTqG9BPzY5jHqwKIRz06Smmc5aHSWYv6NTKrFXwrOks+WDTfS9FckDspbSFusOsJEvZwPcFGraYg/PefkHTSd/8iGtzhhy8yX5c5lVB8ulECNmJmRAC0Ux2VhpXvbps2+Mn8TfLo3N+bRqpF7nLOutPAOyI7e92EdQ1tGDIknkHQ9HUDwYEw5cKlIT8v6IVHxozmJTyCPSwT34wVHby52itPdii5HUBSh34zMTI7XHW2+c+a+0CocehepdchNM8qpkwLebyTmToU/XJ/r6U1cAqcdD9IbjIlC79vgBzSq6nkrlIdrh+Nzg+WrCv70PFkE/YhnXFQYw4q+U251GrQHt/gWP91zfg0QPFFP3itAWpaWUMA49o3Ec2zdDcglZbLRE6lhJtwwwqmFlB0vzIh8dS1XUAGXT0OgX7rsglVLah1ycV1APL/az3T5sQ27q7DyaxODmCBBsdPKKlji1Sx3ZG4olW6qyrqjnR1SXuuEjcI+IxQx3zZXmVZjfpJQa544AWsRuGnqTbfi2KRFhVhhqVC0Suo0NLLqacmcBu8/lI/qcwip3PRyU7JVNTjkt5kmvz7c+HpGrohce1nPjFgpYs2FAKulNweQWvkfXoZ1Z9g3i+TM9PaC/rKaqNoDaB3IHeK+swdkuvWZBy4+adJUP+MNnm75aosK5Pf4afHYQtRdG8CsFmSgnPcyJxyqyBh1hDLheTLY4mvcTDzauewv22E+6KYfD1VTprvKDlS3dYFRLtF+/7BAaJv9+mIcaoWODXPqfat6/o1qEQPCty11ipHlyz8P3Bqzptwgevmcbjz8GNhyDyaqENMo8wXL7llNkfneMCCUFr8RPfCVpULoLZHHTE1c52mODQYsoIe+cyQj31tdR9fQBMO/RwpbMcBB7PHLFRNjP5SYy38APEjEnRUYFHjAHPxdcSAryzXEwnouTihkSUeHKMmA7ThYv9E5DINIjvVoPLTd+K6R27wZop5tgG56f883xxLADP5bXF8286bECd/GdXOCiIfU+n4bwQY7CtvOT5J74yE8FrJjUGaeEAUXvRtuR5rvkk+ZNliX/4d5vcnRyuphmTRZ0cUHRsbw9uM8Uq2+a+4PDXr28bNtRW6o67SqUMrL8hACs31VR/CdxVAZb9YrnEguiD4dUU3Jjpa3JbQeHn0HOq/uOJgc24Bidi6+GKrAxmqtCu2LGvObQdaciFq1j9IR/OI1oZJQoVnttAW4UFhfMNyZMCQHKV3mJLa2GfSoj1IR0Pa/qyqxW1lU+fth8h3Iknw8LAAO5l00FFuqtHECZdEIVvj66kgQyGlYnE0y0XPM6DWirDN5CLmURd3Er/AbIP5YfQ4j3PeiAYMCANGSAFTGmlOhkmR9zbaQYxGY+7ct81qEc3sar1NQ2IocduCtdVYtFfd7hpXdEJwPC7yGhEOAr5r9WnDsR75qDYUdX7IH0cKao4wQWleD8gn5NzcJXU1P6DWF9J4SxQq0Eo94RBRrGEdF6y/5QnUbIxIKx7UPDaNGuNODoGPrRlnHvm7ufmb7+7Y2WqcukVI9N6XGZqFp4+EOvjyOvlUo4ZfNY6WAluWF2TNrmmxm5OqvBQEdGAtOQPmXX94Kjjoc16Wo0I8oxUpttpFxlc0nudVcmZNmaQY6yFmhKxROPTDdUjIvT8YLqGsv0V3r0+Xs8smJRC3+NINxJneGIExdyTb2e/im+GJySIpIvEseaWhh7weutvnKpjIreyVasGAhNDR/WCmAQiKF7EyHsa85qKoVl6PabDDt4H6nVpTPzytz2Sdb3LSm4nY5sOCc4MVpbetKbX/Ggq4jpxgeHmfl8llDIIStNczdB1hw/4jxZsr7NA8u6YUXzGyRxBQ5yKlA3JexxP3U4ddsPz2rS53GOfL28urFy56k5eZYBXhNNQIiWyydVQCvQmptfnY9DhiMonQFfWFtqA0HGuFxlZiXnzZcfmsR1UatGuIC5yPIT1P3uPHMnqq6Obifb2KgH9qAonzxHqaSUvizlIvRj8b+KgX2j+ecbuiONVLkBwTKLChxLTTZEoeqoflnhYaDURRFbNNJ6QEOnkVWULO5q0bHspL1TZCDUM8u+F+WXTjmI6HoX6vqsIZaqFQl8yMT44h4ZStGJZ48n2zz5xP5WxLzqE3nHJTipX/z6SRcJmp9dnNe+5/oxlfiGj3HsxU4Nwv3EFUVJJVWLjpEyTZ0E+tnv2XkRMTHuU7oaobw4PoMIQPhuL0BP1oDa+KpttO2gaflXij34FpL+1gosyy/QXuMYnu0xy3l0x9BQQERJgeXfgN6QnBV+rnfEK8pV/QveOnF0Ajza39IaYvAc+msL8Y7Lyc1kdV3nWOeXMHVnH0mIZwgDYmDlHf75HXiT5nrMi6GmXNCDuwFUSKx2hgE4cE9cnNM8pV/4iiIYXklbIZJfzrFDFvRnxnLTUt8Q43LIwYUim1ShqF76B1FCoeVhwkIeEa5U9ejrE1UXZxc3JevUxbG+zLNqvaGutCaN8cREvDf4d4jiVeekUVK9aeAkLNHK2jI7Humlij3XeRBrIUvxQG4rgRXxSAEjNYZH0Ou7QiKqL2AENWlIQ+hu2ZfT6zZT8QsIC7cGaQZBuJXp5sKQLQUdaroQoihHnQIpvHVmenX9T/F3t3C2bmIR6wutfRrUeXFDA00r681uRzz5AsBloovocJ2zRuo/em0gT6VGHlkHe4yrYXOvEZ3ecFdJneq1QZUm4XecD+vUG1asfBxRFM95ZzhdY4Bokcl5CrgkaZ+8kmTxefIQONGdsFpm33pnwD3m5OW6S7fmNGi3wC88nlzfO9mKzPGzqmxZEOVaklBnZ+8/ddQCER/B64Dhl8I3ye/XX6YxTIXYrZH0sBqs/M1sn42y3JK3UOFo4oOeTVVgrkHUCpdxRYrUnILE969L39sphGF4kI2l+gXT7VWLtCtUXaiBhGHOtzjcmJWqVyziT1c+dqhaRwa+ppZxgYpnb9mXyWV6XnplV1NmVbW3kP2j81obhFzb0z8meZiPZa3/q8EucS4JgKhJ70JznBcFZeGFKJ1Yq7blMGyZakF0BYWqg1S1KR/RIAIv0rIANGZf/GWtMlYGeN2C3IkFdoP1HrxZpjnA5xWOBDWjzlAdqMnmUhRpziN1DvgJqPCfKvcKCwx2s6NYraeSbelEYR561rwVkqQM3Zc+q+YLFiX+P2aMxv+U5WzkH8KbDelBFwe0ihNjIvaYayOr0tHGLf7Z4+KY0G//xCOqPtDhwe3q7Nq7PJxFDnq5qY3LJWkQcC5UDPLQfBcAg/9Apc4VjTFtlIyQvUOVwYzVogZblFujf8kCEaCzroy01NnCiUcHQRe7FbiW4mf3QGIGup1czD2M3qlmEwWNJ53uHOCBcg8dMun05tzZKyR27GHvxbNgoB4hVbhgKtDPqr6tMqsvH7y96DZlKQXap8Hv1OjfIJmJgzLrTmyhkNkcApTbjUQEJyUBhkxx1YIGvLSgGPwXhywwjw/QVwBkDmrmt2t2QsFBa1XEcJzmc9LPaOHSpKEYyVjRNW3jTECjXdp+McEHrV0GAsFbvICsYKPTBJXKp7zqi8hjuwPUPsLU4iJu3fix+eL71O56dNKNzJp9kn9XUkbFY+ig5Hzx8rPWg9DusSMz/jEgrRkrSVb8I71ySFNfLktRu8/CSpgtUmujg9dpZdtFMK+qLPFCOfPwrR29K9dTqsI7YTJdLeiFpDtfh88NkCUN1uzcOaQitIBn/vZe9OoofbR86Q3qOeaHSXGVox1EhVxjD8IrjDw9GtbcrOsRIImGVSNlewl7j1rvWO3XBzzS3bnsskD+vhbtIwMvYteK0Anlh5N4Oikmm4SNL1v4AOQHcM/hRg7M2CKMTlC8end1d9vVB68+jXKO3Eg+/p6OFNrKREOlBN/j22eSHvFUwbKL+1yZa6WBjr91/8UCjNPdLUsAZ7JhrVQGHbA7EIR8znf0/B1w5yPDwzmcwQhBXFEenD6AUV7iKO1efmb0MtYRBH3/12zbZAPlaZWZynOGoReTHiOmc/z0Eoejs+Dhl6UknkgypgbuqI8hdHcQzyirnjzvzGbGVie+HFRB6Lv+zne6mxLkipQa/vltP9YJz1drGf5Qu+VQfeom9p4SDfyAu91+KMGeR76t1t8tYwUCO0tJoMOpTp9anqGrTSIJXykqlkeT5aYVds59k/4y9/2ENooKCIGUt3/YGtuZ8zoQl3ccrtoJBzotz3ZSZCF9ZVQfsC8eRLEvCuHhG/Oyh8QarMrJI4JwNf0sQv7awCODEqywOyifJx10lsnAIL3p/i4Vr/1UqboPMJKZUNJlyJE/1w8j0irOeeWoZnGWHzzQWxQn0IN0YAvW7Kr6z/xQfb+WHWyGlg1fYuY8+ivb2RtOLOb+/Pm1AR/Ggy9AGVUsTSv+D3SpqinP3ugOZp7F0h67WF9MZGBrI5j2nKjP9UxdVnt8db/NI9EUgCdGbIp9S1yheezZqr0Mln6QNClwsDEiK/WJtkk3GkAOyBY4zxR2dpIwx3ABAqOLjjwGki0AlilIIBYQaN5PnHmnY/Hug8sx9QvY+DOZFjhqtp88+5N2ID4gV3R5nfQkh+YpumzsAUv+2lnlWc6aPRJBbv2b6URSiWvplQodatfBZhnhpU3AfHu41nQsETQhA4kC3EbcBM8lpp24csMkkOWyI4cSMRW4YvO0gHRmEkQl6P1PQ6U2u9OONzFjreSCw4+Efjn3LT0GyI3F6o4X436bMD3Nl7GfvCpBtFpUDI0tTrCmPOZP91tXZ9OwySeh9xsJPrNdowiXAysVTYPAf/mcqjmwa2H3KUD3jE51pRsjfFXYsk5bIcUoBUT/0TUZmmzuX0HYjEw7pj7amTcpdeaJZQ7gok9F7A2dm3GauYVEWYr5U8nFPx7GVcHB+tHhQXWr1saNYLnQvDd53Tswec7N7ja5EjWUHMbmalc6mQ1Q5b3qAxF2rHJ+UsUBv6niufwEAEnWiKwgsWXNCyoWGRgNabJhJOf9YYQVcwIUTRU6JOOkOO4QMU9lie2+YxsOJtXb6PQ2VmKr50GPmpC5JSAuQPJrYFGGmdzykJc6yT+XaSY1/VNl5zM3qjP5RA+sJXEMgJFMpAkO07GjAE8UySEztNZhnv8Fbin200vejfVEoA+0GG0lFXn5panfN9iI8oA59H3fpVxPxx4l4dAfL/TuCyHef9Je/ugCy44B9S232wj19XhTeFPcZPFT3dKmbmG/owY6DiplbohPUi1iOWyRPKnqkBLRkltudLdMF3QZ62I1GQqWnxftwpu0JdCb2ei7Ty1vVyMwYHDywFH3Ia9F7oxOV3BPem+cTvklmiZHbXpdyTIT/3w0fI+VhPrznRa1dSLm354qKE4pU/eJVpz/jxxq45lOMjviejpwhH5PVptC8tD4xjA3SYg98+qxOeAeMkaYFA3EYL7blApsVUL1PoO5D7Dugtj6NzbPVPe8qmC6EBKheli4ZJZkAAgRJv7+5rApc0AQSjsrtCEG+m9b1eH72ZucDhCFh1wXSq7yUCqMmbG32oL4vpz/0nO6sq8w/fVyefBFmYrLMwqi1bLid4YSWc3a3I9FbvxJmTpMwk8ABC9pe3NVjl6Ujsvitfs/Vl3dE3NQC++Wd27vR5+fAqKmQ6DmzMjA2shjpuPQLgAYsnJFuAeqisialWh/XCCFCHVtSIUMajwI7+do6mi7Pst8OxGzywLQzkp0ACpI3HsFeMK02z8thPAi/7Et4+X3dtlFuF9ctmwxtH+5kZL8M6rsMvguLzXsSMRCe2TKNh5WAaeiBbOEq1Q0YaT9KYgp12Hg3yncv/zzZiozJNLU7MmRNr2g/TRiZYNND9WibNF1ZdHORHFpyaBVq1hB3FA+GBcgeJIbMYLIVXRGerI7EsboXPJ39cS1Z6C15OTQg1M/mzB0envKZryY4IRJX7tZWsK4H7nI8OenSEvAUkXCcVg6BSMEd2aQWhRUJqGauQwlcGQZ3deU+a/CewP/lErasiVb4pIgUroU3Q/ktY0SOxvGznHmJQhkvuvrzd4rLXIyo9PTO9O9cEZSLUJJcply6cAwYB79slIfrYHCbtPuqGRCMOsQB6258aiAWjFk41fZr6vwME+sEGM03c1NIXXcD1m7S3iQvp/j1eKqtstTbvV55dhyi8dUbch4z17mZZRec1l44lQ62wDOJvVCBj+dq4P+yRU9HUzl0hA0MlbQ7Vn9fV8RetQzx8wQH44QGS1kPJ5aNAP66QfL35n8Tk5eOLDBp1q3pcfiS0mMTxK2uxfndgaDRH7UFmsYLgGMKJEPdpvTeWP6HNT2kmFIdxYuOivGoM8z0hiwMHRoLL3cELgm9qxgi/5m4JVrAaJpQAiD9iluIGaj1QFrvqWYYtiJ84Up/VRrGQbxw1+8ahNie6VGcrQm7SBx4eWwHEYrDqVW8qmRMERojoVy9SKhFHUUav7h/P1ubRLp4wmJJJQy3j04Tn4s7/X3XBWlbWOwhZh6+6X6ZKEo8uzICiMokxc/F+cqou7D53RncIH+6N6g6P8poJg9SqIoEYHlNnRnnnsINDNeYE+XdMvhCskgjgbtkavoQtgxdh3ZSXH3w/2RCFX/t1HFY1LiGI077wAjxwAyv9OdLgpzAdz+QT33Wkvlv++D7yHmCwcWx59D/+NXwwdlsLVOAq7BY+ZWMxHslrAdH+QZ5Q7nZ5xRC9ji44Xlvd9RAeIRdvyDAknTmj4O5KTOkzfk8A8uPdj3GRdwBaBcMkbECS/XkQnZjhN7uqin1vHV3LWvMbZn5wjkL41Co8gJgtiXKIKdP76ngblwkEi5o44LVfjJGHrnv+GQEp/KhDiQ/GEj08ffIE+lMhmlFrwEj6WganU1UC3/WomFJbMQUyU2EAqIK911DR6+l0t5A0IAtc305+QzDMRh/LIdBRo301T+KxauGw8mV9y6nkWpuQpCddvBape6sluSKekDhtYduMcowDIz6VTih2DXi8e5Q7qekprPqPtwt04F8Z9jj8acx02FJIblxvfW8lowBUzF046Xsb9d8+4+WbQVQ5387zAtUDoQNcfCtJwhb3KnFDVIiA9o2IHozxSs+pfjwvYv6yU5h3n5VUhY/qFOq1bxPC41IOTFvuSK9cNaaptPKirZNDiwfLZLIPdghRmy0GzSueJGM++HLMeDMZTDh0RSmYepyatMsQDZ61pchoR05+our994bUcdRhsS/SfJTlmxnaUeoHbsY+GZHsVDlLGcjC94gaeVuh7icM0XrJdMK4y4UWkQ8JZs94x3gtfv1/E+BbP+L6Lourh82i8A9K8jASizaBHRE1mR4iPulkuUrVLjSL2DwlLXL3aRYYyve4tVUDi/pBKQ5Y/imHGR1hpvWqWLXkQD19Q/hAGwmTyLlVhnxGRb9UmJIViQ4qJ6gPP8I79/4Qvl9LLtVl4L3E2C8gB+YIbTpXagGVe10ZoyzM5jIqrPW0NXCcAuqqSlmvse7XcnCKbVYV5+UFM2ry50T8IerPHxk/DPsSr/Hep5G55mONG3WGjeDGzMj7teL49QK0IyPPKnPTvtzx18cDe8/dpIBvkEJsE06Okufo03A/luP9pzleD9YSOowr4xL1NXRB64rgEihkJDKb54qFChMtyYA8NU/lzwAN1EGqHhdOmmB5ByRPCj+CqNLfBqgfdRI0gL2Uv++2YCUsT4zkd1Cm8CdaUZNOGybM3KHUxMZvTU+Bc261i5UQ3PK0dCP55rc70z57InRidMSZpGsxd3aj663NCMjNrnep8iBa7wZ9eglUl7EHPPOCyE8lFmr0KUALDTbuR9gMVKD7JhEO3GTtr+JZtzq/wb8rplwRt3EuDMptpr6+asK7EEW4WPDyTyYYXVaQt3V1UwE1gGMW1Vb3VtfSbYajhiPug8/6rv2VWA0ss607WwKPTkkFr3tIV+FxlqyRTj280MTCW//Zj5vLoecMd6sszU+kMQzgu5i0/DUgDBvFqiMLAHWQY+XDoGwmS4eB8JkTYzT1Hx6RYL/14Pt0UD0+RDG9yOaaG6UWEG3d2VMZfppG/kWZTVEUXXb7RYC/vDyi7jucQ3aUYmBBICwae5MBRqeTxHiYph9PnIVU6SQMlNh9mM9ItkRPQ/ozakumu1aVL1XKb6hZvnW6wXx5rE9erqHkEPFc9XuG22EiJPnxrdY/SlWvQFCtEHkeAKgDxJ2uoq8gAS2tJ/pGvYBj7RGHYZWyHwdZfOqLXMiyfJ9+bsFAl37KvyYq1bFx0wd8EBVHZmVS2Q/V+0SgEO/DU31J6ctYXxZYR9nGNOoI8qAzZLxmZa/clbL8Kh2KeX0G2NO6gEYzUs8VtVbqKDQO995YAtHkxt9YaHfyfchTgtDAxMWepEQzJMOS+T40/j1osc834XLKLRdPDpcD5v81PgOCpOwsCD1tId57gS8aC1kfAHea5OU0ebxcGYkbLkEqHwTTh7Zo9rlg1MmfpQWCG/1pJ0fwXuuL7dAd/rSpP4VqEV+Qlh7Pc8dR2EGLE+D3A6UCsSua3zWT7rSUOmEwt36MoIz3OrdVblGkHt/OMDjMxIaNh2TJTf+C9Es1G2BR85o/tBj//q+Ab068iax58sU4gAczCXg5n2yQd1tTCXJDTuX015FmypgLSPxmjI8b2pXCjdKuGp607YDr3/F4z28a2Ie+oq2f4ka64WAiOOsc6d+KPrveV9fPI/sPJfbiTfstDHSR4WXSz5ahF1imhOh5pxkBPp4YAFi1I2HvyDVlFAG6XebfvkVWT1nBoUq1ZIXu2GXe9p174p9jQtssQb1DjFlStheTIUUaECUJcoifiRj7Wvc+lTJsE9V5sjDQZQNXhyqUwsE2U5es/rr3GKP8R9Gql6M2RJKuFtHiN0ivlCJfLBsE6tcqExWxFXeaWWZ8yAB0qlC1ZBBJtP9bRljErcMc5a7gFpgnVIvT5trKld/oCf3niupAxyzbn49AhNLv+pJNg2TdM9xBBivx+LPzlccGFF7w8lOz7wO69+PajCam002zWenx9YbnNByPAZGjvcwSmWg0lL/A7UAfb0ImMsrdeL4lbze2Ia2ewNK+5kNnEa0OGOPbxx/B4A1pKw/bXtXqnAo9mhXPccuxsptaHMbYxLwWFLAF2iZ+uagotdZKLb+ltyGOym2RKNXdXAswxoYfu2HADtGM2PTAtshEtvk9R80b4tnxBiVm0tXbrvSgVdl39naStTlYURL0j8mtPZZDe4w5RwMcGxtXJAPwo6wjDIbImIVngA/5bdM/UhjsGh0V0oc2oMI3CLT26QWdBWYPgk5wAgckvOde+Iu95Q0o4XEJGnXPEybTRnu+DDaHyqzJsd8qemy6jRCKDwQJDjn39FRQXeHddzhb0hneTvl8yyFkVw9/kWXuPG1vJv/sEoPu08StLf7lFLigIefxon9CVF/V8dV2GIYWIDoXUFeyTwUTJPE8Dge+g4jEbJJpTL6UO16Hk9BP+HlmdzxjRXByV6JNu+En10JdazFOKLglckF570BLHnOKLrOaRr2+SNFKuAQHHelKjsqMfzJwJW6pZbluZnC4Y+pNR0sg91jAhCrfke4YgWUmYO0sg+bbp4r4NCE9AXu5/n3eQmkeFF/O9/KDp4w82UuONQEetXyuzjFRRyt/V64+dOk7IPOxduKP7NIM6/AZpCNujk8/ZE+Vnh/oDRb2+Q22bnzG2XqwBVavSPNG2qP9rulZ4e+GPxKTNyFTLWTJyNKp7KxQNuSkqXt+jODH/Tld9hxFBrrAcMNDpqWn+g/vQ0UDO1sX94wTFEmJd0gC1liJOPDlG8LZUe5M0Mpu4a4MSTSFIlcfEIU7Wc+8CtHrAgCdVpj+yivS/kQvfqoALnfaIrLBoCGY5TR4jE0zwXG+RXr6dszKRfrml96vmW/tNT9ooByxObdrcXfkecWprgQcsTH3syJegX29TRNMduQ7TlgXwpAF4xnI2GBn1cr59ym/gHa2wrtSaLs9aPa43AvkLYenJg0gi6LlTs8741Z0gOWjCJQymNIh5MXjjg6HtoPipDocj28KFaYPh8k9riJ33rSrV4L438Q89MiSHqsh4nfW88zFUCPu+/dfUnBhQwRmOzcq10JGth0iI1WSufOX4qGg4IpfW+1G9cgrQAVR97TVDo3XkqBm1eOLDf0gFWQK68dI8odlcC9p6JjrsYHz8jKcZG0TKlaCnlowIiSGqKWXjrSqiRBJRzOy2mblvLFHqRi2PgCef0GUE/JmJY3W3OFLfDRIAmx5KBkxLkGyVReQUayFVngjTdgUs6f8csPle71mIlgtncM9I4IAlm20OlSamYcx4cMxQWhVa+Fz00F9UNuv5DzIcE4lhrgaoymG60jFbVH2Lo6MtHYix8GkziZBuVvA5tLmuYzTg4fESBpzYpHsa1uA5VvxXNiTepM9q7oj7RW8elmvBDXS+v6qiGwjI2xIadoNFHhysxtMq07Mnb+9PVoS7vNtoi6t71H7CD3yOnfXiR8fwYmgtRlLZ4iQ83HmP75M70mYxIacWiAyrZcd9Nad/9V5hYdYrnmsLB7knI3ZnN+DF2AkdQwzJdHnDfcsp8amcqTs/DScxnJMAPYZTmT/Yno6kpCjwaaNIM+AFkEJaVFPY92Ld+EjC2d77/kMySZ9koPu0WrDAska/pQhOqifL9a87a9lHK2q2B0K6YqLIKXTtSi0GSBxIIGp+OOR6m4pFWmTkO6izA0Iw2tf6FOM29bd2Lo0nwoS7esA98PTQ73nEFa9bohNcB3iQJmVhGjCsxqMqnKaXYdXzevU9c8hv6Hy4xrAk21VY6Sv+snIzmwQVzapFkEYnRy8jOJwOlqdjM2dTpMcJCwa+GUevrTQDJFzCbwAJJ/fGRijIjIU3BaLYacBWVRkMxKok6x47aA6MPto4pHwKWvb4cg+/NmbbVZDge7bff2Fiv5XqAMwF4oHXNhtYQDL+gBa7wV20k+KxPfefXxVu/uq80GowWB6KdCabvJ7Q9sfEgnQB+SLoONWU2ucMtcMDIQw7lKkvJMLSjr3RvJZ4ShOEWxpGJM4lpVobeU3XRKXZQQNzb/vtnVmREXGxZp9aruc2AHAWI3l6UnUbu6JI29exrjikvnQlU2X0NRuKGqCAa31hivoSW8vTqzRrHjjNBvbzHtoNTW62UJIM6Zavb2lE0w7hlPJNB5GXAFZZsO0UxeF1I1ee+CE6Ik74o3JH+fiZpAkjO26fsMeXu7EzpXd3HsMyGTbub4gRWX/qO32PDTCmwH/iADSZAQ9HnDDTmOfVmNkGwqSPP0OdWzPMhJP7Xjei1SrqLFWqLaM6foPE/ZbXgWeFpEpBcmSXfUVtJPZ+UxrzkQDitIU31nMBsUu7ijPfT3cRQvC3DnCyoU8bcPpBW0IvEtgpvAHC8jreU/WPdGVZf280AQvw347RiywEvPNYh0awLeOZ/8jD41YGLAfYs7Mm/fNsj/aZjG/NRVCG3lC4ZBtzf3FhHuB/lEuox/vccWM5HMmjI54KYJSo7h90RlfZsb2aDU/18lqyg+mjyjsNM8/sc0YobhsYtVn0SDnlVkLcnDGoqueoGzADhV9bcU+mGlD5DyZd7fs6SLQyCcM+4dI1ZpPNqU93kSWWjqBBldvdlhaRiatMI9O5VWQ8Me+KUC15ikvbS9/rp5Vge1z63degm933lsYmuyhTN7M+KDDs0sglI+jGskfZ/OsoHYmdMCKE0G98k6iqoQfaG9byAC9NqSJlvmAtpeu9OC/H0L2GWsnXuU4i5whbsuiCzFdJOfK6vkB7MpSTQIztg4AESqdEYOTuemigcpE4n2Xn71LiToMlD7h78TV+AvfOZgCM9V5nQODklb8EKVUghjWK5cP7H+MemP3cA3rXHu+KDRSQ51Oocb0yycuI13f67iT6esPGchVMkCnkAGNYeTMyi/YCC5VIiHhWtNAsDgEI5VMLqcAV1YXuK8BacWtMZLLwTrHJY1i0Hfg+XlRXdM3+/L5dvDDaWJFkd/q92lKBVGPjiytixFhMfZrGPJED4HEDv0nTzJrY0NaM3Sgjm5tNMLAFtT/GA4FOw1QmcmXPY9fPhGqTF/X1H5/w02l6P4EMU0ug3Cqi43+SABV68qJyUvvTizaxA6L2EaHKHVJH41IedSeUQXq0rrkyT/iG1kdUb/DnzlLZzz4pXiT3/dRyT2AUEu6LZ8jUBS9O0T+Sc8ZUu8BF5XvoIyKkP24zHkxi5Gw21I4L0bbKR82Q5SAuQWaU82FLb7/nzhDmdVbQfzvpyNQor640S7N5ZpYwKQIz14JABEQgOCvW7//gVYVsrglUDku0GArlkvHuCjISkGFDdc4K1R410VQ9f267wkSES6b12oHY2Z4zLeteh1++LIMoR1kFX5sfqGijSEGrIUFNVjVHjK3g3Jixvkbrfk/Qp0q+lvZ5bArgYA3ZlTNL2L/n7zZS41AQnuERRrdhPjSi2PMNa3DgSBUqraExyH/eNxcxgMU9t8YgUWsaqyOa+w3g901USeVGqGoqZOyE3Kw3leWdTvfzOGqnLI62tiuQEborjppD/7CWxizZbQ8RUuVDEBk+ZMXeRZffHnuCBQiqgwP3sk/VZSPJ6LN0JfQ3MI8w9k7erAGQPbfWEf+Z2FtJYR12iV1+C4KbYX/USROD9f8j5xLb+YUmxPsPYI70VS1XFRyh0QDBAFV2XeXsGYzS+2+ouXfSYdTsPJrIrW/1OgL4cng8JjVVSpbfMpg9CofHZeBTz8oK1YCCo1ewJI4H0TFit2o4735uQ/NM/wF8uavwNScX8bH9RYDAhEFdxWl5PmWUTlg48BPbhSrxvL6irPEca/kwf7h2/w2h7uMeiLTW4LxBA7HtfE4HKJ72EHIgJzTa0MO4WqRGHYCrlVwdubFqm4SRPICEoDSQGXf3wIdwPhByWzFjQjHIz81hHph5h1sawidKA6D6sqg+8xZVyq5Qb47+W0/6hGpyxkHrmCrHuChXQwVmNv5bnaY4QXR8vplAIzSjp2TVnywt0OY8w1AaIPQ/KbogArp64eO2ah4TXFfuYjF6rcZ7jo07n4PhVMOnTSFd0j21lITpMgSmyjPy8LM7r/xc0prYmhRC9jN5DCkwtp5Gb4A47Km+gZlddthfTVDAH8X7yLVZAc0oDnfGsY727R+amOz8N5EX2+h3x2VAR+dg5/pn53teppmN9Y2OQAnRSrXZ7urMDWJZtC29eLrZjxgTlEmkggjmqo88B0Cd83VtrFY5lav9GAKeKmETCJXtgE+KwCkpwFGQ5P9xqm2zsnrith5gpkmCFDQkdX3q6NTi4uGTtsiFA49lLZ7ooAYc+aTe5y1QmoCqsBdMnqtMTM90R6lRuWu2otooPrA5sCAPsA72gAClEra59qwNNtccqUPUAB+3TC1Dhy2eq/ig5os/J2FYLrCfJS59japICGkfVkyli915FDHrE48u+GbyaWSYrFlhE7CxEsnuyIKf/ICz4YN3pe17eYNB0fZK6AmebjxEpLVfHJj14eX/dY3Qs3X2TGH3z1F8VWxEX88tbsmQmB7FXYwQ2+edq4yORetmPcFL8lcHLubgJe6abti5t/cQBrXAVBfrtYV1TCUns9CeiHPIakptngGRtqaDxVKcVCcvhoHEUeIupoQs4X2Dp+5DbwbRKM5bLCoUFbleaSIk7osVB/XLd3J4y/dQsC7v+hYXwP+sz7x2wK7Jg95ZGCP9wvwhR/VSqBzUKcMxBwrCmeFZ7JcPv6lXcfo/R5HD0Vkx/DD00E+IH44VffJpjsSxejaQbazmQEsndVLxv5GH6ziaKHkMKGjCNCmidIRYGcmIA7wWsotnJqVNoUMOuuihlIC+LDshvL49b72/Os3sOWBfOgrz703Ne0b1Rz7mq3qL6yFv43PhjjSsO0bX6QsXsbViV2JNblcPpr5iFiSEmyke9c7OaMnJkG4Pq3j72MSZQeenc34977XxXMlAEl+OLPdw92O0L4JageSQMGYpHeqyZEQnHICkjA5CbpbtfrqI2ndk/tHlanCPz4ypzyOz5so4xQksPrXgWNBlGx9Sw9Mmg6foRc9j3iCEWEwAk3aAlHK9A5J0Edf9UHz9f8u05djVi9r2wjNAo2kPk5c3hq9PiIiNiATwMeP7XtX6M3/AS0h1GHtqInF6U/a+OXXp9SrAz1L9CjtLptcH4iYopkP1jQWmow6uoxyR97T9OrxB5+dARZIQWTt0ebIa/xWi8nFIQO5nwWyILw2JdCxhIuMWJw1ICEWhU1cRi39/ceMv3MOvd8baura0J5aT9QxNVHxruDtba5oLoPe07TPF8DLqHB1pGcE6dS9eAacqJs66XIJ0GPvV7sg6qsjL6HdCsVY88Uw+UZf8sQ61RA6tDi0GaTHh0JmYcliqJOee2CK8sVSRnKE0WFF0zqphfOWJ84cSNentPv4jtQivdfr3KZT1XLoqsPkq73jRjkpgkEVrKMOLmh5O2Sgr5K9yI6kWwtopDgMjG8jR+kvv8Nt1XQwxHR+g+5AKO7vvV1/NyFbHFA92DV47hBAHBkJD7hnKzqkq5/b8Ckhvo37BJ2HtIdURqMcobRoXtz4Dww7H/Nd3/cy/EqMzKPvsx2oKatLrCM2/QYvDnKgPUwDTDVp9+KSEoScJCBgkU0k/BUDUURms97/ycxEBt6WHvccnh4mLM9H3foYXsAGPmFToQ+//cMLdvC6BsxzOreTvf23VPr2aTZS5ghYe8LgO+soIdkvjkZD/jtA5mXrZKdHDdDf8dx5C/cY1tiKOh7uRJmb2h10rj+EkHutFI/0IMJTdCREWTCl6HE+GzZ9rp9425O26HfH5OcT23XhM3Xz1VzQyNye5/JELY88RwhOpnGibEdimUhb4u6cSJ0do0MTy7r4OJMvyDggPvNbb8oS5ZOvXXHeoiFU24YbtE5qFmyLCY8kZQUQ9cRbprgLlvQ78AndBleGPgOJY7UsPNqNoqkcN0H0XxR/t8wetlKPgiXXStoXeErBPp6mGAd/+aU/nkYG7r6mZO/0xc55GURyHd+ywGNh9dVoUe4T51rYOOsfevBDXKpnO1WgN5hYAWprk3vjLtRGRcJj4RiPDVpicV3VTf7hlDpLdi4LxtN2dFkfpHAcaB7Qartwaj0ioNXLzzYO44Fr3BDCx4vIrt5bxl3F2ZkgQIlX8nCvuOu/yZwn59beSxBMTyEZPiUtoAdNak6ccVl4o4qXwOwE2Aoeifg0wiQ7n1hp4C9NCALSLXXx9EUf1k65Y51uYktxCdcuEy07mPgHmv+slegqEf7sNrrSRzr2lHQi88Lh9uIto7SDjcKLJEVB0AcmFdocN9XvbiZ41Edn9zmAaTQdfkk2jPjGJOv4AsT0M4w5KomXeIFkMpjRg3Ddmib9/fSZM02b06+8AJDKGjm6n3xC8i3QuG1wh7NR1XSWCBJGgUDeVMOQfPWyhxuwHHV/WNLjIIAUeINlKPwMihX4+2R3qAdcN6asIdijZWuiPNTWbqKHX0i+9GuyX1ysol8Bv70t3KFh+EXkylGUBctSNBl+3OFcEHWtjfdMq2DKb+eRT+BSTc9JN+R12BPoOPn1kavbd03nMQFgkUhOMmKrgyL5Dof+tu1nbVx3gQoIkIlOaQhor4np8j3WKaQ4kgpQ9+DeVwSUJKUpYuIlKss348M054PZX2Cnd88Y2ejvuo7Sd2BnpLKilqK+GsKr3LuOelEHFjxpg6B7IRSkCmcoVx8EFj2Xn9HvaI2Z5qsb36+9PpjtWIK7o0dI/1/7sKYjEP+3QD4qV++vlCu7ipktzU3nzHSAVJ1uRejLLnNXEeJgVFXONbTG+DMZsutoCn0eXyYhgzCVda7F/hMpvgodA2Hnfhg6PPbwojZmji4ezHq57nPRzq1yU+QRxMurEFWU3b9CszkK4W9lqmAjyg5Tx2RW3oYNL/yOBj3SvFyRGBUhk0HmfGzQcMqP0xWcR2cDYUxBnQvjfEo0HO2pnXAknYY9nz83hWc8+wmJ6hePoSJA3VaHkYE2HCfP+O3MoxV6hkm5e9NS9XcoQe+rGKQM3RFLahKL1KMT6ampUgz7qohM+hEErmHmPzCcSQWgYefpVT1Goy0oSnRmv/jTi4L8sVQpEo2gAzVI1GfvFrcqUracsi5QudI5TLB00odBigWWoGDDww8YpNTsGLaMzuQBHiHy0i3j1xR9YzGlh/YReaguGIhNDQ+YqSriMMWsM9lmgOUMWzwz0KFgrzn8/ytw4G61JEMj7Rh42D6vsBRnZNlC4p0fVNEQS4e4JKYhRmRPDC2V5k/f0seK7TX3eyvennHg8NiXZBks1NNuIbolopir6dN4wJfm3N7Q0ZI2K+kqfRboMECzE+GTBAXOqCaUKjMIzKzlhY7Mi1rPDMq+9vUj+BL1NUlvU2XJLcmKt02dmD9DIfC8Pz/02L5AqBSMBvHeNeJf0EVJqQiFnEjHZQuwEipKgGx/jVeRxP3QfW3zIM1tHirvRffa6dKKM8/7CdFoJ4/QFI3Zw657rwMib30AEYJcNzb2fMseUdxRIIw1tml4LHDBa86zz0Wkv6vm7wQZzD78UcNYWVbv+wXg9+ao/+DWGhM86g3A5WxRTSbaAjkaU4JzM17asbtlq/miCmsIn4a62N6KtMNr/cx6MBBAt6ORh/iQI8hCHrGnWLIsxIFuc3qUczrf/oOaBi1K8cXQHTOixYi8CV0x2UHDbu4GxDlLj/Ma05WTuCXxGPYPr9pkGX2bXrAJ0eV9GBci0rfKz2g6oP6N4zrbPdxF0jW9+/z+ywLBXQDftFGb55jd2AjKih+4/ZHbOWhpX+WVcSz3Nl2MMTeSmH1ocnKuFnwpP71pIsrWMSl4m1zCiObRb2lStLn+vFMyVI3gqRTbcTV5ZlasUL5PgZcmJ/9m0k/8DzbfxVDrHDfm0NXnhm33z17obV1duWEk89ToW7BQgXY4G/iFkPKpIwTJIEwPadEaNrq3Umt1GiXJiFVg0ZdlpI2B8zVUu+Oqpqk03+03Z8FS8I4Q0sp47iuseCzBv9h9HD0cEIdBTe9lj5os1YYhVXyPJtGeGTF1TdEII8YoeZXIZblZ9iOn29ighnQdlUqPQ0j8UU3oiYWCYrxbmjLqUxR8Wi/1G0zyC9Qjt8FzkdZC6zL0yZ0O1yd/zGdYylYRhMY5/hNwq5Q6ehh8sSb2FBsxqHtyv8NUmMN11DQ4cdM/pmItL5MdSxk2LXcrSj2JdAWymUnNd4ptX3TO21BSsJasdHSIi2/3WO1bJOxaUHCjkbcDept0HJ8VIp9waqU457UzmDPxuplPPv5LgEnvN55X4/1n/qkDyBaF+/oDt/Cav7C/uoOtEQ2p9iUYFxNNo0RXizSGl3U8mbKrSoICYUqQ9XOuLFz1/vjnU/sigRDqzykyYIuokVsr6u4cLaQBLJ+kvHRwZxTkIkBtZ/Mm41jMSen1y+lymOQwSf5q18WJ0AeUeC79fyzf5UGajy3/hQOOJb+5iyprW9obwBnS/CdGQVNF4iVEV40IvCyICyk5fPmA+lfVYvyTmFDEZEu1gLLpmhrWT67PMKIu5beTEhFH/0Y4kSDsPwow750DF8CtJqGfnf5e4C0TpXv0UXhEP5audjq/4EhA+GADzJiluUG2FzmRuEWABzIvOXwlp68q/Iu1dUh7Op8FM8GOGMHcVKeeLqeKtmwjWZNV2kTxklkBMa2rOHKGc87SP6gD/jQ8+hXCJnJXEUu0OTO29IMkPtLiAaQr37YVxAVDtgzkkp5Z2oK9sxB4/QwQqkNy87P86NNLENibgrtCutCzzHYHQ9ciLB+CDT8zT+fNL2YO7TnlYRJtP6tpzClDaq7kfUONK03/LfbR3cjp0UtymLXH2cy1LmfXEWRnYXLOPz+e9ikuR2TVx0gzRbL1E44XBJEUoaV0/LAbJgc6evJsXV3KWQsrtfYT63pfKcUGgKKRudwCRsV3HBe++wCg7J2H055g5tK8t2NR0uU255WlludxPEfg5VivGX/+37Y3yYFQYfC8kiCl7mXW4A8jOuuyS1KcOo/Y9ZHPOn0GdpL/QkwJl2pKstTOqWnmcxQA1UZpyAXkIQfsh1sl4XXi4+abFJwKdcnowTHWN+pphqMteLenHrO907fB4Ukoadz2YGCTJDOTU6kbob/cKsMqQ0+tBhHkeN+53iBoQo8OSQCMmmz1yofEKnwUVJmbvSTOnor718hItPBNdg3iTbfHCbS7S2XDNiFeF41ZLmkZtjP0f5KxhiFi8pLXogHygRjKfniOyS4iWhwc5VeRHNdkk+6urSHxU5nGhUjoF4U+nUqpSijt2ke00c7iIfnHp0SPJh0K+ofkOwbQbT9WYWv0HUmrgcfAErY1D6ITcBIUw15LhAuNXSQSipPsTqP8lEf2zBacDuColP84Ax1JqRXp/1eYhoT6KZmXYaO/GIYkMqkZdmppUGD7wOyAT+gdLSuBnsTiKxMj+GQhmh3RAPVkeOVNLxRuZGYyzWiDBMVWfqSxe01iZjru3JsEIkmtTTsU8Z/RVTGSZAUDjTInhQJHayBP4PkLFw9/v0uFltNcsF/hIR/0VRpPoXVQQfqSPjr50nruKIFru08+1f/eG9RcMhXQBPpS7qKAb7+/h8zEzGkTOT1HVhWFNQFCu+TaJ2zATh8rUm7JZgEOscQoBa7dlOGAbe1+RArXDYBck87npa3uEMoq+x1e2Qc7b+c9RA/1+4sS/juRsaxGDpNxGbsmzU377roqXdyUE54dnaphHmID+xFCfENJgk41yxc2cT5rrqFwwDhKf2pQAioPIALRW3DjxUMakF390rlsh/d56vveV93+L4Y/o7Hs+gkAqa98EM0jAv2aoNnjqDYfxmoTyQkBhmnAs6fcnQH5j/k2fMTXQG4huOZS1O8SUU7GYKzJGWA54HZSc1/rAjvuQvRYQmLDrWX6xDN6Er0eTeTS1o3edzhQkGfhw5GOXpIRu9yGFEoYhRuIlwoHpZIcIPi8+MHjDuPCXalouFY1tjnM3kajfwwHZ0mKSt0Dv1qT5uQA7LWezTYa8exnJftDGR02xG/GxRuTQMlgkVl1QURKlvOlJIwPFFNJagkZt6yKdUMu7076UE92DvD6zasaK/cCyY2XAjqIXeG0yk/B+mOOmz1ySJbnA20CWoTT9vjk+RIrkeWpsxmhVIEzkTcIyOmfvJrSKHyTmfW+PEZdy4iqiHnwH6ep8sSLPQwA3FdffpIaLaYhwGQcnZlNXkG3YOueNpIWw19fVcc/l8auSVnaoMIRKY1HAm12jn0dNbi0EO4BBY53Q+YUsUfDTwfwrGwWMmc6gMs7IB87wyfNXqxobuIK9wCqX95dCcrV+HX8ip/7P84c6u4IDLAB1DeBGQA2/x4cuKPPqICCTsRlfzYa4QbVUkU5Vz9FHfi8UNO1Hk+5TBuybmuS14M8Ka26HfaRofsQTz4rNVfvYgp6Gkc7OUEX9cqXfW3KGr9J/yfRV/hjGhiutvnsq0treMmsqzqcfJvK306fgt4i077r5rNHrN3XYeCdSbTF1PlIFpWcINcdLRgnEec5O4DtvOSXsm9yHZMrViKjCJYNmR0iE64GZ2iY2yImRUidgHtLRbfrP46zvr44CuEZxPQ1gDvjaYDKpCexWHA84VYwug+naGekNYmMVQlj0nV23KMU9YBJlMeyby3eKPJtbXD4vaeiPGOpggmMLXNXy4VZIc1pbLqF1GRBNk3tm12ksDOhWKMDZj8mDFuUBQzbToCOZy8LaQlQcu58e1VmnXe6GMc1iTkbGrvtGRi54uBgKukyrvxw8cBJyMSz0GtqtnoS4FpCGWBIB+0XX3LMioe0GPJI+9qb1fQwAsrolvB3P7tIMogx+mGzKBLz4f03jLVIDvTOm98r90T6KwL316heXWDqR3XyxwLcHo/9O1GSMtaUzcWiEFUaOI5phbnhiDAPOg4ysH5AvY+jvmzzrniTy+jThgHKe+haQ4pAajfEIZ1OX67qaVfx+lko2UX/g4DRO2SeWVTWdAeERy9k/mXsVfNp4CFzudFoJX5FG4KcuUVk/MweWPM1/H4akbsbIhX3aJuRoaIZGxdf2kAr4+bYdX7U8m9WgIo58rv7lv9vEc9BTcN0HAM9a3cp3P8HK+k8O2i/RmF95XauzfTgetOXhzz6PMRG1Pt59WQsbsfv2ikWpOtiR6WNRm1s85/YLSWKoqDfsjXpF1xeoedrTfZSyPFRrKdZ4VLK37/HOA9lRWkbhFLIB6aNCNPQ==
Variant 2
DifficultyLevel
561
Question
A trapezium is constructed on a grid of 16 rectangles.
Each rectangle measures 3 cm × 5 cm.
What is the area of the trapezium?
Worked Solution
Strategy 1
|
|
Area 1 rectangle |
= 5 × 3 |
|
= 15 cm2 |
|
|
∴ Total Area |
= (8 × 15) + 2 triangles |
|
= 120 + 2 × (21×5×12) |
|
= 120 + 60 |
|
= 180 cm2 |
Strategy 2 (advanced)
|
|
Area of trapezium |
= 21× height × (a + b) |
|
= 21×12×(20+10) |
|
= 6×30 |
|
= 180 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A trapezium is constructed on a grid of 16 rectangles.
Each rectangle measures 3 cm × 5 cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA08_v3.svg 240 indent3 vpad
What is the area of the trapezium? |
workedSolution |
Strategy 1
|||
|-|-|
|Area 1 rectangle|= 5 × 3|
||= 15 cm$^2$|
|||
|-|-|
|$\therefore$ Total Area|= (8 × 15) + 2 triangles|
||= 120 + 2 × $\bigg( \dfrac{1}{2} \times 5 \times 12 \bigg)$|
||= 120 + 60|
||= {{{correctAnswer}}}|
Strategy 2 (advanced)
|||
|-|-|
|Area of trapezium|= $\dfrac{1}{2} \times$ height $\times\ (\large a$ + $\large b$)|
||= $\dfrac{1}{2} \times 12 \times (20+10)$|
||= $6 \times 30$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+PY4aOfoFEBKQuB/HgzQHe2ak6N1CUWCValGbqrSVVZHDGnLXbeJPKmnuwpVUBo7DXKXcQKyDKBKQuOTwehv+vQWSEJKsv6Cy9ZwIHrTRSG/Kj+LPWJnGvIgfe1FpXd60LYQw35C9TpXgW/08SGVPK6lFccN3lBsv/o3TMuB4Xk/5kikT14rY9a45IJzSMpeWELuwbZ30qW2vVEWpMlszTXj+I8tDdvNbOj/IkJHB/AMPDsWA0mgAqgiD5J+pbnMfuesFNd1o+pXgE8L6igpxk9KH+O09w7At4YhFwfIgKw65aaJMPCJxCNS+iKN0SFC4b7dR3AVF3BW2lKPuHXJojbWLEq+9KsynlJnAhkBxp5XuFfcoNCjE3KC50a4e+3WFnnarpdzXD/C3mzB5xChfkt3CUOAMLr+Lm8gMYmQJMk2wQn2SRxp5DhWZ8HBwm/1JWpsdpjsASgL1mvCg7OPWjIkw29hHf7OxSN9AHh65/4SNagUd9oQBb82S0jEwFmJH1pzSewCuwPfpF3P9F7nu2GOr1H6dQTxmwiVno6k0my4RZgtamLFuthzSaI3VztIg+EPRXK+bDDdeuLfOrVmDorbXgj9TlpVLy0fCh3b5D3sLsm0mBQHqyAtz7ryBOSNC01wXiMO7nf/le2SNCafUApShMj1OhFbTtGvbsltJ92qRULsJBag97kzu1TQaHBajhqmgsgSTJcI5xK7f+lbcGnGkk+Oy8dpedHIsYNQzk4dF538tR0kID2gg6gvs2gBNDQYU4EyZpG6cgq/BmRRD+72rDskoKGUjON5d3WBV76D3qwPm6520C41jTdSuap4dOHLvyGkcj1ytCWjtninmivcqDQ+4l+acPPS7apLsypgVwRl188Jy1RG11DXfsJVmNvkYuTmlkm2KiBjERBK3gcOkqxAmhEz6+BUJBFDYz/EtoW7JjGg759MvUaHes+OloiPDWblg21TZLy2MXxarjy0Dm29QLcGN82hak0Fiv1psyG4pTv4YdhQ4SUgTMxOGIBTmGDNQ7j5mnP7N062Mlp5QURIhoNtdFFNL2+DcZbyN1YtunaSKBiET3XKZYAanQoEOW9I3HnV+zySwYw/CbuXfpc7I8nH1ZQzrFtvXkJ7Uz97f4tzrcM+kNEgoxbn6XpTet/cKRcne9oyBAifPYxE10+s5rr0X5JDoxSXmM5yAEe/CfN8+Frq0ebhitSbe2hfH+DnCfEtyx3ETyoA1aVXrKmqJqxBbN26GivkVjo59hIE+TJIfXCvWenia+LDxi0k8Cf13fSscaHJ8Q2hKFk/KNY4uJnMf3eZ7GopnXAPbs+kdQxSdcdgAqBmFCFWcxhR1WRcxu+2KMdEVN9Z2vQi8XhCB5nLa/i7tqchrdAodRSt1RsG6rhTw4cSWZH4L3xI92IK6ZwN+B2+7dVkyBK4/2FVjxeMBbqKmPI1qP/Xs5D97gpIE00uESbBGLwwgrp6Ph37Uyi09V2mJbLta5bis4qm4wxkeAJWOaTUHCDHUXtTbY8/+0nWcVuG8GHA49nJHcalBQCvVr99r5MCC79hJSWJ3AEpnXebL5C7vVZ1dKm/TRzvmRtWfxeficPbymiFpV/joZ1Qmpg1zkkfP3hr6rEp6S3DdotlY81PFlCfdj7AmYHIy9K+hhdG3Xh582M2IJqk01rz8Y60lzgd3+Zxgyc2QlzyMlXFcTTh7257D8ZfzP8ou5YjX01yhbq7sSSPW/Dzijtw86ehA71lxCvHdlru9RJJ6WSSuxcmmAkRuoy5IShghZx0Q84VZQECv3nWzp3TFM8XGA+nk4hm97rTbCvNOrPhQKyCtXXpoQ74YlvTYB7kO3y3tegvGXoRDwrdybwZHopy/C2OTP4HuylXhvWZwt9JTZs5NtGa62tqTAANGmnd2Us+MJROPXB3nOzd0aDSrhVqvdEGFdD444OJChupQBpDtU7kFclBID60WKV1PI88seqbTRufXVRyV2lM0hRxYxDQZgB7guvEn15k8ppMU8cSUA9Az7oXqo1MDmsIum/RONThwmxL4+lWqPTQn1kyuvfg6IAxJ4yGLD1l4KbPziI3Zgxuv0ZCvX1SvNY6LJL8xNZmSStyZo3Se5Z28p2rFFSj2nbz+SQBiKs7w4DQ6+0OVOx5SBpD4sNWgq38qS6fATEaCsGylnbdw57U0I8cRfs78SFdgCgZ2N5TeZUHlzxbUAiXfTejmbMzkwYhaBh8+cEzO/w0yhJY4I8iYxhGw5MrlqNOH4IexalkoxPpVifoRkQTqc4NnFg/Ts1ojWlpGSS7yXE9K8d2OjwQxs/ntZ7hJfRqck8L3Y7CzhonusozFKO5fcMQX8aSMJzsh003s7EaandP6mJ0BdbJQ5JCDMeBif4D7DwSufFKpu4Ln3Wci8jd+JdbAt1LNunwj6wuhxBBe5PfDbkwLyNbbvlglMGFIrGSW5R0psjRokrfIf6AwGxTmgqzgVwYmoN2xCfKaMl0580iznR5ScuzB2txBDh0ZJBWce/2ljfgYS3iaIqWX0xeRNgTpBVB1yRi14UZwJiBAPltBjiIkq6rXRU77oTaaWkNJROUd876Zy82QKwq+AGVg4b+03QGzwHXWlS8NA2ROXXaWTlPNjV+4t9Ug4bbLKfK2tsBZ0s5h4/Z/DAmnykONFR03ymX+Lk0XFJ2o6QmqLSYGZkWOzgi/3DBeBs8LXyeIhvsXYDate/I1MNdwogjhjdlcAJ6/gxnlDs4XorIJn1+l6moeX57MTgC3JQOB+n4qlDsSzUMxvTEFFLd7WAKyd63fLEb2ZkqZVg3X2DynA0AEKAf46kRQvCXMT+XiGpB6pyhRiIMEeEUqTY/bR/fS15jgVsAO18iUF9qrHoTrjcOnMUE8qMulnzcrhDRMtcWNuwutEaUUevHBkbXd3aFtRcdPtaZ+I1gzP727jHj43trNsbQcgFHHbCRijDjt0Fuo0e0rkEtDFhCwQIwFBCJZek/MvCIBqFyAAu63qthut2EU19fmz4J+KXpUcn1MrDsJ9TQzTjgR77GjRodXfrJ+roJ9VE8I2HAsdKcVSy5biSCT//Q1lPmzgjWtsx+0pvbKiSjqZjBW23Gky66GXlwcmbc0iz1T6mpQutdJOtXhfiYvQBUpryACED4MPgKGL3RrOXMZJf2Ttd4QYulh8DLXWAVc7OEiG9eh5LjdQi3S6BuLqxCuT2ni9rqrnbJgPBkpt3IfKfMQthu6k9qRkNQxrDERTpPeBh5NmL3KHr+7Cs7pd2czdBSwZD5ScwGRq3no9CLqrZQ9n4Dpiy6uMtsv3pTcUR0YzMPjSFU3/74GSh2AJExmFWRvW3rM6jCZQWG4/9uGTryEhp7IgSABPx7sW5afUUBBDO2XwvnFCwcinjn1vtyVjSO1JwPBKHwLACWfw3ULW+v8PEuhDb6Z6AfR/8Sv/F8HupXa371vvs8C94DUjHBkajp0h6TeeCu55/HT9VYw6y256kdgZTLw4IfNMuBd8Cf84DNICDlvqnAJ2okcxAi4kUwmCXdLzdD4muvqdS2U4H4risV0prxp5c+QBwNWxghzvDCXc8TTTMbr0+g2iKkE+f9wH1W8kzk9Y/t3L04GKANoAigN1dMkL5ulmjTVZRgcB6XuYiGdCWZUeUx0xOjDHKvlrOgc7FTJu3/OWUwx/2q3GCdM7JkYe3ctFIeKhDlWAgjQjR5DtazzqpFjdpdg+/FEZtmgMqrwsSZAVlHTEBZaMh8cA0I8vysQLk0r1OxjjcnJfNzF0/MhHjPabg0HzZZ+JY8HII626KJ0TMczfnehAruHWsdG631GGGinrQ9geebmd9EyzCJPvdSEsjcLo8wcmiQknRNfnOcB4HVF249lsyX4JASTNMnohu7dyEM/pKds0zl+BGzFlozYfNKCEHAnpgEP1VP2HCc34LrI4Su++z8X0Mn00mNYcDowHy6SiWIWIAx8foUgfk+ahCPSdsEMZ/Su6MJ/ebHvptJtnDtM7xDln1CNAoYnvQljY+yIAOTCbjiamARpuySbVlT/2fgAUjbeBdchU0jJhCpWlzmGb4GmIKfH/tnLgWxvpm1IB0sG0DmY/yi/jCyMiwgo4ojPscTXxOBJT8bq4RBB9nSKZ/JsumKRhLLLp6kXA/BSgB3NfVcZSHCabbNst1XVmHhEN95jW4DhHqd+54ozgAh1BhgMrMsMsRPefuMabplUgffTM0/Xh+dP1XAtK959C7DTnvErNHPEM6wK+BF0VDASWel1aLDkcdNT8y0D8I6aZMI36dB8kTfO0tBM/goRBGfX1/lyADOXijF4GF+JyQhG6B+VPjw2Mz+rqwJ9hfJDt/KfjHbC6495HE2eQw3RlR9cYjjzzUXH56rmhQd5Ti3AzbxqnR/ksmg95KIEj7Pj5/YFzPf8sY7a/DGSuk/Vxw4DOR4xpHJ0dEoCeTRpYO9AqN8Kl0Hri3magBWG3VsgFbXwmSDLa0snyNSuixG6azY9Cllgqes7wODUWrW1sxEd0W2o87N3dP0wD/4352joUITba2fxf3QBvCjUMBfCM4osRDeneYzojSMPqBeX/kGcnuBCVeatK29rdcvrSHvrL9NfeMSq2c8mQohO8M8hrI7zVeBFTRsiKyZbYB6mXpvf5x5S8af6T+14hxGlBZg2v9JyrSjgVZGQq2NoseHHS8lzCova31qiw69EnmexEau69wyDGo9qK6rNuJqJ3LNNs/Ne4AybcpDbELeM6aqa9FZBdXj1zp2EkvcMsTVtGPslRZuTo61l1U4/iTp5sd2UcFIp1hRi7RYU1K/4c3o6H06g01hxDxMjDjrvwvwdd4D51955+/7hTeD+MxtQmv4ayk2/FNxJhDsmt+N06gfvUxZo6KrfpzS4c60wMS9/pUiHXEO4kN0A9oRE+5ixlWbNco9O3LABfKWTyXZRxXkBSFh0NvMJ/4fylnLxR0UlNh+sj3TH+3yqZrfSYE0ZycyNTcyH7QtsuBoqsXwCGDNAr4Ncy8YY9IUJSi2d8O01uPyIrJD17ssQbTHBdxONw56QtVaMmUeE5OGawZUd5MK5UVzwdqYixniHwNHkFEWlOb+M2AUQsJYu/HOkqPRuOTRzcvP9aSTXSz80Aw1s21RwU00pZr8KWhF3fg2OJFTCav/UdsDwA7bXVMy8+ZhPQUhVUgehNlHuE6+ohxMLvRMsYLIP2Civ0J/riKfxsXo+ByvXbTFCSWnmle/5/C01SxFVuvwF1prvalgZCftgrP09EHX/Xi8AuxdAPyD5oMtf/47aZ0BJiuq9RSSeI6mO0ob/nAIZCGiML3h2agjwvo59KrCFrrJahOA4Xti5bRugbT/bIkIw6XRphXJKeVuc7IyGK0Qo4I1v0ubK8RVBPjiOLN2L459KfZOZU6BntuoShvjKyFhU1dwcbYFfHWZv6dy3Ky1s9oUwu6X70+ZgyRBkUXO2/GEilgKXz5qZbtT5oZ8SV4PcuAGgprCaO0y2XluV7a87MxA77TdPwrOtCydlsevxeJt6lb69qYgHSPx/eXsuoCt5jIm4uT9CxMXTFIjnsoO7K3dn7ilXnRMk+3U2g1+qcsraiO6LEZB6Oy5bbsp2SIt4J7WXp+XS9q/06RdZYUHwJq5UAE8bMfaFwjrc5VsxJILGwmjppyyT8DVzZKVjnT9WNLZgkqycrLmFdDxfZLcVyCgBH6JfrUy2+QJCILaXVyjQZvvx457DSetiTtHxoJPS9boCdri2tN6jXwwXOCspi9tJ79klAE7vfqYlwGQsl108xHp42Q9lFRUMOHeEZOoT21IQl4zS82Xal9lBLd9rA8uwFWDgwZMdZZd3Ik6qyZe6GAz+X8gC5wWd+Zt0C/s72Zg6yJLWfAXdA3ES/gmwZtHhtZKTkn7EdgsWrVs/0naQIsZk5mO2YU2f7ULidRLaeeVMBR5t+uH1RaWwRtbMw+yVT5P/s+BWblg+cJey6r2q4R/T+PiCSCauSTe0BPgN2rVCHwtSkvEDuQ9oLPF/VbRkbyHBFseARTPvq1nEsTke2oXxJiMwTlxRma70JHu+3MHS9CBM1IijBX5QJaW7k5Ite5eYwwBiy5QJD9h7YTXm/7TRO3qv1s7LStk8eN5rujv9EGDvO3chVOEEQamaPDwzrBu2mT5GSM+jA9RgPNPWVW+tY3DTR+/7FqbTIMQZTXmTQodpZfefWhm3aFeg2yUs9tN5mtF6hCfa7ryFQ+p/tVegstAoBtXFxXJh3YXc9o3mHYIzs9SPxdfxFdPPcUr8SDF602tm6IYAyx8qSHJ4W966wXNCbKnHPQi00gWSSyISiPvTM/3iUM4EMBplGutNBrgUFRnrzhYj/qQ+sCazAyVii2qK2FjowJxlnFoAL+Tvt8CgQGS86I6grlq4YkLF2Fej0RfnBJ2p576cwcZznXsWCo1ofNla/5y0C8n+vy+SvakxOSMwRMFgIBsqdkgjakMeeCNYgXAn67Qtw/XwL4fni7pmRajPvULLUmFuthCYOonOuJUQ6Bws0Wa6VsHGn2hcCwFI7z7FPgwnBhKXG5RImUMu04Oe4R0MdbEzrq0fMx39xniVU/apgtwwHfTLaDwJOuuRCjDmAXgMzqPGJRYnS04K+wHGVxOvDS64z5LMRELCk8TmfmleFmNrerLO004PTk1xzkaUzpBrV/4kb4U/D5fPNG0ewCuxizjELJgEcG10th6Ix9pqk9uuBHvD8FDqc7yNnbJQj3LGU+KtN8/eCndBklTxjzmyUSb9AbdAJ6crbQPWl45fhbmTcGne5eSLRWUggD6QR1y3oANh1d2r0ITHAnsGYMeUB4HcEs8wEFoVK7m4NX+rPEq+pPUaQ/AzUYtJnznc3lk+OKACdFNVMom++yCGBAtXN+YrByA04u0keZE2n3lbY6XnRQ5q5p3uBJ3ZnlXx368RK4AVvhH46WhyLPSdmrap3IXoCB+7tOspHxlCqyGu26mG+yiqsAbQb0OimNt1rLO9GtzV392YnpnN7Hb4gwdeYtm4ZMUaUEQNf3HosIcH7J9DAA94Kyx9V+M2SetFyYOespUZDaU/8+t6p1jwDT55yUiBiyDY5fbzIzwRtwF0pqzzNRZDFG8Ug4rh74cpRd1tWMwshNQrMBHeZicjAmpUw6Jhm3HsucFO82WcU3aIkIWDtNKaATmzzIyP6RxhZgdlcEAw8DEMQxHWAbuMwTGKlavyXspPz7W1/iFECilay+UKuil7++gZAV/Y6Y+ln6uwJKL3m/6NOB2+yNVli1W2giM52vhIYVaILkm4BVCJyI6tPzyj78RzEm7Djfq7ouFbVAM5DGpkdUuGRV+RiMoLtMOESPdKs4I6dauAGtgTpQ0jjaxYncQqs55Blljo1SP1tdm3DGm4OZQzTfHFqFSfzXd135OigNVUqC9D0xm3RPcy/Hv6DYZckxfwF68nj6MGJAmL3Gszx++FOslpZ8lhUsvGRlm9eMSVXYdfRXl03hEknBS2wzhnNP0b/A0Nv8D+BbyBy5TuaJL8tTu+r3MkHP2euUaB5Ap/kd8V4ks3QOPTC69b/3xsAJqbsE7HL+TozBwiZ7C41tpomPyE10+P5a8dmqWg6fhBl10nKfsNuDbIOf0fi145z3st9QN2xDAyHrl+qnF31JYV/SJ1rGyi7QIZXcKVBCzSa4sGhHPOk5eH079qJCLgn7R6bANDsoO2w2qPZSW+s/+RUAqe6dQ4Y3MvMEco7LBQcdjJlIar1G7WUkQdOKdBnCkGd0vFEKJMIiG04reaVvfaNvDJsjl16w+hnLYMDASp1i8tvjzsq/kOkOftw74rpA3/RK1Gji5ruSI1PA0ifcbvatwR5LTJyB73hQKPK9wg/d9o18kKnh6uKkIyMs7WdqiT19Y/GeXVyXDdP1FvhSNX5yeSF47+uJMEr2m9c/35zluuAZHST6EU8Q8ZhNXU+lWkQ8fjBVsLt9qE8nhwjpG02aYaQtFhd4eJ/kSObL4tugKrgmXfGbe/wu63iGR1WZ1I0ja1ThM5rPZAg/IZhEgv/T0rdBw2JP8A8/nSDRMYGY8ZSKozmDJ4nKk4dJzRRxzaxrKHkd6M90d+MuMF2vMI9WM5VSP1GzgkKjYRNVrd8+DKgaDN+mzq73DnB4dcgTFZGnQAKoyOIBrtKcX4yOJxAMmJ6Kq8v6tSRRcv8XEPm1lJZpdPTdj9FYc1qxCiF9zx8fElISuf67VuiGRkZN9hq+ewRZAuFR+seujFbErUXSDpNsLcEfAii5yrvWfnRHt9vXsE8XbiBS3wQRsRnUHgiTlkZ+qUf//0gYUUJc7fQCnIYSkrjkGflUJ15y9xYHBzQ2JtcuamQlxj3kK+/nsMr6DD5erTPewC7JBsCqnZ5s267/IR/IvJ12Nm9ihOlPNMohluBC04FBxxKlyaw3lMlwFAwrPvCG2ysD4yB+97aNpGgQvjnnEVBFsgAsZiYv6ULVrR24eAQ4w5837ILm/QzrCqXfVtHvTNyEnmoeUuWhwXac7N2cr0hFiysXXhrMWtqglcDi+eDYTKVyYwe5YN4COvFFIQt6IhJt9UeSxmxLqtwAnVbrs/B55bqN8LegqS2MHlQPyeXCKhMa1HYtfIOXwKiFMGqAnBBiNl+BashkdUmPgSaR4ucWYymYNFU5tysV/bGSO1kLo7X7czdT25fSHpG+5TONt64CN3Q4fXqzMOKRm68SrwXCUvnca+HFFi0vkJ1eMifLBIQdzykQkFXWqTBZ9ujNH7xWEXYM9NmTn9srr61BZyiOtqtx+Q5bYH5p9SKY+qp+aWTajxj29c7c0BsI0mBl4ylZs+jdLxX6PoEssU2T3yx0weuweSzh4VgIotyybZrnEm7VgZ5mN8/aT8ZJbRvcjS38gSuQ24wKScSs6U6x+cLyaid87J0JBuK8b97EmISfXw/YeoebWWbKq6ozCYaowgJyQ/qt5Zf5lWiOCeuPKZ8uv5cwLfwRqFJNyvT3Mob8njOJwJSPUA1SWknXMC+KP4i/m6IZF4/XXu2zloGuEXYfREo382A5FFtMti4TGisspXhAb7gMagQJ69Q+eyojid5dp9liDnELjKQChYf4Rinjth8PW4aduOd6OuaTNKoiPhAazJVyWfJ7Pf3YN/rsnqG/0+2lIh4d1HL2h/r3FCHOl+fcLgnWGrFHb1JLWtcB6ON5kHtmLwDD0w8I1ruvFCECfE62nHVF9gA4qSn1DiPYrBaFMmTdGm6yfmJYYhz/XY89WqOifvWHOPc5fR9oMMJbSZed11bWdbfE729WdeWYJwSFuDWqdm7HvI77DFKu9/SqPaIT1l8RhPRq2MAi35YkpEZrVXxmb3Czxuo8Bu6ZpC+XBuV4DdeQaJEYtO+TyN8SjkbUKX6hxYl+m3inGn70HL1skRvzfKmkNeJXB4oR+sTEBAdTtvvnLnw8o7BRREUTn23Cz1ZGAOftO3F+yrqggukocHb7grpOe4W4k+HiDx26HOKE8ZnYOGIDkzMEbgFR+UFkEfjmPyt8Am88vH2j4SovVEc7U5l+gBZ8uilS0Qn0YMNylA7jRm5EnLP+eSFAXLasymHBUw9RK2IarcgT2YHFak0bQ1H7hSoDuzDF+Wzoh7BIPx8iFcgPVY3/5ubAzKJ6dx9woX/4tvU4g8jcyRR1hC/DMiYGgBCDmDGqo1FXnbm6zZwgVJepzxTdqR1CuV5e2bE5v0s5grR1LiMpgc+HDjcludp9IpARyblSyVURmwS1hgzYnyDtAC8GGsLwXQJwbrYYjrGyndqwoPpCzHxgdJy/tiGtYi2muH6+qC2fShDi9VjRgMHFlvoOroBzdsu08YWmbE2w65tLR/ueag20s9Mb9HJkK/ztXHHjUxtOBOCidETwfZW4ItwpRN+TSD0+/U8MyNDrvWbHLZBP1W3LoGgEgLfBoV6mSDsH2X+yPTcDDNSkSum7iK057oygigp8WNuJsTh33ahOwbiEQyiyMK6ToZhsTFRUcXKSaoCelKrlYKhIdSVE+PS9+rvXdDt4GM5JaRmdFp4Cvqh1YOYsFLgS7ZC6POfXtcDPV/ZEbx583yYtjz6lmAspoECGsQf6zrxWvlM2HBUTVbK7WvSZXNByMFXLDMas7paWKQYIE6d1CbJvujuj8LkqG7PW0OA4aTgPTTGgt5GTKb3C/MN0RjsU0etm1QylWCMLu2gvTT7eXt6MW7YI15S3yqgsupZbM6Sn9r0xLqHa/8SEZslZOwbO8O4gqpSrqemkgd4jmXuVDKEQB5oaYtL3ZCh0n9M/DoEXOgnbFcTph8EG+Y4BYjdBoDAp4B2MvE0P2MaYnr42wl0LewGCZj46HttKHeproAdEHciM++GCip/tVGkkOv9IO9ITWFrWgaXACjBVvqiaAKVzd17hfgUslBMqTJGVK2oQgIYi7J1BN0owBuJDETOavtYz/eV3EEa7JScNhKW0TfHq329vxn6XGhSvd72KkXklTiprYewpp4bSw76+/z3UTdp9sv2ZVL2wyB0b0+lZjxFywCPq0YRvs8PWH/YuymUGwjO/ZOpZanaMhwHNop0dzoBvS9E0dUKaN3VNuyP18qlgCKsYxcJgRTH3R12zbL4Tc6hhM0oOgjFlq3p/Xy6NJEAjPk4C9cXWbEhVhMFY1RT1pLk4c+N/RJI79SjcU0cwyQpE2KwAQbfqpygfP7RbTjZtbIRK3+TzuATIDK8IEnWuAl9lOzckxIGeboR7c+CwWcbrkHG7ofPqAy7/SS6vvgojjNa/MDBg3QyVpo3a/KLuyB4xjlBKX7EySWWtnqAJOb7vSWm0Opvl1FjKwMeJ+VIq4G1pg2qRXnZ198PqY/W3GQxbLuajxcsoj10WJ+sBTL7u4WNDfzFy1sKkTxZbVYy9Xhcxe7kxr4YBgrsv+M/KdT8zxeqHOHvyiGMCtVG/TsHcSptiOMvrr6cnCCXRIOeJg2zDpB9gWZVYZI0ztXnhmPGXCsX43yiPvP0onWjiggUWovyTNW0kClUKOwMHM775jBOjnFPiwRN+eenrh5sMgAF6NB6WkLpkl606OU0RHpdNXpbdPNNvyPEk3+1kAUTB1LrxrvQ7hpZ0O5dp8bo4EbXmivSbGhGpXGBdCUV76E5YqgFQLtgVI6ARFQr3LtCC2b8aEaCAxOsEjPge1gdSVrxPPeFkwbwRhzlPOtGM5iKeAnltka/LiLnkygEkRE8zeBOlH+uTTtoEQcSgWVmEgZs/y8pt1EMffY1D5PWgaVQN+xUe6tdcxXVMjzaZ/H8rR2e1BnpKCqyjemN+9ruLpqAGzGqwFO5aAu5kyWUB7eu+AHBbdzoTLGATUufzkDam0gdbVFymfGnqtWt5Eqr0ceOXytKBItVdrS0slfK2UAMdCaMskqS8Pt8gVsHuhIIG8kW048l8/j/hByFvh2xsyOXm8Hj3sfqaps0N1QYj+gorSYDCC9KnS6NwWgnr2svFvvbnAuzh5lK7Panhj6PYJqVd+bC8EVg4A7K4HzROupaMzboUEQXWBevnkwgI1gZxzfwZ5BTCKVktI90kMhk55aN+AFe72oyp3Crp4/xfA2NF36mc5m2b4DhNnfr5VqeImPb8qKMzcSgAXStZkLj48jA+W2o9f4Dk+I/SXw/4fmlcEv0yyBbHCAOH3ZV0/hajVYPZa07Qij8MGC3Izflo2AZ3cKSYOlcsWC1lawauzGINQlyP9iPxCpN3pm3j1+8mvEaHKvFzo7fl4W0c5p2TG3AkmMx+iStU9FNhRxqMcTMyhc2K4qj3VVP0r5QvZmoUQ7KHhhmc2xLPzSHnqysRCg3VoRrXD77BRAWDSYMz1tRriAeWeaals+69/EbQnSP0KFybCL2eytzSxULYIAqiBzXL4F2zFMLB/YxHM0N/LoxOliz31Np0CU/7oUkkUmS9uvZtunzplPoLHYOxdAqUsoKWVeZ1wNfcYUxTkP0VFSa1xDts8CkdVFxPeAhxwyseaIcbDlHlAp3PxE+fjgh0XHDAsNk7cbcXyyP5z5SqvzahZwNnSd5pg8xA0iRZOwWKH6W88ynJ1daCuOBmM0RVKAxB1d8l7B73Wbx8PZLvVviz387VSNI+pbyQvEZqalwm0YbBO7H6ochCzpO/Do81wlbyumgrXPiCSz0dP3//o9IrH4p4H/4NwV90xANdnJgMxdxsnE4Rg+25dOZDRL+MqrNG527r64/Wuf0+TRhvbKbEttrNGc7QKt8Tc7kerYIie4JesqL4C/WJkbsf1PGmDUnqoF+WlejZzZEbD1yGe4+s/aCOWmA/BHEEAFxCP+Rriges9yYiC9gX+yvrADPpWVRy54piQirQf404Chw/pqjL7ng2TyLqqswKyjHJhCvGnP0IlQtEAMRybt1p/Ipv5HRzMU0z6SiZvEAmBnMXogiTrijxaop97UXNEzDBMuTxOcPP1HCKhC7BXHFNNTmtWdLWUsJOLfYIIBE1eYEkYaXVffAf242vaTvXldzAv+NMLDVb14oilVia4JNkpVFpjqbawVMpN8HUaFtY/eAoKESjh4yDgwHwjR9+UGi7QX77BZlRkXhWKTyxV0OXMpeWulIQWZzcYs+e3BH4DHTg9Srsa/qnURV7C9andloV9MD7fnNx6NiwdkKckxnDECySGAYL+z6AlcaxF/3RHUC6OEpF5KxcQezKewWNobjszXw9T+mNIfyZLZXl/eUDR7oEHk6GM5c5PTkXi4xNFRwzWrBFUlP2SzodmDPLa/bbMT0XuwS4B/PGfKKG4wGdcqpJ2GZWI8dyxXwOggbsgJ8GzeI4Kjjjx4gm1iL5owam/n5ijvpgTzvo3gQHSKmzS5ZGW2lATXExoJgdIAKaCwX51VOGJYpyhAU2H6ru093uN3NtCBMriWmajpA28Pj/NO860WSXsSh1h0xYoB3raOvbUjnFiKkkzIh22c0YE62F6pBqMN4NGqlFkz5mYCgq1MtvaCiswFq06YXp2HpMVx6ix+n680tLFboSr8BCr23SkByWDE9po4IwtKCP1sHk5cntB+9WBDdcAQXxDdshV6z3QRLxE9RokSd6Ehfn6/BiRZ5xByToUIz/3Kel4E3sgVVVixUh2HWwfy+iaVw+/PBc7zeX3Gi7uoG3qM5vxQOaV0JdvvbQefWcfcC704lgyUewZvVA40VPY5GbMvfSW+IxFqYmOu8iS5ce1u6BznzA5sPpbh2aI70BdbWqC/R7TjJgP+XwiHLUoqG/UgWOAT18YW2eYajT7pgsTM2gMdBo3tc7rQxOXbRYhZ34TwPienM34LsHo+OqYj91itP00/uvj9/0rH4l7uoVEjjWaISoIKZm6VoYxsGw82iShiw40SlU9Fx7jwmwX4Vg+hSSEXgsd0NY/BjNzsOFThg+uY9EQmI9x6lbWkgGXO5MRegEZuN5Z0fb/u9o/Ckw0oH596ysFyOkE/Hfo/ASdbbmbAbe3IdvqOzzRAQbEqVfjM91GO129iRImlmRhF3bV2trGFy5k549VNuq3ifb/zbQv9M3NRYjNPrxPs4zCjC0XtvP8pvTCoAiazhdsYdxTr1nU0BpU+yoGF8IC4YI6ZRSeqQN9KLq7n0QKivTtC69KuJctL+lpjh9+JjpHBChw7MrfsUkBUeElzXw3uNGAWCIksfo76/L9df4O6IrTzdG3e6P125w9Na2tmExFxQbTNGAifgEiM+GIAhOJteObDNHQgfscWjuDtdPtqilVOC58qiLpiH3WPt/RNT9s5JOF/tP4hyUaXgxgbjsuD8EZ49T7O8aPKysb/C4qEjkm/YM1dBHy0vK2teiWJ0mzTrFpRwdhEivx0fr4jtjywl9KVOVgH67xIACwxA2e68gYKXMXkuWy4FXfQAu1O8fcv84Co3aDTQGWeZ3G4a9zAcDEKjs0LR1U83Qj1APllgQwSTgm8Odf/qcbZm9K4c1hQLbbmf4IeA1bsog4zFaJehakIeQarcJlqXOw5AZGKNCyLEqx8QzcUaMGstS7t76rx9glUfFHe3jH2RElpjyHghPGvobdfOX0dXwiqd1sBRtx7UcUUTexgwnu0CMsD8AgX0ggppxnQtcSOylY6eSAT6l77btgmY/bfALudztykDdTU08nSqFVS8+HK0Ws+p+gZzk5fLFaN5Ke4F6FH/TgGQarNWLU3dCeIMbB1fn0oCo08hADcekWQulSTunKljC71oavzVsJQojvSrZ1BrBLghFn7dQ4AXZAiSFRWNKM0vKgb61CXPsGWUIPiEv2lgItdH5RCDkFicdBQHYOZrkdV+/jGxAk8kEgTpL1SDyWCloRVm2m2j36gwLGJLV7zA3Is5YoD7mzHTS5AdD7v+Sls07qaTVDLYcVdFS5xkkBdvcRI2DXZeb6X611Ud2ebfydAmI72C0eTtdVIiGoY+fUPOfGJTsE8z/PZpmdpNp5PXSd2LRKtZmMk09/Vtg3UM5qBiZmurwF2U51/wyg8DKPH3xkouggfjLhCzHytuxIuous7zr6OtwlnDViDUzgk73Ezt5lg10OCTK3sqGCY3s4YG4z0ve9a82lxqytK9r3Z2hY28uZ/YFw6v5oyosM7Y/4aozcVglXAfP5HvE3qzavAf4j0L3D6pDFunLz/VnIZpRu+adxfaGWsB+zMMUlaNjY3tDOdp0FHaYqFj1/nYI6P+0JD7BHjW2cuKR/XFnSllkQPALQq2WzKt0ZhWfc5BuCNPDhEc87lGQJCQ41kBbvYJm4wz/Mc4Zu3XqIcqrExI9nG+GULexgxhDaSp0VIlQMxHZX9GM6tHRZoIksp3KwT1divxCH0uhzJu8idvqlsYLJHzTKKT/vYidZRHhrdPRbzaLQWrfvzbT1ypDncf1t2lq7XXAdYGgQ6R6jDd3pNlnU5RYYDAJSJoYDzNOAZ4iDQnpuQBUNYmxflb34YMREzZDGi3djLnnc11ybiBwcnCnpw0BCvpkIHE4traQVFJSPS4kBE+SouNxfjVv4GyI+5Q8okhLZueBqayE17aGXD9Dgsv02/TYTxSWtEjJGM1TH/qhNtpbM9gnaekh/u3jKvpONe8uAD/82RX16zOzZSrO+53BpFwAMPk+wFBNtemRrhyWQl4f1fz//FXTxWPPYKJVDXmGokNBYaINWjsbVzJsYYLEJpIWIM/KyXphCYdBv0uBzzw/pUo+23X/mJ/1DrcvDuwIa/OD2/0g6oFHxNo60xat13siazgLSD8e6y+9SXIhr2l/btIjmgK3ywnc6SCcug1+bGv8KGSsR40+hZ6bn8/N0rR9ZZTBG19RnA3GJR1pStcCKxKz18WR2cL4I1Zr8680UK4a7sQVHpkAU/O1yR4BEMeOwFR5IUDTB+X7tTKrffxLfRajHI1vrnBtTaj8fuhq958muVS4QOsep/1VdvtTKT0ib9QgRmh+xMBKXs2wQgaoYtvGLthHAwYl6ezCMiN/nyng8SGiwZJiZSK2OzLbwVmKyzJwaonwFbcDJcn0UyuMIo+d+wwcIMXUrituHBsps+CGlx+MoqStOiuZphDhVClEVRwAqbpbXKJvc2okuULvPTjne/azZSp24kFVgjaJYwK2n1PEOp2LMad8S1FglVdDloReIEWbJ3gSDdECtrXo5tz8/JHcjZ/C5GZG4yxvB3amxunkzVRSWXrst2PDZlCxo0/sN6VD26sWXZVoyn8axVTR0TEN2Ig4J3bHOdygcxUTJVGpKmM4kQfh810XWe8tJznT1DgBdDj2z8Q23hO+moEOjQbF6ezIOeutrkZq7hJrTkkgmGuRgpAQpH3yVmDon3W/icTB2uwE6GP09eXJFyt7IYTmhWZJlbbkhaU4vvkDx1wBCk/bJ80iaysMDyP7k+JrF8LhP7utdn0m16/lIiZM6eJLR+usKHEqflShlP+l5ETk36xrOnp3IPeSWL6RY9viYAthdH4/fOB6YxEuTBf51qmPUdYUF3ClnKhPr+kqFinjweUFHa4mRLxp435AcLhd/dOL4o3428jkXycPaT+cIZVUQFKKKA5rRPH4yBvQCeVbvMe6JIS1nsx+yRsJ1ODC2HiqMAekb3x4T+BLmiR4z60mjuXj3JrqrzU/l0WpuzYqAwAyUDpAUhHXQvNFGkjdbuI6nAo2DMGfoVHq2Oqg1r6tHZ9xcBJbi5sXpiZclwbNIhkeTd6SEkgleZaW685dT2mFl+XyDGEbWONJLPGL/sMUdWNQCsF/cm8h8FG+t6sLa5YNQCuFVRJ8RXqAOhMHgmMy8cDb+CVN8u1UBIm9ofn7f4BtysTSSF1sWxK0kOe9JJv5GFMLCkiahlEnkYJzSCrbpCYp3u7i55c4twNQSZQ6gW5B00wfRp2F4xj4NGhvdWtK2dMOMiAG1vszTmvdX7Oky1xbBVsai0WAuP3sZKsJXCQQXkzp5WbD/3UmrE465zp3km6HqDdzqKm6rPeHNms8YYkgJvhptWAjyxvjdDcE/5b0MXEonfWW0lvYncB/DPwLpvgck65S7nHOCLCpEg97ZCfgwXWPu0PK1d/w9Pk097rF89gvx7xK1aIJhj1pPpYceD4eEZRoPmt+bDhNeNvdLULnJMDDG7CIL86VvycdfY9+MV21yCIYRDA7pydsK0y8rRh1EKrUu3eu6PgcfpzCSTPqUo8WCkCzhuxyoxpIL8j/GOQ9Rv3W+gXlaJTR2+qBkCGUY58KDH+QRrTxj0BsNHfyfKC8oG61cKie1V8NnVF47jExuId0102+JN19C9DZOUJ3noUUTug2qdkz0+MkKMZJwcej1EAFIhmkfc/ye/zeg19HjvyOtZeYUpAgZKbmQXOU5RPlV7rcTGTtCd1cgqpntCo7mWdDI3zAqhWilcgOcN5Q7g1YoK4jA2dF3g0dPjwDUHAY6DVrv845PF7Oa7x2nv6q5InJE2ErIqhGC8TtsU8FUvsp8+K6KYHW7FqKN+YW9k6pNTbIU/4EMGojrzfAdHtEzLA7ywRkwDTpkD3NbUMDwpxKlBttC0UuJ9knaG0VegqwKtqz273dRI6wIofz3dRHAm1yDSOvApMh55pHKYv/2DeYnUU3QtkdEvYTXswAXWgPxW2G4q8BwlsBQqDxPVg/L5VfWq8APN3P7LzfKJmi/lq0nFTeNgBJ4chN/T38iHwwwfwM5Dc3SI3acnxcOs6iOiF8cf/v8IG//GJaTwGYasEbMoi/782rty2oj6EyjHPWSTvGidLLGxhssQNSnuBLGsd4R9N71GGZSEmuCKbOIUjU/dLT4mJVoheEPUyir6yixfHH/EauzAz2Evvnigtgn7ZekBxMpWvGi4rO1tUcO2bdWBo6qlOmrkzZb+CT8mrBXiKDLMQ9bEGf/nD+gduqa2hcViIg8Jj6ycHmdAlXY9i5mkoCgAyZzWILjsGofWXSjiGYtXO6PlDl+xZHudEMpkOryp71j63ctA+5PzBa9U7cJTkU69nodVeRZfH/n/VGLd8sWRTzzkdTrxf+P+bwC4+pl3EOzoakAIn1yXHUjefyNpUWVggm3RQ1aT/+V39fU/3xXnicKwkGe7NdDkH9YHqS5TIDJqcAn+rzd2oG0lKYSiUEf06RHD7+wQhTf3q656ASQ1TG4+kqEjRybRPArF9b/VvUM4RERVUhCDwl+fUIlykNjq1V2PxpM0UKS/DIKzlOzOYyB5tO+YXgJKuBTn/TxmJrtS2/6C01eNtFBmhzCRHIVkEb6hHHNGuSBKsSFBE/aM3/mpgIvpLliugNuI1bgnqP3ATyvjeHub1J/NlgvBc0iqfirE6eXaMXRCoZMdmGZ3wDbmyJXL0O9HW+WyBquu9ciDMPAka6wv1z3MFt9wgU9uKf63WBpU4FJab0rmd2GbX5UprfJgFJaIlcRKm16ggaLkBxKP5/mSOF7yK+0dpvqHXp93nl6F6PrzFF0w1DnnUH0y2MjxO0Ob1ai+ZtIB/A2vSsF9t5ZymH/bZ6/2FZiA+88FSyy4QhcJWYY4pwygMl5xYP4GnzYzxsrXGuUAvGEe7KPA1aCH6mk7AUSaloMHDUfLQMOP2grklJjLkOvtQ9eFhru4t0H0VSQSoRwv3kmRqjDaUk5rqEz2ObfMFMb8fCzIvEOuST6f/hkjqlKC97yAgIxrYmElgLzcXaaeRpGMhMfcvUmVXM5OKx373DmGBDtkzLaWcn22bt0E9o/5br17namEgmUrprkzLQvROhXPVk2hRimQ4YXTQNKAm1bX9mF0gZ79RnxS2LNLueFduKZ9guId0DEl2hqxSZuAsl64HJvyruletrGjAaDBKGnD4aJyTrX/22sNOPN+eJhiW8k3TSBLr3CfgysCPofUeyCdNXC1gEpViU2DLrJQE63J1wul5lRMGBNUbN14ve5cE5LrtqEvIGiCOgnEvFuZ8eXYCM20unfDNFKn1UTsNA18Po2006k4RUYjm43J0lEqxDyM62HqJ7/FX9h7iWiZmrSGHb6x/ZrkpulDz4ZYb9YEaa+ASU3Cph5IGYOkTvTXvaUsovo0PvOdG5dwK3k+OSmd2KfpXxbSuSF5vW5uanFcg+FA6W2rwpXuSTt3rvHwEKiTMgiWlEoqIqVkI38T+v4ji7AoFRutrygL42sZE0Knezedz4dwtRETi0llmprmSUgqiXNjXBT1VEw5FrzHvOke2inI/wy0lTTLkmMLG7ukuu8MklXYMOeum4kIqRgbUQfSU5MPHHnks6T4U+4KB2Ra6v5lwLCXdmGsfuEp7bjUQIQ7RnYeSaoEukyn5bFDugDqG76UftFZMEH+4IPz/GLfIwFGEEQrugkg9I/670ZzALlk9vvu55gesegvmRJq/iv5gR97WieSkd0M+bTPQ4R11MVeyWH4EafZTls7CKNnlDM1shZKcl1vT+6qFNr5Xpe7ctBXuhFzwtCQ6ab/lxKWbX2hocFZZfpZDdwfaMNQh+hI7DbUBkdL5PqWzyzhM8P2m9E030xmHWsh3JQ30yXUhbXzhCIfy/nnOD5C1DKHjawXEoCKW+3kjRHdDTKwdKQ7A76t3EPuBW02pd0KMtGKkGpWnpCC8geCSoBmkoKhEbX+3duFTdpt84DhhMDxXk/sFGF+GC7LMgJMCsMXINLXyXQCimuBSsZpZ9bh7nf++x7FSlFamfhhPbcVhOD4O2xv+fQz+7uMP4vDCC3DrrDapKpABTEYPCMLrvhPQis2n7PJWu/kHeBLt0bOMmoWAvvzc/aIXlqlXrtp8nQrbzA62e4XZjAA1VfWzXSWjDqYX/1Fby0uDpBM0uxuMD5JE46kANIF6qhU54XVVXnw0DT8IWXtXyOip4e6cauaFxB24h2XwRHoSDBf60u4j8ls7LhCjm5y9zgHLCaSTCJgDUN5PGdI+0mZ+HBU3EHQQ778gSiG7UhBc2nBjAHV+MbE8ysfnRHlPNKn2ck30o/LG5zqsDeVkSxiTlB5xw/1Am1qwNIQ73mb40jKzGpe15u2EAF2ydbFksp5W5yy6QQ1vEBj/3KlrvAaoHjqtlbWW8JaZsmP8gXicjATfadFmDiXaqzXAnbwteiwkIlmVpucOCKIKbfXbYK8OIqlp14E5b04PkOHRNwBtsuO0n19a7nFlmRPdfAIZ/ioHrwuCULEvcr23UD8jztfe1UKoGjcevgw6d/EXYk/lX9BIWCd/mRheMibEMOa80zMF6xDW7OdXUqAF2u4aaQngDVNZb8+9Ez2U47b2K52/djH7CE9nKFQyiRjEG1V2FdAnOKon8z6/LDz2/Z/mLA/M+pVWnizWJzaQKiDkjFrcA53TIQiaE4f6vEkhKnRh1vBv9ulPxyuom74tnKGfGNzSF8KBuG45/pMMKEpJVbGqDiAi80kEwc4acIWEcjd/Tjmo/DJJrpsaCQeI9l/zjdCId07sJfe4QG0YQp0DTt5nZAbzUsm3Cp3dswTFwonuQTpjBp0J/QqsT/I6rXV7LrUJuU4LkKj1393escBsdsa+IO3aUUxYMnEvWC4XopUhQyJFztsupQm2zRp/Pn1D98zQvykI5R9aYagRz2LGdod2G9xI7tAQ6QZuTbbGZeZC7Zb+Bm7LHn8UE3HkYYYQYyCVaUy54aKQLZJwiBHoskemqshu4nbMUvkK/xhELxPDK35uFVfT8xOUe1num0N60Naeh2w7Z+V1U+3UbEviCMHa1lmCE8LtOmWub0n7wUkASzEKJREnXUf3vwyYnfNG5heicrF3oEbhL10gtkqtAw0cPkQtjjyf4w/kkpEZk7CG3B0Ne3gYtETEGxQCZYuqQnjJYtNF7f4tQHmbFhe0/wkju4bGPQrjAdTGI/HyP0+xoYPjr0VNgRfQyQUHWeYvYilZ6MNmAuoy1Dh0UhcQFaqJNnBsgtWS2E0wiu6ITwLKNy7hiC9moIPm9JBkAT+xGJXRxthBNE45nQnLSBq9+LEH5ii5+jWNAi7hZhl9MhCWJHj+xjjPEqvxRz6rnrDL9QdO6mPd6C575o7/lqPJNm3klA4eGe+kPBnXXFf2JF2sOBeJ5qFSSO6fLUir1bnWcH/WgXGHfOlx2cI5yDhonwcaHaPm/ndAWKh9rMEos4F4k05UN+YYU6s0c4ISPjM4oNqy2SwDB0uu7XmdW5ixEX9IvjUY8CHGkK1DUjrrbf/AQY9aWTcjdpLBC8ILpRb/QjbVgK9dXUeyfOS6gr9xDAA67ge3jVYL+C0k1or6/lUmssoddZQBNd0mD9szcI3tzuOkAxzHQW9PMyrliNkcQccto4MY2qi7QYbofVarDfx7MS2fQow8Y2Ybt/xAn7Iv0WgomvwZeYwEIThRSVLl1azWFRhGMV2n01sJzbmCZUaAD9djQTKNLOzk/m7TJwpKHvspcYEVT9SRG/9xrrHur7XqTeREhCz9eP9tDmmk6aY/JdOnohi2h0/dyFVBX1yWvlJm+A7y1YuPtSGqPaHKo/5YMLV3msTaP6H5K787dSS4n/SEiAxX8fAKcm3mSfP/AT9uR5JDEbW0xrO7iEMU52yoRmXeOk8minDYMp6wr7qEJgdZGw/yd6GlTCLPRnvFKfDEytA0SFDTNLdIu0ozZGTj8DwQmJTMPpLI8ZBGO3BBt45e7Te7OfMbPk63cQK/3eYIZ/NgAB/EfY2SOds2p4Hr7N1F0AjvceEdLscSdvwjXolwYxo4g3/8I70J6wt2Imx5Hf1XuYbbUoh8pwJO41nlKyJJpY2A/18lsDJo9oVSHgKAtoSbB78obuwtfFmOH5yXRaXtiHkuykI6MFWuWpJhdY45HqkO0JfmzLEJ4gcUuLv3YSNoj5yWM0NRHfQ0iKB5f68Y5Ph4atLt12jb5f4ZEIZEDuXOQhPkNn/u1OCwcRrwvvmPyZ0IhzcOFfxgNRtO8x5HzlTfjnZEwbGSMlg/eYwGcVZYISSPFQeIGu7TAoNPpXNsP2VDu8S0mV64CoL39a4zLn6Q5weNtSGjvLBdSMOzscJ1yvicau4a4ScqIdJFFpJga/tCeKD4PWs/KAJ6Ye3CfW3xxzQoUbJ5kGfON8MBqvlKoaBHcPlkVDVqDK7dpEUoxZzOaNCmPtOkm/FhgGXAbfjFSBlwWSZWwwgyZAh0eDe/2r85N+fpfKZi+uJ8gVQdSOCz9WF2G2SITiEX+Vv00fruOAsp2O57dva7iQ+uhiQGthLJ3Lf65YVQR2pWB1rUhZLTzrlHffLjjrPjQfQvkqNWAUxyXcFNYBQ+oe9S+HcalK9UZUvv3FSvGkJ45XP7Tt4owB+EmkyRF04sHkUgafbAbvbSFOX5Mk7lc0vwglFFBqPOlGH57lZyKy9eClWsmEEfKsPeZnHJIvYLWogBASIQFnqV03Pub7D0kGCUIsOTpFNQIyVcilkUirFjTF+lwze9JW5l4YNKemJ7+Yiop3nJpTR16+UEZPRmvayzCIECbdKLTBdgOuqJWBwn+RzAuS2z4F2N/zkkZo3S7UeRwvkrtjCvLo5aqx1dOCk+hOwA9LUozdCQf4u9b/xU3jqdcRhnbB17uZzieX4qo2Kw7jf16DlU0L964Qo9F48yxjkbr/6DJv4psC7VtA7TLOw/ozcf/rqkmqAWEGPH0ARLt1jk5WZyHkMHk7uXBipcax1nsp+qEhwAA31VFjylbl8P9fb4x5n4oAbTVVZwYGK7Tz83t9RoflHDhzAHYkFzLU+zcJyggXNuoIUseBZya+wD4QxDwBPQ0FuMfEoX+QWIPJrdMNhNBNDPj9lOVNFzQQqwaeRJloQru/Z1uxlq8fQMsRcYK+AuMnLEMfOccD0wUgn7Q4MomLhUCoonZjf5JllKXnuja4O2/crKgpU1jvHhaEn/5WJq0/b+3gWeU4fag9Hdm8cOXd6QwOgXm0MNiEZ0POF6wPrSbppAharznfkoKJQ6F3ET3ki/ht/0NZsr6eF7CVpFyEFTxGofhlI1efKsL9v+WB6ZmlJPH93fV8uNk8SsyYRYFcRB+o1AGteH7a1NSYFjdEJjRoR5HOeT1aitsh93q7ggqzJ6CPJBb0lodaeVrkwDpUYDn3m5xzxoi6A3/Na3rG6p/f1iCv1JMNYi87PhMXo80lmnBCUEi3OD8tJ05j1YfZyC3iKPI47puqvX90c51EIUAbbfSt/LVyHwUb/tba4uhbbRs0gbp9XivsSYWxj55rVNUdLMH2smwkoLmkNo7NDTc+lJIxpjZ3lt6irLxY0nJLoERTLoqA==
Variant 3
DifficultyLevel
560
Question
A trapezium is constructed on a grid of 24 rectangles.
Each rectangle measures 4 cm × 7 cm.
What is the area of the trapezium?
Worked Solution
Strategy 1
|
|
Area 1 rectangle |
= 4 × 7 |
|
= 28 cm2 |
|
|
∴ Total Area |
= (18 × 28) + 2 triangles |
|
= 504 + 2 × (21×4×21) |
|
= 504 + 84 |
|
= 588 cm2 |
Strategy 2 (advanced)
|
|
Area of trapezium |
= 21× height × (a + b) |
|
= 21×21×(32+24) |
|
= 10.5×56 |
|
= 588 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A trapezium is constructed on a grid of 24 rectangles.
Each rectangle measures 4 cm × 7 cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA08_v2.svg 240 indent3 vpad
What is the area of the trapezium? |
workedSolution |
Strategy 1
|||
|-|-|
|Area 1 rectangle|= 4 × 7|
||= 28 cm$^2$|
|||
|-|-|
|$\therefore$ Total Area|= (18 × 28) + 2 triangles|
||= 504 + 2 × $\bigg( \dfrac{1}{2} \times 4 \times 21 \bigg)$|
||= 504 + 84|
||= {{{correctAnswer}}}|
Strategy 2 (advanced)
|||
|-|-|
|Area of trapezium|= $\dfrac{1}{2} \times$ height $\times\ (\large a$ + $\large b$)|
||= $\dfrac{1}{2} \times 21 \times (32+24)$|
||= $10.5 \times 56$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19K7b4PMWYCC/IX7vY0ENKWFLd2b69lWVh02T9eRkep+3nRwOSgeqRcwDg5p36X1qMX8BA/NgAr5A+VeU6CWXvvA2hq1BKV3pV3OYoTUjtWMuBG8DOuf4AnUABx2SaqztjzBryCUdk/fyzuNaJ7ndafeMh2B7ehjmH4xdF9NRMhM70X1VfydVJqEtSX49qK+ZmBqjONirIyG1m3kea8Cw+d4fdKrB0jnOIMMEt9qtGp+BXIq8SnV08TlaqzbxNjDyeIQOiROCfethhc3MnQQD39MQyLHDGf6GwGrrxV/fZ5z3TYOeucF2aHQUCcrzU5mRIAjKv8ixAyof07K190tXp6FgCC0H1LgZsR4Ud2gtT41tiQ/q8aqcMn1blvVbb8xe0Ma58Hh6fchwpGuzX6RXYSIHY+J+e+gPuGvfAPgG46UunCzJGxYpH6mDJfWiV++KF70ZnZYQZX/+P5+XOdPEPidhjYrowOCr1aAHv7uxUIbBPJgVr9F/QUvBbRYxgUPNygYh6O2u8IQZZdfbwVO7p/GUQYkKcNtno19RE+aFFR45YjLcY9c6CoAFjgpCBzArKGboPuDNHS+Z4XTvET82jW/MIhuJGqDmDxBK1vfd7mE6n2/0Mr0wwhyAdqkC0ZtLDVM/cPBg/UfrlC7rgPi0er+eAVd2SsSkiCQsz181GZ6ornVF6DAeetLPoVrAfjoymfXf0q5OUj/AJO+jyBgOZYaFuhocUE7p84QrVNPHKZOLSjA5Gv/kiCkEX3O44UbmETY7+jT2uCO8E2rsEbKhHzB3Wj8MJDfqC7FPc0mdOagwF1euXlg8nKdvuF3fJWvv91mO95Kk+uhlBkgTbCu0aUTlpnueugZXW82pyNKcfcpqtBB567qdUIVCPN0RipNhc18rRRtoTRglKmQhcSCo2BSUI0Ia0CNy8YknxDcil7cbTZPFAJfsvkwJTshDAzfMGFY6wNojUHeNC34LM6wI0Gs00kXlODh/BCdeuR0Hbc7y42O45wdJxCSyMBCRgdCG31IT/gIicG5aBuqQs0/LZCDXfcZCiJztRbv/fF/ghHets4SFcUCgDvDjl6VzrqkNa035bwgRn9gfzhYiRHzLTcFuLXuBwuuQBsXrIJz5IdSom0OfmRCuQZ6dMBxKA0P729iG42b08aAgcz+am6z7hpJqkQTK/B5HYMXn55y/rZSl3zjd43zPDPVtJ4b1aJOKe8uZJetHPjR1riE/4DCoUPX2F4cPEoYCRAqA/rkouJiJsz3YIOILKKfuXNYn9aUsyr5lZJOa44awITCJYTI01T6FfE39gT8B05NT04rfgOXHUE68zE+xcgQ/WVi9JVpZFOsoA1hTSET0yXFSqT0EpCrNS00NI9oJ9bYQ+ycaLkETUn3vsMJ9QOst2dEWpSh7cgFCx1JSgtj+h97I2O0aIwiZmG23NypcleLPRFQo8eZTJMtVdn2jmjOi8UPSlkuJ75RpixctkunQK4jpG7B8rS6pdhAq0dv3bJxuSRmxUXPWjqL+PbpWhA9xeNFKSkA51YxJzDUKJ4GOWTAU6dnmf2SllIzK5nUboeH3/cBIoZtU+xAdqvzUd1vh67ZVDU845thBm5LOQd/r+sxUyFzAFt3CMSBSQ5qnOEkDuj6Unz+Ey+YneCEd6IAkXUE5TMTuiEV9XXuOgAuV/0jYN9qe5GI88A3AipXAU0BKfxn5+EjQO9MSORs5/+Uf5p/f0/HEuaTjBce2qN3SMnjoAgmIqX77Sf8NyNqmQuktDX4VbqVYoMjN5RxAYQ5WZY1AGTs9XnTqoh3O7amWgokmv+ehMMHlH/DvSSc4OqlU4HKVVjVeDxnW1iRMZNrSKb2pyrRX5M8Bg1asG6hY9GyPvyOj3Zo5B1BHCFNibqTAB3bcMcboKx/e0ktTYtObzKoYNJi2WxQ9FXxA8OY3rT2xvk2ze9bFy6EjvbAt4S+vZv46hW3T6FB0v6H5dDdHWb/rrMCfCGZAcBnKANLq/IFVJZpphM3TSAdC0Kk2L91neB8Cep75+Qqe2h7Y4vodIEMczVGSaciF5QOOsQjZ961SIifxoLzyWajE8sxL3obEdRedQuDJ3LCrlYCXKWxSwlgFtYui3fOo4rUdLF9RlF9SA8C9Y4dRSa6WOl3SJZSTRT4oONW6H9eafYmGeIHWhSyxgyAZ2LIt4uE1oD3y5ulOfWy0dyVN7MIQB99vedl1CAKCQsFow9jt03RGZaMJUPN5e3GdD4WucUV0Vzt/mGexYtZz2N7jQCa3qB6t2jlW4LJPH3KZCiP6lvSTn2KKzZ2bwTJera5SsmUSuECAovcb50mKZUNXJ1Vz3v3eYXDvSpTVYv8S5VvRJAVl3xVySIJAuNCK3WMBU/L/QuzsDDjCP97MqPRIQgtLUWR+cil93Qr19UHBtK2S52Ixg6ZAwv+9TTraVp8q0lC/wB7ujQ3tu43gyHEsSH2c0LyextaCHvkscEFFRZwMMPN7RirtWaeZonwdU6xtn2PtMCqNvoI2Ebg6ZovRNAuU+sePKM+ankw5+1jgzYAT/B5eCbanU3by0Q+FDTYb5pR0zmUVlLkkSjzEx0ZFzyPynvm4X9h8o3c4eNUdlbkbhhHbpFZ20y2CBWPOaVjcFMVAnVd88+azxSmHLmPCDs93TPvxxFKMQmSqsaxKLd4mqBJJgdQ4sEt3NqVcQBpDJ4OIgWIjOcRwA/3G9Fr9jBryUSGCdQ0rIIrR9Oy+yi/MhvSArV5QaDigXMUxqKDvqVP7mJF7VfUNp28GrBknUGpY8CKn05xi4jL9aJnXmsMjDHy4q11qw3tKTlnEyz0wWYVUNTP5buXSnJsR5IOqSm1m4aPgkRI4vcQ4rKIIVkaCh64YqBfUVVLioA7mkT1rUwTg2BQCfT2rueqM1AYkYQO37B02Ecol+AsZlMahZK4HVoo6wbYEyxbyLzFmWcF2a228viQXEors5kQi3kfqco9DXa+1jzL3IHtB6c1fZ0Od0Tbm5pwbpEcP7J0mdpuN9f/ZczavY97l7h6OsDDbePkgcThLHWPnrTI/PnrkLaylO+fLxmW9MgGLzH+8oAURUBlTvHN1/S635Ma22CezBYRddZYmwi14Sl7OU1zxcbq1HtQNMibXbt1sz+gznP4bBPettL21R/27IUx2lpSYNSCgo/NZwJ2KblQ26TK05TwlRzyvNYlARBuvwlxrd46Tjss9JLSFzcSNQTm+jmFQ1QhFHOxu4qKbDsSZNIFeaG8MVGgj/1pdTd7UIXLn9Euz4cOqDAmYG+QqBmedsWqF118xfJY532bMzBoCkZmWJnM7uvyV4RF5nMrc0tMFaXtxppDi9Mc50pFcKqA0VHBhJpxkfaaziEQeY+R+aWDTWaHTfJCFn9uVQk8LRvhDDY+RYwjo+j9Wo/hle1ELTMznuVwpFWCh0JSHO2vhldo+CFyJlELGhYJbfo/2uR4IUrwh4l3+HAetj1uIdoGJpn58yvPSTXSwWs2c4h0UPqn2ZxdT9X98Q4HD1F4HNnMz9CU1LyMl2EVr78qUJ+RVed5derRnGf6XDhORIlhYxy3rCaZxZhOinb1P1Zwlr1lNRJvuozYvZ0x3lYHUfLKtLLNWqbs3nxieBgT00/vz3JHV+JoEiYFzqFfLJKMK950hOoKNdKigUC7Cxg1a13xjESmVMRJvmuo/2BLMzBKDz4Z6jbki4EJctHwvZrHWn5G+ERY53fpQY8YNp/9K2oHz0eXvLidQzpaL3qGg7OK7grC/gUho/I+KBUrIpG5M5IKZ6G6KcaCsZr5xmX95pn9NLQpgmAL7vw2zYrOKMOViNl6079aB7v0IqwA4v7y5+7lk4tAae4lvJq6q41qJnfcpaqo1HfIpXV19z3ZNjNc9MczO0VZr5R90SMcPy5p2EN9ioEw0Epu8rZL/Et9VZkujohs9YkLYBLrcEqxKRRl+xfvlriR+z1qiaevGvv/mWwpfIfJU1IKvvf200sMgoPeGPXtTOnP/QZEYvVIqy+zxZmFKOubF/UUm2EgJw5KMjOUzqnqMmYufqQyom9YBelhGRJHgp+uhB2E5Vk6p75LNHYUQfd7W7HgMSWWGEAeXmpQcCUFm827iylezXTkKGyZ2ONPv9f8oOGQ9F8UpyuqCJ6SbasMGMCUXvdWJEsXMpFUnSKB5OFWDzuylhjn+w9Wle/gqWfI+9ekaSnhlXiI62bTz6pj5M0cmhHHFSkQUnN4FNtg/SinSFdp9K2HjT97V1jQ5s9DKdD4YecncQ7GvTyroE/T2sqNfo6HPWMhtAhzOWZkEDdJlr34rp6Vwd2SIK6QvNa0CVB1P6w8aaf/GEtNARQCLZlWU0AZDUrkZGdSyBVAJFupqztmCyS2QEEjFM1O+LLRKBKWcMlBLa+AGpieAxgzHOeCH9vgE2+/6jbpUh925ncpBz2qDgqQcmOzvj8nWP6dsQBmDD/aTSQsywfj3Ro0NZuXxlWROTFHSIrGvhkvs6RNDfwlPyfg63M2Hdc/6GIh95uPF8MuzdOKtF7C9IK9uV9hrtGwt8qDi+S9mrXfGgLWrJLfHUhZM3roz0q5tKQxqEQCESLRAQRn1UaHEn/wYqMES9lNvAvotkMX3aEclKaUL7vdC5vS0whLoNvdQKizhSQxtczcFLOX7J7xi3AhdN2mXbeZbsNKBoYlqLxkkFQi0LPeaEMGYAbIka3mDHIjSlB91Q3li6JOCbkuv6KvGMGRzeNAZMBM3nmJinrpkk9ax/Tr6RofpWoc/vzeiIPrZ25Gz58Sddku6/TiSZRBQBY+v+HATZ6BvX9Tqx02nFhk03TpK8fRp1wIw4/LUxRr5O+6eE3XQvfLfMlBUkTuulutY8vSajI1d50AqJ9F8yfLJLbTdMbFBMAYodrc1p44SGKRV9sIhkACjHszbSMXZROIvx2W9FlkPuimM2T9MGKlzwPXfzAl166yxTMlalxQhX2wXN1JQPDnHMPysS+5lILJ5G9/jOZA3mG4ZRto/40KNdvQ8SziOfx36ersTE3Cd8mZ/g1NYmvhB1hsXetMYJhZ2t107DB74g6KSxNXT63dCVzPJzluq2Rg6R+rb/VhbRsZp3/rV3QSJugVKy7XnHtg7g5RME1ei1yBJS6Ukepd35+J/qOPv1G36jMcgg9OcXjUyr5ZQjwznGURbBVAdkWWeKRFoqbAAPD46dmr8Jwy5xqFw0GaZ1jPYLJ17v6fROLvCDTlPVRj2KVgz1b5/LD/Sm9WSU673TMMMRZ52Eh9ukCCRtPf/Eoe5KNuv/0IWWpdqUVqD4/NG/Lg82kVuOu1FMluwXZ03hXzv9T0n/r0Jr0t1CyQPqai64I8ZbSNC54FvxzaVAkslNp31zVt9ceL1djNUqZ6/BBG7O54Vt42Qaa4cFd4uxaPGAw3cPYTAZuikCuHV3Rl1l9hWlZeeKeif3Ev62SZuqujCVL8LhMESzBBlp+pyhfQnZNKlzSv/rHjsXAZXETGhOE26Ublr/G4+DB3HSbduMl7I9VximXy8WmJ31aULhmG4eTnqJeykb7i0lk9ceBSaxNA0j3/Oms+bb0N7wzQ+v21mBiV5UN69xUt6kePfAVZlwatOhv94/jF4Oi7bF/NWlKiwnfJEDisZgimsPvNzj2BXwPDpyDkzekcuHB6EsfoNOQUyPEhMMl2hsgjcVX+iZ2/I6iLDMv7NSU5hFuWU3Grndg07250RzIunrlv8XLUyf82vpJ2+1XAbl2+PXqfWu6UR9WIuNpmGzPlSB4/UHusRR0WsHVYBmkKVY0u9/5qPnQSUgaTZxYk2F7bA0iHIshorPcw/qxDZNmtWc8iWEWltybItRytDrgn4fxTNq3/a/6ESWAUH+lo3/9V/9SI6PBqYTabSFJyKNk8MeiZAsA/gGG8Jg0VQd/dc+tE00HTYbTtmFQlYkC11cqrMhoZqTozS3/gv+zOmxCAuaD4eq8Cb8MKkxN0kaE9K37iTM3EuTsv9fWlxSn4sMJ/9CzV9EfB5P1WOChAvZBwi+XajRDoXKjY22RjpEz45VsNjFhobuhC/y0lalkQBsmPXvdafaL39ogdX2qV6Fi04u5w+aYFtLPhJGS/EO/WnhFGHynB0OkJIsiOiF8+RIzrE4RV/fls+o2MqgSUJHUBt5Sf/NRN1Vv/GWINJLqwLf8WMm8Bq9AOULjPTpnFxK3QikdaLWz4PBAVUT2pk8qxvS+r2yaolhXN8jUJ2d+L5k8gVph3kHiaiiY6nEyMHkq9icaazXjRPdaEEmCZnqlK5mKEgtQpIH5vq25oJt2KuzRqmnjTEdBRP4S8jwhhAQ90l2GUmfjmv2Nyk8RU1qRmz0FwMrV0QQdnMOhj3YRURPUBu15u7wWHOzz5ZGws/O7sczIxeSv8gfn5bbkddyL1SebBrL1/6ObLzX0yHGBN69N849r8qxREsrLIfJk6iHaVR/XSnhHtFT00O66/ocOlE1KkN3OQSC3TIZfJZt6iQ4swvz9NknVHrtVDN3PVqlQ7KBnm32fvZGRRHeZwWSwlnZmR+rw0DYx9up1WE1QqtpXaMdJoGsjMj2iCcTIxbaIeQgN5dqhh0NFzK6FeoyzTrk77rZIXnMd9u2fG3iiUjd1nyMko2wEGEovEkQDpVf2NJxCPduENkXJVXh27vZ1WotMZdzmpuLzPQKOCJQ62/TM80qZMUsehDyl88uHGEpMb7+Jnyz7mjaR9mTjswMt2VOEheLRbdy8TC8Y9nPtCdlw7qc59hVKiRCheTwcjpLgnKpb+OAFefQmpcKNDrefwcPQg9vrAdW+73xkWuKt5Bx4qOFbkGiyh1Fs1pkxOWKT1dj0V5+SkZ8+0jb2lqsvlOYO6hNd4Ak3hFt6+VcHMvj3Db7WxCRtDCRTbp1BYi60s77u+RPOqcT1PdWGbirOpWrgIvjqixpW5SEpKtgb8MkIQhxRGCOHjsbjpSMTaSQEEK+gWBftp5OFhhazrnO7G8Xil4pAI1S3Ux9D+Z++/5ojDCZQLwpiPzEBxOS8dfsBkSMCtkP796VufMtFMkLYu8t7sYSxV7nDHEeYgRO3pKlFVd2nLkQRncmC3NQLpPgBHi/Di4in77MuGfdmfxjMcZqtVTT2dq3A2upYenPfuJ2s5lRk3/SWJiRqI0SAvU9oe8LR3tVmqLglrp3chFpeTXpuTK/1gyib0gYhecMOuCgsW2MX/biKiFVjtSuVQX+wisxqpXsxOUCN7jEX3cyMipZ4HbPJwq7dGcaFzMBmPAlNeV+KLJ1e+E5s1oY8GDb5hADfSv+WiXQYaNI34qe2KkFKrGY9Mba0NKtF1gaxO24CXJUaWLcLJXophw1u+EXH9+wZodfkyRAK6ZXj1KNs7Y+Hn0Pm9mDUAsoGCyBW7VIb74OM7LLFyoc1uNpS41CIemcPVC9OplZkKsIRyAPcuNqRn7q0HFfbgEN8yHxc+S4cWNMGMY4L/UN4paSwAqo83k5NG477OOw9BtjLgPCsA/fGGEsIXDHYG0BRTWJI92YWNvM3ubbtOZSu2d+iPUiUZhm/zlieZpd6m3fLyjO2Dqx102FgQz5PORFOKrj811TqsF9aaDmtbYE7cJRNyuowfDm7Bxp4I14sUMZ7IwHoELkq8/B5FMDCmSY4q1dJ/gtFeRoNisWnSz0cDGaVPDLeWwTJvp9MjvTvbLCWead/XEfMCFxo4Z4UaKGjK4GvMdeeBf46OHJehua1ALUPUN2hycYyHRGBVJ3TZ15GYR/tvatzEa9yLFEsSMVsXYPmNmjN+GE7BjdnzRMyVapLVX1PuZ3lMZAZg5F7ad9aH3DoaT6IdTLDLjwGyuMWXT/+zbV1SnhqIveW4cRFMBzCb0jfDK8zMXQ0hw92TGW+7MaumwQ+V54MymlT65jY0ECk1acgzdRAmVpm8OhTq1zqjX1KwJhgPvM5Rb9C6+5wdlWTIy00bYY0oXnhni0MGmnGNystGZH77C2VG5q8bqYYdr25Dxrbckif6ezHLjSSz8F3GPDkZQWx8l7ocbi7+2TItRP98CpNqgK37VWFRoNS9K5bk0VyR4Bap3aiDjwfY6iE/zbH4AqYV9BwXMn5N6I7gumY2hTPAc0ueFPGxNqwCC/tz7n+ee6RxSpMF3V5JLY2B8yqKzZsdyNqQqa7YBmuF7FKWcXGxiluARuYL/dOLn2Plek4/VcSRxRmEQjtkabHw/5/19EzvYF+mk4BoPRAAEoi43yEg26jO4rDVIZeUChrLVUb0Pky110x+zZq4xPA49LzEUTTKZZEMmdOEr+tEJ0yD/99vBgWYf82slzYuhnc2liAgnl3BTkFG+YAE8sKkw/v+1gQP/F2OfpFx2mf9mxQvojs2CZUI2apfnNXcHdkm/yHaGPwaDxpZIx/6CUQa/v51qR2bBS41Oc5+ldzbNVLe9ibOw6YZ09+QJFj7O3YyKwJ2YnKdo3GkywaqOjjXZiSLwFwZVB0M24Bq+HubBr3vE88tnihE1vyM39V456K8EUGocGVuBHBHGVLJNZDACcokm4hVwGbKbnCKB6lWdv2wuCoJ+xCQGoj4stKDh85qyt36eNzvf7haSeJh9yPckednYrk6qM43fP6KougZvJRVHQ5h0hhD07rzUB7RB2USiR25dqMSckdsx1rriragJQW2XK+By8brkUVgk9yxFBuGiQ9B1Wnxf367/5fDSzJLOpEFJqhPvxM4tRmdpjWeeRjcFIGCFaOwMyHGtvFV1V8dtOW1Ge5z9VHhfv7TbESqSSRc4w6Z8Mv/g+NBlMVmf2/km66lXwnvzunhoxN78udxZ0rnSWV1LOAYZR9Q6Z4f7CqDqooY801/pQy/q8CMuDTIzWldEcu99FhXk4RiLBOwFxtYellco5aiOnNi0wKil9YxZAOTMy9k3cl1MFfTiAyE86V2QqLN/IJ0lxOFkvvu94w9WHLzFMTFvlI2kbeRgXzEZ+BhxXo8+SaHCneM0xRjgAfZnjG1n1ap/fuk82E0aCzu2PscnPnxpE8S4+vrF2bu5m8Q/9tVJRvxmKlMeKr165ZXt3CVm9XgexLZ0sxEVIKlC/v/ZUbIQOzbf5xmTQqJanYkJaE2oqmxJde7QloKRQjS8zeU/5BNLhTyKQWZHwuaf2wDpW/xz856NzT4mT8C2h62UMnXwDmcFNo6F/DAiwdqP12K9zkQkCpeT3SW6NqlV9aONcACJ4/9r4G2bZ+xTvsDwUUIihgimEOaiWbfuIE3XsbZP6uzSTBZ01Wko8tretr24rNEptIJEr3CI6V4yoyhJo2JBLi2LwCcEdVNrJIhSGSWDg9chH2BcZi8nQ4TawB7Bo7Q1wetUt8tvFETyZQtYOjhpuXU9VZ9C4KJAAVr3tnTp3/Pog5wXqq5F5AIVs4Wuvw7/lNu4qm2MHYO/MTyyEMl4sl0awz+vS9xJfdghGWFRmBcZa65HuBjCIdCDRzEfMZC94gd59qLYy3fWzbuzQBRFQQWIDZyYhxEV6q8fp8EgqxyIfFS8BDzmAjTwaLtvwI9fdmvRAOLbSANBe0e4mgln9+iF3swA2LtFxN7gPMNimH5VF/DfLOvJLQ7RmUvjz5sFLvCJauSbp0OEC/d+EzAXx7hM00VIQaqDkNahU9hsk+xED6CsRr7baNRPTtcbZNv3PMf8i1f4lTjKcwOrQkNbQ/g1skx0aebiAcVDSlfvggsSOb6MsZRKrZyOOgTbMBZdnj2IgFrxv6bW9TU9oCgIdE6MYHKJ2mJkfohrWt8T1A8ueHZ0j3LME1x552La7Z/r69IStzZ8Pn2diV+4O0zxoC79sU9xcbMFaA+iQDsmk8eAg6u9wfNobqvPv0SMXWsSwueHW2ti8uLW9yizuVp54rvK1MWFaYjZ9u5L65WEf+C78O6m5olBbLY/qxKknwVqd514Dekg8mouoPWgfXGMUY9YiqW3Xb42f4us+P4UMhpRDDVpP3/LiOsup65toFTRHG85eLz960HyRf93g9vGNAVyDHLTvLP6Sb6a0NaUwPvvZ1g1Pmd1Srvyxoo0CD8QPbejBrUHsFXen6IOjUyz69EVkL/8NndSbzVGg0FKHFFZZngwyWd4ieNO6+zYH9Wfj8lZgTuzI/NzBLe/jSvPziH+dgPiTNSDkKGwGcCPnAxJXwsi2spiABipEWJs0eVIzv7dPHvkXv11qQluHrVbKwsW/yefWEKQbFA/AY+h7xG0LnPQ1g/aTQJxd5aR13IqVkOW0yQmK7gBkcrlTwoQ0CntYWFpAbLS3r2AEO73+VKwzy+5QfmZBtymj/PuYB99ma32PypNvpA522Z5mPc/0043DEs/rXhh7mXWGDdHUB8StfpIB3WTK36/p0qQ4uEi4ofWAwHMrryG0wlsQpiOWB+6zQwzO9N0zNEOPrkCFIUDL2luqsjPJvrCoMYt1zbrLWDh8cJHbx3374vZbEamyrXqbEwxxFZMwfCQZFqWp4+pyyebBvLheYX/ioch1SWbp2yXjMV3DPhpHbRau4g701gcWQpsXjqG7JminxnTtCG3jjzDcqrB0Vj4ae3u8LpYGUfxK3C6EnskSJnGVgCDW09o+MOs6n2ts6qsJiqcK1Hn/Frp9NMBaJy4MY+wPiVPVLEg0OE4z5+KzmSS+26zm9XAZsXI7DNCyrSgpv4qNiJ5g04jmzOpZVf+ic3sQI8edD0wyFg8Kg2VMzAXw3WPV3s4vSIUdwlBTaotQYg4KO5VFAcHC2hnlUsXQGbvW2l1+cFAfRduIWGZv4Iv06IeMiGLnhQtPEOTum2E1YIb/dqP5/deeh6zSsJJApTDGGFGPXNlRUjG66w7LHaHXZ4tZGUgy15lZa3Ltx0mM9hCaCNBXTb9VgeFOt/nUTp/XbBpZSNhXduLxO6N2PjFpjAkacnIy8geU+3go8ZIQC2C7uSQisKoKrNEjccATeS9JSP58XZNU4e5Jz9m/M5XtjkHnw6SYHRtnoueWCtfc/yjom/KZo6SZHoBLbDFjR3LYbcNAFake66UQiq+AzVOwV69BedcQBfWUxf0qimMzGrPskrm1+/Nl8ms2ktADxDkWT/1oMDSHhyYvGEe3OV+tzT9IcPZn4L31t+dNmtQANh8mGy21qra7GeK+fzw7ftGaonrR4MFaunv6MbfABLL8+KiwVEXwfZ9v/k8lMTnl3DyqcMlrmYdu0LU5YPZU8eselcLqimdqytcL5EqGd8eH3n+oU7GPQB1EzvPxzBLFATyiV1Haxekbcm8A2NVvMX40U0btmXtnVHrftKVAtbUPDCc6bxnFJHQybd3NszYfbPUiNY9X0YDJdg0HVDIGO1q4zkBP7KwsSLoTLKfmdUKWTlrB6QJ//KiG7b4ZTqvmY6gcDDdLXLU7BtTKsXaK+LailmxYh/xITvWXQu7ZaZTZxcom1tlBOo2kzkadLLl+BGOOZACCxu+L/GlEhqefaAii/J8wLaYmXu0Hv69bHgEuKpaF/eKxbL/RN8ylSD0qOOv/84UOPMDUjQW171j79Ld7Qbr3wmvvvw1SGZOvUdkC41d8v4KhnQcFNYeJRB4vgw660promf4HFU05PDrhIFrfNf2LCjyDFJQW+6Pp423e/MmZ1HRKMGFxrOYep11yzUonhTCl+MecP6/p9jLJC+I2C+kqe5eo3Kp+SKaMTOfc5lD5M3ll7Js7PyOHCs1oA6lERnvgMM3fGDSbQM6YZ1xfXjW7GIM+1paYB4bpB0yHnsPWmQz4+/A0jNO6fmeQwXDbjBkPUij/WZ/zlyr8yQy6ZLgrwLWjIFLs9uCDoz8nmEp2RnxtjJhOLptksAeWhgDVSybvz8Segg/OftnYRw2/BW3yBWASLXo/7L+JLvuqk11pMVMqOXn76RxsMeDpOzAucEoUPG4qBnUVB/SnXZD8wdva6Kow0DOhaRVWqiagP39ygY6mBtR4rAWezQCmjwhP/8xLStmewTHTvlDfDJEjJMNQdJtdKj3Ju3RlLiS19L4DDAVnf60GbCa/RD/rP6bJvNBwry2TnrC5YJTeGBsrnLWtguQ8ehdoZZxJ8jsNaywbDoxfVNO3lpaB9cG06a1nWTkPH0EEEek4r/afpExlvAzP8Ck7AY5+RgF7tW+m6n12BxuAUmMLsRo0TRjlZvVfamgUVdrSxCrFn2QavXuJEHRANicXkilNhMctgbbiBJGhBG2USGjUQ51JsWhs+hf7IHAamL8eEpJHLsw5QbB+ZF8s0JmpHaoUhHVdakdqfjHNFxlJCyU7zuMFHL4QlPDi0aGtGfIl8sAF0Tp8MjufGcHr26hW2MiTX/XDrI/nNRQndfvvc5hKHRyLeRqg7ONYwYTZJWGaGGEnlXCg/ip8isnJ04TAdp5o4rJn2/Tjmw72gFEKJAeYdzxCTcCEdfkuqDBryV6E4oWh1lHkrgT9LF/ERIhKZVEjk03kzZ3KXPcr0BOcfCSM0OEDqzXm/h0QtgCqos7bv/n3iJmpI3UTRHxnNi40ZO4mSqTiLy7Hae56d4zNP6+fgkdE6bWSUxd10bThffGFfWJjBqEqoDkAmHNLwNkfJ9EueXZM6+vuZ/i1qx/aDxbf9cAtBjbC0wiaiLsnzDU/rwuvCdC1y2pLLUz7F+3cEFtptiFcovLn7IhGse0au9AujYzkxMzE3Jb16dyAnJeVDljbOx6gkJS/Nl0MHBYr1DuYy6j6oSLJIUiOzUcNQ+Bq8uK5Qn2ZJ6Ci655wWrpB8qUm9iBrdT2jPByTcolKxf4WoC1bEA3Ugcs6jqsQKYXmA15mb/+2SeiXtwsLecPF8N84luIZPC4FIc06CA0pf3X3ZXClTmlvmYCOjXyMufKv8/BRUZfPXuVOX50ET2xckh7IjbvK45uhuBax2D/Wi67zEPO0IYrTFFTeIX+UwGkZrbkbKYbNImG7Yv+xyO2I0z58jbzuCw54+DXAEnc96MaDWmjeq1ArCt+KqAKHJNvJiT4ud6WEjTPX5+RFBMqHODkfqUMZSfXF0Tklt9zl6xLqVMuM9qex6k6d8f+SUSQrkP7VB+IMzRsN37dOOasuVHa081u8UNB9fyTPmE29ElAhUz0s+JUg65nWc1AQ4jl2ooDQSGo9D9mKw6uW2cd26gDk13MU4nXofwzxglbbc3PclLZV+2cvcP3n73Q7DJji4pRNkFDkw4CF/A18vQjxcpaNQjqlZP5XG+pWKMTrXVcLzuMGjNKpk+jJcDWBAk1YeH1I+M2uUFJDqc8L1O+OH2LK/BtuDAJg2yyVoALKGesW8aRZMc3JS9qdZNhrIDgn6noQ261XYt+zkKem1Mm8pJgH3hJdUeCZwprPGoToWFWld+HuvbiELQePmmgH0ESSCXlHi9Y58FRJiIJ6Kuhy4sHrc+b7oW+OstxZrTl7xs99PPYMpgAmLVdZ4b8GkJo7kOdnqvulPV/vJuk58XNkR4wBTsM/NY4ViZBcx01ASVXTruH+G46XIziiSRIrJPUNZoFuaIj/i75QRTkpKWtFnOOP2G8eToLQZmFqYTDPjbP+rhPEEsdvXbjF8lFFib4gttYFaGnV8dxVR4mbBTUw2FLR+XbzBP8gUG/cxyTJxdgm5iRFP49wFhxaU3w5z8Dl3QsvcyT0oWMGOUPIgKGMMWMMHYuJW1CC/B3Yaq8/hZIZTto9fewwhijKBnWACbtOfn8ubmp1Gs4Su1nnPmY6ZtrK97HeiyHPU3bTUM4vlB7SAhUBD8CYue4OUNfoEVSWvipSZPJ+1UQL4oYCpIFDpfZzu9yYLXy33Uf6Ly/DgeOD6x7OJobTjzLCrysKj5nMEj9KyqZl56JcwmvBE25fMXNMMpfnPAepxeBW0Wq636Jqd+sbX12g8O9+Wc9NIJt6Hw4gFnwn3OUV76GXQpsBh+MUt0SK/nYIfzJyf21OZ1yDxp3zhOsJ9XdKFbOILZAgZVwF8F9bi3LIriOgqVSANSxCNK9Fdku7QmNwMDvaut2f6SlTnIdt1/GX2vMX0U6HvuyMtu2nz28l7MYd7V8V4S4pCLI4UhFy4O+H4DVI8AG7wuWkenByvjAglqJmrFu20G6A+LFus0lnuixqDo9q1dCo4mQJ9PwvevwkcJeKDnV60OcJOhVoyS4Y+eEYv9rqt0ywoB+W01mfiICGBV/gsxO5r8XWj7tQW1aZxNmJL5vSiKn6BY2aKKETOXzCoL7NhJVOJPz7nd9rd+izrdaxxvfxihaGUNN4vGbQ34HEIebpMBhaX2JaMbnnW1MOU5KCClZVS9bzS6L7Lowf6igiQwMbCay+tovBonR9+x70OoWNYTqSzznDGAPDXMbfyxwixqES3FcjOXce92Nv3jV9XV75uKc6DhhTy6rY1SWTAN2XowNytwuM5/kH8PYTVFgicJb/WpiMcw4byIsnUapqK5+AUQt128D+1ySN4deeCS70Vh3Ql1NnrtD3HdwgPWwzZi4z7PtKJYz73Vh3h4Ke5t19Upou0DUlw7MLtpyqB/29dvCpYRX4duQo1wVY8fbE98SZ8AvnwfVsdHZUU5iJEzpTrAHlPf2+yqO9N6JQE+8XgJTbEqZbxZFqTS5DxWbd5b+oNA2hZMZc9PLJmTVR2Z24Wmq4C+hZbrxLQ2QTTHPxJ8vx+ZFmY5Dh6jHS8uQcr9D6AQi4E0ncI8Ux/yuX0IupmF7LTGxerd6GwULzMByzTeTz+Ezy9fBr2/m3gC/uA1wQmT4egU+lPMheTc1ZH/lM8qE3c0MbbnPACn9hixkp11tlLYEX4GFksBOFQESPsHB9reV40x1v+LHzb/rS97OertU25NZwHnC/jqG+5t+dbX6uWjUvwMH8qbE02QDCcVFIUvkRLf/FE+WSjFOmpC+GnJs4CqRoym7Pi73rru58FUKkBrEJv+4pshhMRdOTphklythm7q3mS9CgyzRGIWpaMrJ5NXt/aHNS00F99ryq/0ZVrRMHheuFdilMYFxtJfcZkorDUyPB4rKWQAHcPRPCk/9G71LYIKDyZs8cqGq3aDnR43RqSqAN3PKxlCpYrONr2ck21dS++xg7zIWkozHvUtYvn/dUq7qF/uxashcrNiSetkfpu/SC/GmIZJVAt2gQ0cU4xG9lgczSN6JuhiUm7O1GxfaDRD+giY9a/xy9RZkuLzXpEKLpP11ZVV4HjNCt3PBWv91pxZ5MLjKHNhDtTBl6b/+ydGwEYnPWX7vsWW57QqmbROEKD+YkVaaCotR9ZtSzq6gtesqtC9rDN8HPqdLMbGCNUnw9IZw2UXxIq4W32TcadPL0KJgQK8R8G1IWkXEHsHmaq3LsP6bRzuslf9Ejz+9BE8Z+rkwHBqol4Tno0WiZxvAFc/XWxFCcZUCeIw7q/gljcBP/9DjqTdBxbNHRJM0zQUedbpMNYi0SmSss0QIkTGQfqI5JwqJcraURtlY84xGuq4XR9e+SbFld92hCDYFKTqrZopsP4dKZ6rcGQRhGmg/64QnjAQG8eM2w9o7975GNNVWTEfxnwnmhtSOcJLUqW6t2fXTEBVVvYgsD1okOmwcYuYo8+SCdBMpxDXGRFX/caO7hQS7jwPO3Be9qrgsUmEbWjIhuDD0CDaQX7otQ4603xQkahrVkS6JAnz5sI7CRM4NMtoKJjG4r5Cqx8sxWFTF7R63dggs4qBflNLoyRnxcvjThVKD0+I9ybN0Ltgshguk+TJeQVU6TXeG476gsvpCjDNGKG4HhuTMzqsCgWlgkIkUdafZxVlcCSSST9GOo8XsZ5/yB80xyofb/CoKrtGyaUeeWSNyIqTJktd6a3ohSqwZ5ijAshKZqRj84tBU4ID5Uw+oVH9qEhjeq+Dm67dkX7pw2vh8C+JxfCnNKo7rOvo4EH8q09AaSXceAHYXZRZphSn0kdPnvn+S5is4hPjNC5L8lBfLc608xUtmBP7gHFftNbLO7ftolkXZP94uS8C2zWgN5sbmpP2VYEHLUFqIwgH6xWhgtc2puTULT7k8EfXqfDMjdPBdjYETLwedNXh4+HmMOwTnHk87d1tEsC6Q3py7UfI9EjASCcwLJHpsrtUH+roIl8V3zbOFrx1hiazR2In8lHyo5aN9lVSSvNkCqipx+zamUqUUl5PyJTBcQ4dTwSFxefH7GqV8MRy5dX26S9c/XfVubwo0yOTFhYFO0iTTTO8SwNsFwJF+PH7rY+BNf6OfR5TD35+MRNfm6OATipcSQG4FU78aeBQwIEHXeP+wv07L+DFKVMiCXqNBdvOYFmUZeZMhewUju87Syo/gBf+hAgtnQr5Skfe4qt6fco3WJNZgh0su1wB4WhOJ6umqc3xmciNDQv2Qrm70OdF+ajcLuaHpbJ3Dsj9r9APewWObnTI78V0P/wFTE+LW8uytRMV3ScP2NoxRqxt+5ms61Ju2DK1CMPFjJNdA0Btubk08pVGeW8ITadx2VH5DVqamNyHJu3++6HcHmaREI2mGPG25nlHu7WbZRb1J+LRmUCvhFsrKp2ibL6WrdFLXpK0Z6NpGj1iMAMYYSKH2pi6G6FOUXDAFZbTMVngq8wTh/59vLGwT2JNKm8GAWxt8uUUsb3juW64pIPii8yBP++JFHXBmhPsJMMy1v5ideLCMKHpbPyMfJ0PSeXMxfJEDO8peUi3+VzQsi+CoV5xaZrDk6BzMV+5ZiZ9HZdU4pRG/Ci82dvG6pKPqyiHivSIb9FB7TIANTKgHAuS29oWpO+fKkP6q+g5KtQCZA/YlN9vrj3S4d1iyHxEER+6pQ/VMaTtK76jAsT3pI8HSr5sgp9neahuyrz4A2A6WBT1rOTGQ9kiHxuVV8tdK0xvQlxJqNfQYK60DF1lFqqAYixBZL2HfgUF7DiwI4FJF2B3HONMqPk2Kt1SzfEjXt/fDgXYzb+bEm6i1RqIYaTahJFdgPqLXhDhswHRfr9KPgghLxsq+SapfkhkPdTBAf+MRsHPnrBD12cQbGMLkR4cQDl+k/XPaUTI+uPRPp60YmxOjDoiAC4edgL8mxbSQg9BD73BsRAI/UcvxbaZafFfnu9iJPHslKAT6nF7WzDBuOEy6fd+9SSgwiXUu8AYapzZjBrCVG2U0H7hIVRsjTSeausk16Au0LZZVQSv4lzoMrHTFcEZn13WlaiUdw7/eZhHBTB3JW0mu9AZLmlNYNj32hY3sUMEPdstjTcxwKbGSw0H6dazVlvbDvyc2Kcu3ve4jKPUUOhAhfyfd8/J//XrxcCVqfGhSlenkyFK8nmT1LWySUNzZZwI2TcxOFTr1m8bcz0l3Q2UYYODBz062JIpAurUX12zYZQFzIOEJjTlVSkDIimN4TwYFMTU+wYTEZ6xyRm5pfWPZnjiU6hQQ7mvivoVkHOgcjh4LPXGzO2JC+NvOzjBi+tcsrZ0kk12ZV2qeIczFd5J8yPDkauSI/WuYxkusWa9c2x5NaiEPAaV7o8A41Hb1+Ru2MHgVzEekq54Y75YF/LlhKxleB2NB6bbvlMzTVtFKfcJuEfOxvbkyk02x1+ZpuO319DyVVbqtl51rT3RMCuqVUPdyNdG7R2SYQxi+2CHwrUURJdtZwsIMINaoU/UQOWPZ8iPMInnQymBfqTe0mWVY8cztvm5c9dA7XJKsJ/ci5F9/FoPda/szA+ysib4EBthLAEoPXFhuNTonRTHIP02z0vhnqZaf+EkpETI1AcfRaoRY8ooAAQPEP9Y20PzF19crOWa7xOqgbE0BwL5CwasA+surt88Zunxl92FMQqqzZGH3BWptra0FDH/mPWvylrJc3z3k0yx41W6N8t3DTaM6svkBn1W2o65PGY6JJbc/aCdjNQPbfI8gJF4mowbAdI6U2SJRIOnl317aOBhevhNgT2kPZwC9qj2ijdWA75mGm9BCoOTcA8769Ouco1ms4hdiqSModeiT7xvecOiFCTW82iWqtaEvS7ikuJjIo7YluU2OtcrwqPXGQIz4pikzO2jZq2l2zaA9nb8VH252cWcn7+OolGJGdHFgkYbX89zb/jL2hdd9S1Fz+Qag2zVO/SOJ/HGU6nS/Btugmx//lcJc8hOOpTAyJHr4J15BR+FRJs5p/RPDbIlnv0DVQ+A8Pnz6vQiz/7HMkOUiwpW1aNEj7idM6s5Sl64xW+U7QXKzpFpe3QI7gUyFBM5NGPnOngkNynecZHxdWR3v1oXi3LaDB8yfaKsX4DGEbBbEdSivqOYiSYqjqZI28OO/tkbkX5pwEJB4nKbAl3AAEMqOz/iHWfILZKo/GxraoPap6xhwx/8n8BHY+VyRGQCoWHQPLXDfeCPGaA8BsHEuvpYSjNhOpI13EmH6t+KIglfLIolFzLt3wyenI8rGxLRXaRx0rI2cWIYhTcSBUMl4PqO+3GHJh2kiCHKlYBTmzneKHy5B03LAtOYfA1rwgSOZTChaq+yrWiaOXDrTMv2NrGcbexOcDHNcdF+etakkGBVu7/zjNHSTp4wbbivZl7Osxy40eJxb38IJT66vPzh0R2TKO6Jop38kPGa6JjYcE7uJuuX/dbLpHgPwzG1Dd8V6OaXSvoXrRBvaiB6zq19QWA+nuWJ3mOHkv+e7jEqamavuejPDkhGy9s1nUoSDVy7lDS9OXQor5U8BsNX331JxCaPzRr+egtqALmCDvxcPz+kafphP9uRkdKl3GDdmQk3fophp9PBz3Jbto5YqRhe0Ox4sY0hGXg67jAUQDBLkOcYMBB6ckLG9sbGd08FrWaWUF25TnWDG+jljReYWvyAfJdq1vUZeEV9kgpRLJ6q3Vt0Px0aBIdCUmQt12YCXjw0qcP/O8dhNxyaQdYdi4rvWXzvzTg/WbiBEgAbqq3+2b479UzRuGttLkTC6sq15C0/y3ux6Ehy/GhooZ397M7XGERykb9+mpqjwOl+eVtDjKip70dBOMhTUIfevkMg8cqt2LNNq6N27d2hgzpppdQXBpQ2L//iJTBzeoK5Vm/Xke7p/OsJ433y3BafW+UsnOcrYvlIJPUPBCy0D4gS4100na/pEgAvuMqiWNmNpHaH55/2qMhSEzT1ugsTlVwD1lcfZnTdtPA6HleZID8AhgtXXaN/NmUFo0jUKSyfuiMONknS1re9YedFiAmFDQYA/gfnt/mRS7ueT97WyM3TzhHFyB3+7O+sHQb7XnyBQITjunNBAmKsU2W+Bdeo2mxjDvY5FltXpcQFmITOSEPFjtf1B40HzoJyfSJ9C30FcoLLR/Z2qUhZ7E/Bz8JeH2QhpBOtnOrxCeI6mAlABucPZl1r8DKEg/ftf8ATfgER7ztXZ5SJ1fH8/NB5xkcamcQcYMjA12N0fGA1XbGJ2fOpn4ctJV3kinvo6L4d5noiAYB7A76hqZ0lo3bUQxGCCG+kk5ICduoyZV1IWGZJmTnavX/ly75BKOwsgrXenIbXn8WdYUxOaUaorEQ5bH6vj5GxvimFPJZjmxqLDZY6RogjH3Rc1hiF6gfbGyaNoqXVQZ+D9B70A8HZOXv2mf11+cqkCj/J4HD6e8ZRv1KiLn/pSgjP0Wx7c8iVwR1+rDZGfBZFTZq7IdmQMYnM2C8Gzig+F4U3pz3JeKCGX+jJFOla3M3h03Tc2yb3mI5pyiwopwsfhA2kJk+9aej/p1ulcna28+1cEwaXSRf6vWqz4SOAiXkMlBg5uVfhfWXR6LIHorR0GO7OZT51cBJdm3C5nAhBMOxLtXwhXdB8n4CEbS3km17sqnbF6NnxqfRIqaj0iC7lQ62poc1ShAFxNGqfbfB4EjU0oOSDqMx/HYTntKirkXkz6tA3V2rOHBhBFBkvKSV6Hi9rjdiMM0wfE9EcM7vA4yWZrRhBsTFMKKppy9HSfR0Q9Epuq99KXg3yfFTThN1dimexFkmKXyVaMxFRkuvT9kVTQ3DXwNfvfrkXLU5uO9Xuow+JwQITgskYTycEQ8+nNvuilaehkmksTKl+dfBTSfi22Sj79ualG36h21/Awyr6Nm/GnBuRyY13Ys273s8Vu4PL4B1QXUFHTk/XJ3URjHdYgxZhBzZv/JJ8JnavcLyCuk/vLnp83ti1ctnrqzik/QdbeW9LtHHqaQwmVU3E3NbhtGhe3ioD7D5eA1aDaazlGg+p1ktBytaMFgU6rMj4nE6QaV5gYu2qbcOyHRZlC9SsjQJQfsqTIL+B8fMIGAnKiCNETQ1Z1ECJEpuvjI2mW3m7TC7WJHikv2q0DXVCVbQXDAto+wRx7yxf3jCKlKpa3PvBHeJDnC0NO5XVuPw6xuijwEJyvXagVmlc2Ra/RQO1Gry3FFm82aaLEGZy9hHF9dgt5fe6WwY2v029Diu/pjX433o1xs6hvyWcEBDdRzck64B88L3218JfFMtg1I7Y1BJ1TUrpXpqwUC2ibo2SYwE+Lsck2Ul93mJC203/WXm1+0uySJfxaQgfxkrlzPadgrSYcpBPhWeB0squS1rLRWcBlXq8ILz5Zv9FT44HRDBWJOAeJ1DqbLtW95Avm1S5Fb5m19X+qeCmvfQ4WU/tYrRt5u/pdv6yCB0dYLBip4zbpB0hiDyTZ2ltIo5mKMuz1dQ0PkS28SFvHAKAkkErG7u4+wF15oLabrHAqCrpnvL/dBQJdMgPyYQtG/Hv7JbDQ4x/QmfyEjXd7sB+xmeeY+H+FkhnH4g/eucPIubJclU0g5pkPKWQ3p+CA5znlHKfmOA+/kIa8KvXoxoNuzuE25jZi2PMb7WhdQaok76q7HBjNJ2KJRylK+kO0acIWJfsA0VusH7eemGfYyokxShpjMA4Lw3IyxaEj9SOdeP/p0zeb9bjD1I+RgrFWsmv70LLh7z0/LkhmljjfzHCXEXvPsUWKa6DLqL9oMOfmKzJqAK0+ZdFg5Qoycgh+E+I7VH/MYr3N2cbd66gThLHQ+mFJIzr8siz+Vlfo0iA5u+O8uvjwqShlMGPnt+R6xXne0ta+7eBNatGewbKWNjppc3vK/JzwDW26VQd6qhb1ntX12AOQ8h44DSZfBUbwmKdB9xxNr9TxIK4FmQ2V7oSObD5dywXLIMgFx66jrDnAPpcA9ftsxzkm+j2RRbM6tY9Wrupbr1QdKe3Stj6nxkg7fL5eod3TR1fqwBgTieMPw1QgZN18dYhgw4F8dwTKpxSripiq7ACufOKQPu4D/pAFRYlacZ3t5CiYB2tmhJ3tZgktxfV5BltxNzhrfc3EHjn05EaEMv5uo8kKMlkFIFWS6pvYW52stlj4cjPI6pSYgXqeLB1/+sONpPTsdoWS4PGp9c05CIdzXppPe7tg0mYM7XvEWGKt5x2Xn4DL7VgAqW8C0TgeN7NLm5gZBiZ0VbaW0KdFC3ml5/9PB2vnjIBpeML/QsEzH+o33ywdxo/qBLrA0Qv1xKXvebcA4BI+zrckZinSlNREQr2mgPDuqZb7xbbYPNlQwPBUAJvRp1DLBpuIzxqjhOJdSvaUoLli4IVzIm3dkGsLaZZMdZNENwgvnY8CBp89nLEr+xbr96PEc/2DWSKCSTL6RFX+AWGPxsRtflmS5SQd7rmEa+P3He0e1aYu1TUEl2a83ooQJ33s83+3ET+zXHlj0terseBhThrvhSEIeTowINjaq/BftUFkH7QBtnjBIO4mGDxZxO9iNRQd8SDKVBB8Eg59feTl07hm9Fc5YJlYK5V2lhxVhHXLOQ0VwWPVYIpHF3YsMxJblgnw0D+Z4g5CRUwFh7jd5IeZhXNRS4jFLfgD3cP9m+DTO9/1786oN41uPkyI6Dq0TYUAqvVqHxZCDG2DNgfX0/8KQTLMW/PTmzNCkJ8ibtDZMKPCUvcnsemgxYJzsNqUJCDHR8wSrZ/TlSWWZXV+bia/sKkP7ZXKnnFIUFey/LHqMa9Iptxpe5euMsqkjy1UDHUmonG5x5iMIBNlyhnV6czG+xdYj3qzqn4D7CSqrobNCg9zzriTE76bwM7neQT1nypHkyXSYQMSMnVLjnRSdHrKeDKHfWX3ab5az+beRk0fjyp8qQRL/ayYrBZxQL5GXJXd88NHf14UD9ad8+gfM30il8bFSl8+hcC+crtlzFP9gad56FWgEaSSB7wsE9AY5knsGXOvjTibQVUm7rtlEWb6/5pWB7DpeY+qv/ZBf9AEZXLAHwpnWoyB6MwDW53LqRGqCfhRWo1i+PEgHD3n0zENsXKu5iUTTboWsnpJyDdF1wWTYiCil7+VDEWe7jgHMnW0o67LJAmn/6U0Ylqu+tyenarI0ZgxAb7Pb/Iz77roH6pw8uepOz46i7TFQml4+CrC3+Undw7tqjEeGSv40ONcumzq2Y81BKSPxYgb3vHg2LMAKk6DIfT5fesjcJi7hZ34tEETSBTr96gcTUYpeidRkdOnt3TZYn3EJ1M6N2DrlJcl944XB/oBwV4fYaXKEicsMUj8vBjkdG6uchZwM3MxJWlTfPJFl/rQlQp7p0Y160zhKuSye2QZfTkPFlUgEz9rQOmyue13EJz2IYqa8sR9wynQEm4sGsSaNFW6+uo1Yj2QPtFyBnFEUkB2bIiGLghkFIHdydmnkLorisxH4CijB7FqkJc5x1Ofky2f1t3uFafkU4ryCGQOnd1XgEIjenaDHq5Ov7pO37JAUf04dfjyFkJjlGeHjgMTCG43xcV9gdz2tCXNDD19V06gQpds60b+O737vYfxxx+x8Zm3dqQHip1bREEl7/k20mRIw1v2IMJ3G5KMOU4TO+x4vl/3y4rJVonSTHngRXrhOtaQj5DgVf6m5Y/Comgv/acfgxzzsHsT+ycShGIjsvOKZP8bst6Fz0jr4I3A4jvbtvxnKQqU9WHsYsVv56ihaZIa+GVn9gmrMkf4I5e3+gyoEIWxR7uYdeidkkucsWXejaF5tGQ7tHYo2KUMAETF+AFZ4Dm5fNLvq9pRDLSP8aGUXLN+EI6uWSgt4bSjHMkyWGE1q6vqs4/ldQ/j/9nqz3p00Gj9vwuda1JnjvUXmXukHFBWoYyMdevmgEQ+QnyaN+cCIWB7I46bvD7N+dVxOhTKa9fBWX6WYH1LknMWE39rW+p9PP2u2aOBqPrUfYeCZF526NvwXOKIUjW2tcBYC2JNGSa0GZKkW8NRkIzIlS7T3tqX/Nk/RhWd8axRsjvbqvT/QUu/lEB/SpuPVxHzZmdHdhwNYjNB63csiO/nIVH4b2XCGNq8I0pZDtzCUSt7koStI3zsZ3oa6Gqfn6IleWWMe2rID/RfjnSbrjuGkQXS8ztKGPw5c7Fjkrzzak8M9ALj8rf/O3kYvGnyl1y+eGKWcVpRyfdaVclKhaZZusUcr4O0CsEed9ZzrdXvIfpjnwmEMP1FXH7GYVmG5Skm3XBCS82Hgay0jkplYew6TkcO0092+Pj2bKopGG0qQzIjeZ0nDDpWdlyGcVSELFvz4CrlYgy3RCVrbuh7YyunmrP8k+3d2imM+yAbHNYdJiHXJu0H5Mfx5chnFCM60bFZXaYmbzIXApwUZHDbolO6G/fWNuSHgUrIACx6rduqbmfHhpFEOdERTkMdWinQe9comaLFqEVVsVEzyECqZSf6EOJTHFa769ULiBk5ColRu7Kr4a3l/HB+plyU0OZwMVG0cHP7LUbqZMniEHHwer99xNEslbnq0HlrZ4bzmJn75soJJCTf7UjHMk71gALMv1i0FZvGMQBhBGao8kTIGW6DJli6UzjkQ9krqgTM7OZSViqD6R2RMFYdbLLSWWE7Gdg1SkDrHl+HrfT06wFsFIO+39dN+GyQnrel2Lpl/1uw9QMxxII24/OzbK6jAh7S43zo6oKKp2Z0oDsD4oEWTIlHspQLPNq6pdKPytUg0QpkLjlXOUt+ivS/oQbm28NHGTFKDjfgmuvdWYSADDeqRv5IS5YX4rKbJbZ6XVSCQyErYZFmk5S90qV/2wmtvj2SA+e7Tpwci3JORf1F2re0m3jWDqza9E0qp1TYKKTA/lz3NAJfsiWzvk9HkSoO3BM6nAr3VeAqn7cLqDSyB4dFjUgZ51H/uOVmTzH1cLEPXnOXEGtkqCW23mUz5yT52f2GwTIcn7WnU+gpn5NcK8wuh8hT8RHCeIM7wloacvBY3CpQ03L1EwLSFAx2ZbGId3pf5TXbfwIRjuExa2vgS+SggOn/923zLiwS70pMWENo2wiLKDY1AxegI3l/Qia69jdN4pi9jPZi2sUWR6usnl3HhZshqQsiH3w2MkekZUxgQ5Ff9E7ZZr8AzNPRcuQyZpkTujDFZewEcVJL1aoHLfZxlp4Jsdi8Tiimd9kUZkrwtq3dzYA9XKQl1gv1yQkSKcNJOxljlHS93q2T5mE4KMmeYbbrROZf+R5t/06VgJha+P5FMrAI/g9fzlb3EznlPUzDKGkuODNa1CpsWEZILMoRCI3Iq9lgMmbMsAqMo81zmS1u84YPogYlKTbF6k/aTbnKfW17MAp0lnSuuup0Z1bo32GNEpXF7ivp+kGu8gDsUG6Ek7r92qSp0+o2YLivqgtIFecmTVDwnejq2+/LjITsfo3NucoxRC+fV5NujQtcd4h251O/Q+qn5isJiXyWlFqQ2dUnIFs4tFqGwlAeSSIJ0CCy6bl8TBvbDAA5KZpXdKvSPmdZlbvWKzfKxxlnN+2ss66zrhOMOTNoJoNmGSonoGgpbxrD/87DHe2Mm7ReT0TBBf7Hfnf7yGP+zv54aiLAdeLjRrlAkp/fY8oWXT0r7MQVKDlDxm2HojvlUEpMcNvI0MzL/Mp63ctC6pxuHEL3jFWnA2mFuuzg7eGeZltFoUIme78ZF9iXexjtFOLAnjXWm1v2OTsb9apNAKiN31+2mSXB2uYszR/v39rgIegQEdh69ee89GMQDAfWUR9gx4GjzwM8RH4TVX5kjMayqia1wBnOAfEGk+jkU9HC0A1ohwznCxCgVYY5aUlcP/Ji59D34soQjz0c0y5FdIrvdg0xbqj9pH+JOW2TvArzzcce5o+HJaweUrJI2Swevt64bIkCVrTcMkfffKrwWQ93DC3raRHN1Tc4rz+Wq5pNwXKZwzXVDsa711CXtoBADlFf9qGNCwv8d7vYIKAytuk4daHfWTqWL/GGfmofHCNr1pwQHBhMQsoesVfIfAXuUx4XLRgymhyGjzm3u5ydY16IHHx+o3bVqGQTnAnaifenmCODWu+BkxcZFNznV4djxehdV8o5SBTb/sGTvzGpUQDM+N/eC6E2HdgVsERu/H3QIhVX/XGXqVl/ONX4StLBAfnxLb99jjkTgJt54CcEHNkW8yfbonieoLA6BNmI4nKG1uekbpH/3lC9ekO2b0f7B4yDO8ZvSZWvzDh0SBzY1FxEu6xUp5RkvdXUiStwe2JKpcVq98Nh9O+3bxApS2pN7FTPPNQQD+nKWXr4v06QcARby0K5iouIXhR0Kd+IL1JGKZTv3HRpU1uP/1unqX3S1eFFXSTN9P1YEPbpVk5GWtsZDuy+peLUedCs+h5UNF4fVFfNlRWAfOVkntexK7KSX46haHkzVLvHnZHcgzz2xFHwaONsRs62wmETiIEgo0YjfNkMW6iqf+ZYNb11MBd8Fjjelum5TdrlqVKeN6Mm3HJwVwJvV8BAr2cPRyyedM5QCq/DAMilKW/H3OYTyvyDmasbigBkll2CSb4K9INny5qdAD+e2FMgQHcZEiZZCL6/ZNoI5Fb1XGA9w6dWs+VDW9XOlziQV4oGIZ6u+RD6sG1TRl3aY2dm2ocYWmac4ufbQhVgtRuGcn70jturLsSSHCOejlV7WGh4i+nz8eoTHL5GraK6VO9Dd7I01cUs7xRQTs8KKaRiko8o/xXqHPZ/4SX6FE6uI/SzgZuF5f8I//qHIMYezglx1S/TY8Tlh9hfkddI5bnnIYZ7jzmgM3fPjZlY0+Y60yF3VShytwCafcGv4m+2ldW7mvpAxAQ9R/m7u05qqsT5ByX0zSEatLDgDEDGJUM8bEVsSFEt2yAySpin1mjpeZeuVjxhGjwP/ew2+GpRua6TG9H5NVIm3blqcpdOU4OWiuij/T/ViN+3nB9h+3vLJpMdEmm126HQ0sVmOrXpCNM9GqPg==
Variant 4
DifficultyLevel
564
Question
A trapezium is constructed on a grid of 21 rectangles.
Each rectangle measures 4 cm × 10 cm.
What is the area of the trapezium?
Worked Solution
Strategy 1
|
|
Area 1 rectangle |
= 4 × 10 |
|
= 40 cm2 |
|
|
∴ Total Area |
= (9 × 40) + triangle 1 + triangle 2 |
|
= 9 × 40 + (21×4×30) + (21×12×30) |
|
= 360 + 60 + 180 |
|
= 600 cm2 |
Strategy 2 (advanced)
|
|
Area of trapezium |
= 21× height × (a + b) |
|
= 21×30×(28+12) |
|
= 15×40 |
|
= 600 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A trapezium is constructed on a grid of 21 rectangles.
Each rectangle measures 4 cm × 10 cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA08_v4.svg 240 indent3 vpad
What is the area of the trapezium? |
workedSolution |
Strategy 1
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA08_v4_ws.svg 260 indent3 vpad
|||
|-|-|
|Area 1 rectangle|= 4 × 10|
||= 40 cm$^2$|
|||
|-|-|
|$\therefore$ Total Area|= (9 × 40) + triangle 1 + triangle 2|
||= 9 × 40 + $\bigg( \dfrac{1}{2} \times 4 \times 30 \bigg)$ + $\bigg( \dfrac{1}{2} \times 12 \times 30 \bigg)$|
||= 360 + 60 + 180|
||= {{{correctAnswer}}}|
Strategy 2 (advanced)
|||
|-|-|
|Area of trapezium|= $\dfrac{1}{2} \times$ height $\times\ (\large a$ + $\large b$)|
||= $\dfrac{1}{2} \times 30 \times (28+12)$|
||= $15 \times 40$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/ZOFZJ9i4CjuAyQDfDZteJsUaQWetYqsrEarKVLdUYP6tqpfbBt6+VBGHx8Wqj4J8r/iqsF2P+H/x6ELyW+WfEINhvgvH810k5+H2kiVUDZf9756TlqYDViNJipMjXJ378uiNlMIxnhCV9EFXnyt2Irmm3pik/uP1/twA4ykygv2lV/PvGizfSnX3RFQOyM4CzPWHWztmcI2ejPAf607Lvjumsni3FyLpEbfw/KiyTdeH1QqKvVpKCiPaSBwK0TxiZe/pIzdcRyyN3eS8iwFVLES0yOWQnFnwoG791F3V9jNqC/QdZeboPxiv4M7ka2tW7gbV+kV9fBjx2UQo92iSXb+ta7ZTtMqS7wNxKSOTkF5S/oM49QFgfBIn+vNdCK86b9F+aQMLaU1pW5kQupQEb17ZDFtzJ/nGy85P4mP5LXGZzM4GPneTY9QwDpHwtucurxjEqpPdA4H2XrmK2AXAde9DkSK57vycQiY4CzDJ5PnHmW/uLbwX2BOpbBQ5JmRtyzTX9HoOHmrK/1h96fNb85zD1UdjrUjdEoMc5vI5uxoNISG/6BguP3/9P202kqOi8a1lBB4VHv/rWl0VBKnZEpP7iwyOM2SiZoqC09UPA1k6Wu3F1qSUPYzC0zARUUZbvuj6qbdpAGVLOGYFUQ0gmXdaisd/QX5U7sY90HKJix1osVNYlb0cE0OR8nYUmHqF0qiJQmKo7rdG3P8gWP4RDO5ey7XGXqSUQNqAi7LovFU/JkusNM3oEZ2okK36AhrXR5guWaP0JwgwFSwGMPAnZuXPhMdgZhrh601f2aHg8EUBk5hQeIQLObeSfZTcu7OjLJxUFmMQzwW+qAXpK6LR0ffhVCr2IqLzYLNVBkktvp0MiVBOUfNl1e0txzQkTBCEPkKPEKH7yDUpaPVOR7Wnn6szHWB6dioYSNeuEBZ1BCs1mYXzOr7VSY12raDhPV+UC7VlPkC1G1mQv901WqX0DbreqdDPBrXjZaGwGONskZL3MdwSvHIWw96AeMqzFlUgln5WHyJXnaZbj+3IBTkk+C9Z8EO+Ul5j0UqLgVsgQfKwRUZNAbEfhzchv7dLVHdVRnxvo7UNH/m2v6gswYR/DpXNNy8vtJsHvEyB/WXG478Ikak61quC9xiXizRthuCnAb9dm+NU+/2SiKaWrpWsrrhnbgBjzb04+yngDC78Av5diw5Em5MRQSeZ4F7xhtKwtvjohEeClOJ50jT2uJuRED/V+XNOpZ9E06WwP6RPMzhPAe/ooBjyiuBzEqSwgCLxipabpl8xWnk4beUzRw++AbH/FaizO28Gs6WKjfnZiy8fduT/gfkmtdH8FeU2Kfe0qAkCQ1X1f0vxuzJcqfsBXNlQAi7DFH/jCKxC0/RKFSFRf6+YpTYQ/mRR4Lk5mBy7pBahpeRHixGANWmqPIhulcH6qm4qa9NjzJgiUR2r3HS/FfI5tLNSxIRUT+hg8fkclT0sk9aejtvIbyiyGGpwEDnFT791inX/Jk55uInjKJVPO98myaWArYQeSe25LAhzJSI0Xt3YHtdLOyM0RQJ365PDDjUJZulSGLEFRm0RCpFUFTple+idNqEYGrD7fOjE4/hY7FqniY7ilbiDGdRZ3GX5SZ0KQGMWsw234+D0NlO3mDLv/vTtwdx+xfd/KcTWVux1eXmJ+XJ/yCxrNz0mTuWoWoVmFYYUKyga9Y421oO+Ty9XXutTHPEyG4ogpk6GB+M9KY4E3I4imN/5NS2bY4wK8NMnghXg6spYvdkE348IAWF6hZBH2Tob/yqLOHktkaZVAfv/m5kj/sYx+kow/FWftWHSZXhQ51ljWBOrnCKhDzQUOYRdORkmWGJcXKsrr74myZgtpmhW+5WueuQE0CP+GqD610k/hxsUMfVrY1MdEJ0i/2MlkOgpR4aWNGcfcg9z0MeTRQ/TLsGNyE72LKHachyqSve1Fjiv6cptnkjiF4Ch5cgRteCNRn0CI+OtJOIkBnKaxrPMfW2bB/qhQPf39CVcHGbVDyu1kZIdydsOpBgNWCEk2kRUL2o5jyTUzu1+CFGsg6AYdp881LaIbmUSlJTePvgAIQQ4bhX16DWyJOpMXIs8rFV7edZE0KSRFxXGC3ypZ6zeGl6MF+5NQjOfmDN3TtLL9XicXEMhcUlZzNd4uz2gMoJ9xiZsXfoXUpEvyUg9nzTAYvYNVbT5dR0Lgfnuq3+6eINxXJSFQ0jvd7Jq+bdwU7ik77Yj5OucIIrNpxh+8DQIB86MuASUqVy/Iy7cRqTfzo77WLve20yj6Nn4eBCusptrrvt7T+CGbreEEFQfJXuvhggNccJY9SLQeAOz1TBxz7nxTvwzleqAojAk9Yt7jnK5Xlt3WzI1haJFCXnXz1HLA828+l24FT0aUM39Nz9PGAWckXiosI7wJWdMZHlgmKFqmiLndFD5j3woNhIfTxC5HaSGZmJFLxYFB+lTt2gliGcSbHo4++mH4owBhfwb636ssODRIxjaeMA+o6skD6HWke1FeRUpv+OXj6vzAckKvVNApIwMHjU4Q5XmURZGLIkAoFaigO5YGSCR+mxj5s0aG+Pk4ZHAphmBAPH0iMvat13KVtAy/wR7VSitpdFlzKl+gcls0L2JyeEpEGuOa68REZ6gKec4iZ+HPfrSArGWUpc54nh9V7fWGVxKomlw3JJhHQUzM8azNYCwnMKLhWNZtHOM096tzbNwn8qkaFFKzVnoKIWylZZPG60x+kQBp6TsEOALZNtXluRfBh7XYbQJh7dIYuBwLLAeJ/jgU9SrM/LthIc+WJYF32/jRw+/9deHavZKa7O+cnRfidFnr8BOB2Gx0CFV6lCYqBqq+sdPSrRXUq6xojV+OZBwS74LopU0iwPTgl16h67vbyF3di3pLxn921eoQ6+PJuCN9XCdReHa/r7u3VR66D6E9s+06bPme9Q7q6dGR9AOoqVEavK8JarM/KqomWfSDuYoIOKLNjStyNvoH9Jk07n3Vn5UzEEIG2U5brSs+kJThgZ52U9LucPdnNQlscE44HglnV9jkV2hmf/wQ1v7ysmly7jWiZtqY2uIkbwKzyPCvb5PllC8LmT+BD1fChfQztpQkzcz5Olcs94XOK4cxBUBg9TERunJ8o56Do6nvXOBd11xoISA6P9QT6XqUkJnRdrhQPyaSltRdsVLny6E11skWbZbcrVXwzqAtiBRZgI2Tz0yY1Br9mQQS2YW5P0E8EfLyRiJx+fz60+3fcatrt4zdY1q2w65Jb8DH+cB4UknKDFP/yJuJMDC/m42whbykleI4U235ulp/kPYaoxmg3McseZANIdyfuzVt3+uFbUEiW9aQ+xllJp0wYpmp1GiuuqpD8nHxSil93AABnZlW1yQZ0R7NCJhMNrydG6pWfKlb6tMy7n93aRVAbEv8+bIUy9RMee7XYIiEkqecWvJx3gQoCosXB9XugK2rLjr3jW96R4mK6d0yd4b+46w1FH/d6alUMfopTlHw2OdIfyaYGW0YTd6LhICpZ03wBUWxze/OdDf+9GE+M1lV13Wt/aEFFu6EcAGIuHkR0ERjpv0c+PmAC1X/JZ85a7nwhviw5KIt3gin5Ct8yufAI0upMURBeHcUscXb+1/XmFCJ2npG8yepQ3of6Qx5yaCovMW0YAVpoU5lmxATpwfNORemCqAZtO0QvWhwlr+GOkZZfTz364cB20acFAnkNZeMgvkMTs9oCSv/UiUb81nN0b1K37G6EuQ33mzawU+4eiU1OGptH7zdtQ0xCOGbuiPuZenf4FSPVKzP4BWpYfir6Yk+Zgy4pAKUSkoXS7NeV3VriEP4oMKg/CCDcYQoJaY5YESj0wnVJUjNvq7FCJEwPd++i451Yr1pxdibT8PNukL730a0Br6zI0Qoe2ebawgOvIFQCvcNcJyMJCvSkqSm96iwV+t4yso4kEcKCajVnZe4kSZqdh5WTWFJFVZGLzzXKXaFWEgx7N3TZvI86BNHh+bDhCkC1Z3NtqWPHbHNNozSp3h2jk9N0N7VBWpxAbhcQcveJR79JPITxvp/Ly3VqpXk/kHye3tCib/SwAkXPtM5A5g0m9rtYUp1M0uS/h3DgJzIVPgho44UiN0y2ryl00TMIZRAtmgLrLmdy9qGqVN4blvPbAEp9fAJ2/0PZrY+4DnNHKoaJhjTnEqubE960UWEu4Yq4pnAhUgftzVc885iVzbakDjJVy41qnNfdmawHAGw+Cfvblh4UfJ6QOvPDROsnBcJqmdia+3STjm4v0uVlVrezoR9pGqLjzZhxREfYZRC4OL4OLieCtFwxuEuM9Xi3Q7NZO9BMtIh3rr2UULo64lUOr5VI4b3X6sIgsktn1jrpCjIQHizN5KXxgbWQFVcAxMm0ycGGrJ49RleQquSHXCGFwPUuoFU4KGtTeIlE/Odf17xQBZt/1wgBkyp1fGpWWOFZSu9+wZiWjrBPCCkTXNmXpd0p5Eea8wt8Ssu9/2OQ8B+L9ha3A0yhKCHahqHHGJn0Iy/FgIaR3FAEbHKf9s0Z3J6DX/xLOEAxc3erDy5459GHWI0ZCMyH+2Ka212qUrzp8KyW1jb/3fF9pZpOw3j3k/0/3/GAtdmDBV6cHx5SUiZ+eooOJ5wN+70MKjyTKOB4Ikq0BiBfYx2esqMxCUqyzGehi6KVWFQ3aI8Lwu6xSQpKh20CM0obdoQI80O9dw/thMCD6lM6xYHEUUQ+XHHDs7fhNbhDheDw5YVPOjyepSsMmljzsELDmVms3cVsdNY2h8+66d0XgYiFZ/ZmBTtaFNJY20wgbiJj0/uRayVnP/TJmXPUAspcXgKpRtlBdCHoANv3wDXX8pkvdxMLcvgt8d7SENxq0denCba/MzJ8w/mrwlSEaQRERPSoEfm4dBuXv5DbKj8BUwmPc9nxoCzaek251BCD9tjQHHrVDKOQxWpjr5aJ3yZozuBpcgwjUpHL8ALaQL3qdul9oNKG+q4bob/V+/8fGk81sCOZbHuUUCZEndHfmiwsbPPVEKJtzt/ugn9aIV8isCTYzy2oi0snIoVDHn6uZ00lIwFggevmJk8F80pHTvnTj2xqhuLNXJUYIvQln1qSqvwr3WDwR7M8Hv8I4u+nb1jV13Zw6s9aIrAjLxO3oxpUJ8Xtvzr2pjQcxbGBkw7db1JiwUFAKfWdA0V2Ryfb3E7trgvD+8P7rUYm4E3wk+Uu6yzk+E7diuBfOqQ2APbOJdJmR4g5nb5mxqY+eP9MEg6WJ8xpWxHlZN4fHCFbcDwSzJriXVFilukIalXRNwKHlWsyItNRQhJIiAiJJe5CIO+tAuR/iAYmlOwZITzKH0twOz/r/z8nCeTdgQnZdVQBGGO6Yx2ti/J+Ma8hbg0omJc9+JwAmVFs+XRSe7X4woLhlAOQlxBp7ZwQQOC1xH3nye5E8+XNrdzXqfOSmxFnYc2cUPKDqdUhNjvosJCv8XcxoBWnS6Audt/5DafGgH6OffgREYxty972sjCo0B5OYWoPg/kES2iTM+/EHJBkTtkkjcIVMPWB/YW+uDr3P8Vn9GHICnZ/7DTNuapLmrvrVx3/IWa6cid9+umRCp14mNbJmJKGRumGL3TgnHWeOfngMBAHouF7XmfjF5UxpWuV8jcm909UEJ2i+Jn6KzzhJBGAUt1dZa3pzMpCmom8N/N0vqy+zhCX+Wck7HsVrwrf9drF+EwFBNzqENMJwFIghlapQoNt9CsQTzuTwRriBWn99+hQCvCdJCY3WrYIqr27fEx2XPhZlbx9CnCTSOJMqEb64p34NEe9okEOw0YwA2aYECTsJ65VyDyC5ip16V8rQoDM4AYsdPnvKa73O2wt2lFtuU5Cfc0MfrjHlO4pzOnAW+cICnPixiP88FAQwOa50OgAIrEP8byoeX5+7EtUCrGXn9TK1og7f9P+LHbkHHUaMJWGIYJVzts5xqCX2GrXYoSNiSgtyt3V7Fn5Mafc6Srmv6E7JUnyrpdB8umrDmx1jUjWiZsJLUpk+S9naf7wkx+gNS6v77Z8JyjtQypA25o9dZ/m9TJXJBrJRAyyZ4+v4W75/dPZNSKGd6UnwsafLt0ZLdvfti9lbkPs2ALYrwcdB7KJE1uUwodcrBC3bLyEv1cm+2A1Zj5pFlB8LDdRyvJN3REQudHJK68JtTerRTIuocyKHDzwwTBvyRizt+CCjJbVOmGG/xp4LBSnOqKCifrUS8GEnsPX8m5zlZScZzRucif36l2H5m2dc10yv+HcsVaJWRsGU+gVbbGfT64hphMijSEWPM8icUze/Xsb+LGxh2XRKiN/Yk4g3+3xpBSN7mOH685EowAJze5ZKnjCyMK1Hl4dVLjOYMf/ztBrTP7cWUVuD1l27pfGX1p4cyIQfq+K3O6hA8rQXbl/FH/5IAhAuntd8vd+KQlGmmdIoPlI+hvVbMtbdIbBPChJUWsG89HraM59QiIs/qDHFt+zKi5c1C9Jdlg8p/bZq1DlzazjswmKkK+exr+NO9eGtfNN9d7nacH1+cxc29iRL2hk5K35NJTnRKyYgmr0yaNqZxRpKpmSfsa0X7mSD6rOE8id6G92aikhQXgZ6xJOl/P8zmQO3gahdFKzYJ5zUokysy6QEhlKbVCbqbgXgG/nfrfrhHDNIW7jo39cHYQEP3AemU5I/lrjYe1CzBs4g+zQ8Lq/vLTozGfWpzA0PuGzu2XKNYYMR/Cg9OGcVNnAR3mIiNYJxEBvccknGXoa7l6JmrEsp8i0Zy9nd1YOUD0Qnm1BbB7X2T4MfNgXTpyfeWoCX7G7uW14b68WbZ9UKGDF902zSFRIOxbmex1SsuHOGf/04qKT9iUPlVZpz2AxAgAXkpBR60io845jaZjgT1OMbfr4QR6aVLsnnmRRCeYlPup7zD5PxeajVYdVPuvytfofI06jsR974dBxHCc/kQEOuSrOxzbp6u9ipjTBeGALnb1pqEN59CgExj9z7bZ3B7bkYW1rlmtthWDe35EyRhX/qUugFUNYN7AAY6MinRjda44fIX5SK3D0toH82S6xcORqewfx+0Iu1f1qAu12QFmsLCs6cOUN/SjCHsPxeuVG6yYJpo81v6wxMOEqHTSqF/Y3/ZFD2qIUcdGst1JeWNRxHTxJ9uKdGEMhwc0PJpzWgRvH9ynZae0g+Gn+3oEkyzKbNsx4jixcwcEf9SGWFT2rQYNd5CvXccS+U/frC4eUjoLp4L1JdaqL5ISUaqz/YS0DwEhi9sD61g1HvGIOAmbYsykPO3+g6T68LsX+qkXl3367XFicTLXgRVLy1hHApuYlrqq3ygh2ecwU3IEpq8EBXacsc1lpCQqHnhw2+kf+25OFIjOFdU62fbK7aBA7M0rUEf/u5HuF6YvjO0uZsKFaOiDxC9YsJlZPmzN3xcaxSYQL5Vlwc+KwmEsDLNnEKmoRi5yLxlLivck8fRaskauJNcFk7fCF2U5DbTg8DPhFtGUoRFKOC1fRAbyXBM0zXN+EAhqbVlPjtm1dB8/Zpk3mHlfT8sCk9zizptGJn6mjQfKh+QG6GO7EioB8Nyb/JhDSHY1SZ7eb5jVIRLtxjDbZbhPDsN/CRGOMqELaA+YjyOXLtY/DMNOPmRLNPHqTbusNDJ/Q6O27cLeMX/KHkiy/vC/7CBO8f99Ua8M1O52OAlowZpGQbK4us2nlxflLNv0vbvhvdNVNfbPDgIKsI4AtoBUAzox2hU0R6T5IV8Iqz9kR3Rv4qjO6RyFKXGadlr1YK4kCHnde39m3SSeYVAf5i8JwXm6s1ghm7Mi10UL1MlIDtQZjx4Gg9RB2gkSWFmbMTRqvzUUmqHZ76/Dqt6wPRWatp/cg4f3dCbgDMfYsu/4nvvIJmH/aSbwA1FjytfEqa2fo62AX3aTpVeInGmF43r913vP3mLEnuP2jLH2zWhTiESVJGYBulnNJCK7sNk4nj2eUlqJNDGL4VJYOGz5Y+It24ac6MOT7BkG0RhBqWDE3FhoCJAvyXrI8ZC5ZgEGgGKUpKKtJcfUoQMkPlqwQB29EhocvYsU9Icm203njOZ7j2sumwh2C0AM8M8RloLNIwgHC7aUmGvwFPxb3y6Q+s3UjkGOvWUpcHnqUEpLL50BTsSOoQJAwHzVXtFFEizWq5l0ljDI9cvrbD4sEwvlUPRyVIS81OF+nCHmMQTr5w24XyG5lUauTEE/g9YW4BK7LCWNQJHX6UqVNDStY+3JwePno7z4S1irGowTCdu2e7PO5xud4Cp6Ov+7kqHDRsrJyUOmAv6nSY/5K7+2WmqYgy7tvF+5X7ndx0Om1r6THqb2wjxIaz5LDrB5FaGaAb2nknmVtqScj9IL4RUO/9X7uYNkFaqy/51zHfsm3hlEoi327IB7q1S/MhgJgQj8ehcmTACLpxPdsPbKru+mmUQV+Bp7tk3hlvI3yxYY/Tc10E1BIJ3bHU8mFVlDHpu051qopSUcOMQkyP54fSeN0oyjbYoStahipmv85WnNWvy5rlYHdhwjePcdOH+xZOy47bIlOxUyBFCISDx8j+OoV4KlnMYayEVyUOSTRzumdOQ8nO6SeVvKU1hH533d6CWC5vCXQyVoF4z37D5jc797HkzcwQ7A13+fIVrzNcDkhv55Vl099SyonT7f17bj36SvBIkoNR3OmsQirAjvzxwsv3ZnZhUJ1xxGKzTOPqIBZ5rYhzhJBcnuiJFDDpF9F7kI6fUs7mePHMjFRmX19RAmBYSNZofBxMQFYL7AcufGfb9sRuuMTOOGneLEBGIQ5gUpnp3U8ibQyhjAz7oV34T62VXMMqDEzRyDHbc0COUGTT7JK2q5HzYBxWpm4G62Kwj4b4zpTCeEOalX2keRqs3mgn+LVpiPC/TNDx/AVd2GFTzKV8nLF8Ac1l3vJS90aOvkdDEG6MYGpLzdccRbhvOWDk8pANa2CmqgaNy8IGvRPMFxXH1mGvw5FeLOvRJdb2xyiMrKMp6XAJw3ndPZn60JsyxIwZDK8u+EXFw6vlqmUN76LlBQEbmCm4P3xwfJHiqsIhbvt7QryBf8kUgs9LSWUeMfY9AM6MwxzBMFClbVuu1SJVk4PMOw0IW1/IUK5shxtHQJ6onDO70sBwVhEafRvKvIiCOAizTrsuKgmCMP/V/DEubx++cz7R400FNqtQmnOIExB6veSxouwdCyWyiULWf+Ea6dv9CNzLJjYH10EWHfsUUexB+sQWI5CMjo2wmh3bWY2V5/wm8P7tOUxEzdYhFlx0p7SaqQ86oX3+Ml1ZBW6bIc/+7pWcE08RKW6PZjvIqVp+1+DNS4Bk3HintBGABBP2UqKf3/doQCnoP/6FPjqBsl3vSniZmE4eewwbDnj0h1BeNnZIkam1PQNpoOMkmGezzfisoetSwPb+Uv0utmL2btfHFbVfdqFl9GTOgi4I0mxdNycmMkRr3jnZvaNB2GQ2MddQU52F7RPE33gfM0RwYN6DPUsnyH7ek7U9b6ak7SE5gDnxbUj3hW2LAE7mLz9147cKXPhN+3UPH2RmYU+0HeX7mf6PqOVJvsojOii65nbCmSuGlu8UqVqllN8iAHEpce1GF5VPGVvs8HMZoLEfgkNXq/U06v6bV2d8mMy51UA/1Ugs0IOBDf0s85bodDWG3a5i0eLD6iThmHQod8eujYO4PpZ7se5f9DhNNLJK0NEFJ1w5LVSRU/6BBjl4J4EXSqhkQRAzydnLBnWOOQIs9/Q5JSVgAzsssa8KQu9sGFeTB9Zoa4k9ldVNI5t6yhoYBGsXqvXGodHJsB5Y0KG3R5O0WpplFnd3kg9tNa6DbyaiY+UQ1T3k353NpaG01VOmWjbM3LxuRYABEw3ACfR8eWVATxxZM+4BaG//jfOB+AUd0ISug8TIaKnLkTJyPZPXQzKQngeuJ5/QMFuJ2as2fT2jM52C2RG6477JA8u+tRf3q5h2LAmHCpcyoSLnaZn7zPGw6SkDpW363UujqKQhw3y+Q2QRZKdm9/ae9IAM1z9RLWo8ouIXsqADakxCHDFpsSzcsuLlBnRWWrcaTd76aCfSJ+GiInphtHgYDVRHZ6WBmS6h+fVqZkZ1vs38gdCGlAZYA6c9OBNgbytr4DLC8mHBGWhqf2usstLzR4FcQ62z+IfaqJzgugfr97cTKU89a8OVoZ5Yp2FpB1D0Sqo8NdFimta4ovib3Za+aQaU8367uI84v0Orz9AlmLF8+Fn+/iDRyXgdSX6uvwjGTjXKXK6hRkT9AaSxyFTdGZbt+cDlpupSLqFXmkQ8cwEFwcVEDLjj+6SpBfRSz7zeI5KySLFmsAODA8teokEkGlnng8J3YjJI5FXCfBqQCDC+vLiiy8Ef1KqefAgNjZCtNjBmN9ITb6IiS8ymHLQP7IfP4O+RDcQNNh5ED14JjcUhW9sDEPnCpQBKXNU8Lm1Dbu2xCyd5YaoQ12/beaDQvn1hgIKrbHb7/pPwVYGUZxnKYw7m8wBRO7HqeeWayRv1WdJVSanL4y6cSAaGKGyQjSBK8wz0S4z72d3pGpJeqPuJVaG7eybKL/EUCoyTVnMKC5HjVXnTLLDoXkJfXDHfmQVgYLPcHKKyMvLAhzG3lTf/0ExqEgpCJgHMqk0URcBzmj8FBnVOsG7cucinEwxC2s4uYByQs+JyMEgCczNBN9NU9OF48KbgS7vDvZbt67GPT9dSokgrVqle7oLjp7hCivg4RQ+O6P05PaBzvAuZByKri21jRtfHNajejYWY7BU7hrYZ7yI7oADbCagLXeWLi17NE2IS1zzZB+C6fKvY6+cP8uK8jVczkY/gkj1THCKbbCbc6A4zO1Mn3hC2eX9Pj5BWauKS2IhDkhk3cxd9GApRR5tlrq7p97Yt6AmOTqxK20NgSwpLmpP/gLGZu6LUhjaSdLPCEcp+4L791UeTN29BFG2dZzSIJc0Rg55R6F+tDNNz0kG/BEYADXOJTNaNGZOvGiD/sGRznJVRjRM87IBdA067hEhkXmmanK2sKz7B5CH/wmpt6DneeHB0uxuBg5Ge/LGmBq9ESBHPxhD9SAQ9Vm+32d0d8eGL/ypoYWqYnIzgWqN8/Wp26iF4U2d1yn1b6KajnUbmWiJ8BmA6oGk0pQoGS5OMShE4aP6pg/Q2pXEOZitD0G1XVQBG/G+AfkWXpI+9Rcp3bUbiA51/R4LBMHIv71hRWBR7+m+PbxbnsuN0IVeit06DH/nyLpAODROr84B0lM5Umej1L0PQ5hhfKNr9I2fqfXpbncI8f4R5hiA4AaBiaMQfbuHNgI/kv6GmmSmgcJV/SZHxKtbnffYh+Emc0LQ4xUWaUG7KuUIWtt9e72FWn0qVqYzdzx4L8hw4vMGkrjn7jUxJPE5n9iR0IUkuKmXCpfsPtqTKLwo9TsK8yT9cHvX79whYaahnBtRn+0lMOhW8zPmLnKWJNUHYQvHTskuEh3XttROdddV18Meg5YkWOtN6saYh/2V7/ftDfq0uUcLwW7aPfTcUF2q7vbDr4n3dqecXW4R0IbiG1tgxoJfe6Pp5YNruLcTElfI8kdRjQDvenh+PDB6WpL9tQ/S1JXYRPbflMjEgg3aEHKg6mKi0xppwgVi/ORdWSoMOiCaHuRPNpKJ8OO2yN588xFCcsMSoNEp1kdwGrUKFOL8R4lVgwp5dDIN9N1KKXZ2D2EYa0sDTBmBKUvTuQfivDgfYbtc79RfuTWdCuuon68XbAiG32Cts6TrR09C6egoLR5FWz8SL914K3h1xnGUu7obWmhzrSJ56QbY8iqDSgjdYXmI6gBNlGdNeulbZ/UovV7g78p20iccWkmu5vThGyo2ecgOnKAYFwOt+t4kfCnFUSmJtJpPBmhbvnXboR4lGRXEhkEujF0P9hcfUO6iD595MOLcp4lfACzdlFO9U7RLTJbgQOEttC1s8EuUNebSbV8E1sXmYAucMMCGGChS6MyqNGf9nRG9jGGMhcGNr40kffQ1XGo6SxVcUNJZU2KR/pfdo/RbzNgGH8Yov82aTJvRs2Fl2gDAC/64kJCVybZaoWbetlZowsvKMFziD9SzpN4rW2FhIg4Hs6Hk33wzEBHU5w+Iz6R8tuzDgI1GHYK+l0oBHEQn2HnyBJNoxkys0e67a/OMV3lINUhHMlxNK3uBXdaPgTiqyM4Z3pyjc5dCHdqb3BUm9deOgXNoud+3AF9uq/SlMBgL1ggmKd7m1dLHQHSDAJdIpon2gBqrUMcAy71GSMgAbW8OvCYl5KYaCo392Or0AFGG3+GXn31dMhfGwLvsgRIBBHD9wuQyd0OJeo2gCnWAccHQAJ0kRnhmHmgr0OT7bg86R+W95Q9L2eBB9raL1CX3j9jRID4ShnFx+z9M4KDUE96CenmfJSPYapQYDNXQjy8/YtSLgrj2g3t2JgMsy8/nYo2NB1f7bMQ9ML5FohIvUqR5+yAG+NhEm/+D9SaNHl0wszenqi2pkLKf8NxzXeXBir3ctxPPWBlrQ0Cu0vWvnJSWHc/4R8NqryCMBijlXQGLBOYkaOWypfyXLhcPDfmEsmUdLmQ6lthuTlGZMyVDuKtfQTxAwhmT8jJLzAXi8R/9Kpk/PmSuBeAtYAHo90puyNP3gN8tFr24r5Vykr7Q4Rg+a61uKIjDQEXUZKgldlZSzxUaDGsRQdrrI8X98AH/UVI0851oD3fBS9EfoZtoYSxoidgTLOzpEgtPeAZ8397E32POtQ9XyjD++HVqQKIfsHLAj/Be187pBhGzkwTSUhfGlSEWlPaQZsoX2Mt7cj6v6Uky99A9zTFXPoz1Bd5f0Er9QrAg9T0xV90XGXc1UXmpDifsDx3amwcFlXAK2p1RdFF+4A9DqTFwThVarUfITlVSnMv+01YIcYiMXpXwfxzKrm1HXBXgHics/jqD3WOdnO+EF07FuoT90hDFn/pSsdCc6jir60sKjbwf4LBWDBwTg2pUR3b4VI2558lISxd8HiRxOzCBgW0NxUXYyZMC0c6I2PLoOYATAsMw6VsOVoWY5yD/hQyMKiOTjAjRRATMoLKpprtZIjlPy5m6Ph7Dasj++5qzDqjfWQzbann6OeBgn1s7rxkpg/Ftb3Ze/DK5WhjQEsMlnF9ydfl+3pAjQ0wSpDqFqg9eJSN8DnhWocppUq8XhfJDEPq9pgJ70Q8v/8arnCymK7rVZ8poJrymmj36YzHG56+1MgFoZ1sMckRc7/8bSMd1oddsBdea1425HUmrMAcRUaH16cpnzy0k16tfikJBXeCl/2h0arJZYf/L1K1xlHzhZ4KcuibUN3KSXU9mH1dGRcCvznSNDoZ36kIc6JFN8uMYm2z1/nTptz8usSRqLeEeEyH2YbUbdN5GjqgI8/hD+GxHOzcwk7M1g45zJwinapW9BxJJS1anaLgSbt6uB4/YjxhCi76hnMlutrj34Cspn0Jww9WFS/LPB/ZzS4H1BSU37hzaSZyljNJB6CoAZAwLyqxOr51KwSongPEl/tAcrKer77RHCAJGLz6IEthk6JRWG3gOWIBm2Bddlk2Nhdx5CPA54rbM856hu0rRmj9RT21Wv+ai+0JTWaqLvJ0bY0+pygTgKGLZlGdJ6RzA84sp6nk54Vib5IuiJC8kriKBObRSvSqBQqkpuL40pcSgUDhgmMit/so0bFvNXzeZPX6EZ3Lpe14nC2wx+ymYRB8/Gt86bn3psH+3hftzJ+aK0O32+1T8olkHmlUXhaVI/7RSrgfTaiLpC8/CSfKZ2S39LK+lus3MDXBwPRgRfS0fkoBPuqNmU+gvuDKexfd84GYmXElFg2FkbpSrGpclV6mtDqt3UCxCCr8wfrcOYRKl2dQkXe0KfpP9MifKslccvl3Et8g+dlU3O4tDmoVRORgD2qHFPFt08KUHmKEEnZ1JAD92QVVXIykiUdQSuXwWH5hHIgfaVsZ3wR5nrwB/yGvQLDlprESrzD59afitU03xBo2+OnBqW5Ftxko4sB4hYSVYBgtQa1k+ZvJz0xn3t3FcW+PY1YFmI9trmiXq+LGLfoqH96E00dEQ9yBlakInAc6+//J/ICSj9BFVOq/HOkzdLwn41fYOON92n06usohMdwsceee3nylGsIFMp3E6gAc6o/TgVjO1JMuFLt/PKE/R5InpME0Jfhneiy35agg44QHgrGxeImAaXHhFA6SK85oCqMk+Qp5JsyVa04ygwJaifP7ds5bJpJdpJYO9PcvEF5LuZu1W04BreZPng3OE4ztMlUJKMpKB0eP2nQa34sDVKF4qsGIp/DEI+tCw/rYuTJkXW+VxNukium1ZilcmvOC4OU8ELCP8u7FzwKrKnIG59oklbwn4apSgyZPyUDjkTlOtq8e79S5exAA+xMEcYxYifGsmQqazAjaaORN6OeL6ukPiPPn9Lix1A4zwGC8tdCRXzfo/cXf02QDWrft/Z3G9Kp2wj3oXzYzJE4LvbmjQQ4FqJMrgiQ3Zg5Zf/gPeQGPTRf0Ww9MOVp1oTf+gpSp6j6X0wPhKS6WKN4IT0lNYLvNjU3M23L/L9YP05o6khQWvY/lC7xTz6uHNR4ySlW5+XT+NRUIz1pMvGdDaqbKklO+hoxHahHhYR0sEz1JXd3lFwLyAtxfFn6YAPVirgBzxHJswAan3V8R+c4krlKVeVOAoRBoTQBtPAFz++S5yDxahwPOgPa6n8/EUSChHB3EiN7iNnbPipOTaEBKyLrCpiEEb7eew4HzEVu7gABb47FtdKwv84A/ExODdohCLuC+Mmo+1wQWFxukRJkpONiwiRsFC0BQC3r6jmdGJ5oXsaTHOoFW/kqik+/4cxkVgYXxMoJ+mrwT4gN4YQSCN2TLqgCnpM5YjOA+DfR3rex89/rUJ1B62JpSFRK1fTATztFhQH7gbTBNyGORRbCAWAW8C/WIv/WR0nZfqm8eTGvo00EmlVnSJmTgv8Dj7KQb1AcNLpQBK3DD99onq7q5xlLc82WTtHL3kzz5FoWrf4I8+Kuoa/dzspPHFlDoPDrniofVoZ3uVpADAxt0hLIDi9cj1DJkzDtTgQDysMEv2H4v4abKKezThhhJcthW+mjWZgZGbX7HMprBHBFKk0pMDMn2/DN3DhHm66gOzv2lsIn4QTFjGWWRjVDX3Ge2y3S5Fs4gkGATOwliuma5gNreCd83CASOPcr1rHHHt0yZ3t+yEEYfyJVDu/XLp8siI+eR8jogd4A63AUf18e7b+2GKAIN3nowrd/BznsfxaPKQReUYAuEuLjGWy1wIr01Hwhg3IhAz/UajPVyk0OlqzazhZtgAcuDlR3hyC0yqYCqcnxPqyV2VYQL93lq1o243yDFprjpmhyU8YtgWN0h2uci57bPl9ZifLlrTA2XQ7RYuf3cgd+qmJZ1wPj+WWzQgeDGpdY/I+25pYNO4l5+1Li7fOpuLpFeEtsmy28YpN/+uWT/nHCF8bTj34gLaRzLvaoZKyCdenqUXLlDzSEURrZUPXJX52+iOXsiOeD3zUVPBNyEe6nSUoTVYX0hMzjOQ4cru3UwAwePKQGe9D7OXSemnJqXPXtFSqoYRaMImM5Ddo+NmRftjor+BdrPHFg0ZCdGO3CY8B+Mrgpvp7k0ynDLYWE1T1JKlDTjU44KpdeT5gHJvc2Fr3HwC4Z1hXs2QWPOGcB4zmEhmns3duO1SOLbUs4zi+wVCaxyJaPcIqwe/zMBJL24bl7UcnGrp/BPvaQcNMAdtLpl0iPlBHcZYohBvCK+CEP55pIF07tLeTjXhbb05xjIuzyN6ETytM8G0f7ogtYayi2lh856XSrz5tWi24pF+FUGtCHKqlU0oVY8His1KdGXwpokQlYhm6FTcuRbQJx8c+zrYQX1dd6Ntfo2X1uAgsDpTfUJVszokhTeH7priS91vK0izvF2X1I6KW/I3g42IilfpW+P8ET1wM46mL2w9stbuu3k2T7759l1EL7kxGJunINxpeEOwQWjhLKOHwrUwC6KJcP51H4Ns3RwkrVtwqZFqO2NXj2kQydsfFPuFd7c4oOENg8TTD+T61ove5BNB94Quf+vGvimKzE8MVRERbmwiAxW9l8Dj/QUIcegqsuY+CunHqPTFpcQw+Ch4CW1QGtHiZLmqc3bBnk0VaM0BDV+RxqS/qrW2BS1L5e6a1P7HZNc68Kt37ZeFwlFvlZmioYWH54BD8+k4RF+JInQfaH7W0R/BPVccPUNuLKR7bKhiz4yqZi8LpwHLIX+GOa151EL7R8eZ/rn4kWym3JRPn6L+dnRMjy+EU990InExjhBRSQIEurNU9r5FG92TRHpaZ/SXeIxRXtC/VAVrotZL54c3a+TGVfDMGSCGaU2k0vmHEiPU4s/itHG8FYQnOwd/65UBl5lPC2VQmMxudW3PU/Sjd5+v8NgLoSo9d9V0rQ1oQDgyVH7eqUeh1/SAQEEFXPzFh/NIJAwChgOCzF3p7u76gGL01pQBKVtpG4LsjVn1Q6vEO6oKJaXc77GqUE46d0tMhWvJKkyfEOJnvWkCoeGycHgRTrJAzFDLUdWAOR+uyWvGNMaVXJj+5APkK05wE6IhLwQDowu/CCCQYIGkImwRoBMUS5D7A4i7FHxjbRiKpGjM3mYZfGg0zeOMkptQhg4Fetbd5rNmno3GU0eBTEU4F63dvpek0V4/wSS2HRtzRwRh7nWdj9nmp04x9r7j/LKNj5iWBBj5NbT/U67mDhF+fYhMvVCLI6kc9zO73PsxD2HYPx53sUAGluURB1R5DPtw45pXHTGESMvku9zeyPwzs3SmwO8EDLHGjRlLbrlz7cBJRQLnT0nEmiG5eCcSpdmYj5JGNapJGr5Zf1nTRdwlYJvTZZAcuvuzByAiVfsVMu9onG2T5AD1tbFIIX5aDiErzlDiXtQyDmfhjam9lwOy7fZ7T9KUQ4+721Gj9SdI+mK7O0A0d1piw+GNy+MJBnHwlrgG7fWplXiidOz6Sv7oiOGF2VSa5OTOQaw+xQvNQDJ5ic8rDbFO3WV6te4UAqDEen4/f/1KygdodC2ikIj46V9/2OEibvchCXzbENs8TKgBknVDA9jkLdQPBgQb2f8xlwPR+cP3OrpKjLVScr89qBXQX1OI5i8Jb28bLMY7joWHd9en9a7b1//IiSjVQL5gM2TECre6EQIpsyROXRqimft/5PZxc0DXJOqmJR3PVe0H4cH7uBh5xiXy6UMFflq1HUPoNjHfIgK31UlMzgBa+WznS2FUuXATFaG1FHJOO11WddsfivxUnIYbjXTeFYhDPiXYBXcHYXZoSMJbmD9GEp+GKlIhSpzFcv9vQya4gE0UAUcPg2hglEC3CSdAHUpLRJtLRL6sEhu2/ZKCbSyBpJ8n+0c55oPimVtcyB30Bk7d6VkM8M3wFNqg/lC04TTqps4VpQaqQmiC9nzu3rMZ0LlW9ma4LR8sVyAAhUeTrk9l/YmMbbmLjbCUCT3ag2xYMnTn5XnKUKO50Wq1k9wu/xK9EwNq0iwpktX6aZusjsuU0hPu36DN7vIqO0NZl7urZcGQHKMmmPA5zTjkK8xRDlnFZT+3cLjX8QUhD+SDqDPbArFU3NFVRdvW54H5IhQw/L7caeHLRYBk7qwVWoN47fHm5WmVmHX9zbx23zueiW7h7NyZWpHxw9vzfEBwhKTC0aVMB56eF28MX1uhv/IXIvlniy5oQw72CKawEgWlLDLSQdVR+kr3Bf2aBAHZa5y9WmQAaBE7BmOsDAqEEJVJAIc438LHgDUEVuUZtuVqnQzLdeREoracWFlGOLzaLbMgfh1qrycKR0GwQPrmPHtpCOR0av9oc4nsIKZo6UwK/+b7Y6ZrXWqQHKsSLrRJ9dHuarcbAVY50vq4h34yIIhaW+58IHSkCH8RxMrFFxc1e/0uiHps8Sw7bezf7ptMNXSXvoX6s/XCtEkLb6PLKseIQ4BAqp4lhErqUq06LMcudNP0SK3lYCdqdnVxYzq6vPSTNmj7ETllTwcwKVYLMhyunYPeRRvkUKSzcgugK0qsszdAktSXxwFxWkRIJetYn99rs9YFvlGVCZmEhCzLPchVfjPFcwE+kRFznfJ/2lKyzGrRl3Ag0+RBfSK6t3Gs8xfm36TBMOTg5kBEQLHInGJ9XkY//i34604yVxuwKWge8GUOeOTYN7Li38lASEDzGk46vH8uVBGswTrPn1a05boi0tHr2dbBeMzHniCjgnkwy8ck0MiFSWPj62wTwVb4pFz7iLXekr+2bVwZA6eaVdx8XQVHd0qAOwYqUx5yAeSAUENuimKwjvwIj/WpqUC6DDiuHLcTdGAFohPz//b+4uLZvC/HX6XUPel86+Tkn/G9IYs1DUtLn3ZE+QDzhmvDxqOn7olmPPPVEf8dY+vCD4idvOT5fqEUcEdmyl5iIfZshcqTIATQutn6I5ONlDca/+HgalGPtt+yuYinA7bVhXgHG0R/BksDSHxzxKcN1x3mwtV9brT+CvNJxhlZVMtkaQp3ooLft23Bh/5PYC1vjPyy02JN3kDNf+scfQ5drceudW6+4XT/bXW0cSmUJdea/cHzOsNfdbHjaGAXZc2EvV/Mlq+QnVrZ0Qx/48GmR1KTBJJBFRShuwCPdDHyB3KCazcWNG2R4enn5ZroZgFl8zTl+t4AeoeYwS7hlk2H4sElu4QLcmcGc+9OuXgl4oVVq4gqCqwj5Tb7gg/+K+fudhv9oCarBNtxrwfyCJMvyC0jSZEmLTe8iNqMeh6ZX+dpRp+SD1HC4mdbdUTJQcRKvHJ918DmfLxriIHOe5TztMPiCqsJ98YtiJdXA0TfiAUl12eadAkfOFakKCt0QWaLZfNNQdrg4GEqzgpGaM12d6MuGMK/Jjgk2voB7/qbdPVM3hDa4Iuf4r+FSdNzB+oZOK5k5o8TJ9aS4NBeqOscRkZiWxaxOUchJf8PkplDqLZDsRc+h7lsg2dHt/YpgWZ4BdcqHkOcX/KkMn19SNjXHoQnFzLqOD41hqkmx0G/sQAQstg+hU9VrCG9HNOW+9M87pQs2Be/Ihdz4vbw1CGIuN3ACIzXSC84YuHOHDo5CJMQTc9nSpLKN/UAlZyir7H+ETc47H19mM2vMhpGw6y24O7izE0HMA6aNionBHqPSQ3ohXFNTJIKZhHe/UPmO2CJcCImv9ynPvvjkB9JV6SVK/xuuf1jkm+cW8VMTwQz6qtQ8q2RHNxmYeaHPCQWfigTKrVZACBHmupMgekGJykhjYW2YrSRPqJsnIupnqC/HbizuqMlFVb/cgXL1gbAl8qaiC8d4+KYQ0B4AT14MlxJgVyEfWdxMqW0n0DTUfvFBYs3hECF/FunIpooiuG1FC6CEnEiDcvPUkf+6U22MkfX7VOLPYsMvwQv3OYVaSTLRk0jNU5LdPRtN7aOVOokjVI/ZK0zSC9ZKGDZYYfi2fVKsGmpcdEsyDNm5I8w6Ay/aJ6O0V+x5M9RrNtm1EeXWGqxVb4Lvax0DvTrx4gqbfIIcu7KjNo543jnrBClcRMN5IuV29gQ1wsYSlZ3MkbfwKDcaPNXXCEHFGsYILadWfDlhp7k7PRuPz0lATpuVFME02Gk/MtHEo06RawXbJs4/lwjFyNH9XSForoo89IPfXunqtKbZVfuRcUQRRL1lfelNjxu+trLDhsZehHvO87HZk565tFLzM1gPbdeDPCuJwui5BakgGb8chpf8VVKTQe23ieHmlL1N4twjbTO0GGLE6djCrZFE7v+kRFAnP2wEYWrEzxgB7zyIzzgu/+IoqNGe3fDrUOfswNM+arCUh39UtdFeHjzCqRW7IBM6ctpd27ktRmii5iCuPMBS6dWxYSZmVdOMr00XZxUXDlLyX2m9X5OUxCo/qXclN6NXzgXtUhJYYs/kundZ5iiY+z1br6MDU32VI+yRN0YEAXqzC9FUECuwAooyiTFNAR+QuWZ/xcFEgJGm7AIdgR9NhTTiftidH1/8MZP6ZzWEhJU6RNr+Zg7nTvjWRxKZwssjzTDewC73a2Apj7HsF7eBQp2JQ8BaBEPTr5Y0efDxrWKLxkYWshMrMYZtDsg8nU/tcSS27pY5gIqvSL7DwLD3fiHJSygYm6L9c2FeK3bNroLL/CqGjUfWGmptuHU/QhOkXA6fyn1FeZr7XSrnDov12zQdqnxg89MhbMK+2vGmb/40rGB39XFVjuEta5H8ZqzSv3px1hy0A0Y3UyQOixDjX3mRazTtqP3/pLiBgmrauEDq/BGMQ2yx0b86xkups8wecY8GXR200GVmn5dZyrg/MRMb+jC3wAEpgBLx3YqBa6HplLEX5SxNUrI3QRxUJoHgC1hUS1eECSpvBBnp+Y3DRc3pYKcn8ZTtK4+6SfsshGOfaFsqXPPyFViMnOO3nh82gHuixrGYtLT/BPuyKFcTIH1XJH5jWxvqgYo/vs1yWIR4t6EwOHTf8JyoEuieyskGvDo0DMJOFDL8L4gPzfudJ031+iADa9TM13WLrwbM4uvnO4lqq4R259Wai/WE/SxrbME1AJPKbcbXQPTx4wa0Ls7AIIB7vojZpnEl/bZu1cZaFAV9IPvUay98fhMmcvOseZkqXraoBm6JL8BR4C6V8Rhd1n5RhFinilksDunP3/MDKFYvq4skzSuDerKJBRTSEU+55ac+jG7dsKw7NHJS4CvQr5p+jqk6YD2YHzJnJCKyLCPJs525aDVQh1SVgqcZ959Ywia3A9E6X+LzGMfuoc+YVkEPk/+Zr3ETye16w6pP9zUCBDmAu+xi9flqwOtWVnGmq7KLVymGz0aw1qfVrtSes2We7TBTxBgnNL2PsaY6V4EdEsS9LmgDY9pOXTN3mRFPWslCcdBua4nXHNwjKjeGYTiHLOXze8Gfb6vBVSHPNQ4pdDc03zutik1bTfl7eqjEEkk+4U0fZD45ifCZO6+W7IT1ltrN+qnjJuq+FbKxj/8/fUATN+5GI6Ri2jESnycgv2Og6k8LibDwUJhW4TumQ4HN/YISFNH2F387I8N3a99sMx0LSk4dAuNi6aLDKo2D+8nWtncmjZttlAzOf0BzYzotNg7dPjrhu1V4P4TEXbF/i7spJr+m79jgFTrmufdxtL6tHRqSJkBOdJGWOjj7It1aBiiOglw0x80PQeAeRKnuTAORHS+5lesQFp2rqgspC1sMs0HB3GGlnCNkNpSOlHxwpXKZJScX1dQOpESU32CZR7D0jcx7lj/keJGazhVCtmt0/FPIe2nEDQjpU5JToL6buN102ddpo/DA4tCOhmUdp7NEfY05gB6fmMNNGnRkw/+hhRTNsVbp6GWEHT9foFleJkFH2tQmALPHTYHLXWvwtBMDi+LDSu0l7gwXMHzSoJ0eplpKCu4aUUW3LRbJ2vYSsoCwZWtd1JC0Qwwzc4KUR8Ed2aPsU0V+5z6aVNSC8ci4FOovJWZgOXV+WoenGYf5M9gkvmKzuAmTGG5v7nMVombab6WEoRgTe2gmr90i8MG1VdmsD18qg5FzdrquaKf7DQTOrhQkPAeo1gW8vNtb1/QkQOMBjJYTxMETc7AI5KO4CqCap0xhw+lL9EjS1pdXA2CPdcobx+tKe4636weWPqhxfU6qbpx5MmyyAjWbSSdHtCVrBho0980ZPrf0qf/4bcGlQHP3xMyvdfxwzWBpHKwP/s5hvPWRER+s94KU6An/hUUz0wxw2k9JM9KdlwQ1x6MAcZpiQmXGV1A0P5zoLET+9amBY78/t9icuU+t4buCtLlb9nR9aGgeiIOYz6qVuSd+PGegtfHBvg3pCfreoCDnuHZmJ+W/ioqWOstlR60+PyP9IEeAfoAKU6OMxEofShX1C1B4aRjt4hqzxDMEt957h54g8M8rf/dcZY8QuniSs7fHa1AzWUZZimrB9pnzPadZxvKU9SQqgyVXGc9XyyKMmB6P65Vl7DQDNndgDPejNEsfo/GsVCRcjI45BR9PGydG5h3DOwmz8Ao9LbS3G28aSZ9/kYIkkvXa3lgPSvp+RWuqCmOgtZjDdZXfe5Xseg2LWcT5arh6avXcQwNgncOC8LJyWASVxKj7wv5Ei4DmG6hglRyRrJovOsFyc9UZk1u72ffS/cHWohupYlBQG8iZELI+dLeFSsa47xq4gXJeoNqyQ1oc5CpCjjpNtiTs+tab+j8w4NFl2FhEJtz6Ke5lsMevVG+KGb4JZ9ouHgsoP3a6iKwT2lhdMRZxBLoVgr7JdXU07NlPqjCObCRVG0LxCuOjOqPAe9Dhp/GTtKx3N8bmeOe1lncqHnZP1ltER3Z8sTAGbsDQTnGbDdv70Rb3ugyvcnRF2pZW5vtOeMiwL+yeCCUflOnDvsBFAFH/aOSi+oxPUFm+knJlj/98UXtI6+lJb3/gnZDm0nAIxUQD/wQz7L6L8lN8DP3aqo4bG5m5K9Y48Bv2su+9mV/a0JHhDNoXRXCV6rayPZi3w1Ve367mcII8/aKRrRXEAJ4P+wAuw5kXbmC5hLqkQjSQ+Z4Q8wruXyQHCDxc/M6T0+XagSJ77nwyWt56A4u3E4RKwTkfZno5jCb9mazB4oc/D7UdesADdqNUkVxQmKrtB4Io6n9x4HmJDQ3lIjIbutiZbvwtn+CfbjaF49oWqOKgaaHQrrwbXqmiRAgWEttZbCCbVIEXT8BSkVBYlxntICF4NHbtslbFz3dmIkidiofSZ7CrK6r6LCnZq5DsYY+t+IyK+vObTWM9iAc5H0luvYaEyn97VTOAL7i8F7Xu+lPWAHP+M4JmqIM+rjmrgPsAmDCqdpAt0pH1L6gJRj9rtgi40toNLIe+CV87xvIGT32KVYsEvapL5989Luq/Sx3woSb7FrQZGE4Dzaq6ZCcoPbKUm4oXWQ71ZnwiSIR5uJxSJexDqCgemgtWqAf0Hk9WMpaKu9n8K30YhxLFH4yTmc4rA7RuS+AGJ++Fk9Ob3W3gWZbVyAuP/OzCirJhe7Q5VLswmAwFzN8QJPmi+OlE7mG6JE2+9xJsdEpRu2FD4ZDRcNH5C0M5RlnDASlH8zJYhWVIxXqpLV4aJuJ3neCg79BLoyNSctz+M/MLKQ+TX8BiOb8cqzUHBC+yfM8fN0gJLIh4FXeExVV4DHvi8OKnwauFiKQBRVj+OJ5lMHULp7PwqoDsfbhkUhSlI26JR+gdl5tiOuXU8Env5UmHNYuo0GMMsf07Jqw2RtTpBqneq4Hqzt7WimGkmNdelkdPUPCyub/Upxoh59r26OOOykcfchWv3cQIbRpaZ18Q1AL4xxcXLjIouXo4Hz45nTaDUsrfm0QPyhTGTIGGqZ00nU1B9T2axIxW4leRXe+TpJ4UtTLhnD25vhPdWpf0XjU3XbFR2lxkoF1fzhuHvQnSrCY91O8wzKUkAmSx5v2seHiRvU39Tx8z0Vwi4JFOkX7WQ2c+x80yP/qPVTdIZwL3iYT0jGDavFsq07iTSLupm6iIqmgq1qneFjSS9HB3Z4DsX7cNYFuusLJy+NbPLm0nav2lnnE6y+t/WS51Qk3uDtSAe7Ut3AaB0pfWPWKveLd9QPBf0xp2GkSLX0FyiS9SKU3qei1PSpIs26hpY0lpiZ2LoUMAZcOdxqSYrgGEarw8xoNQl6J+pByScjxz5+gg43sq59jDdHeHiNcdXs2uyKsqe3HdlIQaxHJTiW8O+ne7b6EmCJsbD6Sus/8VI8rq6iEH+AC9sRNyqw76rs8r6RMFpdkyKp+TfDyy0co3ybStQJMNHWUKg4ahVj/jwq84HwxZTz5al/vV/5mQzOZN22FQH+dPTqxt5ePj0rNsw1KOk6L2Kg0T4cKo5z82Shxgvjqzo4z58pcYTviqX1BtnWSeUGHMmZpa6Ga6y0gL+rRMva5bZ3dbGqjeSXv3rplt+lFySKFgzVI2Dc4jDEdSFuzil1fkyW/WUsmnXJKBsysHbKQg2Juucag8xjxKx7qWbwHEDNv429u0Ki+Ck1y19zrzib8cIc1vBKT2kz30t0QA5kWoDZgBeBtmzQy4QDGiJPIqubMozsXxS73VMZmxqJpJ8ya88vdysA5WAf20PLyEsC1RGn67f5GINqj5Q+4S3t5D9PY1JFfNwRjdIkCVhNwn/aEsN/FF+JQ5N2wQ/53iBViv1wKZcpOahr1iH5XsjtB1mIogvRBGAsyRHeevDqiDckgL7KKSXkws0PxTos+rsBVsTZw467AmbldRp/XQW+UFb82QnRepB9jjPoCUmdRsCaekqr8ZuNQbcNaoXOgvEmIfkSnEtOOFw+fj5rkNqWn+7v50voKK2k2k1jn+6NOICL/Ytna9+TuMKaAHr3jStu6rnOVZNeglPFXQBzO+y8rIzbB5QhCFaHpa16a5JLaczcv7BJPeONk13G8flL3HtQ0i6QNNdy4OoM9/S2E8v56icCfpH/pItJom4wa6wIJlodhFOf7UNDczzzzj6lNZILmlPpwOyKNnHByL79N8MKtZwcXHis1UuJEZ4UGwAFVpbc0rBQ5BUrla6nc7pMkKPxhJxqvKGZs+YhOYTQrKgMUk8LOf3LpXtIMkIJ4+dLf3quh+RoUSFCeu6Wf6M/fLShFElMTVJZFYLy+I+vFkJcbUGcXBKPWsIDq3By7rVlKgGsrfO23L1vUO1xyvJRNPhp+3FBj4zsCH1UjfbVKk89dnxzHEBfYXjuLFyodhoAEDkJ7DMt8GU1vjn7Ha8JUrpFmQ/60Eo1Wbem9fpE4EAnUhfS4VxBwdfhfF2A6U+pxyDWhwdQqksP5RkfjRXhURT3xFzhpX5X9qh7QUCUUGUrtSz1hdwdxqi3cg2iybfrFmCN8P9OXEhY3fxnTueILB1EG6NkmNlcGsB19baq2uwXQ+TGQY5ehdUFxgv/siZkUfasVb1WLUi6CeZamQNK74tkh65uSla+nXC0T66O5HGdhf/Ql/3uNG43uXZKBtqvSNlfyNvjNfjfP5v6hdWjRNg4cNP/tSnvCd8OAA+1E+N/vis5JRCSP3m0wSS9+F5ab9N3mSC1vt92PmqZoRiO5AmASbLohBOWicTYpMEgMs5udYnwmc4wQmaziWcjLeT/56uTLI7FDZox5Uz8zrZ9K6XOmiDA414PVcFdvtPa0uMtYZgIztOSeNIYSdkVUW43oCshhg2wIFLrnFRh1TweC3uUWv3+kXuBoNfhWU8t9i4Al8mBTPtc2GJbl7zGq0mn/llutTbv0vqo7dWc2wkwjKoQiFZt3hjpRAgtuDgR6AK/hs9Z+vrZWBcRtZYZTZ+Pti/OG8RDKMEX9R/iAuo1chXl907tZGtXASMW/M9Z7fcIqWns/KPqaLplLS38B5cn6DWuCpUWBHh9VJAFqQoxsBgWCIixfaf0bLcF3xZljDcX1qgfeQSkHHCNoCSWDj4N/1a/UXRq6lW6FVnVg96q6jh9Q8HHerzNB0tpcIkuDyr0wzRYVieHsmcNBNu3RdvofW03MKUPK+qGzxKOHUe6nGV54VK/OQMnlPTivomv/K0KQmsTGHsCWJZnBJ7PvP7X3mBg0RaLI1vvTLmaJ6SNoEOBc04zDhOFKcyje+zDYy9v03W28QGzj7KBC9Migezwv06NneEKM7D1xQLVXRayrBSjuAu7gsVq56miNI3Wt/uj2AaQBZ3vK8d5TZ3cKI9/VVG9HqGfIqjLwHbx5CBwQ3NB1PDPjPd8Srp5KPRG2Z9jO+ZqyJSsf+vJISinKCxQ1npaZeLf++sCRF30uv9jyPme7q4+18MRadkDSYM7ZOc3blVMmV5AE4/jR3FqbmFyZ49OGSSMcyQMRnXpbtWgw4GE+ID08BqP4IDPoQSqolrMvAAlapWQpxXbwtKRU+zJBVtB+inbTK7u8MWMkJOQHws2U/BkGFmnSGgaZbpAP6lSRCys8A00vcHoJYOTaGcaRKjjAgwzHPKD2TNQfXkLBhcD6o/HcLuzFK0=
Variant 5
DifficultyLevel
564
Question
A trapezium is constructed on a grid of 28 rectangles.
Each rectangle measures 3 cm × 5 cm.
What is the area of the trapezium?
Worked Solution
Strategy 1
|
|
Area 1 rectangle |
= 3 × 5 |
|
= 15 cm2 |
|
|
∴ Total Area |
= (8 × 15) + triangle 1 + triangle 2 |
|
= 8 × 15 + (21×9×20) + (21×6×20) |
|
= 120 + 90 + 60 |
|
= 270 cm2 |
Strategy 2 (advanced)
|
|
Area of trapezium |
= 21× height × (a + b) |
|
= 21×20×(21+6) |
|
= 10×27 |
|
= 270 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A trapezium is constructed on a grid of 28 rectangles.
Each rectangle measures 3 cm × 5 cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA08_v5.svg 240 indent3 vpad
What is the area of the trapezium? |
workedSolution |
Strategy 1
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA08_v5_ws.svg 260 indent3 vpad
|||
|-|-|
|Area 1 rectangle|= 3 × 5|
||= 15 cm$^2$|
|||
|-|-|
|$\therefore$ Total Area|= (8 × 15) + triangle 1 + triangle 2|
||= 8 × 15 + $\bigg( \dfrac{1}{2} \times 9 \times 20 \bigg)$ + $\bigg( \dfrac{1}{2} \times 6 \times 20 \bigg)$|
||= 120 + 90 + 60|
||= {{{correctAnswer}}}|
Strategy 2 (advanced)
|||
|-|-|
|Area of trapezium|= $\dfrac{1}{2} \times$ height $\times\ (\large a$ + $\large b$)|
||= $\dfrac{1}{2} \times 20 \times (21+6)$|
||= $10 \times 27$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers