30087
Question
A {{object}} is pictured below.
{{image}}
Which of the following is the best estimate of the area of one side of the {{object}} shown, in cm2.
Worked Solution
|
|
Area |
= πr2 |
|
= π × {{radius}}2 |
|
= {{total}}π |
π ≈ 3.14
∴ Best estimate is {{{correctAnswer}}}.
U2FsdGVkX18BDFackxdDqQdodj2BbRwC0cpAG79quhX0ivsYUQlG/7rkolTW9m3EKk424DjuVHOzqR1Ce7/9JXFD5+fU2raSqPHjQKJ30Zt90q4eAGwGjAnj+3u/7l3SvLPAmmzzhgIfbIWd5PlzlHNeVoSgKtcQCrfwqGY/xSRFbo8Bh66llTggWGkFXj4OyTE9eh7vSmsYX6wn1s1wA+k88mt/jHFSazylV8OA/UD0N1wKoltCuz8cAS2WSoQ9CLc1q8PmCj/5YX1aS/Y7RlJ+b7rCb+J4TwaVwXkNRkYmN4NEvnq0vKotGz71UlWGZ+kxEwDY3SakmgMFcEqzQpte5+4rwmE5BP0cQQChPc3g2fYqjK3IUt53Wwg9v3yZ4L6aXNL/HOsvAQz1SGZ9vspPgJfVaEP+vU0/5PBIgos39l0MTTj34Xs5+OJ+hBXpma14jJFgGFoOua5917bzRNVXCcyAm+zgRs89bCPSi0uBrCIPzZlCTRtAZp+r+rl//YGj504W73B96hcg+ccsOE+/TpzD6wgEmWfdwa7l3RtSw0onsgx4it4wvqsxfGp+n4U9cQYy4k+lfBpInSOYNK5v0kvo+fI3mXcsNNG2s9kFPPZzi6Ne7xvXjLnsnIj/w+3dZp42lxJGBFROVolDgytuz2J25PnXUREmiOgKaw9u0OGuE/x1FppxI3xiYgrhiCVSqnlZHAtW7YkrPbJm6YPgJkOvW0nN3zwYfxDrc3f0PwgRHZk6A/iJ882hi51r421rIMaGrBQudoW0B1Oae7vfn7L1N9OVfhMSVrTpLcVqnmGdNYd1drxYqxPOtjW5xLIfVMfUs9avBxmIfGs0x40p1XIB4kBntLe6EKoFG5LpJVn9d2fS1uEUBzePOXOpPYeiSP9tKE3onKhbMK6iDc4uj0/hi7qrLV0+LefOmxOXOpBxdNQAIdQr3Fa3NDtDDm3KNZoKIZ6kClU0QUYwzXpmtNMgfDO0FO2dnISZuChwYGrEHcT5/74wdtRWJ4gL+KvW4wH8AbnpYZVNOenPbCvW5gDR8iJoNFtrOAGit2CnRZpRyp6OAxL6Dy38F+Yxf9lH96o98axfcPis/9H5wmGduNpT2EjJ/ZEBflG9fjpfVQQoulD6ulwdPngNUi3WdiR7vjWyhGW4WzdrlMZJkaUoTI6TCFVrUZhdc4rQkKESr80ltXSIrIXJkmAsZPJlbEttVyHNlKnBlildDV3z4EVAPtAD3ttB6h574QZcIoSkA5aBrOOlFmDq50M4v8LmR3rH+b6Qpq3rIHYv6PL8xv5GFVHthnjVlM4XakqUrcpNZeiSGVzzrR+je4sdBOJ/7dmx/cOEYjcDcifZH4cC2uu9gk4oNJK1j9o2piG6oOyIR2zz0n8AGX3q5fG5KJ9MxckAffC+jI30arP9/TbFgu3RLl0or6tJWOXBhQG8+m+DXf6ziON1hQZmtgkCfKGbkLffyvgi5cXKQdJqro9Z9lUmURfMZfZXrod366Z8ez35gFUwIbuIq6CIlBwlyuo8Lmu2nO3oN/DH3P7jCG/q9zqHese0ay+j9kjI7Bt3YL4TuEK3FSSDJIcxyGVuKGwfqu7N7CNqAbkycOClryeubUU3UqDfS0wWKaRm5BDZOVvcsgYq1SnUe4DCs+aWBXOgUBLli3RsW38AzPh3CfPslaFzIszGKg05I06cryiKgA983qXmG9G4jLKaG1una26llJk75VERPNmCzBuu870IL30S5Xy8aYSupv9j4v3TvZxFksFyTgmHkZk19S2yjdScC55ZfFqhegWJ6wIhO9Q7+rqjRM2UcMd9MTB4j6zpBYYfBXK4pk4F2U7QYYjumG9f5RQPJo4NtK/KFjPDw3EIb+1VZsORmnj68P5biHprLi8Yziv3qnCtFhM9/HDbmu+coCtEugFXnf0ivkuCgQxprQWeiap8HuOHUd4bnLhEB7yvRAnqFKAVR9SSVmUWx6OxdcimMQSuoa2rk5NCYyTBu2/z63b6CU94dY7wIk1EEz6sogBInWDNZwnCNZ7WGauymmVT3d5lJ6sjoZaeuR4mmmig+z9ifytiuKfLg2bje8HAtaZjvYCYe6vqnKh3NYM19zDMNpYCaadopIuv0RHoxUDCHwCfHYUvEc6Fnq0L6UDKEM2tZFVexAjfMpNmVy4SpHlHLxIrJNDzgr83peXFjc/7Ttts4Oemf50hUPFfvfvCSiaaP72o9XyUnfBdrtYKjzy0poSsUZFqApAmYevMRZ1EGkJUgeuuCO5LxvmKg9FmZeh686fv6UeKmu5Wf2aul4/LTRZF9SHpkjhp0KutAWSY+lmyjcid5LOMvPA6WCNbd1kySXPk9RQniq87Y7SiZzHcHqPQuMwUqkITR3j+HhOWxtSexzvydufFTC8bYkWW6J7NZ/rC5pOOyNtXaOvfubUbtT/mW/Q5lsyrAbSwqg8KHbvlK8LqunY+Gy37LHQ/iuTdClAelTyDGY1F0DILV/RwMcd8jBq9Y85MCNy/j58fKvGFh+RH8eCwKyQl1EaaMe7DnI81yYCFcLxwQ3I2c1ZAaW0wt5HloOLTxaIFSi3tHoKy7vRHXyRhDdMtQ2Hd1HWlNwsc6H6NLnVTtdnWqWQ6+UVEcObIIL/ThWhBlnlNjilSPi1yU6ZD8Qi2YvQhdt/SsslwJ1t73EcC7n68zBwCrh20ps9NpfKjPE/GbyfaQfHGh1+pNonT3o7CHNUNOMVIGwo2uPHS9elzx8LuyJoow9ak5BMk7dXWv7d4fAgc795Oz8oRdKo1PCryPKZlrahVTMqyMDXvaMGJM9qJuv2MYJ1PwfQW44zHDFqMyzj7LEgGX+/gI3l/y6Fl4K65C86WfzKZY5OO0xDJSRqi6v9ewTdpPjsJPlngc1Tds2Bt5mcWNgrfFLxKtdLADNTsyEPxNyudXFBp3x5u4tDyQSqbSdcIeg7m4phR62C1q31MW+06syVENcaIaAtunvHN28rRvO1kJsKxqnruX5AALfXmFWVbt/66yHYmxOC6BoqQiN3hLOYR33GXMoansI0TT5Ml+9UevIn7qBGmONS1b26+HXULJ13Y9rWOM/+1sOsar0ON/93kVttIJYDpqdSnfG1g/8OzvgiOEQIo/wnpdYxZM+wXShBcPQGCuLlAbphNB0JgSjOFeOuIUV8MSkjtqeMiHdUYiwtjaxzFrGRBkUBnhKvP7iv7f7/hlrF//30tqxbh+JsQf+NH8sqblE0cDxLg+lpRAISRMphvhTvDZoSI5p2fY+HvXRtnXDm2ecbFyftMHjpMuJmPap2n1zxIlxbBE63KbonXLUPaWrp/UslfgbOWRf2UOtPXifo0OUvhs0RLNPq4ZFJ0eqo8/21h2M87V1CZrOPp+mmTdf1PfuyJIHudGlDPyjv0zYt9/jdqKRiisOaU4EDjTbjzhNkv0LU0cGkK+b/AaPVI8W62SSIVwAujFu7E23lKoaeCTBSMsm45nHHfm6eIUG+NzLrNvGhPRtnvX+1Wbl4TV4GMqWOCtYU6bx7PM9r0pgg+d+ySKzLMXHYlHTsuRJl6R1u4+s3++DSHwPHKTW2w08pEkVcMsqhxpbm6uTDFEhAfq9bi+HT9MJUfRKY6tHR7oX1+Ajt5EppuydXu4Rc6Z06kXWsuxzCe6afYlsSJuWGezpkLJP9k1vuNVX84ggra/L5b39GqdiobqaQ9dn2UdkSZ1qvwgBdJG8JUcf6wfbudqJTlT+vfgmhV6ldUz7pDTOkdb8ZhIk5loSE5j69kCPEK4P8UQUCRYtt8prKE89088GSWquTq31v44qxSDstS7V4kkNIKVfb8yGIYxk1KIe4JPiCngsklBAupI9j/CPKwqFrqIjOMPn2Bpfr5QPubNauVP8e7BFTmQg3hxgB8zxWjzn7JlyDwdgfTNmV/BIcKtX8YsaLoBMgXFFv9TI6gNrFHbkR7YTVGwW3YR5mjwAJsfylol2mM5fP8IXO//KQtYcD4y+yiqCNLIg30LbaTkYmIsm9cEfjjr55KTDYz3xekSrAP8QmbY0E7IVnp/ThCqNsrxlZCrI1B11OA1S2FBgBbsWz3GBVOGfEIVLiR8G9/2ah+FfoK81kI/U5cRMMy/RFzxJU++Hv/aHgLUJoMqumeUW9jF39zdT6Ax8tRFyqgDXrTOTI/ET8aqY0bnFzBz4d7fh1VFwHWlFdHVKzjRSXi2Q9QsJjbXUye87AtDcMGDayk/vzTtu8ota3/XtSWgo5IOdzXZQH1OApDXr5NKn1sIzAEYxMRThurtbzOWqjMm/fn4BxCU6qCZq5luWfgzQCAZUdqzB5rhaj/P8Pp0t74ci/8BUyxjjT+BVS42fh+atSt7WKUUjf138SxJ0QXZZRNZQgTBxkyHLJ/ZSLtQWLrubKP5Ubh77lMEYh1tMZbTG8vWcQOAJmw6E/DgPsypnzSKuYR/JvzjCEoi+zoA46srZgMYT67AYxPJKWlqlL/4DNZjuK6qPDw7/rfaPSthN4EgaUBCsnxvN9L3TQSgUUXSxCvs37BZEdI9DswbQ63/UO9EzK+u8bJkJfmRpbgeVoGLQvRasKsGsttErI6ibz1zYYTGDWv75WlCREVP258uOla4zifOZIAMUSPVlBxpvBTtcjg5mK1osvEINllVb8tW8Qefhna6fdnNFfgWUEQsf51LoABT4BzMccQB3wL70X9UY0abAOJlUyO54OE+0KwbnOucVORjM8iVwV3Z/bdOzcYn6xsCxi0IDC0mEGJfTZoI/xdxssd/taObkw0NM3huT34PigJEk0BsZTLzTFa689WPn6oSShc1vUzzu7WOFrFzYBCu6Fu05U45c/kj5kMb6RBozz2UV6Yw2DwA+K0fONZOpA8Ou6Z5o2nOpjuS21Rdu4/YZiHks3UETSycALP1unQPCCpP1UxP6OupvCg97316l/OKxxQ/6HuDPcN9A4WNVvp69zQefOTC1JOPPURHUG9HxhXSMh5zMZPgeaXCuC5IZDTQZNiwOMO+R9+r4UTErYfnpH2YOon4sy5eml2BAJGiMgUDHtHV861Qt1UYF0xZGM7l1xZ1QFwg8NbFKNta7fupgkkXJr6YDnd7LMYe3qKyUvUUu6eRfLQ28ThSNBPTJD3omixSBlGAqR+Fq2fApAbDzy/uJpf/wEAEvXRX+9s0qWai2t4KD+mvBeZiW1fOepQOfrBkZEBKPpyXSWM6Kgr9wQWHq/AUB8v0YXsTsTIrQWBVVoOhjsQkMjndlmeXUY8VpZiHOpEWXQj3WH7u5W4kCKoCypVmiN1caSVgqUwv6HneAom30fWyr75E+GljLmYZHJ7kAMnnyvxf+3Cutx9gnt2r4gqEUQsyKFOu816AXMEinXcvpATJn4FiIah8cNfcSxZo880oui4tsxIn9IOK1ZOQxujBkVzysh7HTcVSQdIOg6BXr+U+/6GISqapJ5NZ6dLM48m2JVsDvZWUEEscqPFfjP77Q+EmLOu+bbk4wSFUnTa7K0mxiCHa7ZCRn3hRPCFCYe3mBwmn9hMUKmIRSVZGCSEUO2gdIG6t+hgB/qPBuc+FGNSGVIOLWsf/yAJGiZlVRqto+mAzasn18jq82HhOGplpM0LTVKcd2hlhRBgFcUE8ej95RWTkdS9+i38cs/1VmYLkWdo4ualM8hO44d22GJEpsDK5XZCzhm6omjOssoUkgpi61kBbSWZVcT+mJDy4XEJagiR4maiEfFJUB6r2ZnjLgQ/W4F5sz48v996OiJ7ekY/95jzHY1hcRo93AMxlM5Os1HSyWatym9t7n/JmrUsL8Vf56s1ym7Pz0uTcJ9Llc3PYY/DHfMZx4qz7UA6ZckfSt3DwG8LsJYeDHd8r6f9Ez8VZsmY2+lC0vEbADx8PGKgo5LjPac2WSI2ticOR30srql8+21ijZLFuxsbhetj1uAIyEeO9YEk5IeHpUWEAn5fAQX4tWVYxnhnQuoHzxNRnCCAdUUp14R60bWu7AnA43s5+msEsz1EUcGazn6sTSIUlGwkUPPhvvgFmpJAuH0o09XVJmlz+osL/h7H33t/QDNv1cH/ttTdwqU1j0owwurruHulXvP7NR3+OvoMcDSiBUZ7D+kaNM3UKH6Rs3859RCc5q0+1hhC5woBUVfDmXgKAEdIS4UKnIxlYq64PgippVOGTG272a/yOb9uxJQY2j1SJ4SmmASi5L7g9A21XdPyEv2JiNmM+mtE9/bW2xPg6LQr6UpEi4qgpjABqW051hMLYdyXeHFU+kX64BJJwTGpX4H6C366t78bc91CQsebU6WUkaL1rBVDtyax9P9+xi9ehAzfyfJkoFsnVmrCxvPAbBmfEhvkvfGD0wePOWkaDJfKR85PsAL0VgYf5ToH0IOr8IwiSfMPds2hPVrgvqEueYKhrem4692AhFhmHfG8w8bwMDwBPfyHDrH4wBHRwIN7mvnVYLzrCmVO5iNCTh0Z7z3TwDlu/Y1ZBHRMp0GdHTFNskl4je+citSlkVZCPuDngsnYbAwDu/y52l6xfbNDuVHnhQgl3JVAXqyCE2wCQxeMn42dyAfR3vs3I4qwkeMZDLnjvuaLT5+/m8AjADcZ28Df1h4SEF7V5arXzE9+jQeuymeX8jyvdk2Z/b+qf0JLQU9Mp/oXv4ZpERsGQbKmcb5F9uMqbfb5Py4n8fhDUrrUVLe3SegMwzgW8h6/UIactco8mGBrQsFgS1UMAfIuGpss0iR74FPpx3kzb/WeI3cg2nQuIg8Cth15UiXZd/F93mz3eeIQwxkne0KYsTk31OjTDO/65gMnJw5BtBWMvqNyjI+eVd3dNNgzgEGQmBb7tUJyha4PNQPBpxARSuycPclP4wy7nu8NKHOnrJfNXQZJ+2W+L5rRc8RE1i97Yv8nl/7E39tKWLGt35Ql/CSHMNV5HQTeRtMM6+spdZTDOfBCirkwtQUteoHe5+bNfGpPPKOFid6RSUCz8Vpt3ViFdq2qX5/sgrCjGTOMpty9qjhbIeG/LVbsybYSeo7kX9d5oKWBbOSfuPJJdi3dRox2tb7UsQJ2uqYom1FOzlHqyJT3jhaa3B8r4VAo/aFN2yjfTdjFO9RwcS8M/dYWXW2O7EbwMMPXoC5sdorC3ut1TyUTEQUw8vFGSd8+HSjL0InfFh4opTNikbbba33dKh8w15KLZid9XC0lbDI4XsnHahPKMFgOoYLqi4PlXpdPCbhZuMV3EUF84PxnjkoO3Lv4P5ZSX6RFlLsSmTmL2HKrBdIMWygPVPVqgbWo/5EKmmhZubu650kZsjEEmSkDlgPIKT9WT/4wM53EkruNJLPRFtL73qYezAogbcGxnVaFgUXKkzwk2X8ALNp/p5x01BEVbnZI39HLoR0l2cD0rbgIPQmxmuvZd8wvZt46trt/U4f4ic8ESWHHuL9nmH7hmIqx+04vcV+nuPoz09NxgpwL2JTa9E6Z4y4/Fth3Ox4Lh7MAxkQpWRjEAkPRubzg+yCI4cnFz0h8tZi9cvajoPvmptCaBfxcmX2qwPVogq2XotJ1oCMHn3eGNXZt+2UWypkr6O7icK5JiYldV8LDZd/i8qam/W0MwUb4nFoum9zkBLr9qyBmTx87yxKgGGPEGzF74JPQQjGzN0VKoCbfz5Q3s/Js/29nO/fRuMnVHvWUhs/IsNni+AOsRN0ZNCbygnKMlw26C/TQllbJAyEE1XlrnVm+YljuhUy4bkvD1wi1sfREtDS8/Ivf/jnlDSBpg+qVRGUd812MPAyJrt+snJWJ/OdvNe3Ba0mcmE5Tgv3Ac1i4+f08hxtghLOIlIfIppVUYf/D/eTv4Er52HiOyyoeawH5MgpHVdTaHpiVzoXtz/YiKoFsMklrW/a73wnlPF6tVt31PIzPRUYL/4UDLsH2bzQoFHkaFXZIx8QyGyXEl3ByysLKYxe/1/NP7pWGYuGbL/3wuIb7YwlLOl7lemfuNmMWsUzdJimY3GIdEgNr+Kf03fDn/lGR/lHr0BkL1k0rdHitsRyovu1vq0CTHJeno1vWVC3eElom86p5x28R/kIriYD2h4/6i4YVdzqZzHg1ZJf1aEP0WgH1BKb1Dbf4tCZyxwhZK5dVMf+639NgJK6lEoi2gLnmG2sYmxMsSPq8cmVks6RUj4YuxXBCidX4lmtq3Zj7hgDtLC8xJWII5vi8Kuurka6QiJIfT06IF5iJjT+lhCWCtMdDWzCbOJS77kD8dxpMguOQElPWZ997bAzhlmvn+JON5OxkGCrU0wTXpNRsPWrhidVXwNZRU3NSLnlv3PThBb6HCKZxGUHnDew1IZSuz4H+eathTGKr8R2ujYrzawPzTiyaqaVZIKogIvcG8au9YFjWsMBKIU0E+hJmRYwQuaoXZy5esU2ZX4mlRmCsVpxywWjlsQMnBA3NPLsS+1I3k33RDOXKmFxIhw5LSnZkGwNyfF5b6XgTd+6It6mRN+oe1140YkS80XWpphAUYou5bYTMmby39eMrz8X0hQZVK/yqZYAZFlcaWHlN4+jt88d9/+X9xX9WTH89xIFX7yarp9WpgBAb9islxnKElFjkQtNJHps8L+dyoM6+xTX86x9j69kNbX/d3tW7KUaUFMoe5grab/X5nRGNX5EXCo3/zLrHHtNF85DSiFv9/BZGm5kBNf3rm8r08GwCl4jDlSO9HvS3KbQ5C4uesBuTEKNvrIwEOWLPnHTVsX2POqYPuA6AntLcSC/N0coPZ5NL62YErNhu5Np9MQGSu66MSmsIv9ZpxSUDoDFnnFb9tgR8SYrpbAiTC2r6yMs14N+cwALtL6Hq5nSCIfMVRpUR14fqtDzM2vfzXGYFK2fLk6Ued15YXhluv3RL99gPWEtz3+Novfi0Xs4YEfm4tQVAL8oDlkTFGW7NiqwfcXrZ1L7EU2LMEXmetnprf51GeM3SpXhFnXcnYMLOI4NxVZIw37HJvulPufaCA+d9m6DpPdtPbd+YPpV54SrZrqwKdofFwXUntGLWsWuguiSQRtu58yydqkrqNzvI7/EGK6oJV97ELghfl8Xr674h59QBTNE+7Yk+dHhgi8uzLbgmo7H8VjjhL4ZXC3Q6cWIPA+JB4c2/KD2Sa1uczZvGn56W+5FJVbHGXDS7+ThBdKdvFlVeV/0nrJNr10sesdQN8MQdgJV4T+amW/stWQnTHVxQHFppxSjpXY2H7SSJGPABUPBWxCR9KHCe/AAE/wrAj9DFCMvAFanRS9E/ymcuU5sEz/t9dIqZ2GdnCP1r6l8LHYLi8PILfAbqZk5hWkRhyBJzf3MhEQ6NBmkxba7pj5AW2VWP+cIiycl4IOqTDOb8NkVSscXjBY/wnpONKL7iGDiVDXjpfJwad+z8lEK6i+fQm34pfq6gjyxsuEy9zX2G5FTvaJRn+IeLbRaVwyYkziJyx21xaosZWa37+BO35brzDRGSQDKay1poaO8vqINGsGunjWVfPI3pf5ZUfJO7a+T1q9P4Om6Gjb+5GLZeA+0bFqZ0j5jYFI1czqJ7Rv3lBYyqBB9N1LOnVblYsj4FW0oH2GhI
Variant 0
DifficultyLevel
593
Question
A circular disk is pictured below.
Which of the following is the best estimate of the area of one side of the circular disk shown, in cm2.
Worked Solution
|
|
Area |
= πr2 |
|
= π × 102 |
|
= 100π |
π ≈ 3.14
∴ Best estimate is 300.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
object | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q23var1.svg 180 indent2 vpad |
radius | |
total | |
correctAnswer | |
Answers
U2FsdGVkX18cy3TxZ2r7bKII1NbiRFvKw/RCKgmJ+tFd9EALb3/hbIkVJDWoqA8MRq7GEVj7nMqogL+QyS+6JLo2C6TudtN08dP3QxIzKel3065TKyrjSfNXG6k6Obal9KvcmUDxhnnl/pPKoSAhJ+ZrD7GDkUt0dunWofg+N2deneI3P2jxp29kAMlwruW9YCG+TMGuyCoUKQEbH+Hh5Rwtc1qyjXFEfKFlWPXZdBtAkFbc81yVLPXMPIT6SQWk8Vk0Hnjy8l8gzdIYtCwN+lJjHlThyaSAQB4ZAUddxa9p1FToW8cgh2TYdTBPDsabCGYH8+/V/+nBEvZ5bJ+E5yco+lNmI6p4O1rtEvuJl/w5EU3mS6k4fiDHMOdjYwAE/1z6l3uzDf0Hh8koZm+PvH13DAGBMFYkH2xbi6J9Fttr7Ep1zGJgP6JkSAH2qlIOke3pMaedeHosaQLzgCclPxu70i/chx6/cJp3FmvswL0DWmmPVuIVR45Pf8HIpVQn6rEeNPhUDtL7I67HrcJj3mowsn8QAP1PNUik95BHQHf5CwNAFkzjGOfH+Q1j7219Dj1OYMztjtSDM6bPGxeS9HRN/Hc6eZ4408/kVYEVO+tfEjK9LYbtFOWfn/RY5kcMsTwGdXQ+WTcHA3K+qgiaIwGzzPOsBV/vYQ5TsJVlLBNebk6DT0hJ5bHlUMqkStZeTfHLHYoJvHW8kTAJwvXYDVtyHgUbGQzd1iWi9T5dl63sRUkQH1oTFmzrwy5xsfNT3A/IHTGwOeSIeBwS1IkaApKCANxc7Xhhd9PKLN4WrJRBO2RcGe1BbPpNjSGEZtTPhyIcr7FN5cMtEpKE8+oRy/TzENOySW1wR33olT7qLRwggzaP9q1hwuSAy2NIgFqDfSgZkBpErTAlfdaZ3rDVv5NZAo3NXPfasOZDK1KwLLwcsL0L1YY7sAt6hmIeCsacQfpWSX0itsuy0UWrq15+xKCEciKotNCCQL+A1kqxsUuJlMjvjvKjWLLzUiYp6rTm1sb+WW+TUtn7cfegHdzaF6K1szkw0albYqcgyDAawDR6FDJNvpFFiZmE3opNuZWvlAAc+HY3VrIZKrEH7HnBAm453SKn96Gv0RAKgZubxevHXsyGFlqymKjpehzWiHCpv+jAdDMSZkZ4AvEKbbB3IFZxcl35qkzmUjIhIlrPY8cGe2K3vbgRQVsl7YePORF8LXomUdpb8EX3nUV5TLWAtYbQ37Y9rb1diAsICqZkyOGOmtLTzsH00GSCUlDk69P6NOfWptD9N7AoGZ16+R8+H6An7ZByOtqQEc1pVsdbYulOp7zRs7UAgr8eRwZixjhyfsVW/3F1TTbW7FNKpbOjeGXs8EbP4MFxbTg8xUv76qwevDM+MUup75bvu/jNGQjFipJ8z+7ABOMZkDDGSoG53dhuSzbsBs49YzXrE/qek39ZEIDY3Je4Dltl4cbnz+Yqd1HVfiok6hv5w9E1yqVjV1uDkx5yv4GRM/RRIssZ89+DLkUtONqK30SSE1MH496h7V+MEbZoFqhbpwC8fcK/bMFSoGsyP9tKlOxt2P+NGrl6+465ycHgmU4Ul1szpV9G3G/LqiVvPEiH1lr/ah5ujwtKWOXscwVMdNl1LOMkNcTSWoyu7UGLIEgi2OuVl3J93coL+RLKfelP+mzhpKTwLH8XlDCWPwqeltcSek9/GEqiXQ1nXk1hjfV/jlK+a1tCJRFgN78xJpaH8OaLvCqzx4oLgRusAcQY+5+pSQSxeBpJh18EY3Bxc4yzPS+9Nl9mrjsAEVX+/ZQQohRCfgUrHFIcvFizufP2AvSYKJdwbsPryjiJd+p/zq8Dsox4gxNcmB+W6fxHWxUQ3GaJ30le65ZDBHcVXR5wu4UUheObxJP3quF6oAlVCku3AGLTQqgpSlqG4Xo6qFILfikziLd/1kQU6lvOgzfZnVgWliw8cIX/z3/+LnDMldssRDyrmogMLQ2n6GORAvqzkGL1K41gO0c3OKaBoshUZ9NsNQLd1s4Dg5s89sYhsKzMHHvBnJbKf5AR13UCg8eg8EMVOz7QN6ZKk/4WdHWZDe4UqymSSw0E+OPyxW652X8jvf+LRbXb7rBvOP79dBLxIqr8rZs0/eY9SSUmvHhyU9D2NPEGYKSameT9wMZJ59TszYrBo4idxeTnJ2Hkq87jwt4KIig8kwn7JGzO00HPj5wkkY5RjKybRq1dmZ9FYzEROUUhPS2oF6Ff5J0rYRO+f1IslziGil6CSyZAEmEG4PQOykl0teUvSpahBu0/XlU6tCT3e8CoYrJo6AEvD6jQtfkGfn+74kJdhPaK2fAb4pEjKRRUz9hvUa5k1ZTjlW/TSviwnSCkJAGf//kd7pHYgRfaBm7ytyKOBD/bPKWs1aYyv+2WvW1HPsJgIw2lNSZt6Ta9bzc2c5/sILbbdpKDhggZxs8UXjB8PUpF29YKc7LgvJ1npOSLD/FSG08AIPFmMP2F72XxRDIDzmoj/Wmmz4cVcnEC0TN7w/mFuFRtgiZuoXN71eHIGYbAv/6M+K6TcFs+/M+GV+3QLQsIpEbMByrMHmP7I2W0P2RzLhM9B+EIuZW8I/dIOPivS6rwsTZX1OBwSR4soVAhXReL9N/eMlII0PPq+9tdGT869Lf8VXc0ucaKfTmSw0EKJ+2DCoBVXLD6Y8KttL+TFXv9bDJzYDX5jSo9uAArvPwuwkwroNiLeTsxIkRaIo8WjN4sAKizBz2wnSMQGDCC+Jhcvfaag5kZMRnrL6vWVZuWAJhqpzUo/H5C0DZ0Yqv2x8rPg1wxZF91Qesbp27ZQLJRCzj/e/abj0z6C/wGHacsfPI+TM0+fbuRni5KX5Yx6V/ixW8LWQ4AemYi9krEEGCdKoXJzn2XbU039BGQHfFPbHvguGA/00gFf1Ii5uaiPeIBo91vGUr4mXzrRoR6zkIfhucvUXGEM61Cn9qkCuSiDjKanf/62RN4YJDKF5dGMtqZV/bdKxO5F2o5jCTB7Jusx1r8tJf5viTp0KBb0ijKqat+rgrbG8mxcjcogqXk8Q8n8nnDp6L9R37DQ2l6DdV2QbhcODmFwJSys7FFzgeGdT4WPRym+b3VCqukTl8e+/b2FO2P6vRiGavxPQFYXzUMjgmwrBE/PFz8Qs+wRuIXNrY8Axx2x8xM3s3q9F6xYupeTjNzJhhekK0iEnagNmYj2HuBjNc/212L1pwHteBwIi8LO/FukvYI66X1MZ6OGW1tNYPR27kfhI5tWAmTO6HXEPWt+0F0Xl1wNTtr1e6lCaFH3XSL4cQLvMIYPXIKFkXVOTnJl2ulMWTb0VQTPFmkDZc9V9JNITE4hgOtK/srwrHZFxNqz3YLOOrplaVbHZscAyvvFGSdkrOuw5kEnQDRNkToM97Wp9sKzmJRuUgH/1KBOFA8HddtemQNYULwtnlymvgDCrcAfMBPwTVgCyLUlw4ZnecjEKi6hXo3ye3JpnUcHyuPscdj/EfIY/vikMtfMt54aNVtasKkO8aao8dy+QvRTJ7GLL5S5OrQf9S+TBPsWyTdOjNR0NgISCrCNnJF7BlZ85qVr5LmnMzWthzi0EGPLfRy11NuuhPOxPGmB3dSEP+l0U9P1o+gIFeBNRxvFDip5tmAaWXckEfQS0KoD8CBY4X14HqnlqcSanRhvQWbDOze5gc9RgLLZ3ME2V3KRUu6YsmlBarKqysFq8yP1nK7i4Q1VxDtexl0A0JNHtPtqUFHRjEGh1bV23hcxC6uu+41UQdAieN7fih8dGt24FadL9e2Xu5hctJ4lQq7kplkWYZbF9xo3ypUCT37+3AOIhaVplA4veBOp0Etya2LvHYF8O1zNlRlcXEe8B+GIYE0TyPhtVMmxBMfuU0py6IeP3GzqVp6/Mw7UMEAX7716aj1JhBtfrf57jFjDMry8Aco3jlZapAvZfEk9M0fu5yF1iv9bY6GYmarMc+u+k0b8T0Kzgwrx34dIfWcAbUwdEAuZTzmbOvlBm9GkfBvGu5uo9r6zURpBy64pLeIppkriFBX/n2JFPwkYF7FZhOMIybsOcHrFoDwwoFKk4NuIfIzq76D9HjcRj8X/ZDvi0vDhUU4z6d8q/LQ/BA/TJeEabKPRDwpfeo5lD9/0vqxlaH5yFJGwyBrzFcLGapYJAS+gti8JDhEmtvGrRNCaRvHWZ0woGNeYAWZQlMmr5UM27cQ/GD6Suq+2HC1qfXjCYcHW/O0eIHNe0jLwp8kByciNKRzevEiOYp8qdxdjDGxqRBi3HL8DmaCJzmd48F0qb9/+hrG5Rb42fFNPoCFio3vy4gfuJSS7OR6xVF6bDr2JOufhYvRZtdXILQw65hRq0MLLvtyei9ouNcZIVZWnZKWcNvsKe4kR3WnueI8wPxYk9b2AWnq/Kelqd7WoFe+YOWq08EFtmXkcllhbr+KmYjpW+wUedHxHdj7bIhpE5vraDhKBczEbHxNbh3HZoIHVOaNX76oB6GsciFGREu/VpDN9KIao4srR8a0ojZT3ZKKx4e8XuQlUOHnk46d2YXJJc2MZGKXZTgXOWqoBxK2m/qewkLLqTcYBhFC9cJqmkdhGcuImJb3MWJjNWdyqAYeU2EjZNtW7bK84Cj74lF916HnMuIr391l1Iq2bdKu1SqhqX1tf0OXlP16tVpT/M5DxmrpGRTWneKVTF2+TDEbOzYXlICTicLQP1TMBq59lGGl5EbiPMZsdgk5d6eudbFMSehdJH7woSY4n49kDWjbF0gRMjJ6A++k78VoaWM9pFO8dUwOTy1KOLgcS9WQX5g7LMJ7Pfy6cl1SG0dfrxZYJRoa/YOo7Yhui/HeT9ZvKX/KCIks2QLbERLKAOOjXxCqNJSDpMuE1TQg8PKYSEVhtQs8+R1lPRlXn6pLzo5tWD0wNTCILSx12CRq8PAWE6jtwaXvNUkf3BcUlBHpwd6Itu+w/ksbimY28dja+wC5GbBWqObu0keo61X2/hKXZGHXuey6zdyfNzD+u+V1mF3Mqr+3oGPz1ePT5CFrYzW7MFuWneTi3tTlJ7+yIOeaOHiQqNhybDis3XOswK31PHR4OXHx075j2BUHowq7QziXdTaMpNbfsgI6Au33wBfDw1qQSr90Ox1/hOG2HveAs1Az4MmBKYnjEOe1pKPpAH8NSIO7m+ZqnBoDJg1aESqnEqWGEK7m/aITcVyhu6I2IAVI8PzSOdzdcykTWMym/pdwjmMJBZPneXzocgz00KnpaP0qrKTJ3rRgmy4XrKu6vz5qwhoK92mdYLK9IVV2tGPb3jDCRLQI+mbZEyB5C9gkfrBNyWSO6p5idyG662nyZ6te3AMw1lLyW7zfscQDkXv/GhCBBqTi2K8QsomNt5v88qlVuyZxfGlc8aJktoCLcy+oKsSryCqPoqa/t+jKTnSv5DhG1f9ki+M16JT6NpUxxRL2JfVKdB7BeJoqU5mo0IyPawAD17nzD8KxNSeV2slSTk4XP+v3CZlfaj9CrW65uUqU9yQxo7miR8zc211EqzOHFIV4skB/9W2pFcrEHOEujdYmnc86+0DibWHxDz8gMwkjnqB5dsrixBkRxKl5FLG9UarlvEbbAXaCPJajM+fKWZm85B+4RJcg2Jy1U4jLst/3Yy+7ul8wjeqvtXUEZd7Tnf5uXqpmfbK1twPdppTB/XxSwHnIiPaTMu/jq1TpeMlvIKsrE8JcFxiDYqvEydpiwjPmG1+HObS6BhT3aMg7j15TRUghfBvhmMIZz7I8kqK5As58Uu9+3hoiXpW+1lnJuQz8f1E9EC1OQt8KzduqNtgb4aJYJpcfkfH8R/X4tFyiEAgo3u6enQagRNbCdAsIO71FE/UopjoqN1yqRYXXshz5EuHhskjYCtaTZDu7IwChy+7alO3KdDClhcQmXaTgDHm+ISVzGuCpizIM/JR8V/YTsTSaHUOybK+ryoTFg2u/+fpqpEHTpSwXC91pCoqPb/oT0KaME179dZsMm/bZL9BZWbGJUbPAitFNnCpKVl5yCDZ9qigGyPM1CtJC2UTiD88dUFkWgAH2dnERzlKIpR+0x+Yje8ObMwZU+rf9Qabaj4w0TWalSI34UCr0xey2OXP64V5BTxXywbqytx14l0CyIoZNv7PIqOIj3gMI8/9a1LtqclgASLNjhROaC2rJ9RyNHATU62vKncg1EsERgRHeg6nAuiMw9qPz5vM2PPOXRUj3p57bNf9WA1AZXtrJr2YsOPtQBXzhhdF7UB+9STvXcYAo3J4QEiv3ppudxFw0GISbtyLP2Ob4iNL/FQ9IY5+28w736ymlIkflpOOxBO8dKQiFttkcl+E2MGEpz1Bq49LpxSSlDd0Y3+ph2xpBb8WZY8jO0//WVQTbha79ztZE0IqibpHZ5I6pjaHROiWsrNX+PYcdZplERVv0al3/uiLyJmAlZO+XtY/pb99aQykkzXVaVeYG5FboJLEWjsVDsn7tCOYg0whTD+i/zu2/cW517uPqLNxJCRuiuHoUe//F2N88chPT9W7StGT66OzfA1Kx7IQKOUN+qvk7MjWS52CgRExVYW+xAuIWchcnfpIuDHdJjOL2Ys7F2odwQAF6JIhQXJUvB0dmqzc1fwb4s5j4Aic0JXzmUHH5ITQjy9xEfo+ICAJFRqzYJpUvDKo9FU9h5r0uRB8HoKsciMkQEooQCj9HuFmhXDEKhwBohECf9os4h5ADqNAIpWg6bbWFE83iscQ66oWAiuwCVHIiD/+M9tYYBWkfqWdVaieYsSQOJxJM94QV6xNiwjc0WINxL7ep3mu0O+YOMXKbSbrgqLePj/+wxsPxq7+DPnei3NsOazrOMNyHpgKkLyngGT2Nyx0BXwB/oTX7gbA1YoKbiU2tUCITrFxYSWIk7VTsAuz1cxzjHy4BLFoW4VRkwZYKdQyyLz9yjT9GpWIwKYEoNM8YrsmnC6NUcbsUtQ4tOCjJMnN/dJN86Q7vgEUizCSrowwfeJoyd95H5mEnd0+yEH2cnKOaFJCx96bSWxiyhVU3RTPWv1N04SKymjS07IzUBHhJL2c6KJNmFiw6tGnIYM6A6W0NZnBnXW6RrMvKbZC9lzW0LGXZl/BGwRN3G2pRCtx1bgck3oLtxtHWXzPqkTkWN70uF4JRq7KAgSvnD8m9b4r3HPBApvTB5t7F8oDyielQwAk4NSgBLuCyhvD6wnlOUn0tD97eYI33VtSDMQuZeNlaFH/LRChmXBvxw6WN6qcMc5strcr5woBoK+sueFdfug6POUo56JCJ2o2Aleu6L6tRLls/FI7zx2B3mlhKMLsGSghKVl799/kYgPahyqtbWM7Hw0O4MX8ei/uQuZSKnZNETV3Y+op41wzh4NmjqDUjasbrpZElIX/FGNnMxk0DaCpcJ88FBWjYy1u0ic+Yfxa6tGq4/f3dK3MqJVsYuQhEtXlIOMAMDTUwuiH2dgEOtyI37f3w1gPFqzhBiqIfF7OkUdzuRel1z+pKGKDwPmDtMJheNaFjSF3HZaCbaEBFv2bROWAgnG73YSfNTc5Jq22XQP0BPsK+jZfsvukdy/B/kVio4G9B7JfZFuEM0ROgHDHlUq+eaPCZfUEInOeks0gwhvsa9Qcehkn6ToLSF/AnalveTTdNNV7xe3GdK7rV1YwqKA9VyvBxWpkP5L3av+fvFMekygpCpScgWbvRTTXyrvVHwD34EY/YZmCgw6KUHyjNDAj7qgpmLT+CYPrJHpRIlWfKZQ1UG9wt/X5jETcErMy97SG0xPGuM1IiPnwcObG89H6wa728mSgiQAyrAePCmTgu++nPVggI/s0ZC8OsgK3Gr+uJvohhn9adIsFn5FUhnFXD5a38Z7Z25dEoqpZ793BzFci6gEqqrNbN5scULfMy5kE6x30sJt7TKMxyYOoRZ9xvgv3OSaqFRAlIWHnLLZChd3Bf4U4F7m+oFhs4WucoN+GtRM5oaxVSOI3gzu24gb9AsHG6kBEdihp1v6YFAF1igdlTjuCZ13UGM5nscGn++YtXr7/tJbCrYGxzXWyRvdG625vxkn5T/qZqFUnN5TRtdx1SaQBLngqDsdE6t1sJ90sa6ajNZJk21sQZnNbu1Jvfi38ZOwqotMHoXTQeP/AUVdp+pXUnmOqTFdinr+N+hI+Lcx5qCx806bx/5VC6W2TdhKU69bf8PKktxbmWTMIO122GzZjTSA0ZxBS7LByE5SNXQY7qtXiyynogWtlBkS95h+InwGfIUwkRXcngEZ1DifZT7KFdLq1U9UKsvoYame4V5oo3udwqCSlq9fHPfc4e4Gcn95de2xskwhYa6ChS9HpSoBVjZyzLrYseyiA4eITv45Qwe72YaVNTb78yI02fS3qBb7n611dbXUIxFdL+ioDFG3P86UGwPf+PfLW+RIR9kIlUNp+VuPtmFXHFolvKwbJi43PGvzqoBSHlmaUS89bVKaPpfxPlZmuXSg+57A1U5j33szTTojlrKl3Ius4ST3b4KBplBGKLt6sVNxUG7Jfj4ro5dt5bk0yBdgAWChpSwiOKgIARsqhshqTJBjY449/NLsOByfEhHX2BOj2H3s706bd45CWuh08KTaDOCZNBHiU7cw/B/oL6QJrACnZ3nKrxJroWTGbFcL5eyqEcVnngh6vJ6TKAERh2RePZUtcVbEu8HZySr+m7KE+kEmk2gx6Vd9Ch0PgH0DCfUi+MOHOqpqdvLMMK5y8dkZkT04jWs0cnl2d0y34kU2EBpe3qdKMSuncQWRlYsnZSJv0zrHQalMG6N21hm4cTdGqHKR60F35Q5u1OgXB9vMEoSLXYEY7i4/o2b8KY6QZUVZNCHgDzof66830B7NiS6Om5HFU8aIDGjQNeYh6VLUygbuAtiWam3TWAh3/oDcu/Udg3PIBPjvlJ3ZpWmEQAkZ479j1kSaPzKPQ6wHDeh+ZsxaqzAAR3SewgUG9ZX7yBpWgiv0vhWE4+L/KDr1L7jvsNQJ2KYSmpnT6Cwffmx/t7YbstnwHoVu5J1ZONt97Z06yNystEt4JRh7LbVl3uYz1PENKTAnag9Q8HliBXaxSieAYW6O51Wf9zXagywyFFNW4f0uonTKtBEmNFws/E8Y970kICG8dhUQ5SxMAr4NY2WkU7FhHeidpg64WBwa2+Eyb8xCKC5FLZiey8FRNMwGSh60G4G1yxSxdQAz2n92IHAtpgjtMzjZwb5kEwgr5LIFkRc+D9Pgw4roDUjj2IawzP/VcPy3n+v5YN9F+/xzJhyaZxKNzvOIzk+JJPIPl2Q0EYq66mWpYv0yejTUWwaPbicCFcCGuY1zFOg3LBrhsVSJS0AYr6I9nYPunBzc9D0yBPP4QDd4C+oapDLXfqlnZtZXQiJMdKoL/9OZRbJwClwymv4wCM/5pENUaYgBM+BLxT/VweVz6pyQwa61UhX6J8UwAnodJf1NoCKemO640XQGG8kkZ7k4cPhDJjZR7+zZ8T+ER9UbZ9ZfK++20gSFfYXCTTF0jtrZ0/hNolE7nu72+e9uGyoy8=
Variant 1
DifficultyLevel
593
Question
A metal disc is pictured below.
Which of the following is the best estimate of the area of one side of the metal disc shown, in cm2.
Worked Solution
|
|
Area |
= πr2 |
|
= π × 42 |
|
= 16π |
π ≈ 3.14
∴ Best estimate is 50.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
object | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q23-var2.svg 180 indent2 vpad |
radius | |
total | |
correctAnswer | |
Answers
U2FsdGVkX19oBgKvZ0UQOCcMKvIgDuvLO0rCxtVuRrm1E2lItFAagOYv7V2zDgB+miVRJ9G+KjaSqozL7obhHBAv/mfVYCoFu8r49TQpqMTApoPaIgYjxWGTSY1nKonu7gDrWYIR1C7VwMbiALZ+f1Lg6OJhtVzFuPkRGKLX63udns3FL0Pm2jCleZUP5Zoeifduoz2mZRIekZjWOdJjeMb4mliyClkAeBE85YfuwTHBy44iseyshDr93P7ciOCoHwdzxvnlR6wZCsj9fYqle22qRjBpAKr8pglTEx/8d0iNaDaZUATydhDlKB8PWkJBj0dhzmtahI5smAkVJ+J61XBAtEhIJe7I6cimwDJ6x5b9XBpk3sVncsnA84BntugJ8R/P/tAxPsyTNM5pPQCv6b9JrvFwv/UsU9k6jqSDOgiOEhmfhBu7TOqTfFwTIvkK8M0kVHSBhdH3O57FHDdJmouYYGf8j/IPXPeE7oBDRWcyTuq980DCOhF5n67TS/Y6jXpeZ+QVxVtWpyKo1SMIab9tLX7C1NS+mbikjcbNjQi6QnCfZrG6YaE/Pii3RwWWLEQCS9/9iqttpQwMbH0U2WsGVtd434qXQMu5uQQJZ9WYfHkCbfdgbYDgNBnS5dEcfyf77ijVmWNttOGnMqOc8LR6rIc5ViYVV4O9B3TKeDz5XD+kDxgsggmFLovIvgub6uBx0KnCqZCyAjUJtDDCphvsji+/WR00GYtt9UIBiU3zgZjoOAPU0xYO2FqGd6bitZvuwhPADZziYXGuirKd2cDdWMRSAJcbzLUk6FxrHJA635SPLmqzq5zfqQZMFvScFDYa6K+xrSsLK6OxR1amX4bxuKwl7AkeXn+CwxTxaR/3xPxFRQqx+Vtjw+oMJQ7cCOGiy3IGZg9bbmyb4GFNwNL3SI2L2YmycQp0BN7NCQjJuKUp7oAnxC14pup6GrSU0ILJGQzmFug59gbDSJX/mG/4lkJBhpVjdyc+2s0mkfJx/c5qOGLv4+0A3GfJnmUHDly4LySyd7mkHU+LNWfE5fXOdKSvk61pjj7uNflbZU0HZxyb6iPaOKAfu/jl8rrJ4H5VV17PmmTMR0PhQmCARygkAbhfDR6o6O7JeuejA3G11W/qKsqO5X2Otv3rxX6a2I7DtnmWDj4Dx2OOy+P5sQF9EhdKSU8aqpGLnd5xcvvNceEF+WxVH+h7kZvHeAmNuNGbAUKUsLGndDMhSyMNMaZvDuY+wkXet6XOdZhRxhp/vQ/uEdFZMzOaYjU2FlKo6+VcebJqQ4VmITl9Xd2TXTBCt9v5prPSgQJYLCnmvDVVewpyJf1IuYwUOjgc4bNieTYmYYOonjvIoNdln1fK13osWcQmx0v3Qp3l45WhOQ9rzS5kypK+I3shkwxuwWZsUYGPQRb9FmTGBDJ+6Xc96874HXwVIJvbdidXo2sOQAU0nRy8mJXZhVaF5PEDRvYi9HVTnhDRqozlszpT5cGkyMnfcYv6BrBkfUV65f0fMQHTnUy5nAywpOGPm8bbHHjz/vvxLuDVdD8B6dQLbiDLUsXjmQr5UDALomXDEQeYHI8Zvfg+XBOcusRHIbSfUGOqyd6tLCaXX3eCEK6Ny2tzcvVXo9QO15oPo1VyYIwlwu4bMpN22w5tIlrdf32N1pI1A6/bBw6UOgoA2HJtR7LoIj3wuMCDjqPIKVx2NuTtkLGqEduWIqY2+5Sdhl1bLjiNqPQ/FmFokJbG1FALYYVUANS7MUESYM/YV0JlGfNqkgTdD8Xzx6E/9G2u9k5iKzfk/gjR8LRm/np2gHc6WJ1V3HK4i7EkdRiSk72rOz82oHTl6/h6/iGJRFhYP5K0aiGQczW8BAJgV9TDRv1mFJZsjDA0a3wszDKvi61tC3iFtHSHRnKoznzCXopHc5ts8cFqhuwutQFXaFNB0XS8Dlw8+uiO9q6dtMIuGPc6zbj5qA6yKsaNghdyVFlvdpa0hCxcY0F0cTsdurN2zNVv7LNEwKgXREewQy2gHOMdK7PDosXW/P53cO53MRLrddIh8d4jNI+VSYrtzVymzMM+z1vXhmPxUujPF55tM2JxbopI1vED4m8A6k7pxrg4Te38jppclSU0Sm8KTlpHdwOh5PRnVIwSpDqgdnQ8+sntehTAv4aNDBnqKfSGyDztzixZIPbdrOaxCqJKz0SbPQZXrrlwm6y5pHAwO4Q97HgPHFBY9nZDPQbkqUZRF4aXCJLVPyaZhCgjmt1AcnnuBtKQknPT0jjvHmX/dFtt1ao85r+CHyRjr356870Xa+PVWXJeaqTfpfCSVw46qHTsp5u5JuPA708gKocVvWc3OH+fyfRBPu0uYFIF2mYpmLJAWZXtBBEJimK9JGL7oLusU3kMNqZTwp2tDWnkVtqvxfS7iA0VkWaiZBsnLbOJ7F36fRTx/94LCWbbgUXaj9XckiInSAYP9dOzjbc5KYHGc8fhzY847qfHRCECrLP631O3gBcw3OflnJU1mT3TXcWK4P/G8WcPIBMVYti/kmKpM7lT7doqKkUcjMAjk363JNgfsXeXjEG1Ddz0cmJWGUKcgGz6OaIcPyc6U6V6Yg0ndiXlTSx5eNAyrq7uuyIAq6dP6lXthd/KaOXPWGZ4LM/PO+oc+9+8Kq/f4FhEblwekaUwKZVm3Tvz350WCcssDcOmHufmG80isyQXa/zXOA3r4t0VkkBj+QNmqdkHIOHsh2ChLJkY2FeF4wKoMqyy9cPJUIQZvvZxLXusuSRfRri6BZYHAgn+fz+oIG/yrhDwObPI1Qh+47Rv4GyDbGd8moh4zbXGuleLVsITPuAgTXcRxr02xE5UiC2T7jc8FaYueidHLeHU7lwv3hABxAUjdwFLmNH69EsIuVm07TWnJ0r3U2d5Uzo7IjMVFGCn908W3VcEZKe8ZSow18hgMwapIHXeS3r7s58xhjiYIuaLqj7G2B/CJKJISVB1dEgp15a/KNIS7YTDFvVByYc5zwSys+Zh6SsHBybHzaGBY6mrjM+KJTV8HXTRH9snQejOs/MtHUpoZxkZ1RPz1UinrGES9UH8dj22oiIw6bVmaqVFPVjmNlKMHiZqbf/SXap1fKt+pbfA+YuTTCME7mdOyR089P8cH1blRyv/5KEiYjV2II7aj2OoEMVp+nE8f4MpD+3EBEH8yTcOp5OYQqwUK69GPJIrhYBTgm2Z1GW9q0lNHlwEIrzWNU0CDgo1uC5XSP8IQVRxAF2LlESO/6sdp+yCbnq6r2SO5lYRc/ZB1PZ2K5YijuCE5/Jq0UZdYCdriZnoKr5uD3jBCqIHG3IFD2xnnGDgAPE+7J3Dibrmp+R3O3EowALPJWE5ePH3g7HMpPRyNjBDEEZOGIkQk/HhsNk1jULnxHocBpHexdS0dMskXy6K/iRbfqOoQwCn+gLlDUXfHhmLJRJwWghrkaVhbQTQ8PB5Ack7nmAXQqFynkYiivRlr2wQShWstzaqhaQYm2jY9ThTjVxc7hTu6kMdvE6gCIuKo2wtMCpCkSGhARfq/H7tI5CDoez1zHsTPRKYadqLK9DI2Xic6guRPkDNzknir0CctDDc8WYfg3OAt6s8TGwgLelT5/m/aXdC8g+AgqriaRomBHE9oV6AGg/PsoFPYt6ubGynjmK9UTWrEwfP4F5KnX8p9fMnxEfjj701E5d3wfYrBJy+P+8ZLpAdO0LcfO8DPpGgO4udFZIuYXQHAj2OJZTq9yiUzNcr2RgWLQKbC+EKmtAIuhlMdNIRdCwoJ5hN/CsS27g3L0ZLzkljmsoZL+MuBS3Pj9+8zv5oxo3Jxp1IMJkUxkvG5BiEJrRWOTG+8NEAdlSRxPz+uDrwV9ppJKuiOP5K6SNg5ALWQnrNcdZNCr3u4WAxDXuhKEOr4QDKODl+lRJ3cX2eAO+YqqEa1tQQIvilpH+mUbI+FdrqrDKkuCB4Djjg1+tZDYsXaHRSCqgcrXMZKIS8gOOe+4LWyuivS0E6/YNfFuayJ15AmPupgI0X4wLnnC3Soq5rszTX2FqpEdG/Xe9W3aRAIFaClHcX1iR5vLmQrvPdzVtRxmaU2kc7UwFxMSpu6h0qzFmStZb1JiU7KqQdiE8UnUI1mNwJZWjG8ksWpQIt0A1HWWHa/vprahFqfEqrm6ULnXIYWDQVM2/7XAwbdDvRVJQ7Tp6XoWbaAWh0gPEiNJ5zpfxu+CKYhxY00oZvg+qwBd/u27BztgljG3HSQ231I0cJzbBGfMr5eNHdjPPf+GOSFvJmaDmwV/5Pr5pA7o0c2yoW1DYmaCd1/ko3WrbVXpXdQFQPt9Uh3hVGbp/PF6cwT2qQvpe9E+31LinCEbmNNiidnIY3Hrl31v9IEqk1JIaPDL6g+LinVcbR3wm/KMSf3SnBVv5fy3uwvzrEcNAe9nX+vWPYtuXLdn9DnMNXw7npe/JD/kELaN4gcL4Y7ZJGlsQNe5TEr/6KFeoe80XRV+vTMzVMMHC4WkB/QTxhT595JpBop8enu0M6H6hElnJc9k/gmCs2+/SnmrlW4ljA4pbVyvqMQXr+TrX3ouUReRUQErxDOnzdh47lyNO8+KChOp2AviMljo4ZGwqv+JI/lNcCSoQd6NPL9ETDNVL/rkafuC/Xdxdr9Aa6+rwnGakVKSNbc/cgAeEuhD0fudE6yzYfkOOhOO9SVVKeBAfrekOlb5IkjYOtBX3TL0YpfXWZSbyd/0Vpfv+wL8dH3RaOq78rMmYH3opMbInUqLThLiIkTkXvXuDMt9QA9+lYsnbw/iVGtc1d8Q1Zh8wCkNd87chALzzEcIo510wwvh4l+T9HTPlEvwgXQ70xJmdy5OJvws6zqhMXd0hSfRz/XAfKPSwxErhtIH8lUzosffdUM/9U1Mj5EHMbMMW/NPJ7JsPPULRe3K8JmpzOCeFEF0/+pYarl2ehPEkSpJbjnMWlf8xjCb8yPFKDqk3u+RpwenAOFOs++Tk6/zpfR4egowLpRLmEzbJqFVca1pzsfT/rN3xDB4CzBNX9vuY8mr5f97R3/B9x+PgCbDbGHFZQUoJ/B1x9PCL+OLclRId/oXzDt6oisKQFsWWv7m0ZGoTinr0ohAWvghu1hAo834pGqPbA/7Q8kSVdmhtOuXtfG6LRkE9PTOnGjLt/jPg5jWouTWxB8fSSZ6U0/pwAiG9DV1SwFUMeqZW93wMd5QeopeSk2yDj/HjJwOc/OzOVzi9jeB9U/FsKEudyaAUrcrEGUG34K4qHAuTCRID1YTNv8YpbmNuAwxJRcJh8AjWWSlyemKVoYoU8EJrZY7AKvbmAhap2uIOTmX7+O+pBsDyr0YbMCqPRD1xPz5VMynjRmIgxX0lelA4XCCqzRKhPxyd0+BGLACNr6N4zwKv2S6ZGahCxHHGAmBv4tfY4xMB8H0dA/NPfu//t4QiklUqUHRqGZ4/TBxawWDMY924ohJc+bdGEJ9gABbgTdsuUd4jvd8G2sTbeVzv5pcScYqB1wghSj7KaJ3l2Pe+5Ri+pAJbcF9kMmqX1cFWI/E3nSUQ8WxR+6XWwREDAwErwylQrwzedYvo9YrXeMW2NILIfsQ/B+fDN/z5EOQV6mu6lCeX0yNGqfy2biur6zvbutVwZOOT2ScDuQBUHxAqs6kVNjEWKm6lnA4T3yaLYKkHkmp/GjuvTl5CTM13BbK68+8qJoxfhCbRBoMvBoheoerYrEtRzPT57vfJUxvfWLHyr5P+msgomUoW6ehoio/ISAsg+e1tjkgvShoo1eTqRXiFyjfpHaVJKr8/BLSZBh8JDDHFklCVkTr/jB0mBA3Z7HsolVp6WTxCI0f3duJWebkZnzmGNArCDZMKDnNFvVHgk07rr0PA6uriNhK25nn8pvoMVoXh/iyS+5RQBgt1K4e4zxZV2NHo7A7zg60HxIXK1PS6czLZlzYkgOEQW1wjA2G8qG4zsouXvkudFUCu//wdhgcyvnD3iy74FRcaQtTFDHI3y/BBvC+KX2bQ0pZIolKamU67gj4t27cumj5lMEsLUZpYdAE7SxrhmDAOe/Nfa0ds5Qd/C3PjPZWppvbjILrRtUZH0+ar4iTf2wPQ9+N3yc8Qyi+6Awt6E+35UVht3tBvVdCzZC2J+St25QwHoegvuUE9D7/edhfbGxTyWg3LUJboFfSc+HAvbyHuS4hjYgeFObCkA4H2qkOES22XEfs1+IAo0qY4GxDVFgwEGBBlQN0mL+pClMfG6SO9chvK61pJx9fpREuBJQGW3wHpPQrp8GvAkoAzd4/1qTdKrep8EK/8vbrfTO95lVjM76ZgYYn+OTlWUM57U5w+VY5WNPSWN0ocq82GmKzTGXIeLzuKhpGW4YXvsgnyX2ovlWoev2XHuI7SBb2PbtSQZK6YeKo2UECA6fCDbzoQP8G+fTWOOiWE+UxrWnSFSRquAL/UOmMefFssWoQT1WWpU+9/IPoDMvmND/YkxBdZ93nvKnf6oCwravm+OWfxX9nl6AbGHKJqI9zRg3fK9oZlKkKsB5PGnW3UyFchpWDrOuvmqQFLcmCS3takkrYOMy738zJJ2BR7IaOu/1RmNpP6R+QlBmjhToWOiDVI/ksUOrXhg+OrIdgJ9zHJtDciXUVwtT9pyVbw653BFH9m8glbY5a8wnT+z+uRMa+jBJWCk84lECuFE26RGqZUFDlwsX21yzEa30dU4sYI3oRvea/wq6ZQ5mtLrQuYB7mK83ptF7J31bt0rO5vRVwtE6XGTZQSuKDfa4KOL9BAM/UTFzwO/aClQL0TqesX8FNxqVkS2PRcuGRcHzqLbqQs4LKJLnW/qFhz/M6J7037uQixh5wk+npA9uvWp6NhBNx0uS7x4/NJ3mK50sbEfxt/3gwCW0QtAR5mT2wcTzHsBgd7Uv9lpwrMFLm10n2mFgZqZwLRVmONB35CFvPVcK/1HPzlhCgJ6Q7PkkoxTCkAlNodML0aH1JST8gbPiv6vjyNrQkzQDbLE+j19wscD4peOeHoYWoFIFFQhh9tUB4fNWAVq/aPDOYGtzviN5rpNIVTYEnlf2EG9nR0HGIpVeYWAI+r21sGd8w4HOEF10j+yjZnTTaBhkU2jCGmDh6/j9CRYfNi6IFWI/ZHyhGNClbwrNBHfonSTMhIZJJvTEpPx75RZ4/0cKd70Q/TVJxASMB4zK6BY0hRTVkPZ407PNA55KnMf/VuOImGw7sO6MkpkjbADc0fYypjNRN1Dzor38ZdRoJ0a5Hs6Uv8th/TmUmKYtqNZzHEG1V8qUAnG3v6g3p+pET9xx2gRfGdV90XjuoQWg9QXngF7yekMTi6bWuhYtNUB7M7HA+Yxk4xi0mFlLX1wDSfNSH6gbguhOdK5cSvWsjiIF0tDIKp3/Mw/0OiBf4C83wMOVURrwuU0JX+HY8aSgk1H2JO4TrFuB78Bli50X1lkHNtMmXDcKdbxCHJaGb8sBLVAonftjhPjwSOtsvfpXlQizv1uYRMS0R2ihSsIBMlOdJ8IbdXZTn4jceHD9GHfGKnKHkka3WB3dHQo9IVVjlpSP/D7pXsIceJCJ46NBUKupu4HufxCWm3mZIOI8tLDkPYJJ2bd95x85ak13wlRBqyYhD17LnHQn40qPpJcR8IiorUOtY09L0Q1G0V9BOcnG3Xb2uvxKhKNvEBTk2kK4MCqsyCoJS7wK/CyCtB66okHMFfgBfC2ECAm9ng6Dw4GspbPtDqVrPoSDQ3KxzA2Bmgb55giaiFYjAHw6ra+Pd2JTGQrxHp+nvNCMSDcBKeQjH9hoL5y3o5FNhdLT1rdbSI8jk/sFH8vYhHujbX7FL9a5pC1qSK3LCwzeVMwf0H8HrmvUipB42DiGia9v0JOAkZ39to8YdmhgakHlVc416GmlpxV/baUnoVM+NIf/GzMvhFrXqteIvf7b6sty48iT+n1UhTd8usMdkeYQd0aC48n3tjBYw86qQtGojdCkKu67qewGomfZhvZ64hUJyV/hY/co1fseAaqK9boibDPdHPsvzZhftQP62jX3/KFn2HE7E+8/r57PNMRl/fAyWpOTchPsBbZU/Aa5NVsw1Jii6taKvxUT7s9JmPWtxUMKewnYHutqgGn9NAfiUn9LBj3/9YDLIq0UryeQfSwmvfrzqlPZm1eZ/i811aV1d0CuqYEo2YRXvbu4u9/aWJsnbkYB8s7XU7XRZ52J7+BUXhoev+fFfOQyd9/mZoolsGCSBdC9sclfP198jDNp5HXNDrAuQ0aRzl7i/vZkRiucTvFWMZIhXrp2Jo6myIDEdOLbSUH9CeH1gOiqMrgj6r9JbbnmpXMqh15kQTYhPoJCBrs3tEg7bAwR3vVTfasN6FdHwJ0/5HdLKoVBm+wedbmwFhmLj5UBjnI10CuykJJ9wXwG6K8iiVg5af4EK2110bl8kyh5M++blO7I0bTWPKt/iP6B8SZSGnDcy+qCRB5MtivlSvtVZ292cuRZhOmkiYZwIvt1qgQuze78HQQ+wG1U+ZNGrp+ZY7oBZnhETy1btITly4+PNR8xgQ82DpdQT0kU2TbCq/3Y5qCYin+wL0lMwgL2x4hp1MwHD7umVWwyAGtZvGG+WiWqtH4VxXxSmy8oZOrRdheDkvKJR80/heLyT1flQb2MAW0VmRHY+rqF2HUmOChF3JMSBJGKzdbtBu2J2WVL3RTFUtJgAtBCbtSNzIUUELZ6DzIha0/dE9QH0xvuQMwJW3NuzlDhAJ/OxwPE9uPiIZNRe6tlwouJ9agplykDFtpyQBcMRBG9gNKgcUQhWXwMbNTAe2aD9jhXBl6k8zGiNvR2vyGK3aMxqxmJSbHUqfovdRJdhm6aIV3mCTc4pVad0uuksCFl4XuVw8FgXDllqIHacbyJE4/FzUr1b1tqnLfEhlLxc/N2jIwfgstkx+Fksjnk4fMG4kWydeDMaG0iAKYj6LUvKfZffGdEgaDiHS/8zbYps9CmZq3MNWuzvJ21yHZi/yNJOX7txcArLdsR0mLsejG2tpyxE1Ra/ivvrn7f5orajKFm0Tcto7ocbKt5Xs3mFeo7GCDdlzHLSM21fK2MkdjfBnSdgzvnh72yYXr8WwzAeOOECYKkj1e2FjVFvh1mix/xc/fD6ZncT7H0WtxuafmhrRYYv00IigB39fJjJDq1r9USi2FtILLOoSRSUXRIupvKpWplxXrs03pYPOXdWREN7+71l/UJmd9zIpGfYMTw/qqXQnSEWbuBdHxSwqOPEQPhVvSPPhswWJr2D2fhUOhatP/fzRv+3aNUfpipkWx617yFm3M/MMS57CXLRS/tBsIcMAXUE65t0khRcAlZ2Udhea253lwxqxqUUrNd9MgqBnl1rNrAW37rgx//oATpXaala7oyCHbGKTVjqeW+QktQ6qa9i9tId0JXlVjUcGgvji3HmZs1lUAabJRhSFfYWeMV3NmFbKe87xwQeurA3PQwr3xnmoRUsWpemjjP+sH63tl+7G27m7HwzsJzhUzMIzW7hShsTBqnTNJkIRn0ta5/ZD6a+tarzLZvcPNieEkgVK/WeHZw7QiaLdFEYZvyeX0
Variant 2
DifficultyLevel
593
Question
A circular plate is pictured below.
Which of the following is the best estimate of the area of one side of the circular plate shown, in cm2.
Worked Solution
|
|
Area |
= πr2 |
|
= π × 62 |
|
= 36π |
π ≈ 3.14
∴ Best estimate is 110.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
object | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q23-var3.svg 180 indent2 vpad |
radius | |
total | |
correctAnswer | |
Answers
U2FsdGVkX1/ZqKU0bQUbhRyqG3Gui5q80IA1XMRHQ499lU6XjoN7JAeEQWqayzS+p+gL8VmCjVg/pvcHLkrl3MehWTgKxqX1JU0AbJnYZdTCCAhFQVClkGmCTHB1wQNDCDN69RJT2S2Dju4pFknBeifmnSQVlftz+eVi2ZB5K0QqrOIMrvWAxqaf+aOUTjHRcP9q55ICTdGt/jV2knMdTltzdChAt98hz8lfhLojAkJ8IYCypCs+OmK5Z/gCXBYRI2jwwKCL01qcQP2FgYg+v03esYyxB0jXtgavXXxv658RTKJmNpXHkWmYyqUBIUqyGrPYM5eEymxmLefQu/WRyR3cZtwWfnS+lsR4UCu+Kh+viiJ5tE5QwLVx5jqKrv6Th9vIDkzwhlmrI/aQSyRKa5hOdh18lSJ2vr9Q/U+8mBYkq19W74AquPcHHLFWjV4m26711PBAcpYUCwnQXmeAZBRR8+rgrgV1MFD+Ca2jNpAKH3vN47RJxQA97zCuftsavLmHFTcoBZLpZnLdPCPu6Ep17NqofbV07FTSEdT0lSMSdi/4RrZB2TBARqWl6LTPvmcxsCm91freSSuPx/jD3nFvu1FLI6x5rMblDjKnHxVvkVrpN8MpZisLJtqzkUoSyjItgJVYTJTfDkcyekx0HHLnPDoMl6YD5HAUgfZofCz5zTfY19hvWZUhKvqBu02RpDLr2OXCPocBAKd8hES49olF0xVdzNH6a+HIVPOfV6eMD1Lht8uw+lODrRaPaBhGEujCjw37ljkdZ232KeGV3rPiPFeU2zkaU6+/dSHwHioEGanT7auuk3aeAUOe622xDQhsBSDsFErAILXffi4s8tLD8KNaf/j/BQDMTeP4nhD3VTV2EPKU9ddjyDatdMUnPFkPlTuuMghOMi3VADEF9xb9JMVxemIm3Gq7gp1B+DkLLngyWjfaIueb6QaJoAth3TMDerI4+ZgXZM5tS4JjdWLni94IvlZCRfg+M5rlPyqhoTg6dWXRuQcrsnFu9cmaxFuGQ3mf7NDQZ0kNUSatsfQOx54NZngbvRjN05w+Le1aCRZ6pKU85k3+BlCqfXOzqQfAnism7coi8pRUdwsro3ijiSpbpgcdfoZ6/Kh/qW5/ysuptgw6biM4Nl9CqdjxmSOR1WdlXOEfLEJzIfXA/+7kagOvum0DfNTP+cUGNdkVYeKVmhf3aBKUdiN8sx8i3piiaBkz6PYXELM0DDVh8QI9q4x0YMu5ZlHU8p5dYoU6r7PLmisvO9cKQKj/5cQiHvDVlDFeyVvSS0ql2N4xXk5PT20ghwMQMHSJZh3TQE6ldqaXPLV2nF3QLAUd+30fxpNMbHWrjf9Q3IbSppC+jKLwLVHGTbDysjPsq54YTH2OmN+mmCsbh+BQ7WFLTX888KSmog4WnMGg1899miCwOqTCFXt4ERBrHQBkWZ4DWpDlH3PPLijSGTD4oeMoR/yGGnPJTluvIBQGTPuY3LeHM+s6jRUFCN30OFQFy1dqmNO7IdQKZjaUhd5kDhBsZVx/3eELDnzl486CvJp+rS4FXY7coakpg1f+T00qngapOgntqefBlWkikFT9uNrHa2aYXAd/p/j+iQ8GKAUkllCZAdJIwsN3oxUv/Tz51Dpc39av1xDP7Fy/DG3Hl/1be4o9dxuxmEVtBLjM0R9t89QbVqv+ioQEQDfywPV2AdoC79a64l3+WG1PLWwLG9oW7prdp8WK+0jY7o1b0E05o3acoyfRaneUcxr5w/9d1zCM/I48nc/pKtr40GYPe6e3945L2A8TqBvUkcCgfCAiJ7aWE0POm2LmnGV2o4EEihDVFxCZRxaCxmt15SXzgT0KN3M5q4TGaN2b7K7N9mDg5Zp+DJey6A51NageTGrMOsrRAdroEti5JgYphSdUFp+uID0gvJ1gWOI/ogidnAYrm3KhRKkHI4CK6UbLo3F8s89B1o2Nqf5SAdxTT3yvuDO3mHMShXivYjhk5bEtQ8uNqBviTm/pvIbqrcCowlxMneyjJm/7QdmADLpi9kzDhPuM0K9o9ZI/Nss/PUohHalnq8tunctpdgInhJNXcrxytN5kL11ktePhS5i5ej2zNngbytHhGS7/ZWwmPjXg7kkBWBJztw8eAr020A54TElqNf7RNmN5uo0kzkSQg//zasNlBGjMQ00TQtj39pIWr799cb1oWMgGxfDzBOtCbJ/RsROZnJj0JU7oBsroourLCWIOwsDv1Aqkn8KC0hcyliSInidgdbvTUPxgF5mzDSBES/IAkkcGRNiwO1TPTRI6iiCk7bR581pEFjgYI6j10d5ybdQdgfUXmnnxB00VcQYi7fWLh7o+kYUZLXrI2wv5uup08vkMYpy8M/4M/FqYWr+xrkwEcAsPE2w+LJTfZzRU6OU+JDX4whnuK0fURphLfKhlxDs14ws03M065Lwu1RR3kX3XwHkUo9y2n7eeP4UKsaacHeBkTAdIUJe9Uuf8OA6Ca0w2caetTYK7Wf6+nGNlctC1dz5quoofUaRGlvAUAewQd5jRxodYt7wRoiPY4AzBvRI6bnwYnpo8bCtuz1hs3aX7QhjjyyXs4iZ4U/zyEbQdHKVQ9SYqmQbTFsajBygOCC3h84boHC5nILYSU1pGaIp7zHcglY9fURSV5JEz8Xf22dwg+vKy5UMoaHmginMVPj7wiAIytSfF4wm3N06wERdOozYilb7zWLbE531iL7nbacku7D1keLVh4CPG+flGeRhRsAOxCTV35t23WTIoTsOmqrvVdjC+BxjFTXTZ2VEndVAHFjUF4ii5qgg5XoVwdwI5HGhihCxPdYMYQiQxAVgw2GAN+yfKghIg9VOs/jAlyxvM11bWNIjpe1o+/sZ3UG52DyyXqtejHK0a4XMq53O4b5kLCwYTNBrtUC7Xd3fMrle9kHM7DQU+qKWltdsZO4EHXPROEuWYqg2V9wGY0eSIu0m18Yp/usALtWBjKnighnMCeZjj20qnraFwPzZ2j0R8js9E2s/XObMfac9BSv38JEs1kuDAzXhVz4ySfdmZQWcIoJV8sSr62LcZaqU0LENzcmtkjmNgl3PEZZHjKj/k3boOJ1QR5OLDCTi+Rzd3eQ5QM2KUgQRqKWsrJ2yPIsEuLWFYxTVvV8kTJ4HNQ20jRv7ck97Nx75TqLYQ2OXQ4c6zO2XZPlS1yJ0tXscqYKeXP5Zz9IIUWcFW+17ceFpheoUUcORi0IOlZkBlDeSqVs0FfNBKZdBs2MHhSBQWF4GLXNU8fGbpSuOvnYamL869ONzfSMFvXSWYxN3aDuyavYRzAwMjZkHQ6SXE29jrfCt/EcEoRzt4VEH/U5F+Bt++CR9DuTz2WukCb4uEwV9w8nT+PGa2S4ugomVO8Wco/wLjFEhL2WYkkFffCVn44j/B9TypWi0I9e34P3ZXmrJFyAlphbCZEm2SjnSRYPZMbp0L+tb4QKaUIGE/LvFJWRVLrzd2fHUOixqpdbBJxi8fTNW4uc7oDCqmAq0d3lddIs/lza5+Wie6E6N6+kMO1CXOMzgFqWlQSk0gd5DS6MnucnZhhif1f0WE8fuvHTcGM8QRJvsSpwtMTlwOB/xdEjpVW8oeQOoLAmPWb7U2lq+HmUfdHBvcEWRquBLBXTj2qlad8oBfHmLk6KrJbIRWgpYPi1rpS7/nJilSvxrbwv3otVOyrrJesSC1WPuYKgbz/bxBn8xOViv/UHTAnxFme9vfHP7DTEvMvMk4EGePE9S+3VUD79DeSHBikWw/JIoCv9S/vXHYInxpMZbMBOmxvHOsZOOxW05oxwGgSpvXXhSZc3gs9EXUohpoWYefGSSTRAd7aZode38zfEg/LgVbD/xaWxROmdss+X2218UzHZ3ZATeywY/0tkZP2oyqhRCidpLcDb45lo3t2SE+Z4WJ7JTkF1ZrIScY/iWeUE05ivIfZGwSD993hYjoZUJl4+ACe3JLREiOXQap7/M/a0+Tv55TcDtJupmFgs0SLLc6ybieRPOi7739QP2s90ENrwuZs5Vf3gbZ3WqY7tm35AXsO9Sa0fU0zaWXqrQVzKB8a9PXtGasLw11R3YROZFCGVYQhEp/iZSA8PtKM1ysN58UCUAxUUFxLC8aBPBgttyu9nJ03ea3ZeeTiixVsA3GRQVseCYgg9ya5q6jkGtYeA+JCxyoYdPlxhJ9EQB2SvCdY4WPJwkxXn1hGqTWSVqqHwO/tBM6eeRriyVKyhvDqoDTa8Tawk2vZQ4WACwNCV6JE52XhKiyimIzXOYOZlTN9opoy5B5Gwsqna4Tt0cVT/dDkxP8Qr+Tqup3UNiDLYapbOVoQlr7f2Pir9+Cv7wMyqT+/RbXqEOWhRY2riz0pPqqhrpbrJpeY/B57/6A67oXlZKf71s/ZVoAx8AjLOhICh0PZb51fm6cUQOHrU5UbzIGQBw9QYXNvPKxUVQrjsNVMq+szLOhmqf1Q6zid5/N8rwVkzCRnw2xBEd/H1tpWv7BTHFBLJW7kR33pbqIgdVtdE+EbupgPAh4ZBEyIEslZ90toSWlyIW1twFAZFVsBcncv1UXmRdYAJUvtzIxwyST+Z6jV8a33Uk/2W6ZSlfWb8JNLwL+dfiNRNeyt6cl2UgjpqZKSSD/g+EdV5N2x+ezUrm4HxZYZNctEJQ2Jj2fnzq+2uUTDxmhU2nelZ5nqMhKBnIvKSD/efN2PRqxs7xP0l6LZeCSpjxpbCEZXPyMZ4cEESiSDOC0L450RYH/cdaaSL37cRxvLnAT0wtXcqBe9Qhs1NNE+Wlr/3RdwyaBIvvaFQ0yU3i72AQH4iFPp1+QBYXHAjRhQvTL6YcCbGmwg3Q3ANrfsMqBKAMm581ScDohm3QBGDYszEqbJJmDusRcGA0oqRFCfli+9ewQNUdU22WNPNGE1gvQo1U66CIBh9VEuYDGKOvVRRb+1eyOF3yPox+wAZM1ARjR7otDmk/OVRIkDoCM26VZqX3etOxv//VVlTG6u6Se6oMKaffLklHWVb3ORTSLhjGq07dmPEROnjHBZoBaM7YIik+9xjaKdSa/vwCRnu4yOOf97M45Xfhs+iYsWYfebEujfV2OAPcYPh99XKF9qKN8oD1mlZm77vEgb4Pn2f9HZMKbMn1MfNHF+FD0k20yhQLK+7uWBIhMF/KAtzvUUV2Q0Hxp3XNHdP3EMWpbPpvm/RI6rOywWrv876i/QWnum7w0WcykNlHfNFFSci+pNVJK6VPuV2VlowWXUWiIUXaA4K9Z49WBT9GQxBMnpKWgdGyXxVvtfQSUcmBKgaG0iWJLDlVIfowezeBAMoO/U3uhN6DB8/26+PBWxlqGq5mPalRsZwDSb38k7wBCsqwFs97PgmlfnIsL094eZkv7+NYG2VLKMv95RVrwD2CrMHnaF0hn+AUaqzsD8V2WTnwXpsMWW82StomeWvRRDsGwoOpUHumu4Lb/W8czHmXi08gCsRfk2w54hmUtdXqOafqb6M3rmZgRrhjyC57vIQEHcy+VQSzHczhPk44MRumQAXPtkkIytB6pThDHt2VO45K+UjTP6fEOE1kjjyXLGO8sQ/0x4SWkRvHWh/aXze7/FTYAlD5BZtt25iCh1MNBURk55MRYN6aB/563Jub7GtN9xxAAAWZMrs74dZqrYLNe/VCGcM35I3LkuJOFaHNtD8OeHmbd6nqaY+GsA4ROoRSpsiqcL8wEtEv4yFL3b65zq/jCkB01yT/N/Patp9bG/SGFsGKUsg+noI26YKT74oFCTggVTjvvMhQpB21iMgi9ZfPPwW0tW96jh0crxJr6JOsDNRaTxSChKt53d1ceACx3uM8MvlGdT0uiXjQU3dWLkrU9QlYqqhEc3Cvv7A0XgRpBb1DlqYh8xYeQ6ZQQJViBfV1PnlZlNgGmmLUA0Q55JGcaVkkYpY9ET/0OopT5nv5tBT7gRjX7EQ9fI2wV+oNlZfnCLSWGGo1QTsqZvAooDsfsd2iXRxE4aSsGo05dOslJOZvpd7Ha4ypUhgEp7NUIIxcsaryyHvESnFYPSM9vzKIVLyVGjy56yueXNNprQwjDZmLhV04LTbFnpNsxh9QZOMEUZXwoNX0XNWnb3mVbIxZbmoFWIUlT2GGJ19rzPzjcBsEp8BuRZakj4AMz9yjnjrp/k9LpzF9OcaHRL1TBmAOqS7nSrBh+u7q1aIa50CKmihhjV3FRjQ83xJIEotgYcQVcf8ATIDVunQRtrv4Rn0QwfDDmBXV331za8MVhL25rBmvAKN3VdMQ0O+Gs/DX5G21ljyAAW8y3ySeS6OsgDnhTpUCcdCuRO8zvFDFcAk0KHz2y5a5ya7vP8MMUcC/b6vMNTSniUllxBZM/GU+csaNKVBz/5qm3W9m4DT3blk71A5SQo7pmLEof8+ohFI1GEKI2FyyVCxRJaCYTS/jGexPZPnyTLuhKdNvInOejO1G55zzJy2uRiwZwwBF9RPw+jUkc3pDQzT/IPbyDCVq93UQub24xLQhYqM/3hX9D0JJRErmdfAUG/qZZc3hL2yTknQQDbLS1mb3tSnCpI1kVjcUtFgV56bgfGoOVnI1XryJqM/XMwInEgF7z7aFBMx3vG+lLIjSNOhZy8236suRWQ1I3sEnaLpfLkvw0MeQaMY7MdZ3NPitKAH0IvyzpNoYrzOUIHSKYhT6z8oMJBRDtoZoe1XUwqMKixeaUF3ZVSdW6iHQp9C6sqnb7xF1zcfmmp0h/BbedbPoIrnfDfllfsZt+c8KARsvBfHN9NCjz4249fnf62oTVn6yGMl8LQfodQuM9T4l7pEuDTewEUAOSSgIg3047PzCB/PjN7OnbUwu1sbIUO5tzcOdNyIh+n0NIciG/2IuOrXsfk3mYSJsj9RIegq2AcB8osvKTrq39Ql85jjNKW/u5KBgQG3dXhMdoWqt5YHNokdA3lwiWxm+Cim1dRuJs71FxWKgsu9eUOaYpZPJdjpmVwq0FMJzJsFRxWYnqKITr/qfq5tj+IiV1ior/cCi+UV404DT5bNK6V0rW5eARs5vVbzKmr4MMUmey8YKhRDPzA9nAf2QtdI+NwrI8iI6V0Uk7C7iNYuynLturx3kyzoDkF2Kls36xZeK+wr6FXaOaRm/IXG59NH99A4RG56H9nffKKGptHhRdgGqgTIuYTzJT2I5q4zttkVzJ+2p+1H7glpmVMch/4hdoLgP1iZTKrx15CafFdQAVZ/NTaYpNgGJCWWyW2m2+6nqDbqZgg2njEE8/Lo0VqqI5hB/MnPhLXCs3Idp5y48NMd7w0Y+m22MPl0P2RkuMrLeYajIvuCYH/uE76tK2/xraTn7jBggiQljadsvc4kUjUnbn1s6JbYnw2O7ySTtDi6XakayQy9TDFmyIv4pAwNPC2/kTstrFRV9Iy3fYx56tYBcCbZ2oncOyA1Cd1op1Q38l+J7LGTxZQcRtbsqESqeSSXUS004XAKqcIQHc1owZ+e90+tnmfkojT6TTZp58OJ7fs0AorLYNPJ1O2rz64MCM58jNWmd25QnJHZqdoHcCiqKkjFPyanU4JJLavlsmNxG9rlYpKmUtbGFvmn1EO4Xjd6eqESX0UfaIL2qn51ZESotaShqJMiGr629zWXkiQB4+gAnFafRA74Aahv6JUtPQzXwtc6cKRBmc7DRiikDS5VVAww5gEU7W1pxFxAl2AJNvryIkdzY3+d5ol8r7uBeLsa0vt/UnjNdVW//HSjwAFKtNCfV84RjHYxKTWTgHimcEZUdKjvpbsNStnNAUlrDdVTNGQhCx3Mz3Jii7iwhGtKIxSCbsczJ+DyGW3QBBDNBhEPbtnI7MW3X6vVsTrfhANWo7/8IhPBYG301D9oM/i8uxtD8zD3vE84V911E2T1RPyf2LV2isuF73lxM0dF3IEiqqv1weR/H2pd6GbBVKf4cA3DZN3Kao2FXUvaXhHLE5uG1UMsKIc2TLslHT6cJyXv84320XpxutFDzhjq5kHggCj7LVynxBgP2Gof6IksatBAJoVR53ZvvYUSvpqolRn+NX6zzYPHgkYBlys5y4pCSFxiFXTe6su5yLrv9YQ1tfStpT7qBjrGZ11fHk+IIzPsGWJdomOKOuuwxVNxVypCGM6iiuSnL+fOY+rY/C7Hy33ZLOqxOp3URs4PjUKCjYMHEx+KONB7WufcS4DtDaqQHOyrdqDPq8Sp6ldkb1Uqe2yI24R+Ehjyq4B1dNtiFeWes1P8cU2E0tCIenCyoZD2N1YRLZ+xCQetCMmdiaAJeDizGIF7uZ0dPSwCXoxTX7lzgiviiYBwKCDcuvik/q9UQwctJ1CBdy20hEEUq8hYNrlfJMhOFEWihctrKr3EtDhITFYs5Z80/cjVGqLx//X5AOHVjpX3MfTstaBlWiWYoicmdmgvevn9CtaUcMvfSrCwfsJf7mZJZhyJ3Qwy7RMp/pbQJs6Q7GpnOjPB+Gz6sNuPWNwih/VCAI3GT+Pt+GGWVesd6y7x08sPx6R3i7dL8ESAm3rRxMG6Kmrf89NlsR/O2+a658KV/4ZZ6/Jm9xYeMcQsqvgJ6dhPEkM6kuGKq1ly5LKtZ2B/aViMmLC6Z2NuPfZb9YGn7hNb8E9zl5o6aQiBU2Sv8GKCzGZLPR5XRJkaOeDLIuTKc3RJweh3T/30kCxJawQo8ZcJfVtqaQKgmUXzu6XbtfPJYXrZOipDYePqPWDTEZbE3XIP8Q9D0NfFliVSLGClj+W4Eu1ZSX57q8GqKRzL/Ih7pUJZCEqwjsL3Tpb0xCZXbfiCOlQU2t4rq7EbpXPzVA0KhOxjrggOx3q9dXOk5w2YekocfW3eXOvP3QuHxmrx6d7v06eUWIy9oxY8lTad1DwV6Ky4XcQlA7Mdlmm864WlZ7MUZ5Rx6k4Wzq3uPRGzNfPT2iFNb3YxN7yeeStLDontWxmX6WNs0i9D1pD3N0BQis0NlWfQ5uDu7Opf11cV2kILTo71umIUo3NnNQBhV5RKJSD4WFAr/3wyYJjLa8KlVctvzEQPIHoSvLOr1VI/f+yzRwts6VCc4aRLQt3MFMTWe+Gq3GvhyU3cCitmputZynwl2TD99JJTWtU0W/7yrh7RmZ+db2APs4q9ME4H/bv5GzOjlz4aTr2Zu4LMlH4I9i97q+LuXSe33QuQu0UxKAsx5D5mdcsoD4MhmIdzgX+U+ZrKsLqs111zExZz100JwfER1m64kWD9LyhqnYx+zVv4XF/KYKZXJUgf7KPss9rfLyyEeurEAsi/BvZaPQtVkjFfrJhyn1rObKqp0q9bOj8PUoXVv5G0C7Hb35/J0Ccy1Y5nzI6fXw7F6rc8RkdlNxaz55p9onpnoqeM1r5aucr1eWEbruf21EuvB3MKROOsDLXRl/flCSSkrv7g8PghW12szZ3ghbDPqgCGl8KtT5d2PhZ8mJWhQFaOYeNuLCdkPwDPE4bLxBCMF4yaK2FgxLE1gDx32f0GtsnBmlp2FJeylYFHgpaqxCYG/HTgMQ2Gez1GOouE3UUMwTw0iUYReQyPdaiWJKZUOCMWd3fVi/72k9JSgf
Variant 3
DifficultyLevel
593
Question
A circular plate is pictured below.
Which of the following is the best estimate of the area of one side of the circular plate shown, in cm2.
Worked Solution
|
|
Area |
= πr2 |
|
= π × 72 |
|
= 49π |
π ≈ 3.14
∴ Best estimate is 150.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
object | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q23-var4.svg 180 indent2 vpad |
radius | |
total | |
correctAnswer | |
Answers
U2FsdGVkX1+W3slxNILKMmCvDSST5s0aaLiCw/Vd+2rYKQONw+i/qTmaydLLdN8/LbW0Pu5DwtKG9xrua0hlBAB9gmXag6FskN+Qp79Cnjabs42sPyVnDyORs2zcjr9Q1LLP14bozB4zUkYyFkiLp8+CooNuujIIvKfiANp5ZMLmy9Bu8Mjcop/sfkIzZU/Mt8ZYrxWlYCbgS8b4TKGUzhYP4PcfB8hpe8vG/V5oUfYs/5kLFNkrxAsoHH3cIq/0pYG1fwoi3WrID7F7y6GEwtR8hlIBjxaHc6ZPhUvfxZKuOzM2kL9BnHcVrk7tH6NCUsG4HHlgR+e/FChUjB1291M/30XBddVPauaCmn5lqlprHpgh8CKAg1PO/XlFpYJ4KYcra3oqllMPv0/PFS4cyQa2zgolQpn+4/kcqPdw1JSXPP6tuvYoKbKmhjheTM/uA3Sb+yzI+kVrW3kcpRL4D69LAxTtxXncAqYADZwTtchEqw027eUC+L/gshcHeu8kOjdhZ/TY/jMiW9ckJAhKqn6rxiFdBv4TNo+MKwjZuwSsasVIuQIKR1n4vyjqg36iEyaYM1PQ8YzAhgczsQE4bNejOHEwwRWFfpwsxntlwceRdoptY/K/RlDvs34WOcJYKkY7XB/KFtbPMqQGIgro9tDh2Ot/OyGgo8Vtnlx9EG09CxyohZ46prfKr+oEDirpwLxxljE1huLfngs0HUss918zMRID0V/IDmGKToepA+0/1KieKNg+eNeQtwesrlPRbbOK8tNKs18RVy1iBirUegF1ftvmxxvKzqeEgAFpU6y9qm+bwNfhHprqK6q7IJ5a7RhQg5k/IWH9Lv8qQI+lOn7Fa+Hts76XRWLPCgS2lGwuBRYCulUtfLlNP9Q6OVpiD6vaBwVGGxO8sBbAOo+ky5YDne71QVBH0PYqhwpmDC+H94evU0NFSLOYoVar+FC2PJECIBa469Y5whF+343jyQ8lGCMMG5S9lLOduhO+bjyKzJspW0dkTILr8roTkhi4yRv6DrLae7/aALaIqx2oeJMtVjNyyrp3Qw6QAnpVxtD6kL4av0qgc2mVFplQOBkGMA+wQlO6XlWCgOCCbXuSjPI9nFzSF2M5MQoiV+mTOQXe9MPX2nq3JW2EwoVDDcDqy82eNl9ZGCptqnW12UglFVGm9JmXqNT/DJv4kAFnDaKjkhihnJSa2+7fo3bxQld9lm6027xZ6jSAzFX5sGzkoYcf99Y2Oe/BBilEjodAWHsgRa7JUWthLVkanx1cCLcIuwGyjCxhdklDtarD4F93L2AzcoLU5FH3reQKKk8lVZivqTiBJx7IiqmHzkFEvngaGxKtkqroepPXpbEP3LqP6ZAT4L6cdDsdppkdOj2vEX3+qukA38cd/ykE6BNKPesXqrA9XzuLoxWWvWL5ciV5eebNVAQQaTbU8s6g98t3fI61gwJHs4K7QkBkBL6GXcV2KLHLwTDLBeJPk2BVaYG9a9LuAsszMJ/P+t4B4HdVF5aM+97hDuGaIGhI/s1NijzDTVWrfUuhXhlExZ0Tcxy3i5YM/mN1qKNdqml9U6m25KoWdTkAtHOt5Rvuz44gG+KXPN8tmDYFH3/e/Wng68aQVWoMTR91jv3MfJiwm1EtmqMATHrTD5OF6DiAaC3LoIRW3zrdnqol6PzHRLkXGzYhele/ZF7/pgI1LwAj0DAUpSwZuTreTYnfIE1koBxhc1BB6D5HC4pUQyqcnSyEGcYmCvUmOL/nTMWKeh3a0gW7B/hsTD5bxomax824ROYGs5tddaf9AZcHzelIRRzgWuUxMY2pZqIF/2atcB6MyJocf7tdbk5uwaFTyz6l4djANo4ahGQrsUee27VuZFkG5ew4cyUU1F2rmI606r9DeSuX4cMyHcN7WY4ea6jVuoimqXA9Kz1+nJCrjftE5IQwys67fNQ2HlqKWHRsanD2Tn81DHflhGDQwFSsRuHI+Z5xi1ibZpkGXN1ZYOXpxemjeczAEZwbOUxfDfE2JPshf6FsK2k5MYEpKbuK58rxsLxHHuvQsJl27BuypO1GYEiK+Z8dwb/UO+AOIDUkAG1m3vcY3SaPX9l+ghEdxh2k89OkkZucoifqgu5MMUgLMKUbDDgQ0tdPGk0pDz5elvDCCMXIC+DiZZsXq6EYLyUvJ4u14cE7hqP2/erDmJoyXYS99P9dHNCnU2ANnp0W82L4tMxhE4Hk0riAvR03/05HpxM1P2MJCCzJLZ/5kaFH64CK1YFlH0c34IFpSsc5HbbbXK8lxHTJ938Q/RHcOobFm7JoLrQ7viXB94q4t62+fhXL7m//WdWHHu2EmBpGM2gq9eHcyAGA5nrL4mmGxGNB1JE7CEMRwD2SND87461n9mUcqgmHndhilsFiHTqMo15LdulF0mlYtX7qcEEFZpmb5fcQTnwkFNzQD6j3HZL/2HTotMcUYTBy2O5f6tiXPzFkIn2ZhNP5K/xf/IKkTOpj1yrr4NNbu/5NIwmYEgeLIzV4jV2g8fN7bl6QlvMHA6c1rfKNKLKqENCMUtkT0NiLARrUcc4NA6YIBD3oLBgaxtSG+10TJzW6EZoi9Q2bJD9jnjSULd8oPLKJ/QZDhdcihqzcVOgh2KVnTsKTCxnMhlBKK9Dzd25l1XFtAEi35aTWEJ9JznL89Wc/8diCZwXKqx5kpNdyIdnUgLFbIThvKNteFmxUpEsPQ0GmTj7gMrcvf1G8yp/JlIchwe/b/SxM7y47gxp4LQU3OBswd2hxWRtBKYc30JSOhfiTHmN9KwLxtKiFPb+ZbRACvftKYqpKOAvGCcUme6XN+2ZEJrTLBQ5LuNlM/eFVixDaoVdLBfFkUFII9f94pSjSaNasK6WRm/IGzBBW8ZzsfTNU9tenkO/KvlgjT52EujxMLjj1p/6tfHygvc57z8giENENJu+DJb9CGSZjqszJbbaAN7uFgCgxVDTQfDYtxJ48Sr5D2sOM2mXswlQnfm9mejqeyvs8l0OF0KjOdRxcBK2qyyH31XIlCQma0lODrXCzsezzfwUlZ9pWP8U146ImMMKzBvGM0jFu2xJi+PMEJULd+YvrFcRukbnoey9DujJa3lTccgNrqAoKZRsbH3sNA0TKtvt3YLXOEvuhyF2J7yamIILF1sLPKtbjIFZtRR7Lq1OdzsyeMZvsQPHGnZZatTOApO5ADjfzPJkrzKcQjJnn/RA91VHOtQoh3s3feZm0Q3uq0cow17P5jNTdJ5zEXm/uBIkVnm5PzpKqAhBH4Wi3OlvcpbS+p8Sb2KszEerP1nit1wIEWp+czpzt/49E17Jc9or+Vn4XoaiABOKk9FPy0OaB+1IgdHU9endWEYX5Lu5LEHZmb5gy40CWK7yxhuyUkF+p7a8CvLb+0p4tCongDmPhoDVUWwUcrqg9p0f+OL9KsC47ZHqkNMD3+b2jjQpa1lgmbHfPW+iBgHgAZjm6nSULa7PGyKUY4MSPKUhs9Ni1fJvQ6F0257HXJh2Azlj7YUEcRJxiKenz0bj+44jo4j/MinYvi6gEhXztjrbzSVf0Um4y5YPOUyiH3hfJnm9pZA4MhpMSvc5Hoawb+QDoKwVDIGcUYMnTFagVaneaazYNhpu/HktSgh6VYIWhWPsAvYrsnWER8N8E6kB6PoGVM8CG59P/uc3EXlsl4ntU4/6BCtuzSiQ0WWsEQvUOG55Pg9XD+aUvo0YZK350kPcbBi2LI7XrdvZfzT23Ar2aQa8nrWOzyoCyyqlo8p12ZUtv1c5ezPyyF9HXCIxUI8VSmmiQZE8KOP6Eu7x37ZIlTRAJKytzIVgO0zYBzqbnLXYdCuWRC62/4EeN67/ZHCnaEEIvht8IbjA1Xb6syDvdKUIaMhM4hB8+x0V69Tfts078ApUbyiRFJpTLGIGWdCjau5Jhhfw66swHjcCJnl3ek9gHPYriS8NRguRuOBeioVJY2ps7wT1QdPe8w61x/MPaqEuvY5C/K98ZmlxRMuDJmg0rDNt/obxD5dKWeput0pNS1RAqXIfqpZSeG43/sdHSvEDvPhwNVdxCG3riheVXF+E2FtVvLFAbCNt9tHHIzsWaXqmrWs/GX3ZXcrsNKgA/a3Rv8pLD7wjAzFGRuNsOkHhegzT11MEbMFgslZijDhiAbrKClRGIHcNSAH9A4c7uoczJ+GGnel+2MQ/7n4KLHhZU6LRTMUsQB4o5CJSlhptFYDvVBl8llH02MR+Vi/oO19E7BpnSdjVRkdFSJ+v5WSyeYJa5ogWy5rAmx624YGaBjxe5sEZMdDzG6r2MY1jroH+oAJfnAAwLqDPweKGRbDwPIY+0O4OcsZBibRZUuLua/H4mP1XkhzaPzXy4UvaXKypQBvDhfQP+WkR7vbcmNEs/zjBDiorqqVChq9BbQGYUuVhb8y6Se2N+u13s6MQ/3+CzU2QARmUNzYISUlAhZDAsDnATRtwULddPNWpq8Ygx2yzgGIv1njgAx4kfk51OeU9mCbZWrf0R4+uJL0aKj73SHuWl2+XLr0XzWyYt/exraQ+lwKfYDSOYlpnKNtwfrd1LztgJZhO7yw9Yzln6303baYfA/PLkii0JrFv44dBhecVHe6lrL8OP2uzTd2mYNXLTaSVdraLqmC6LAWGDyI81/DL/kbEOBb116ldpS8XVvZwuatbPOnKGtFT5j8zcRxRY4H7XLzBgz0oEyrvlM2fZqhx3AGo8xirkUEXsVkoT+BOs3U7tGfU0qCPqTfuxIPJfSMFGxu81NYEATJqL6elIbCHMvVu0ZvPVBNG4zbNAPFq+TNZv7Q5zOmJUP/naC1GbtETS9zPe7ZiKJmdq6lkS7BiXpxbPB/Ejp7TpSZEP/YTAWpvVCs0+IsG6sutb2oR4N2TmErjySNxJe29yb4GSLOjKG2j+OFs7/ZXsCNosV4RMdXj8MQ0nhMXXMN4eAB2KvgSK+LPz89XqHp16RK8xdSABxoKCTVI4vAb3UviRoAgRnSEFUBEStzS2Fairv6M+QsM/mddry0buUzuzQ14AsOzvCtw3WGXnl/uHrXRmt63gexdYgmLAUnxZpgKZgkjP8rA8ZH+J/I/YEsWBp+TXr13URbL/e/cRW5GkTQ0bid+j0WefpOkVA9vXm3LIB/DFyM9IUXBp3+J5MzOKrTpeS1tFBF0sVVNbk2HLSl/nzFG6faXIlYz2IbLsqNwha/DwfnOdpDeBOHk2QlZuNySkZ4XK0OYosZIFLs5rM/qfeVuHP6kIYw6v6NKnkpRtDr95WiWc6QPhyl/zXerLDilq79hGdYcOkwSZdo2DETmxhz4YYqfGsjZdmPwrnkjkzTUNKumEcttngaIWhqYH8htbt13/+UI2isycxRznqninQ6S4xaGw45YIijnhtjQlWIoBoSFsDdbd+l+BOjiB9mv7ciLRNX9O0PRNee7ILTNFhN/5Xg0c+e7vbwKzdCY7EPCbmI2eQL4RnPghhaX9HZbmWgEH7oPAnC1g1iU1HJHVakhRBu1Kf9xl8RKWh1Kip1WSPNcVZ3YR/2kHOkTZJ0vKqt9y8oUxxBAqpA1SK2yqvLAgxq4zzpM2CCKY1dc2vSmKYOuYTZR6dN52RxBPKwlH37bT7wIbMlr6SM9VPpPW8EjyN4CpPNd8BkK6TNi7iwivjXjDQU1/dnh66yN5a5AiahAhZxotdMNGxbXAdOKQvqiQTeLcce0436Fw9WBN0F1HA+mTkrKKrIxUWyfltRYO6GOhavSNLDNysrST4rn/esCmelFhmt4tYNQdWRzBeUNJnFAcBDSH/2a0I2x3RGL+i74WmhTPaGcl28pSiqVVFcg/WJ9ShOm2OoDZoy5d8L3ByfD/MdPe6FNChbqxwo54fpuatS67HyzdCtGjOwmrjCQrMKZZD4j/zzQ/8/OyMGIY6H6Puayj3OiheTUVqL6q7IVBxeJYkM8E/X7Kf6LMekOSXn3csxCdkPzXWf2mqeIwD0A9vVN23at/rmcmo9Q91WqSlklMvDiAm0IRmNJxKvue/imd3gz5wXLA7mWw4mYHme/6C19V727gVKzyw7MV+xPuAdTIv6r+P2xUEY1wEw5DGiF+Shp30dYYp78BZMAHB546GGqMabXSgJoH51PRdWJie+LSr7e/ps5MMCV/dVC3V47v6mA7IHkrVueDWK1eaXL1p0LOAGPprzalskWj1AdZF2gOH48uZIKqgZgMJisa8JKhEBtZYEO6B+fduSTt56295tVGHVGGRf2adVpH5J73j/mBhdK0wn4w550d/Ks4achn/5tE3yUbDAG1WKS1MYJwptTb5RcrV12e05Qrz2iSoESPYUODJ/dz+A3EOx1tzliQ8LPT1gnWVmt5jakfUXLQ7yv+jskiBYldmUl5cr1umLM9rKI9jcrKCzRWET6rSMrxsCV9Ymj6T4nFRxKVwrzuMOKQZJ0DEmSTL1pV/RTr0bnQc3JD2NGalmKYuJA6mFB/Fn4jJlJDmfxcYnhp2qMrggOxMhfJasyXz02/OHai0ZBfLjAQYmbzkNY+2fp1v4Fc7By0AsU4bLRDQTedIjB9GaawWXPsslVQfA49h7yCJfcVPHdQtBRqe2coxfYUm2Y16QT8tRCpV6aAQpNER/Av3xQQT8M9jQfovNsGmzHB9Q2poGMB/qxwIkm8vceONlA7AK+rEkQ3ZB/VsT0cztp+sHERVR+Hae2l4TZiutr8Fzb9GVIYmBzG9hT4PWaEmw+fG8y8rdWIiX5uua5PWjkNKTBIskZukGOh2ZcmFnEOqNdAABGly76sYNPtTbE0CyLjVSmsZNWYPJf1D20bf/fMTdkNfzmuI5Y5MOu/kTmLmZyxoAbN/9/4e5pFUV3+oWCg5tfaxM4FfqlnfFOfOceb0f0O0gDgPpAO6DTGaTjBHQgRmyrLxkGBqcE8l7pYNtkQWyU/kd9JkokOWfAj/4SuKtap57Xs+bK961FUDkGb5hAmcs3CZ8xbmJkZG0uVTszzFH3hx9uD0AozjbSaqUIDIpq3Y3Bn99nyeLYCKIQxnDzEozJOxavfsJhw+6OIoziUc81w3NBmUTH9Cfqhac9Pg8Ui00RRwk55HYrjc/ekMm1+dgnzzC0ztPJjkHC+OfL2r8ZdA/EZrMbZDX28Q5Rwo9R/Xa68Gv2TK96ToC74ZYBrEz8VjGdcHIpFtDVJ8aButpUkRG+MTcQ29c0ZUTgTIfdYnc1zfdyEnkWH8sR8HUXLWbdHwPlsRNQrRT/LTS1JRgVowuZnbiM4E/KCKwkoJK1YRKE+7qs8EHUAN8zTcS2gsokw3gj1Wkk0Nqgm0CyqaeEVecUnVzeuALi1sLB8j0zK+8pzyw1DiLruxyZtlnkrTp9saaOlAAa2hdc7VqQLCw4nyV7nmO+F9gA9miGXKgO6ls/97s0BK7+crqV+8GQhEJ5LV3pO1okCGdT84EMOzutSS424Pp3v1yOVzvSoa052k7UIZuSJpqtYhh4X3fbzi6oe8GW/sQQ78ork6Zb7PB6/mWTElJWeYY+R9YZns5hVoWRrlde77IF4wA3Go8tHtH4O2LvVeSZJtdcCtAtOB7WMpcv/aG8foq5EQmpw5mjo11gKR5OH8eS2HtQX1CCVzN9Cen0pPgP6mEfUVm9N8AzyD0fzGYByYkanOv5GpI9NHIpifV4m8j/lrIu1EDQnZuRl3dP4hx0WiiGfqN9Ch1PTYMELHZJqSpwVFYxpkmiiRyI9H0qzaaejwB4KwHhytkPiCu7Hfp+JBKgE4d3dTdJ/uRfr8RQvy62i2jeF2K9jCTt/qCY1OzgtwNXjOwpLmgcX4viC2CYoB8xp+ORsDYge1ZSgzTNIv4qL54MrApLxhVuBtkDlezScpgReL3A1O1yaYnr6oC631Z7hthDnrEcU78jJTnEn5EawiLwgGU/41pOGYX740dXuZ3RMMo0xBBsLPlOP/o2MDasd9eIafmEITymlk6Iqa5M63bVkoJCuVHsGy4vw8Od/ic9nkicyryrE9VaMjo1EcgMhs61V6t9/bf5eExdPCcSJHIOsVDA1j6m8X8+tl/9gKV+Zz2DtqaRsfjLcqcuu75L1ZldxC7BnzxhTO2fUa6s4QMPHFABfdsLVAGkNu9UHRpjntARTQLV37usfKvFazkrM7+LEppNHYr7uqy+J7sOqJSgtgBvITZH2OseHcCvbI5+32PapguyZ/rztsSKiNuObTBnWBnovqkMPMIS0m8zX56I8C1lGY4801T80mwN4ALCMm0ke6SwwRJWcFamlSB18L9jFm0FCnYUJ3ECpopMSVzag2NxsDDc2JdWBT8qm28M0tk+26XYjRSA3zmsHGpyKtGA/1W8ZUa8U7CrkNF3o/dW5xaEf9TXWtz3HRDVmKzhQK++CuY71C4uWE3BhUeWvEjbZUgFKoBsXX04uTlLVQiu5Ve3i5eEH04E+Tt/GfT+FXh0nTZtvIhm7mzJ3bSDHQTZj3OUCtNwmnGxiI5G7Qgn5BQL6fXedKy3CNBU+9tpQK3HxF/4YWFA4LXR4IqVAjSZQ3vJp6ldqD0SlecmjlD3F2HRT1KQ0tZ+4gVS7fIuq5W17cC8aDDLqyrQ/35glzSkcrLvfZrseEdP/nRdbEY936BsD8j1q9tSJcEo/1O5I/xsDH5mdvirLzpYcxFtSzuhZmDzrSeVgv8lpkDRCou0xODBolP9dCpsobZCN48+JZ1LqlGaRGLrv6zu/JvQLLLx8+xMumluh6O9+6tNElfjyAPZdVZSdIpK5UT7y3rXJQuTqvDK/mG/hrObwVzWyvwCOePBWGAQxxof6fVqXKz8akRpxicqw2AgBBixxLeAIUqYFufkFDRn/Os8zea8Gv7zOw9gVI5HgjxFwt/lwQJDikpe+epNAnRf7Ld/ncmuQbTxrSZMy45sGk91UH7lH48Tg5fNKRJyZpPmtSws3zmM2J/w9TNI0QZytnNhTcAW9YbwD5G21qEZ/5/LseJSpJKDHPMna/RUX1NfVaFLQ4o5V99blUzJkywPIFTkcbbQRcYz+6P8XHWS2p0nOZCyZe+vSo4eDdvE2aIdWKIIlAidlfIKAY+zW+/+v/ycQ1SEK0/4tFV8VI6qs+Kdlok5jJRRdaMQZd2m7CYrIFESBGYjPbC+m+8xZXo/Er8x6rgwrGyW7WD8r5o18oKJ6rjgDrHQhWmV4faXH6swaIeoM1YHNbBxX4cWfohs3Tb+0HQRnPiJX4q57Teqe3dnFz4174ZxtEJSZc0+ZRmFfxjGNYXxkH1hEJqO1hwytiOXvsNRnYDFviTWTcs0T+6edDHS4+c9K6Lbg7UpSaxtDbpR6ksYtiryORnpYJmQIzFrauuVw/m2+1tGY2UsXBm3wczO7RnZuzjdMVNfKCh6IDHp+xfvYfH+nqz1CE+AUx2yIDOoLdDD9nNGs5mTpKfVF/eP6tS2XBci4vS8j3wFkjrOejxi+QH1SHYq1b3/LRoTUaEcTDPaegb0nIlOOiBV1GuIxW8kdkmLTWA7HiQGjW6QLQu/9VGZNyAjC6r0AgJC9vsAGYg9Ccgd11ofs3g/N47fqap5gTbqp
Variant 4
DifficultyLevel
593
Question
A circular token is pictured below.
Which of the following is the best estimate of the area of one side of the circular token shown, in cm2.
Worked Solution
|
|
Area |
= πr2 |
|
= π × 32 |
|
= 9π |
π ≈ 3.14
∴ Best estimate is 30.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
object | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q23-var5.svg 180 indent2 vpad |
radius | |
total | |
correctAnswer | |
Answers