20226
Question
Pamela looks at the price of four sunscreens.
Which sunscreen is the cheapest per litre?
Worked Solution
Calculate the price per mL of each option:
Sun = 12001090 = 0.91 c/mL
{{{correctAnswer}}} = 600540 = 0.9 c/mL
Block = 500475 = 0.95 c/mL
Wet = 750740 = 0.99 c/mL
∴ {{{correctAnswer}}} sunscreen is the cheapest per litre.
U2FsdGVkX18Lr1eVQj2ZpAsLlKtIPXleMVq19nIUH1mSHFgorUSKob2/xcjz2r9uo5ZhjWY1mmmkX4aU9hHY3K98EiAcJAH0gisUI7LhczgjED8m8TTQYSm8k6kYpZztv+FjgO2vdFShs5WqG1tAY+b+n9cE2/tUt8b0iRWugTt816sL1ph7NsiYPajwL6T468NYlxfU/uMtLfxWQInS0ZVvgQuCL0LNMvTWaxMn1z5Vh5qSl/IkLIqTPoMw7FMuA7ak4r5IFMNl6GKx2AdBsJZ3HlLe0Iw6r/P6s+gFRb05Um07KJ044kpw97fqP4cG2Owvuq1dDSYdCrpFPzERVpRUmryw2dhLpnPv+cyNJfcN3fTjsq3RIe2VWPYy1POarraeuQiL16TDjHpq9dnHI0M1KWhxhuwEXzl8LqLKnxnmgKANUBalhmuxf1nI6mxBIXm5WDImglbk4LOyP9oLT9a2DJy/P3TCelL17Gu+ORKLxb92mtHISM4qDm/m7rj/aSGrFMhhnf9e5FqdLG6Nr1m7ATvGwTDtb4QfIimCH8nDDemtTdXDLKCzkXvtg095qN5Ca3d32hd5zr3aRygthyxTb8LzvuzSlkeoZscvODVnQH2HhfxzuIDWRu8jk2P/s9/feJxp7hyGBuvL/iBpzB+M22LvwsA+yA9IxUA91wnaNL2gyVOEIFR8JpSmY69VIO0aFeyaXvQ2WlPnlC6Q1Y/uJtJ9trfNEfd6tzdNb6QloVP4kHxMM1ir8Q9FtH+5oUjbkdlimbYKAGa8eix5izz1FIJFBQLjncmQE5OUs/Zl4gUBPZkGBaoIXbujSSNy1ifpa95wS/jVyphGS6EtAWjo/b89UIgLrn27rt6KdP/PHwVbJ4uoLuuUo29PwfPmmtibtfJZzcJqk7B8xNBe4Z9Z+jz3mQD1/c9jOqRC+qI8QhK/V5AxBGmubUF3pZxdnFoSNjqgp21WzIueuqPWApanrRi+9P3BRdN7mPnQz9VtFVTVGJQSpctP8uOpRJByKWRa865Nx/QUVY4UOZmysBKL4sI0yxWmZAOHIOEjYtRpb9ZY3GepA6AtQv/qIOYrx2dBiqgiJ88bCPcfkZbT+aZHkXe0DLSTkBBPnxri5L/0fey/Z3pymDuHDo4CszaERH2BMQc+cNJz/2dDU6iw1NAeTcwvdp0P7qYv8kCTij/2UvU96KQ4tDwRhzm9LxGfTxcqPWdSPJweJbYX04QVlphdyl0F+DhC1kFAC/tYYAaf4SV1XGFTxHR/KHdpzJdUpptxsCt+MRB4eAM84MmMgZauNVZ5YG5aA4NTIwhiLZYfQpCUyzlKeEBTuSPtIKSMqhkCMhijpeUQmdEw3fvUi7kCSEzIGwzt26+uZSDeIiNynGq+3OLvJ1ybJzHrQOH7mjYwx0/V8oh9/EmYXcVA4NO8XP4j6Lm9tlNbmnMsgWcy34zXuz35PLFRb5gXkSfnX9S1wznhk13Iumnjfuqdol+TDA2wdPiUqtVUeemCZplArMJaDopZUiTbyxlDHEHw2PRZsLwDDxxGkQV/BegNOSt58vGy639SidfmBwq8Jf1HveGfxIr4M0PtuQqhGH2aPH3ld/e66MhwNsdcw75jH01SZ8MIaQCWvLmyD0Lh4ustNZ4N88yY5vLwTzOZqL6m3heF4ukHLwqQXjWF03hbIz5PX6GRo6Y9AhGu+Iu+qTQQBMxE2rHgYzf4mK46ZczkX+D3vH9/Qvrc+ajB+Fg6dcBrtoWmopv6sFjSvR1W3QWaSMt8cc81Jfg3Z5xKN0xcP9TGMDlR8W68VI0W2YjUGrDjyAekvap77qKHiOq2+kFUFI4NduB4y6FDOTj2ygAwzxl2y5rvEJhbdFVdH3aCNiWTAWcYaXkJtvwg6Uc1CAp9ID2ltwoQpcHvCmz6bd7kR4a7WaKzxfEBjEL3jvHXbCLVdUwW5QfQWEqJbSqAA1SW8y3k4q1EwlBRP5xw0mLS4Yrg2LYXOsOO3Sp8zHOS9mPoyQIahstA7z44pLHj52nfBDs6VPb9idkhWwChn1FvX3AIDkmCWh9tAq1KpGnzwStzaUVXfVXw+Cx9IHBxLUTujjLsW6ZvupYE4Q6Dj4VKTf94BiT+qfkmcgviVBvTGutHONpqebw/10ljdZ4taEPCLeKwvr15vWHSgSu0N8Uxgd3QZWO4aF1IWlwMtSqXtqi6voDyUyH2zopCa7QoHdYRY/PaE/nJLG3nX+UMiTvdM/L2eUkM6G2JYAbCSMAtbkBN4rMjI1bdkZiurEFcG/WLJhhZjVAfySwhl/aJIf548F60Ou86IUHPm5WsrmAAur/JWz6Dpzk6R+xENNRNQPBlBP30B+L2W53uhDw5WcDMYk9nXohYLXWMzzEFRQ8mFP+ccS9WN8QSzyoh+yi08hSaDn1uJVxsikGGjFI6010e2e9LGJa5xqy7oKV5INrhkquAVFLDcd5UlS6fdjH47Dqk0PhQ1BcCRUurZJu7lRM4gCeqe6cTosxYNINZveBkDA9LbzDk7NwhmsOFX8gMDnlbO6HJZ8M90obPkYJa6jXNAxP8RkrDxFqluJ+Cz4kuk3PgLtwbA+rgTGJhiIxNvxGQEzqQfoarisUN1gd3mJQmitu4mcVFemfon6RCt6ghTnD219N7sDVdxFtqv6c0IpckQ3dgW6EWyS0dqd1y8w6vibvlti0UueVT0XRBbk1nZQIGwiteGQQ7xtv3tTNqk9r23b+RO3PY39jcpssWOwOWME8IwkCQE9zN3L30Nilw9raEY8OST5Ac1/9rrq54+k4I/w2sJySHy2GNxu6cOmoUQU9iqmpnwDLA0nBLPw90KOKHUeYIX+9p0p/kXLr/jVlJPYZQPsIukW5pkA9Y8thgQ78ARRRs9aMFTeOGHLYP0MsPy3OU61JN+VSDCs/d9JaEFaG2HMEbqg/KXppSG8reLxIRWq9Y/87Ge60SMbcsmgzQTtbX5erF0aJtG7NRoZeZKtewcDitt6Z3tYlUs7YGfRuY92t8mJ68Q9QvY4Gcdu5x66IHpV8C1Or3twkrhRxYVj/xZqxU/Da3LBfOsx7LeFm5LAM44FbcAwQ1aQp2HPlhPMiSFe4WIT70lOCH1xE5N4dZ1bYvCAd6W40RLThGI1KwP+NURhldTgZnnljHSSVm43ALX0HlkBwp/qvmnan12RNPqAV+rJqT0oVIIduRMCCepPfkOYTG7LQIAycpF1fIXGsmUWKSnkxOs537u2eelo6EFuOJhvdEyTpgO0ItWXA/F2e4l9oJNOOhpY9EUWl72dvc3BgD2GyRWf7jIiWAaiA7culr3JmW/6qzkbT0Z54ROhWIMnH/lIwbNj6+DOW3GUi6NJvPjMvMHd1i+FMJGzCT8aDmHUrrqKs46k/PxWvBISmJMkbfsMkA18kUb/RCVcU76qmo5hid42KBUSD0eeLCIghqqCvGEUyqj8QmkvgTgfTfkX4+G6k921JIJCP7idl/dCHpB6UJf7MXfi0CHdeZlpEbWBNq0OJ3cZBWD+BnHf8pyOTQkFSVHpEtJ2vj0nJpyaBFaH15On/e1wn7M02pwj9v186upByGfstBmEntH8ZOVy/CQXAdml1yaj1vbkZ1FgCCdMHmQX2dE6+KpbNHIRIvRJNfTHjLRbLRp6CvY8vvQ6Fy3DWsg3qjPfImHYm5kql5rJyyTqrpGZH7hvnWgujrq+876bKxGZGy10zedRDFKXAX+n3OxDsl80SbqL+1laZGgxXs5iVgaNka6Qi/1iGAoc9Dzvog4mXxhtNhMCCW7xq49UmHL75oeNcL2+3E6WE14P/1gSPNm96K35l9Hs/P6fguptJqiOW2d7nB68PJPCaT2+8ebBj4wx+9M5GNV458LfbmKMiUjKhhsPhpF6ZYtVkRVgb1MIhXiVww/WvzJIRQEfTCWeIxT8iC4m2mNrefv0ourMc0BXXc2+FU5mFi9rlVbxtZXCX0WT5stpXBNs4jMdVqzOZM2mmtZaSJwWMTfUuSUUZSNa9cZbRctiodjClcoz1lHXKAP1PhWazP3HftHzaV9AjglcVYfs0bNN3k0oxXPKm6nZDLIgD2wnDDRV0HpIh3qcdO5wzcAGILvfS6WXQxE3j+Fon7wXj0BNLBocUh3Uhaf4Lw+tcDSVkx+O7BJbqNxseQc8oCkJVJ0BocW3zgmQUyIHVJKkMcA85Y7LE3vxGwI6njLgVsp968QW5ctcCu+rzUXaRwEyWiruECRrYDrpkww1mQ4amvUFiZul7jkWbuuPLFa9T1A9wu1GHXzCUHbrVeszP1bS/KR68mTNvvKir4IGDx/vpmZivDmcdJjr+9X1e4xOribGzJ3W1Cjy+iIW/dsHRqTGp0oyFy1zWvMdRG2TcQjztHCe4eC4Q9vxANYHoF2I5atz1XTUZIU7zVpnrK0IRkWj2zwZ8cN7nl237eVz7YpjyFyALB/WxCc14HmK2tiBucyEDu/02ntYnKg0VT7h7nU8nzDUBmuPgtBnxCT1Fxn11xp4X3oy1+8INNAYLcjbN3ccb0dSvIi083mWM5bj1c7wvdI5Ltpqgz/yTCqKbRRyp6JDVJYc/VLio0xWVPiSVfXRQc94xnGGLd7mQb71dtwtgUaA/c7/6KWQTuqJde+YbhAz2egLgulsS7BgaJyT817Ufwkb5MiRojztfKo+phxxYiAgVQ2WGvW5Pl8KXKUJvrWOuvGRlluLf2wkQjiN+5QBCO+LBZAzW/vo9BLJXHB1W1ZKZd6BiouyMhWJHYdTFjfju6ZNi9xLVBQNlDt4JmGRBsnEtadLqbazSo44/S/Nja53z1nvdDWHX/K/k0TIUU88mIvleTokdaAMqUmcRan5bttrKlK8JgPyAfuqhBomP+vF2PeiVq91g9KvNXvK0JcO9uuEDNWgknanAa8Hzo5A0JsbUgr+5IsB9L91rbgX7dilahBHE+d4DcPPyi9pkeLLlIRuDtN5UUmvaoJO0i2ZabXkHFFMJUkBZTxEdtWnzxKJHL77D/fs+X847UqMFZX+DyCTZ7+ON0W5MQy8G2qld7pGztkWCc6ISofTFDIGGA68Mrus0sfQw6QY2u/vQ+Ql4OLt6wS2mTBVvqJce/YRzO8qkpHUHag8uuTvLMQ9Bo8TNj7/oW/jFsryu7HCg6IvdR/BUCwRNE7cjM2vBUjrv9b8OuCjctXRw+GVmCzdVgSxzHDh12aE8WRsV841DTmkohd3yEi0o0f/CnDtcyjJfEsEsXZYFCpRtOvpfC4IKVEv9R5QdmckCvfHbqiAGVoqbg8y9saVyb6RwY4aShXrlPXG4etcymGyc6lnZ/lL5P7+U0WwnarZlzWhAL+WfruxsV8pyJfPHS6SddayVUAGQALsWqJ2wgZhPtdk17Q+CsYXcGAlNtL8V5ixaCvgCs+VELTlW3kvGjKMd3LNaX0P/LdKc2OEnuWE320uSbL1h24Yo10H/2DYMjhIh5TSG8AAWtagtL6+FQq+PRan0Qi0xtj15WGTymre6bGPYPixmYo6vpJYQ2PpcmDMwQl5YRA5XsVQRsjMrkqpJFePShvbjpwKaxgQ4m6qiUH/s+27LbEQQ/IZJZDjroyuf1/lDAWymQ5nRQeNNZyqhfJncsuZ767x1P6RQsmV8DVR8EQEJTvz5VK1bWnuy8fi92b+jZUsA6mroBp2Mw//lmwArCBqgkEbylsHkTN10JRdv9p8mus6bVI2+08671xCvIrLGQs0rTRLIoz3gIQTQjJ1GfkGixMuRm7SrquKCLB+fsFiJtyjbgT3IDO015FNTWIzgvcvN5gsVedXMv0gXdnObSafSCXIp7LttRUoG09NhxKPYBGFA0siMEaxrdUsYghJaQUn6qtgnzWAfrMuBQMU3HmfNozp0lCT3tjMN5r6CFaEZGLdKLXCaAuqi7/w1dou16I1HfYprXaWphDwd+yMQVtFZFmsn+ZPKPLyHpK/eEQBt5FwX8qJuj7O3shkn3ty57ic4TB/p7cs84SwIuP+HOHA94O5sdfEPF9ds2DPuPTBbMXhV/1Wk03hoUP+/i5FXIRuoE1MMFQuG11BVn2ILzukExiuypnukAIexgKlQvKPMWiS/a8g71AdYvZHeux1c5hhiIL4tUs2QkHBl1WVt74xvpLiR5yx/C52Cji4tStCG/O8PPcIq4uSjyFdaU8Wv6cAM0eiBS8yp4YkY3WsNbVHTcIxHUz8u9NEqTp+BGc8mQRRDLCVE5iZjhvxPp9igv5lp3k69P1sjcPqOjJyhQEUUa0IPBZtM1pRd+QJx5aKNs9uA5hTDGCF+rcxE9SJxm/2T3veEfSnP1RaQVyBRPN8lpXeiCF7SF3n94T5d8DMuwk7ADO6RpPZu8NNLEVrRbF36TQZMD0xQ5yAfOfRk+r71jhdQuYybOvKxSL4m+seVIo1HZSbm9CAUgNPNnxqoHR216tuxk4iWkqxmhZ6vd7pwAoYOJVYhVO5hhKbVgNR9ytYWhOdnyvZ4ws5eYACPQ9xzy/lmdTM9lsrMhGW3bCDkAhL0Pjlnc7mpBZq6TF6x52ts5+kLPyXtT/1xweiEd/IcPDX+e0cWGz0UCcq4+CFkRMeF6KaN2x1bg7iihTcDSrSQKFcFOQisGZ6/scOkq0gSyyXcdkb8fUnFGG3JcfEMgNkGl7me4wtQnSSMiSluRrAFounKN/u/ccYuefV9PdX+IJfkXA5oy1mptE0/yCSij29psMPX729xXB3f+gjwanitSeSDG6JpC0egFDomtMcJuWiawAFhVJF5iuqg7CJx5m8U45MI6akiwaX2hzvZIPitKz1nlPZhhnFQ9oUBMTdWUF2DHlaUFajWUOc8D1SAthwItD4iARyPbidBiw+2bSowL41Hon3Qbo661aY/wqzGCDJ4ZcClHM+DKOslxdsVjZpQULUq3+/GaztuZNaDgwh5581gKy4LSe52dsPjkvjlyAtAoT46C04Qn4tigbsw7ChwXTLXeApMhaVP3UyQdek9JVGDhIjywMf5m3E2+7oIn5v0J2XmydAb1qLnl1J2MsnvVMntOOd5TC1ycEKRUxlg2uiiefs1kW4tiANkV/rHrQHXifqoBsCOVA+Ww2qquItUKSLslcwWgN1jOdx7rAzld8OAkNj3lB4pAAJc7oGzn4ALnYKn+nFjlPfsffErlLDgvAAeri1oBWQC5bTVxrwG3kVa+tDaVDJe5Y/1GdFdcrNAjnp9NIKSAwJKZDhf5rAZnfLBSOUIj5kvYMkIAXG5nOHj1HKoAYbH3IDe3R1WbbKfQ58ISuNY2p42i8z1oMaNkTOm2m7pzsHuTS7Kc0oAp+9qusoTcNWnUYJAPe+9+Lo+Kq2+ep1lDKVi+9Ijs4c1Hq6+knvGaBm1BJEx+6v+zG3v+la93aE/ma1kR6Pc7caGsaiKsthplsQjDfALJS5zvlglc+ME6+RLE3Hd6V0bwgolCrtchm66kIBXCawp+IvTHTwyjXPv3MSmiWZxeT3k3jxsR10cV1F9yrN+ifrdfxIkXvSzm1heHrWmp28JfJP+i83UUSEcGCuh2q1TQHN9uyf7Ca/2OsW03WBPJiLlzWBd5mt9Bo75qjo62GkdFS88i9LfBS9WZeT4KFTVZUzFd/jrYqkJHIkXQ3IislaYByQZHg4yqNrE6EN1CK3t9aWARaLoA6z984wT/X3Yoei34EQNBYEYyVxLvnur/BAvUypo759KfBDcVPZyFMCH3ndxU1gmVaO5V5aMfVJw5OqTy/DIts3C2NjHEgV14+nQ47Zef50a66AO9OPtdYm+pT6/mxgSzLAGDu2IHPIfIAw1xIpv3ohbmUIU+xDwSB891N17lJ5yr0028o42S46WZTEB2/fn2sGAa9ZW/QGq2rlIjw7mP/al52UfAzEN8O1yiVTdbBkm6dXaq6AsnX6fuQbFMGVQJ6DdeQ+4BveOFSnHAxGCAonbIW+wSEzF6CDukmFexRF+eezdpQzlPXDjDKI2EK35AJiE5/+CVaGbr3r4wxz8H+KkCaA4zOuqgyTFGEM2NM4cG0FZLo3nlRk8HKilgKy0JQoT8WOIsHKaMQnHTgaRLIcJwoL3wS0DAOV1dYwdO9OvFUQP4PcUG5iTTKKJGhINVI1v62Pq7NCDxJXj6LyEcrXSqmxighWAP52D9W57OusjxJK8bAHSWEsaAEiQCX4qHePjG/YpmLcFNvJzQUe35TQ99n32dH4VwDF5YetcXNxkYiNKCx4ynnDhNEAeMshNezz9FXcq5qzjHtbYP1BkMW+5mE9PCj0Y9f7XDQzdMIRdxCFHx8woZFQo29r2RKyUIw2KsriI0bLaE3RB5g8WUy6T1Po1PahdypCLbeeRt8yg8UNFCjedKvV9Um+NHIBXhSZRcekYDIA+GPRr38vSaUjue6dJfE+uYMencUq0AbKhpcI9sNoHvlVsw59HzaGt7D/IuRoXNeqGghOCN9iTMBeAr292F13vP/W2uZOBHNazl3yHOTquLFFUY8GfJxZucbhFsJmcSoj8secvK68yBchBy26IXrkDwWphTVGLhlugKYEBXg3eO4YRuc60GjNN/2qmx6KLupCRTu3VjC3ecZrLcqGcrXeAJtEyTafxc3/xQ7XawkqORqUEtqdYgSwcM9JDj8GSS76nAHb89031Qdx6F0JQY+P3HooGSkklDr6Eb/pVDmKflS+jgW7oXPp4Jieed+5dgru4tyDi6mf0JFtDqbg982js0lOdSfpz9bvMDncpvadZ3/X/F/CfbJ0Nl6aYKRXaZR8RRIjdx5Ar1QXxwWAiLYkHr643tiW3a9zX/P2ZmkVunwFFb4M2JwRxNfxyS5l2YCIqd8OPU4o+uNxqmgrbrAesMWwHgpwvrJJT2aksRUCIIPswBqGKIcPHI0QQmj9JXlbsltK1z6l5r+gRo5oaP9AMwW7GcPsBo/vsU+ohX95j3vB5VHFPDcFFTtGV0p7deQfvdoHoKDynNANsNn5duVobCCUCIPmgoWJeoNyvBM+54lJCtBBHG/djPpeieA50/ktQEJ+AljtNC5d1ObFrXqcLYRq0A6Ro2agQZSLUUfFxcWQnbdI0/FGjjZQMfb3YnaqBizVgEuOMf3uBEcELSm+HkWK3j50q9ZXz/A98p066xMZ0ffsxTIyjkjazloIluX8Z6I9bSLO6obbzdveVkJYAvzV8Z6ZngIbWTg8/jbB7icctOsUjCunL2RhnL3fz3aOjye6Uo63NhJhRNfzKzO8Efkew1DjmQyOm4iRtXdYtzgd1r+5kMgnk8QsYi77Z7Pp+eibaMAcHHIdgZT1Hw+tAu5Vohydzi732NxvL6TEv7rj9b+8DyZ/NkA3Z8EMUP7jWoGPFUcyiQmf7/wUvD2bt3HVoOmth6o4b+s8NaaHbewfLbRD9yOoLz4/wxkecWPpZRy3Q/l8lVy6oUwKXYmP060OyPWyNtkNaKo+DbI56GVpwWKdKzNOadQJJjz0DWxEVN3s00ga5f5biurilY+RTnF7SWwI6lFEZXceDAZfURjczfqeGnqi9qhEsS0Vob1vV4ieZ2K+2QzVfjOEpHdyqCj39PNXcTFd6F8k92mZBcnYRAa8NNoaPYkGfsMsBUTKeDfyb8xT9WnzvlIwmqzokUA94dGYfLIpcwhTCh29All0rtUkFHcsrRwjZadGqGUmTCeL3H6c+plkwJlsnVfgb41dcjSKmYgFAQDSRUQzrTPUb6xc7dmuQhQrU7NsRahRhfJcdQPO8K+sr9XxUxujwaHT1RaZEqtvS3x6svzMt5QgQCOx/FRvvo3p6OGj3AvUrY9Qxu+7eGSSrxVeFODK9poN1f79wyb0vEMyoMYhLuc5WFomzDdmZtkug/nKmwlB1KGkt+6G1NaR1IE7ZGV1MCKTfgQhp1Ch6Bl98GocxDRRvyCIitOZaN9/m3a+fUzaDk+7LyVn4Ryt8AF1t0qYu6sZp974rQhCFkIssZY6avvBSGFKbZnT2GFP2GGq4Qok1+e+49IQsOMDhk+WdztGDCTtVX55wU991jDRcEOPb+RMs/ahgfcjkyoVcUKjOihsQOZ2TrzjGQRfnQfr20/7x1nH6ONknAH/v6kAQIo6eYzyZw1NvAsNyqWHKzwbPh2nQImO5bfZku2NDG3zmbKyHa0Iv9zyZeLZIoUwsOsFpUqSmSxD3dSDQxDDzINBectDd4Z5EdCbEFWMxw4/nP4fd4xHjw5CUHXc/7fDg07f1+1/53Im/aHPbQqNE6VWw7SvIcbxz1Tr3rdi+gbiSUpXkL3ljSjvg0Aphj/bsHTrhV5GpNhiWMaYy/bMQ=
Variant 0
DifficultyLevel
659
Question
Pamela looks at the price of four sunscreens.
Which sunscreen is the cheapest per litre?
Worked Solution
Calculate the price per mL of each option:
Sun = 12001090 = 0.91 c/mL
Sport sunscreen = 600540 = 0.9 c/mL
Block = 500475 = 0.95 c/mL
Wet = 750740 = 0.99 c/mL
∴ Sport sunscreen sunscreen is the cheapest per litre.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers