20219
U2FsdGVkX1/UXHzC1GOqCdJbyQPa07i8DtlVbdlO9Luw6Ka1X9aZJ83YkoYiNM1BMUYtlnAugoJVRmWKLc3KS42qgPaCndr+/QRYcmXPfTakGdQ7+roPGKToQQ3UIVmELBkDY1rNWQH4LSXGC5GrCOlmsqXhgnCYWblEs6Jw+6uItluLDI4Zf+O50vQOUJg+VMcyqEsb9VV3/c4HNKQ1pp9KwQVhis7capweopljAs8st3sNGgbiaGytc5SFsjewoDVMJBapTiJseARFq8xVibwH9bipVYU8zAz9w3LcuGkXTIjgrjaiBag3W7jufU0oA3kdudiJ5inI4m0Aqk56PK0sTIW6XL/oYLCHuycKRfL8zt44G3bLZEhVqa9F0vmAV3gGyxMaRUMOgSHeo+isrlQxst0e9suqJKaOYDkURwhXg1t656ZRwij065oadSRyktkXO0DpWekCgMOqzfs3Xhz6n9SY67URYZTwkHEAKs0DV9FTVLD8l88PsTpWRMvT0FvecFI2mFKFtuN+sJqCKWVxAIbobnNFcSID0nl84Yoz1oBMXzpMAEtvxPtPZljHQ9FXjCMc+Yesb+/QZglvQNJjFr+F7HYkG6Zzf9SHJOd9xzRVV1N6oppCuvwbEwQ6SeQKs//dfQHrmgLUoQ+EXDmnfyXIvYgO2dFl+7wA6HFpaCZE/skFz6sZZW8KxGX8maAM0Kb/lP5dt05tdVbsVGnSPGxUD3B9V6d4riSX11suE+Z2y0zVXhOn4wyu4FtdzGLKhUcz4remIdxUC2Xr5VCLLkK4ucD9dBBCgwVZVFgH8m/TqNJ/OGGhHfDd0DGTbdK5zFdlLXXZorC94fcXosgkN9SpX0hT2BkNxP0AV5EPAfCaVePPAc4ll7PirwFFRhx1BeqT5NsuzN325XUWVUNqT1VMHH0kORTqaSZs5H0sAQKauQZI36WIJb1V2MrQ3OMu2msvxPoO7pzqjxkKFctaOoA94QPfVYtSqpXXE/B4axESYr9Q/FiucY9VQ9QTpk3/HzVdd79TGpXrgNkRZWmAqDauDVgMG58NfUA3jyx4uRFqcq8XzzcCa3zXaC18fZ2Syijq83uvhX6WInmhztXyQtd4L5TvY7Uu2hl2LS7kZVdKhTqEc+87TFrA9goY7EkJbvT9BDL/0z/hL67t3O6BeYv4aHjcc9T746kDei9GfbSF6l33LN320J/w8d2Qj5Xu6Q3fIbC9mKFi1LFJu2pmhJO/37NBMd9d9bXGLuuUOc2Mvug72X9Ff5/nxa3wEiNBnNx2cMLe4a0JOekU7v6RPogmPS/r2wFbIt/05/a9OY7sYf98jpBdAWF3SzBhSEQw3yT3s91/BeIKPsQb7Z/9ufn9bKvtqBWNOrb0QDzz75zl15UuE7/UKs4udiH/xWTuO/f/a0LkehUErpTmSS/K9g+Y2XuEhQZwvs63G8dK0dAw63Rb9wDZL3LLyfmRM9G4/Dmf/O6nAd9KoeS0/HfV3CBy1exCslkKY+j9Uoe+Y74O/BSmL6o6hUtnUVC+Ie3gxoxok3PxrZo0gX6XQrbToptkEo9InYRDHzLzA+BhxYR99Dm4wr4kwkyOxsIFq9sNkIo8eSK8Y4rqh8uP7rTjC+7wujdEXrBlU+uEN7oGz+drz+12i4UfSL1o3Nyt8dJMk/U7B8TJ7XgmAc7PQlo7rvM5r6RdzhrKj2h2Lxe2R/4BlXigVnQalVFXu+VJZ5mNDyabKU9SsBg9m3N0UVH+ocLKRZ556lQZRr6gNqTF7hcGd5adA7EpY0I2KD+sBZDtUGISr5kwh3eysk2nLe7UQCL9AxO2l9omyF1Ma46wrhpB9sTAFdh2XIHPXlwlB1Mx/PpLTTywuj2zB+YGYtpkSSJxwiFSoDQcIyY6DEW+V3Xpb/+QPwjYYjtJKU7syrZITsuWZ9sXHKxocksiSolN36cgO+6KiiHH1BDlHI3MlXAIWwQ8znmHbZK6Lol99A9wsU9QUVzjy9WCfXHEZM2582hxIt/EwY/fVxhWqfhO0rb9PBoKt91pCj9oeUwAaCGklQk4RvyHyIVK02cd4TmLKl4anA935x+7UstwJBNZXVGJCDQn46LW7rG9qkNiEPirqOx8SN77u3V/7Fi3JUnKxtXgihQ41C95MMLjfx4xlLnl5Mrza94PTwwGzPmeVrMfRJf0fMO5+H5uc7BEo386mXbS3UnDnsM77yVoA6WmzDKHx6Saz6AH9+voH2ty6TEgTo2E0ajaXd4RiC68Y6ZNvaZid/yLdC6HaS4RmKPluAu2FTkgoBXyiHDsk2hWEa9Baz+HOCeIBiicOfd7dDJCjjkcHOWalvWkLTE8+ik4yEPPecvQELYeoHhBUdTvfxinUzSViZPp79gXeQErlawihqD8eKDBXsTcxW+ya+zeo9ImMT/0iUUUcdthDsazNOu8HCySLEvM94GT45o6vd3iliu8bPm0RAsG0rHAV1dgy3K7gBQ8eIozTLwoMQb3TYkwWws75kZX3ZPh+nqOxd8A2GWig4wN0d5iuJ9LGGe3+4/Gtxi6pwrvoPgo3+/P1y7yCn3IDcrb6WrVtRw60WkP5kq2xoMVXvH7njwSY0h8+ayt0pUPdV0ITUSLq+0F7FI3wyJrUU7JwanbSm+z+dcqtjjQrv6q8PTOm+AODJk4XGes1q6PisdBKYmrdzJfimjYL+yYgw9aiJeNQ6jkQuz3hM+VJtlbPokIIRa3OMdIhBTmQeKUXINlDxY9NYGtzs7T8kkN6l4OSiUT8X5jJjU+yDZ/lSgbThC+La9+f5UwKoOJQWsXl5RlTLL1hHNPci1Uml9sz2qxLFsQ7ZB8SzSzOaOPLpodlZOPFE/D5KxyTitB8xhdOOf5mSpMVOjMWrzdfBahFKJd83EoI0Jk3sIsMdsBAIpABS8LKymyr+r+fNZEqsyNBjzKYySjkUjnLSdkEE+b+2t8RimaisJIvKcBwGNIkOmjIyhD6fiv40KWwSO8+ZRXfQFHrX032+peUHXMh2VEGQzB6ben40OQijDeNb7ubxPatWkSW76z7IgiiXK+wBH79dvwre9C/YC6yicnuSR/p6fF2cis0YYh3G4Ocaa7KlhIxidXrVjYVxFA5eNC4m//bSOGnd/Rcw69LPE68qGPjLRNSWDI8HPGZeN7CrTqxnlpUPTs8Crn/rIG4fB9koi9KMq92Hsb12dgWtYy4rKOut2nIApM4ona5pYPb4z82IpjoYZ4xi2nRAF+wNmOqjoQ8gWbOORnhSANxz2y/lRDQrfGDCSGPvJKUcjWNEhNBItqDMNePBpQNOSm3DAikZvdra+lFlLpAVkk1gLJQh4u4Tw/E2WypP3JsuPpJ2wt7u2TrTyr581cdJBNlH5KZjqv4mBC4a2CorePvy0yAmYPFZTkZ1okbAijLWaPtSUiluOiob+aOe5hHVF5eE87wvwGW5XmQ4Uf5MJVEEUj49reHm+xrjXBzcUzlLReUbQLolIbXt709Jm4cgJlZRjs+LHEbto9xRTQTQ9oJ8iSa+eeHagmLaog0sCG+FHxsz2AkEcbjaek6VLCVSofzkKLpVizWAOp4bK05fl+rGedF9rc8gCnvZTta5yK+Mh1GhfyYysVkVruo6etbT5YZZQMolALmOxLnY2p7xn6TWMg82UsRSC9FGg68TsI3Wh1ks6bydA7GhC2ZMaGMAFj2AvjvvHnGhFFWld+EKrxprNlnUpQiBrB+RNORIOcU/j3CCt9guvx7RB1vxzp93KVfPrxHp34JcCK+52vyqPSY7rIYIKlsiWoMQha61ceQwY/oseT42LcIJeTp9QdV13+HOLDKF79EvSk5qCMq/nLHgv1127t/AjZOTF0K3YNGRHW635J+H9hK1fPKrbs54JWPlmvPIugqq2mAnrpx2xGAqe2OzG1oGek16XsG18Hu7mlGoel47o4oUCPAJgGrCjfviR28l1Txzf/byYfAFpZumdyMV2h8OYVckqrQM/dAWFh530dCx/+ktwcBOr8YQ0J2sk8dol9iyRP4qd984fh3GMv/6WXvFKn5dExW6aQbS3VvgJ3a90qyzOYNnWy/b87KprQgjnZOqOEcX8CJkLQkWvqtve0mJg34XB+I7S67rme4m73VSj/n19iqcNW8EOil8OorUIDMT5JkM8QL9BFQCh67IsIKqbiPxDYrvb+LFSq9I9IxtBffDCc6nEf7T3T6MpciE6cKz+Dapv6Oy5HmBu5z4sHxmXJCQdklqsjx2wYTQRiZJZ60G1Ikhxo1GmdutwBFMyLopEZZc4EEIVanrI4gQ+UbdXVHwh96IOShT7zi774FCx3EjRNPYRM5+jgUU35NapzpDRubBhiQGeAtXvbzPUqxOze6pxIFa8BjTvy7PRmIUuT6TqEOAunUL2e9xvmcg8sUwbJHJacPruqEj6pq8pBqQ9n3oFcd16XZU/TLT3UJL4GCgbkQRi/Ovbhnj87buU4VwYWm+qnt3tRy7+dXMjcFj3WaQa8C55nmbOOedps2jkgo/NnJXj/IdJsbET4ohkdSaDNJw/iVTEDne+ERSKyTp0sdEvvHw3+lfdVpXLNF5tFWXQTIfSDlljCnou2QupC6LkI5g4Gj702iom+0VjUi6EMyGRcU1L7pPibVkhZsoTZbQXP4/ztyGJGBtYWWgKZR3EfGZT5THTZ81azFHNakX2lxYRk9VWlQtiIPQvSV2UHoXiaCYuB11edcn3mzaCPObCnHAdbRbXzrR0BloptYnx10wKRZBVWDt18Tzn0Da4xR2vyjL8fL7FEw3XlXJsGnIOCnlhTn77xoAPE0fZP5tq/qalvIhOHebtBVcqwqn4PT8kaM5KAWB4tD4SEm+BJdC8yP+8dXYr3YEcopf+h5YsLORYFb+TRcQgHb3vVHqZl7CC4xSDIoZtqY7bEjRazXIzZYb9qZTlNvF5ficgEFRcNZgUXx8Zj9votSWaDJjgFNeLxTnJ9s11AHWklpThLVSNljWtLp1nskNypFhdhiHwHhF9bILhtF/vmbuvn2NR6uWhfIGa6fsY3EgiIhA7rVTxQWdWEqvhkkzWpifeCTf3gVYgLh6agAQui/+YxzWHg7oe0RtUcFDZJ20VoNhy2kTWP/25UGieQDBQ0sd/W1iCr+4rfwGAIOEEf2SruFnW7nluXS9lW691Gee/QPawX8zBjXHdVUgbf/n/8+10JiFZPi6FLILQ86HwEcl20XT7dTCs+6gZNuQ9wBA6e51HsGGBkedalKXKNSGmBzHIa3hGOnQ/FJ2wHPheHxlgfGaJRNnphYacx5Wc26C9MgYOVYWmjTaRzvq6CM1LUT+Ooz71lDf+4vcSGshmTXVzQ1bCxQbXzYLudYMtdmeO6yeoi/SO6pHxkwLjuC3wGjKdumA1P7JAw9WDmaBtsbwHqDOV0jVZmpqBLtCdxVcGUCJ1FdFAKtnPSHThgoxNvqFjOKB0NWI21lpyIVGX4sgmLOJE3PQWaWKpEOgCuC2hPPBEMOkOflNrxi4+Os3LSjITqWB2vS3NWX8Z5V00ToSXQFX8Ss0l4f6VLOiYFC1GW3CCGzKQbnqcPx5JLAogI8DCJqTTRHgw1dPR+u+7cnCg8pnUl3AINQBoQT9NyWys22pu0BqbQSf+MrwZnbLK0svLWQ2oQotI4yvDk9zqLdoHvS79/+5VygKAie/qIt6Z95I0l5C2fFZlwfNyMAXVTSArVOQR7ePfIon/6tiv+NXNJb8wf3hmcjjw8k02GHF/Buuu4uDt8OlQ6/zcStNuqHLBBt+mQiLv7SiXPHgc9j1NZ5MD4hDBnucQVD8Ky2GyS+jV7C/EEtnz2S20DVB01oU+yd84846v028GadvK7gKBNqZyeutoI6ALppzfAu7vc1+7eSxXyo3wEx1jGCplizE8cU8xM25/T8gsry07R91Ixv/H5xFSDphPN5sJOvCTjDXTS2sey+hSknHhf+rh6KHeCzVRn+H9FuJZrZ+55mcN2YcIlnM7bz7qs3lZbhdELqS7rXedQ26zQield0RXynX2A4pwcBoMYa8j0+9YdHgla/+UJyEUfUt0H2KPPoSp9xIpwajrSf3mYsK/jvLze8BFUBldtP68LLj0BV17Ltvvqj8ekt936+YtWAKUpS9rNIXZDhxQM2SDKELbhAYhoVDw1+mqTOdU4fUPi5zdteyfycHkTjDbf2xstF3bouBxnHcwanRP5QxoZbDqj
Variant 0
DifficultyLevel
582
Question
Surf Grommets charge an hourly rate for surfing lessons and add a one-off charge of $45 for insurance.
The overall cost (C) is represented by the formula, C=30h + 45, where h is the number of hours of lessons.
Mark has 11 hours of lessons with Surf Grommets.
How much does he pay?
Worked Solution
|
|
Cost |
= 30h + 45 |
|
= 30 × 11 + 45 |
|
= $375 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Surf Grommets charge an hourly rate for surfing lessons and add a one-off charge of \$45 for insurance.
The overall cost $(C)$ is represented by the formula, $C = 30\large h$ + 45, where $\large h$ is the number of hours of lessons.
Mark has 11 hours of lessons with Surf Grommets.
How much does he pay?
|
workedSolution |
| | |
| ------------------------------: | ----------------------------------- |
| Cost |= $30\large h$ + 45 |
| |= 30 $\times$ 11 + 45|
| |= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+dvRXcx2nkT9JSTvvN8WZGyJfwhlQDEYRRr+i5/ny5HrFMjdyADE5mImzmBi8Gfy8yCXgWqWdat23R09jL+Yq0wwE2Qzta5T71o4RnSbFV5YuZs+1NFxGaNyL/xQ+Js6mDcDAH05HsYIXgnMfxZRZgo9kfxK92mnVzwMPJEVsyeN1hm3MLdLA17iBN51eFz3mfxwO+kWDFc8My7+7WNLRNd4WrUXNULIN0js7Csf3zfkbkfZVswYAoAzKjfjxzjIP62NTHdsptMqkouXLsU+8I4189m7zQj9ICcXws5EYuT2nMKHlE4860vBYSTYInsXg9VabqvfxNN+gS1752h0MpR55ug3MZght8AuSL2YAA00OfyaEI3M8y2oP5ac+RZhfTafJhM2+6Hv9/m2/7a5iGb0YUsFhl+koe9MVFGR4xvNgKSUY95M6NU/H4JKbpFUCgX2kNAlOBfqGwY4Fj3NxlQgNSeVkyeEIBQEQIWrihrr3e6rQ8XOc9smdKFo1UcqrfiCMavwbS85iby0PbR0WDAnYm4Ki+KvvDDeYhWBZUO8u6rLfgrl9dPEZgi++42JnYT2IZfikVEayGw3htSbs0j/kvqJ4gV+R2imXTRK/QKzHF75TGlv3/qMIb4HYxHO1G9YEzzZhbAVKUcPcoVGJlT1VtwzPP/xo2Hc3P7HKeUBijUwrG6xdR/HiFjh5JJfycWTLh8bUc29qt9i1rCjsBE3l9EnxQnPltmyDenOfeLKeg5FEhFHiHG6KCjC5eJ5pjWnckX42DviEFm8Zsn6t+xLzoD5JT7i4fbvuJB5LGNLmm+pDtKy2sMZEbI4WBGDncnwqqU6lAyvOSQe3nM/LPw2+2uaFAcoVcOhkzm8bBl/mHKArRfmUh9akOzcmZ+KKiuciV099x5HyMDzDKht2PpftKGwHbG3Qzk67MEW+6kA9diEKyNpI10NUfGoakypChVCyiyAPVHkzCCTsizrlZ1KD7yY4mr3jJPtavZxsq7IAMr8n5DMhQEkpUgG1SCt49/vNOo4qLN1xR91Cj8SebDsoW3nJf9yskzk0mjed8mXT6vTyu3Hg1Cs1aGXvdXyLaZ66q+BQ51PbEk3BxoF4s2I7aYSUPvZlERlbB9IDHZ4OIEjKtnJwBAtqh64tlLXFXGYidLwDu8HYLBxQu/A2VTMKUcMm+ZFtpu3ZzN+zbLnIeU9ubeM4NF4vub/3/NDODPS0Liq3QPritCaPVWNwnlZPkmdd5G+nT6NC4IECU2LcOMemYRd6XPouTvoslUVT/EvUQE5obKPXc7knbdiW/Pwpoph9EgkDL8IBFZRcRFlPNctrmCkhk2hoWXwRDDtrmJ9dijraZaCRMEAdMAU6kxnSQ5rwuqhfWgT0+novvb1VcWDhAjJMPo07WU/U6g7R2QT5lBowbzudg/eypAYlFIJvyfBC29NUHCj2a5EKfsJchxCr3/fT+KezdHYcRHwMszwGKSdYDJrzQyaN2mUVi1/08YlEj14Vuje8uV5mYRqBvQYjELEHxRIZsG5nWKhrPBIYfHw6jC6GnSFChBZ4cPsSpmSpf0tDIHTqR9/lNhz38vqfj3PjJh4H9K8Y84k9IQF7yZput5wMQ5XyT6CJssjF7uX/mt8VMYC2RV1kfVYuFeTHN5004pLULaJWfrpFYrulkeIj+ZwWiZRzQbkb5xYqldHz98lrgiElpVuBWfifRRkpkf2W8BMQypZpEVBwAdJIhzr7DWb5NgZQveW91iyuaIbNv1u06IIFG16LeKYw6VUbZTGFyiCyJKQdLOJWi0xG8qHcse71qpGKCETp9ntK5mnwzHqzuWp51y7NYbV85sFeWazQ26+cOJShAgel9oBUDfueOKsfzRDbncCDaaLcCI+OYmsVIkb/CHxsIrVxo73wcvPU0r44TC8cR/G7nKcimsePMZZWBSurWCd2F5mS1scVHe6JBVECxQSXF90L1tR/SGvQAJ8vsutda7fbbLNW0dw3fWcSzjt9mgnq227Jbw5IyseHkz/ez4UrJCzKx3ACDw1F3KyRidF8pZwq4nWMK2ncgSWUAkBKo0lbZ2lPQc2jjrh8iDYA+dWZwj60BZNHQPrli5SV61s3dQWNe66KwSdHvHS16pHkJSFWX0KaA+yIGtPI18/3RAEqPTFyTfsSwaiyYirQQAgm2913PcTRDckrzlZkLq6h24qkaKUrYQm3XxJSVpGiz0mbXP5YgpytXDkMUEJFNnWEK7Z+HZKrdF3NKjiMYQlt0v6tdd+7XRQj8deybUPEcu94ECyjOmp26c3sUtxUWZiD9y7m4hDrHOZDxSQvY7xTUELivX2NPAj2YS3GN7N9S/9TIPoNE3+SdE53wRQGIB7vTSJCRcze54B2v85Fl9VYpq1GzZtPkY1X+ec9w7J2LUFbbZq6KVQdsF1q/AcBERvW13bPTPDaxjiWR14ws917xxtzgBSFO+FXnlnol9Q3hcw9djvFmvj+VNTX4K8LWANc7PK4IE0jkwj+ePKda5KgLY/VDuMBLbEV38zaSZO29pKByuanu0rpJ1UB5cVxE+/d8vEP6LtUWrB25lAjs8deRvz1AuCXlQ+UjZk0VKV/Ig2Tdn/V1VOPvEHIrHsNNGGPu2A0tafi+dr09hY+I6EolEk1qMszdsXFLUFSiFXihODkPqmieew0SB64Idh+i78UNE/EoQA2efcCZlnu3Z9tKZJb0QD1kTKArpVM3Knqi4HZbKQCJOEB3CXk4bly4VTPi9YNLuNNIouaySpvarLD8dp10r9w8r/KjzlVJbMGKMFjFBpwM9tgnsZ6fq16cVQZ3qgvpVnmVqfFzgAaDWFe5Fco5wN1xcVZzEYDWoJbDtxsBQQmazXOkVL5GkL9w2HaqH6KSwzvl/rlP/v3We5+xf1wM1hQDZx+PVzIPE2KEe0zgROjWscnhLwkcc8jf8+FbFyC59W9K95wyGUX4mL61z0zJwfZQX20q1UUYf3Hd0sf6lOagxzpcjlR9O2FE4vIOh9aMl94NG4RG8/DwRdBB9ujCx7reBYZA2AaDy8dlnDUsfu7U8fE2KL+IdeSQsqru8s4LLFBQzPOAFIir5fXWgjnViWP8wpTbZrg9nc4vfb8QSxTrAK9GCO/PaeTlyiLDt2eXxVZVs3JxMlEvNuxR40m931E/X7R1HJ0ADYcfdBsp9OwoPdC1EHjMgNe/U5DiPc+EF4I7zJ8y4FjltMDChu6Zai+eCx6XMmpXoribuJeAGz96+GTtaAZtonpiub+XSfqEdT1dc+yiNO3wltadDp6SM/WNNwjTscD084qsPFVRHJKV+JsnG+blcAy6XZ44TueDstw+OW3xPZ8CtZdFlui0sKmPbIiIohF7LR7HGWWryWxMr0B4JiY5q+N83QfDi4RZbMJ/QHjJBB3ejZ+/PE5FzsOuPSSplR5nbe7JenHfK9rVHEPMfsy6j8yTTyOxmzO1wb32jtCnPfSsUqJaQasom0Xan08tF5Fc0ymqOpoMUnD3gXSvUWYeGkYT74IS9P+2M+JJlDFvvsNQ0fhY151Qke2t26rPstmDTMLo4Ax6pMxnzRc5lWb8bCRhWsnlDxueihmZjVQwnijRlEClTfwdGNR/rWFII6tm3YBphjQVedtsOcwN7ml2uYvRiTbBhiqKcI8B934QgKp3FCRp4Kg1oszfDQTJm6yclwwwHTrclQOd5L5n2A0F23sbD/KiDrv8chS4/dTzbZP8CD4xJCMOgI6VdTHez7Xo/nBNCEiUcpvUWlHmsZcysR2B1lgiGdDD8kfYGTaZVafBXiqgkQUyKOs3PDbJphBrpCYcg8upgsbOrhJD+JrYprQqRagm73E1RA7MRnDBdoyrFLNzzFjfG1xbEszplsbUy1n9I5Z/0XdJQuess7R/5tj+aKplNnbLzJ+TSmvJBHp3OwefJ5k2Z7h1/JX0MpAHD+NJ4p25Od37vHNY/KKbVJoHnnQ6tIOAHGfbthQd9eqXu7hZ8BhW3dcLHxBuModwnAiJHy5JDQc74dZq0AKZkGm/RG+rbqd1VbjMKCRU2wtTt6cW69jj0lU7+2RMcpp40P0tdcowsj0xvZmzHPxfx+S9Y12fX2uigbotnufNbOk4GO0EAz8DmscZXgAbPQgnygafvePEo73QtIWtiU7ZNoIHuicfBo6HMjTG9kw0uypiKWWZcBrP04U1Ff9IHWfOgF8+fFIUrqH0D7++dPaQV+W+h254NVptqTSnpDwISQJkSCmOkowIj84nbgDvYKk/eGxagXx9fSUjK4o0U6FbeNcvBJddt7gyWlacxtbnJdpAXIltZeaCV655I7R76k/FBt7tmLRde38qXb65eqVQAusgaM/TslBNVfSFSp9nVw8PogK7wpLTaqeNHxbHBZAJQ/ndRROLxfKE7tSQTnsZDwzUMXobrNJv5DD+yX7ieUdA0uPGbIvn0NmnVBOdkg5/YGbtJERMA2nKU09PP2HIQU7vDI0WDX2lMWDk/GSoaFRh1h0Ew/93SjgtOuEV9v4WU6ebx1Zt1f08fXgJEIxuQvfZ3x+TeJa8XDOLtvHEVLDmisvySBv6wtzwlwTys/F0cBrHAJiSQYdFUdzMpgOBddV5q6sc1Md6gk5l12/hUSv2VrbkaFe7eM19E6YVVzVyp/FuMJzU63uNMgoEH1BlGHidj/ZsFCvcABk1nVMYo8AA5ZlbwAQdZzndL3llJC4LcTkMKEHRcQ8JQIesjI6urKaGStSUgocRuKYT0+eQGqYeCYTztAEi91Jm/jA/OzJnEOtx55BIS3FjZbT16bO/pcf3gOEGH53pCzjUywcx7GVdeOZmgqYjSztuetiqZKxgxbTAuv2/PYHuFfp+7wIeu2b/6TeG44ccOPxHBb9wmUbs72W8vdmbrufFHH45KdhJptHX4FW0az/zhPNccec4W7FdAXrC1cWjroDeyqfBvsYpQS2BBcyy6xKisT1FWVqQP8/0k9o8b7nONYqsOJ6MgbBNYWjDUgA6/dl20w3W/0AkSZhOyScPLz7/8a0Ho34t7/bTlwod/6oGukZ7S09L4P4v5vRFl5hgCZ9qXisnGSm0hypSr4/Ig7XhCAmC6WDb7o+uWMNKWLWGVdcBEXUQ/h4wLmlSpVult3Z8A7dnlsU/uEU1/gPLacr/wYNmOcbm9Qm/M/eiwHno8hdlgXAQOrb/BZxfyv7dlaKfpYvscNwiOc1zxrDbc5cQAviGF5ElIg/EaBZS+drDMthduqvD9WLuNws8PeNZVNgEvrtZj74MY792qk32Eskti1EzD2WIl1d9CCfX3E8csKWLGJhdL+m/7tu/f+fRUYXDsURzBQGKaIpeQoY5J3ZmtTuR7qT5Ao0pOVi0i3CSzqjl+l9YhJDCJJkqyp5fiXY1dttHCim+AZk8JctsCAU6LYJkLi1ySvL6EXTAJ5CKMkpz2OQjm7rBDOdqpHkgEHA+H4V8ofXhESEKHVyIGZ44JROEtYKyj7gzGmK26nL6jKYBM9JiPKvHyWJgCF731CuxqbLk5amoLfYDCVsBmL6d6pPJRaq1P1wP4t1e/XqmB/AdvAnjX3OwtOGF7iCLQy6Gr2OHdis2g3AXPH9d7g054blRiWpWntM5xjp6wk13f/UTv2BeRECgFUgVEg8jNsDH5EAeD5RcLLulH8yhIbHjT0jOxYGhRhEHiJMaq5ftvL3Bji1V2aG063cZ8l0niThVBMiugQNTf5MD0c4W9EkoypfD8i7h/fczFI7K0CO9r2FeM7dC6Vt7OYGUuUfl/f9D5uCFyUzRtK365+39GKCfBTixRD5jokl7DNfhd8zr0UADVZ4OAJ1By1Q+AR9LIYQGtk0H7hpLYQp2djw0CodH6PC/ApU+y1GPa8t1plLn0zTmgLlRHQqDRTUD02Hh94sSm/BEoGKZTna5Bv/THo6bMjLdQd46lkYrBfc6Q7qPpEF7koX083ecm/MJtS5ef+btOzDG/i/GmnFuxR1cYX0xfgfJY7hgK1upehvd+dU6M/86Hjyu88PiFzXraAmsm4npJAuc+FQT3lG2w08NtV6v/w2MfZOTLWm8WC96A5TxCKyFcelxyhqr76VZseobKi/GDT4EqA==
Variant 1
DifficultyLevel
584
Question
An online tutoring school charges an hourly rate for tuition and adds a one-off administration charge of $50.
The overall cost (C) is represented by the formula, C=25h + 50, where h is the number of hours of tuition.
Mitch has 15 hours of online tuition.
How much does he pay?
Worked Solution
|
|
Cost |
= 25h + 50 |
|
= 25 × 15 + 50 |
|
= $425 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An online tutoring school charges an hourly rate for tuition and adds a one-off administration charge of \$50.
The overall cost $(C)$ is represented by the formula, $C = 25\large h$ + 50, where $\large h$ is the number of hours of tuition.
Mitch has 15 hours of online tuition.
How much does he pay?
|
workedSolution |
| | |
| ------------------------------: | ----------------------------------- |
| Cost |= 25$\large h$ + 50 |
| |= 25 $\times$ 15 + 50|
| |= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/45q31vnLFpvSp1yqF9Dk2xmk+0e9OfDe8r3VMmSyLmgA58rck61d78uyEAMwEchW0MnU0VgZyap28iTj93Shb9UFAUFjYQ3NKKWOsNeCSLhjfLHSBrkccXm/+hkhUSAQMAIrKghOHvBnHc0ZHBYZ1hkONjvbdydKKrnYRPUHjUF8tURMlH+rEM9/vVTP2QvVECG6aEw91LDvnf+wWDI3TEuz94FVIdu0aVj7J3qMTugOzAn93s4Z/4fyYCKv/Xz9VaoAxEHknW+4Dw5lclr4a9wpEGch1zsEp92une31p1mfBoYmK1JDpIL+SbgIPHHeuX9Ny81UoGrjhc24jk5ZYtrKs3QcIGsb0MiiA/f0Nw9FPp/V6AUDKhXd9GgaNHWDJnO955sFUbuzySmhlCZyfw7UURGpqJQvl5YOwW1NZ/l0wCjsVYZ//Qy8nAVpqv4WZQ83G1+HXtPlLXVE4gAUQMqa5M3nFi0BI0831gZhZ6e9Huo8BCk0MX8UjuxI2Fg707TKiimBVebf34re5Ro+8vz4+NsPxEtKqsljfAluNepp7D7LLE58Qgg2YDtYtXamkVMJmC3aVv6RI7s4hlxOvgp5RlRc/Y6r++rhb22mpjSJrizcK0F+VU2+ktJWDVwSIX++2xqMVUhlRn8HQfKiKCGKHHLHjVEQhnam76oWS0zNSOIqrs045jCfRciy1a1Ecj7EKgH/S1J1/LsAO3iyE2PcV3dKEavTnM7l3pdmgbDwhy2nBnWcS15fzvDPoayyyBZciWloFxt+p9MsYjEKNncs8uLtlDu3DA7u//7of0NOyLhj9fifESiOpJ4lMQgu0h37U/pWED0CcnJcRa4gZ59Zr5dJDoBbn5k7hj/9l5NhQX2nK++JomxmDNiGPsn8OkLBmUxW+/GcsiUurllgfpMbHdtTgJX8TxGyWlBGI6Pz7piB/Jijr475Q0RF7HuS6xEyhaTf55xylNT1BKABpw3pH7yXk9nfMIrwv+ksvool70phBz7T8i3a5nGVm9Fcl0EbXxAjMzDoYqnIVRMi/QrjcAM6DIcTEdT+72dXcq7ZpDQkX6RwcVG3XiB9d/ssd433e142zdAGsg5KonNn6ExMXgmXSGGtl5ub1pb/AEJjqmefgxl8vBqFOzAgW1xqiAx2DylkSjJm+L44m0dXPsAqzrpxFuT+V2Vv7lo/LEsDZmpctd9rPEwaKABjmzcX60W9MvtCjs8sEKRwRi1oGe/GKxpKhWtWd2tOuw+m7Zq4U2Ex9Xbylo17A7qxy5DD8WR64bJCyyWHn4unzcknBk3VUcqH9gvaz9jDb41xCLtK1bXL4/Y6oWYq2gMVynH1Cm13Yd6b22Ih/vOGfkcnkFK7njwRoDk81/w1EdVKkA7YxlBk8dTDzGMMvkSSgYpIwKjRc6cj6bAvIM0q2mSgIZNI0qWKei1/jJyLLPsTuDDZtKlbtkKD9IfjDodxebuCcrZUH9XR+jkZbgZOCUolav59/+aNoKmrmFMMfD/QQfjNh1Hklu15IUiVJS4jGTskDrtBt6whYDv9ejf+HxtTXH6OTGfNfiOsXcHFjse7gRETVgeDY2J+ekK831B8SesH+VdcWdaSg1rqyhZ4zZHtLC3LEyJMyGvUvubf8ks1SidjqSsuf6TD+yc2sbM3OH71C87Kn8jU6jQwKBFP5O631028RA1Og2pLSMehB9x/zYsVOeNd8S3zN5uH3jeQEQYC9zxNPK/WLxORnSsrujx03sBDx3IVWTu9qLGfH9/NEwoV3vKC3+CkkdwdPzzN21wpEwdcYI1aTpMBWoYdJeK3Ai5pwmMmFRjLaXCG6bpeCSxdfG/vycrK/TQp22dyQ8LXHeKPMems24x6qvuM06/1CBnmYNFIrowDDN6erQRGRZ17Y6s7Z4GGmOua7nxSgZKWeOB3yvDWwsp+DUFmRyRISpPRfEG9oBX7YiONfy5G90P3z6+kSwVWz2fvbGAHbKeny58VirVarO00z+MfA1HzhofYNbT7XtT6UiRYTS2C5xphcXHT/q43IGKsI68orD7QhtTh0Xl7Ct9kXerYLHMoQZDhPf2qh0dycBpv6M7nAiAVWHdsTTFUAzc7m37FHxmNHBncZV9TUnYmubbBnaqO8VlyMMrB8kgfiTv+dpaue/tX3CYd18FdRh+p9f/rCyMRf7EEKPb4ET2XOAqa8uL+D7U5EHBBbdk6IOvXGLe0jj+ucqQYqgYRfqSR44CfiWM7DfQ0UdN5uqjOEZcoY3IVgVdQ2OhFclFmErHqbbMbqX2/ZJ6Xu1QuDm6YUmlLDrNYpoWCt50ryRqeMi9N8D8JplR5PWKtLHGZ43CY1NUHQVGmPrJN8s/ycAUJHoc8q+F33P9EdTgeaQJM7QIp9KeFY9FWHORxf9Yq7OjCJtzzdYhqUAZd6sLBAlXgrq+at3XCAW1wN9CosfdlGPkRnA/wgcWk2g7oFaPxH3bfP143/o7wY3uMq9RL22T5Oof81L51GUuZnN+RekkmvpKrnHDSdKCT15IE6oDZJNlIjYRYkgryU4XiWcHQSYJt4F5LGqn5zf4FAXl1Bpk+CrYBRFi28DIlrxoGuV69d9uYY20SnR7JySmDhan+qm/513OQ5b8MisNfX6tvXSCAaavRh2Yl0VGZQtVSY1lMICwgB9CPBvg9Ks35VJKm83LkcSn8F01V3qwZrG+mO5EXAvmkAiHxxYMxZdDfNB/sW+btJb1u/y3e/UK030jmUWLkAcitxmf7lPjVzYTZiaEKEpQKiJ7cS824o3o/eOEBtYSv3V8nFdL4M05COCKMYuL/6TRlUtZGLfoOeEe2AC90L/GZHFyjZ/RhDQmTBE9tPMnMIB0EKck/eiaoEepeV7HyUjJqiafBiGNVlIeFi6SJFgMVEacAorrtWviBTu6CMjqocZt5xMGkprjhxk9GTxhVJk33yenmMw2YF+9eDVe0u+iS3yrn0XvmgnVd5GnLULhPMe2wOBDBuj8XyrwWaLnnXu0gav09MSaDmyWuSP7TGEXMRf69s/KSGRv9O7HsbPddmrOED8lusxZiUZKn0yixA90HCJo8plgBjQVQenyfpsOfviOUh2o9TOJRn21mhJyN2TLkrV2NL3BNoyQs77ZPEkgdv8fl2agClrFY2+NIJYBAR3AosIoBvO+TD82dd6Sy6hnr/GQlE0Q684+eefuoH02QwCzfyfAzmxd4C3jog09URunPwaYzgAORhX+OAJKapqHtadgqYjUPa2dLleN51yB4bbKeJr+GLkCKyqGz8nEpwBFsAyhDIpC4fGbchwAdhzFWTNOHnvXNTklQXxXPF7lp0d1VpY9bvG0+lRUeoJZeR7Yq/UYR5JlbjEc7Seeamq3h6tPQ/1Nv7tZC27WArKPvSZkdLCLey+72Iq+AQjbY/ePlUEgRKbgW63HtCyI5zlB1i9Ocoa78GYRo/tOoeMJOs3X8nbeBynwUIJ1wBohbi+iLmx+92G0qXae31eFcTOOuIwRXZz6mJHTlhVfgx5HSldEQ6ij4Ulk9h2C2yF8hg3ifwZrQhI/rwTXaKxxLCS1AyfWB21k/oGUEgYum6IE1hB5FktLzCNEfK5wauEYZMc5WZ21twXqvudAYE+LYZVj8v6BduV9Vz57kZ+p+5cK5nnS1kbpPyt70awce16ip3Uy3ZyUrEdBUQrtf7kqwCK9XRPCuaCVhg5fPQrH1caR5WI9NkO3TH2QR5HQrkHF0t563fisiXHar+AzUdAhFxGdhhJH2TyyuNbCyiD9aZcwCAi0Ty++XtcjXhdTFH+Mcr9U86ad+NERUvrAEh8duq627ik7WQp7Kr7ymp0v5dRBjZUh7DAyOXf56Dfp761pC2A44E8LwR72hp0AzcyBDXrKD3vQXiCcMqKQ8aYnl8vf9rNLgOmhpjEUPO0A68H/UhVvnA8x4dB4E5hLxFCdd7A1jKTivgo45GMjq1nJJR+DTkoBrXfS7koc0vCCqLtsP87wOzkxjhrJRZfDvJ7iftUWThHcblOqUrXYVqYYf6oSyWUYSBnFagu6HXM5T1G13zOg0DU8uL0TfAEsLP2bWwSsBnYMI7XbloKIg7/4+Tr/L8qCCN1JYeP0Fub3zXd8H67hDyo/1ckH59ueUE76eppFtj0EH7iI6o2T05T16MzoxFxo+gGT4RQF5o6r05BXotpqPjqcBAHPyZhnHGT7OtW6/D999Fs9PMsgVRaeirUJTotJrUxp3zeRCbY5xs91ogsKP3xhycn2SlEIdMhUFXZ9Sc3kuDkcBsWMB3wdyG75CBswKD0P379rCUNLNGz5zM+jH35zAWhw+oa0Yq3eKo0IsbIPr3LJuaIOS2fpgJTef2eXLUis4uGOazORjaS8NfXhlDi4d+BEhQEXbl6AFnPsEQI0TipABIr5YlOBXPvD0Kmv0zXxdUt17j+omHmn3YlVjBP8nQDu9E4kIWJIfpVPYTVk3s2JDF++ABDQPI495fvl5YOyMOqgxKbrsE5Ck+ejXOikXanjZQyIBnGx7YfbumfixwdcEEFYueefy9FYNsJgDw7eTM+aoyG4PTe5DF4Cv2RdHexuEbHUWPPVqWI+xJ0b9VZ5B7oi4I9LUa2oXr/Fnq/ycKjfm/B9fOSczlUPn5jtA9m/Jj4FvQrWvll1KxDmZKjFKMsa3fr8zX/8b+0PAZBsZ/Z3pHNqLxng5E9wAZPg7nz8bHRbkqdJxYEC3w6LQKpxvqsvgfZYdqvVRpZbOOdINb66cFpfFgPl64Kt3C6jr92AEExba/RfcnXjDYivN9+9Yl+76ZclMUwe9ZqUTaBHW2FhqWl9XWLQyRbCn3u/JfcLFBJ0l7XbGrAPjrhUVug5LHbfa3McU13uScOECA3xGY+0Gam5WtiSG/PkUp/ffLgCIqHEFPoCeE12OFcdPGe99sF40USitwLOe/HicP+nBhlMag/Fgd94z8PpkjuVMcSOGuFpaCZEb5tkqDpV0zWKaqoVKJBBOhd0YKL/d2BSF4m3bMrQWegq5lkLD2ug3CcB3pHajSLAKRf6f7XUJ6gkOMc+bFNpAEjG89Lvotmg+2Hh3cZkWT/6YL3/DVnV9dKsfQfUv3uYV47xzzWhHQa3Dp3J7Ub8z90vG8vrzZ8r1aYlxQngfQMFWWkRz6lme4Ucc2kqFsFyp+rckzfi24P3+gGaiwQg1HsF4Kg+F+Y6ibI/vBxDY7ZowH3q0WrcEm74OuTA5mfYhCLys6HiCiBlGSCUuEDY0MZ/QvaR4zf/nfSkssUT+4ukLorwWfkK1bz3QjXuE2LURTAkrq0ZoJyjefKr2KdxghIP+BF36LKJoulCE9pphJsrpP3ia0pxv+aGZTyxF0cSAv4zhB710A8zsnQFYaGzFxHvuOs7BSRuziauXRwXCvLP/XfzIjTM4egMm0WpfYMIGAif/d4msTk3W/Q8Ws0qQ9uHaed4NrQ1AEv1+KrReNhtnj+VEGMpy5jcrTBjn4I7SfAE1zle9KrsTPc7Kg/XXScyvUJSZWKf6W3+efWybzl4aSqHreJvRePPU/8KtVUDY2K/j1/PQudaFvsx9CuJNhOs0yC2YvGP8OxN/Sp0IDn8GHsZJUm4fsDkh8T5UW0dAQeFEmzm//r1JH5RcrwDskpuwjgu5p/gkkBQl/ZfEaPPeiwUnr6Mao85QSH60KEzfgl9ZNywTGST1TwuKGWjtjcUOZSovePg5b+Gn/L9FVe/p54b8vROlrm2k3LQ/CnhP7MTOsXYLxLKzc+k/xAZwtyJu6n+p6i9EWU+4VezW21WNII22Iezh+s5pRNyXrv6JjS7zBLmgDBIH5b6G7h9MpKtFM+/RMex7MpF0Vi1e2ZVsGDRjsG0VCE6O/PVonLmtK/DyqPZaxgc7ds9RuNjv134WaNBrSr6Y7NhSJIWPKALAkVEhjwMnQHeAkTxz0BStL4Vt/N+ylY1yU06v8eoF1taaAqb8+03kTcj/8CJt3eDQU0OwL80dTyBPO0JDVp4UZu/VOGnvZkHKeW5fbqVSNpfzK5wB7hp9+jNuWnJ2osNLyVxx9fie7jNnRlCtWjHHYNHSHscFLDQWXhYLwSSL8ZhENR9SOXkolU5dJkfdbjAWRg9IFGL7Ya47oikY=
Variant 2
DifficultyLevel
586
Question
A physiotherapist charges an hourly rate for services and adds a one-off charge for remedial massage of $80.
The overall cost (C) is represented by the formula, C=70h + 80, where h is the number of hourly sessions taken.
Brendan has 4 hours of physiotherapy sessions booked.
How much does he pay?
Worked Solution
|
|
Cost |
= 70h + 80 |
|
= 70 × 4 + 80 |
|
= $360 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A physiotherapist charges an hourly rate for services and adds a one-off charge for remedial massage of \$80.
The overall cost $(C)$ is represented by the formula, $C = 70\large h$ + 80, where $\large h$ is the number of hourly sessions taken.
Brendan has 4 hours of physiotherapy sessions booked.
How much does he pay?
|
workedSolution |
| | |
| ------------------------------: | ----------------------------------- |
| Cost |= 70$\large h$ + 80 |
| |= 70 $\times$ 4 + 80|
| |= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+imA7PYGH7Ifs2HPZqojWvBRh3AXH5/QlKwttf1rkwG9/+IE0yR7BnO2rkrso3331h33NWXFjP9/nmxgOQ3AumuSn3pQI4kp9KgFUNw4Wv6HtpRIAEd0tU/wgYVRbrrIK+ogxtAF7bf43yI21haD0tAF2bMG/9xHNZS/1mL6rn4/woOUUIxMXBplr8En3buHy8USlGDhF9sfcbu/DgYrUHVjVCJkwGNsZ/pBmT1gtJXSzoaUzp9b09VZ+l5/KeD7tp2gCShR09NXUOmU/toaKU7dxixPHmPnbtoFkU7OiDFZWHU/fMVY4Tlj8bPoplNTe/p4hjibPAKKBt+x5D0kxMP7+yfT6f6w6iCqwBLbcHgtRn6/eHLA+14Zav3VpsejTHBrApSIlZvIdbRtXXdJjUneW/uFD0M9Jy/Hh38lCP6T5zi+Cl9Zt+i8lrUJYgYb3pYCCKeGzJXppCyE8XbuOmPUTdTEeGq6N5fCJSeLMNyrTB3n1IUn0W/50/7fmsVdhhcHXHKNOPCY/dlTxLeOQIEdkmn8FBaoZYD3ujTj/j3eaGu+AnKqVbq7miumh15z+aHkiM5iB5KwCZ5s38f8xaPNjtU4rXLXvoLSb1sL5OmUnRVHmk3DYUg1GaFXjn6ucA/aOCnLJH3pXl8sZFn6Fi69dwyBaPj+ohAfJxiI4cSK1YijJblPDCV9nuSAXb/vG+fh5+rCceVLU3veppUGljiqm8uXL3iDhxoca+eFfEyltSoxhQkrMIdu+m85XltauhWrUkcrf18bkb9fGjEKwDnTWgiq7/sGibs55olwx4WpudGugIn7u2dM7p40IqNtXg0MYvMxRUb/2wDBGOafamdKciIIYFy2M1xpJuP3IsdneZWksN49eIojPUnDpqXPwBipicVQIt06dJASDMOJ5ArghqE3vYHwXuJ81d937YpiQycjTlU6c4JVGugKeZWd/6q/W1HKWWym1syxSmTvaIwpV9shZXt5FG31nKPth4xnytWL03ZE3CALS8N3GQnv86ru28wHtevUWql3f5z3yfUHzDLfJCGeXTWd6DdlAQBlfGdVTq0164RF3DGhSlZhEHaU6Aifz9rqixAnMaYm502VYrXLrBT8DKttqDBGbuo+kBWzH4N9fOm7B7OzgqaWjNkqRlCGQS/L7k5aJFDo5Nm7djj4m1dwiBd9cVyalZ0ipUBMnGtDQZ01BaccsdXqEJ4BE8ZpThWWBNx38mjafns6l89+zUJiMMZIFQcdbKlXa+oakd6M5d6O720WbBIiIkCKbMNMCtco6ugzweyMq5QSzEF/RjDX0n19XkiY2UI87tO4VGSLurzVuiZdDjg0dNI9Hw64wTeYAtbXg/3ymuMBqQqpRpvfnhtTDY2l+0kvYIiMXJQMW6d81rDSpfHcgSlNlXkIXqx6G8lZ1QgXdnhANQXmHel867+Og2sDwfi3jV1KuuBAhn7mHwv9h+CYBGCYzWFdaj+XGBEv5gGu3toG5fmHONNZzBbbkev4M6d3NsRXwMFdnxf8CYyDAIHg4JFhIaw+q/0w4wsfN/P3O1PwTQNzArAMfjca+rTRdxjqIbh5d6c0wjh3EU20Vm5kxFwHvm5hHt6SBjb6irWeZHBxGPRiXmflKrs9kZ/uzSsohqFQ88KeJJ6JVwioarOBmNZJzjDirNACPTAE6FzsU928ECPDaahkFkSBGd/rlqLdEgBKXxdgHYbTEbVNd2i7VL0uwHkWYNZw9xphJbo7AxizeThbpBk2yMFr5lfb+VN5obHgFTFWi+wZzHuy84SwNwdH3aBPKwBWuAqaMflUD9MBer4eRZ1d+nTQNPQSbDDUqoRdUPyFKmGAsnRbattXKpYeihlAFKUC02PzWQ8WEMZs/Rp0kPga7lCPpTURMnmL7BkeGusEpVlvxCFp23eDH1w6TdE626od4god4CbOLgBdiB1OINK2VLML1BH2Ova66KqpaoWYYw8NOiBZUI0BXmjFd6I1L/hbeJEnEqlN83tgBTfuGT9YmsoaeCSK/Pg79DykPyJU0lx0SnhL/8JKDOXBgNqwdMoWWImIDgwzdqxtLNH+iXihI1OuyOqCOqTauPq9cTE4snASpknwqFpNvqKvsqdmEMrUs0gEBgPcEwphyrVmUlXM8hUXJA9pB2zJMB/lTqtmRfnP9DnB3uNP9t3MEJRdL2cZElTTjaiqmPkBU7UwBwBwxACTfPDHwLM/5S8piv8yEf/8IvFmQ+VoX64sNPFaKPXnz26N5GhQzD4e8znA5bEZD/V7AvXY1NEmrio47ZvBt2ujrWUxkfl2eA7qI5+l+vtG9DMeylycAK8vz5iBHP6nGh9rl46hfXhuAzjqNxTOfWpLnmHteGyb6D6d1toWMFYWjFhPf8+RYIpo1GtsMI1GlurXWKlajy+2eiO4Ygzn9/mrRkcwlevFJ4peN3Jh5rYd5KdcQLJ0HflcqocgGXy3h5XFI4iNyIwzv0aXmxdrFUYLLOb+y/hE4Yh5DKQBIjsuj3m2izqlKgiea1EIwKXjJEEysGIYb7izHieIrRo6zGTx7L56bpgUPE4zGrL+g8mLTghymnrSDGB3MXU1jlR8CgrRpfaLNzqcDfZL6iCu10UckJmK6P3+8iB3lF6kwz07Cs7isJOlHimd0gPnme971Slv/vDP8SpqN5/0S00+Br8zOc+8mXnxrV7Nni14KXlM4OsSvrEjlS4T8jnDX3STv1G/SRGxM8AR6paUmFCjzbg48pDehOV4XlpNaxramtJf82EQwVyyHQJ3M5nfPQV/4NR5SFeVh2vNjxuswbl1EhVS1sAXmRm/5l0dckfD0RDBBJdvRhlHf9c1r4+nO+B8WLcvlbKEW+JQb9KMDg9Kq9Bs5bpsWpUZRXIg4bakl2ImaU37fmz4s8CUlCjUFtQJgvjaic/kBhA/fXLU4WPiUoms88ootRTlgOxy/SkOHsnTGnG5ES4GiKeiALWlUbcxkXBEpsjZBdM8xUT7ruUI9jUFViGXY58wTAmR+jekBuwt89E07DxsUW5NuMPnpUXFuSlPaH+U850AaqEhJTa4XAipDR2lpxRNahVdkhoz3ZrHULYN7HDNiY7d7LvWKzhEWgCLKxAEmwALmUGacH2BMPWe5OfnNHgk8Zvb/seJG7KPbAr4xGAfz4si4oYV8wcjX7DIQZ7qM4WT0rcJal3XBS9W8CalTfaw5IYjLSr3CM7JZutPQ4L3uajpHe70wvbRlIO7vT3706I2GGqMnYzbiABPjvBM5bRF4tJtvrxKJQYycID/0fjcXPzbzuezNeI6Mo6I8xdle34E+sNPTAVYkvwo9vg4HoenWcFDyKXXQp+GZVcSV7gAczKZbJ59JuyaY8vriol56vgCnpwyGMyJAQxQBpkpUQVBokqLAr7QIFl5ET5tk3nPK+MNcCpqoF2+PtroiIhS7/UzLZvTlQhA6tT5fer4wEzE8csKhCwXKHujc4rzJUgsrUMAJSVYU1eqQKc4ZwnFpxejnNHjkdRncXReJ6e7OYatt8uzi7VUGRes/zqIoW9x6QFCx/pktN2y4Y13YLfr2ng/zPIF/jWZZPXYiDYhcpIKzqm5Gepr9MNIJ2JNH39M2ELUVFr+FtVv68LO+F2DhsPhuxNGddaDpeQQetCVGSvmRzhYmEdee6fQH+pFC7GrKAKDHVNPuet4RzW6UxMrUbFFp5zanSETz4BcgusJ/BqLAyiLKYQbJJBWt7ukchh70xqYAkn3dCoFJchcWB6Cj1PuibNqTuDHYe/HJu1hu7+dC+vAYbE2QY79sBCCiaNstNyGsr5tlZyP8ZhIo38RrbGMwGKFfbWvy6th3XB9vz7nfIvSD38r6t9jMxZJdxqbMTH2/T2ENzJJJWxdOybl2vlhNs5rQigzpHyndS8gIv4FYpvY4gTihBo/pSzeUN459uo4EEcetUBAGx1qXIFiVM4/SE2g4LN/BG2ZMDiAuNC2N1sE5cv85XY8hiCpy4KcjJ4g4dqXEXCsWyVAc5KWmlH0UjXLjeaIXk+ajmeIBZ/xSn2VJQYE6Zmn/aT8VMLrBOWiY94bdb/QjuYKb8vq2gjSW/ykZZosW4xBJGgCOmqBo0uYZZ+lFWFc+WaEVPQ4MWzHE+Fr/kO8XTGGHrDdBfgw9OvsNbI4tPnXpYvGRpRKmr7Qi4ws85p9/wh0/W5NYcg8MAU9GpsDyzm07vHjm7cf7fm8f36jmhNBg2ti5/grPzFizB4uI8/ArOOsPtdqiE2Pas1UaUlhY+BCA6KcXXmm24hK2jakM2shPiHfuwH7t5uSlNKi5c2673cqR7kUgMoR1anz7DNfIKKGjqTsvVuCruiauIk3Wu2n9KvhlLNI3HIfR09mA4uBDR9Y4Jdhbi56B1tH4s3aRYJiovriIsBkAQc8MCZiuQBIXMaNNwebGmeOPUGVh9rxuYP61TMkF3nPsJXJQIa79n2VfK7Z0dUSJAZlMeGjNmFMbtNddIA1R5KTJScUMC+0MEVVwxirMFjygmV9LMEMBsS0dZbSCSvkfKW3KAapyEL+nqR/3KsOYQI3xKJBWCqt1/1858mt9j5zT+YOShjTFZQVxrpCB9kj+5UfHzRYpCbGgbSyCvddqvA+/Z8XLi1n7dyNCshj5wwKYbXEoDDcps/AjKk4suuuz8U+EGckXaPeI3unUPtmbaLGit1ZYFWtRE9mrX2klgD7sad0T/EpFKt1KyuT2CYugEgE3jv4Mt28v0dVXHp9DzS4DZcipkzjZxAtpIPzL8SRywKVDFEUwm1B5IdiSsYWuiMbVEQfCEeUUrj8xvFd/xOSjwIESFMwHXB9R8khLmTrpS1Qi9Icf8XMvQXMHRMffM5Wyop1PXdvuGk93P40w3dmiXAZG8DT6R11Ry1/guaocrl1fAGpOHHGGT1QlprcYRMA1K9KmP00ZgtH/Nz1Gq/mWKOufwdWlVUT/h8pokexLDvQcB+x+65ThmootQnjc9SLy9nuUf9JfOjWtc4nwLAuGjY2D3bEKfo/jrHVc2Qx3k8xD/8MdYe4LUpuDF4AcKcojrSNwlUJLPoY89K6Dv/ZD32m6SfbI0GwHxANWc1NkBH4h9wpPViJ2a3cy2aK92fzE+HUz4NnkRgkj2+UEP8YpjGXPI8+bjiGLZPIpAIZMohgR1Hvn84IGmomT6Tvoh8Mt8OWzelWs+PHdLRLuwl58zI2EFKvrnhOk1vYcVv+eMeBa5FSLATVFqBjkVSAxt3AC0OxDr7AgUoUdmCc0gmbymhEMR5EWGzVo5O4U+bAaRxsg6kH0CJhCum+ivbM5JM25nk7//8Y3hr0zff6PAfNi0Z3CvzMWOPYx7XOrHVFwnqVj90wIQZahYHbsLHZ3kVGw2V8Y/sbcoMJEulkzDynTngsG2pxjstAQBzyynOe/2i35+PM1ow/1TItn87PxcSkagLEJydPxW3KGOqR+jQOPzSwjYoSbQKUGA8lR0eTpi2+0KRxlw7/LXZNTaJX0dh5kDtNqTzaJzSqgIaDtmNlI2iueM8ptDJNKFTG3cokLKFQwZ5yXoRGRhD8FlLdEScERGwEy+RUtcmSVI+b+SD9jTvLQM4s7SczE0rzMDjf2iPb6yXFansF2o8jAijKfr1WEqMzZSQfFPepPfPszISipWkh+FBTXZDycQ/HjtA9VGV9PkkaoWFLM+X+CLvTtiLfi5Wngwo2msy+4g2671bfnP/2UTMkS8mrybiC+STNX7jRatdMuhGIoI8BWKf1YNPlkbNo2tsCVczKF//27Mqv5ISZ2o0N5Nng8IuZW3NRbg6/4crkUv3M0PmFKKlOw1x6gsZirZaOTN11QqRN684Qt5ibsRmV9EOVsrECFt3l4n5OJvVLUiL/cRaG5u5vcxs3cMyInzLRLUdpMHOEmwmIzWrw2vodEE9dqpXPigXe8IPWpN6bmEqbutJ7pZU/Qr2HMHaZcI4mOKwst4zPtUNXA/zoThuApmLwnTBpRW6vCCJzEHH18cKVYoiSJTtbEjePdQ139HC8vHM6OiAVrc4MeSy7YZ/+96NUV9OoqFrIq1Rfr4AcUNsug1ThDSwWeWvNh3tYziSe33V4HmOlZT3ypAUXxhGycMlr5bnKxQ4M6h4nDs3Ak=
Variant 3
DifficultyLevel
588
Question
A cat boarding house charges a daily rate for boarding and adds a one-off administration charge of $40.
The overall cost (C) is represented by the formula, C=52d + 40, where d is the number of days board booked.
Della is booking her cat in for 7 days of boarding.
How much does she pay?
Worked Solution
|
|
Cost |
= 52d + 40 |
|
= 52 × 7 + 40 |
|
= $404 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cat boarding house charges a daily rate for boarding and adds a one-off administration charge of \$40.
The overall cost $(C)$ is represented by the formula, $C = 52\large d$ + 40, where $\large d$ is the number of days board booked.
Della is booking her cat in for 7 days of boarding.
How much does she pay?
|
workedSolution |
| | |
| ------------------------------: | ----------------------------------- |
| Cost |= 52$\large d$ + 40 |
| |= 52 $\times$ 7 + 40|
| |= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+oUgBNroMuDUtgWlnODtjhFT9oNFz2akvvgfEAktkxY/cOpPO9F5o0JvsaIRTJJ/YijGsuivB0UrujeNnrQN2idan0B3u8sJVA3eH+tF2rMbfBIlNCjMSpcCQpxlovmiM/JtJm8UOlwfj2gP3PazPl/A+KzBg06oBqQYvRyszE/y5xP1cVXzXGnprAHJDcq2K9pp4+EpDCMgJPjRTDHDJHur950fRCwllhGQP+n4xu11/VC2fmDcvGQh931CS9bvfTUw71vzqmaFclPaYc+F2/uy8t1bcVIJFoiGQ5gFK0yKwA0XwaThoVIHEyeU7xUqzNf2Y4WLjeCVdROxdaBIkp3PxkbsfGACLR/O5NZaGmNvs7qpsfLC0BsTGhti1EDuNvboX0y0pPxT9Lzce+rMNzKvXVgpxGpB9dUZL2g9eUKmR42mZpZS5oHkanu4dXkuhK17mUxeHH2PzuUH3OAXxpbIbDjIsNDqq0sOpPplgS12CJSo6ZeUVKd55y5CaW7S1fGK+D7QypjSCIqi/cOualgUiRuV/a2zsCrCUlYbmahzzCzoTvj4OgUA8vmOi9I+0oQ/vx0r6lCBsizqylhRJBo0ikRbzgfcMlQQJxRYGG2n3B7kpPAqVFJzJiAA/FAmhlq5tbXfe1XxPL9PWLG4FTLfpObtb88O3y7kfstgQ2eyGWOOKWGOskx6Ad81i2Ru/hCSLPPRV6Fdl4qBTpMKu9qrEz75Y4PASNay/ju/CTGAiOZtZWOWP23X+49O+VXgXkIJylscFA+nZ8IYifH18BeGxtAz5DQwrj8zHtiBFUkI++SBDDpFh/InSvPM1kU6U40KRX85REl3MNXwjJtdOgBT+Q+ecin8Bff/tpUSZFVvJLbuI1kxyeDOXYCMIvX53jsj8hXBcwwBS7rC3UTlSfxXqa85TfiPdk/AAZULXQm7LRZjRUhfsIh/87rL3fPiOBgBLXp9TxQWMLTIuyqxEj38H++CeSNA8DpD8Ofokqgn5KcV1qQTXIvcIknIYKY28CpeuuRQNJ5jzVQNtOTVgK9XwgDAzSIuSC+NPLwoflvT1OHPJh9wKtLoOICjNpybQA2bQZi8EkDTE8IWF14iHbVA5DRqw5+pvhwvMjJ25BGUsBkf5R5E0dCWmAj5IfRpwxV8Iy7SSRair8Q5W647aagqtxdU402/d/p3hs1eTNJpjDrra/2ecfC+HauGmE1oji4ds4eJMOlVYE2CJvXLAzY6o8vr9bEFt15In8lfCSr+L3GGe0OHiUv1rRlEu00wuwuxvX6VVGWs6lFDX5b9hDJY68YXqt9dALjiVSxIahm7df39cL+RmGXBsHeB1pQQD9KWa9AyBQWFU4wopYe+un1ezy/vp2KAqrtUqaT36d5FYm+SRRINbGL282etQzOnTbBGYQ+li5eBFMTNlOKUjE2E+yB/VVER6rNwNky9TVO7d/JDSQdrQHo/meHjh/2liFB72eTMS/2FtAAcGYozxJGY6s5MbRjVcCQxnY4mrATXK7iJOiAtpJRJ2Be4jy3dVmZPau9W6U29zJ5yZIM4fI2dhFFYC3Ovf3oE3xM2+tB/Z/v79zHmkWj+ay44XsbxIP3RSuYJlO+2yt/RESvOp5rkBX05IAKYFP44XomrpI7l4ept8xdgzdgp5igmpyloIYyZ8+G0H/y8cAHmU2zZtNvH+ZYYfmuAFTaY2+osLskG48WJVCaLFM+X6EYWM1KPDBRVu7UaAY3AsqNiQqmwB8dWO8IhvscXWoci+isr/FgAafpiu0y73DqVrcej1UtdHylsJOBv+XQ75/0YVQrZ5L0WPnq32X1H++/iEgPvb/zv77l35sdkxIofAPr12ZMiYAcT5gbPvuf270lxJydg5/zZ6tnRYa1NqdHoXVp4mlOr7naE3Os5sWCfwJhYCDsWY22y6DptTBOUGzh6OVLG+ZeyWf+zdeARYFIAIKM0A+nXJFbjiI5fJHl8ov/eACbBw9hjl6X6fG9x91w8j8C/R46+5Lz8JAwb8TgtnidT7EGdU1LQHusLO+o2WPs/6XdIQMVrhGnBhNIgLsWSDskHwyPCX8DrBtG11XultNcke7hk/1nbe7VQmZJrWrR9I4NxxbzapvIgFf7vafRL2P/AE/rig/XJypMhv54Xtg1p1N3vaSbogv1ej/Z3waDiAZ70275yS4e2bONkHSWZn3ce8U2jc2U4rSN2SdH7EbDfIhXy8XgRTvwjrAzk7XEo4c6HpNMr7oIwpgv5BaCaliOJMxeSXFbkYsTZQcewTBoME0WkNJC9o4Gwl1iHpcz/faMd2iMcfuXBrn6aPAiQhzihtGX8CPs/0Rjp51C+HuQz23kviBXZnqmBtMS/PU8rsM48X1abLqYabKJ6dqz96H2Xfs5Um5Ho78fgXY+CC61AYVkkeUe9utLd86kTS1h/SnPTmv43FXJ+tn4gSP10NmYRxzbZy8UzXOPUGIAZabUZpOE8rWFiAlP5/rEu9SVNZHPdsPv7l27vIHHmgTahMHYpZx8fGha//3JFpCI+b8vrWtDu4FE0mwodi5PJ/OhtnP3pV6sxr3i2OfsuDd0VGZj9YlCH1R9PACwl1ucJhppyGK3aZN1OS9xUrbrubblOIhjzek3/gA3SM120461Uy7n9zJwirXOApIV3z7sV/VqDADNOgR2qBNaO+vC+6Va7aCcIUvMTdlBJwZnCOTqHLQoFLe6gjkrqd+GSeddhjr4hjILjRSv04QHdPQM8dY5LCDHd4RdrBZc2CLcjQgKszjXVdfcguI9D1rzJfvbmyIUD4vnm1s/1TWFEQ3w7rJ6knRdcBTbSwNTRhyGrz7OouXIl5M+EOEmXGmVt5FHgLDiI7D8diyKzn2J7/msMcIBOy/qjZEto5lb+o1QrdVgEAYsKSP+0tC9f8Sj35Y3/syxetbiMjT9u839b4q3kVnGhdKCWTfkC6iiFix306Y0svvo1GtvsZtcmu8Zaai1/8d/HQe0W1jfG8zybfTUzL/t5xQyqp8uXmKjJ0iWSVhJrwp723WcZVabAp8QQk6/j1L0KhZx8I8pnZQxlcokt/4NIwi+uMQtWtSkjuDmlYQouClrSrqfEKq7y2vqdMeQCTvkAs327GjIYTPIt4eUA7oOOFSDWztQBG9+uOJTuG0fPf7rR9UkaXfXqkz0J2fxCPuFar1MPmb/CMw5xFudV5KhHDdw5stz3J4cvkUL7uRdlGjuLISOKnAQcPW03HBkKC+aETzJYGhmBVAF4kDQiyrTWToC9VIbJqGyUsETmF8FKPzk2r9H3rJtOnOOw5UZYCdoGnnVnfb0XRzSlYN5MPe9PJmte97WRQgaRreu/bLE2fyKfgBehIH+Yn2ysxgFVpr58Q95/w6umAts+YUUrCzmpv9q3J0ZHbqqxPQD9rgBs5Mz4+5MRV7Tn2lHjjVZbMXpneXv6bnrjgf4Dty24BiB18fbwNojoMbw5wvAaZyQmuyvvuGCCSaguEMj56e4PiwHtkUdzHz+EMuOVKclOVwffWdS4cyA20KYq46ApIjHZYpMwRRSTAf0radOGkG1ywPKI2V6llkew4sMefV6QdWpaK+NdqRsPJJfCCAw0Ow2tySnvAjhR2WUg1fFCJnMjTZeY0ENlKvzasC1mOKcR6i68cCcmuvS8pmROTAUOdMhEFBWPeGGJTjsu8c1l3jFso3y20NBljR+1B302zOUyI4tlq/zab5Pi0IH1Oei1e3e7RsF9Po24EE6ekrTVGxYLyQr6iwojYiEd5QxbTU7C9Zh6yNDa6EJX+z3T2p3giWxqyKHi9XWC0jeA0xfzA8wFtBQLi90qGB3CYPDlBbuBXourvX9/g8PQy/Ts1KzoL9jBIH/3OvmISEqudMcJ8Q2CyR1SPUORGjsRChBJ22Y5BbhQWSblJdcEJjXITa/jtLeJCkmBotNL6jSDNZFD/nBBbHjq5pVzYudUxP2YSdAQGTgV94tj9GDZGaQtAiAnBdSkXj7WTIOOUIDAFj63f/4Oy0SWJW6ubI4Tf1NHrKVw5TDGeoUwy6i/iFexDh/Vd5uGAmAVjJIH5QGpPk1stYllMjiwOVjvVFibBDCJQP9U2Og1VDWuhZcIyA6E4Cbid179IqgOx/gvC/+G7eRlJ7Tjy5V8971Qc34RAcNeDI6oV6zsGidhju1DePcMXOzdkUXektsOjxGhwbDQhKkB+8ivZKsHwnyMipYpbwOcmi2sO82ci9gPZf1VpTvzuMU4leByQs6CRl4GMBJRhWSFq+/2PJjkqSm8JHZ+HcXFBSuuFSxAUZJqU/uk+9mZXz65Gqd8njaGFCCjKJvkPMbH/QW7d4U3rJH+aCzoZECvCdyNopxX597+OTcFoP09G3yJndoSC+9FgjKuQGzzFvcYSl33wntpA14PS9Oi2KwExPJ27L4U/elzu8JaK1MP22EpF14aW5FlCcKXxCp2hSf0rcEtah3KWTZ28kVkiBt8I7kWHvfynUC2jXpzr+8KUUkPQPAP9ovvhk7txXL8emvxTh2D9vJwJ48WQkOKb3dybqNEQ5AE0L8uZ1VxcyKC2cEjv5YXIhzb76dyJ5ZfYs5Q+XAsa4LjCbaKgfY9tbEzY3elTzCHDjC7HQKC1cMCalq3SLi0rcpOKzwjX6rR0qlA/SNRBbh2DUT6WcMMVxTncnHH8EW0DrUG5y8cEAAEVaSkEfjx8UEQm2QLJrrymMGb4vi/AHnj2TydkEp+uabgt25jxbKd/czLNtfOp4y5Tn5AdodgUUrP0k4rA2umcfBNtze9MbIvZIl9+ewlqx2bT4ZgAocW53xw96y5g3bIsbBg1iZQ8+o1MesLOurN7r06RGXnOk6HWHAIduu9UiAo0ATyehdurF0GkLLdKdjDK6fZghBVPnLwjTSwNzDcip6VMmsEAOREyUe3Tk/yXELv+UJMrM2xGyMoSU+SUI3o32htHpv0KmwTQhQfBtpxU0O5MdDWvlrM+BntmafIIdc7Pp2jPR3n1oAkdc4APXPtmhVV/HK6t9M5JQ81+FGRobCmB4wxVKrX6TnhFmjqrpfF99mOs2yOrzSD1v/z/ZMp6mFuk5RftRB6Vo/6VP97ebbhUeRzC0ytxDrMNK7XqUubd0aSMi8rDMhDHNb75pzClhSnw6WuNkK/ZK6/7ZAS0R6V+eajBmLKCIiAQEp9Hbh1HGHSrtLmK3XIticqq+K0cWidpFNe8n4JPnIuwZ+wHl7bhi7XWO3V0/6vHxRf/Ez3IGQ5B71onMir0XOuwP5/oSIFvE1/MKD48kztaHgjnDz4QqwwEQ/emEYT7lcc+AAb8XT3fFGh/5FFIBsWTeLWZMH2EaBFHvSmH1TwSnMBJ8kU/rKoG5oVZwsfqCLNLYT2Rb6Ae74JDAYlJVqBu8Xtq4eg4gDRdwPGD00lNaLqvBGKeyeujVVB6ITRW/hk1iFnKSM64MIfysN3Z6005IA6r/eggTZ3JIVku3UfHKgvi1NBApVfgbNUjopKyn6FvlH5VAEgCgTVbEUv/YYERq7zpylniDhldpEDSHIpDjPeWubuLDLflj/7GD0mbjqsAY6ne7ArL89Xic8aaJ89ka9Jzy+u8211tDOWE3YYpt2jOyh+8uP3RXR4Qi1AB/FEuQ0rfzkc3JpF9VdumqsQishzsGwX6mpd22SNY63zKbP/Nx8S3/jggxnkw6nEQyC+44EjvfReJ3aukfI/jhb6PHdEkNMIz8KfAsuqF4HpqgOF/TnkMApplwAb2oRNVedYsVXjZ7dH6B4PIlA0+Q2VbvPiPqFx3Hv28BzyW4rAT3ZtlTk1Nbrsnn3shaWtBD8X0p77Y1dHGVTXkwh5lRC0IpLeWoRS32DgYuMy7WrngHS1sIhcIKOFrQNqwO40HdoRKndocKwowjbhCSF+b3hjS//iBYbYbI/lLgmyeBAlnTy2CBWD9M4gQFDx+sq7EzIZL7ojCX/G4KqU0Cc8/9HzO8obI7iUkd0bMKBxQs+7mIyiMRHtQEGlqCXKsQUcU8Rp7lO/ahQhzrjLiLkwv6zVdcPUNJHuwZUnnna/oKyozP+ASDIP+nAIjxgjoH4bqUkZwXu+kPtF9aBAgg2n3oMmSre9DiIwDpPDSrRAu5rEkufFZh6rX8QY0DES9pRsWwIqs5n3Al
Variant 4
DifficultyLevel
587
Question
A golf driving range charges a fee per bucket of balls and adds a one-off charge of $5 for golf clubs if you don't have your own.
The overall cost (C) is represented by the formula, C=10b + 5, where b is the number of buckets used.
Stuart purchases 3 buckets of balls and hires golf clubs.
How much does he pay?
Worked Solution
|
|
Cost |
= 10b + 5 |
|
= 10 × 3 + 5 |
|
= $35 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A golf driving range charges a fee per bucket of balls and adds a one-off charge of \$5 for golf clubs if you don't have your own.
The overall cost $(C)$ is represented by the formula, $C = 10\large b$ + 5, where $\large b$ is the number of buckets used.
Stuart purchases 3 buckets of balls and hires golf clubs.
How much does he pay?
|
workedSolution |
| | |
| ------------------------------: | ----------------------------------- |
| Cost |= 10$\large b$ + 5 |
| |= 10 $\times$ 3 + 5|
| |= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19gcsqgF0u6w0pVaQWujON3o2zWFrbAy1P/N4ec0JuyqvOzdF6Z2nDEfoOu5chlOQFP5kGGE6G74TwYhN5V8uT9dZmQCZX9iEOs209d5zhiH/+GzsDM3vCPpNCeUr6un95pzYiC+r4BTFoiAmPXhWwygYm0E5WydNDG0fnTiVW+fgYDlXrLo2I2h/P4hdQwWXHd7NtxhvH1S68w3wu5FQn/c2AkRftwTF2kHBhgSwfpPh61rGC0+a2P2BknH3D/jzjbZXq/4rTko/X48Y5vSreVKOJMKGkNiFp5fV64/bv4Yua+slhxZ/ENkQ6eNLz8szWLHvYoS6XWuDVsdZxUMmL4T5FGdtomavuxNO+Cf3QlRAKWQxlItL+Z8Uyb8+SXL/qBctLYCd2ZxjGSCZUZAqCbpfEBsovZBol3yXIO+cEJ67TgBqEI4epXVbYhDTR2JcwvWLjsdT6MXdKQfcdt8bvHB7d1E2cbiuq5eTzv2GAJh9pip1V/xoJCncmG7zkeaNw2R6koZyV1+0BkTssL6wqdHtdWMaXdo6CEoKwLcVE+V2p5Lr/Yvnf21Gihq/yenrfi/4B+BIOAtqKl+kdhZyj802VaxC2E1pz0cqMGZoOUQnowSIt498Dj2sbGf3ZWlKvYdC6O/kYIvBO3Zn95XlLQgoM+wtssJFWvnKEdk2GwhGciI2P6m8+Jm83Xgz0XswRp4gDugb6A1HttS4SL7jTj8dypNmwLvqmtvNTTOwhGSi+25zCztgRv97HRBhTSNF+2TiMFWiGUmU39muDWlXdPwJx/2mV2I4l41S8Za78zKLC05bvZOjZCdbaqZTLMztEzYDepRKITZyF1atvOWq+gKH59fjgBIOGtQ6nLLLZkSWkJZfVE8t4CQxg8JUfBuS+H48nENQAQR3BXRxDuU8VOTdgQXAC4tWTmhj12/+vNgGmFjRXKfYE6WG3wo6w3rb80LzVbzhhOErub+lZzH2BXXyF3JtXFZhaDc/2HSkfE1guhHTy/Ecz10n8vVrEwKuMAZtBqts719bJWPRGt7ZlXympFNBbOQzXDr4GkzbRwfvHioTVrFUXvAuQYAAMKTT8I80t4MWZ8v+jlVecLetP5bo3SnEqTn8HHJf04RMiWWdj02aSojlNb+09WSTti/Gkxx4wxq9zG4kZr4FUX+i1sia/magBvl94CPHuJgLIp8l73NXcnfe+FHfe8d6b2x6digYPEbSFMyfdbKjULGYGAYTVEorv5Hvt9qQPMmgZoV9p8TKqoS6Myve9ExMvjRcC8s+CNz9XcLK77cKLc/y1dljAEftZt3VFZ/UWHerlU7iueIdhjhpL4uC/fmckCiRLDmMgIbLQ2OlaNJL9l2XG/unCZ3MGtw+kv4Nwyss/P+Ba/LFvwP6PePmhOKxF8KPbT86mSq4nFPryly+9ryyDueL0rs3lc6i+jM3oeW/+xAurWg8F8y/5L7j/jVfIQSKFc6Km4jlLDG0VYGQegUcF9e3/H0Xb07jNwUQVyJH8IpnKmOPM1TPNv0yAdHzdeH0TL7w655yhEbKCEJoBYMjQe+TSZ9RuXQ39/th7EJIvgpzZi4GK0WFPvPrOjd35ngMCroHd671Qw8hHJFWBPR/rg8r2NNJ6XGeKVqU1xeeT8m/y1V9AxRPe24u5N4mJefB05uQMoFn3tsk50N3pQwAcSgl25xU/KImPN7DfvgBdijFMmkknmRiELb34FBjhJN6JGEE/O+/9XWGZAtBjWjUDB063aYtB32Y9VPiliyhVRaVjJoUbQeCizLl4dtcrxXZXla2OTdj6EieUhGvMJ9mR+mmMLCx/oh24djg0CzXBaNetdiTVIGG5zbR2WBLu2izru8X5vJfxwVvDlVoeX49vEMLpBTVctTGbvrOCLZwoPoJafQe6MBaJGagsJz3ZrLYw+PlLZpPIaek5SflYJ5US/Hx5IdlwUeh1VZ5cxx6R3p9wTaiIxBk37K92YGtq4uqhaXVAMJB0aNoVTe7Q6V2sZqQ4hVfopF9Kab053Eag4Sxdr6JOoPxeTuRgx4xBd0PJFvHZIR7I1TNHvPxnY7IiaWzHWSEUJle7dEKXU6QKX4p4l9JMOE6MyXWxGr5j6SPUVLGW6/+TS+ltLJQ7nUM8SiQcx4tKMJ5hwBDbnOKYcSTn4SYvtPgju4VWm9eUB09b9muKv+sTWZo+3sVpCR3qm5EfxTGsmXciV9R7FMMI1ovlRP5S8/zSb5OeU1WqGlflNoWXTqMsBszsShzT3laWKpUKrDXcPE+1LA9kNMD4ol0vpiTeyS5pbETNIRzJh5VAy0e5VSrb218t97Y5IyFRUnPnxl8LPMyrmuzqqlnpk2xkDTcSZhq6pqbQn0fvuPMBHzrgoLzEekF3MRs8xmEPHWsziAO3n/3l9AbOWqoJm1KWAZpnnALYEb20kVYgBU7W+fse63FDX0b5pscbMN9EdX23JQ21TvajComrr/y8oKhlcudYpPfcX2q7+pstHaFh/qHNqe7buo0l6gL2CI4KxtG/l0QGvcb07PFjsKvCDZ1UQOGiWGGCo0N7zzMzEr7J4U763cJLbbPVUg768fI3bD8usbD3Y/InRFGWbNlRxJlCIM9aTOx5cSlpHwWiBUbRyVdejqoKqmKt4TYpDfEJ0ZqiAQ1vJCFO3omNzfclMCpDYZAP4XzPcOBeOr5YueSzSfrbzxC92ZA5lTb3Mo5qhBXBXE5s8xygycVnq//XgD5FDtbNAOp+EUn8eHMqQepUEcVRew2DQgX9bpB2ALKjvvfxKQK7c6Y3ZbwQEOwYv8StFA70jjri/7AbhEBydE0xkZxFpRmvKgnE5y2ezmj8ch4EKHnckPtABy7vxtaEqMtbXO4/oj1Fi6pGErSrms+Erod9azRIwY2dRcw8s0A8EdaRPjF5koq3EzxnrutHESBAhlZ1kvFamRIlgtRjUEmCirZ7RLZU/eCiqdIvZApyoAJ2P8TELB/FlKSoEdGELvCeUwxv+MPCVj59bWNzQMHTw4sFyzgwby5VZKPOhsp6tT00iV5T9X/BPwmT5pYpTCj3oI2zoS1bZ5fhAnyFDJYmMPY0aKu3fSrULNshiqBwIghZgbF/5A4I1Ug9d8rsWX/Id0zaTlpx3oSFeiytF7hIq1nvVRiLz8hwLJ9EIKmrvDNZ7SZc+CskUb5yQrwMMn3RqR/N2Sy1aJFoZ1u1j9GOuVB6pvqfyhH3t4nBOaqQvh6LYRGeOfFpB9KF47A4b1F10hOgo99fr0eIzXOEENesYJQhjdkjKjTy4xW7IQRiMwZXKznxb9HM40YFP50ZKtAEmyhKkPERFmsAsDsnNt2WnuzbPaIRIEvMKzJSAabYQ57gUe7W7OXCo6tg3PN30l4ludaONvnlz8QB/QIiRIQju4/saRYDi+g5LXmSR/mRZq+EQN1aNsP/4SOvSZCVQyYZfBfNjEOkHECeaEIV0Ecy9nbKyReNQSTfjEVcbo50nWkIbtJNItJXTQDZfKdCOQmcnoQJKJptdl2v3JmokYTEnSToqWHhvP/3FAg8/cixKnxRFLKYdDvuyX85l6HGKd6t8cW8ysvoTbSTQSz4tsj+Cf7f+TvanU3E/9Iot1M2SstFpfGLxk3DQb9bxeQslPe24gR4sAB5tpcQhizgcHD00KNA4F22EWefP5W4lPdSLu297VutAclI3BF7p4rFN0YnniWrNZ9Lw0JHNsRC8UA+PGW2mimFuSSH9I6aQe/YNK2d1075Ksgat76dP/BfsbEr/TNUt7IK1eyI05n8RHebvK8Y+XJRbVEG4sPh2S8VCPfazjivG2BOL5whiKWA7i3bC92Pd2OTCtj/FOKAXZp52PJAYwbk/jJvwBYWkB8Ze0LJoDKaZKw95zX90iiJXy8AAcdOFmlkN/pNfHvv7w1kbG61OYoRLFLQDBC8jAAWIgLWNImIMZiqL2Lmgu53mMRQ5cF5qvW3QRrdAGec/JM1fAXNWhhk4vxd/hsnhBCEFvWt18YlHrJLrKVlaIl3d926eBuRyOvfOl+8Tvhc0Gzmrk/F9scAhBCZp9UVspkHUsX1h9ROhptmir1lyM4+t9blj6ll8Ee3HGAJBsR4Z8dmD3EvCiDQJ/423RZqDWtqpfztZ8O5Q2WA7q6cou49mEVnfD/qXDZ1E2HPR9qYV4lThx9ELwCnXN+benh8grNbYHGxRlHGYk0DFtkIGzo+LnK/2bzfIGMaUnoSBVauHeQERWtWhnJpbR5gOeg24wGNftFgpvNJWQZNpB3pGk4yHVIr4BN+MUiXDlqhb/BFhrZq1FcJ7CQdwEVvClJ+Q7v8Yv/udGWFPfRIPtkH+z+GV+n5+Wdxa7Df69N8pLZZTydjKREZ6tHWRTObgKFSs7ADVxTzA3vIi6sBvVXhZ/cJZAAhxj/om6Y7QdkrHj7aaw/uPN82h7LvE1GmBNWIUfKQ0LUqCnl8oHuiUdTXkWbWjJExUkOLY/vzFGYHqhp1Gr385W+aEP6jmInSJnjlq4Aevw+WXCEFCY6nMFterRJk3KlGO10oFNSsn4Pc0wJ4g1AE8swQlsTWenIkla3d+U0oBWVsniFjY6P9Mjs+OoQ/CCZhu5vEHCbmdKfeHIFpwpqeJw26Wh/SK9xNXY2U14nAnQFswpYcg8PEqjBFc9rFKgffwNYQNKAhKoJ0Q1NiaAs2Tsgqc7tvcpYKdbAfBPHeixgoN51gWDU/GvnH+w1ZxQyRRn5ibtqH6m4jTR+PSvTL+PlgkQ2xFCOk50facBtcSYWHHWzNsecZoFrIqZoc3/d0ILbXEF7PRIBLcIc6dgE2lsJTwjz/BiKjS2LNrxmB9uxf5AEmrEuT4hKs8sRBvJRG5eXVhCyIjGkg0TJRl0ZvDrCUPx2gECL/YwT4O3NltVMZ+zwzghDQGzcstThqyL/K7WRoqkjb69Q21cl3mMN1PQS0tkZUKVrPx84KbP1ylta8X//6EFh6/5x3nbHCPBZr6FrC6y9BiVq80cioGtBBvffB39/czSiigcZ0HiW7AjRUa1pnOQ4Phoivl5nVChzaqz/uCQ2maiv01ewiBbkZaavtQ4hC8mN/kXhgi1BS9xjCGJBVT19l7YJKHW09m29nQgKjx5yB4ZnMVFvo+ANaff6maBHI5bBeLWAPvo/sPFzBi6tXqrmZ55ZEyIs77Z6c7s+BDVmUrLLL2B075GVKwz0E6oEvK3PDM2AvTa+wt8SIc7y2pB2KQV6bWqI/e2y+wUy6bOcbLKEJqMbTYK//uYXhhCC2jrUMBz2Dm4wt8HOPU/eYng+ukbhaPOS+7a+1EIEHKovHb6PdcOMHWUHKoatWblt2NAfLeG1WL2IBP4F8+l6W1KbwE9Vxz3Ez/A/eGO1VDDQeCGuWVt56kamFXhQQsEPssxaL+MEsbOIhpu561FVrAQe9RCaOxSMBPw/Eure7t0yS4Bm0S/mIGWRwkrvtL9RIOwLz7YvFcrIKZbWfCf6cxnC7bziVbwwzZJj442CBPO5Ke5KGhGEbvSlyRcTRqL6VVwHLvT9Zn5db8KCQd2cWn4bMPOy0d7+Mb+hLD8Mp2CHMA2Lg1ZgfbJgouaq2Bf6im7msghAvlM0f3+TC1q40lRQdxNwg7d0ZYP9Pr2JqI0XfujBvdke20+4VlWxhN5TK7QOYgG0ayzDaIDJnKkQfMmf/WsiNqXKI3vx3n/YDaCFIpa4ue0XdYG0MBZYa4AS2n8be5nHJI7Cjv08+xW8BjlsEDMy9rDe1chB2Ue+AM0oMzE9VGkCVYaiU+JSVh+GYv4eg+Afmqz+iF9y07Tq2wwVutfmf48IQJ3zcurjxE0iQ/14tJ13/793Sl7is5tVUMcDn1Xu0W00I9TkXmVfhDtzgFdOM9x1Y1QHQ9C32/2G+XPXQAz1ATh2WB3KJicPtgijJ7HY7gsKDK0iu8jEIJdU/fJTMXqnk7O3RdHG9n/ImwiU/H/nV/7LHoKKUMgIuyQohbYHiQqtCrh6xmIsOt07KrTfmjUOAendbnNfvgBtDFey7I7AYKlxsNxxL+w23WDvxweydPvNPKgjAZjgL4llfdfoSyPeD+XVR181NX8t9OAa10JSnWG7sBIb0JtFfCE/qKvbP4D2r6Tt8iVwjvNVArraYtovCdVVuZrVlyJOB7n3IlX53h2j0SC8mgJAU7CQ==
Variant 5
DifficultyLevel
592
Question
A wedding venue charges an hourly rate for weddings and add a one-off charge of $250 for cleaning.
The overall cost (C) is represented by the formula, C=189h + 250, where h is the number of hours of venue use.
Romeo and Juliet have booked the venue for 5 hours.
How much will they pay?
Worked Solution
|
|
Cost |
= 189h + 250 |
|
= 189 × 5 + 250 |
|
= $1195 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A wedding venue charges an hourly rate for weddings and add a one-off charge of \$250 for cleaning.
The overall cost $(C)$ is represented by the formula, $C = 189\large h$ + 250, where $\large h$ is the number of hours of venue use.
Romeo and Juliet have booked the venue for 5 hours.
How much will they pay? |
workedSolution |
| | |
| ------------------------------: | ----------------------------------- |
| Cost |= 189$\large h$ + 250 |
| |= 189 $\times$ 5 + 250|
| |= {{{correctAnswer}}} |
|
correctAnswer | |
Answers