Number, NAPX-H3-NC32 SA
U2FsdGVkX1/CxSVWWSdgV4kvkd2yHTSCeL+lqUYD/TNuJaXZBJ5bqvPX6/hciYLBTdk5mBoE9aQKRuaKxlU0yLJJT4jBeZuVLQffczPRNdryKY1NTrT9zL0L4lyf9dHEbUu7iyDCkZgNELPNL6JsH6jhIQWmf+XDvWsejuI49lG13KXRE8uuKXGs03YlpmFRT9Q+v6CoPxPTqZIWvxuqseqL1Rwc3kUdqc62YDpMk2KD6xWE8dyFCVatkTu1seboKDCfpVUUITZAt2QewqKdt6S4ZjsKtyl6P+dxXpJwRxF+7SNiFcz65kUuBJlSFB3kUvYqlrp81k6ec+63Idl0kwsoNXTWrrYHWqmB0y+Ickjr9CLg558UcvmtRDo4SjVtzCQxz3NrUs19X8l5LdIbbdHwx1JwNxTkCkid0ouwJXwKS7l7WVkrxtynAblcv5BetUKJ5CB5fb8c6+L2B8kygdY3nZhTlttB6zTKAoOjZN22nAFVbmwUHjcL/rudo6/g7ysiwJno42tGCBPUgnZFND5k0ed0Ae4XtS0YngkswFbKBZqIUh5OhbWXUtgjzXfNaXgnas6+88kogqcCFVc2MqMquVWLdXM2jIqVRttXq06ZX5Stv6KhOf5ckxnHhOdX+WvU+LEy8mKkPi+0eISwqfMOJwPOIJwj9RVLpW2VsCxNse4JTOu7WVMnVr0nYzYIcGvR5VJOJ1IPNA8X2tATDHzy2Nh91K38ha2ojt2IRjR8nzEES4CIHs9JFjKhnQ7UYhL/vaFw6R1TgBadFc1eJCdx8nYPf808WNXaubG/VrZl+WuLsGQJylRjntlO7ZUTFAC+4DaDkBCd7QP8P3m+Hg3sAbZ58DWNVdiphyxpy008QeomQPKdUQs/KP4DBhqDI9342aqMYjZYP74ukMv61ViqVILJ0+12H8j0Phat8Z3vs70b1ZaHBO2B7xhTDBa7NZAOtKWUq1tk5itD4xVaPkTDYYZlu7rk+Yl9SKXlD1nW0ElDth2VY4rbb0m3zOcfVdighgDtWlUW3JeK6Vi8z8/Ra5ff5ghzcM4TCXZB07DM58MD9r41O9nBM12f7QGaik4vtwtLHFTtBQVGlBpbam7fqgzVC+emX+wANCyMp4DeV180RrDg24quDDSb2znj2X4tj6RlKbxypxWAaIoPth3nBdwdaJ2LhJ1s0fM8NlfDsrM3Ln4q29Ev1mNsJcEg3bL5ro9CsvX44blMQKU77xrmafsF/+JTkmOcZ6YDWNxn4PwbCUO+oPHbKeIbYS799v9WDIzXGNVAQDLd4TC/TFqv2WItUV/wXezOgmQd3+b39GNiJZETr2C1wiltH5FHoC21YFYbO/ChkI9EZi5TAj8vuyednDZh4kepvmH6TWqAVzFyLO9eef5cCLgkf4vNodOesV3d+7Pv1TiaDDP7vTWSklkIUIwMz9D6XTHZfcdxH5VpQA6GdlvdoLsLhJnzA2o0ckr+jjPZg8mhwreS9A+xz36dFzBO3T11XSe7qVnNIejgF/hHstunJdOT7ngnUtVepbxDv0GRbmgODb91uIXusoo/bujbFyHnuBRdu5gOM2FD2db6739RT73oRwqnE2uSx0CZB8XL4FDxQbdy3+2E3swH8Mp+PX5zkJgPGmIYrREI3lvbKXdddYKB5OCsbx0pQZv0SX7zX7qJsY4PL2T6VgvTwJwgiOOtyTWHgXiUikZA6p8MvDl2ZMdNeAsJf44jPHj56S3iOGKPhLNgoxjrotq1aK8VUpvBsmHomzfMthOcJQaRc/gEUbS6BBQEXNa6ho5B+H3o9Td3+0rqnzs6wvypnfUlj1kPzdq0tCdWrVtczSW0yeIOpbShWm3RBugWpdRPmewLssawJyPl6afAPUwwrOnDdSXEG6vVfl4FvHoBsPNb+Hv3y5+7DSDgqlB1EFn/gyWJpae2dhYKGZi1G+hAua1Tfo3P1vYIclHzt7SH5gZzkViYI0JbTvTkxUVxX8LR9M2ONu1VcNaFrqnRbAOYmg0D9suc55u8ZPuMIdsnDyNALmZTYGH24VN4ulXnIehKQWkuqE1QF6z9+FLecM+qVeQDl7BddYRTr3VbUm6myGamnH+lxc9JUIcz4JzpJrH1HtUs1+WhVY6fELWrWIiWVjAoRO7HwWhkosvrqFxrRsvmBvSsnfkH/o2SoNQmh9VzDfGZ/CgoiGMhZ8z42RKMiJ8pECqqw0dnrRT22izJdgBfRfMZxh7+pMmXaRUL3rtnARwZRHwqQkG2nwkopxxGS2+lDFz0gFmPbMLaPIijgJRJ6llVYLtr2zR8OLE3MZsftai7yskokAw8EHb4kbT1MDyO/EJIQ5SRFArgeUQeLNM6Dzkad5D1Uc9Fc5AM7LwY7AFF055wl/8aKCI1RJ08GYDhKbqb3bwHdox05Ol6uo5aOpMg+YOofdEMX9pYIT0nnXKf6ZXbrA5ghyU0wyWLbvPvxEQT0+zTi6W7LEoBzP8boZWgnA9494Y0EC0VTR1EzT3B0PdRTluyWBL2CFh1GZJSvB3PJ4Rnsh77GQsJyr4BeY2l6Y23E18MfoulQQFWGfeTTBIsybapVoUSwYCuL4wv9ZcLIwOEmILJIKSKAoRd4qhyWZZQw8Bavs+Fw41QO0WVdo3eLL9YrK40r8GMylPc2A1lPZWGggSfNsXlsxctXzLH1NLTJY3S5E725q4aeR7fiXF/xdyZNgxxx6mXO3nILixdnDRtihKU7fuaURG9uf7cEEMqDwG0Sg3cmZI49oh1dHBM/v5uYE1ncZFEegKg3uAm818XpCG15RF9DAlzl+akcYM0vk1oBM5Z9KI3GEDtt/9oDAR9Mbmt1JQZAHT2M0IBwdcli5Pi8qAPW+fnbxAEJrhrukro6Phrpi4xDnXWq9cHPsOBc4RDzQSukPvnnTyMtb7WC2RzTCFRQuYOOt82Z9tWfonkX3zar26ClnMtPbxqVHwkzeWD8+tcuSLRvvNKlDJJh6W2B8zauUcGiZKjiP3FZGgGhkMprp5lePkVRifEZP+u2vipSdqqTCbQrW7dgb9Ry32RmAFeKidXtL2poMF1CZwcCpzgyxtZzcUZDhD3ppwPAycv6OIQz7iGU4GyWVGIWW/uPBJz8XSak3GvNVmkSKCxDZOst5aTkr0C8dNuwKMNeBXx+sVY+OjQ+7jnP9nBz84tEXh6NrLKoZKGNogRQ7jjz8pnvoGukBI7XnG/ZEp+R9bHjDf1JbuK1Dy6rLacXH240llqkv1VCsVY64TlcDC9XHd2j8sbR+eALry1iNKmKOTcVviieWd+0hVdb45zpcdrcgCsJ7kT0qDm9w4Bhajl6gTh5PVrIQs0dIaxZ5P0Nzb05HjOK0kiQcGYLf0ZREVbvrQijE7mdyEnHDZwP7RyCTTKTcaNsCOAyT+VZ80/FnQSHIU4yFaH6ltdj6ID00zUq9Qn51esApucgfxZdrIvaTKvToYPxm3IC9ADOg8PX0nheTVsj+uXKCcJ8e3O/Tt/rH0kmxuGr0GZJKIzb/0K1H6PJekOlxEi1MrTg24IONKkZwUuoDfLowSEq5vtBD2sqzKehNXgepZGBoPiEga+UwxDv5dJE8x1/lhA3+r/tw9hrq5SZsHHWIaLZLAYweJF5FsqDc9oaeUJOQvLTPQTDdbCY9Dru9+nLGsfg+n3KVydJNXjISbNZrXa+Awro/Up6So31P+keZZ3ZUTIGpx5rjzgzIUk4KCXlMOsMQA9o4AGUn+bcEiJCyrqcA/Q6dlNPlNo8f2dHFMe+uthKwTYI3ULpodfSthkSELbpUltSjDbtmAXPE8YD2Lyo5Zx/6RshP1f4zhft7rHH6Q7tpdjTBH8nIjipgLA6RSg7Q/UPXiiHE2jO+iBNbhIjub9VT4Q5k2m4JkFSOf2T7QTC/U4ZS0HPwaqs/HFgwKh9auJndSFgpM4b2MpzI4havrSbCKF0U+h9cz2IDL5ZsN4k6Qvp2sk5wrPN6qhYEvbbqqyHFuglta/NaBt15+Y1GXox25x9CBQ5WETXJv4KmAs1XSQsFZa2Fai9GMchTkanylm6uJ5/PKBLHU64QvYwNLWdbmtnrFjZebO41MxIWxTp6nvOjo6AlW0KAVXfFafa0oLXGqhlhpozHgeF/h0x+ln8MqclmhXVxctAqKZCkvrSvVptvGiqnePwLXt/kuN/H3Mfo5q06DHTaj5S/cwOaVezXtG+9MpiLGYIJQJa3HV5zjITaBuP2py1O/bJlzsn5z0FWFi12f/9Qs8BMA6ZeUh/4d3Tqp+o601C6U8n+uQnv2VEvNymjQwQCbo4ZbGJ6SVSoNGo/LDnT1ukoDAxepNbnqfCVcb9wCRZESjtHwlczXgR3sRgAW7k/J9MxqojCWaVVMAlllLwf/+va5pGqbK9wkkpc64suirPd3v9eduDskpkd/Dswz6m22vRow3DDFRkJtTr4w6L4zYwvmHp/e2MPnefqPIgqHS2fnJ4O04osxeWDqP/IxI7Z3DXdl5SrYaoul/FdOfDeuUAz2zjBkT+YBEfUEym1/1PN0tUOoV4xPjYVA+Lc6xfb6fI+bpNnO3RYCl2zgu9DTLiHzt6YPecpbc5VuWhfFiDk7tyVFY4BlYy03EHq8C0hKSCUBLWeeXfKvLkULH7OoIWhgiK12pfDjCKsFpovG2IgOuHQCxQRvbhiCpoQ6N6iLTYYEd3DtWyg1uiQK9+AeAC9xWTvuZMjc3AxenuzwkW6OoH5XgInjkEP0mbBMDnFpNwiMSVALbMc4AamliZbioplstywSaNEzYb/R6okclh+RZDC6hgLQLAYOzaTiVYSL6Q2VyzdRykRS9mcfPX2aWXJCPwRntDMVBMbeJhpPr/UTBnHj0/wjoLZGagNslZZ+Kr0TFDk6lKyO8qrDZ8vra/RgGBRRexsgcVQ/guaNmbU1w2JNBVFV6fGkFX1NSqfj6QSZZIWqKyWW8f8fUywYMVINRgSLiihGZWcCm+qArvJrsi3/jZAOvXH/wcJc/5YEl52Jlgi1HYm0vxusuK6JKgP+D/bJ6gY7UKEAEE+b5vu1Jz8FTvlC429hC1oFB/RUp8XVMLpV90116jg/rLJ7ZyPY3aBuXMX9KKbO7mwhNJWA0Km4NFk3/OhsVpGR86q9rOhnqv03+RltCmwzmYuwNYcz5HMCWP0gh3f7qdOu02LjNOg7W2BKSjGGi657OJT6vGM/1bgQCAYbngoDCy44Ed027/PZN07jKqa9HznBNya7lFHAkWghMAyRG9Rq0kRER8dDez8G+12lA8I7x/LxLvgEKCmWR1AaXU+bFGh2v7EbQuanoTVZyZwTUffZMi9G8jFyTQ2ttb5OZ06r7JOS3USu4MIId9pnFRSsflJztflXMAYWqn74I5Wk9l5+wPTvDegJY670LxmWbP+9N7c1KokrLwz+vhuuVdxyB9h3/XIQttne+kV6Mp/1fcH395GIibI8EugU16Pfs6fo1rhLkNFiJbA0qknWzrfDcXMQLBKSIKjh9wMYcgYNoURHhxTtHc1nBDCI9pKJZHfp1/iaJ7M0+CYGt9xMw68GhhzP4WpH/9ciYqC2k7I3v8Hv5KGYXO1Ryer54f2/Qx/kjsbByAu6RMZR7WoB6X3PYRTyvu+otN03Xlq0PxcugXKJPKNbZnYyNIsGSfXVtg4LE7zUdgqSs4kemdKMtbn8wCcDrjEjy2VE1WdVYCKhUXdvv+2mln+8RFLcJ+b15RzqXGNHfYC2Zbn/ZIX+rmxr3qjfHqZ2PNEACQyFyyk9+zkXlXaZwwQfeRhw+TYuXqRbvxFLlhfQSznszRqt+IpSW/6D2IkUwHJjYA9tJXoxMCF7UyZ+D9vrhSXBopuE9KWMnQ2JBGl6z43ysnePBD9EBfyqbt+7MIh+/6uOq17rMWr8At86eQT1GrpHDMFSddZMMMl/IX8nEL9BFnGd8c6LUN+AXvZ56vL8Hut9XuBkqu+iNqDP/EvsTpvZbo9FhyCaXtwrsw/z+l13dOU1xI6u9Z4XA+Wat0xqZwCw2PUzxTCr1T+QEqRKiT0eAPs5aOK+YZCbM6ddKRqyoLWu0QeV/Yy6ES1Qx5hdE5cL7NPXJc+xSibazsQR1Qddb2RlRIVRrEK7aHq3h5YnwkdrtV5xp6xq2f3V8clL8yC+Fnx0775545SPvn76JWWdywJZTODJGELxUj6T4TnWCr+rnLuofz/8SK0Ba4j80u5uZZjN9b/A3fzuEPUpIYXcP6VJAsrGCprTfZ0UTUAstCFFzpEf8dT/wiAq6lFwIHlxMHVGHNP4r58WCnM5wI0sSMXPegNrNtCnc0qRJUcHwZFNMR8LSIee9TqH3Mk8TomPziFDTAZOCVDBEQdq7KfvKhq/iBBtT62czsmKCfxa8EKQUFCzBePv4Hy4sF3K6ErHYs1/BiTYfTwF3fCoSuZQ6fmzgkhqtspkhb8AYWTiqkF/eSSotbIP7zB16CQQGn3bMNo2iOgXD1IAEwMnnBTKKhaXE7pjroKsHgMqi7uozPNIslkcSxTDx2X9yB9wzzep1KjqFSnsykXPxuONh43CYmvPw/DEgH6jBJpFcX0Hoa3npasVSIuYp0+AoSBe+8MQGTZesPaSUEjtoFeOXpSjGvyu1wiMqTq3nb3zWPtZ60DbJacrhHNrnmgST5gmKZdIgSOvYT3Bez16uR36nni6gnNPs3gsud/pZKnR4ihiHEIipy6nMPxp14YEXP10Up5BA/6ThCvApLNqJD2cAcfibaIT/Jbw9J7StORzr47ge9YLy3DauXNNStRIXP7YmV41tcBlLd8DmmLgnuHsJUgKKosox/ZT3A7eoyLgmN9maRYgh0GE4ispV6HWT44wYvRYW06IXYVc8/K2LyBJek9KR66AbeVuQevW6sbKyfRiUgadrn3wSK4IekgEk/5u07jwqpvTsZUimuB74eIQTT6pRGJYUypLGtfLjjEpGhMxMfcGEBKyEpq6s18MnwFGU8XVviOONxU28jvlvH0xH/DfTI5ug7Mu3FbUS//J3v4DpHS+b/PeDNGUxi8HvKnU9Z8I7WxbKOBpwK6cYr6oYj71PB05xVKwUx65Df5wPpzBufXa0kLoWdvtbq8dz8g3/o1chJcXQFgOIOgeMIjvVVMMdZ5jQOXA2NcMdUi+s1qUfr4ANhYfLCBB5DSHN0TCkeYGHvXyv4q1doYVnXWDx6aytDN56ND/HwuW5vPBSv6iOJW8LF4a30EL4S2UfVVS9Gsd7T6dyzIZRbFDFf1xKQZqqtS9XPbmVY7MXJdW2z/GngGuikuO6UWqiqndBULx+C9iJ4H+ODUW1N1/2Sv7xCDEf4aPJ5AESlu6JB2kMSVGw9rRFjQ+2F2XLlSplbv1eNXImJVk1N2/KXkpe0EHOROtToLAbMaDSOseWa8F+P7LP6x+pTl2MPvvynPeL8kh6gpV+BZ/JhbjKJHQEJO1l46+gkY+vG5wcwm/amAKLz85b78o2yrfwLo+qj+HWUyiCggD9qX4JbiDlN0WMJv7avTW2f/5FxQBfZ3CmCxGmGHrtUDzqeCc2tYJzAX5TG8fjPiZ8/qTgfDQuiesjGkTFkSCDP7tTJGgBwEcM+AX+bU7/8ZeX8H5nOYAmsf5NCUoHTVBfq4yuQ/x6/w8a5e4l8ivOamt/dpHwkFLjoVvQiykhIR+JBh9+5hslRVPecLmTIaRO5lFNYifaSbFXNDhzyyXJdpe6u4OqjwrPHZOjdIabAWxF9jHgEhA+wOTn5Es/ceClUUMQg1fpIwidkIrMRa2ZmrX8c88wcPTDvEKOnqjD0UawC/xvXNhbruVFZMA27pRgthwF7QMKzmxx216lxfC8s/SNCpQ/dMdpfRaUDGttIFrDnagi03K95MThSV84JQzwle1T0uLTGjUtBdo6xujfBwYaAOb9Sz6fkTIV08IsH4IA9zaSFAqf7tfCpZ0g/D+wFlgyOVw1hm78XqWPjlrxkrSlzaQkn/IR2Y3jVAdjaLXF84t1JvmrAr9DcwtBKQoQRsmE889+QLPuTxFNHcMMsvlGk1Q3eTnKcSMx3Ij+FFemilNmse+2F8lsuajRlL8kgMvmS4/u2gGNRW2mSMygTjzPEeWMu3zvwhODVt9sknQkqW4V5Li2QghtfkUd0smXiXUeyQWt2z+wie9eOSdx0gmRrpyjIXvvA+w+ap9ZCd/Wf0WgmvXypYuGwHS5EehpcuKEOJ7qcLtP10e/iOZkId9ofpywWbhgPDmtjzmh0NtKExvZ57byR+pTYwSDp3EwGIlJk9ge1Ukfz59kjAKqWEkpc3zXIEjqrR2g9WGeiiHXwaWYcaL7vwvJJtA79PtUdyNsPPUvRCQg0f5xB5DeKHQlgUloiTYP+bkxeZQ6C0icU8+zbvbgjrC4qtz/epiuRGbZK3fBJSavN4b05e0MhHbfOrOfz8PPlj18nyHri9ipjDUgL9s4yX3k+trbPHo3m/8+Y+8NNvLq/L4Idam+WS1IIxpoZcdh3qEaSNGbybFPP0dZRdxNdfEmgIe74hBIDuysNDKymvDP/rzsDczTkMHgoOrV28c5W3OUcVKGrhtOBqyOPPuvmQeKsaS8Ha9iZeQD1XnHNGRTmfolYxFQxr7UiF0mAkJscQjUEs0wE7L1XTLDALfUlEeZH7xyjYF++atnAWH86hsHukAjQNBxoCXjInIq3xy6GaQ5ndNmNw7Bi09bwvkXHygfh4hHrueE+AT78JJbOdE7wcBC3vlh/Cn8OMnDIo8QmLWRabwU1ywSTBnbbQSyFnvciJHgKCY02BH7iVa3CEr1ADHF3OhPSJWopbwqYEDH1r1xy/TM/N0S6p9eiy7pQAot3lw1M3tp9PPA7+D6Cr8p4k4J5aun3syxo/BZtQXOLLt7H/diWzalghax0WaTK80XUQwh8rNJiIvr4LU2djoMWCXt97OWMQZkFusSwGEorsckpbfJF6/wJWizUUVT8OYkUDg9BGSp6nhgmt4iLC3KkODYGg1An7+SVt4TC3Sx258SDhWGmrq4mNBkPqBz2jzG2DFNQuuUwWfSeNKn7nIUCnUNM5q9R1cysvCVg+TdLNIyZJlzvAobRXnzuMxtfltdLubCNB/JXhUT7VFG76X9NfsvEg4j/TfOIR2w0msi0+04HboSuKMSTV8o6CR2I0kRVngyLJF+7RdPm1rb9NtWQbbRnnufObq5pylwhrXswv76URW7uQsE0FzmhD5tAtz9GY5HmNNFwK+LBPgS2TlleY8UOSvLYXKVClXc4EXc0IB+2k/ydPknK8+GOlMfbEdWzDFkNKGkZIIMwIWCHCDQze997LmMUs5KSu57SPUTNKlWyQvbJZuoLEn9/GswOTtIILtZAIXocOTkK2SPsfhqQ1POYWBb2YhNosA86RnKWIireZWV1t0jMPoJDul1460/ni3Fc0QtX2LUF+UzYt22ambTDl+fswpHpP6uX76geOOhwDIut1IX/ocHvIQszfknDFeinQWczcXw29K5J7L9UMoTMGa+G3ZvuC81Tq0JofuQ6eMPAMGz5orgYJOr8sbCgRHVlzYB1pQycMGXDKBhFguQoLxmS3BXanATmajD+qhpip1neoToXYdO+NsJwOx9d2ayCuhCR81/X61HcY5w+Ko6WIThGf3y6tSbSGGHLEGmGDQqioiMyfiCIwHXje31Es3nwp8r64Da4VLtVvjUxZqViaSuZ31mehtJvZVwJ3SKBGThsnOzOulNL5K++uJnKuR0FmlUPvRR0iMG//CqfGEjaNnLuntyhGOBd1ykOB3gIca+XZiVOyZF5mMB0IWGHeCwsRlefAMpeVSxK8PycX8uNuqHBqI2NDwKZAmthUeJgq38ZxSO5xdK8ZuwS27bwHmPsmbwQ0/UG7vIMZzNg3ONhHwmB0vT3cdSUqrS5Jh2ofxWttn8vknplGizUoHgCPlgwscna5GsOE1sYaEN34/kJhK+syAEnwXsHGLXhuJP4mTwLM2XFbFkJnLlhLDRpczfLIeYu6T+0AJXJRVbE/RsDLdfNUqe3Mc/MPsbzey4t7LiMBJWG0W9r8Gq/OyMdk0EqY1lnK2upFkTh8cIQgkIs7o9WyzGndNtq+zedXtub+UIAQtuR5uUzG7TkkrCHX6d3TPW2jUU0ZeOavENyKFcxVr+UhJc+heQ5UuaxESiuxY/83YkGTAiw1dmrXMeg2F/IWNrEz7QazQ0cbCI+kpdkGyIfFij7kIXU7g0SOzMO2/jM52966Xkj9ooNWp6lHXX3JmXQhTDUoRu7DN3YZ0/WQsIRpa5taB67pYaxJmqveff0VO8en+fL59yHz5UUhIxFMm+BXkR4xk25TmeYUH0wTuBAASwoPOHl3RVAORVouLhJKO5sPwFQLA051ICfcah1LAT4hPZBlHYBXIjO2geP9tcrtuog8VKYFKXfYt/h+pJPlVtQS1PpzdXgB6qmQVNEuWrjoVzxlxC7gqF0/CI7WYOASvygjGF4MMjsVel4668jtFMIYmguaEE1Cul0yJq68+W3fD4b84K3cttU30cgh1/Ib6SAp/loKJlAAeD+313/xc/R2HXMfJQtdyQuU99lRsLVL7qQsOETUZT5lMrbEtzm9DWp9zhGgNfmiary1jIz7k0xkfD2OY5TXW18FK7CEtT9WpwSB7CZ6E//oURHh2lVQPRqWHm129RqiK5cIT3WpH4yizbr9obsNbWeVyRIevJb2e3KIB5QWB7UTLWetnFJE6owQbsz+G0sxNborbiNDJO1GiF6Y7aAPqGIu+hGLs/Qf7ZG8fnzle4z67a1dYnPvDFgR0GhjkVMdMEbURMHbNoa60DgUAWSuetEY/RP+1WWio0ECH7tWNXEGEZt8gqKas9V/M30BqzxSMxKlZupJ6vFRwjPDqyH/fOpXR8adsJvP/3HQ30sFlLY4FfUSbgsi3xaylOivhR+GSgz+sGbUsobQJGPiNnHhXbrLLtBaEc/gNHemuFlVK4z7op7dxGvjXxy8bXzxs8a95Rc2J4OKi/OViH0fRRaqL0/XgrCy5cNVJTPRigK7MwN2wa5f6+beN9qFKHAh1Ygq6lqZ7m84CnzVMc0IgZMkvNBYPXskkGyugcG4KtdplN+gPagC/nDAsIpoUf9LpYYIEdxkk/9gI+vMpD9T3nxbTmM9AI2tju8sb9pBllWuiixYjwP3vUu8xZm8HOeYQHgvXZa8S3I/vu7RGN9xLYMLue/Hwr5X2T/aAAXkwYpGE0mkGxr5ijhY/i6GtACwz9ysk39wApHIXc9X9g1OB0ZcUtENnIvIkbkNkPuQUceSjwJ2IuVU8EnRE7XCcJxJJiq0Gy/k599pz7wwyj15giJYNTFVdHc8ROrYb7fE4JflbIHeBdtySeFe5uDFdSgr8R9xHt71CAXteFMu7hh/Y/Ko0DJt+TDXlNn1sH/1O4xZhz8o1SlOkNL+mF5HsTsoLztYHYF6Kol2l9VClmWLqwiENpTdn7+GxiKp5s676/O/PjKqR0jfjWf3lLyJo9hlv02dRKe+TAc0pQZ7KsgYEkUctMi4oLZx7jOKBsmaKRen5sCHfasphZlb0dOIfaUThQfpuR7EG9lmp80+C05ofxdrZK5IEOIUV0cx2j+gVoElbyhzftPHoAGflKeoK4VUe5v/RAbi8n7mbIKi+/MnvZoyyk4PD3oe9meGlBFWgjPui8ZYKXQMpWaJ+eiJ1jIcRu6iOoZkoDpIbJiy0EwznuVDPUKt54t9PlUCDUGAP1aG60864BrJ2EpqCsBQlbfz9HSJHSFt0Mjs2cTQW3oPTRosrieaA7pM+RNc6MnIL5AFBUgYxxiO6J2ZpIU1tQqpXvfvs/rIp8tisHarpo6tWw39IDrIyGRIEd7nR4QJoXYM/9uD5Kk6sLlDfuTS+EhFodfQ0eN2RzLV2QlAv8rK3m347nhkNEf4d/9iLQQjNhiIEtH4JZVrANION/1ej1tqi8BiPMiSryj/mMG22nXbbiEAcJw3VKZSDRwj0eRRazfR7XtPCBzvksgJtMTUFdOnTBEVVzviWZNLWMEo6uZJWw2LXEeJLCUMez/AnShRWdUCzmqO3yielDJPGy1m9xSIIOYgj/9sehf1xj9Q1lvh0z0jyx7Oi9MIcAVLZCigo5aY56pJO61jE/wvWmOANxZTB2oITm579NSAyvJsLueDNH3u3MmZJwdhvTZ1ife2ql5VtJjPnMgkSgESKjkZxXvXAv0tKbnjTvkEMXKn0aSgkpudMefzAJ+wX2oKFeg0GrbGHA8FUSHs81YtImMSiLpn2I65uAuGOHQNzbrrrb39iksAu41gdcNLxN1e18J42f1k8kE4OsZzH/gGUZ0YdpQ0otFFwaz6Ojk4dBTTCack0THsbZE4jBgysDT08TklaqXGuyyXuCzfec59DW3NFQApA0/kUEQ2F5nLFBlaRK0uqltS3LXfw1BKJ1uVQobQuv7aux90jLYLLYS/VZ66ypS9PsKvuG7wMNxt56VogxTmRvoQ7uyaQtqW3lOr/LxJsvrorSuDzLsumlb7j95YRQuVhLzYN2IZqsvV93sGElt+2rRpGD+dAL630NGaSnrf7i1m+HMgUysqXhkECplwZ9uC5bgscY0V54kg1pq1mENygU/QOkf9ViQ1OOnslloSqoFeQ/UhleKRO3P+XD2JxND38WaYAU8clSK7rlbsNFkxUcY/EPBsfZ2ybEVYXqqMd9mAStxjKFElyNjvUtDStFga67GvaOG8W/ryoYqPeUPY2mAGwvz1xj5rxDoKmrVOMHgY7IpTU7SKlu5HPOAr4m3Cu3/qQmBjpfMq+kVaVzUT1IvH8/ic11vSGtFVoA3taZHrqcKCNnSZpqHyfiAAcvn9wFEMC8hCCbT4clBXK+Ex/7/Rgley801G6NS8LT4TPKdS3ariVHQRV/JUGPledrdVZJCFvEDH+pFDYkr8xs/HcMSeMSbBtpXdJQi47Odv+swm3SnEVvjZJHtQDw8B7FbWR62Q54L7ws38Y73jU7HJt5yoomxTmrhgwTMFDjEa0OroYndv2Kys+OEw39upTVENN7EMDN/OklzA94oXrwFYTCCZWHVGFRya4RzyRLZZiCV9cDwl3fP4CvMCHdTdiGHjxD5ntPoL9gAK0jJjKv62DSLrspS73YtfMBhMERAs8fs6cFnoUBE2C8+s+2R5LAttBP+wvDI+/gOuVL7fN6LKjJTpUWnF4FeKShO2FGU7ZrceLlDoyYvy3BE5UH8Er9ueOqe8cjRUUSlllenQxifbv2uQcF5iTzBYXNNIxolThBVK5P46weK+ojLFSC0u3jyVgZ5k77kG112OqMXScdj8+00n3Caou8Fuyv3rFnKHy+xO4niXzz3zgP4ksoO5szEFOL/myDz7qhB/LfppvzNYmQJOCks300znvHblI6RymYRamOSK5aFGiepcuz5tVdRnehQIw/jr2XVEJjP/32rAq32OT4dW+2L/KtXEMMq7Yyq17cU/d9sHG++srXh5X+Sj+c6RjRkiMW48CoObGRbbNhim8JtZ0jJJEL/UnBXXvdLMAb76yz1a92itHrP2i3/hyMYuOULnYSko3bC9xlHO7RGRsoJRGRdumy9pkGw6IyCYCx3wbsVpNPtOokff0Og+vdILXbsIiJ3g8IAYr7ScWM3wtv38ymvlgB45nydEWeqVrP5XEU+0PFJTYc4F9L8o4Lw9mfqjKOPbsXIxvshw32zzC/ZZXZsCDHku6LGlulEEdps9goIPTA6FqkxfnsbdHwzkFtKIC8Zyn/Iz8G0qlxmQ4ltPv5wSxQcGSfulXIUyaFTkfeH30dtPsz9lmrgHhv6yZ85LOOiDz7h81loVtyXzrII+yaqR0Fts+zHS3os0rNhlsUKu00NnVAlN9q+VgiwoLw6GU35WtTAOXOsTbx5OeRzHOnxlsZmdNp+AsCyWd+AFq+x2+WhTZf7pjREZ7dGmRFO3sXUohxL9bI4x/etSWFo4cpf7PYKak/1PEhDp6X7MKeuoulGGiNdGvMQwldhkIlgfcG8lfFJels2P6jmxjWSzblVYdIRG1C/eGmvpyrXyjMr1ifBLYdY7oD2yfJOOPsJBQchx+nUepHRlUQKnmiKw3UmCJgt/PD9UlwFDymBzCUNQKoEKcY/petlgRfNhs9KHunMyKEgtmw3t7ySkTKzpWiZGSpeOxZuB00fKdxbb5xBBixxnD0emp0sxo/r0eSjqBZIv5myY2uSz3Atw74J9m57OXJIVN7wg1hNZe9KNtGmrHGLwJvpLD7RbF+SDACkId5uC2cXUPrryqFujBRmSOJ78cUhdQOmkBDYRfpG/dDAj4Vuguinf4M3ipCy7sHb6EKNN1C46XDbl2AOrxojfb0OxlYtdvMm9YI/rZ8F8k5bf26sDW/K8DmZWg7gPMf9xCBxLw3iw8MbaujdVgDZc1U1Yrjg5FAayVSfKE9bftqN+d4E6d9482+WV7RPJ2z13Ckqf3+WyzfJWfCyzFPxuzJDfHWwntQHhdE01zr+INh7EB9ozBKlq+nUtH9fL1ix7+pogU72CBEFM8AY1qezWASeYx1zmrsexe29yU9GFHJOsoJC/KoPLPLcaWXBgOQMNFKwr/ojUtAc2AC9RDYXn1L1Q3AS46V/krv7OdSeZotUQ6jNwCi0gkBiYXrHSHKEv9wQ+exFZdj/OXorBMQyJsq+4r+m2Mfdvgn0GwdZTYmDuN1iirQKr1eSTO1Gx8IsbbytxG7XkC6syRtPH2J2LpGEUntLQMoxd4CzrVR9lPS9uUTX3rqdmBbFy7beZWs3fOJ2LTeTb26EGgAFnKuWxSHJoNjBar1H+mOj0Wgc4u4ECBAWYmKUULSj0xJhcTjLy6blCRSx/oYzqlE3X83+W7/Q32Me4yG13ZldnNBaNK3DEJ1LuTdD0qXsEuEboRg3NW8Krf4mHJwceOmjECdZ4tPJv+KVfZLSWdbqGWSP41hcLWmxhVSFLqmDRv8MZsaeVIBxaLo4m5WEKo/2qe7gjE32L6YLRPUnaXlbjRkyLBKjQfpJvnP69BlpOEVrxbxrZNxPx7JwqsvpJNKM35MFhxc5ATQV/OqYZcJQcnQCrxK4ky90PUHnptUn12QjDhQ+DLtT2AnrH52g+USWocQNeBLgvfWgKCwWKU3SVLIdRe32Y9NAuNukgDilqC727u1QugG7PiIgU1iiFQpYFlGEAtwhOdTCjJE4QutAL//SqJ0QUvctMNd9uUeWyix08bCRX/HiXcH41zJRmkvSoC8MLxfMVVaBzBV/SNdx55Vn5RbLkMixcRLjwgbrRI4UqMgO5/43rOP8uvCQ1qoTNkCBYPKlxVRuIB4D4tcWDpY4QONVyKVuzlbNBcDAkDkTupX00P8LFAeVCh3BjMuy43fW5jmuMcdgn8nZusvmjVkryMZczSbqtA6voGx/cOWyYQk63Mvo6lmgIovGHxXhlxQI611BUUioIDnjoeMon7ThY0o7jDZlaa+OtTpyskJ0FdcqcDxP9rEup8wRHJg3aA8TMzPZlnNP7t8tJrVQyYunCM4tFxcwTO8Jo4ph+55Qu4WG/B5E7KuTmikQ2tHdcuA+vxA/XZ6XQvnLxMR7fFrskFdlvaXmJSQJmgj/B6z6sD7rGcQnchOQO825gSayogaeMkkcQ/ptMt1rJT3t5d+Ox9Vy368pLk002c4bUxcShK1JJk6yGeeQbl4TLQq7wEnMf0xqZE4UmAs/Htkl0X3WEKBS/QJ1HflOugZXTQKjqasQxIMKH1pDQgBTkqSGny83ZD/bChoDUOS1wrD0PxTYcO1iWaPMJFf7fOsY2l1lRvv/tXidWsQ36sdYHZ1c+u3M02iuvPgdvG0YPbgzoGeePV+Nlh0JgyAV4w4qGYwdCKPPqxWqlCfKzoFj10luroji6SwDGNiOBf83knZtyyG5SktXCEBcMaQBmzJyl9bnWB+QS5Vt1dbXLgsX6GsNW+ZJks7yIyZjjaZPdCw0xpqUK4ib2QmuCfFiQ2A2p20TowWqv9IqIYUnZ3HmsTkLsVktJH5MZ1YlfUHRicE7fP2sPTLcjnce0hBpASQKbGMFBvN5iqeHwBJt2VHqXMg0DdQ7sUyYjd8hnfsT5zpE3VSnl5JWuXX+uHAy53iu5D/zN3WQMOgJrHWIC5n74g6P9dqAzevPurrcmXyXOz6x7SPJ1tYZ2e6lVPKpjCX06ZGGut4H0ODwUwhzeazI3MCLxiskF+1kGVuZyokSCJ5ZxfBK+4tXbwC6OZ0qVhF7UL9cXL98m4i/0PBO9xZcf0wMtR7nK7NdVaN6Fibv6KUJL8tcZalVgaaGjQ1dKKCFHn8/iWP9JVEb7RmvlIrz+lTnolb+POJBwEOcQW8868+TRmXVCLcVRnSJcPEhZOjCDjBKGxwzxCxUbz5LXV2CWDZd6FUnWfLSpzzujfSI8C8t0+3SFoV0d5rJDMaaQE9+afT33VITsBFmIGsHBgr47073D8fmZcnEJvkCAQQW5IT7KryBKaxC2uIyj4a4MrShsE/vMUtmOO3llT9m6VTDwpbhA6EDw7Cxz4P6527zA7luNOiIc6zCUdCUmAJgsHilYki7dvE4ANxMom4SHJPfTXjeYrL+u/VI/KoN5jvKAYC3ZzBgT6Oo60RYXixyFv4XaHeCJKBPIkUc4jg8yFC0oPekqNVmoQPHsl84ceEhvx4B94TSb7vOjIUxCZydQW8hPsE+RxYJHX2+g5b8hhsvGbqNnwGpq5dFK/b0b6qu6Nc/H6BxNNtohgIQQTNXQXhRH3DiXEAUMp2FFiSAjyV4uxpOFKuQ6KZj0FtAfQyks/ujYJBhxfKXfgs/pyccaC59jIoBYc6ZXA4UG4j6/BcTD/aEVfgpfxCgFsOzYj7CcP1YdvmgfRmCfXqe8uhDpzfJXBY50ex8ylu8J23ocXodAZDVhL6ESF7mFUWl2MPG/lDtQwbp9aFbcbg7U7vieys4bBbtJqVaav85faGf7rYr9d27AViJ916gDfNx+QPi7GL9G5p9dqXbWtOvHeFDhvq99mwgZtbA0okNlirY3qsCBVrnGMH7Z6dJQaKvgnHa+vfxWP9OCB+DHAFUatiO3r1abe4XjxG8tcbAAsQ6yi61wGW8BpEL/tsIKaY/d9Al8D26pYU1WxNnsYLijZV1frCxInD/DftHkjRU6KR0HdBvlRDVydTHHKPJYKd4J24fiekQiwkq4cvAQn9WIwNT27WVbcLMWGZhhvZ9LteM7Zq/yz9EjR6At3EMyXfZaSX41YQxVc4DeTS5ORIFYO4ZFlMRxYejPs/ARjRKyrR4G4E1be39Yh447BZLHZobhNzXCgr9xc05o3Ux2LDmqqRZD5tv1EEqUQvvDpTUpb4qGnPhZrboifOVsP+ZePwHAhnYgQNIEWwU37GYkKYl795nP/y8DoD5GEzy4jcbWGuqeUngphR5vXzQ3h7NcduHkmXiKklyjAbC5cHnhTEJdtUGQm1BYP/y9Wl+uJFuSQCnf6miK+UZ6LccoWXaNk25jPYexjENpIH69FEgccBDmyZ4n5dJTRgDquNEVfPUqaAss+zUb7/HCd5qcE6Bb3MC4C/bkB6zGs2pXm4yCAP4O3qs61PvlvQxIquPTjVjPIK4fMD+1qILvbVxQQN5IwlglkuxkjQvvVQE4Eh+knzSKtMErcEN+2wXeDMqg2Itlv+lP5TVi3nWr0cpTZKabJY5gWF5HRhIVps0Ll0FnATjRIr9ZlUyMAnlSmLm97KShHtHE2wMtARjFjMNz7MsJXZqAPhTBdxxnbOKPjMJ4FigvOIBLX9sfJHvzSgqutEH0R24BiqI1zN86+2mLjyUWDs62ApZpjk1eoCr9/p425LK9WXGvWHnfN74DqTgpjeWFIIrWAR48FiLtIauR5vCZ6hRupfw3GpVj9hnThSv0e+865PZy2Z/RqQ50+AvUZY68AUJ4cF3crjDhCqPeFfbuiewRuPyp0JGQ/xQ5XgPTSVJpr573HfFLqGN1o2GxsjgIRNiHv5IFGyz6ok6GG1aQP6xG88yF579lIDd39L+u+tpZS4Wk380cv3kkiOZ4Ns2YZENO2mlpaYmACt4Slhcm0kEUZQESUCR+vLcSHnnYW5WMLeAEGyu5UPlrY/MLqejZ8Jce+v8AUuLG6RKMq18k6U35YB6TuhQEQuEKiDsxG438wLvXIUTeJ04AaGAo7vjzbnKaxPt4xfs8pTGKGtIzq3mLuhWjGnBRMOrfnJTmxvwsJRAK67lDs1yQ/ddUM5D+T2871KStrG4FzLsp8zUd5S5elhOTE5jiBKHCvhksSHpQS9o5v7cTewq/hiMw7Cll5O4fxAxVZvoWLJrf4F73urvwxOIgrtB19mrGsNKZ5HNQ==
Variant 0
DifficultyLevel
733
Question
Tamaki owns a Japanese garden.
Her garden pond has twice as many carp as bream, and four times as many bream as frogs.
The pond has 24 more bream than frogs.
How many carp does Tamaki's garden pond have?
Worked Solution
Let C = number of carp
Let B = number of bream
Let F = number of frogs
Express the information in 3 equations:
|
|
C |
= 2B ... (1) |
B |
= 4F … (2) |
24 |
= B−F ... (3) |
Substitute B=4F into (3)
|
|
24 |
= 4F−F |
3F |
= 24 |
F |
= 8 |
Number of frogs = 8
Number of bream = 4×8=32
|
|
∴ Number of carp |
= 2×32 |
|
= 64 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Tamaki owns a Japanese garden.
Her garden pond has twice as many carp as bream, and four times as many bream as frogs.
The pond has 24 more bream than frogs.
How many carp does Tamaki's garden pond have? |
workedSolution | Let $\ C$ = number of carp
Let $\ B$ = number of bream
Let $\ F$ = number of frogs
sm_nogap Express the information in 3 equations:
>| | |
| ------------: | ---------- |
| $C$ | \= $2B\ ... \ (1)$ |
| $B$ | \= $4F \ … \ (2)$ |
| 24 | \= $B - F$ ... $\ (3)$ |
sm_nogap Substitute $\ B = 4F$ into (3)
>| | |
| -------------: | ---------- |
| 24| \= $4F - F$ |
| $3F$ | \= 24 |
| $F$ | \= 8 |
Number of frogs = 8
sm_nogap Number of bream = $4 \times 8 =32$
| | |
| -------------: | ---------- |
| $\therefore$ Number of carp | \= $2 \times 32$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 64 | |
U2FsdGVkX1/Bsk49K6gLgswLHnHkruQN47mhk4PFCaPAA0qpGuOMhzcXx028gIBcXTO0N1BmBUjDrmJKOXYyb+qOrGUngTKUrq+Oqa1jemO5G5YrMjxqJ5+jTerMLGf5Sn8YZIrjCNVe86sQkqH8NR4wLOrbA6sBPrra6IIZQC0LNXVnOSBnusFG5555zotK0PCzsw0TT5MHID8sOKkSC6HTUbhzeAjB17HNvoNXennSKmHXT1KQVSneWdNHdXtScOZLNT0KVYGhFVikMMtEE/5DcnhbDzxcHruc6obsIPj3a2NvPRlPF8EuPL78llCaI5+2Qxe+0Jf28P8IrLEX/LErx+k9lnXoW+4twGgpA4sJdBcGYotwf30tob833qIuCd9HQohtodzC7Ph87bY2+9mn6rUQW3kplR9/4g/QGAbjNN6EOwI6WS69CVyCFkB20b6dxK1Wm0uP4hSw7mJlAvByUHEtVjo9X3aOY8iiGoeXto1S/j5834WaMTW4hnf9gmYKlrC/FqDxHKR1EPh8xX6UlwqgQkA5y3cS+NRcgB6F+X+xjWVtsF0+Z1wKvlgQKmSWqS6+qiAzH3VBy+6zNMhG9v+0yHKyc0vuHu9p/OWB/5gXkILUaW6rtOSJwvsrl5f4gmrQ1TXhyQpx9/RyOa5RAzndspgjuS5IdV8V75tHsL12oCv+eSbXSXG8elE8ePOHeBoyhbhbMmhyY4mC/q2RkLoRasmoxoZpGu+HsZdzwneQFFAc4qwVhs6OG8dYXa7nl2Uk5YXZ6T+RK9V8qIqdtY0AqH8O09L2D+ejsA+rDY7/4p3qlPdAWp3ZQila0Apbj5Xp8VM5ZDbwa05FwMOz7kAEYRxQ9fh/BYnv3Fjd5lZxMyeC/WmAD2e5gJO65XIf/BVeV48BedNCksYfV7HJrFotyiD7SB4Ml98wbK4CVReFwd/IAu03HB0oVJaUsM6Cj9hZIi33gaiXeekvZ/TW7q/D2yyT0XgbWqqFFsyH7j1edoFIXrzQ1tCOa9VpSSP7d9Edm9DqvRXA3HDGjwR9dL1ASkkWf3mJ+/6TsGBdeVURIwlq8ROkFuiB/FX4aOrn5wY3TWPDgJG7tBvxQeEde0jJVZg/0eUT4ORBzLXQJOjfwC6sjZmF703+ReJUfuvDz91m59TyN56umGJnfdU0cUCx8KLI0pKvng8JenG+WWREhsjrko++LH7PqVm505CGECXFoA2s3bamteovVYb000xQmFVrKx4lHHuFpRVN2hZ0zYQ4nfnV5yo7Yb5rsQapeHQXmDbc2Pe19S5wGpPMQvOwxTwenGCC/pCxJKCV3nxHOz9KQ1KlJ3jmTMG/uRH0uj7atscKPWdgtzT0/dl7ybQGRD0lHwvjateawy7LsVZ7Y0+AeieYGHG5Z0pYIY6koSPX8YMC5GGn9qEDLHxaU8TYk2nzDserm0Kcm315gHOJvx77pnPgdz8GAedx6m14Pebtedivz356UIRRdnl0qb9dT7hq3aY8EPO48lDRYx1Q1urerlRb9f9gEWvrDOE+JCYl+FS1s1yv5aoqv/Ofq+3mSiDQKB8nZdyFdP+K6ebE20vOtneDPDUBfu+LKMaeXBZSxY9GaA6zOdSXXNK/23sAtKNXpPSfjo5WLW23pvSqw5F9JQEvRAapP/n+oFrn07CAlZkAVdYZwyJ2s56cU4J9mmTW0HrnKKM5/N2U6BLaMQ/8EkNuMmCODJK8LMJyh/kjAyKTCJ4d1sLER4t6388ldHwxsWKnuuJiH+FoFxHX8ZhgCoSigkOgsX2Ba3F1Z6WGE/MeTVARB7Zd/XagHsZHVh37O8tSW/ZtziMJTrA+sHTaoDqi5K/sdCgCtEMJ99neExb87EFQCjb12NtspaiKgp7zWJ4ttvd6ZgjQMNkWA7IZsr3BYmFvYrRjXhtah/p46zt9pv8iRrC5yRlMWDtLU92YH3HlHCQtHVvRrE7Oee6dG6LYqBkjDqnADeX1KJHGEUyTl8EqagT1rnH3OlpZMbdY6GA+EkemBEpsLPFj/232Nd7CwOwIgLfu9GiqkLJWna3K3COYWwKaQqtj8ILVayBl77AdogkINJQK7xZjagITgmelLBA5c/3K5acrNB93eBiU6NZAjJ19AFCZtS4dYEe/yuztW13lKhzRm0Dg9RHcnXsrXySjPTJhO/wX4RgrolhQNYsxKo8FWw1k+8BAM1+1qEw4tFqk3EbDiQQ39qyMmnPhB3qyIgAzSNU478xV/VlHHnxy6f91cPnPKjDSYWxruMWEjs1lgHnyMAGYnt5dCHyKSUg/GerJr1KyA2/hM/CCLXnV7uH8v0gVZEur3ljoWlRz24kxLzVnj5m+zyCZ90Up5VRdKDotLGHFdgubATrM0qpxWMFnVeanhF0OMgvpfyf5kNxr+kg/i9p9nExE0eBH/68zmlbzj3B/NpZ6OavLoyLAjZ6LyHuIV7ZsDeLSgiLH1Nzr7W4H6hZhhA9nvo4uM3e+80aej28K2cX9xfx3qGu7GNxgEBXp3l1hvdQiEhW5XrWNbsi3+lK2e3gD8GsBl1SXL5fNEhaaEkx+Izkr3rVncQaYv8qpXXwLEAaRSQKvZi9KQhjkx2KFEQnbnsWhiKGrKb+NE9n/jMw8qsdW4bedIHYDKxz1XyAd2pdvGBKhZn+fp0koUSc42mz5/Y04MMApUPNhlqUx96javZk+LIiN+HDgz19swHN21sDj6EkfCleffT/UULvv0eKaH6ZnDLGIaz9riU7vjv9v/0VlfolXSCZdrHAbhb56x8MeuzWeKC1Te1OrIq3a07Sjwq3P/5s24eJcE1PONCDJG9ubSzK1gzuXF8Vz8vNrH8TWuHY3dkF54BrkJAz8FGfqNneUTN/tCaDHepdjBG21DCArSebq5rnx0uJJFO0vqXNr3iizUjHn/cFDjToc9wAO2wIceR8IxgTVidehq/yj5igvfqVajTV1MAcZgG6HeO1pCKPXEGhRF1Oj3WovaSnW3NoUpvlnvii5okXljITmUQ95V5Tt0V0vxgZ7v/RGe8T3e2/++cVdchhw7MeD1C4RMSGXkLjK+G2q7Ztjmyz5bov67Ddx5gFLI+EE8QorB5p44b1knu7f7P0KEAmWpaX6NXVQtuJATeu7h8GbzucCDbDrdNOxSI82JURwkOaVmC01Pb/V3LyUHgMOEY//mDuFTVUwcJenjkshx3bakByi/roBJrrnNV07HOVJ5JFT6uIpXj6s2FA8IDflMzmOnqeiaQ/xl069wedMyfWiGRA0CZ6FgabVxb4/VhDS0vqwOiBsF4VA2iABs+T9R9Ammk6ZbaHugyeFtHjibiK2dNc8/8/oAY7xukREbDDpORTJQmoTi6V2iDtYik245iObW8XUf/aZ8CGYRSy6EtwPEyUU3a2vbBbpZw4eIJONHNrMHhAoYGlxGJNzbR2tfSG5DzeNzc6bF4qBS+Scv15FHmWF2WVkvHe+shlQWSTQGpMoHtSpZdL1D/oyEyMAJafRnUJGnUCCVQNgLM4yWmxVgKtNXUn8jipHEbjDxDlP2Fdrj1CNOPKFyEzH6gJbmpGdaF7m1XR25rb9ZC7se6b0pvdAJ0BbxwCdcjPBQF5wEgnbK9UVIAFdXo+vy7Ox4wa08SYv1hyFG9lpMmhYdUVvePEkoCquQR144+C35ZczC6pG7Ddkjz9lr6LSTAtlMksf8X5xBxBpSVuOSUfl+VK0Z+dgRTR+ZNrUQKAVF+0iKoCXB93Rh01JUkvB7pwcP4AsN35F1TXT98as8pXmcD1B3TUYxr7hhRwc6GouKCw4KHvqfRK4aM+UmsNO4wEIM22BZbWO2wOz+9kTGYBiRC+FK9cuxvHnsYmxCPahtIF6vW0R/W9Hf3Ys000EGzyMshQpMzrU3ELUPLYbItY+3i+tsqnEbRO42oZ7hL+EitnyBT6Q+SvcXU+ni1vpGK9rXnMcHuFCo54kHSBjrB4iMV+2DaS4i2/tz+vNczfMGQMh8iOMX7R85NfYvGO93Zk5MWrd1JLQbNoroB2hZZ+ljG/DQUWQy/Flpwg4WU2qDKWklbuPXNWJij2+UpCdlJKgRJoE71Zrr0zxNSLoN3qAjE+l3l5FQD/eEZ/fCacS9+KLpkNlMdiBE1m93w3cvseD/u4OY2bFBr7R8lzNiZS6p1h4Fh2memgXunvDRVXOKvxBx4E+a0hP6i8FnERyBwdD+rE/WEI4z3GFRrSqXKR71QQI8O10h5a0OWB9Pgonk0fhX0jld8FMS9pmF7cFcFrtypLObho+CSgb5dUk2wnsmd/sUhcEsHxDVQgE2gZDXMbCeEwe/rnL9ZUBY/DmI5NsUrkxDc77Y32WscXUo+3KCtYin+L1ghKBcd+fCMA+c5V1OXmKKk3I/uZk92tt2BszDYPWaKQKknl169LXixn2EgAB3gWw2nSKjVeQdgHOWbtzYF92NWvOl0YTDktIGbh+SSRwnv4zdhWKuLqWR5QTzgrK4CrjIbmAuKVcAkxwvLOdhgkJwtJ37x1Rq51nXoxDKJUNL/HvmosUiTXYVs+WIwU2CqR83FYN4RbNwv54plC3Lid7AJmsy4AGFsYHeY+PA5/DRh2B55LiRCWxyMchasOC/OssfHBPixsU27r32d3rV59ZX3fbtvuISB57wmgQp8TTuNs3FBsHfNyz9G9e5rF1ISbldiHP5U8bULWJWTV72ht86XHTmwbhpsiZCnxqSc1Kg4LItfTbgFTRi+h1MBgxy6SWeF/x79i/4bvadFMiw0AIAh6BRHnSRg81SSGLvOs5rQwdzT+nqV/MoRj+R4c+V4bWPXA/GYqobjAZe2OEWnNDzgzHYHA+WOmZ6IvevvfhGmAR7I3LFXLQPx6BtS8+hYVliOtbSaLC7ZjCyJdf2OfX2hQmiYitwQ5fxlImYOn5Qz7o6nKw76E0MGD35NclR+KVWeLgNNts0c4hKkM3pMQmInVt2RAy4P52RfxQ/s9hpUGfcSwvTnfVUk/PFt1lsA4QbIntgjaorN4sZTu1pQvYYDSby9F0kkSOMwVXCAiXvhls1p+9J1raVtUhN4he3LhZpSt50HJcLlwcnJm2Q5q7W8fxwgwAv5kAHGZtI7J/6a38/4nrBPBnfXcp/Vj+xKCedROA7zwtokpAAQgAi0Lfa7fVl63LpYmWH35ffrrEBeX6bHwj5YqzPclT2TDtElGonKVICDxpUv4n9tn3nq6vbmAKchSO4ohroxJcQQrxgSO7zuA9Nt+Tm7vv90TutsIETB2D+vNSVKR1oK+JNL3GBidX3X15QmsJWVJPiVzMGiWPpYoVd3wBkygDYTnaV/Xau6P3LYD1hUf5XjdF0MHaz4q1VFGK+4KCgPZkybrpEF4Px4iLYZx177jRYNIRSyU2TB5tnL+c/fayBmpQf7yOkBSB2JDNfioGLUjSxxAzJFB01VUeWyq0W/HYM2tgT4UctskB9zIp1aD1blYS6IDnLxR8wqKulk+B8PBrBvAKQUKg8orh6vh4H3Nq2RrWYNOvmmfkA0B5MdgYfYoiFWKA+XIU8wLLps5Lu/ruTB4O9Fslhf0VJGd9pU4rf9jyP+6bD9gIxBrqX/edUOABRzRI7gVi5RxJhBUXSqJ6QVNIcf+/wIC9CrkDmEcgxQHoJboeroLzCECoPEjWEZPtlGjPZddqv1nbAt4nbF5SNaxF7o7XAQQ1rm1RMNa7PjCKUQQPa/4XqCs6Hq0KFdsKKzT3oZJeNous7o4EmNavf9Aw4gt2Kht811hU+pzwmXobRE1/KdNJ8kxAy7fzng50VNIK+aokxY4XSekjlLYPw5iLkjPzhxETJiz/J33zlOqGOej169W5Bq3EDVlHDGXpLu0drqogxJYgD/1tzCcag4W6LxQxTPtdfUVJg5gcFj2PPhyAHBQdbbV/T5mQqPsCualdOtd21jDTHxidoBhqmVQUnmM+pRWkSKucSgech71WxdOqqhDXWPpxpoUUSRiQUTscwYzZfGiNgkONCMWGjvr/G5xxgwcXfxnlyhgSTwuTsudfheCkG1NwwaHLtANuqmTkOXxc1GlvF42ZogTZvXwMPoXygjHA+SCc/P/wNHKy5WRLqBJvc8eBrHjgS4yTp8zEgQXY3whdjtOufPJLHZJvg8PBbcqnzhFXu74crEucvDmsBqABeMXoHlsuuA9MnFEG8Qo3H9r0HPW/W5isHOAZJPe1iudLSt+SBChdBvNOELzVSN68Ilv5Pper88GfM4iJ/Bk8ajiWMWHWVyn47qa9o646tPJxSExI8ZhB89V/saCEVDQUlZz2JYWvCC0qNFMwV1QKrR212qVHRbh9r9OVf52b/Nn3BWw1z98fQf3YJAAH1gM45yMy61tX7YPwbXdzv/j5334LuLs+R5AiqZDnMC05veLiEAaN5H5jABk3JomEdB7XwiBIQvriHbj5PT7P6XqkGu7jrf1ORyMj2UHtWZAldg7JoZdXuEV8l3MgdBGGCwdSnifhvXO2RA7JmBqzT/iJl2VjQ7TZ775uK+X4knTXg5QyH/Qr880Tc3QrxlLSvWy9YIveD8g6K1cwKsZ+gdAJEVU80DtaK8whQM2vfZexRHiGZe8ZplLnp1HEzrpw4wMXZ6VmqpGaKy/5g+lBYyo3FYISMWnW8YOabIlLqaRNbBmSUDdg1rdZx8qVrDOXZdgTlNAcMy2Mdl/84VJlR7QcXqopywosAB3OwlKp8cWLhiFDCv5SGEbkeDfxw4/4jvN50p/R9KxKESsA/bMihJB9udhT7GUakRJah+yKyZEgF80pYuP29bRSfPWlyZVISKNYPYYfC4i2sDTtBxyM0qKQnNCxBq/aGBycwqeS/l/b5fzdg6hbO+r2pnplUl/BCyBcb3nciRVSahrOH3ZQa+c5iqAPomGNezjgBEg/8MLn/Wg3okQy80zxNGcDKNWozGEusxbBPGwWorgUdngryuaclGQeuZJagGOMMQ36TD6BIQl+j1eiSRO2Q6rv0t8IxSzOF1DjDmp1eLG2HHmXRJoi2fmQtauyZ55PMY0wd0nW/b9qk1SSmal/UZOTa47sKoKNlZtq/fJSnKPTMUEZnQr/Vyc3wHLTwxh6fj78Udfy5NYqNhZwUnWUmTnGVotAcy5BuvG9WjY2HKXVVYFny4qytwP+2M1VSV4QxUYUmOL7HGxKOq3VtVl8t9IO+VqPZNw8Vxy1EL48+R230wBvSgDUQ7fxp4htX7OAYejFM28XKpMs7wEFc6YMi1dmr1YQlrzwvEHdGqdnhgqgtyPuc78u1Bgh4sdBvcCh/wi0L0AixPLevIVNx2j0dKPJtRPfn7OujDQSpXxDLHjkL1Klwvoj1Ngj8Cs1y0BNL+yr4xcEaQFsJ9ksF0ap1Dbbs8eATkw6INjSY8EjnZy7ZFqN2/ZR9Q2vP6dcQhIkeUCR9RZIvroHvxdG2PNs7gMy8owuc6DO3n5fEAM5tfrYESEFdDudLAaQEa97FoSWoKoAvGN1qW4iFKdwcG1seBOcPLHziKM2oe0IwKvGoTtKJjnuNs+RFFJIGdFtKpCbT+zSSiHk1XHGrf9+QHBn1TQc2SA5w8Sjag0z9ebu3eo8qlbLYBeRZ93JlK+ru4qQvjs/QjrpUjPIbCJg/VUZFl7zlrBOlOUTpk8XiFK7lS48Y2HguqBxlq5C+hekWQ00yteXTaWR3eqNmIvTo1KEbiAGXl/altpe3mhdJdxF2WhYZH7J6Lm9aK5qyeWqw8jPPiQFVP8uj+vYU9R0mlZ4jlVfLvVEqlStYSBQtOWc/8gDgjZIU34mOLFb3cFePBjwAhodk7Vi5xNE56oYLFOoG3fMVS0UUT/Op0/7wO5v0d+Sst0P4hEFWGocRKmbpUhipKswNCHOk/dhUEClCFACzVP1Uoas4h3ulsRdWQnmJkIe2eC+xLN8yoJ1LiiTP6iyYZISDssAyTX3qtHaZb7s04HsXs8vS36AxAccLLy8f1Rnrfi/TpIN2w8oGsfuKtmznt2jy9GPx6o1giTUqXhTXSYh7HqLq80YThgfqxclFEQJFS5Z9OmF+fqh6ZmF6S30drAd5zeVlccwqsldPlgI5EWI7IvrCM7v9LS83rZRsgcnlUWrjOTfjwPO8YoEgIMvUrPkaLaSkkp06me9va6dVKPClPa592sOfxuMfxMcxqMkj7v/o5AQL976kLrWuxgkYh2lII36L2biF+ZujDbNkec93NSL9OeWB+VLKvN6VFYf0Lz1e9jy9U+IosgGdlb3E7Xgt2I/svFYTV5hiprNSJKFD7I2NPw/cNwSPYMhwwT7yMBcxKq1JorbjlaMA2Ptw30I3WDNy08Mr4kcGZMospU3SUfW6tu9OGgYdBInIj1DdDHDEG6KKG2lUM6X+WUIpMPtMngjfyTaCVEbanB6DnCyIDbwR4QorBGH9LoO2kzOSliO6XqgNr6pKqX/bb1W9WdSjYHbbVM+twzLwHPL83j2UFbUMI2Y1xLdumifcSgqpANlk1yRzVnxRecwiOLdaly3g3+NnI0NmGkc2uetj7O0XrJS6xr/ZAguEqi0TH8XEhlUSsgfCt75jD7o5DJ0yaG68j332wq38pfVyrFer2q1bHdBQasIeMfuOjgyFZ9OWlg6dsa6pExKwsbhGj5N2+esv66wlOex2yUZPaOZaX5NpuzAugE0fBJguJjocs5ePzKzHRP2NG+P2coW8FM++4g5kl9ZToTqbReO3Wz/xHCtWnwY6WoAPyM8tQrd8EVgZ3q8yGLX8G/0AFcUWKKUC0OwaxDMZ5q1dThCbCEBR8EFI3hX9iyCQRQz6zjkaI37OZVBfCs9WOMhLTYRc1ERAIMVgcnkZJididTi97yo/Tkpqkm2AsdSRftOx+vz4yPJnLCkCRkVbTHbJkKRgDAFr62iw+7CI3DS9aHwBLiSV9E7EttiF+YRsxwVDITx+o/iNBcTVHBDHs+c/EXKYVW3yMMxb4gf98jrLGYVPHES2WT2VZlzpZHuRCUgsuZSVvXI0FGujjV4LA/Vip9EfxlHwg2KbWeisb8m541J5oGM6OO8NytWJGP2CLa2XYmvbGyThxyGI9c0pdtmJ53Ygx06xIt4z08JYzGtMpQduF1cryd+rXE+egGWE5mzEvPQw+i5mAx3H+Kf4Ato6TzhQZ2vHuY/qh0gMrRRUBz2+/nrJaVYtchEqg7/se+QMyNmZMt2VM8zct3KQed7dMWsh+eOCaH8UhRpx2ZqOlQl+kL3wvV1uaIrrCSJjmfpFGtOtNZWKVQSjhddGlBy2iVdNqOWGEhKOjQkWED7bsMDwlI9Xu7B0BjQd+sssNMZr/RVEuJL8GaXIcIa9vP4S8MOQqR5gIOWAMYeT5XrMcDx7HXg964FvBVhMtv6zaniTu2vgYfCjpqcuKuWkLyKVU1nOsxcaellP3vUJE/g4R7zqh0MgmiWwnc7mgFPFBxleqdWUGatW+Of0HZmjcK8FBIolDeemb/x0xmubH8Smjc+rAFtNzI+jAhsyw9d7HLuagjl1zb+rhpHsXOU+krm965X/gDB31zKLL4xOjhSzOxEjVONrykT29IEKd1qnUwCsooJ8YcYEPwJajyBDzmnVkSkQGVBNZaNTIWxI6jypO1UdwF7wUU0ADv+GucJN4O4znir8LT+gXVAnh1E6u9sH/ly5nzqcjAqpamJy0Qvr+q8O6T01DPqZsCosuEojh//a3m0lkb++VwCZJ8oPfvrr7OrbcljfJ85cOZaGBL2Qf6v4XaG4nWDdcGuwQSXuTmeSJNAnzrxZL00NqHAV33h+qJ74b9HeOYWHzEc39yowTwIZGjKLsIAjdQoVGpovKzIwtEHon17+BO7oCcJ1VXDJhBcoVTCeTCjK02+mXuF3qpWMrGuuQG2vYJ90/7JUE8pmGmIScg5MxAie/qQB8Bj8QD7oLjn8SQb/k30jnNbv1KvhpF8mqHx3RFZzIybGIaHIeNqcgkI8Xm4tkrdsX2jaN7K1ZIUNEzPJOGGrtPMi7uu0uTYCuTsd1ACPzI6vEYrSglc3EeHhXtr/r71qQ/pBrNbhVm4dCPfa8sp6RHcWmhbmg0Ledv468JTZTsPjssZ6QUPpiFaDvj0NpAGQkD7J47Qztt9TPtUGHkak2uthQCyrM2KAYML0RKbr0iuS4IIM8M6z4IpueGujkiOYbkhH+dliPujqoZq2qtEaVAMURo0dIOoqA9zYqv/z+vmVFI+3bjjlW/h7QevdbPfVZHnPLSb++8zBFoZzmAPpLcoYXZ4A3FoDlolQM9Whr82Rf+DWSXW+eKjnPrhlWJt63DGnnR1GPGJ2IAsWkOEa9/5D8v2zO5LE8CIEQuGPte3urC9eZcuaAh/ConbIfLMhDEc4tMl4PHiYewATwe6rKek2bqG4QadF1jY+9sumd5clDDwSi3KUFdX/IvN+FMMEjwIbMbB66ckhfVoxGUDkqTC1yVXVcCkwaMnWiZiYCcP9BSI0CU2V4Vkk4A1xvMsKnVCnO7R5XFbKjzz44i2TdRTyomlQgZifj4RpRks/FnfHpnSxU6VoSFAhvySbiNx6lT3FOjWA0M+NOCQXTlTs8OA48jWetCpEhg2L/csR5RogSjINbc8RbQnQxP8J0/sSGsoescUiOUxpczl6OQdvJ/Q/g9OhXMWP93FwkQ78Y9pTkqCtVf+2eYU/2YHhigpP3kArGHeAn1MgRvrULTC1xa9fgK9ISAEe7w2dfTI8sYShd4azTbtefiGmWOubK/7AtljEDQG6nQrKKOjfn6JZOhiFHGxFFlhgWzQOFuMi810TbeXn4IlWkZ4/+5ajCsir4W1dNuxVnu9C8eYXTLajF+HutTv/VeJEs4Dea4SifCsPy0FVifYpRXLgYEId4S+6FQTekXonFDCwbQI4+B1fW0g3QwzI4WKKCZBYFfEO+nGDT/lsZXNYR48sfwrFXWKTtGQxMfHcTYLPWNJIlhoEtsky44Sd9cuLUltALDSe7Ba+pPY3xcwNsJxuVZ4w3eEklNxZSKls2ChmuHdygfa7sah1qEQDAmLKIFIJUngmHEfBHiXjpuUHG23vLM/12/cqXZtxO4Iyte9bLznaiYADeCL9jQc/D65JpdkvMgWXeiYrDx4c1H7aOOwrSSi1nmQItpwbkxOL3uUbbWe0CdYhtrlEx0blfw3oknS4brYJ4OdvHEgkTRrGVVHVVfEiyNM9d4BRhi8/EHaY6uCjd50hpFVsUd4+Ik2g685XtF3QNG8BcGNaWedx1UhNK+z1W3Pf3JfolA2VRpesBgKDEZj3LdRAXzNNLfRUIY3cibAuY9h0eFkY1O8tdxAId6S4aQKcdMlVhMdbfd7/Vl+Av1t2QdSKVoaV42zv+Z6E+HGcmjxzRnRBMQryKhsQr1LUjTMPnxnCvAIh5JkPnmtiSExY5HTauRDkj7/0NWTehCMHv758PJ9mF0VsTShCys6qQgWKPcFQybmac7LEvU9fosbiK6iwDRm/ztmjc4SCw8cg8clUB1mn+aoy52vnkr18X23a4Bw89AQrdcmyTUL1mBFISCRc+TXUSc/Q8OvHc/hAfq/J625NgtSt8gCBypL741A+KPiVxkITaTokRWxSZKo7B4UHYxa3Qr86HNIqmpVVQaHB/5Q9D7L0bnSH7VXlzg1OU03JNoTRqJoOVRMp91Qn2l1zAfHD1xYBqmEy8nqNv+7bSnbl1tBKzqjczf0cyLn+RhhqH2hF3Y4QeQBnkUGEN0OhP3PXElMiTqcBhGDj5rHUFFzpUGiUrd1RQU0rmQd2IL6qIiexGMa/XSNeNLCf421OrL2rohCYIg1n/meQU2i1tZwpgcteiGHCr5vLAvPCUkOUc8QEKis1HgMvzv9pAU4WkCk8jf4z2Kp8am7eGDjZe3sxpT1G2bLsMez9l90tDOku8nyHyhM743W8inpNGVwPUaucJPYbMRM7Q1yhlqD+PHwErauhHnpeJU7MFFKMdIGdzcRm3Tt/I584t5Byx05f4HgXN90zdy15Rek1Ec1Ro9hqZfykEksEIKWAjxv+vPvjTK4Vx647+Z+/dH3BiBtOcV8W58WfCn74TGOlT1BGiOLr84GJjBbcMIjNINYF0FyvI2rpQOiCKN2Bg/UTUHLfyR+OnDspG2bIhSd66nf55AdDDvBE5JVwdddLAjkQjsTqfZ+YcsrUwSDuU4Ml5ZBGAhEEiH+/BLouSZPTLw9V7MSrp/A1d7khfDRdIBuq7ypwwElUCNmWxFzPmaJ/MGfvuuWrCuXDWZw+jRTt82iooqjF+ABI6KYr5VrvmS34xZlAyROE4Y9WJaq/MUNbqnkp98hgtuZLILd6WigIDa2lcHjJf221I10nl1yzWl9ZoOaC3F8h7D6a8pgfQfrFpHYeT08yJLSg8bWTXHmQsIIVcQ3R6FnMhxkNk/tJpmoA61uerIW1aXkDWoxtidHiVvO8mjCRzOq0p6x5HHCvr2y3lDgi7jfJi2DMl5wMHWFRqTSHsXBV7Y1wc3/SuCbtFpwOOAQvdMn/Zjm4MvhwgUdU1/adaN0HteN1hxuB9+L9gs4VBZ/P6e6Aga7+l/IKFibO3jh9OJcuTRlsi3SKvLET0z/JvcFF/faFHgyVBFP+1JTvsuXHqAyhssLmlxenkgtN2qsUs7Thrg1WlZGrmD5bSncVgYYqbagYZGlknCVBCPj/i9bgTk/MBmn2uelxxBTXAbBt9LH2TbQ+/jTCWe1V8RJQr6p/rNtJw3ydBG8aahLkrHoshnpMnxcVRaIA26kwLlEuVg6ySHQarR+4+x9VQvphkQEFebmCFUXQkJ+aEqy56WjqMoTdqa43sXXJZQ2SyZGoA1hxeesTiec10ADPwIPIyVPE5BFkKyPC++53f9HTrrkbN+t2e4Ty+qNwBUw1L04DOngLCB0HhU73D5l2p+OOhFrLhrSyCWXB8IZa9Pl0+Wfosvkwh88kaYrF+x4PFWIBKdL9ZWzYtBfoNcZVNv28xOSk8jdHsoYkD1OWxNC1E+SgqfF9XZXfNbvA3sMaU+syGh0eBPdlYjhBU+ZSQAHrtwGvGUSwG0Gcpl2SkWC5BUZE/x7ZnzWQtITN+8FsatLLbu/w6DZ1QdUpkZ/LEI4bfvWH7azOPyo/AT41M96PH5amYjhbuRU5+C15CFjkTYTAiyauAh/SfB/f+OlJGu4YUEhxBOtbySdhfdELm7luyL6fOEAqF1gYpwPOMhn5XYTteCrkSdkZ2EWoDaw7Hc8GnWY7YilYaSubO+p4QeOQyO+x3qbm4RgbQSLVu4ieAI+eeQ4FA7B4YQkXz3rxWpJtXeC76Ec9RPNNwqSrRRWRJmMtotMbL5UcJd++IzWLPIfrXek2RcKiqaC6pzZP5mmM7+P/8RXorHeNOyAgU3Tqf/iaJbHZJ+NR5k9xe17PegoaZIiv4P5NNohTdBqh/MewlR2HeEu0H1YlcW2qeQQxdR/ZTY1IX0Vwsdp+UxdbQ1Q/qb8G1XYtDERQ/rt18iM7s3Z4nJT/egwMaEaRV3n8ctO4WwfMPrLU4sdq9Ez0Zz+6MpQ1pkP53FxCXcOV3PuRGIEXc7gHV8kXAnkq+Q8hi7bJI/5AfFtzo9KTGa/N9YUdAr/eQxZt2BGUb9qJAQPVlDFb5gJrswy+/HO302NTDBOYFNngpu2aDPTCASGriC3UtYYtvahwf2Dv3Uxa5ltrmiSWZKgdtBYWT+YG+Vxk5B/v/Q6rITXoqGeZ5WzUSPlhLHbD3CObN3T4/EwlqfyKv9pMX5IL7WgfbTjZMFT0CLdBxT70sTSVhZkbqnb0jMqxRNLgZF54aso8Tm/p9+6wxRGDphfrOpTtoZNN2WRyKLyg7OVag/egwhyu6fNX//W3bd01+UzOAafflvqLOcFx815aJ8ZQQFdenq4U5Z31kyIxyAhgfZ4+i2Tc02WxVe+OyM6CRKuGDGHxkjChsUJ49cN559hDySCjSIVX8GQBS38uVYnAxMsh06BpHUeefulzkxl/XfrahjZlC9q9LlQ/3dNaF/ECEmSSmRM3RcLQOoyxbVsyinySvFYLCWb9q9VDLW7oxi6lM1mbZBWUiN4TcQEV3DhwnhWbwnT6kvMRZRpx5tFFrF/6eXkRSV97mhFnDv7JN/qUHIGqYCNMIDIHevFOND1mMq8dqHh7Z7oRtTyc36eeqHNyl10CHIJliYwBzhrdRu19cPHdCx39qKgDKjpwLIRSfcIUqJDrXKf23+64o6Jd73jJJu+QY0i+slZLLl1YGSlCQCnHqBBY/CWPdXgU+oxwZkIFmoxyieBwgUvA5i8IO4/hQrHRfw1A2UDTmTY8cvnYCjW7RpmiZkAFGVDlRmJeiEscUdcppBNwoyhcfQeABoeF/3XqoQA06XLTIAJBioGPfSBq9BWQ/7tbbd6QFMKio6MCJlHhydUrLsxqrgABwuxHEXNFxvjia7fQ5K1C/Xg6Kf2N0Y7mCkTOqsNRKP498oga49kDKhq/1WlGlYHJGGZfmL8qpi3LSDs+hidGXTB560SJ6wVYUUBmRkUnqLst24NVAXzYNCQECh6p7BxkPp0oml/BksdJYpQQnS2s8wrx/TG7ZoH/PIImG6sYASf6NO1D39kKzIYddvTS023WIJeUNvM7/cKTefurqlpu74Ismr7Gf0HXeCKUYfnKyiCVDcly6m8nXrS3U0dvDYIkFY3GWFyc6HLSgRTNVpOx9keeYnqq1+0LTOOqmRaqpOWOKmG8oG7p2aWFLi2tAkBk+mtjitIfRc1/Hx3Hvp7FZERqQjdPhl3VJuEM2i6WaHktaBSNaURud/U1r7rugjIo2bDSj6U+mTT+m/8YCad1fdMGbw+MQHXbTB5vCAWmOEulemt/KoRI7zkDWf2YUhYScY6EL6TGiLCBzJyp8NoTP2997E1GOE+4wDEm1r2cE75XCm/Ijno5ZhNR91wwpB+rMKhVyT3nZuPWhj+b8cFQKw+hwLalwoZTuzjCbm6LcUVlareupFN6IX7B94DYvGDm+B01gcizvuBNAp/+XsH/DiWmLwOl63YB6kzCsCzNILLOphs5ar9g+RyyfdxlR+1BnKp/EVyhBpnsh0wMzNCaOCoZpJrX870a2MiZbvProovrDB9RRbORRVmCUPCVppXH6pNiBbKmN8+Yt+WkER5ZiKwvKrM6+lC4DsM9K0UITjHL5HssxXvQVBCy+kk7r56KoenSJS6VCQlZuIqYTpfE8siwQlCw03JZ/hxD59J7WHLLHnHGdLXH/KQqVALx7T1ZoSC6nSnv/uP7IAftJoFbm9/WoIXq/JUk/YkMq2T7MGHZDRfZcLla5pKP9oSROOtnZrv9q0PG50PxusOd5cEb6fmqREuN7Mb5CE+3lK/mcLN15nXC+UgSDK9wgAyksfiGWzL859QU4N1p1UiP74VeHTVGSBqtiH0Mdm2NnPx297E4KNftiSnyGA8/wh2jS1alvb5vDP7KuJWeC2mGW9p4eZHh3HGmH+qIW7Bw3+NU0zfmiXD+XNTsrFVDeArJzQVgCzdbAWCnggkQjSyiSlb3dJqepTAhXkYglX9qNsyTOuXsE+zLZIYFTXGhqBai+4QgUGUmkfMb6ZHNZ+r+5PnLAux9e0JjNyRI86R48H8A55t8QgTN1yWgsXEeHbC9U267KmQuKQw9qL2wZML/K3ew5tFYyltX/1KgFN7QAw8sLv0e9ELTYwXZS8m1DVmq+anYio3kP7dYsB/xRX3d0zC9y46pA8Xb96iTP6OKpcdNWzJ+cbqNS3Pk8PuWpjCIyNDewJrUoUSTlt3NMW5POY5/M2ufOqxl9AGY/sdU1g2eGMoLTbqE+nDfodFaYcBP0N52bWErIIyNQXxV5muxGYGsoF2KIssx3k2nwlq3LmNOF6sSzvOhtUjp+sA+jBjzJxUgN80aj5MYtLhQ/ZX4833Vah5ppwawKToILAGY6VdT4FyTdXBUrn7C0wMYCi6fx0kuHX9rIdVkUXr8i/9kq9pTDOV1rLSRB0wPJDFc8bx7xmlyZ08QqrW55EAU4Q5zsiQeo1ytKwPKilcjZER2EOc0piUSdyp6AZi2aESmOIhoGLPyh5N+je9S5EB0LMxvJhZnHSbcPR32nDCnbHo/XJa5dLE9bMFNkbPUZENneEeb1ND2mw8mGPPrLkjuozMuaX3AXya+LkD7AgSanUePMxpi1mpO4WnoigebsP57YOWpLobguc1tCWYoEO1ukxDlZ9PzMdjfdVteCuVzY3sRXSUI09kEBGWaq0072OULrVCI1mWqfskx3jvuxnqtxpUjtZi9G54qo4t43S6eAB+o+MUbTkS7tUM3URIVcz86NdJNRdgnY2I+RNGce6jHnsUrNaOmtyxlmEvnM8XBctzGw/sKhtMQWSTdjkfMakO+NxfXnC0p5vDD/gejMcb1lnPTBFxiBA1Q/iKrYvP5mFtMsayIO2gnvc7SPpE+naGEwde33EOAnD3EZvb3y60WUc1eyXd626Rilq9tMxN1vi4eJmk/E5s6pOumyjTmaZSE3cRbJHZyQ08EdNunlzDm+8CXh0S0AtR972r6iYeSnMkCqZ3vAN8UWmfijFpkYuC6UMpBS9JpmddwlL3BPhljeQSFj37f/Qoo0Yz1yCnBeRNrKTF9fqOroSCKzjv3MJEY8BOmqRxjy7E9cYMn3zvwFiYdcKv7xSjUQMALFG9jxLIkeWmOq91yXSn6oIZpD9mb5g/4h0wjZrpuFkidY+wZQlfQVMflGNGEFcRNuzbsVFXTBvH7EzlPEisg8jEddM4mj/jdzdTwRqFNBBDWTWbhdA/HiBcstX64TzUyu0mbNCHsgbnx5VL7CRuM3VnWhFjcX0tNxBDBx1UhRr2F/1Qgsk1U7qPEfMO/KDP52kAhHotF4dCB5LJJOUKLVCLhV6tMXs8vKlsTxn4vSSvZdnLULjLgZ9u2emwVX7blXyUPv+YEZea6NTSe96Wfu0KJ5F4L6mYFEs8gHmp72Ezr8/ASkswyNycp7WcVewV8dbnNMQEUcrgKSNLCDB7NXNSZIEGnMrHSiuBFDJ4K9chmTHVenFvK5RGkXPHOSnjfStoPV3MUISFtD6mDUM1Kryz4nu3XoO2Y5rK0KXWFKBechcMhhbGDKgXr5ydQqniPfYUmucZ549DQLc+O8BiOZQc6H5erC6GVS+n0/f1Gsa1zqmY/4waxZjfnzOagO9nNSOgAAt6Yg2gqaDEK5l89gc7AhzRq9HB/jzbsDhxBcSEevLiwymC3U2XV+Q4kckOMM6AbS5wVW0G8unhtCTEGht/an0ioXlSq27wiO/gYED/IW9PfUazc8eaU3YmAXARk5v/RPWyzC415jCbwJYSYrCzwpqEv2SqgMoLzzAjEiKuMtKuaBHdelYxtA/AIZxJznj3i4F8R/iHPU+zWtjyRNzjQ5smsAGn8/U7OdUmNcbqJqRv5gp4F6wPrHeAWsJefF8DOjVvk5eX7k0EaGE5Z2nqA3Xvp9YTNYmuELtJlB0SPkIYmJ2R6+wgzVVsA4yziC8wpbY6GkjhsVM/Mb9xG02aCvrRuZhXjHxIyZ3qJ9M7DLXMQeDyByIYuSwJpuTwEszn1mJWkJhju6A9mk3UYGW+xt9gaP33BADWx4ZbE3IJjVnRAYbUFhxd2a69g9hZM8sq3VpNmyR/Q9U6oMOchOVPPRCtsujc9ik/kca9NgrPSp5Ft13y+2CIq1KvmYqrQJfqnPuYbM2QMJoE2+esc/BDgxFVZwaCQ3GJ8iYqWNuPYM9dhlb0S55LskxKvjuLqz9yvTDhl1nBlwu4baEYOXQu2cLhqNbXA2vdy5mcnah/ut2rq3yI5DvYGUWUXotZoz231tl+qOxFzs6Z2V76vDp+YmELj3bk9if3C4tawrrs30FISCIjZaRIdYvbH+Lmr+v6OOpouTvDg4FYA44ybmV++IMJAsMgeYNfG7FFZMIdnyDKSEkNYtNcxzNn1BnPmHBqggO89JEogU+/tedXG6wpGwcNq4tCOOIAPHDJstwFoB1K24uYwky0J2BNZddpha175z1beFQyhtyOM6taFo7jySaazMew5DhHn5rG3mML/TMIrlOmiGXPYzdSZEvjIVMwn7ehm/msxP5KtlJXdYy9qgYaE8CiNgmW1DpGVe3EZfyToTQeAJ0hlIHkRJNc+XjeJp+PjkFK
Variant 1
DifficultyLevel
735
Question
Rosemary owns a fragrant garden.
Her fragrant garden has twice as many roses as lavender plants, and three times as many lavender plants as jasmine.
The garden has 60 more lavender plants than jasmine.
How many roses does Rosemary's fragrant garden have?
Worked Solution
Let L = number of lavender plants
Let R = number of roses
Let J = number of jasmine
Express the information in 3 equations:
|
|
R |
= 2L ... (1) |
L |
= 3J … (2) |
60 |
= L−J ... (3) |
Substitute L=3J into (3)
|
|
60 |
= 3J−J |
2J |
= 60 |
J |
= 30 |
Number of jasmine = 30
Number of lavender = 3×30=90
|
|
∴ Number of roses |
= 2×90 |
|
= 180 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Rosemary owns a fragrant garden.
Her fragrant garden has twice as many roses as lavender plants, and three times as many lavender plants as jasmine.
The garden has 60 more lavender plants than jasmine.
How many roses does Rosemary's fragrant garden have? |
workedSolution | Let $\ L$ = number of lavender plants
Let $\ R$ = number of roses
Let $\ J$ = number of jasmine
sm_nogap Express the information in 3 equations:
>| | |
| ------------: | ---------- |
| $R$ | \= $2L\ ... \ (1)$ |
| $L$ | \= $3J \ … \ (2)$ |
| 60 | \= $L - J$ ... $\ (3)$ |
sm_nogap Substitute $\ L = 3J$ into (3)
>| | |
| -------------: | ---------- |
| 60| \= $3J - J$ |
| $2J$ | \= 60 |
| $J$ | \= 30 |
Number of jasmine = 30
Number of lavender = $3 \times 30 =90$
| | |
| ------------- | ---------- |
| $\therefore$ Number of roses | \= $2 \times 90$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 180 | |
U2FsdGVkX1+kb025JWCzdBCDBAjUoVXGG7Gs4hcs3z3VM+2E/gJ8pGm3t4RJXEeyW2iaZ8sXpHOUu/wOxF4k/ZI5b6wmMuCbOcQEyR5jk4StE11DHTJmBIkkRqvkqkCUL8Xf8ntCZgGzSv4gut92WkVxlo82f9WUZmc+j5KfzJi7dDQwRJmg1h4hJjak1qkdS6WDx+B/dymoXTFe9EIcNNNT/95ARNfy29lVJ4sPcA5odI7jqhsJ1OEPj9zvzwH+E/6M0N/y76SJdCKSq5hBR9t13/eHC8eGEDJrMgUlWKO3C5kvf4mWaJcXHVXWMm0t1Sj5wSKiNQBqRQcojw1UtFo32O5p5uwRmATefFXhFbuybpXSDtHJ8n5g/24XpsbxkdMf/C4bVGfxxGmURSil6Ify3j0uN3tTmWxWQrSczBwrjw7A9SbPl14UrwjfoE+7PwVF0Z+T8ymgrqIqFws+vgLv49s1WpCop6iB1xtxRDNIVREU08psM5W64lxlNxBKDROoTHnv0bEIm4+TlsCnERsKatWjpf4qPI2Tru5BUl1DlV/w7Y7kyPHIfOs0KzC8PDmI6DRaPBGK0m9kQ4qIyN/fbJZGoM3n6Of7lmcHxwxBXZPJg5hpzvQt7BjXSxq9AsVgirJRwBVd1kellAflpOJYvDapJTjx8TFZbaNenxM2imMeQgP+tV3PjmQiqUj9WdCrg7NBxbvmwDw6vr8hYQXMc9Bea7r3Rzej6HNkzkoO/xVYaWHJJFifj9Ft0/u8jT01ofNoUCuTOyhGPLSyjKboRStGyMnzhMfJBVlVtqLXQkt8DQzfoQCD3sxTu2SQSQErMRBAuQVi/jJsRSrN9LNHc/+RjF6W1Ko8unHruUyc2SiGmphZzFXqpptvu+1INU7urV9MJtZuoSnm6g7GFP5B1tX49VVPITwwYpeyntZg1U+66PS1eqg31D/PpsXnNPJD4Zj3YMSJ8PNq9130AyHLmfAa1+jy3RGJkBeQxZh6HCsnWvLc9YH3KvexBf8BZSW5tYwFChGa/IKukgYoGwRt3JwodBNSbJjXekmwKBt7vFboQpHld5TXdeNuUsH8chLJFXb2KQ/QOiBxodoT2/cjbHSJoAVtwDVT902dQqlv0coF0BmQiZJJrwWtMoPLPuzAD/kh+/Ncp0uwyyRXiLFt3w3+1mUZ6YRra2gcBvCVH5+1YUYf7pT8D68kcSgB0pp5nwsHhMVdKtpGYSI8m+Asg1up+IsIrCgi9R84HBJ4NP/5vJkJsVTDJF6mP/2O3upXUVHRPbp3umkbiQuyaocIBJVdAxReXA6UnJbM8nV270eoCcpirHr6MOxE3x4m21LXtrv7ccN9t8an0fiGBIJpMRhiyaAZPTZlHiH4XYUjQwVn5i8+Lvbwj9FbeigHGoa2cIqDprNBRUlLNwYYTrOnKJ4L09IIT4eOoUoNgzkcqYEvro9jKcjyXP2TGP1JQNBtChvFQ2N04y07GOwQWS3u9nR7hsWjJpF8Zm72SBAE2bov4wN/DiUbEpZChp8TVTJsvEfxFNfnAtt75jYa2II/g2f7eNQR4NzlVFKMUNBxwABFUzhUiHC5pGjkJHZ8QImDjc2f33auofdvn2JZ/RbN2oGm2zE6wmNsWHXu3Dw4gr+4DeEju4TQtDSxgedPTqim0jqEL1ZvbM2jCZLfmT5NVgYrIZgCYvhYP5/TfdjFw0A+28Oi8+vN3SBgtlf36DQpb2dgYoXw03HIJKLqN9l/ODI2xcogEPrqTMoYWWYCnSNll/9yEctFafeK1uxfc54wbUh+UGvtHFltBPL002GN+z+s2N/r343XNht1UaHUtnBnZxkvL4r6uODQk/SmBrZAIscaIINf9I56GmcYnsBLzoNwt/+I9+l6sQ9k0WZT9EPWjt9gFTA0ZXiUk+WkVkElRJALOp7m5X4Jl0gyPvi0n03j5ZJU7lAxaDubor0v624Dz9M0dpuzPoozY7p5YoHshK72n6SS6dVXM057Px5WZh97V+phrZdS7+ppwfW++FI0i41IWfhm7SK2wwcKscj+1BTbEgkUxt7lyDhQigJAa+pgPJpuGkfeogP7FanXWqFygQffdkyChFkLiIwanFS1Owvrw80CzHCQq2MkDLhc/oamnqBEZh1Zcn0i3oy6+H1fSi8kBd7R2M8xp0JZO/BIKIF0H8aGMfwZt1DbBTm17oqWtLqRCJNQ6oQbbprW2SUpol1p3XwM/apA/M8MpOXK/4wg4T036Ki5cAYMXJt/IrP5xiks7bjIxqv8CQWPoXSJIbVle6qsE3hh0lwzN8uFM3mDLcf3pWE35BSryBSfC0ZP60btj1VK1qzoS/LeVKVG5Gtht5mi4ad73YbaWsnpu5QsRjAvzpB4lCuaNOAXxOMxqAYwZGZMUoVhH3tLL6JKvOZMBOgytqveGdaLsr5Pemme00sm46oWGAd2mFAvsNhzLMJUybVSBLe6HfMUZoYjCzz4aeeUct/tdcnUicM2W0HByvcyBWGmr+QmIdzlyVy7hw2O5ukkVKi+fDbWsvJ9xHcMsLB2sFvPKNuVrsNmLjDWwN3aIK6L59Dw9gBCaVOZ6fjXr/j20d3kaZbSw2skbYxGFNRIjwioTRMggwL/UxAK51P16/Fn0FiXWx5kjT1tGftgTqtz/pVuGpwtFAJT/WKE6tH/4+XcgfKQWFG29Ux+75EqFNDzqKM+a62Mccr7ChHc+BmafLP//mqmSSUZOJJlSKkrKraO7kgmqaAgOqy5XeY4Z4o+nPBAPwM8LEm4NCmaIsyX9aDVSOwqEJMFfYt5k6xSqLOZHdF0RLImEq/qGUDPQrqQTshx0N2HzGYXpwsjPHaSlt5nEqGGaK7d8sl5hrRqhPJOJ1mpt62lIy4WJ5aLUz+Gkgmv6Xd2XgAkQkrSmgWzRZ7JqQ2LHrVjFbEq5K2lwMnjlJMn4rMTybjExu280T+zEfvQPrdrF/JkYygeF1wPuIZino/4q5MUXop0hb3o5tblNKD/y4PFyfWb4jA/b1KQi44rA8yL2yzUl1+m7h0KGGGxvylUq8yjgEv2bmEuXwZZtwABSQZ9dxHtDR8Xbg63U3pJW6qkvT/+K6Td2U7Vd565tc5lsWOozpFCpYxII9wSUEsPFMWjncCKFd00m5ADNhQ7aL+XRv+BkfGGg7zDrXbXHvHn1u9VzUrIyMpYcPc5FP0gzo7O2OA5y0rkWXadrZLvw2KHxqXiTZ6a8fgMibSBwoKpNHeGURvzzsgCVPV3eL/oLAhhSI8Bu7m90wMG3kfoQaBNEpOGRuz13wXJ/99KqNvpeSiun+U0iF4IB7uupD0Ddgl9UWO8Q5k2p9o0gzwdtz8hEkoNPTjt4j6sMNIibMYfarh2AgvfJZ/8pq4kujM9lx07GEpjJLkPu3lHkKtlUuQ1mXStWEBtH2oWKLSzMvKVfl+qWTNI+CEUIkNm4B/4TijNVJliUkLWk7i68p8+Jn1Co9SxuH8IRt6Jp5vTh54Fc1eCuQ+HXF71L0EC9V7l7qExCryl++o5MCJxbEJRE1IojceydINLBBziB3aH2qtRPDXLFH45FScn+HaGI0RUYbmvNBufhEk+/CsYbiT8FhA2+g5cWq655JG0rS+q8ss0YQpiLDKuXV4a28BiO97X5xv/qjd36WVJ++inuEwN/6Cm80Ou/hmeLWuUbN4Svz/BWZ6T46RnbhXR89ai4td4voOtJDGVTCKsj4AjuSCA9GNLTIZiMdqKt1Hq+pp2wOc8WpUnOek+/ZzxP3VLzP4stjigW3Ga8ZeVZ10RhUZ53Fj7E9m9KnasIXW0CVJ6uGNPhRZQ1gZ/wvLo/U1AZb1DY7d0344mdNvgqM0k4MkQ12XJmuRCrXfHSHAZkAwiQX6x7op2NmBeEy2PTvQA/fccZFp0J7KJ+vy/1ALlVXkNEoOS8jy7Omwmojjw8vNRJhgygzLmwe2pzomnVD+RDOsCKl/Mbavuyg8BDF6e/jV2zmCFVGDdC4Mb5NspCVJ0CKRZFzCDmJSB6ZEEMW2q3rfgjc487PIMvvQXfqlU/zG9GLseX0tWXoM2ocW50HfS5jrWzW46vOxwD35wJv20yyKy/uGKkjbmxVrdi/AuTz6RYniwT22JXT1mqDiDtHT509xFFmZqQKBKi/kKq/bi9u1/beQmf9ORyMDbCi+EZBa7B0yzHULugn2l6qClh9bLPwlNuuWPn94BYGMUAFiyhk3U3HUT04+tFXPOAOruM9PLgSzWImSaiWgFoKVt+9oDzUcEF2eN9i+7s5wco7l2Ikd0U057nZcEbs+t9GFSWU/S0YY2Cd4MVwn/U+3+FoYHXoXTr/uAIH68F6yqUJ3ChEmil7hLVU/4DVeOHCy0attsqxaxfgoWgs4O0PxMIfGdDSIefwtrclocNK3wr738L45EXmArkT0fMgPVm+1Ri+PK8WGs+PPgtiptzhCdOJvzh0JdZUYrjnr/WjWcmQuM/xqSRCR0iYcKZSo1VVF0CSUdsAKyitT0gMqqkom//d6sDymX6/E9BP+zIHlm/9J7sq4pjIgIwYw+NEovXbUUHdQRApPcpJggfMkqx8WlJkKISPz5EuzPXAnIMEbscyM7UZjNKQZqVr71oQKfK8Pgr2PP9tzVteRoZ5eKbgtj0wO7/5Wap/Qc57f3r4iheb/TpKROPjVu52W8ShUhGnO0PeJqVjfvTtJMLtBCAOB0ByPghrpiPhM2nowrPsLfxz/VBE4URjJUwuDpLhaBpyKHlcv7cLowsPn2mJa4Z1qJjuNWEwmbbsLsTAJTIFtt/ffpeE7T0txBYzGvQBiJn/NY8WE2VvUUYQQVBCIjVt7rZ6+GXXCVnqrDkYef+gzYvK/ZvPhReefP1+Q9nrzAfkVxNtoaBsgDry3TgSFxY/02rBqnyzNToHJzPblZ4QP/+Q831zXqDp77KUaQadcoACC/B+CCGGm+DoCsIrjFp+C57YNdX7+hxyCpTNdagVJt2W9YiMpo0UekImIXwvGXcae3h7KOZTgdT1bO+arwnR5m6y6aZea83LYuTPOccPVqnADkTfp98bAzqzs8MH3PlAYKe5WBc93WeVDvp2Rsh8Ux0WBXOZ9sI3dJCD7XsW9tX3AZdU9VubOSn67Af2PG3LUs8O9QqnGWaqI13PYG/16Y/slE98yPfkmqBxFLXnu2LBqPJ/PYLiYucpIBSy9XmCR4Lc4ZB7b+P+VA3G3E71K4BJxkjQkyO/A6y19Kk3pZbnP0zWrfgp3QrY0HZ/GWWFDeciKGN6IYLWKl0IZkAkWX2S01/CIKp6Ictf+3Tlbk6K4J/5OOOqyAM+E4PI5XmDKH2FSIx6dILtCqxPizprULAmB3rx43EPYVCcFh7+kNUcgyUpl2v1ESpZMQrd1IC/AR1mQHoV/NWDCRak3/sMp3UxDqZaKWWjKTm1f1NG/q5gX/R/RJB/a1TD04EjtUbzaqarSzRfVi9SkvNzCxRojLcrQx3oJ5VhBrMFrzrUPuP7ytmQ3WPkW7HJChAKPtgEeMtB9p1GS+Fn6NpB42n9FXYM/igi9jBQ5XGm3zBlRuKuZSQhHTqruz21W/DhSCx0A4c1ZXjaJbeLfUdGdB0P+gvhAXrwZH/1nmtf3YHjduI48wV1/wPC+q2mG3U7gAPmitELwsn3jLvx6NaibyqwGlgFeI7kFnzWDCjFkGyACUnnk6IiwS4nPuBkPVTSe/ECK4ag/REVzM7lBlnyGoKtZ9EkBRzkeiG4wFw+kBhf3wXKesQLOp7oXwFnS0roBZrjDChqC+vPld9uzcWNilFhxN28BNnwRrRjuzR5ue7XuRRkyjXUpbeWUx6P6rqluJtuAg9vBneasuIS1e4uT7v+w3XKzecde/wrtqHWwRIy9PTgPYbi827/d0bPywhFiqzeiEaIBG8qAxxsNQMSOdgHDUMqvI1cI6YvaazbcK1kR9vzZpkyyyjADFDI8FLlLLwJR+1erAx4ceWszBQOECkQ74mu489zv3S8XdqqqEvOVYC75j/gF1qKQ6hotpFyQ3OjNbqXZgTe80TeCtL7ZXq2xjZwXaa7YJi6yqt0GX6Xq2/vr6lt+wjKa5WklLiF5ArOGq2At1U4ONEzRN13Yju8S06sJ/PR3Ya/RpmoFNpbNIE8F9Eqj+6Qsa1SCQS+7LmgJ+i/Drd71Af2dM4Ok5NRAVzmVAW0KpxLBjRgTY7jQOJGX/GJ6oJOfhogJBEVfvswD0UZf4IalVlKCWDUaZFnUlvrIL+leFxVd++1cZTec6gLeNmqlU2a9fM6LOsSdrYsvVplQn9sLAI3w/bk9M48AI6O7cu0YDBSmrxBq+O2PGrdg52wV3s0WY12scmtoeaTIzMRCzq/Mdmtu4XweUCx1GKfx9iiiJ+Y+v8nxG/1tTcS2W1ovnkwfnZpzykVFMXuc9fiY69MfzST2pUDGeYonj77QmEMiMfXyHB13K+v3MP6HfIhSOQwX/d7ari+FufGi/6WCprPy0Efj4ZjM0TokSQP8A8xCNHgEhBChfmp6wtqsTu7vXj7BtyInPauexsvtd4es/FXzzlUvMd3g1nxVB4qa1fJ66ujYu9ltj7V84oyeKEZUvA+zW2S2Xg3mLEaFsipcJOBx++DLgehz9OQpwy50AbWkVFuzxH/cd5VyYlrbzWPL5AvSL/b6jKZqFr8I7/n30ODAUlhmA49qPDnnnAIP4E7drOZwESPx1cRTPTAAe4ccMJDu40wn/agbvEUYCbuaNnO+XcbSnZzir7Jdnd1ZO0/w7UA6w1pVpjDDJGNdOJp5c8N+0HwZEUdM8y5/A0H+c4jRv21kZlz1kmsgz1keFrr5OC8eykcC7HVMJamGDSbvvXwkbvtiG7Yl26I9Xy7ai0hiYXQyAUmrLwXL7YQpFayRoIQnAXatMG5axkZTIiT2zZwQJfsy1RUU73iS+2Fef7FIXBtyuG2xveZsiy5bOMzlz4P3x9Uvlu5EwLYWJsCozsTCAOkf9v6zKYN1GyEW5r/XzJ5fK9Qq5AEYghzSb0O7I9ZybLxwvP76m+uVNqJgixFe0Y6zxMxBbi0qMHP3KbSwgqz12ya3t1+cfTp9vD/5XhGv9sxasj5r9APpNam//iFhhVQd5ppF5ao+6HCiieutRwBzSQ0N0pNrrdbZ00iXgo6acBpzW0u6dd+p1r5F8VmBAvE+or0XHasI1DSX/qfIStv4nBL9Q2rhdJLPL2OJWECpVsH0xX/OlIjPPT455Z9QujWN56G+L8JmVo2fZQ10/BkgTPtXI5t9GzjwhJl7tp+zT/fjitVb9fvKzgRZu9LHtLw1CD2HB2aupbaPGsu5uockJ5/8j/4bEBCeHUZqTEZD8ZPDQ1S5zcn8WNvzVURikJUWZDAdEmi1pETfTxbLGav3W/CSUQtxaeQNAO8oay6DhSn06BqUu0YdefTf88ss3LhTgix6uC4nvh2244niGCwXL80M7gNAtD1Ezt692ZDh2dynCHEYtVgl0iae7N3cb2Qk+GTLB/X+rtiFuWa+TjD8yh978iVNTYqaZlNwysq+moKtOe/6IVnaAGpYZnXUIBhqv1p/CkDi05Bg6QNZMDoITMCRm0mtsB7fyB2yQ/FJTOh1NxJOfvqdt0Zxv7REdzzzrraFYObxS1H53jfzyhK5AbN3B3ODwE4/PqXBFHCu5ZMnjRIuyS4kI+gI01xvVaNC9ucfbZVmkpyxF2Ry+Z01lW243DWKVhCDb0MMqwBxTT3u+AzeqycCMmutCNnPO2DSc4XL2IxDEVSnup2lclN+F63wPX0sB78S99PG8BraCPLkhwKk3FiSYEyKyshT9c27ts6HjuGpQOpHvzsAFdBUY9a7EVMI+K2Ht7MjVY3LY91uh4lfxgpcBaCWocPcn9QQ77w6FfrgYCLPjb+c1g1zp6TBrjpQruHnahOMOH96WEyvkBbpUGS3U/ex3ehE2KPLiFf5NHfiHMV1LPbdlfImuHV7O83lXZV3zQuEqexgNlI6XscIHJIrUfVCE8l7Hoq/GU2552M58630p/6ApAlNIN0tMxDoax7OJtCYE2J9IWEFI9VBt1l1Im81OXxTz86gIYPwdrgCi2EOoVrfmZu/oVwH1C97mzlsiIZOhTUk0ZRjTgbhlvnbwJfENBGWCFWMr/DiTI7jitvLToCf7BxK3L6bBuunvL0QpbocZF5f1iNv+l/f89jDvY3MMT02tM4O7lNLjZ8R/GaD/vYy3uY0wtd2lFAKCjY+SdciJbC5Du1CN8jOy1La3mQAiZbz/8abniNe2kqSGXc/6QD9Fh6i5V1V6kGE0fsezexCNYuoUfhqrw7VnyIfG5cB6ScrkoipdFD3gIU/8lguUtrGWCBAvVSqCaOZYI256IORKG02XKSNN8TVbXla4BDDV3KhYbIlGFGiyKZwO1YxhB2csCaJEmguKh+TeGYTXsBffO+osqOEgUFXrOl+xqQZttJDcb3abLtnyaWOwFA6EXhssjQZNYTgANb4LgHJhrqthhs3nJKR06XMEcjKW+Co9A8rIasXjbiU6cYNU56g8aNP+O6QJKjX/Mu90LZoaiIz3x0uRSmYUX/Bz155/3+Mg+4omuUPq2C2rrF9d7qvTPU++NFonIQTdkPa7qvwXMYdzq8vl8xC7A0PBIdFqrS58P0+CAtNTZ9EAp+iFnPy+D43bOW7ZfPKgxqAQXAjompBhAW54q4GDKNyipI2kQtEwJ1gZ9A+RwRLJrQsyK0ezJ5lsWKdY8n6L/H5S2bilkQhtAb/EMUAjs5jsL21MESDIoLPnGKwqGPvolsbt7mDo3yZE2wxld1BYn7QPa9E5Rjz1cmN2nWqXj9oua/OVeZHeVDEcBcNtUheZtsjxkjV/eTysQPwv+F7HgOUg7mf9CceY9svRIK3S5rthLpz+bbHmyhQrcegpDUwL1mVp8zRP/SW85Opk7rC6myV62nZLl/87VNJ52k9tznbgxzXRP42lj7RbSAHnKX68Pmb5bdZJXPqMMwEdTLu1rdTpqUEVTzsLtNIycyZyB0MXLVg61UlWkxsWET1u7KpKyFzcfu2seSpt6kY8xVxyOTZc/DAdwHTSNY0TtUHikVBlpGkNnrD6tj4JEtAMbVVEd+z9344jHR0gdhNW2aMbLnX403+7EdMklse9tJSS6Tac+UR6N94eh57JG27S7ftOIB+VdMAQ6qU0Utw5M0SA1a7JobthM6eNrmc7lFppf0xaLdzbzG5WwJ9ScBmebRj0kLfpkO53HpB8zBiJ656sF+lbSHeQga3tClSr1iyPfpBHhKLMf1wAZNKtjdXFzK3NMWYSMIKFUH3+GuNOJLrusp77GhbLv5Gwfq9QSr7qH2RqMbqKTENvIpmHeFP1zIRhUe34DEWEdKjXhhTtNehSDD36CmePyz6EdFolWMb5zzBbQl5uWuUaptwGL483H/26f9WYgfkl5Whn1d4mk7rzBCVMV8eGmWZmWKVjx5UhDg82K5EUr2b6C7unP/V7pzP5SgGePgI948ZQ27Otw7AHEnzaeuc/3ExGGIWCcNDkYbKeRUVNnA7g2m/1I0KhoPpp7yNFMtjRg7AjRDJhEgXlcgpMkDr2hicLt7kc2Ks8qht6mu+s1F5IzIkibs8qCUi5AtvRfMsgwbPpzp8PJ/yxrMvSz8OavUTbENf832kp9t6/VcJOSafkAZmwTvePzQxyZpI6YX8dLmPVFMJ0UTOcPCzLrPgHG0twtI1YVNvmOsfxK33hJIThXUt0hSZcSPcQU3NP7OXoBovu63phiFhOraIQW73KPB7UgPpiGXRxPeoAbg3jyzTanHAXiKDZUCxfB9hn0o5y0YFdBdGN/MMBaMisHd3IwUMFfUWk6BEwaTHr+msEnKDgCUkc/9NtLPrNErHdmDVf8oaN0HMbG819TG5SNC0AuUz6T1K5z1Ogrpobdf5cUmnWb62oOBjM/rdzZT7rG1M7dMPJT7uv0ILIxt773VxJEg4xF/LtFqKMTL2exyExc8Z6mI8zPG3P5LBqKtACZySmtJoX55AcGGPiN9jiAssqBNapb8UPyJjc1z6i1y7XKHQhKj//9Y6mYqGC+QFXWlljG7nwBRiwD+t1cONRKgGkxfj/Yz5uHOVmEmIwLy0/bZkjtF4SGVf4BFWGJlxqhk1w2ixX7XKig7adVKUtfP0jjoCdhfBgd+UnuxO/NmIYzeWEG6i2nrVRN4S8Z5so2epxkAjaDx8GzlAnvPKD9dVy7lB0PHEXJnd3E5pok8h8bhZE8ucJ3iQw9Hv57c69xvq5dVtSFctRru7rnWHfOhMzhHJEbKWwrIoMSdbFXCaAzVnGQCKVjSLX8Jp+M8xdBjH4QF5XYXFyZ8fbduRZoeRPGwIyhLX0S9ExxGdOGZEON8xP/fYKL6pmvsF0lCDWyrt0hUTG79I9CBTqbVeG/vfJEYFajZSvZWmwZqDI5Aqkip1FMYv2ApF6Mbxdwu6eNPFMaXRd1gwJPz5Dis0KYAjaZAH9MccMY/9my1+nAHE6vq0A3qYCD/iN+zDzAPHBcGbJ8QPBjULz5t/DLxJFIrywa6LtHFxyxnwe0xaYCPehdhxdJzrevoBIuXaaFuSIcdt6StBPa8Jq/UCW1UxVy2AmG2hOinvWrPj8N98JvWU6yLUnr7irgBRf+cIoQN0f6xijAujz/vEbAwBiWMRaCGMY4MykRy+nOLxIoFV6vI16OKcQ8pgRL3+NaOSda2//7TaUmXQ0kMrgY6f3K/tRhlNVXQ156rYYhBhJPb/pQtMkjG7s8vvuN2CBW42xqxJafqQS/iJbRDnGwwIVJusUDhLd6hN5EzK9CWWGZCPZLP8n6NFWYjyPNQr8yxF1wWJM/S0V3xuV/mnOONnc7hB28prJJuA0p+2IMz58IpXgLL8siOqAGcGPgdXpHGpsczfx+jx9RrU4gLyZfvTYt8X4uQ1DxsmaPXfkQaPKkPjB77F2RrmUL5wzg37phL5JKcYSlNC98vLE56I8u3vZ1di1o+9ZYpsR0x1uJ/zxHSoyUpp2AyUdj1LP12q4tEAR09+ul3gvyMx64IbZNKyA1SDN/fCw9Ocdcp6atd97FK3XVTuHybJyHNR7IVdIyqWENET7kUFJS+AUODgyECVVWln//9uPWEzVAC2ARof6/2DIn+yXgEW188EXjtKmn7/3GhlqGxqJjkK+NE4ZRq/YmPDuWxWkQqWvVe3VktBFaPN2M5hOx5/6fI+c7RmIReiK3mbo6DuV+kCiJYSag9OJAPvxdqdfJd5a2kzv3+SIRUqsEaZt6XboStSfkjaeT3taVZ/PwBdbmurjiQm07W008sk8sRQraK4627en6Yc/k0LEhniPrEDtuOx+OtzHQg4by6wwHcZb79zx/92OhOjIUjgJTxeRTCnfkB4tXaj75R8nWCUwKx+AnyZk7FYSNLlaGsOdKr+JCReUm6fnykhHlnWlRLG774nqaJZ6lnliMuKr44yFMJMcWDsXlV+29jViu1Qpj2S4ceENHllIrGx9++8BwY54ADDv4K8CD3aE1Zw10QHyYGA6rwN4r+QPfc0GRxm4wZe40pLh3AuRxcDlX+30ZWa0UvCAEkt8F8jjsn16kyd4M0OYj61+4/gfhbq4bSOpvAghEX9GYE7vabyu/IrFUSyClX7BJ/FZgkbY4SAWKghlVVrk6SqCg99GYsgjy2DOnmcsqqZzFXlbEd5+l0ExDMeBEzp8X58gwDXQnrFcok6fSx2bGRdyd3j+SfgzlmO29pyieXY1GUVWK7OgCc/bxQCi5l57Vb/DfuO/M5TCOHzvakk6eudgql9RbO16g4o/v6zGazZh5lBI4ad1WkTOr5b+c4uUVBC3aROqdfDJvVzszcJFHal/y4Vg4v7OhOMhutJ06S5jfimx735MwolqCF4ObHy+t85nInaSIJ/VYD00EBTjDicTnCEXuMaYWfM9YzOcde29sQXdq2rCBR6hmTBNfr5gSiEyN3YNbtpZkRRzsy61gzrrvH3MIUUwaqP1GkSFfDOrnZ+BNMAH2PmOEsqM6plH2NwPS7XRVFE9Twm29FELgCtcDl4xwRqJNl8brsXMzoEjT/069Ydml51ZGvvQtuFt3CILIDp1MNljWzJJFddCIH7u0YznAqiukaVFmNh+VI/LY4jBO3syn9wO7zTxdDNnEbbiwGzp/p0XPGyG457ntyjZTqJtFP1QJwMX1gQAqVrpXUi5bijol6BrnRZvAsFmh4oHyaNlRRawwO9XIlxQXF7PgqnT12hY4QrgOQ0Z6KDMq6lwHJapQ1h/Uej0UWiww38UX48+61292FkzjQvR8m6UX7jBCMhoHrB8x/ubupat67iBB9ICvjXHuo2aqZdnkKrJtrcCxaEUBr57wA8Q5PqSl7icgQbBrZZbhVINNtTIg9NpejjSrwBnoJbBFzentx12wORy8KryJloxaZrxJZXcinxTaBsQIGec7F2KEnF6IiLOnaY6MGc1WDpJa6KMCWVR1w1K2bIQLJA35ovRJaS/3PndHHlV/i+n7inXsQCY3XcuLYkLo6eHASKBZYZbov3V5XPvENd5DRJJhdhTlpYmLXeo/7tzJCAB3ZTqLYqkjwNJZYeGdG/BG/XsZJhmYtup4HcKTuG5pLXnfuoRQTRIjbAVjgWv8bZhW4UyveWgVZ7VppLtR/xXKFdP/RD1fznfhH8ZhFKcvwWiAdhQlEVdfffJd/ABEp6UllUOM/qJpD/gUl7pFfrOilV+gL39/hC6u4chgr9Vi+CsXJRtLkcI9WrnUoBIhOR5K3+p0fV+ovalXoDMAcUs0TjOh10ddwHaCGBXRV0gMvkb1xBaN6kPsOZ1airSiIT8hCP12KeE8WtafJyU+i8FhuYn5b2c7YIaWJ9OzcN3ZuTwc8axcTO1v5xOHm1P9H4C8PaJniV03+wDAlvYJhp+ga5eRQuJxRs9Y5MJGlfuKXOhU/gKVc47QU8yuEMr5cU0D1Qe05vjj3cC9K+f7mUTSnkassGZ9CuZDGa94mtzvp1O0/I9c08+FR7ZNtplZ5xOXE+sgWH94A9ej1incjyTG5c5TagXjBt96XeSLXa8Y8V4nFaZhw0tYwBjKPlh6WFVZp2AdKVQYvl6l4V+ZqK/k/81Xc36AYh49ihQStyj+AGZvIPky00QmYaQELaEEVs9va7sT7xH/TWFBDQQAInA3XJd3wYKqsvRKygiUhlXIjxbOj/WkzbDl3E+n8WK6tuR2DXag+zyaaF6WxuzsLxsA1kSahIdjmzz9O2FsVV35VIi3jvOoiPiposQFoWmEQ4lIYhYLINrflD/QgDS2j7Jydaniv7Bu/KPbk4Atc2lf3ltfp/04s9ZC1paxZe88aavyoqwYZbL2gPo9bBAPwRajMECke0/MeF1gqHjoSikRNfhhNuPcpj6dzv47IznUIzZO3JlpFwDr22XQ7FEiZO/fvMWO71l5npyUo02/XYrQX/FMzFKfMPGed9L78fS+gOai7IETajcE87RFuNzK6hg4navSY31xQN7JuN8L+BhVYdWKabLeIAYeOxxclizD3nK9paRYqBd+hT7/pMuuDvDIbjJVHyEZpmhxHRgzjmt9RFj+fMLyCZP0qIgK+Kibsw6W5cIa9k2gqpzWIFtPnl5H8qd+4Z9v/k4bB87pC1rasMP9t5nWK4aQfl7mSWChHQPWzWfH3rOP4xMxZH1BIB5CPIdZVDW7Zdj0jpiktxli8OoEmS63L1pm2/b7aPtA8KP9uugqr0bGZqAe5sf1EoLTAho5hyotwlKubknbOqBouhQoxqUzAkKpu6r/mu1i7k4G5C286YF9DlnMDEQSoJwWYUBs1CL6y9gAsanMQhINCfRGsbvK+WIch43cGHRSR5XYulfdDuHJWeGLqOULxt5ZifjDNG27qE25EukIen9e+vVTR9IQWxaaLwctn6JG9nk1xpeNlwEVepzOYg5wtmU7/ZN+NeKsVyMqJKvDhOY9cozM6RgD3zMHgrqnXJDgwByZ/XI3BuBvJidi9iwkWq5xg5HoH+l7uoFmwacO3MnYIc7LIQU9gtCWHldaM73ZP+zN00QanFhkvmnBjhmBmGjwux1MK4VilWk2EYvVmt67kZNhgvfErbATUxfvaTW/yc5Dp2Vrxhu/WpnBSnWAuCnOySGXQoV3yI0sEMaMVe/Xpd5ZScR/aaLOO7HqLpvD2c/E43sxjF5ZTe1EQ5ekV+RFNu7WVpgUulUfRRJhBNY6s1Dl9Xobozcu8UNXid6+ptNOQACPhfE9MO7Yfbm7qBhuJQJrHH1KL6boXY4C4wInUK8LhqzPoD8VD+rZ2F9rw2X4iPy8i0a/h/n1iaIR7aM+lcubJCasZ/BMCcq0aywte8g5FvFiVgnTVPhFsBlAfRkivRgHyT4yJ4NmTcUV8j894cx0yyOfFOIL2oS+mKaLQBfiErDKO+1tj14FmTPQaIuGZCE5sM5M78Du1vRlYtJIWjEsuzl6iUw8CTk2TaOnRskG+ez2VY149ynBuvWs3d7nGpPUgoSJ21ATIZdgnPNGSJhbBaDu0AJX3ciBtttR76P1ZHK/TYKiTJI5j1T2krtcIaB9Du2N/8VPeCSD47Igvyxo46BHfmbG2xV2sjo4qJfONoMNbFbQfDI5thalksz19daGogyP/SB6K3RuexaX3gnDVQ11BIuBuNFfkg5uhQcmaiVqtidI9Efa5C7bQP6qU/aXzPz/+pUm+ViPjL/iRI6lCCtJ2qXhYM3ItOUQUqxGSjKsdLZkyS9reQHXeo+e1xiqGSq2fRQ6I8m84Mzbg07Ln9RNyrmXDEDNhXDz0JrWFlabxJUvmbMTx58WqqzfGH7C81GWZhgXI0OF5+9n06/LnrpIF8gDVGtub2mZCxZE5G86CAZQP6B5aiH261doS6vsOKKfzaHOEp6wpc+cmDNuzhnth4lGQ0vmte5CeH5XpTQ2rdJHiWec9KM3dvf0KACBStBO4c6E9w88UgzK1sO1XvhFrSobZ9JKlJSk5BgH8StdEEEUC8OO7DmVlBznog5OExOlUt/ZnxXCmZBInqa7tVoJMtqMiA5esY5/JQXn87KeBTS216H70Fa0sFyGdg6z1E/3pkolOAjOR7vSzIMElP7PyDScfNQedstotab8ESIThVGysTfYOPEzoVcnIzU0ZYiBbsR4kIwbLQjQ4ejcnbjFpzJns+juD3SF4ZNqIPS7n6q3SfpQ4KWwBPttkLEnZfb79z2IV0OyYCIvw09zseWGnrzeXfugTj6dQ9lEr4vnMXqICAte4aZ8Jf8KOPe6HVl2X/zzXksAmrPw+yFW3i1HcLxfrxysuXcCGyJEFtYm++VC7zprbLigg37ngyJN/nZmz+GuV0Jl9DyyAPLzc1qIwKdU4hz2s20HZSgU1klPxJB46GoXaYRdTmlSkjYVef5oJp+IZXsDpVhS/FLPauMo0XnL2Vlle3VPmP/dD23VdeKK0P4pkfhcAc/Lxp3RjG2XNWg38Ieru9d31ywstxkyUGTorgFSCdTKMQ6R8kVFvtitJVJmJjidjmB8A+fv9lOjPFZvzgL2Vvhgw0tg6/ZT4Pg8T9sXrO/8zjOLTXgMSxtqGSjbQNJsdGW9SLkh1rk4XY51w3OIM0JoX1XVZBUa6e+ScDyBwvrXmkl6KCaRBlMi4QcHOhVswcq6i/0Bo7D5W6ageSBYcfDQbpn4mShgsVul6PfZF51xuwiznW0CGfSSdD74IuFI5o+kflLDjf+4SYn/zWfkiCODkbsdADPdkZ9xSV1ytYXMtBN1g3NHxESQ81P9IlYVxpy2cvHHFCaS1dcMiBJMQ3Cs1YfuqWadMk8kkrQIv7t56HHpiaShJ6n9Lfjiu6mnSgsiLiB/+09ip+TZC0JgODvLuC1FA36IbifuuWqQtXJjunqTtMNrSucV9BcFBdnEQLrzrc3DcUIOqwoydVwam4/J9nXx+RCrlpa1D1XWY6yfIGs94YsshSaXuuJeiBn7cS2YT7jnxbaSP8jnRfu04HQh+E/VtunCrCBSDBPaJGfTTcg7LdrjLwcKpqC9jlJ/Z/BVo9f5RJUoqI/0YO8MZeDLtnDAMIcRkqRnSFL6VN0GFwhpj8Zs9VV8lEEChxq2QeyFNDYLiXVxRDAFwUg4HJWhHuhZPTlZX6SZgpwSt7XrvjdVGFqQtq1K9bbma4BdG3uLrGWzcs1qNgkV90a76jnYOmHCaLCJ6X3pmVpDxjaKAzJPTMq7zwEPewIvKFJXubBygqurZxVd3Rwk4QOylNv6LGTxEnVoseu0Dm8Ea703Ilg48hFuWCYoaOaJ8BRUUD1hNZBmX7q5zvlSClO4OO6yvNU0W6rXvNHHxq4eVem61tddeeH21CC2ir5QmxEO0F4bhzG6q6pR5+XtxLbocmh6+7MNXFjyCVvNJHBVF9WsqqZ3/zPI9SyyCDko3OVMx6c/O7//tbaIcKbefeBz9OIZTNQBg4NPQisqpRZIgowqdwjzXhsRDvf0iw8wMnVaNhZINvm3peymRjp2y/d+Q6DuCbthfifCkLOjgenTz8Jwi0puPpQgm6sDznvbukFVZySYXTfTRiyM9QW1EnzC0kDszPKdkOfvzh5t+I2XvjvSM+gGKVJpMwnNgHuILEOBXgLyhR3XuznStAdF0dgt6hyldgIJAzJyN+0LYjDrNPuFICzQuAVvaB5d0UuumZ7nAXQvxALKkeWuSSEyybLAnTCDCf63cx4iVJ+di3L3aGnN4rlQkp4DX/yZLd6RjKihZUs7ZEDOBbML9/y5tjhPO5JP9aoeBoO1cBCNIwqBTG8dBDYtWlt07TlIbElXCu+KrB6L8kbblA/oDac8LD6YTpwHjJFbRFM81CkPbZWBbjzFg8woSlkz8fmynNmm5FGcruh73BE39Q50xRBr9zwzyFzaFJVwFAYCbpbdDRJPOX4rAHTWAQHsYBUsNlTF2w/uIBkfe9U2zwArytpA9WwHqRVBMYaZ5zJc1G2VYZsxhtqGPMzoz+BiArUxiWGCX5X/IbG3BL4d674jQUYEeJgQ99i7IzdIlbVDxNrxgcxKWFu0CeQ/cQWo2KE8f5RZeQtXUgKL6KBs3Wm5mcVPPUeyxb3b5x7Rp1I3VrRSeAg2WS3CGdaKvso4y13Xor7pPxmaoA6V4qqnQxjiOFnsnAfGtWK8vkN7PZgTbSMYmPW7wJ/8OGfN/Co1VhW1Jk7c+4ug/hJW5ehLuE6fKurA/S1LuUR9kn2VKoiz85Yq4zfUpg1g4zCt7VpA82KLhpv39OCqVMTIRhWA6gBc8Gwn81+CxU7yiZIojQbWI9HsDfZYKFMb1A1o2ytGTzj1CdtmP/DJWJtM59h5/B4JfdWm39tKVxh+Nc06mEeGdPlLdwBa19r9Bpp4iCWYEEGxK4yQ4IscPlk0OWEKOe9H5YfryK1ZIH/qnFF0BLoinZXX2/+QUIhB8BU2mngoYS0/+cKNzQ4cCotpLIQrzTQSvQgVqBz9fPy9DdCetSCjVPPbh+YSn1kJflpNz0Oea6lI23aJuXn7ucnsSd3WmHHTJJ1O/ECkauUe4GM0b20EFdiCjx+E0ilpyVc41/c9EI0bymn6AuPdwe8iVz+scVD6ImkPCEAMA2080Q0+Xscg4b9hywoB6cSLwVbv7lsEvbMYF1ehSbiCkEzpRfi1k7ojzNOaO4tIVSmo+2xo1sBcrCAtwalFkps+17iJ2j2cLzHaDfjrkYxx37mW21bPXEellG5SPFK6kSdAbNbeoMiqR8LgXjrwabIag+izigIVQBz+vvh3RG6uqHDa1OpzU3OhmkG1jcTYwV9P9cm/HqM5A9off1I547IXLD1JXMcL0dCu/3DQyMpUAUNX4h8Aey6yR155I9WkdArRaPmH1NGN4aUNWQyqA3znRY0sb0X8jAqDDeawDoYe4tPeNgrjpk1rMUiCasedsRJtkKu/txms5ogsNrav00lAW6Dwo17CrGoKiuv6mhsVH/YI/5aDjFzdvMoruoTStTtx+G2RAy6f0WIaTYRCvBAfMU6gbFGVgIvLXPsKIaZvcx/xcyQPozXQfvbboBG/TRNuvp0PdIMC1LTnHBG48/v9Cb+92iSDG38Kzg8OX6Fl0UF/0Xgw/PtdsTVv23Rnfm6Ti1y8N81ApxCVt6GbiD1lFEDvdjg
Variant 2
DifficultyLevel
737
Question
Gene has been shopping at the farmers' market to buy fruit.
He bought twice as many apples as pears, and 5 times as many pears as bananas.
He has 8 more pears than bananas.
How many apples did he buy?
Worked Solution
Let A = number of apples
Let P = number of pears
Let B = number of bananas
Express the information in 3 equations:
|
|
A |
= 2P ... (1) |
P |
= 5B … (2) |
8 |
= P−B ... (3) |
Substitute P=5B into (3)
|
|
8 |
= 5B−B |
4B |
= 8 |
B |
= 2 |
Number of bananas = 2
Number of pears = 5×2=10
|
|
∴ Number of apples |
= 2×10 |
|
= 20 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Gene has been shopping at the farmers' market to buy fruit.
He bought twice as many apples as pears, and 5 times as many pears as bananas.
He has 8 more pears than bananas.
How many apples did he buy? |
workedSolution | Let $\ A$ = number of apples
Let $\ P$ = number of pears
Let $\ B$ = number of bananas
sm_nogap Express the information in 3 equations:
>| | |
| ------------: | ---------- |
| $A$ | \= $2P\ ... \ (1)$ |
| $P$ | \= $5B \ … \ (2)$ |
| 8 | \= $P - B$ ... $\ (3)$ |
sm_nogap Substitute $\ P = 5B$ into (3)
>| | |
| -------------: | ---------- |
| 8| \= $5B - B$ |
| $4B$ | \= 8 |
| $B$ | \= 2 |
Number of bananas = 2
Number of pears = $5 \times 2 =10$
| | |
| ------------- | ---------- |
| $\therefore$ Number of apples | \= $2 \times 10$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 20 | |
U2FsdGVkX1/QRim/tpMfCStf5Y9pqRKSnubMHbL6Tu5J43FDASIRaL47hT1jM+2RXCv/d4XVkfhodlkfYVCei87PIbD9hshaOat9hOoK1aIhwk1Naz8H5lre+nqWFSPNBadH838Z9DxJHWRlCsC/muCaCOy6HCkCnbPJNDXyUxorIK9BB7XmljzqULvcpF7rakRLfwqW+z1j5EdvJGQa2xHpLr3zO117PSVW1ni/4J4E5fF9X4Srf6FRhwz1SAHxNEPXOSDmQhCusgE4WsOsxRkpO9yw+2NM7de7/MsbxrQYxLIVSV1DWtFNRbwlvC4ipYU72Mea0WmmqkfCg7uVGAx5j0c6DkIB68xI2DwSr0+zWBLgGnisr0WIO9r/vzAX8MlWWVP9bMIkKXT0+F0m/A/mKBE8HMreN06eEWBKRYpq8IJmatjrRVXPJi6ILnMojxl3MIiMyAMJyXgaLzxCPYCYrx8Ah7k977zU1wgp04NNBleJvG/pj2B4b8T2OlEtVTKeCVVa000oaKR4cF6bZoRElSWCJJv84iTJsZLe0N2Li0eKafRIwUPDxqKYMiAZcvjqAvjPuTqeBhrqNQfca7898fmzBib+UddXHqSq5W0WV0Owtgrl6XdtErC4WxVF5qiaRSI7v8XHFI7EQtE6/7awQQwfP5+psok3nfs3zigE2QgMYvv5xHD74hxS0HbO2lQQTb0DN0w9f8BwbrW8fR9hLY1mAF2flEfmINbLGlN1bXqOV1UO7z6jyA4sFMBTc1kth4/nkZ+K7WzXdX9QM+dxBCKnRJVzXG/HBjV102PWKoLiYRWbDdOHj0XPm5S6EGmHCXa0bK4mHgWy4AArZzEU7qaqsEJNbAtxsBV5LbHfQcVaWgiH8qcZmfJyw/UySTPfFFqpOJqC901ktBdYouo/h0nD1e3BA5EerlFEWDoNcEzTAc5J1QcCAYEFkzcdR6n8cO0jcGjE0UGExVwgVwOvXyeyj9ueKBa88vowYBh7HlLdqMxfnw2eiSzihr/9kPFzao82vBLbpos8vuawvdHl4Us9dWRJgfEX6axjLLSLPXXwC6gBgQGRnmj++trvpfrhhLifr5Ypem0Xl6XWouwiZRo/TU5EN6V5+PeTs9rN7jagOOIeWVLZXZG3EqPHtHBruAc2SffrrEmbCmIopJwelVmEPpmHTLcrnvTHsewAp0VecpHZhrvL6CL/iKZVpPEuJiNj9wpz5dg7SrqU1hYMseUg6yjAzifjiCKQYsnWKp0oAqCNYtD7oyrus850kMLJsup7FzvecikMInd2XcBdG2AuFZA3PFbG/YfrPN7Gzi22h/WNe8bnzvCTZ0YJLpWARtaXYnkcfvzRjIM0B9yyaWQegd9KOczim96SetWNlzhOU1JsNWhBMbQslasa+OTDGLG6vJwLgChqaSZR+mTQ0JW4Bz3/Cxbh6Y34pQsYwahWSfIXbp9gx89w+x0w0K4Z7RURHjQ7jy1PlcwTR+cv94UA+ET6axGmmBsVAIq+Urtn5rRLJ8mS/vdSmjVoFDMsWyo702JudYgBL3Anq0thmpvPw3ThkbdOlvcgflJvrNZmOvY75IvPzsgBv9Sj14IsaYqukeCONypSNrwIsLqG7S3ItXG8Pd1CVMGHgNxaTXOsqyOLwVqgMqXWHoUZMyNTAa1O2a1ju1DUw9rjIPXXS2C2wxg57pA9foXkqerFPN9ePrIMeOVOk/PB+4jbDnyACY1pWKuMq635oLji3B4eFihSYKZHWI/8ld4G4E6Ph2+0jdwcbhJbajGXgZiEB/MYiE5mbLv5GvPd9I1GQP3PSpZHZ/W1qwg7FF18cC20p1fjsMlNMoEsCAcZ4UuFVTTMPPx7EoeMw6bpHPetkyhbutCsqEd+/0rVuanVC/fQL4mSeaJFqkb5fbEOYTxnstfj3FyeXZCQg99dEWFigwowBKUAjZkSLZolnJQUX+zIZaxcIXq9G5n3o/rqkGm+zl4OKIRhwDDSAzYsi0/hxqGrj4MYktJD/mBs9EsKmMjZMfvmn6auq80qa9RN1vT2eeocQyXqPZcnqMa1hcwXapAiLmkabLOjgfuLypD7ZBRZ9r+jCjqmaBhPCFjhOlWBhp9nS/Ym49Fkn0mM4z8IRJgLKBsXSt7BLqPB6Y8tw7X878a9LH4kwpMveYJdEUdfqs7CqKLGclZaa/eX/6CqrmmRUZSXbC10sWI1kH8dwyCWXSyZ/JFZiEiXwKdUfsoQwhipVhLhqf1VtprlV9OsSTMb9PDEj2RdHcCO0qt2URINZ88pPhInxkf1bHmANfcFkzyO2vC7/BPQd71sfJHnL6pv0ZkOw9rjvTm5nsrDCfe0z9TCq1j1kvaFxDdOC9bAHbKktb+OIJse/oVjZrUPwx5Dao85iX8fjOTU1hUTCNvILJsWxK0FZnEwFuowipEP84s2VO3HSR8r+1VP1iZH06Y1aw69Wk+g6xLtvd7MyYSm1ejUjqVXNQP6FGCzXUj1hzOkeLQNHNk4Prl6WsxMllqTc5ImCEOVLTeIisP9FfpAtKWJcFMfFC3A+CPuwxCzh2/G6fXvXvPDR6P9ibrsnmsuRsUBUD7L5xYvP+pIM1rXySt/siTy89Yr7NDqSWxtMrLNvGeRUTxZaTJhhqiSoAAA+zr6ZT6egY5cUKP/E57eSP3KAKESpwe2dce0K1gHlJvIXBpocRxfD8CaHWD2NalNqUXEocnqovjPwlyNAscpNdjaCAbzOdiImSVYPhB5PdEVXWdH5Ubc6oAJyp/hjJLky5XJu4iNXDQ4URkmFoqXiZ9r3J7TxhxvDd6JhcTdLYgr/Ka2pzTFVymTmi2X/cdnqheTf6jTnR/IHVbEtziP1BLgDlp0cqkvuIz/eGU4NQpYpswSOmS2tliQAUjVfaQ2q9FgGw6UekyFcBJtpmpMU7ZrP10uXgcvtE9I6M+zwjx3Z3/tnY906SQWum0UGbPBDYMAjoTaMoJyLGqECfRitFpf8HrNC6vbB4dNLWws5OMlgSK8U747DlNfyvGBe0U4NQl7R0d+UAdj5i2wJZfBWCppV7e3sg7zLf196NagLPhEEGw7f6UuF1RfRXaLIySDVZu5MLtIji3Ch1TF8+K3WgUBipXGpll1QScQAGOUgfJ0oqWdosSCymTgcrsnUcv2yg7QNtw/dNo/ECwP84xIc1AueI3erRQU4SaDxSZdOk1e76kYA0W5CJI9XRpZaQ0RrRnoR6j16ara72ufcICR1yo93/3AN2ZBmVlJXonnxDWMbwjFTATVT6fyE4kojO+tTIkgMEg94VmZr1M4fyB00Xj48ZQzq4qN3PPW6eMHbBI472xh+bpI303ZjbRMaqhlR4nLwBVahPqevU0xcY/h0odo/5xGGebM2UZsnsa6UePeF/Mlv7eMuZ1VnierdjTKaR8VFWarHYoJH3AAcuMgBdikvvbAoMUD34dyxG4qaJwplYAzcdJdX1gKY2KwQuiwT6JTG/OOQh/J9F9QPcXk4fSC7VeOOeytbqZYz79sSO6w3nkrTeqzjS4sdfLaA9caOarVIAzAZctaOyFOIq+eMTlGwBuFMfGTH62JHd5B7qThgStLZaKXS/r65jgoqKGSDZMJwIx4Zn13K4ZmtB8UNH1lsFMPWLdJNy2EzFD5O7ZV6SSY0o0TqdoUU/Lt+aalxkVBkXmM6WsuN52sVabRZZPeJCd9pRZs6ZIyAQsaRMJrhTxUlkXyo1lI/UbQE85LCRR35e5lN5+1uTVNu34Dl2vRW2ac6kjOxJBV5HxC5a+3p4fsw/cMmL/5m3u+8q+BF1xuqW4KwQlj5tJ8EqOVIYIlIu/qFDxFptkJfqzHnF+rMTUHzDFgWkEZOCbt8Qb6Ya2udbRiT3sMdkLrnNnbHvREzEt92e1j2NRZxVyz7E/Niv5af0xJ+BHX7SMvsF2RXyq54KJdfuXAw6eDu2GRSJFYTkno3wIOIiUPL0jnd0ipTkhLOezelajPcQTK9fexIuOMGTp3yRmBmfvJl/pvG6bcq9cc8HcNbd1tTB4mUB3+CMWVbOdONgMI0HAPid4hbfJqcgZcjir/5F0a0bWN8vFzm9obbtNHqQGSaoYi9qx5u7XX21DB8EtRlpbStbbaKDOhQbDc5+l6kDzv5lr2nwJYk4C2nPcfO8EfUmNsjlq0SpGhyQyfdh4Hp2YW0BxFsz0SiiJJtf2s2pZF9WOjerKmpB0Qmy6FmSJ/zaocDaZzWC1bR0kOd3bCeHfzMtKFqjRQ84SvvBEd0B+NKrmROx5vPOT5B0ijTrir5AJS5sMBOa/Xcx6juMApZw14c1J3f7uIJxXNvr1mXZ3udXgYnttEyt64PijF8FC7QK2S7SFJtCwqGvsJvrWTcDrQOX1VTSP2g6IcV/LfFrvKQVqk6HbAgu6+IJziJKwc2ADrfdvFXjsTbpZt+9OtXQZLOFSR5oD3BUyxQruqAA6dHNQOeYdpjcx0S8rYZyzYM2Yohn21h/Hr4G8JdxgCVn68cX2darUYZx0eXKqMiFpTXIdY+zhrvNZrdYXukCCu1LTKMjLas4LJAa577RKCsgEry82+qgYrWXrbQvw/l0h1NVa1FBv8juXNTUxcn4dm+C0jVPM1f2h+qagDqiCZxoXIgMa81zzm+2Cb9c9mvtvxGjq+Dpsy3wq5CegqDcR3mt6cUQJrmM+PowVGsNWWd6mBjo4ppD5RjXi39qekuCZG7phF2cBl7oeNmSf8pU/U3VQqQu/k7YjghOS89DYrvEBu2Zv8/44aVG22xecCrQjeOOYrH/9DHJbwpxVGpzBVw1o9T/9xgd86AbuftnZiMYPoX0yHGJHRet5RkpCqHTA5udJZoBQFJWIVPJeVr5Y+0Qi9Hu53hqj2uJcnrnGupztdKSL0yAmh25Bww60gJtmWWb/Xrsi8Ts4tzXcU9K9iAGXm+7eDW62gqNoC14S7UwJIJMO85wFW2/OuSff9cVyu9/1GzZqRzfQyHWzmztC9vuyavzZ/5vKvb66REwXgGCqXFQSUCkQSrXYx/s8AJGTjKfbTdwS10HYaxvvBTIvzYXOPdzCnEgzIjFh8YDsEZcHmDlMetDwwKGKaBOgYlXGPGGA9FsoOty3l4tTDJzCWkTLR8OkzedFfmRCD7xt7QwdWOW94r5nBCELTmsHlX1U9zQgT9Ifciadj65fFuRyW9Abj+kM92ltej8cxoB6JK9tTC9Y5cRwMlXgfah+cXpM/18xAbPh+ibh0kYdlDpG7A30oUJT6XG8T9ZArghtnkSSErHxGhKd3ZPI+RTbqleab72ybD+CASHWaT/UABY4/YJGE6mEji1e1FyekXIj2b5nagKmmlvGo5AILlhNFd2Ggp37STbc4I/tZ/UUROz+CaZbXvKqj3tMI00L/eXK3JBZZNheERVUQMb5IX9kWJt8f+Nud/ncRzV5+ViUwsV3YKZHhhaWoaTzJcfeS0uJbhkF9ekkUtshxzFCpcEu7G/fXtF+O1p+rgcCOP3WZZBUKcoPDEwDrlZMmCXw0m+/6JGdh5vJSQtcXSZddoe9hL/estaRPCrU3iucsO3PjNakb8PV+EfPZQgfvKXqDBp8AnbaXz/SfM4Kugp3JKg7+q+jJfKgEMP5qUwLeoGkRaYGz2YJQ1JaUGCTN181GRw7yZsYEkS0U7Ffiw+9V7G82vID764i8JicDMi1a9NTr88M/zZuauQBGeDvrRW4LbNOxemTSaTj2cpXSrJ9dR9SbxfnGrsT8K1tBjw6BRswG/+1tk1U3PVFnR90fvOAH8DZ8TozjU7nn5KwuL6VM/5Q+0JB3jFFtoGf+MHfbnAE3Qa1S4t11ROdOIPJ52jszB/OkwFGpgLrkomAoEhfRi8w5f0k4woPYURpAjVgGhIhAFU5byYK3cH/laBbvL/exFyZd26riyIqIEwfbmZdRZ357h3ESH8lUHpM0MGV4sH1LRrDmCwLsto93m4PkK3kRDneXdVoB4wjpxaz+mjASajgHaP8UumHL69HULM+23JUCM9dsbeBd0GI51RWR9XJe20oZgkTpc8j+W3XUlDSTztn+go/22YCiasGkWLqw4CKrzHEwQ85GH1b9zfRvPzcg3Y1OtERg8LTLnsAwL+Hmb2hZ2LvVRlQyEWsP8y18qSLGxi4uT3pPRV69ltjiEmNAEMomaQTMRw/6sXbhEDm5IqKXcStAO+eHAIKW5GhOojQ3+go4gu/C5mnIucR5WAOY6eRZocH2ow1pvpt7nqmcdgViJvWx0drSmGC0kYWGhqsQbLz8bDAfvaT/xBmPxAd7igK9zGxui24659PhsZe1ScdZ3tXnKJq3ULolBT83PeQLmzqsMHroTmtT7lTJ2MgIQh2mRcZBhQaEm3saO6+6fTykBMoIEb8gjAQBmtnVepkCbQMppvcTO8gd7AZOnmt7QW9XVCoiwHf2XxMk3PAC7sDE+KIT1KR/vzUsBAhvQD8yiyST7HgWUJUjXdv7wpUBwe8Yvb2kkSPSf6sOKaESMygY/EO3omF29EbOuUr22xre+O9jsg2vxVj+8OUQAWqSirv3XAc5tHOJsHwHH5503vQKC4N4sNZbzZZN7O82BqZ1+tMZTL8PQidv/hkh+pUg+pqAyeHTrzNouxG/GV8UnO+tzaSCBOglFRKT/8hiBB3EemJzlTa4q53BSHxCJwmgXNtZlSK6BoFh8/wl+nQMztQXLn61kW+ZQO2mjBc8KFcjQ25qryko/M2p8rxIfAbQ4HN7IOYhnOHb6XkgaHCeAfLdOnPkfHsYE7Y+G4f6wyUgLdx4N2HXtMgP/RjqUewho3VFEjnd+lwcHJmDEKLH3zsjvORXDI4lqeW7+741bPDA89of/Sr1O9SzjRbt7vDHQAfAbKE665wrjddqSgWMJcd8TOVdlFhD+jhCaC5s8eavMVoFatdZVUST9jsWSSL0FRtVbBwrSkNJhPalNFBEAaEotMlHl17tKuOOJclIZ95EO/oe/Gv9li6hUBf/QxuZbgUvnBpsCOrxpLbt3UW1G8KmdM42DLhBeT8uJXaAOlI3fMg+K8pkGvHhHoAU53oLzPTjCpL2JNfr/J5E0R+t1uNU38090l5QwEEODU2iJqwfKRocD2STqK+MxZZxyBLfOuH1LKDuHcDYpDLWo+BnFPi9tpkNlCNBM365RppVRtiVvIGXl223mShkosWx7cQ7DYZ+pG4LVd5saKE69pzTsg2qLm/zhdvoBD2v+Ziuub2IWU6AhjnxJl43xpGVwnfvPfQfo8LNT372V/JZFbQg8tfxM4V5nfTjWguthz/KmU1CKRoR3A+JJQA37OKhDEch6q/12KuQjDxoaguqHLyVx4WHgqRPtvsajSvGx6RwvAkK+MXeTy/GUlOZmUUC5XqweP59IG9IgMdewBbPKcPpHVNO3OZHk2JEBTVSb2X/IcSrG4uC6G9+QHWVaD35oT7UlWfkoEtjry1XTtHHzB5r3pe0zIfdEIssi7xQ0PEHo7Uc9/Mfk9dhqm0Y59ggcRNghyULTnpD8c0EV9eIJFjNfCSc9gEUeTNbHaEH/tSGASuVv/eA5rhl2Z4ZKmSHhRworbcmcepv82JQDPrBc+qKAxyYp1lDUbRigC0IL/jNYdzdIR+xdT7nKcYFL5fAAbNYOYyyS5bMZFHvd03l/wXcsRRbWQQSCSTJj4gBX9f+l6CYtG5TF0MNqlEPtGg7I9BCNcnKDWfBI6RPL1bCnP4vihMrhOulJttZz2+3sMpkUf7MTeoBYP0N/wVRHqp285QQeIKfLDO28WnRy857+2h4xZr0djmBlBwV9m9SpdtpcR53hoWHJ0hBhCdO7HxtuzmiA7ns+0lKQ1sMoyr9PE1HWp2dm2M+M5gooPARJiD8Vo/HyVDNXA+V/G0rNPrsCDKv1dKaaccKkTGJW0AdnXK2p8NwyqIe1BoGb17TPSmo9FVwhhDs+CYXxpM36058OgXxHKWSWnSD532EM4YzZrRsPhObSJ+UDjuI9pbyg9P9t70GANef8hVSFPGllAT/TCdkIH4ipynWoqfRSYqrh+7nLkkow5hHRQ/60pMEc8YUgBU52gg4SSU0G2sdQNJ6oSi5cokUWSR3kGxqvvRxtXL0AYBsRL3DVBAhLJ0qyuEkvkWTs+koxHBT8paDXv/V5jiC0lYYtiz/WNwOEgZNiCnzWboSbARswtuD1NNvNZxfnkkwP6+kKoFe1/gWFsdzSXAInLrIvSpz+YFSTao1wYlVKGTWm1eLh1coAsALpj/by9+GGvsIsGcBFDvlL0Ds6jz5YfSm9iyJm0NWa6kBFtqrALDV3fMq0ku85bwzXlMduvx7Nlh9h1vV1nKmOUQ6JFhYXqbzZkmaakOoySV62O+2iTbbbNgjY2l8quKtzuxwdZLaLTh4DDfpIw+b4zHs3EHon+6E905WQVWEin+fXIE4fbBY+oumfko2fjPb8V9QI7pcI2Dy2M5KYFjdGrDnZL6+ybdBC1S8TSOMOj0YWQqYruBRHjsO2DN8ZZX3mvFPrYWys3j2QlQM5kYpYDCCpHGbt9RZ+sh9RsBSP24Ugmr5AmM8Ubp+yGEwR64CvGGH03sOP5dUGzcinzh6sqhiOALaJYm/3Taf/A6K9cTByNTCfBlfN6wcbeXPA/oWSolOe0By8TUHHVV/fhD6plooutcAxBNN6A7MFQ+U88j0r9bwrH+6mQf4tO+uqoZvnaXDkU46qtMkHTp3QFOlkEIBFUSFH9aWRLdWDKu1EuRdTrKvKSHmUFZ2nyDUULO8PFOtxKfGfYF9+gwfBhOo4X2pG6fzi/3WmeMfB3CmtVVE/Quamo6xefhc8Ee9uO//jrWflhKQCqn9fmynaxSFuZGIaBCWkeZ9xiP5hBFVdwWTKoxwCoJ5yJQXZvHGpfLVmr1UEPuAcZ7D4do+DZsoWQqtwlJN+wvVhxwc0yECPfD/MwS0mq78EmGu/QqkF0iiB+CxdocVCG8nn/G9ZPlVvpLYdlqS/wq0YtQwKr1X3kVurfBul1oY5vv2a0Qgk/YTiKxMfbX+Uw7BYOINI7IgY9UEGF8r2H7NU+/YB9LXZ4xR5QDEgdL8/7pIidoCpW0GFM3zn/lVjbyCPWtTEYLSt4BQlLsLhLT/zxgTa4Rt7vCQeGHnWb7RWmE9T10/cCXKdI5ZLhTHsYjs8TWM9s29GrTSf7a+kdyvtsVgALVAXnheyhPSQVr1km/OXiYllDHhrygVy7fDRrkodmpUebiB3jENMgCgVhdiIEBK8+DJoB/k2mN87AR+rS4yE1uQUf8z41zAUAZyGp24IGbjAOjcdiSsR5Wiy0EUmBJRZgy8W8TI6ArLz13ccA6DES0bGUYWUNYu85PuSofPnfKaoFndyjSt89QlcP8Bd5JPruJ7ZjuowjH2E4j5UtgRFZB/Uu2r0gJMzvhnerL0LAWE8J+4w0MlGttncxT6W1YedXSiZN5hNVglOuKwFx9ElYjaQ93p4NFBGUESfOwN8RLkZZO8cP1Af0muGPGIf+lej85otdnStUR0X2ntDNAD4eSFvcwZVnSFLEtYrAZaoqFd7ghsK97n2pJjGznFWwRy6790XD913ieY1kc9gMXe/tUOeGTtpiEyory5O0/dkt2JFCDGnHCLQ0FGCvS/JfhdSIXMfwe+c76DOoERpSYUR+jTnwzHS3hVozDsH27nY1WldFEk3GBmjzlPhU2HVKAPwFOZQ8myEAKhoSH0QIvPdlXryTPJ5pBOipZ2XSIEZ4CWZ3oENZj0ayRiuD9bRL7/zx74vtGjWYMD1EuOdoGNFPrG9iq6LsgctlVRbgt83OFeK2lAkqIbvnQ7x11x+0qYM6rus988fGNUHVppk7e/2PvjuHKP7E/Lk8MubDi8mjEoy9K3AE8EMRAPHMF0vcfC/Obnlj6bo5OeMDhHg6w1xQwOSwSQ4O3dvUdRPn5sqiD63Gg6XJccwC9Q1UlJwlqpu6VmJk3rP5BFCLJnqAIV+Li5H3VyxylVlUNYRslFyIvlrhUZUDLPXxZAFLrTmg0Y1Ck60EktnKBPMF5zDQcDt6MIlWrUn/z6tZo6wCHUDnpjTKKxTUG8AxxFblUCXzJAypRGHUBXmgArs2rJQviEA1VYf3HvDtv4qCFcAuejCMm2HskZxmQWSckM98691Oj1IpFTSl+HdTIRuChGuKIP3Vp9sBvbFU180g21Ft0cIEYXLhb48eGQK+XvRxz6aD3Gvu+LkF4uioGwlfAmoDhNZUGHfjsVbJR2+DPVOZbUh0ZmK9PQG45p4tIm9yCHsR//yjopyvRu05Hh4JIJh2eG0IsipdD7Kx7spDbJzH1kWzvHCqKD2hx+NYcp0mLSTQU3CMbz7X5/MlDFt85mzj8RSQdT8HbXaiPBFMGX//nEYu/If9mHJUQ7XH4pSRZGkjKxaAGJLfwWhbi96TT7bl472h1rbPShX/rJV0snNUFWD+rfqOyf0q4M5BpLIhYeqSlmqwhx5Kl5EnjlxnkcyJNEmq7tZCgdHL/vMNmoRZhgX9yrlXLhMxrwMNb7xGXd1x3a4Yf45LLp+f2e+SIm5wkEoW/S1Wz67oxC9vW76XPFvV00BkQ/u+OqDvf9nMvePbsCwmwapo3qyk99Kri6e4rJ8CEPlOWu21UT3VMbK63kwAZzWvHg/PwaAw0JyQN9C8HUNZY+fhIAG+edTxZpbVeKs7d5eAxmCa+urOS0CTjz8CNuFoVfuRpzgpWGM1mtq9j340uw56hPjcoRFHpujy3jVBSAr/0W2CYPGqdVbri1prJ2dpyZXTrzVWUYetAK5fjMdpmvuaTI7I7Y/MhCYqc00P8UiJfqFzSAjE3Q+rN1R/M73/wOAYJaM9xUpYFZ3XJIp0MjjXVcsM8ga/vJQVx0EbNKHJroS2kLQ/5HPUmB7B/NtcQumlkPMyWGYLrGmC5lzqpVtFrq2AVEgTt2HdUz3+BUOqlqMcg7hkqn5Q77O3AvYR96ca/tt6mJIV2zXJLxFgQFHbtY5k0ZGXa2scxQpmVzZgAZkrh9t/BtNm1JxzFv7+GYy0rV3hOnKwHg3kN6sQv0wIJdqkrUX3bliatVF1OjpegPUtqxTCs1UmuZZiTBD2sp7xYRlGjNSsN9ExdtAtJRmJiQijb3sualYGcLa5PoAznztrJFY8QdkVy7r6JZYI80tEFhT+M4C+BkAfpCN6acuaECf/IlUXm646bWyMXyehGRsYWD5wOMDCcVAl96v2mJgAHzT+Z3Hbarb/QHx+LFB3SqfGErUj9bSYazCp1CwDih05Voo9axUDllJ5iQI1yGfVemyvp+2o9owJSs/bZ86d3Tj6I+27K6/fAfmdvGO3miqA0tD0E8gC1hpUnNN+H3omfD1oSyTWwcPQU/UI2Tju+pLa7qEmBrXeZAtC42CMY09Sd42aFGLbZCUTroKpBfzt7Bw0NFiIBa44+8mJ3Rcl1CS9rtH5RxO0sSNj/HXpYXpxjPbqexuE9V0hh5UcABOckpjcfOa0Ul3L9jdvSXGtszb9nJA3V2+GmlcTIHZ8XtuouE3ewqLrFf8XaNDJcrwOVGb8cyp+hjHDkgmSJTapNhH/wOUz9wh2zsnIQsMrAmjJg1/zDP9SuKS3hlTLMx4zRHkahAxlb/xVLz4C2+sxghY6biDQzTtbSYW4VjrmOCd2u4Yr7JTaMKBrvxYvHcuQtlJ+Px7skZE0GGMw5ECGMd8A7D/VFZM9fL3p94QszgjtqWQQslKNLL0LZXO8wpv9v0DIbmEsBnYaCV/ichhVzpK5Gm+ZjJUM0mAjMnULF7lT3nzWU748Z0Hyx+jSYJYcLobAntQxwhP/q3jLJsFeWSduPH6lMkKhpzMOLv+xEr3pfJCglgxZ9NScXPQHhQAnCfvz2YIL6OOUp65bYvcRTIIs21CsTgl+BJPobG2U8yHhBIJWEuMV0/5V57LUCawAWPFof8GUKUYFAyIif5oKoUFkZpwQshZFrvCGhERw5j45DTLk09HDvqc3nf5XF6MW73U9WKOqni8vD/TiGT61uUjzbqaFEL/YyStxhmXofdgb/NgyG7LKPBL/SK+x/AAz5Uq2yPWSRA9yhV8E2rQClWsflNtpzkfkgsApd/G9MPD5+kdTtNPwNnPojz+n12HeHFp0ndX/uVOFKFknzukpSvS+zbEHWQz1DtbJrsaXSIKiGtshMfBXx/sywIPLx+/Mgi927RR0IxgATfzgLrvBqFErJFCBF53xg8lTOfKOAn8/vLoaHBn83q6T/iQ81nFci/opzFIzayfyfDXW2G+ZHQXsBBmg1R2kESLyTgNgg7HM5t59ZjTNe6JissZxTGc9zyO1k2Ug1XYcbWvFtafirr8C89ErLNkrXQeex4phWKXOqtC/iZDsXv7ofvnDp6CV+ezOMjhcEiWkXCxH/63p4ea5b9kuZMideTh4YjXzp6ZPsvFHXOzrlqQWAWDoLQFyTOQIKdVku7LbaXCHGJaOXDNJ5/JrnGIc/1YjJNVRVxnYXWSXz124KJPhrwf57M+nrm1a1n1MagjqKCIervvZnKgG8L784G9LdtYUHiuhB+kwY4psrxn4F9zxgfXVP5eUzKi8XimPs5a/ZZ2VM+s25GYIgSCj/H4QBlLzjJVTX7WhGdigDW5duL/Iy+CWiV9rCRur+GHlLocNh/1nf9Pzh37DpxF2Bu4wcxr0yTpfJiu9r5f/Npym3NSOUX1utv7BpjRYGapuJaX5GvNi2yaFNHpyYUmtpZ2DwNB0kqNP/OMVvnL4PyDPQjfdQ9ZmMtcGpTbfmHLwv5pcYx/CsUmRZVCLbD7NHU7uJACPF+pwSqFS9hAzfD7ONS6Gxp+P9DmOOF3nZLpWUUJpMoQvK2LSxx4wFity5YxTPYlODzlJCuv9z4DiiFhds68k+mt6N5+5m1trvCylJ/wq4GGmp2V+3Eza8MhKpGkhIeuMalyfBe1zxKdG/PDaz6bVY3ch0H4CqehTJ8Uy1WKrsbTEzPz7gQPzLtpNhZpvrTzptpuXGm4wid/TMNQZYHvoc+al9TfBBIfaJNO7gGqjhEFH3h4cu02R25UJgBlOFoYsbZd83D1niomIEj1T069TgfKPSw4LgiDDX0UvwUxIjb4dH6dwVt5XAtro7Ompb/h5rx2qr6Ys2mMSA4NRzdsqbUyi4K6bd3KISX5SUsqdljQxPLJTfjuIX7GOe2WgYdJaJJB1H4advxT8u7PCNI54Dq7Bk5IHJHnCb96Ss2nJ1dpRnaUPZK20et9Y7CiXaB30R9E5EU2vEjIenom1xVHSRrW+sUn1MJGjRqg2gY9uuI5bozvjFKz97zO6aZ/u5Ng84msdQbZ/JRnVJGouVzmVau9A9YYPJciPmW0XcbFKAkZucHkSBrL3oFoZaAr+jYtU3acVUK4FSHUpKrjBcung+3mPjixFfFKHrpVe7GUuw5ul4kLpwRLaIJ7uWUna9aEd0rH+umh797youNzcSQawVVXLqqQoJr/Qe+nkgQsmvw0QCDHhGZrofgqI90Ropws8uIYVmToFy4N6xugigZRf03N0NtHK7NkqgNvlpZmajijlmIvQ0IDSZtv62P3wT1kHz4ovGPEqKFcAE+id9UdwgWiNFzE0af6rOn8mv5BQjLnt7GobN6Qm10TgGCzTj8tmeg8Lzd9BnmkM8OTN2zAwwg9+QB992tu9ivVVJK5otQdTK+ak//SLgt19W1vhj2PvEaicBBf0ZbTMRc7rjZhJEJ7/PgR/upq6rOWti7OfcB9FB7WDQfRvb1Wy1T/V8aripW+GYC+iygblFW22PninvMleto0finZGx9YGk9rX7izob2hffFijLwCy3Ppzoz8mTJIS99iIs3eibrNno+cyq3+Xs2F20oroGkAevc6MRHnw93Z+7whUhrBQSO4/GqZPhFYqIbCGc5lHjmH69Gl8uvdF620AjiU1pX8f5lQ/oeGcX6/Y7JOfVzdYDXzgSvZOrcX8fm6NRtoesy7O8XhafFibGJndOpqMnWlgZhfAHHoD5RIsS0+04Hk1B36o+bsLg5kZmYwnP5iBHxbx4wdrIYiTfqyv96jTX9sFkwwRD7qRdnY9Fw3PK69H0BPPkLUTyA7wMOhH0uRBl6GpGGYkekXK13hnYEqUYq8ytfV8QUbUSyaqCLKMueY1FhjMDAs3pV/HCt0eJeccqr20IQ5F6E6p9Kzx0Xc+RZnLeuIIUweLp7CbdAQyqrFk6ol8fZyOpBxUSlO8GMZfG9BQcUJzDBuTutzoxUmIPkDfq/+nLIL0tpcaMIP5VkKfF7w4orWgsoFRv+5Wem6nrHD9L/aQd8lmuunxkH6MYUCbGS7VbqFuHOWdxbXeLVL3PYdENCHUoVzbqm+Efb7CP6lfF5OBrj8S/gehxCGgHnDh88Yf3QkZWhwmPEEZiFdMeRFdJ07WjYVT92Am+olqDzq+g70cXT9JmBdAXN3zeWVVylepJ5wbq+4d9juAsuPzV+u0/30FK1QeakF1r/2JbS5pBDuoVmbog8QICifAR8HqDvOq9cgxl994fDfagsSVzKb1LXKlMp1yBzt09SrWB2E8fTe71/Kcm4QVa9h8ngaxVkIwYu9tK8dVpJPxn/lPbVqCj6jV5af+y1iLUGChcPYJJYsDMi9Hf5dgEGdw2VNEjmFQ6GX5gQIffyNzEgGXoH4ON6w9vXtE9VSol6NdYZQUrxIb8ApcebigzH3UoZVLGWTMj6DR/ZY+eJquVdo520T7ER5FdJOb3JxVKXFEZc4rHVAUQ0mSSLOr5xd4ArJ7D992BVUi3FlyzDbxgFB1xnj6r93jNovMXI30G16JKK5bdIGSuamFtRcArlNcsniCusuXU8yGjONnm9lrCPAdNNFSd611/fIfO+SFz+EXF4Z5RLZdIWaHfCM7/TlMMTLmsRDbDNZhpoB+QPuNODaJRZCIPYfi5lEIaViwnvjpkyfqS4qUG0xwSukX5E/8OfAYvx0aI3oYcU+JMfz3RKRKZsR5LSbgu+FubVxK0MMjiK7o03gDKdbEMxT0IB/ERRLJn4Lwj9nM5AH7bCVrSj11L/Jr4DxIc0PGljT0JWUTqDVbdjaB3rAOA51llzHdsAeSZ2nQ1iygB0VEDWSKRdCGd/oyyaE2TT4a9ELrsEgZL/R7tzzKXpjYgx0CvSW7vZ+KGMN4f+pCEqosOetLosnj0lbqlyqN2VPEAOCKeNT1tNq5iMYem3vsO2sp2TXGs6XO+rK6P4DsWxuMEQI25+whIzCgZhWXKdl97JPMxFiBJ2XVprepVLxevkefjWUuHONVAvPYlepepWe3f09YGK4IZOZVrk5G+XRsdc9PKedbN95RrEjf4DTIeqVesVEJEXAsiO6XnE8AK9CxJVF3ZKxra+X+a4GdUsVP6iOMnqIbKFR2ZAch2sP1YNsFFH0O44PzyPgi+KACapJnzIpiy+eGF+khLXYcGRGj9g1Y/9HMXRsMR+PlM7UaGFpes9iQpqIQmNcIYtT/Oi3qUbhvmUabQ9LpgXyGJun0oZDRUkGKozYq84b3o6mC72K1dDfVun4esWwUSDDqdMptPRy8lnY43zQ6KbfdOp/zOJmV0hTl9Oid0xYkpseqSiIfGZ5fN9mRXLBzZtzWHC1ZGPZofs3xoLxgTz/9Y3REtO0FpmhNAxHr1ljmjqjVU7WA1nHvU45koTonXc8wI6dUenuot2tFRO+B3AoHdSIcEl5wW6o80EX1sLyv5cUMGY7fpqRwTzVUr/eVNydAQU+2+WHjrokM+y1G37B6vgf9l42SOTm12TIMPkMcVEbl1mAXkfw1Uj8L2JzOmZxSwbjA3VCcCMYaQ4lmhZhFUcyHe22ozyVw5NtYQ176DTBKQ/cMQFKifV9a8Jy56TnxSNOA4fPTSu4Pwh8PSeAwXR/a17gHOs9HPk1kr66YS8ZFoVhPux4cojWAXuzFAciHAM1FYb4fRMpDyAGh0opGdWzxjLX03DkjKDiOmmjv+moDDjqn/btYz827uMV32/KKOkaod6j2RxUJMBbg59XuaA92JPTpgOH8Pmeof3hyC/k/RG+tFffTUgk3t/uGuM/MuZ1GaIYWnZlJlCuiY520LsW6gs68er3vhg3YkMv69uaw9bCdy+7G66uyBpC4Il3hyuM5wxFpMHGsJXLZQUNLmM+tifG0ipT33Au1dspWHV2lgaAvoIUOpFIKSX9xS0yxoEHrbN7UHrqi9XFX/klFjO+yfCP4E70yXmK3t7okYeAvVEopW+W5G8jnHNDQmKDmGunp6vgiWOml8gHrd7tvSd/CJdBgu/yq+tNT4qsDg2PCHpGPhnZ0hKv+nrdpXHQpFf/Ie8zSL1ThfbKCLg/jAIGAkdgqfif2eh9+k0j9cV1ehJvCwyXEd7jHsLJek1u6ZR0Fk88p7hynbBMlhDr/y4/3rz3A6HTO9iOzt68ppexNQjUi2w3SRtriinIOPl5hoVsYRM8PBK7GE6fGcWdV5H0U17qWYm4sJ8AIAIAla41fM5eCDADKD6uZthoYoY0tdGjUKilx0I9kRCnzla8mLjrhJ7CziaqKG05vtrmUnOurvX2jKjVsRi7fi02eYt77JvYuLuVc0jNfOExv6Hqdopw7LMNh5ZiDqPBp5jd8nbF4hdsNZpvW6QKPKIggoVdk9wiW1vQtWQC4OgWP/iXn6khB+ZDQccIJf1CetgPSnWftsxrUHLwPpmXsMmRiO2BCd+pWMLHtnhwxpSUzBWBtXc+q9WhA4WOCbvHU2fuklB/+iWA4+HmKuTem5rqKUTDQxfdCjZwdJytFltq5PxDmj6VORTbahgX/5oa0lt+xK2u/Az8OCsD6kxDYU+ZOJoReWS30l1NeFA1xLhvsfcyAOQqpk5pJYhorNnsZB/WjBcrgRKTFPd+ZqOXWi0VsOTWHZSQ35SLz6VD+jwXSNIBfriuy9d+WHSUH/gI2gXZiq84je0cI7mad1SuNhucZ6nBzRf4HxNbZPsrhzUF6MvCDZuW0kK4Ctq5T/uk1n2p77gITbErxYS1OVE6O0iWclQPn3wn7DuyEyCAJSikJT8jLPNBltXuttAifxdaD3tcNRzNiNRFLAs6sHJ/a1Afh/ldp8G6JucZ8JJydDcv37782jxrie5NbsujZowzRpQdb6NUSqc07UHzx+kHqv9t0zEaRTVwOfn1fl4EAgxizRa88OwudWW7aUItpmK+zFzWvcRIujqUXRy6rVlOEtnyNkghv7Zlaj50/I/7qV0kJAw5GXVZOx6VF2RQM4IJn+sIjp+VFh52ujQm4yYa+VkxKgQ+dhnCQNTHFG8nHlnq47RRFA62b5WYJtKfH8mHsux3X3A8EwwDqiPyoHGm23jYsZVUGJsTGdQLBB7TW2OZ9+ws04sUu0v1gnxqxCtysXNYV5D4DWqsjneAgcpnyJ1WiVOY3aSgDAriaaaUj9YzZeWhn/EcQ0qpRJazfTUsXOh2nhcf7otLK8LQlKt4RDKbt7KgW0oWvXp9pXenon54J735j4TPx4gJzxJ1cxiuy2EIdXKwvb3b6uSzeuPiXP0FOVS3mPduZ9YU9fFcjk1O5KZyQRUKO1UCEaq/wP4uGKP3pCUfmOtLXwldrL68SeuaIMcLQ/ZI/nWglwNeWK11NPDP6wF+Su5Alu4HPmwH6TLRU324/A24SxnA48FlZ1Zt23T0IT/NXZqcqSDZgoktsijlZZJ+GV0yu5eZjih6F8e5yVWZOpIEBxdfW8Pq5KNINZL6HhRSMhPaFQrrLpV/VSphuyVWMBpnC7YB5BvpgCPPWyq
Variant 3
DifficultyLevel
739
Question
Christian collects Formula One model racing cars.
His collection has three times as many Ferraris as McLarens, and two times as many McLarens as Alfa Romeos.
Christian's collection has 3 more McLarens than Alfa Romeos.
How many Formula One model racing cars are in Christian's collection?
Worked Solution
Let F = number of Ferraris
Let M = number of McLarens
Let A = number of Alfa Romeos
Express the information in 3 equations:
|
|
F |
= 3M ... (1) |
M |
= 2A … (2) |
3 |
= M−A ... (3) |
Substitute M=2A into (3)
|
|
3 |
= 2A−A |
A |
= 3 |
Number of Alfa Romeos = 3
Number of McLarens = 3×2=6
Number of Ferraris = 3×6=18
|
|
∴ Total Formula One cars in collection |
= 3 + 6 + 18 |
|
= 27 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Christian collects Formula One model racing cars.
His collection has three times as many Ferraris as McLarens, and two times as many McLarens as Alfa Romeos.
Christian's collection has 3 more McLarens than Alfa Romeos.
How many Formula One model racing cars are in Christian's collection? |
workedSolution | Let $\ F$ = number of Ferraris
Let $\ M$ = number of McLarens
Let $\ A$ = number of Alfa Romeos
sm_nogap Express the information in 3 equations:
>| | |
| ------------: | ---------- |
| $F$ | \= $3M\ ... \ (1)$ |
| $M$ | \= $2A \ … \ (2)$ |
| 3 | \= $M - A$ ... $\ (3)$ |
sm_nogap Substitute $\ M = 2A$ into (3)
>| | |
| -------------: | ---------- |
| 3| \= $2A - A$ |
| $A$| \= 3 |
Number of Alfa Romeos = 3
Number of McLarens = $3 \times 2 = 6$
Number of Ferraris = $3 \times 6 = 18$
| | |
| ------------- | ---------- |
| $\therefore$ Total Formula One cars in collection | \= 3 + 6 + 18 |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 27 | |
U2FsdGVkX1/xxvX2j9KRRwu5bhmjjIiDzWOk7BAfic/9HQCf2AKUTIHer/tWbIAW+Z/HYA1jHkcFvb1xF/gMQ5ZoYVbnnT+hSxjVwcsC9oBRYVYYYqBBuKz1sDMm8TCr3rYjW7TkLNGQy6JKja4LbEOEM+KOPGGPjCzjJ4Z7SSokEYrOcZFpikXO6czzPY8s0AphPk4l2Ry7x6XcFxy6GCsDf0RspF/WR2sVt3xZ31VvcvawEb/ywf5Ln1Ioj325kOBzrlY49NdjF+rhRhRHyYCDHBTgqC97Bh+3MtdDGHW8Tk4MFOraOjKb5B2va841D/oZ5lk80e8TYMR+pXPtCvT+IZTO+2zDg6gI3/DrVKgoVGhdp//KsQyfcmO0forWzo8kgeJ20K6QIKih8nwxtjrNQSBHf52BryAHZ1dvFQ2WG6rczV34II+xmgsv+k0puv0PxxABGNOTKERq8JWibPE00d9M8Gg1EjHnsRKMUXmuDpqAWJj00n2+zW4AYJ8EfMtzM72FEN1UYh+CiLKU7buqX7IWxtsHoq8fokcJj9na+usWKP10De9Y3UzwBGElHjaDiHI2WG7lc+1XH0FKk3oDFllKYVfITPw9094/++dDbfwyWEYGdLTfSNe/otaDwwuHfEEI7GUMqXHRjrPMWMqLFgX6M6nr2sSWSzTRHkSzYZ/BOdNv0cwrOEPrpOs4Nwo25rFEI/ADf4ijTe8tzbEaRFt7X7rjJ/asArj3I/kszv1/J4G5sO7TlyoZHpztiLMpqb63KWbaJpKEzIh9OYu5SpmBwtqQsPIsloeqCmw2fzSTph5S9s79HuTZE4tu3N3G/NpuymbywqMyDDv+ISZfXXmZLzUY2Rm2QQolr9c7s+jxKQz7d7CkP4esLUMnwQFP//3TgjbKHGO/Oa3TziIO+Z91b6lmKUxTExLHNUb0paR9WHLb/5HYZ5Hp32T703Tmbev85PpNDmAU0VnYnxIC9SFj1uCHOFkhPhfaVYp82h1McB/7dujCYC4DZE+SBeuUgQmhfU2Pz9yAtq9oK+36SfFyIgH9mS/yHCVbLPpcsHmaQiOGYDHxdXeuRcHpoBJ0OKA8X5l51gOj58TsYlk2RiyMGL3QyNQ70Ba/TvQtF9u+/xmG8ZlDrx3LdWYXxFac7lmQMih5XWfsSdGLUFLO+Wh01dtsb6k5xxQbz6iUo+bMQ5Ew1+g/tmz0BYyGU+51YwmhX0xtNM3Hlib5h5291uKjRMwDLUUnKiBQGQZfbp2edq4N2+47mn/sOG0aGpKIsGU5wbZaDFB6c9a9mlAAVrn04LtJljw9ScTqZGJTfH8kZ3/1/vJPa668UXxMtwe7S+w6nEPTr2u4BJeb/BnYImIlPmx33eoNe62wm4WZpSwgruk3xYVYCievDmDTXdXmnlofQiepxNcRa26hT13WJVpk9SH3grf8BOcnAEIDxODL3a35U7ncc2liKyLw5BplXfLqXtnPyT7cSaGvuo/d3k0Rx7WEGqxf4KAfBh/ZO+S086VsYRiIrg+iHylU67SheVYYN9I8SNqAYGQCri0Si8uc9RpaBWpoERc8xnCpEUvP+QJ0RosZ9VqU7iMU/YtP6+GVTQCB3um1CpZDCd0d6iWN/NwRX3tuMxtBCZ+7Ki2TQjifBOtuy/7x3bvtUfUyzV6NidKgVN2J0SDpppABu4lDfCQ7JXjl0oHdgNPZMbPUc/zWqJ89IZeExOlpE44qhCqhJ5WhWvcjdk5+An1M96nj9pLj+zzoCMfZm20P7STbnRPju/VDqrkmWatucOfT4rVuV58DJbbNkDu0NFBjxXTUw7FtgkFye6qtu4hsOMLPHvnMAmn4MZ8c/udNfNEqc+LlT8/5c1O+ur9PryrNkzy7gfwBiOzHHmGA10weYd2DEE4UV4onPZF6STZsbSao+CFVf5Hp4uS0r+Zfynljngb/xNsC2S2InoH1M84aE+MB21Lw2PQGcUTniVA7R2nMZcj5FAV0KTruJLDR/C5c5DlLjm9sIXzmJ+4JIPOp94Lx0sJw2dSWpkgPjCRZWB/7lAtgsVmr1Ea0yTl4m7CEdhmS5O9SvdvYBint1UTR5Frs7prqBc0iF9SUkZn3tqt+8kW9VM22NwJmKrSryQ8w/bAOrdvq3Dv5lxFndWxpIF4CgxfFTWRg7Qs9hQt45It/PbFmVa7A652XDoJA8GW1QpLgyEAfiLMPPtlXaLzO1EvoXrKBt6LZf3ZNRZzgo4dEjRTXL1cFl0GMaRYvskZ+GtMyEtNQq0NN4AFWguqDyv/QnWbgGNyO6xRvLtMbxXgq6LuEoHNNBZkErwaB9c+nMhdwMECQtkUbAxgm0VKIWjXDBcjAes9gtFXHMZc80Hya0UKvkYgvjgyDEru6f3UH5sk1YmwDPkLjHDqWqpGy4tjB7ULGEy7wsq1uipGV4YUEwOhYh55V0fX1K6TCUxdsWm9pyRiLPVpN6nESxh2NpnlcAmmXoZm9TI3bfCWnCBEmb/AM4UKi264dWFeaEPS9Oqp1SBV1bnr58L67gTqfiiCuzuTQIu0Lit7d+c3lQ/UYHpZCuNl7CmwgSk4oCPFkTOGNkigJ0AGX58asS68n7a1Pt42DTb+0eCtn+5wZFva5Mz4Y7boKV2++mIuKLRaDJpGIL2nHpRp/2LoN4bs8+u+Vv6+e4m7zTLvxudwiDZos+xfauBvgntm5LnXHl8irpa8KtE9z8wsKhE3ntI2B4LMglQdoYktW+5pudoOaML8VnTvRpVEAt7DPmvEFoEFoMIgMvfkMxpR0RRZ4NWr/mKHj+7Rfxa/3S0k5/WjGhSpOMBpPgOOm+VYc/nebyf5RZRSsMlaAVHUnjIDVRXKxVgBFHU7BUyuAxcsMEGRRY+SWw3jVdp7qU7iMQftVP+jcN1urCHm+sgjmSngJKUwcqqgTZ7gcoZVA6gzf4+tB0Of6XKWGv8glXikkpFQvGUbsgmxZwaaUt+XP+7+RJkpePTsX7TgG7o8eH1FJDFEbmybYDa3MHE2IssZrj4m5gH5rvOkKwmNb1J8W8ZkRxaCxX/3LaHVf5R+Iu3Cp8aFae9Vx6LJNEi3Hu3VkolRcgen6bOgk1kNOPAzv+/Fbr/yVlVsH5I9/JG6zP4S9l1tpscSuKUfLOEFERdDNDbc2Yg9BjmXMlKzCwetMbdxa3K4N1gIOslJ1rn+BwS83n6wDO6jpm1kmR5KNYOZpkQJALHzmxK9A5Y18Me2c3jSA0MkB3C8iz8eO24KsvEoyNTXz25AOo+fy/A073vRwL8L9EtqOgFnbdTZa14zRMdus7gxvaHWPdqRk/GoDm/d+LBwjGxUNgZqwENt7Ww/aYliBLeEMC5NhX48VH3gGylkneoGxNw68rh2JVLxr9naYZHPvbzV1DRxpROWFYKh1z2xEwGIObwKTHpg7jXBKUVkQU4kwrnE2KJWKr7B8dRxU/EPTVZa7XcYpjuTK2kKXKE5C9Qtt8JFrTFuA/16G9ZHyM/4Kd/6KCpQUd+GHUZ0C0fGbHz8lxIyKNv/izH+tPEq3YhHq30aTIwenUi81NkqOp/nMEX64ej7Zz9XyUqt1/QhowkheQGvD+n0O0FLH1ALaSKUC1ox2MvrrNcUo478A9giOjhf8mJHyhRPGSq9fU19DTl7qKIREMHsHBgPmz8bU/7dd6yGOq6ma7d1KhvIrmqW+uCNyODrrsAJLb58p37r2Kx7SQkQ1h1q9DHLW4TVK8Y8Z6UlSPh3/SuyYWwXRkLP9a2zxJA3GFmjo8i+BfuC6mMerXNwnd+jhRdVenrPzUK1DSi2E2CbJwyPKxayYTk+LBhFZY8IyWB/kJzH5DO/8yrDsj1nUhbyZEvrgtNM2OTCx7GZZFvDpZ9sOGzbMdnu7/CYinDe/oI/y0db0PJGYOwgytTGDkZ9EiMNyR0s55WrJWNn13iQaMUTsrZyBwSeu39Pxc/Rsa8UZ4jqP7lfWHUpsZVeO+HqOyYTEA9pQYlg5fG393oIhuGZJCr4XTTf+ckomMevc3DRs+kC/ENEzTSlTRKLx/8yNiADXFXbXqtz4ocWVI4x7I3jNhCuoz/8trTAlguGei/cd3Wg2FWTQeJDq88Kaclr0cmPpf6glnYIzX0pkpbhSYJ4Ml6LtVjEUoJvvuRs2N7VIs+15DRNWYD4UHHzEhXxmNT4c6wuWOIqHjhFdlXqYyW7X40LohWuA3+Lep8bb6iORz+fAkP2pLvpRUAefZXvPgZauquTL6L++vub7Y7cjm3MDox1nqBQyjr2gGYGQLtKtdEyv/+ifvwG+miPkWTDTNeUB40p5AAVgtLvGIGuCBRMeGsAcTZtltfn9BkTN84Kq4G6quVxOqwDkRa3NDYHnbxoIxZKD+Z1zhUByEq8AjJQGdAUSVZjZN5vZrLPqQcrutXS1tWgNB0MngPnrcd8gw8sXXzZlkDeii+lQYafH/y2btFyfZgA80scXqHV2/iNDGpUiw2tD1Gg9nOLsMu6vQzzJb0ykkQwXOSKDBXpCffCKZLD1abtELwLtEVVxN1JWd92QP6Ydjp8a+N/LbgP7o5WuOsKHZUHOEw1VVYx3EIBe3Mj/vSxgEp3ckOcHiHmkdqzN1mZmutNq+lAoVL6DheEjLEY55s0s0y+NZGBAltgl2gV3WfN5Rq00vBQHGwxXii2xZATx4fNZNOeMrqxKkHIyvkljSffv5r4HC2QoKt86SvVfcv4/StYwJjCPdxvd5fCbjdTkH7MaGJ4iFiEiVLHajjJuLLwnC1+b+J3EBRSBtCObCx06fhzaqa1sXv2UnchT1wUtvA6ZZpNpja6q4BTzqn6tAj8xlP0Fvj7arWp0rSPxhXs+BUNNjLrnHQwY5WURKDV2U7yUSTIaltrQmgY/DhqbmkNjVPSrlp3fM+OKX8k1Qz/EhhOHpkOj8X+NO4OpzBlQ8ZsOi8x3zT/uw1XuN3JjJ2ujLHflfZnXBNl4+dsUOdAvuTMvCdCc0NxZU7UGwrCMstyvQyAAyvaS/9QyQs0L4Y1YyYX30vGkuCJ/WHrnCW+OosAGiN3NZoAsqKTAG1ascRCWm1nIlBCLyZLtHGqv28n6QzJ2B85eQChWIU7MhB7oRQTf0CdkQqr9jXBCnOdrRizBvnhLGd6s8F9WQagpVONDbND6bkeKN4hzIEFumlH/+yDTKEDzlPsw0FfoO13XMG12R7vohrVmQ6jXjOwhuk0Xyb2ON2cyLiVbPsI5h8kdrfCeoQvtcBE3ZrgB8c8ohSQLdhvorVqGH7aJh2HTE1wn0OMehGc5vj6GjZ+FF0yVZ3t26yvKYdwz/Z2eR6srRKJmh0tV8oUGDJQcAkKNoHgjpQwPEeWDTE0lAMwUADUIcUJXvf5D/l8JGMmkdemQGDhx88oQLKwDK0tDvq/X/qYHHJiXLmSdCgFluB2FSiT2m/xcN93C0SFClPxuk14pfQ8Y1SJpO97JEx4NuuLEPqaeNYglr8/h/MrCCNUBfrzYv4HZbUeWkIPC9RXTgC6oDHUz4Xn5NSsi+eZm8Mj8nbIOZa/c/dNlZn/Mq4PwoZ8/ULIHSlaURYudkEbHGR1zz33G2JBwkLiUgHZmVv3Wgozwa8mZHqfmQvxaWijHhzlGY+nVke/iF6kOwVRLaSEsSNGyMzDAfVx2RwgjCQkNu3FFS6ay5FFzAhz1yWST+BfdpJTEJE7OeSoJ7VaiQ9BA/jAVdbabDqV9bR+frFuuxQ9YY1sOqhtFq1G568+60foPhTjhwwbNpohNjxrbTsQL3ID7ZjFtLydfWad/RL3F+M4MERR4ghH683p2ENocduFrwPAugN3zssBGG/vULs31OM8CjOiKan7N5rERGTJlrz4otHMe3JZvyvlJ8qt1xcaQfQrnVSaIix89ZQJW78u9GxpZnCj0Xca/znEH3ofQ3ul7iL397Oun3XeTd+By/OtaWbbp4vzsVASmUNNRvEqMgzGwIImUvIHncNgBOlLJlWydN9kL5U+L2PABrwHdRRvYUKQRIYQ98LEFmgY2mgTPTc4Q4VMl9E/CpdDGwztNWmKWbV/DRWW/iS0FWVylOYk8u8SSnRvl/mi4cgHBgUyKiuOQ8ZPJ8yvTbDJNuk6kw+hBEm3GYoSmpos681VYwlhp8dAI/3CBddjkQ8Bz26taD5WYcML3pVHjc/roiDLErbc6S09Bx0Hy80l370xe64YkC7lIh9eIfnXbaKwyUB/BSO4oUG4eN9AZadC4esghpdVqYUzDrwfYnWOZXMgGpusPLVNaRbZAhUl5HdEOJlHiSUwTJg9kgr+NxK0sLiyPXwISBKRuns5sNm4yKNQDrE+8kLmrmpRS05BSxvGD9Kav6DG+cAFF6z2eU/L7DIDnQWnP02lcbUBt3ESp4EYNERNLHbmKqXCfXReuvEuFjfNSntIZCYXFzDxJ4wtnH6F5HuM+YOhAwucsjYpIiw/I20M2DKR3GvmJCJsuoenswWs3j73qdry1R6HX95ND4+IzOVlco5UKZf8MDOJJES52j1Tth69mrr4A8BvIoypw74BZga/79bbsdCTlVHn5muLNjVeWCPUyJA5Iln6LCXthS81NT5ibMq50zdBkcIyTm5ldjLafEnxmc4+iN+2yAEX7NckSnKxYtSqTcdKDx2STNpQn22LFdYSxlFRTLIfJKbEjnxShdswpvy+yKojvBA1K9I0pm0Fj0hrLNJX2/zeKda32RS0+rx+IMIPs7dW2wRyRSsxMSojbDqzemozQotvnIeQGWc9KSfTBf+wEHlqy6NiXUR+OuWDQJY3pGB/XfmEQQn/ExVt3R90TNy1wW382jl74TQGdNZjrYRCFlChMy6pKMg6lhYoWBnUXjlhJaYvl34xCQK+eed+8xdu06oFreniKlYgaINgmfwR9no5zMqsqxvBQcRKmt+FD/1h/oBFqww389TLPeabo6hVriQxhhfXXikzqGowBC9v0APVaZpCo+vJtSmoKaZZHZiXkH4H/tLDW4xIC6GO/cziNavrP6Cs78gCMUWRmgyjY4Na1T+0+D/mkOOzGrbnXAp/CPArRzGzLYSyOEYagALm4qHnZkbP3gABWFlFa7w+/e6hPjhPgiwzdtD9djoOm5FVsT0Hq7HN7KW6P/2IcgueGlEcthjJjNTENpTjK+mDGgD21PC61ESJXmyg7uzAkpj5mvtjHvWB8Ccb+9nL9mikf4XSuIZ1WhzRehfbxEYt66EqsVbSRjEG1cZR7mrcp3+zSyjwksqx0yKg6Ea9grzThXWnCSr8OrOqh0ztsGKABxua/7468nEUpDZ6SSNBglKw75t9AIfHvao87m/YH3kagJhnEdtnYhNF+75o3y+SgouPlumiLm6o+iOHI5DaFM9BMH1O0wT4PBWE3N3YJQqD7HBoq+XjegEQUjN1YvbFM3kHH0pDTw6mp1oj9EEUr+IKh67wdydrs5XP6vuyveKqgFtS+J08cj/RF94Z8TUULAkTmkO5UFkNK86+ci3+ldhte+T6FDVccGp4FXfV708gslTbhkts1P6UeOKT5jrstSFsiPAWXKEN0/q4QlIjgBvhZSBalSCJmDb8BhFgm0UiRGHrvuPH9Nw8HoE1VByyra4p3GhRaPBk5bi35LbAGoXq3D/wOl3WTiVflnrm0cNKuh1BxcfCgbgdvDduttdKoTF4TrG99+0TOOJeUkKN0rqog63xUK5LhBQb4WirF1t47l0j5ZPQlynKTPhGqUDDENzgziu6bTescqV942MQwp/ZtMWrvi+AooaCGt43cBvbojdK2aOVjuhVKCZIOR28QA/2/ESvL/TmXUhEMfTAeUJmvPn9+EVDBWzahbviEx1LeX2qN0xAtETZgLvd6skSKSEYEW/x4VVTgG6suNcXVNmN+uz5MZ+ithzZq0Og0oIvLrxpoDyvSI4KtnijQGWotstNDXhfBaCAMxmeFrpA3paWfgQaKhE9oDsN7vOwyNH1Dw7HM6OJIoElrHiaiS3Oh8NYH7NfEiB8Y0z5pJ4tBZLETemPzir0l/xJQzFNkYZmMpS8XDBvCAqYqO7echyk3sY7QAlsnMSUgbNXZxHwSU1VmXWCQSg/ON3zS0hlVyOLmphqVrBp3Yf7fYDFCp5z07juNOE5fFnAKKWWlXqzf+fT4DOMSHk8WyMvqoHpwa8Iz1BZ9X4E3jH+yv6HEBB3W3WBzgW6HPNdsCmSIrzzHv0Rxc71rjqBIbeQvCSFAnM7Yn+fhmz8hk9pZ4CCa0JDnsTm/oun4553oa9mbEPvgOzMVB/V0iff85vSm2fkv1+N+vpqq5JVDog02S/mBBXijRiCUu6r+kWS9H/zgGwnGOLJAx4OA4ScqtQrZgBnLtm0FJPE9PW/HNXxhF7DPN21ifRDsikJsG6nIAd79Os6/ZDagwX1lhr+JNkz0a9mfxhq6g9RedbOD3mHtbzb1t58+jBCFibv7eAORgX5cfs6rpmmSJ5dIRyI+3megdpVCmot+xOrqMQCXrHo+v/qJDXU3b+WfHXpYiPpmy2B7RbB+kILX+5NFr6OQIqCaum1DtfjRRKf5SzNRMLTjgnkf8+m+r6XtodU7MzkBxdJm/IZtEzInGx1OLu4lA4c+7iGysgiVtJ0u5pQf0OawxJlIYsq4W6ZyBCbEsdn+MsJcbWBkCfJQuWGQPYegbXio7kVRBJjbBe+ii0t+IYnv8IdJZGGvpkH86X2hN14SlbMcy+9kp3rmBWTNaNPcuNlrYQuqtrOvdCmtzRb7YEszNMmSOS07Oe8EWfPkDWLbnDmObde01aDLosU8SH6WSsVLD+I/g5O1tEHpOtf6Gu8c8vDUfWBaFCStCXMjmh+/jCsIM1lVhNSXN0rCMcpEHLWzGtODyuLPGaoukvaQQkNG8jD3uxtxlSkcZ+1k3qaldlWWfcpm/j7ILlRe08ZnMeTu9N2z0nWkZNisKHi9mXD+PcoGZ1ZhzzPb8iJt21b5Ej5dRq8YvfWkQ3NLVloHffTxbeO5Okak20pDzehCggUJ7fKCrYmf14mdVohWXcg6WIaL5c1eRXNr3gKMBJd3eX3apD4yjwVfJfWFwVrK15PseBmZJtSSWTmLytrR4nqpcBkYhPrdFEXLGVSSQV/vQg9VFMW4Vp/dxa7aR1hQ1Ti2h6YcyCeh7XqDgkOzfzQgb2GUITGK374RJ7FibiXaIS3Czav+V1j3zGurmxMaqcVKKUrSOtWfgBFmPKtovBlvVoUEIKExh5QsbXNhu/bhanp51VqivEkEBUCs7IZuF2/nzjVsEv5VpCQBlW21mae7UoPc6iYmOaFYfFrGBxlMMIEPmFygxl5IGNw7Jqk79oT8qJGlXl1mJFFkxZYBysONzD2POoQDqz/EYHIvsih3w40tkb0wFRjsobItv/FuIrWUp3bv+jIxfAGSrPZyos1upRm/RKBiDniaJrPjPkZQL1s45e/7xa3n5NDZmeNcCOHYd8bdNxC3gaXqMzYICEBTpctvq0GQucPkKQCbkE66sNRhqOEHirP4WE4aiRrj55XKwvwwuCS6K3bKCIPB32aBr9FvoSB4Y3eQkEhYIxda/1WP0+OM/2IpkCVz7iuqA9FL7xBjcQ7PO1Bs3zgDS6iAG5XP9z9gsyZbrg9nERDAXBCPeWCpQja1edtwUiMQZGzsnUoMG0SN0lw4nfHwplQQ8dPAW1q2IexchbPYQAPrLutgfAyfZw1X0nU/8z9lFZA5r2iXptaLjIWEuuhaaiaaUMm8eI0dCpXxLPny3ai2xi8jm/A/7chxjbBZOyHAQNMNstB3AuKQEEfy0JOeudOC5hC5tHZ04/cSeXs6K6iO3hw35sIuTFx0SeOLdjxa5ajNmPc4UPsMuSD1CkGG43MDXWNUT417lT4XR/oxUO3Qgfvs1ld2BLGXYtUl3eB4VLAhzk/L3aPNhdJgVQeuhg8rOjIYQAKUnfoJCJMS6TYVb3xewgRkEkp5XUl953Rm5oX+kukFxL5qoIJIqhJaYYwgw10+B6kULulqrTivUnwbgKQnVPuWQdbk26IrR+xXKMpMc3P0xEuh36CSXWfeMMMQaZS/nAKGZ3WH7cr3UPXXfm5LR/JtVSfKLZQkVQFkjZ9Z9JZlT86tCCjp0eecxnrj+FI0ITMWSlCnHOVAPLOQAAMFQ3y/ruSdGPA3CWo7mw6l9RV2W4TALlQFb6mN1XCHwIsGscsBH+NHAQKQwEY2tGpoxpoD+/nCljvMNfZOLHvUtxAQ5zyD7dWVMs2cZsvaqviN6gagYIMNHVSIonN5DBfX7HH0wwD4CrFU0qIkYuC7EfutpFWstKVgemLBquCpH56yTaY89Gw1ercW15qzx682WTGSx2kGfuyg0fUpMyz7dfHUUxdMIHkRIU/xwm9JcoiungwGOkUIaa5ow1WnYP3Rk0eyudMMe35bqvktlPubZTCgHwu64eS4vM2feDBF4r8/x4jpbGeU8RhzfgC8C+a0W+pxHd97K4Eej49sSXAUT/z+svoi9KUUc7iSUoTl0u1ZimNqITaCyx2C3X403arjiVwmYko/Rud0a+PLmIh9Bef33e0TqDKBSbLySPxZOW8Z8PuRcdJGBqQanXZmLMd4LhpAWjfEzVsU6ceBsrtzEmkiO4OZqr2yfQdk1s/I99IJcr9besa6S8AotvT9FLa2xkJ6lfpEhi50caoexvoVkw9uUqlMwO+aYJhOP5aDQq9H2kzcmNZyh8bnrLSSZWFrrKshQzx8TgE7x9W2XuZgYrnzTg5MPT2ScEB0rfjx+rDCsZsHCdnTMBNfpxNXcVBa+p6dGk1CIvTFc7B7j6/Qv1boNB9+5Ddo3aoESjqp8FwaSYWec6UpCCTNCC4ofQndiWS/mOgtvpP8nvmTejbe3+AtQ0ujwXgCWe6/mJseuw+O8IhGm6uf5TxIxNZ85eunNis1LEI4K2LXZ8RdQ492mCTRYk2nFJjz7ai0gr/GJrjWdgxBv2tHrCw3+fMwR9MayZcWbETjDK19YEwhOFlptNp+bGPvt/XO1Y47h65qsGDKJbgHbGUk8AGUA64qZOG+4OIOtGNbGVqMy5yBH1BRQ8qgZ1zOodwJlTrdhPXEBRslN+WGuLPTo2Z3cahpLwsafxkLX0reR7UprPE3dGHS0OVRDiyob2jGbV4ETvETZBgCDEhPf/HHpYUh8POERjb3+eLb/RlSypQkNFVnecmxQLTfbhNyshNh45ot/Xk3Qi8+8wg9IBRG/YhUdyjht6A1xb0pAdPP6oOdc78YoBEjWoPmfTeule5lwYpmGD/MKWGeiVwl4O7ALhgZrzmvQvfDnKJahEfjy/Anx9FdQQl4DNKHnYqx1C9Fag2q+Ie76YILh1QiXq7BCaiTTbuK1O9sJR6XLMwK9r7LfqMVlldTUrzmf7adXXgT5/oGJg5OEpr/+HIirKHNibAZOEm0Z9n5Cq9vuVWrMq/pyyHfHgN3d3C6GzONApq7VuT9HbOH26qd8vVMKBvXannMsRAIwHKrDDw7UeRnbGxpwMqWuM7E7vDSsVRU2DvuE2Dw9CH/UvNsGGjgngM7bAUJYS7qHB1KqVtJLEO3nnbnMVlgaD7iU8n0LZmaogSaGjnc9A21i/1FuxJ5UpSj4Fg3CPU10oHF1UIO0wNtLNDAFiVRgu2mCIPqycCc/VJv3k4/BSTSLd6IKwR26rdrCYsXYTUWEO0XvpXANfcvW6T4aDL3+7w+1p9/e2MCi+8eKDnBr3qOo+6obvasZ/Ttqa0Xw5pY8pm/Je04FU3GfrcvFFZZeJOfDSTxExjPGEBBV3KR51qjZsnEq2NTeyDMjJvA8Wdf907Kw6iMViJb2rlF0NrRkwU95D22EU82zMFkumVf3QR287zR7kYb5hnILHgKbI5mY2VOcktCObZwOloHgRhmZwyJ+RpujosKBiOF+eMvhrOwDVK8wGHYFA+O73Q3DM+ql6+OkX+zpHOcRuR1YJ8cw6i4HbJCOH9NXEzax5zkDvsy6oPZLQizZ0ro7mulELoRtyEEtKgfjq2QfeQEwkl5kzwUTE21R0u2aFwkmP5JiqUziF7ADz5BsTyoBaxdUCiSFf+gXeoo3LAG+dIZdpzt6RZxsLvH9JiHrKWR+meDOMrkoOJAQHvHmyDekAYxQcQfwyTOhzyvtF4B2Fm+8P3eZXl16OYR1xiTA06Aj55IXzErlCEPmCO8WxB87lSo1BwbYNQs4liHf8Q10Uw8ieu1NybXhDTkHW+hrCf4JvB/eaIw+lu8XhdDKOLDEyNY8cLlBw2phukF37Oug5mLSryicVym9SeT/4Xfig6HTo3h41iMTQPw0nOWkRLnIct9/Dbxlv6sfK/maAdEIXOxa+geR7DeBy1JIy0FmeHz7xsIdtre03QhDWpWBnlLRzmoWIZHE+WGV83IMpV1Y1BKZZFhU06sLWrkyO5tHLv/Q/9GWl0fR3IGMi01kdq53Y3R5GL0kupPg3xxh+g3NP4MwNcSXJyDkVTbNOPs8socVdRUWbti2EEeTQFzscO6l7ZUguHKv3Tp5vr8M75xb7rUuOKfy72Fdqe5Dvg+By7Zl0cQockqFbco95vdt8s+DO7jYkQ3DY7A0r6amQD8Q2uWVabTC+5qxmjs+8rmhv5SqUETBC282M08E03EtXsPEvW2MqCjpozP+eFAvXzJJjAGrtvsDWKaGgtlwwP9IYrMNgaYyIAZhQRcpt22cZup92pgDrAUBTszhLJC0sFAb/KailebQav2Fnon2Zr811wJI8BJp57pYQQa1qGro5LnWUw4gpLJvaXBFFwvBT+ikqix4awmydi9dxruLw2QFV/TkkTb9L1LBs1v5IwULsrC+erjKcgsogKVP51Xtljfnvj1CkWam9FrVNgXpab41lfeNE8H0lK5AOeJx4V5B05l0DQJUyFvSObZ/o6uH6kep70yG/x+tDb3sGcEetU/1Wn1X5JlzYy5FO8scETg8PKL2bodJmJI8p5lSaQirsaqsWdz7FARYi6vp3P1JjEJakvdBWHkt2XB6K9s30o+s2NRmta4TxIjB3vTEG5xpXuSJrsGucrWsXMg9CK74fDxk0TDMBipY9fEIjTKz7RN9SdQGzd+RVZMfKEWmJhUB1Xj+yQgDcxC8jyNaFTGxHIKbgYx4X+djMGl4KCqxCGftvoh6siFA0D3FrcHekJuoQXkPulZWtk3SpJoCsqJTDeWvXEheKqqmDHW7NXaKUs/hez5UOJEyV4/0rdqoLhO8tnI2I0lQ3BImkCKaxPucOz8nw2WkDoY1HauU3oRz3BLqX3E7MSKhjK9Hkf8WZbaq1+MhUj5/zB8AFAdOGK6krhlVuMnypjbsyWfTgSjYc6r/vrLtikN+nXV0yF0yfWxzMGGuv53TUrW5zGK3pcaWAalbxjENhRQG770z2Qbku7IUbimQXUffOzfbxHIDyg3iq0meVP7N5JXGhqOC3f7cAl5lyp71dAqipcT3Zk2Z4ImKrwJSNzgRYb/xvbaQvnkPs/5baUUZzzMGVLbmBGu0yjoNp5zQes0NLcNMe6RROq32VMAToKkOEssTrhBHtDj32T4g1pBzaula+NoMgf1kVzOBhjz5LnGyPspnB92b4kTu5jb6bfIsCUvwlHJrs3U7qcx9JHdCU7tGClHVAkAdTJgDlH2Sjif0DkLQuXFMfe8G+eA0xHGmHPTE476bxVzqDHHDl6X8jx4RDl2sQOKLjub6VzCXVp0dk125m7EpA98T0f6FZmxCOX2th+bGieuzAeB766bnfJdpNYhObktV6ZuZJq+mSaDk+Un5AAwpudYpyA0cn/OZHFqRf/H5LcSMf+LdKyHgfgk60MOEVPfb0jok2XOlJJiTSafTzPqnpYMI0zLcsSt2t7Ce4eZT7nsrBk9dKdYD2bAllae2Dd1Rmdecf33UGR5AWm/EmPElkM0VQ1Sqyz7NjquzGTsgRYDJqXL4VU29iq5OBwyTB/otcOLFQMXu8pJYTUVzTAX8LnnurO7vaI+wsmpuF+iaMltMb2VSYhd87ATb3PORvz9H1zEVr6maudB5P+hS5AedpXyjj7JS9mhEVgzaHtN0gtlR2w0lgXgJ/4J7uqOYS7fY2s5GXVg5ewNqnu28WKbE/PUk7Oa1IRAcWSxXgGDnKOG/Cd6M8Qsp7k4mxsrmaBoWyUWZrcOFpj46wkmb5ItzKLJ7S6e2CiVMTWVWrCZMqKdy0e1+vC3jPLnrs4E2K079+otm2tsn1IB5KUZwXMwhFlqYGxyut+feL5rHfK8N/y48/RwA+hkiGFRkA0pAGrIg+yGgaN92hY+tc4NE+QRNSSceQS+644FSCunFvDUjvzL4BauOzEvkw5OcTFqBWi7bu5+Yo6H9Q6K2RvyntPNY7OjqHaeQEFkIbhYLfQZAT64IEbZeDrJXDCJuVyeQAEI0zetCBim/vi6T5/4TonhzICCgGPjVhRqPwBMh5eDuTqxV4jJFsEPYLIS+pbFkqJrQOK6JAkaJuuO2hbn6EQClb3un6dhVzBj5LHU+lv97GwSjxhHfh1HPJ/7UxMmJX+Af9GfXVlmg7o6P1wFBKbGRnUUBljH+eBVb63qqmHkTbbpJvuJK/EjvFi/H9ToqyPH7U7pcaQIb9wjZzx2Hkm1muum/96WjfpNers2tq6+3qLbk4bRWM67Qbhr4ACkHaHWzBQK4xFkagZ0baNw3iVoxMBsXjNFJR5AHqlCaERLjqVNuovaRSP+YF5WoFl22t4UMj10wBdcARm9Qziwz0VCu9dwg7muQxWNCFye/ZnPwKukiNBObbZc6veXqnoxXwURM5PqSJSZPyyXYgfNowxwwY3EE19YejYmp9x4BrxCMEFqH4XwtQU7S0YR5nQxKpd+8/7f/CVEH4y8748N9zkMwUaVJXXRyv0WRhNXi5aGGAT/lY8N5A70gwwBuEA/S/DESQ4mPQbR1Dtxl5cmnhLWsqqhUfU1JIeuAV+l1V9CPUC3maM/iAHKSlOj26s3BkCGDt8FDDQET3mMrPMHt/JMq9i9rrsHazcJxeVJWD/OJ3tuWpJhHrujgGhnKJI18thKmfK8Mp18fLwYVsebuQGvLA2ZfD6vE+aiKCWIq1S1qaSR1tQpXMspt0Nrn2R73bzprYmVIb4AEguix+GO+fXxHvfz+yUX542voko4gvxDDQDsUsNMfCF1NyYTh+p9yE8H6okqHk5jA3KjS9Y3rbqyH42g3iPVfYnXVp/EaZhpJ8s6ATwSGItOALYJmE3Lgiz55DqoNDbCHf7RfdRpw1wGB7TBIvV1wAoYbpFTb031jRaGkTf9PqRCiadZshKdFErz0DwjcPuC1ddZtHSn066YSlF9ygLhdRm7qErhCoPmk6+yhLIJ7xKBA+gVa8raZYcvTd+XHTpem9KDqx8kWj9SAn+Fy2FMQEu0j5xKwIHc2mIejHfcfBcm3khBNGTZspt2tLhytRHWGLX4m+YOdLqWrfKBx4+PPwpF/BYAeYYAiWUEBoQXLWzfoo38dOKWyySO7d/LFsFMNFk8iqodsKL4z4J9RF3zCV/Q6IiewlTsl0mrRvj4YvbL+gqWo7xmPodd+EIn38LrXL3SVAKYomhw2n7EfQRl4vF3i0Q6hNN6dbXez3LqDO7LSypvqAsSV1qzqDnh9FyGlBnsjr/4dM6i5pHRwSyDViZL35UizFimwQ2vK5RpwVRq/Trcpeh/c/rS9vIH4mK96BRv3GxEHiK6rvUjiGtfHPqeNDfK9n0ZZy/CM9mbTfXzArX3oM2UXdR7QgxnOJ/MFV5PJ7Lh91HNYrpBztMtOQVCAcj7GRGU2+YGB3tjgI1Vt7xRSPCMpIcazUpAEQnK4AM7DRYosKk6QK8HweLp5cm3UVi34VpfngK6L+OJwI6PHznwg+v639XBYoOjmjtlRo6PP0/mFC+Vg8tc9G2IZhsWxiNn2FwgE2XUyoR3cbxVOayGDt2IR3Yd1y1gtaqItH3x7mhyfgxpI6K/zlDVhMZEv2QLpKpEAbrFlEwoxaikIHbBasH4bAiHH7cImCSsQ7LsfbALs1Ezsv/nn9ggAymDcFvc5zHOn5ctDS9bVGHQxyDmeZWGTF/UAdkpa8BXCJJr6uBj8QewowNe4zhrbSelYk3jbsTWEam3AmQONU8qN5YVdcuIK9+Uk1sOQpENw9PW+zGWRMzH7hzHkTjRXDkMenNXtzG1WC6yKzdNF5oOgWtZ1QtmFvYIv06i7NfDQcmyCdx+jM35LfY1rcpMe0nzV1kY33pX+uxY7llJU7nWGbnmzF715ppJZvrNWkLexfZZdS+RGbFX9t8d3pS0FjiHvNGxBoTHeFn9riksXF+rkJbssRerllLRxuCi07sORJtQMwt1x2NvehnP3uLoFZwpyhZgTmhAL+4dxBD2k4mXfVM8yVPTbFkOSkJWKtKV7sExzvvrBkedPZgWJnlAAySaRyEQCPAmRCTan8qiDdyqj3bpiurYV8igHt11BPIAJRoePIAKRc2DiXKcpD+2O9cEyCD43VgHq2Ef8cXczT/8RO/WTSqRn0F+Unm310M7q8BJTjwSg9VUDruL2usT1tKJbgt5wIGfTNn9Y8fwE/s3Kk9eT0h2qTRw06aIP6TUPgV77ZLrhgJQ05wiwR/VY7XyjTYEVX78LpPlUPUEx4wPz31SE7w2KrFDsvaNqocl8qwS9NApnijP+FtoGl+CnqhrUqwM07bsEnLuxtLWZMOsUj9w9mhXzf+PfJZPZMq2nR38QelumpI/R7b/eZjtQ3opWp5eFP1yWAYn0FIcoFK3nl0A04FYgHq3ctkuAUzUVpfmZT4irzqAYsQ47TMrKzgJotcNZD8K0i6IKyuKjBcnFJHOefd8miJPO++0Uyf23semYNDRa5zmJgywPFgt/jBQWPTEiVgHrZhKLgOlPQRpj4IrxMHvPVskGQnXCt4uQZVYzgtV12cEcEMCW8vJ0QELZ75KyrvFrNfGMg2ssa/ANNy9dCbAUPtguuyGwATdVLLl2jJZ6kEVtyQs63w1WZ7yhZBc1RxupsiJu2dEvXXl5s9px5Tp7QgJ6Wk8fVbcFA+sxzDKWaf0w2RshN6RDk533IXpED72hssudTn9ZJyNZk8JSE8daalGLfy8ZdFIYCmEn360NLmMNv3rKgKUBrjl9Gmaq7UZ5cGb4cR7848V7qO0uHpN3AG5gngevqnZDHp6UCUpTayhSssWCqwhDTKpy6gh5S2QAFXC4e4i6lBIpMvP+xOcLxY6yiU5YKQRAYHcck2/1/7DG4chn7OAcbMq/PWeJVjM427FwnpmJB5DyWxN3/b1vL7AD/163jYawPbJXn50zfrOlcAQlLGkP1b4lUN8mIi9xcQw3FiifqeachYKzxtHjUpOigD6YYM9eSUe7Qfog2VvAJSY8xkqiXoOG60mXT/B1xIlL4J7mzY102k5+RcXzJ0sthymdxb1YG+9j0LWHfWTk239sVOC8DC7BWxWOIrFMLzjeuQM79ddvib3vL9k0W6DUg+bQc20o3hmuldRdojUIUTs/BzqG/3a9fuvSj6jVaKgWP0pGk74W8nrJS3Z9y2F11HX6VZEYolf/Heq8McCvbc6Vs/uzFm+kUfPJnqHfTnmqyGnfLeQjPupWVpqVzAEuJE4i8h/wUNSigQVUHi9mHcEDFC+ypAOsZGzI7Oqv+ODUbZ17LCV6c8lNIG7yCRDg4q/aNISfOi0A5Y+hMsLePg2SRghAWS4wtAIcuBZZuUclit7awBHTrqPUsVJ+6RLZWwEwvhMJn/R0g/lQCCKB16cfd+asfK3ZLL40UJyp7mBUF5yDWWFpN6R6ZHnzHgdm6aMyFHDNSivUfFPceGBmkMRUdaW6CAQBcJ4GzT51z0RSBAHFnCf/WNJJrbyPvn7wvn+ZuUFdt86f2tWjEM+CaeviSIL7PZ4lEWmEVN22jVyOSa+KjoYLzocPS+1dB/nF9Hy6blTpC/Hu30+iKtCZSOddnlgnP5I8ETKeVi3tvn7YK+pwrm0SV69qX8787RrUbMuUwis/YQ37vASjvuIYjJiJS5w5G3Ni7NIvXrE5lP/ZuuZu4jxRqv9Z5QUFkTleEs4zk7XEsYL+N1W5lGe0vlfGhJao65KdFDXB7LuG5OefpZLejWgftYBnaK1lXjBBpQxRlMtDMgQ52xrUZJPGxBifNI54tNtKOHpAakuGaKZYeIYFbP52BAmJIMebnqwJmv2d1sHkmAp4RbkVeg2dG3uHT6tMdwZ6xKRFquR0KsqcVbQhxImjZ+8dZ+lY/udVVYvZX8hBQDUIwR6TFYuX8YKXt0OjmveigWTsAvHUM8cvzHg7C4pZSmmq/zW87Lk4pBDng/zzfV3qNnWAUtWrz4rNfFvURZWHvveXrtKCubi7QChkJJcumjgTf1hCv+kzs5QtRyTJC/Z+UC6+saCUE6fcCFfvsqk26SzOdXsyBgHDv3f699DBmDqigLIsXiP8E/NktQJLpPeqfHNPEIU5UivuY4Rz537xKWIUXHRS30pQZDpGLVDwITGwfC9XREHuRxhws8ovmYfmoejrMZZDAhH5pwyr1KhkPu7a+MC0RWDlQX09Ervcb54fXz4VeckSWMGKxkcwDtDvrga/IB3z2cRhA31FWR/TdflBgs3gcJ2vgebBdSGQ+DCx2yKjT65rc7/PYMBhfGtycp/emuHRUYfEaZuMN000vshu4lN38WBLRpATTGZ4LLB16ZMV+BR0+N/7zUAoWa5TQhKmpaSGZEj7MNRjfMi6E41mbFtYcpI5mdMeWki4wSzXdrS52+iZA8bRoLaj9sHNbabvdBpBUB0jPrPZ+/11pw1Op0QnZcyFhOCXzLJFSQDDl/bKp02fj9IRyTXth1dmnsHWhZ3KPLnjmQ8fe7InCMZr2OudgVSHqACNmZLBaz8xjiuXKbtOQpSRAInry22YilsY3a4yaPEoqEF7xFXw/53WFa16cQcux2qi4yK13Y5Cb+GQJ5cQhgTT7X7jk+yIWwhDZYWQaMRuzz4lKnWCK63SucZ7Pm2iZ2mJuxPO2heYRsJ/GOqQ05qOZNqmmSeoVtl+S40mWsfHOG8MjYP3pqqgJlnLCTFRJFIAISC9ErOvmfwHVYuietyt/ChcZV9rbfTFzcaJLpwEokRPx4YpNwLh0FN+ry2Nc+g7CPcH7TetgTPIGv4+EkYrwagh1vVHqRcRyTdiSb8s9zH4TMaxu/CJeQqPL5hcXK1/UBofXwUaLbHQVi7A/ghoAWMqEj+iQ9I4pdlus9x9XwmwiBZ4x9nfR9+xdoPrEVPviRitIAohdjrjWaNNUdJ+UzqxOaFU7F6RNyuE4murh5wY1KjDo3poiKhMSg86zjXRWrVPaTreAZjJeZwiO47OLNvOybtq8Sr4C4y2J5fT2UIg4r8KRg7osmcHeQxSYlafJ8mAcIrLdlgKcNMnVZR3cKyyuHydsvxYc9oCnpqNvxXyDdMXXgEPykP7ZbwFO60Q+MB6BcAPRohJ1nOpuGNI9C10Z1zn+uajcOd04EBanKDhdZA05Igfp4fIqODt9HYKUopgas4TDVkwMn/ibX9ovEMMP/2wTRbOck0zX6c9mHrim1m1MkHq0f75Rzc5Gmi1cbhtfyg/0RfUYT8A8/d7IL917X7vlX9yB9UvU1DoDXUm9hhH5B0M4SspMCLg1GeR2YIRW+wAwFH1+JUvAG8jcxq4vmkQyaTd+WYe4VMdRRnMPehxet2N8CWv5lg8jQktfXkAWFYPWyAxQj4codXAiQeR30FET7Dcgv23iYbXVi86ohNkRIvvfUxA17wkI4wyeyxE+ZGVprrc0t3kDKri8nhP+Ei7IkgO4oqvVgsQcQxsOa+Rxw1b88GIVg+nNJpGjnw7bbBbI7IT7GXqBmiVSzul/IZ1FAvNmKOF1Bc/s/dhTgNk5gCnUQEqqRiDBv8E5vWKWGCAfn0vA9D0nP0INPcMJZnq9Y4h4kFiBPmqieyd2c70ZzHlqd5633p7jvUK6Mwga8+gPvbOEJoWeZPXz86JmWNe4MkZYB1lP3MNMilqSYaZwDlCgejNCc/W9Af2S7UgA2xytnXJU2fYTm2LqHAvtASHb8UrEs4hit4mu74uPjBBGEsGeLTcGIGcHOJiRs9YhDWBaEL1y9/KZFY1tDFOtDyUMQMBVbUjyxJtJIjJyiKpkfl7Py0+QaZJYdqJ/+jVzYAbHih49iAL/FlhxMdZk2PU+q2urd1DSI5TKm8tFWPrgAuW5r4DKd4vF9n4ps0B46ki/LylHyHSwlxnF17ArlPszH5/kLBnPhR2u0iAMMjce64vCes5dPCvIFdeGfTJ5P/oedpAdTR0nZ8kemqQfjv+aH7mH0ySk0IGMapyIQU+hm8sfisdzWGXl3Co5vnu0E0tAkaS2w3kBU3HoZ5oVJG+lXod8KZ7FgNlJJtVvS4iWA05yS7+9PTuSuJJblbYcWLMKiSJLWzykPnAPBB5k0prnYJGWGs0QKKPl82wB7qCXYJPPqjWg7zi2D05TOnqGzJWG/cooinsq/hnxg7BfYk+g+GSyJYKkSy/dHiR7HUeKQUumXT6UqQwTYxKxXZVNxoXYhYX/rhsO9iqpsIcUx4iBKvVDiCdgeHUWdlo0cwpgC3aEvm8/QfZuvumRdFdrn9somqLBnRw4BwGFtW724NELSoJnLtNepBH0SZcBwClSTjbrRHoVpZxTMWRkTva88uhfe4nqbhbS/LVVUZ3dz5WX6WTERAJ3DLt/+xZsJdDOHPBYYRMpdb6XzuVISvE2sMs5auePO1vC6X/GS3zBOrHUhwRzUQvYrV+rtnqYGQ5j2auQUgBKyLLVtl4ImiWp0mMVlMZ2E5s+PDSs1eCRL+9F79Nsvcx4LapqqXa+N4kSbfruoDZvJiMPXXZSfSwcE8A7b8AUEaFIAYzg5OSdT6S3uIiFJT/PPXhTBfiiPbdn5j627wQJcDLpHNox98MFUrgW6thL6qQ8qsFQEFG5dyd1mWpF8PkuKtDoZ5mivf3KUHb12GpSi16x6FN6vo/OTGFDDD30Q9vzNxBZSd3KRAhPgEM+evWiQJwfe64uAKAHJvOz2RuzbpVaYFYlRoMurirNxFur1btJByt3nBGYyJpujR2aG/mr57/LUx57ZgTBzewBNC4Xtr4gAOGMN/Aj+QHPZa2CZl6YLFlHnLWdD6UmkqFxKsoECD92nm5CbVitV9e5wFBEK3Pyc5UcrMv33qyAi8dVIajMfjGn8beYMru3yo4A0uxqar22Q5UeBLoSyyTqlZGxVjLzO0IQ5muq/D9fqGiWTALLPlCzCojiqATZDBW+2u5fiZtzVTZwxtBd8TYplzPGHNoAyWYpxjwwz4NCFv4vWHzf54NHH2c0QPo0IF/jD4DdLgLg24ZTJXIlO7QcLi//bcgi4omCYGDCNC+iCr3qXEMPC/0z8HeqDEYwu2HX7H0KXfr1XVdcvRAsSRXL4HP29ONQmamxbr29PmGdU4tR4hbP5klJIWO1bWSSKtFwner6BF3lMZ3FoUj3VpwI5MtvLK2hSYMw1rSayEFQ//6Asde5/Nw0eKcW97h7ig9OAeD5DdjjFuztqMGAvIl4zCIwI5GF/IvH8JwZMe+N/wvY02p6XeIVkaM/KmjpruQhK2/5TNhN1eN2fDn5WMoOJR/3uYNMU4KW0spIa33whCZjdMGiK6oIINdJQsu4p7JF4q161F8hswb8XQv5PwjdW3c59JB5OnQUW6sjNXoJR9fM5c4ARJZsUiYDrflF1RiR5JCZmv3JRKx12tjwV+gqBuLnS9ubFOA7OcQMHAZAkHtldkhKygGoPx8/XfFsIag6Vn2sGagPzBuCUVk6HGK2WpsQ0Kdh0AyTMk1quZfOtylqTYf4M2n8FwW9JKSyEJSp3pPT13F2l1mf0tj0AxyKdqO8lAnFe9RXm3aPg9TjCc7ZT8MpK1K3FjM3J+2bl59xF5BsMzXbaN1/10oLJFcz2Bk1vRrStR17k4zb635mA5nNsWviojO1jY+tmf0Y/MaVnJdVtSBesA8xX4yf5jcu4KvezYYXxToI49ugTMZKTYxFxz553P17YJ9fW9kciEiOdpJK/ibBSBXysA1TMZPjFTgk7ublSamoFnY8HE0Cdwg6Lwdnglo9ULrljr2aJsREt09wnjUoNEFBT0nW288h7FeMn0Qg11SeT96uE7IJ9hIhicU5HkaDWRDUzpuAe0b/XM1fC4xQkgJo+5QxNuu63Ffd49adnhNy8TE4UK3tQHtmu8vXLhvLyJMvemVJqVIN2YDki6/CYGu0ySdJ92P9u1h0gk8NNuvsxCtuOJEKNsp4Olv3KX7t7pmAHrJXQrblaYmMmiMnOFl9BqUIwbQwRZlKjVa96chTrSq8cJC3V24Lp9tLWJ7/Il5ugWJ4zTMgW5pje9WZXpD7kNMut041Ox6Fma0vGB4oqnbrX8TqFmHP8vOjsjB6czJET3mL+vxkUFJVM5Lf567ZaPPbuRY4d4VeLa/wmdFybkv/f3NZ+WqdBbpBqP1xO02bEeiiit3bn1MAfPGaXEZeuhGuwjb92PWlG33hI0ee59jWS5NovB6FLxMhjYyp3D6eC5Vu0hJyV500rb2lJhfwnbT+4TpRGBrWgNvlOXFaKonsZmQiN7HCEKwM8lD4q1trTpgAQdIK5ee5WSIepUtE5XIP1OBT3P3GSJCqzs4U5ajKfCnB3PFknRFOGI5SWh95t8JQjHmsXd1MEceQkoa7HBQiH/2GeHCpuobu/IyR30q9uBlQK8kHYFTiqcig51aNm+KhmgJFGDWd9TN8lqnjW7d+2mAGVjp6/CFzHtdrhV3FmURSAxLk37xUwIVgObNnU6PqtKPUm0HFcjtHyzGaTJjrXZkLKfWyNWcPCvNjcgUX20t7JAyhw6OncuiZxrmVbtDry5MyzGvERXIjLuqcIOW984qyzHYMU27lq2nBFH/IwUCOfi8CWnsnqh3Qa2Jp7eeTDK3ruKS8/uVTp2Ftp8kno0MEEneuHCXfbsp4da4CC+Lj12MR6uaJ8DCEwc8cqi+0/DDJ6trIto7jZ1u+3sAtetLxCdqoW8VIA4169gZ0hxgH6OEt+RP4d3TdIVf8YuCBy2+bMrl7DHVryqkO7iW183dHlQ265UiYnnsvT4J8Zq8dOtdMDs2bVMJosxvBUKxIgoIIF7W6/AahiF3Kp+quifQtqhjgE+NE1vXTY7StL2y6jhsE1XUQA6b4yvCAVbXhxmoOUNUqNF0I6id1oLkvlTj1COAD1ETO6sBU5QhqmAXY0Dt6HirLJBghaRc+d5B7uVDuz5ccKrqfa/IoRfbpvxcyqIP9gqVlQ34S28QdP3bM/3bMp4fonbD6oXkLYd8Fq7HHIhjmbkeuWJ7NHL3DfL7N3dtF3XmeenSH3F1RvnFSiVjkuUIWOHLEBzsd355kt50+8L+XZJ28h6MYGXyG2lERaIxSEM0J9he+Y/4pE99xn7UE8oUGgTqgNlCFWCSzFTWjrkwbHY9DvW08906RygFtgtEr+I8OGOjmwGam+1yQK3tlC3rhejHHaPwqHfinoevisB5/5cI2Q1hCUBoKXIy53+kT5a0uIzikaaKIGfvc4EpzbujkVRi1r108OMxtJynag/ZQ72CTL5JxIYPgLHs47H3De8a7GecLQd0ocT0pLrksrFiSkRYtb1Pd106StUHOI10Gs9E6NUiAAxmi2FCA7HivzHqIYO8EYvpDwRXiPeFFSjbyjUPyWYDXB27hBb2iShuUclxUNfjYNGckOE7ER6LLpB2CfyhuZJAZXxFj6MI/HvWgDPfjM/k9Dr1w/LYRX5q2hmenHID109WWKwsZi/KsPCtbq8OLs3i0o+UWARvuynKOpWsrUSuuFAdFkx6zDJOgmsyN/12e8c/a1t0kwCa9CQNTDLM1Zi7A3h5qA7BE2VySqJJusFa1/X9mzS0NniZtH1AH50RqOjVaDyMkeKA80/GdsVGkoGwWi3GOdGZYuDs7Qh5oithX4xScQkejWOdjEHEDGkP7tri+l/0iSza9bO+YAy/sxg3u0MOjd8ssGtJdF5wiPDBuubOyTA0HJAHyDqsWzs262IwNqCVfzY3pR8ZooBx8K5S2KAgTPXZBrtdTFFmUdE1D1/wSAC1FH2/ex71FlbSLc0DCqSeCOuitO/xs6IpdjJUFoKRsSSpWhOrbxKcfnV/S2okreeUneAUhuoia+gk/KGQLIhcwT373+8iBjHKdU6shzEcMahE2OGaEyeJJwJpkHeSkC+4xr0rUcWeZQrabfF/4UpGwgDiPdApDuPTywB8OWeBdhvAiJmdwoYRluPCZxZaMGIZpgctiaPuOd+1mqaZFcG36mzpSW6pgsfxwYalgsNE904i5Af4RYGuKGLvZvf+e5iwRUTpuqI7vFxG/aryfpv41rjOa+oIWk0z1WeNLlqxVUf6ZduvNbyMlDHZnBH8EdcN2zkrrDXbLR2IngXjucV4EizqEloFyMbzAxMWzXgYb0bBAcvQZ/mDVipLnVHFhziERbbgBnVvrGt9KOou2VTo69/Z8fZ1HjfwmlI3KDUxE2VxnXU/nH3uNnmKhIcxH3Y8596xerdl//717sEmO6UbE1Vbioot6kCqXwcu9WiNaRnP9krDs/HO3+TJVpAe7M9IZS8z/uwxastniidVaF0ME/Oj0xQwTYcuq4MWJZTi2dVVZioiVdDq8/pE6jjwY3pvSfKZYo1eOcfpANg0MocJLS7d+qcIFtUsi1zlnuu+2UvMW2xKj4HsF9nZOVEr+lpc0CTslNKZlo0SeCq7WCOHBNhgYyc6sHG57FiNV5D1IYx+SUwdPXO3MTdgisTMnBXm8T3CYyAtc117hD7ZJ6NYe5N8BBWcAwrSaTYGoL7v8lDk8CUk2rpIq1nMr0UZi+Hu4wlrTqeBvRMtzUK+W6F5G3K6mmhMT9lg+GRcpELT+TL1+rTnQHID+qJvMYug0wnlje5Lu7y+rl4MtGDfUhinYS8cMJFBohubbFVsNvLnK3j3m2OY/qpbE9fSGQTnucPfW140DU3bMi1mpFaLFFXD6FsYKoR5fD0lRJuyftLSUauiyXLCUzXu6p1cnHCAoZe/AyZD3anca9kSt2fqp+V8laERw1oqy5XI4c+dOt/ynpde65HK7Gid4xbsrF+GgGBlcPxkpdqiJEh8OTG5IuwUJBU7Wdf7exOoCGd4Lf6VTf1l6dnjNHKlw0HhsQN7n8zmx5WSCdj3kCWrfOuXCF8izG0Kqi3wwcNFpoCf2oXEQUL6ITbDD+ODNVFwGa3gzl/bJYi3j5/qbD0esii3e520kH6kRJFGhrcZoAfxwnxccyejOh1itKA9t5w0M6n4WqN4i6ERQQzRlzvq1LZd8DdShEc0+yReNUNnrZb5NUWHKl7Lg35RKth2erGsLDd5wCs/O+S2JJ0aqfavhWTI36MthiOnspl/CF3a9plxdjsvSYTaWnRz8OC+ockaIqX1ID1KOtSoauAFADU+ECxl9D7SF49eh9nI7k7q/LTPuo4JNrIY9HXfWh4ab3gSmoe2F7Sx2D5kipY3clnVSsFS0rhKU7/bs0xet8rq4U8QfDFqxTB4n/MekjvGhu20IoWRtkhDNQh5zEThe0fK7c2pwwlW+FJITHGEhvqXJclC78tck9hGwDwYkpo0566buRZHZ7JPPT+DabRav/kwU9k4fdf2139PuAISihNHaAwYtUcwN0wkHfizr8JDqHfrYYeUyUrY++Xpv4iiZW6f4JDvl1u4sm9Aa/5TQ/XIEAip0MyH75VLvsRS2ZTIKtPXkNmnCcci6z5vGKuMYngY86aEbvjGHLpCS4y2fsQ++w/OzGRMUkyezhPnk9TvqREoH7CC4BGxCrKo+VUyiep75DPy+QYNbBF57MavSifmo+lZMzxvce2lbxl025thoSPGXOCff9PHLLeV5Bp4e5nEhOJGas0MNQSX+VQboNefvw22iDloL3oZz9TS0zH6pKGPJgq0L12BFsOv36SMHfRiMwyC7GWBUTx7vpAbVCgaiVtxvzTMputl8NSfRDPDOSV2LEwaQhBfgQbzne2pBOUFH4WZBNy56wpG8lhVdA1xdk+jvU7bnGkaHN60bl514eEUoG0xOD4DOY0MjkKYQUjOQhAHlZYI0lmbBAOI1t2OeMhS6QrSGOH3ssRTLxlBAC7ZiGie3W6OYnlirCfOL2EiiwOKdY0OsxM0Yb+gVoRsUelyxDfq+y/3yqp6CTCCZen4S3mUGfnnzglvlM0R9AviMC74dfy6eWCO6imjDyTD0TwNhKXYfdBVVoR+2cxCN8NfLRM6DH4g0scmAAh+lX6xchwV2negHDYdaGDnhoQX6giezdkeieM8wvVykwf+8FMubTSmS/ii845z/Lbb25Oj1ymGb4enUbUUb+juPSWB0DRalW/PiH71dP8ypRvyZEu3HNVZrFQojmA4C7DiQ5XsyW6hFyRY6rhs55UJ0mJZbwAunmlyH4yc/hcNC7GpjsXK2L6RwF0tl/lLBH2mb8ioy2weQ4ucp25L/ht7XP0lyNKGp7vugvK0TB9Pqm2L3OT/RE5vCum2fN2f7U9pduMwQOd
Variant 4
DifficultyLevel
741
Question
A bag contains coloured marbles.
The bag has four times as many red marbles as blue marbles, and half as many blue marbles as green marbles.
The bag has 20 more green marbles than blue marbles.
How many marbles are in the bag?
Worked Solution
Let R = number of red marbles
Let B = number of blue marbles
Let G = number of green marbles
Express the information in 3 equations:
|
|
R |
= 4B ... (1) |
B |
= 21G… (2) |
20 |
= G−B ... (3) |
Substitute B = 21G into (3)
|
|
20 |
= G−21G |
21G |
= 20 |
G |
= 40 |
Number of green marbles = 40
Number of blue marbles = 21×40=20
Number of red marbles = 4×20=80
|
|
∴ Total marbles in bag |
= 40+20+80 |
|
= 140 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A bag contains coloured marbles.
The bag has four times as many red marbles as blue marbles, and half as many blue marbles as green marbles.
The bag has 20 more green marbles than blue marbles.
How many marbles are in the bag? |
workedSolution | Let $\ R$ = number of red marbles
Let $\ B$ = number of blue marbles
Let $\ G$ = number of green marbles
sm_nogap Express the information in 3 equations:
>| | |
| ------------: | ---------- |
| $R$ | \= $4B\ ... \ (1)$ |
| $B$ | \= $\dfrac{1}{2}G … \ (2)$ |
| 20 | \= $G - B$ ... $\ (3)$ |
sm_nogap Substitute $\ B$ \= $\dfrac{1}{2}G$ into (3)
>| | |
| -------------: | ---------- |
| 20| \= $G - \dfrac{1}{2}G$ |
| $\dfrac{1}{2}G$ | \= 20 |
| $G$ | \= 40 |
Number of green marbles = 40
Number of blue marbles = $\dfrac{1}{2} \times 40 =20$
Number of red marbles = $\ 4 \times 20 =80$
| | |
| ------------- | ---------- |
| $\therefore$ Total marbles in bag | \= $40 + 20 + 80$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 140 | |