Algebra, NAPX-p115106v01
U2FsdGVkX18XH8IYQ0gj576AUb4E1qdQIlBMAHPPYLArgCwIRVbHc84ugN0OPB9OYs2NhSFYOIAZ0eYTvV5j6IuWZ54xZcovQjtTCeFzPKMa5EHYuxv2LUsEXc4wULUilnwySliy0a5sQWAd5vA0Mxgo03lUHUQ7+2c2uEujxaQ3OUrxSZRNTPhMfLgm9K8U7dnAf4aDb8GOw1nWp5q+RoFboCHy7o7Qew9JkIisqgO0SOSwm8x+bKZQo095MLrtzYL98PKjuJkOCLzTv+IiP8VCy5dt805PNRyecNE2xLmh2nZaMmuEscuFYI1esUZ2tauWA9DjINGXlAdP6EDfgao8AfwhI6CCDp7eqf/lUr7RZ+DEovH8C6HBKAUtIcXVT9gab6w09/g07eRcjA1hkcRMoKuUKCXVR+PGmKPIKi7TJe25lhS+FkVVkhh6IHLm6eWCpoHGw08oF8zyaZOsHe/3Nv5bo3sTQ1Ma6eXKXSoVf2BHkVKwmx7wnf8N+TsOndi7tCt6Z1z04uhf1BnBujB+UcfC1XBJRH6Jo82wyfHx19pA+vD/KB+5CVQEkuxdmbpc+f7WAwMAN0FMeWRsiKKfyZBvh7ykqdhAiKKHMR32aYnP69UlkRc1igQ8y5Th/+l7YRAN9/wY1s9TtuQmQr6Z+x7l/bKaNBfnN5ARelzrw9CRn6ZCybiElgP3fczlbQMfEdoflaNocd/0T1muJBJdczs8/tpUbI1IQq09xX7rdkrLe7aUVufRMN3jqQmWjy4zPN5j0YiqbZLfgo3xiLWNaRFT/PrWKD3EU0LL5fNU9PF9cmIuhjJ2VploO5zxkst7liaNkFi5z3mwzrAiFCfwfrksC6DEphQOO+bjBYgvEy0PGcAm5XyddM2Hll40sRC2PPXftR7h3kLLyJHsR2+EcpYhtkhfPLQUfmnrqsOz9CbnqfjE2luib3vhRyHgR/+K1G1JjVr4KdZ+DNO6QLHjAYD9Ba1nKaFl/vB3bs+g+I9vgumMSrL0bd7XbmgSrER1PDs4RC8eLQQrV1i1kLxq8rHtMwP6UwwBJ+Y68jtGDqoMDeJiTu52Jb364uJse8DZWHdqd80thjnJ8OWTbYrwv+T/XBOEoMt3pPEbAv5A300cUJDRPQcIjGxhUFUsu0DccaPf2InZwbo9OlRLg5lSN/CCUSV13ZfNRiHpMfwpXoERWEHuQ1EbhklRr0LmU3jnSRD3QTFCe0ZtDzXil5YjDkMoCKEkpIV0yJrCrYzhFBhk/IslhiKziZOQsjEglUsjlDVE3v1bpJsaPwXzMAirtEo7GacivHfE5NpgQI4MkM4wA0tYuNpAXoNIjSeh/TaXDuQ5OkAW+SjUkrgydWrmes86E6lm2kp8fI2dCNiCHc1ETzh6uC7Yg4zPBteXQrPaz98M5VqtHAXs6MGGNI8ixR8d5GqL71FPSF1yWMCJ7KbgJQ286RpxMm2RdcNb46PLvGtmZaJrnALXQXmQvZP6G3/KzyyTU0TOpDAowjCDIQS9Jw+Fi5mxc5ccESV70Q02/5CQgbdAkevqpLobzVb+0U/1DfdnumudDqGX/qIWmMhjph9N/RHR0nQf0m/allDY3CPTm8ngQmghFfsUMPDUFQSgqjGMfVeYPC7Gzt4q72ACeO+iBneKl4f2SxG5uUn5nx9mjjvV8ZV6YHUkKFeFFRSDdCZslhlOYNFSIZXnRpqDRKoPuNvgGakIz9NF0EqjdEyG40PIMPs2korxImKbxuoa89RV0LeHUyoLjXRxtPjfj8N4z/A9lq8wkhMUnPjdgrYvU5GUExYJ/++xPGkYmyUi3geBYAsX+v7kJcKtEb8INzBXWYXTZvQ/+HXZEiEF/4xDJKBDUwQVwtjwxtvIOqJrvfexCvt0aSdJu/WEGFF9FhyEgGvCv8WF346/sSnevrpHXhxtVmltgLoLX8mkPOGrRVooKZkkF9nfwE3mn8fDi5xiw0UyuS+9XwRLLdZSXw/5Shh4us8k78wAkqejOlodCs3wOmj95d1j8D1K9vhmYW4Mpo/NLy/B1CivT7OL8ulN5NFKmN4KVi95enxaqh/3o7aL7NNR+ZOLI93tD3c6RlEYvJAgr6rv1t2N4I1it2ALJwD9n+KLxp2zZJ/FA9E8NDjdbpHJ+qKsokb8OxQqhHyu8OxvUEqV96FjHv+K8C81oKNmfQNgLEhZSer+jCBIy8vX/ltLnA0uAs+zSVbmhalr+N9ztorXKOt9gPx8ivCrTJ/rp19u2Qi/PWApUvMiABVfGcFEBIdj+FZGYAjqDlPZvcoT9mEZz3LseC6+Qm5JXCWA3PiTSZDTN3N7vbWv+wXf7+fJjykgdSscRnNEjDLRmm9QzMNtUWMZCalmvspoGVTx2O7Aky6XY4VMzfsHjH1+kMrxQV8BWEh0qhN5FjbeepejtIR9vhPNqp6SXxtAyTKHPSVwlJUZ0yLtA29Baog60iBhvZ5tnLYI04RAXEy9VFRIkbs0Zc2ZpGzOF/16flfREWG5/QPPhxK/u9kgSH4sO81FqWphpN1WCxBY90ReM4Z1wrZ/xIRZMnvuSj0U82AheQXzOJGrrjMmkPcq2svx4xrj/1J6AInKU/UGlLh8DmtdFpk8hW+zHJnrnIR93lSuuELWsOTOTPg7hlo/6QhGuqQTrKo/w0MSfIBq16yyCL+1Pwl4wWFOMd7LUOKgAHjlKu2zLvsA+W7gpdM2lqmJxsGGfiU/xqSPQqs3nnwUTxCSlphO/JwX2RVonK9jASraqBECFb2fcazDfSk7F/eRDi9Q1uwFhRjAQEqL5IMqtisNhR0k0n91PNl57P3nX+68Le9Kgf+KrvTR72rOr+60YmzGiKLZNHPVSajPLQ0gxqaGWB5tsTdvtLSwDMchUyjG88Y0hkyVOKXo7xveQdgybtnDElhP7RZKo/0yZe8qMRS09Il66VoubfeOUv8sXiAzunOgJSOR1T6LGIB6EwlQZsGESI7+aNBkUF3rDCcB4arZgN/L7HlPt4SuxydypXwN1+2e401X+UkgnTUnBPtY+d0xeGu/ZNpjenWKSLvi+zEdmxo0bgsfXb6U6hsICbqws/GO9niE68zLRIi2fI9LGK4uy6uH/EBrcE3jJWGsTcX30c18d6BJB7QcQyOqdY7d/u/5SzwqtXIi6JVBayNVYYjWXZJ8/HRMyrhgEaaRbv8lsB7G1p+O7DPjB0xrsfim9fA2kG0bUmFvD6yuqr1ijbjQIeTyPfhLlnvBYS+9gGSlU/wXn2j46XWaGKq9or1ycZ13KnaSnoNwfQSUPRTkpuoTnbjaI1wOCIWMtjdRW5sZcmEIzOcvA3ktlZKLoFdsRvz8FloudvHf66ZVOWnWTe2Wlf8p3zm8+GxMZtrDVCLa3am3bBJP+rOB551LHToIVYLaFUKVIL/JsTduVEs9Ia7NFQQk74xisZiSy2+YwBMEGoGvIFEQwEj3F4qZPZ6d3Q3Eq8XPuRfS+Y6QgjqHQ1Wkt2J+G1zzJPkYmAgWyKNb63xZtx10v7oxzBjQzv1bdB8almbSZAngu1TpwGau0ORtpXGjBb+ctM/2rvYgY6hYhI7gxluSDi0rzrxG6vnOx1341uxrpK20bZXVey8O7uCNGxj2U078yx6b96zpVc3EVx3ySV5m7cPTcOscKZxu/XAhIISAkgO4Rm5ap3QJYfq+51AErpwknfkhJHZso4r3prbr8LQDtiOGOkGED0mhHQDT6/sWH9cYF7FcOrdHjNggpVHIDwq94aQGIdAoaykAZ1TPkXdG59yH4/3QTTjOiYaaBt5d1mbRbDrQjz+Upgjr6HrPR4k8I3zJI/BAfrx2/JvRZEjagQN8WnkEvHJW++AZPfzxjlMR4hAQfYSGLE3XGpi3G9UjUUlDzZ9AxXLN89uf92e1Zgy1AvfRO1tfLVn9gryaBEUmBjc4sWzgzu9uQhn11ocFaFtVWPd+c4dw31kOEJp7GDyWynCmkwV2GoX6/Rr1sePfDPwIgQp1sLiOYculVCBg6WSnPb7vjWoSKxSKHFHgH7aw0YGqLXk11atfla+4KXmq6FNkqY9orlnkvk9bLq0NNYFi/tO6Qv7Dkjry2p67XWWu80kZX4TNHXO1NCuiQJkiiE2v3ndbLBuSri/I3kUfEC2XCkm5smlRQAlWD09o
Variant 0
DifficultyLevel
601
Question
A food delivery company provides 3 levels of service: Regular, Moderate and Premium.
Regular service costs $15.50 less than Moderate service.
Regular service costs $45.80 less than Premium service.
Which of these equations correctly represents the cost of Moderate service?
Worked Solution
Extra cost of Premium service over Moderate service
|
= 45.80 − 15.50 |
= $30.30 |
∴ Cost of Moderate Service = Cost of Premium service – $30.30
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A food delivery company provides 3 levels of service: Regular, Moderate and Premium.
Regular service costs $15.50 less than Moderate service.
Regular service costs $45.80 less than Premium service.
Which of these equations correctly represents the cost of Moderate service? |
workedSolution | sm_nogap Extra cost of Premium service over Moderate service
>>| |
| ---------- |
| \= $45.80 \ − \ 15.50$ |
| \= $30.30 |
$\therefore$ {{{correctAnswer}}} |
correctAnswer | Cost of Moderate Service = Cost of Premium service – $30.30 |
Answers
Is Correct? | Answer |
x | Cost of Moderate Service = Cost of Premium service – $15.50 |
✓ | Cost of Moderate Service = Cost of Premium service – $30.30 |
x | Cost of Moderate Service = Cost of Premium service – $20.70 |
x | Cost of Moderate Service = Cost of Premium service – $45.80 |
U2FsdGVkX187g/jMY9SKfpWFP1Fto6JqZTzsKdpfzMv2b5kMgo3yIGXzaqLOdnFkcXyV9+x7FENKMghyVwAtdVAjOUnBEN9jNCisgPgaKWVUv5daSpwIS+gnO55KT09/uIslNYf7soHofSeMOS4LPfyOs48Pmmc0ZFYtkZw+SwQ948Oxeo96AePGqo7ogHHWMASwO5BRupFG6mzs2lLUK9wVDuAFNUmFkh9eoOh6b94Q27r9OPHUBDaci87yxxcS0BiHchGHhhnOUXHUAX6j4rQG8Y0kxZbFUmWfOkSYafJcxAYQy7+WTz5q0JGYjB9NqxtLnaLYAYV86ZqIATX6nr4ORNiQ5XLhDd6Qx8JbtIeudMPr8cr5LRSTiofR+kTptSkkSQZjPsDNwbKq2o6hOYk9jaMCfrll9MxbJIV8MbW0I1t48Je4h2U2968/L3hI7Mgfsz+ysG25h1U6aW4Zj3i2nAScsl47k0XktujzSYxPzuSpuxyGic5inlijEoNNIwpJV0Td5qznmyPOlatw3KNEJxPioUcgWgIXwiXefNAXMBf267uZoBUSxFf4o3z2MwXPzni70qzgYB5xy7ZOyqBa1TNwu6E2Q5LBLsg159x+I5lEzqoBN4qt3dgj4WkJIOLCsd2bVxNfyPGr8X8rnAFhZiz5I1avpC/dwLwgDqMpe0h9v61bgNSmZi+8fWspAwvYOErIT8zA1/03Xmw3A/DS2M9AXpnSbdd1ru6wM43XMrxVWL5NLw/uSMtnq8YT4/qth/cFZZjzrQa+T1FJsSApVmps0hXrQMTeWvWNrKeUI30Io+rj++Y/OYvvJoIQKTvODmK7C/vtSC58mSQpnjYyV6M0IpOVs7kVL3/h3UjfvLDpoXA/TpEsTKY1EpQAFGDKFxsgSoesRCDbMIxZNkxL8HmkUQ02K8Bv92/lOuJ+biQTfWOn3Rg1YPqqrMhr64aN5C1jcbtKImhmHMC9vpk7/O0tN/RdFi1sRAxYZ9WMyVYKT/lTwL79uUW+vPekCCgMbCEfBogN574SGXcz8aBM1+8rVRxR9/Sol6mpGlFpFg7qxg2KshuvoewauT3IcpxQ0tVQdXtL2JUnGzmN3eXfJAhr0HjNGbh97fxdwUDfbiEDGRU/py9qLA/TgAbE3l8gGnmZFOQ6XItDcajbFqRpppwT1wfqBJiLV0Kq0E/BBP0mxWHaaNhY9O5hWx6ljVyEv/GXPW1y6bLcYhhG3nVPsL4czdt1HesAb+GPVonOAZaAHXbbcXxIDIMDDY5OS2bIxXcq1l/Mz4gIAMplFgpurhczSmx2SqBY/GCKY2xuTktUW+xqSyUIe3177zCFEwlpG0Crfam1tqoLjSGtfR3xCLT2qa2Oy3I/twhK0yn3j6pqVSTvNB5aTFE3DOUygGXXxJDxwS4FS2JSRxexOs6P+pLw3DyfiloBmbXl5T1Ii1XQrUxz5L2f84K1B39NWPp59kGQro89c4U17W4hzy+5wF4WHfkZ0BKsA+zpVbxKQfmdR/FrrzLh869ockqtlttMpSpurLG5+kwVvqJLuob6RuH+WgOJtfp2uiTiqe2fvA2QGvJL7E/9QVkcIb5Ks4zs4ufVG6JT+ja6ETP+1h/anUFC0d50NMW1ufMPbrNVDf1jtIQKebec4FKlcmlOu2XJRlLoq2qfdvCdLkl09pRpi6K9Uv+S6lIIr/Dl+uw0P5ETwyIH1cExofIMKn+Cv3BJlyK4WmfwFZbpggL0edQh9RADfwsWjuSFpBStf7ocz15gft0KEP8u3R/hn6FipYaKXpSbWXT2N/7H3YA9Z+Nhg7J9a8+t0YhiEGidFm2iIXYonf6m8P+9aJDlpjVx9aGEfizFqokWhDehh75o2Mf0dovGUxxxwWqkCDnohXCXTyHbUarEcFzXV39p71C4dLYnaZbeL68SR3PNwLWQE0iiRr7m4JPP7V/rkhpNDFHhH5gNJeZGN1ZM4DLGVpKPQwRBSzldX4MNExu3sMALzzGiGbHrD7TAQnXOYkh5SHZIVQenG8zpG5NIAA1YghTC1A3Q4u2NNLgTEpF1HtTqJHHs8tt2n/UoGJbEgpg1FVnkQLCN1SXgIyiMwqdEUH9KDiE1cp+FthPMBvg+CJkp8XQCFTU5HBaDTm5MZYtcjP++u3NSAtLVc83sz5PCKOBjO7FL8CLLaFle3wWLtVGHdHAKeme/bL7QfLyEZ+lFxu/U1mFh8R1gNpQhU83xhBE4QRKHZX9B64+9rhWFutfodVvL3Aj0on2UASfHj8XGktIOltDb3apbxwkAyZCqS92nnMmvypa3kNLz/3I1AvTVuAabWxb/rIqoY6+bwr/415Wox7jx9BB2roFTGXP6OP9TKmm9xa1YGg5EDnS7A2+i4SohAxt2cyeNVgukONJWhN3B8y1ww6lCbt+3GL1AXM3l/0bUSiJ1LMSqDX0kqsUWJCOhTHpZStLZYW3SdyjpJZ1BjTrqXdDhj9qufiuW62He5Frpb1Z4WDk/W2NPUTwJL9LoU7zi3fl9vgLd/npgPmjDHtoTyXAUanzXCVfzhQV/PrbCudrcxOSRCWjKc/EadeS87tJwzae9wDLzsk2Oe+Ziq5v/3Aw0sdKV80dNpcSrRdS7xy1UDkep2gHfvEV1nT+1d71c4ICX778CbidjlVtCL8xmXr54n0f5HrjhkF/yOZ2EHzo9jyK86WxdhoMpkvlBDL6Yl7QmP/HEz88BN/xDkPEusehq0JnOeOCXlk+QiMLtT2cHlfrzfuCC2yzWY3Yc1PjZVxoH0qGm1LslpZGUY6ynGpu0Ok2aox6fTCJcvuycIRHwRglrZlevmTuytadjyQO2+6Bu0eee21CbhzVtv4VUBAyFZJwyRDua7EkoCAEYPvj+U8PLgdRSXm8mtkVKvttytgN3nCDXlFof5Z/NxNMPYVtWqm+XJnl66EISEQmHUzVd3uw+/lLo7iYmfpmcDXi4/CEq9Slr/vMpywBSpIGW0tIp2Y6zWiIvB2/v+9B3bGcrFj1q2PiL0/oTpI/Ed1Bna+cQe0MlP8GXJgVjjbmDaKXy8B9lRs9uMNhbMIvMAH77UO07n7qM5LZfZ4SS3hDQcoeea6gy2sqKXvwJduqEsPg/RXX1KjJ0kBC7CNR2A5NHtQVULmyakZxEAbpDgegurNcV+IcU7ePUfxWkyUVGZUy93S4LeBRbIUHMPxVXWgxbS6walX+wjN6/3i+mMY7mPVqTHIVh8IbwLAHe4hqUt1fgIo9TI2sVP2KAav7vU39TxY2xEZBgXFLUW3M0j4ulZMzKcfTxZS6KinHcwdFAlGbeRbx2VoWI/K88QkVtttTXuqvbM2lcL56/USefWX8RYR2deriEHRNuaLm+xIQBFH4+T4+LvqQsm1ukIcJpaSjPIjSiqr1PeVhVMEOtHoVacYWSAR9QS/9gw8W7yUY9DJtfY7GjJuG7lQ1kCh7RmbpbT+s1fZ+DuDMs0TlRLK75JoPSUiG7/LQ4VVH0DF4kEgT4tqIGQbfbpTauU5MUYMfW3rQAjQqksetD7s3aDCl1CAY27OMYKsFCAeZxMEl4wJJwhTONFVGHqnXtUBHmO0x7ZE+fFYJWH7mFVhIdN1xopUoNNGMGP5zj3pDT0LJ1H3KjFFbixL5NaquSDDtmxpvMkcAn5cliOhEFePcYCO+gD11lyT39kJdZXe4ufQfzriBvAFD0jAQ+tVHhxgF8lzEam4hw/lzsYYFXmrtZAzFgrj265sLlYwss/8A7NVbOBHehXlMO3sGlfCHUxayKQOUG6Z4L74S7gHie0S2JLPitZ4BaZMxCSKuU3OZQXLzAmxjbvPDKHvnozX0qU9l1VNns7IT081LYAtr1qN84aK30mtDTB0gvpiGHI18j6nQmyuZIDY3EhI47wcs/eeSPoAWEz2MtKpDb38bg/xuj2c75vyKzDNF+uTEfUDg0T0PRe3DRfTEBintziNP54BcNpWjuVXeLPcUhBL+6HsWL1e89qCKUqFS8u4Wb1yMq1PWVRLO4HJwlU0Betpx4RKacR8vlAYf/Dq+naRVpD+P3uALGcgwKKa4woHNT3DcNM+oJgZNE8F8VPQJWn/l2AL7mqY5UFPkRVsRvgadR583crIrPF8I/ZmZZMhIHdFD0Hi3MbzjBWim1/nuBx7mb
Variant 1
DifficultyLevel
601
Question
A delivery company provides 3 levels of service: Regular, Moderate and Premium.
Regular service costs $10.20 less than Moderate service.
Regular service costs $25.80 less than Premium service.
Which of these equations correctly represents the cost of Moderate service?
Worked Solution
Extra cost of Premium service over Moderate service
|
= 25.80 − 10.20 |
= $15.60 |
∴ Cost of Moderate Service = Cost of Premium service – $15.60
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A delivery company provides 3 levels of service: Regular, Moderate and Premium.
Regular service costs $10.20 less than Moderate service.
Regular service costs $25.80 less than Premium service.
Which of these equations correctly represents the cost of Moderate service? |
workedSolution | sm_nogap Extra cost of Premium service over Moderate service
>>| |
| ---------- |
| \= $25.80 \ − \ 10.20$ |
| \= $15.60 |
$\therefore$ {{{correctAnswer}}} |
correctAnswer | Cost of Moderate Service = Cost of Premium service – $15.60
|
Answers
Is Correct? | Answer |
✓ | Cost of Moderate Service = Cost of Premium service – $15.60 |
x | Cost of Moderate Service = Cost of Premium service – $25.80 |
x | Cost of Moderate Service = Cost of Premium service – $10.20 |
x | Cost of Moderate Service = Cost of Premium service – $12.00 |
U2FsdGVkX19gCTjwtHqROCH/fiRVd3rU1m+W86yFOvF9vtd1ufGZOcm4IzF8gAtJ1KLT5QcdMoVtzoheYhvKsehiHGbNoDJV2E004OYQD9O9GY348ILpCdi6pSMgtWzrQ/iL4COatABn0OBZzby4Aj/mggpyWnXtWQKKJid498JEJ9/P6QqijAVQez3e8dpIXjBu9QYCWpNjNl6SxxHvnjeoGmoYin87rZbX75ZEyd4V8xoZ9Ii/5pwRYbrhNYauXdA+tdsVaqCHyLG/k6tPvgF99eKtBuX0GK2bQ80xSwqwUuIGHUXO6xiI108B1ZWUcTor4NBDLqDXE4Yzsu3nS3bT9dI26eXl6snZca5Qlr3GwhlrtmMvziPC4q5bJMeBGDkYuUPE9iCtwz6Bou76jcW/U2l+Foy5oth0bTxgoKCXYODHR3QODCWS6rkFs7nhtlHoE21NIQvpeQWmhIOTBYX2QYFYUkGrtk+7ZzAGKVojIgm1u1ZX6+fmJkeaKfPWd6axso5F8seEQHUe9KRJAjMJ2eZj7gRn9QdNChUlWE99bD8VBOPyc7pEbxwf9Z+UCU2GENRL2lt/DtM31vawhRJg0uWOpYMMrSKqWL1aAHUCdIRE/Cs3kOBF50s6Nk8cOzpcFSMthnQIj9/4Vnx0t7/GVMPjMwvdxEUGQEEaJ5XEmkxrY/dwr0p6/WaKj8ElaqUAfBUCvxAfOtugd7yIO9Qgn3Wdaz/XIny7hmJB/ek3vzorxdft0W5/IkJ+CCbiuDzCuApkZOXB2ugZt9xU2//Vjv3ijdDN7X1Sz0BgjThB9IJeeVGxOcjKETLXjSpdmLL3KIrhbNa/31PzFNsZN6WHuZoaut1QVkxNqXZp2GC9qr9FxhuKuj3+JHfqFYqRo+JiAYif9zYhp2/lJcAGRNhmeIRzs9bUbcYhWv4bfYGTc2zdEB8wARi86OIoZVpHnnt7Ln6cOvOT9yYdFqNa9Urh1WNkQG+8LS03vjKqtdaxzXeLZQ/csPsxhEgujdAfN4nfT+wFSxbJUzVMDdnlzmF1KZHjAzEEshVQYNyLx+B0zSsbPqkgaZrRbthpxK+cYn8M19YD44tvreiSvRihDEyc8Bzvd52Cj3tuVtsQOlLetnYot4qpZNTQBH7yBQ2MIYzRjvBHKkHkRx2CfxkOM9iyLEXMvIAf+LcDZInkF3nZfa7XWVz4Rmrn/MAKjrAZTzWP+83kzwFdGk6xqTI0NXsJjJ3FVLLanSxInz092maaigOudnrtfu4UjgmFR4qRzXZm1dmRnx6vpO55Fo33gSdZFy/q72HaoH6Ut29s5wfa2mm3BpDftlrdOFjRyo6/gK95Os9H76V6VJjqEcpiQ3tgQ05J4ts6sq4jPKSA3yUJuBUprFHs910XXHVHYdNG8JuSbJCEHTZniizOuheKUnTMTprVzpEk6AZ2RzcA/MMMR1y8ri90YPxFnJZdTVfdGAzSqBucaqIFqaG7MZ1gYnPNby8CbmfsGk7sbI/bV+x+NchJsKHwlKHVEiIia4vR23G4Ozi4jvCBPQClYtwHasGTatiiM4vwohln9XaqNR96dvjKzbhUGNDi2z6ianUie9oFWv3hSoJBCsmRktU2G33Mn5yDKNL1dmoPrIl7K7oDsLLdBjHJNnrE5EJJPxkDHkRGjG4FW+Saqhf1U3mWIq9eYUUuX3ajdXJJD3WRigkaRSHYQWyXTO8bKPHnhwUsG8Ans1GFq2toVyb9F0yKQScAJ7DVxcyg3DqMi8jko6P7i2SrSojuD4eE1P49AA7CKs7Vxed3SqSPqvAxm+Z61EFv/pI802n3JXfNrxO3x7S3/u65YsGo1PR+KXcEcSbjtpdCWIErK7zxU83Aglzk7+X5EDObcwMYKi8dCTXDUFXzU+gk4If7stsT7JfA4y+IqqK6vx3j/nVM0Q1QMkusoULxTrC1JfUCv1INBphgKWahYoZ5a+0qS0YJfJecxodzh62abBSshmFUbgZt51mP0JtV6O48upySBdDSXsc1dOGyIlbP8b/9miIAYsn4VGXjbDA1IuqSbYwSEih+WDVGTfn5AuUxaGTBsNtvgwQ/FUrDMiI61lIZQX+IyeRV1Y/WQKtcjDOhJdnSntuT2wr5x17rAIQE/Z4J4UB+kjh0g0fi5BL8m5H12pYqUYaAdp/z7sakwgiNJ1VGs6SOBJNx1TEG06UsyT059ypo7HdGr5VFbv88/ZQ3En6qhsh0ku91b2QvWY1vNsTecRr0TMi7aqv9hRS/OxR+gdLtmXhKsS4ghQSsHLllXdp3yG6VwICd3/4AkkPUuhMWbPc7dp2G+eBhnR4H+m1kc4vYxi1fCjFHrNzgMWiKLzZuxlTwc1LJl0r5SuhxkLTRB5oSAyosJlsAWw2S8xF16PvZPavjnP+PNacbfObEOJq0zPfAXN/MyLw/93/5IuL6HHcQE/ILJexXqd79g1s3D4bBM8b10x4oHqrUZ0p//hoWD9c1B1slr5RBUlCGgWzhh039x3Pq47zBUXKvyBlntEAehy9u5vEhT9iBwEsjsisWhSmu1z2U/pKPn8VDEgtV0QRgWToRbGxU2uJRG9PI2Ao+VwWxzPW/oyJS5bF7ZUnU2dJIqbyQyWLJGkkwrm8ps7pL+VmuQ7GmA0gq0PC+LOqjhyl8S944Tqac9gfRBzyccYoUnUrU+zYqBtTGD0s6NlQS1wAlGBjZqtFXOhQQLM2NJ5TLFz/C/TwAeOfQkWuvx2DzN8c188Il6r3j95mvbEg4HHvG08MdsDHRjoY2NH+Y6f22YGeVMqAfVoLuePUdJ6M+7H1ax2PLfwj8fC2UdrNbIGzfuOLz4eJYHN/QooszGWSGCKilHhgh3qKwfC/jEUxbAzpPFstINDexqYxazuBtvFYvPECd5d5GhJXofXb1dDJrFY+CtUGQWnuKEJAeLfmFQWfHLgy71bZNVsAIFjUd+dpcdS7UqTh8ZBMf5oVGPynmttBBzpJqC+9/L7I5gH7u1NY+Vk4lI5X6gAJeE6aG9qUcUBLOIRGDNB5UnndwJ0lhiqxvBpW28aePaAAAtuqXY6DXtB751ypvSp0u46QKUrzuJ4EKbsd8tiYrJkb3dQVUVQ3ZiBwWGKnJlYzemBbZ5DkqSwN1PqO4XjkOx49sY0T1P72s9AaBbPS/BvlrT4m0oIztuX0YgsxwUz86Vj1Ob4edyIPi6pdx7WS2+VQNGL2cdg/n/xCdl8jDqSN16OW129KyOEffpFtLK60HPRZjMbzYwBoaQIpaqFI/cZRKzqp7sgMQXs1xvky5EhOP/IbVMzCWxsVDNA2kgIqAeerUpiBZHist3L4l+ZhIDh6mbayHOBQE+x+jIk3Gkr8F3TB1h/5KStTvaDHsjAah6BuNoaxfyLra+7Mg92pBw039wrIhR2Gg7o+1MbTrvtaZHQXS2gGm/cUYuP7MpZFEhfvfdqr+nEBPi4pqf+IUMMmF74k2AaoUAmLNDKTF4xJTkPuKusiJbmdkpiHbu7KDdoxphwX1mGLMNUcCH6lnY9n3zAn3Q8IbcG0eONqNnEPfSMz4YLctRr1Zw1AYGQsI7sdYjcL20NLmfXZpi7XTtnuXS6bAdbkjd0tmVwWr6MwJHLmB9ZZCQjRFLJmWSKQeWnp3fJnbzdrukJFLE2nHDQ1r8xARnXDhU8S2ec9JELj4NGbRT82HKTGBKGY9jw1SnKehXPcGwPeEkEenxc73eti9AvZp81nspRszHAgu733XX4z5gUeRsysdAuBlH9JnM1X9Y8w4vOSsj8ZBRwm65yYkq6kUL46vT1i9tXBDWUW0BNhyn/vpRYiu3NCnz1OYdvW+YkKtSq5YJvV4s2nBK7nPbesTx40oKKVjL/UoaNgIXbfEUZW9aU3alpfc8s49VO/1/tFNRsYl6J4SS3ghUgLi6UAH5xCo6uhiiJAByzTtgj8rIgGOS0qgU0BtXtv38eH1QzPbs46ixmwdhghjs97RbHP46A==
Variant 2
DifficultyLevel
603
Question
A catering company provides grazing boxes in 3 sizes: Small, Medium and Large.
A Small box costs $8.50 less than the Medium box.
A Small box costs $24.30 less than the Large box.
Which of these equations correctly represents the cost of Medium box?
Worked Solution
Extra cost of a Large box over a Medium box
|
= 24.30 − 8.50 |
= $15.80 |
∴ Cost of Medium box = Cost of Large box – $15.80
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A catering company provides grazing boxes in 3 sizes: Small, Medium and Large.
A Small box costs $8.50 less than the Medium box.
A Small box costs $24.30 less than the Large box.
Which of these equations correctly represents the cost of Medium box? |
workedSolution | sm_nogap Extra cost of a Large box over a Medium box
>>| |
| ---------- |
| \= $24.30 \ − \ 8.50$ |
| \= $15.80 |
$\therefore$ {{{correctAnswer}}} |
correctAnswer | Cost of Medium box = Cost of Large box – $15.80
|
Answers
Is Correct? | Answer |
x | Cost of Medium box = Cost of Large box – $8.50 |
x | Cost of Medium box = Cost of Large box – $11.10 |
✓ | Cost of Medium box = Cost of Large box – $15.80 |
x | Cost of Medium box = Cost of Large box – $24.30 |
U2FsdGVkX1/MqTJ/ll7EEKmhQdVWoG5Z+X+rJDAlN91g1nD6wbJwxyCAL2LFO73pa3gnzodL/+o231WwhgY5iVkV7asNqkh7SC+eef8BYVZUv3v0dlUHXvw8YLsQyPbiPc/SBDFbsQQ9l8hC8Bcxg41CnEz8s49m8in9IR3r3EycN/+hwZPrxvKtP1yC+syn6E13q6k8Zk+aWDdYO3xcxs309+hnx39pznqiEN3L2Ua88ioG6GK567AajapsFonCmpoBmoVzi2eqe9GVsx+U5xLTOu5HOzg8mE4Ip4Zu+flPzBNAkACNRKzVDg9/omVJE0LBfaFGh1qcYWk3GwViBM+ftepaYUzN0HkEiBg+eTm344z9fdZh4owmhKmNNHjUT04p8SSj0xQF5y2cRGhTSoNc+NqU1uNhg2vV/DGCqWnBq8is6vLi3YasSZ7vihb7rFNh2ohPOeBU0GIOfjdLpwNqOnY5cW/wUzfTZEPDdgpFATiNgEnLA0dVN0RZ0ivNrTOk9ThWdkDVBPkd9gNHfSy6H21CnZElKJhIKNUAz92G2PNsN7+tyYHhC0QUUC5oGYK2Hd83IVR5vJ0j1fIbqTMLzImY+vs+vlgBXktyI6MnB7FyB1zgQLyaoMedRpwOHnI6CrAcdHKzHajLtDO7Q6X4Tnx7FIfATgfCBLMsFXEKHqEYH4OJZ2jTu1etzOsvEGhaQ1m/LmXGJOeFbFrYbcA9dEj3kenmr7k0oEY/m1eOVbGGWXy8Cl5+gsb2tkXV2SZDHXeKRe77iV+4pQ4E9kxnsjpJ9YqoScq9brLjmA5WXz4L78hQuBuOhSW3kYIazDAvlb3AIarZm6V+mcI5Tj5hWJGsSls3MhM7a+D/6BEvlBmdAPnmwvmQJj9rQwbwekdwDBvYwNhrYLjbTVNiVeuiQPOhkPGDZ//IYpp1UMPPjs+z6ay+XZuD3mQrhMog+Gwgs3JnQaGAzEBvYPa0d3GldXvuuB5j52r9QEDERGc0/tLx5w0Wyzb2MFQoLazhvx6HIEKdGRDZreCJ8WUq3gyROkieDlKJJ5QVMU8HtPSCC6MHBsTxEt26DNR1RqQN2Ky/GjXmY2fU0aed98hf4i+eT7Oy+FJ9JfIAPP0pQoVl8hs/tg0g76T04Ii28PfZI3Ws/Fq4zSL0iGbDghjD1FpqOuw1TWgVICRbeXED26z7i6Muaaby1f5jQS67uwnqzld7f459SOPmQypjfknK7SVkkHWqYZrUGdA62wzhU0MsJcb74rQtsf6GJ2rInK2yiFYn5TRu0+p2XBSZCC321nhF/RnHm5YvNkQae/l51izxXAwDoqeaMeg5915z+kvIz0hqsS0yLNJX1OgXYaAEttQ51cYDaX5WgVLrkaN2K3OHVmLvPo1nFmCwzGjcfSjMn+CYlXGbyeMRywhRR7dEfIMhZZqUOEWdZRNDm75i3GnJF5K1UEF0zBLgU+I8FrZqKddn0nKUhD/TtYUTvalOrtZKUekNI2Oxq/BnFs3wsv99lI6A5jEbWMhNPAhrglcTzRKRs+tj0NS+cQBAzmcVwzGoi1Wd28B3dmCGpdYqfzZjUw/os5Ef2gsLexCocJ1510TohSTiaofzf/Jg5dt0k1R6YXdsCbZmO5kt+VFLCHLOAgbi7TtUwcBLIj5fMk5fK657HJ5w8t+poX1eXIncZJg1raumO/3UyhiHG4B1cg9fIEa0vRWcw3q9fqRr/dMK8Y2YVHuKcrqJOw3uN2MJxiDrKOkmg1/QKHqhVbEKTzwcXezJ00K0uyDp+YF6IejqbQwIMmQ+6gkTs5zIClWSlnr3ZWhoWkW7hpQMNCdTkyvkH8vRDN3oTbYFtZFgMoRC5biW7FhY/LT/js55S/okBb9qGNeHBB7dPFC6JMrgI9RRhopzfxBLUMsbTLIz/yKaUJDImn/XUP1W/+7x7g0I45h3nG76jv59SZ9sfq6s9L790MfimkXu5Y8CFk1VE/rrul4KEW4nBkzZhHb9R275Lb0y+VtAr1Cn5iPpRGu+6lKudIJ4OYi3W3sM3gMj80FMTEMpy6rfahf6aHXFjQtg98b72TXwGGLM4XD7zI/6+J/5rXOdEwyZpfRbuEpmDvn9OJ/8tz69YDD1fEBXEaNhCbA8/JQMafohW41Z++Ohm4lQheHkVzYo5Zn5rLdjh6pxYe1zwO7RdvUMwXLHRPikpZiuo+1iN867KwbsgdNtF1NM1nELAKhQVm/kKR1WiYYmB7IWKXByLuAEoZdebno3K45fKtFR1r3QkdcAv50cPe0oYkCZaWsUQFb9lqqb7kj8wtscrr8DodygPwxMnn+jX0i6xNUMFs9VXuzCTojBwkLjN2kmjUjvqVg6XiyGkwW4IdDtF+oCPrfTUzFTnk8UFc9ECNawJbrIyXK55tFX8mZUkiQHWt5UQc33EZrG4NIwrvlTeQNuPo8ipk0IYQBPcRz2JybggmEqgrEDhWOCdrEa2h/zRmRv/NbOtqlBg+/5omVd5lyUzMMHXpNlifG9ZXlJkRF2ODnw8dOsewHXuQFJ+kOg6RrhjEttvHTaY2ouIdvPxmPneBZ4bpuEamzAHWyT7cWN2WwK0JQ8s1h+1ZzCcp17T1NEc4wCyycd2CKkq3Zx5wSB72OOfmBqARw8mXtRP5OkGGAYB6JJ8DHIgjnEGKA5zXu3LTeJKfGCWSAkfcyAhIKtdsdXWd0BdfPkCI5xOVRIHLQxxr1pYAE0PEyAZpGAcWVoJMu+4vVjm2hO8bh9ZT0pZdZpfWOJ0yHDVExJJeAOpMwQsOL3l00PHv9lZmmvdG4KddvWEQmsw4Vg7mOZRTaCcLtlPd3w1iMT3KlMGLNnQGIv4pjJAEuxsbwDWeG4y/58j21IRj2WMtYCUMr8FepQyMlkPF8fp+WWcNxNd9iyuY9L/yqHDddNMLNGasuKCfOImfYzUIIfOcs2SwL1xGIq42e6R7yyTZEpsjcIgLbJd5bMpM7Qk3iJus7GFxjApbigTfxeKDDOMwtSOgW0xFos4DaJ6l5w/THF/Z+k0YHLBVnzmwt7xg5HzNAFlaZ5QbP+tMbBAGsaxsQAW8n1nYSfY2yHbLdn9xFwOh+ewA7fc9lWt4+9ha27E01HxxI+i2ZsT9CrsNIQU8r07+GlNKxhmG+ZCuB3FNkMt2SV1lHec5HkMwOe+/wiEzfBQc30BFdqHMFaBQQmpu/sUGcJsoDr4+0IwZA9N3xqt+zv80VgjJcUvCaXwh26j+fqGXbN4GXXDWTa4QapLnrJ6Zn2E6D6gGG5CA9Amhh6mVcHS8sZiKOkYiQoUaMFjHlNz6cWaQVX1UV3skJ9HDQr9EP2rBKADqFQeaT5a0bj/eEvYi8hAaS+dfRbRLVZG6Yux3ds/zS/t7U5DFAFccW0gq9z+/RwIwjsU+4BbgDgmKj6pC5svRt/Duk6ZSsBTAS54U0dPCMnjp1tl6JIvD1NbaghPgs8anEa/lE58viuELp1OgbkGs78iO26FaTABFbE3aRYrrNgzJWFbbtR2EIQOSAIzrnhcfcetpWRGMFE6qaIhP5lKbE/pTCsZpMt0mLUl+x4FHrjyCWrdoIT673mJF7nezP0KiywLrj+FR6Y7WKkt23zKFIdY3A9lPL2ZtbvsFV1PXRGBH5iUwcjkgc5E5rosQPt1PJ0p2RvNoslOCR0d/EVkL/WofOWKR8/Gijet3xXY8pybMIlP8/uOqH4VR0osfEwzhAVnuDQSWmv7HdP4Z3USg4chBll/jhNKnfkzuAFyw1Np9/l+AOwnRDlqPj1eb/kPkDHf9Vov1vgRfTeTwW1vRfTC+kJH2jJrRNmuMqHZXPzsXUuB21fn54/M7FVdVl6KNPcceEAwVshJvR7x2Le+h33FMU2xqS5cTEm13mYIglzWA5NQHyVhFUzgy4Sf2fD7JhF3N2pt49y1oFyoQfKl9xMSVFTGuXAypitMeDM8VXodJUiyxwvPqSv+Y3N4hgXxdYUSk8bp1hUo09Bl/KCIi0Q59wsPj3qHTMm9qva7RCRbVMTbNk8tsBulJAWKV3LIiNMxrwr2ywt42Ko9TMGElA36TVeYx0eLUF0UawVD1VezjoNkjTwBClfjkHs81zCdyB6oPAxHS+FAGFKBDIRSRNRYbLAY1moGx4zwsiue2eKGmT0GXAmqQ/o
Variant 3
DifficultyLevel
603
Question
The remaining tickets for "Disney on Ice" come in 3 price levels: Front Row, Premium and VIP.
A VIP ticket costs $12.00 less than a Premium ticket.
A VIP ticket costs $56.00 less than a Front Row ticket.
Which of these equations correctly represents the cost of a Premium ticket?
Worked Solution
Extra cost of a Front Row ticket over a Premium ticket
|
= 56.00 − 12.00 |
= $44.00 |
∴ Cost of Premium ticket = Cost of Front Row ticket – $44.00
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The remaining tickets for "Disney on Ice" come in 3 price levels: Front Row, Premium and VIP.
A VIP ticket costs $12.00 less than a Premium ticket.
A VIP ticket costs $56.00 less than a Front Row ticket.
Which of these equations correctly represents the cost of a Premium ticket? |
workedSolution | sm_nogap Extra cost of a Front Row ticket over a Premium ticket
>>| |
| ---------- |
| \= $56.00 \ − \ 12.00$ |
| \= $44.00 |
$\therefore$ {{{correctAnswer}}} |
correctAnswer | Cost of Premium ticket = Cost of Front Row ticket – $44.00 |
Answers
Is Correct? | Answer |
x | Cost of Premium ticket = Cost of Front Row ticket – $22.70 |
x | Cost of Premium ticket = Cost of Front Row ticket – $56.00 |
x | Cost of Premium ticket = Cost of Front Row ticket – $12.00 |
✓ | Cost of Premium ticket = Cost of Front Row ticket – $44.00 |
U2FsdGVkX19Merlc0QyoBMxvNeHRdgT9aWMMTQkFEYvvB7TGbdSaPTG9A04VcoRFsq4YE4Lk5gBOqlPOEqkWLIkpOvTw4DRWir5lzWYXLnBSysc6gdgXjVWQJ/p+e3QoJsmEZVOF+gK/cTiVnlnsMgaUKEI0osRl56JWZOISF9tftJzsqMw+OqMDBhITDW4VntvCUSVbZI+0xwCaTfrb5OPKEP6Gph84vD/wUyMTo9hFdSb2TeRbA8x3C2NvHvwC1tpevwhhbM7cLljNz8XoRuQtXDKE7e/X0nBXgJ0hY3UWXynE3qUxjU8ul+zINKFtlMweKOXUEQT0/hljFFIVrZE+LCeuv/+fZAEqU6zBRP5qgW6pvVjCwIMHvnN2BukVnkC3zcFn/KtoNQoPazNoDJaYJrJjJkiBq8db/zE+qjFLUwmWHkU0yqM9mgDSidS9mrXubRQYRr0vXVQVhQINn+nBZOIbFEq19WeXEaZZ0Sqa1/nkOYvZoCJHHLf3Sa5NI2xN+8p/tzUshruTvShle8Kf0DcLtgsrc4GFVG40JpH9OcUzOMjC/zyOzU8WvDkPtflkSg0I1CGe/15CQUjhBZRW93gfJjX0kUUVmbMJQUzU09DGAX+hhPwIZqT25J52mxuI6ucdDTXJOXRFW75iSaHPnLdHCa6aARadjesTeClG8B+o4RSNoYqR8QYfHZHNJY3ThIxvfRv3IoZaJgf4e9aCBLFS79fXOUqt16X4LdDdVnDw+GPm56W6bXfKtYOS12FgEFbcsUq5vxFmwxQL8iURQkgLY/OWVjCx/hv8fGXAsq2rQJMdN/u2GiWNvc/TE952aFduYiXGZNM1EreR2dtuSXhjIRDjhTcYiX5E3cCl6c0ex57vxF7/G1NFom9fM7Vhrzyug3k6Tz7xQDx4a46H+H+e5Ipd9wh9zf0RLVz/G/w95s/Tf2MwXjE2kyd7ajGm5YAVNN9qKhHOlboqLph6OjoSWUb4PiSNTByzjKk8UlTYMgTO/Y24gF7akjihigYwc4HjEQYiJkTdNCd7TQzejhIXObW0vrLAjzDyGQ+CwW0+IsZHuwVmLTHXJz/TUQsMpCkOt22hdMx9rpBBch5o4W03oB6z9fOM2A3EoBxcE+XPP5n8NZ8nHj1NeamQqFIoQvuguQ/JSm2qXQHtGtqfj8JeVuc1Yimg5AlyVtqtpTjxpcnMPwsEydnXIdE4L9IxAb8SH3peJjI9uYYZ+GFKGnEoPNqqRDBFjuj4SKVhG8VCaZTwJd8DvpG4lPGvqwn9W3AUK1S8jW3ZRkFEnISSr2b+KmTlZptcYedRXWyMnDAZKNHAzkuMZ4rFhqDI6YOjCfy2t8wa7yzIUH9tnWEJXEypv9/t9Vh+rE43ayARrIKTUAaOxEeWb/zHsVZqONhvZpY1NMk/knTJYF2Kj3nhM+fjx9qgvXao89sIKMGSj0Q8tP70cgXGoQdeRpP4fFyWC3jU8LJLyZWU4B/+YwhS6wPKf1CXF2Cdm1w3bR1gkiqu4nee1BPMwGQPUO4xw8FArhYmNWtyiMatERXRDRORuqtP/EBmk6i3eTysVu6CXd4ff2K5tttSMzRsRtywQQZafRxb2ue/KpdLKmQReIxp64YM05hoKp3m/wuxyvfJYaufyP4N+claejg/pTVNuQdhzdB1XdDY8MFOfmhLTkqq03vKQPUAZCvW/pPRa6rUG8nXtd3/zQId5ZSJgSegZupS77ylnXR+P27qxXYCOxdExQuHRYxSgpg3ezCcKwcO85NNy8Az8IsXRXJofeSPxXzHA9OUZahLYUJzUqAD1IPxGeiiX9q0YvlZZKFCkpe46RIbxWUPZc+LktagKFN+babey7lNoV09v0uoFa/G6h5Fv/X36C50I8jxhe8j3APaPZH1GOQB/NT+QkBhIGOv4j2GsDZL8eISewZmKzOxaSSv4i39QZi908YqFmnCdpiPPcqbZ+9gJNv6BhwNUSeMaFJq9x8dqlRmlrptEIdIkaRt8jkBuyMct+xb1Ytj4X7M2wAPboBHgVflxpYv97zBbJyYbhTHvLd6fHCJLi3/7pu15Y98qWtqp3XvzvzwkfKvQ5b6ZhTP17rCgB6ko6faHucBLnv9dikBsis19fU2fNdh0IlnpiZoisU/Ic4RHljntFC9toQZA/6pO7fKEaIZnubEmi2gIDkU3JiNJBegGZeWcDbX8kCqGv5HUpPh126YQMlYVaMCtRSDt+bWXsUCukC28dkvNYNDfGxBiJiUHXWrjbadpglKj/8+wyoxtUCE86Z1Y/keXZDDoyuNg20on+Y8kFcziAdnOpQpCDdXkwbUH4Y5CeK7Q2gLGyx3G/eJZsLPTcX7L0eJWeojsavt1FiDzmQaVYBtpHNyfHWS2okfcmFqfRi+lSc0mCoMJPmQ9aKHBfGqjJ0SieQiJaEfy0BSyxSf7po+Z+UJva/I2otGld12tHaS0kBOnR0oUaQAuRWB+7GbWn6gd236Z9Xgzi3QaFwxRTy4gHKQZwvc4OSr07y4PFSp/yK40ap+z0yEc2EPU8WegIwg5TH0sB6dj8gn6MT+2OOqPMvo/8ets5ZoQr/sHDQaFi2iJg4nFiZC85v8HtvGDs9HF1zv3wcKKkQfXM4pkXV7tEEOjpo4ZjE0dO/1I/DYxq2RrpKtmmHh4JeHi2J60MFSkIcMH+AblHc56LcGZqFSC5xH9CKUB0zjd/UrvXsKpOISaeQZuQhNTGF6xaNn/VGqvM4GWAx09pZRZYXJZ9TmrpyV4aPLXd9CZPLr+nleFWdQfbKCBP5bP7WqOb00L+oGF+EgZOywkpwiov9GHlkHQMMECLCgtyDK43iwhjfaGHBFFN1e7RHmvc93Qwz8GB2w6+79u1cpNfeZ7lXW8buiSquC99ghJ8RFTjICSeJzYXihPZS3ytfzWk1nzopE1HC92/DW2jv1vk4dkU2HGfh+zeTMhmmbHfOco8PtsjgThXEe7VWS2U+aQUFQegTSMRoNx2gd4hdkTUKB8E7lx+X2lyoQsTdAcl7u19OiIrvZS/0HPc1RpEyBVkUNRfsUkbCp2XVsmW2YQ2bAA6Bykp3DsoHrhf8pv9kq/MFyqB1KXv0dwrkqOAI2uHN41jxrf/NtWcL7co2Qg9dQtKKVMXJPojoG1NC/BSsr4PpvkCXMOy4iVU4h5EO454zQo21nOy3vmOhl8+XeZa0098qnCgoDAVIJa6SBX6nNE6TmW2VfyAarw7flibk0NIRCLc2uazg6vHW4ffiHgZojCHpUnf+uZtpuzP1Ezj3ZmnjpUxcpm4fk7zM5hgzz44l8Nau++WPrhia21b2k3fyO1PRlV/sf+0/cI4DAoL0iU/46diD7/MrU4DVru9ZYk03AOGqT/kvKEy5IbE2p3L2B4RDJViOnFfaE8ZgnmUB8/mP2P2QFpnQOqGgRAebxkScOx2d+ZyyC1E2Sid9JKq5GZsUZqxeB2c8frRxWGiWGLvqt46pNQaE3NZk/5+J9td0t9cbqGCEzn05bSFUyrF2DyPr9JmjkWPG8fO1+/n7CYEWZbVhAyqLJPCltMLwg+TaIKR9VPVYDuEQxW0N8ynXay4oWYVMkeEKznSr2Mt3eaxDq1kEoHdvqv8ni9j5/Ji14Dml5ou3Frcy3zUPli7bLEsA/thxlKpZq63MosqxGGoFjBLV2W61gXkhBnNSFb3P6reVAvMByBSlbt6sR1URR0XLwQGDgZZT0+G/XuIvKk4iIHkNGb2nXsc2PsxQ9Oz3miJ3lqHVXn8fqenwJKjopXoQTHrdDB+elIE8kk/wdZde6u7yW2KOmKGKTS9ddK8js2+K0h6sAYxj5AhHX0m9gR09n184YyY57a7LaC9jCtUCeY//TR8oLzpuPiJa13V3Dw+U2zXtPYH7okLvxw4a1xme0N0pnJ7A7le9xD0iT4XwUoUp78989Xenou+P6+0RbGEK7MxYsfDhF0ruTVZyacssiaJcNQA6yL0xur3fB4bHtMFwdGDSmVUacc91bKvF6J/IabpsHruKHZPUaI8WbGjBovt1rooRG6zbb6LQTXbY4NOBOVQkcQLmVwcRUEJF5Bj5hfKHJZQzCZudh0MriSm1tpGsIAv5T5X9VrwvbGGN9ciwSZq32N6RcOub+tfznvuvKSmIhVuadHs0YBwX8bZ22u+1b0NntmvpTB2PWZRPzYHYz94kRwJuX5AbZoWTgWRbnHGi7kgPlw78ugCfMHiOxquZ+8xLlbm0VZLbybCR/UbfkQFj8g5lJ3I7wV9T6uePw2lG78D3BA87PdZrmTCScygkD1b9ZwIvmY7+mK3iSXe8RGef11VhjmmDOfy3+xKtradZAbLveoMu77cAMpQWlYPmRH9eGp4Okjxd6aylbEZ6DdAkOKyY7RGJJcR6AvQzmUmyVZ9KgURs8
Variant 4
DifficultyLevel
606
Question
Jocasta is headed to New Zealand for her birthday and is searching flights.
In order of cost, Qantas had the most expensive tickets, then Air New Zealand followed by Jetstar as the cheapest.
A Jetstar ticket costs $75.00 less than an Air New Zealand ticket.
A Jetstar ticket costs $118.00 less than a Qantas ticket.
Which of these equations correctly represents the cost of an Air New Zealand ticket?
Worked Solution
Extra cost of a Qantas ticket over Air New Zealand ticket
|
= 118.00 − 75.00 |
= $43.00 |
∴ Cost of Air New Zealand ticket = Cost of Qantas ticket – $43
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jocasta is headed to New Zealand for her birthday and is searching flights.
In order of cost, Qantas had the most expensive tickets, then Air New Zealand followed by Jetstar as the cheapest.
A Jetstar ticket costs $75.00 less than an Air New Zealand ticket.
A Jetstar ticket costs $118.00 less than a Qantas ticket.
Which of these equations correctly represents the cost of an Air New Zealand ticket? |
workedSolution | sm_nogap Extra cost of a Qantas ticket over Air New Zealand ticket
>>| |
| ---------- |
| \= $118.00 \ − \ 75.00$ |
| \= $43.00 |
$\therefore$ {{{correctAnswer}}} |
correctAnswer | Cost of Air New Zealand ticket = Cost of Qantas ticket – $43 |
Answers
Is Correct? | Answer |
✓ | Cost of Air New Zealand ticket = Cost of Qantas ticket – $43 |
x | Cost of Air New Zealand ticket = Cost of Qantas ticket – $64.00 |
x | Cost of Air New Zealand ticket = Cost of Qantas ticket – $75.00 |
x | Cost of Air New Zealand ticket = Cost of Qantas ticket – $118.00 |
U2FsdGVkX1/lt2amV+Q+hIKZNh+5ZeHzk1PNX9gpUMTRw8A2hlyZXEqDWYCx2xxNvA6FcjIhDnRMRkV0xE+n4NFGwBLxrNTk4azWnYVeEfFv34l665hbD4a/tc6JM0KUYZ/e6cru0yRLoJKZ6OtHSe3de73+KKpInjP60dh8kbs9Xvn7U9/Y0VF3nOn8t0Io8MkzRyDxifwKFfLvTVRDWK2VcxgeFaLYeYr+Slo0+3YFPrayNf9C/JMAr1CTC09U6Mmfi+VttnSBN2vCnYf6yWqQ9/K3aw9MMGVgl6VJW2ac8GqwsOXztuSd5ThdNRL4nIixzCI49oCkTw6RHEd75nHh+zNLm2tfJlg0rVze9D5e3qxodIVoNn7C+gG29D6IeulF9dJcXWO2Gj1clpYZ/3GZQKweocSghxfWUPCHAuBXzdtJLY5dmy5kJXgTlydf4DGVuuUofHvw2wGCKv983aq2ij6fuBvLdXcLMCbspkv+AwUFLpmCtDRd8igm9bnQKvCpXxbWD+U/ghFK0AokUvPsXkBooUm/duu/19lRF21ZU9jNauiM7UgwOueN3zVpbhhJR3c7bKmnKIMkE9yOPiMqPmD4Bwd5JNXcKFI97BsaOyoj7tprSegNSiMN87sZuLtt+wD7WMiKt60cQJEUF0IXijqImEsxHRkJAqwUwK8dg1qyeZsFEQUKu9HfvQJa6yoJeX07IZHec/ps8+ASY1QIK6p6KynjQ/d4hpj1bqufq0p0p1M7is/QssmBSG1V7eTrqzC2Mee3WzqwsPjeMyE56Fhp7VIlUSZrqLI4WEtM8xQRh9EWk8M4vvRYMloaXLyj+0LLThhtMftvpMNvGoKWHnVRm5p+/FSvkDpnwdU8vRETrPmZERk19H82LLitIxC+hSq2v46fXU4Q6IwamWNmLgIZ6QsPqSx0Ks7N6lOv14SAwetx5ah/RyCyFMCqRiIvJ1qq4eyEpCBlCP0AGyR7ZXMsOcoMnCRFfazYtrOS4g2DPiUp6AMRnpKWzLG+00J8YQZi7n0+rdFrSB5DoIhXWtqmS6ZSKeTQSqpOYVXKfYIEhdKNE7MjcTuuexigSwdu7IsKzeN8HxhzpjZBYMO+jAsVixeY+g210sE0zv1WqC7qP6mAuNVheq6wdDH9o9hlKl/wwpvoWKbrKbkyrHED/ZbtKokFDNjtM/TLwm3uaqOtmh/PsWwOUavOaf0QBwBJQyDm8CDSAH9YoUEiZvq/xvc/P5ZaiXDSw/pFQBDudYdrPpPOIDOvq9fEN54BGvy1QdbXvvhfpnrHRYKy41MsWKSOeM7QOIuiaAogsKy+AMoIBMnvKQrCribg7WD9NcBVuJuUKcEhScolkqJ5UkpaXkNqvNEsN7b9AtuzDuA4l3hpeFeL6J2UJ1NRaqV6nJNxXsIbBu+HoCJLLnix84k1K1/6TufxdF4vxM5yr/ILqLh3KhE3scry65KSNUxMizja32GscZVyE9M6YCk0RL2jUCDBa9+zLKwEBz8IFK9oLgooi/gKrA2CnQJuuZfZq0rDJbIjktbrgglXEGnfaKenfuYPk0uLxbO7atF0Yzx5bbD47YSfiQqDQd4+yjUjf+Lu1Mcjo19/ViBKsbylqT1jW/ZyYWkfFy+eNJvx3vzPshwObP3CchQrGTT6IpI4bWrsjbXQ2vCrW1pjZbTQcthbBYBJTVvWAO7jZsMOJhWa2k2zshqXjL7GcWc3R1J9RA/jHhRYQpRBD07/QhxIeJCDXF/Y4ZFBqP2rVzQgi0oespfVgQTlL+LhZwm9YrgfQpr9yhk1QXFmTGLxvQAJu/VIPYnKUrMyNo/jOnefzHlU6P8Azrhy/yfbgSdrcYkBDVIwuwZudLUKjTp9J/DULVF4gYY7G/RMrec1PH2y1PJBvVjt09wIdUenHy9fpYd+aOdjX8E+AaK3JbbKKnIBMMbKRGM1OjR+Xrjsv8QH7ujZ1GmNN6gNXrv+zPubte6v9Sy8XAYFjhFkc3L/iWCBIk4COOSJTIdlZnkSfb/6dozpzwwl7UsgX+GgqT3Xyn4DJANmEWWWsLJmbm1d92XNr3We4HDA009J3wDoDaDtPOEQYUAaB4AcsdHpf26NS3kj0a0wwuk7FWjJCmtBw3d9PPUEu2nbydrd2SQkGHUwYgrB8SIWMGkVgUafyeCaA2mc/tzwVsi8oezlMZ9xvAYS8kOKTvWmR9KYFx9pVZINOloXHQEv92bfB7djQ3vxp1c08PQAiU60QlAaoYj//0eLLQLv9Ser6uQkX4A21vsZz/flj955koRvTztUve+QBrR1GTrWVGXSf5ptXcNu8lPWfkCsTP3iNKz5/xIHeKbIuehBh3EmkRBC9av/N7zistXytqk0djjcIJPdAQDAMXg4rOXvwlQiuyeQYuEZCkhvBLk2GYi8o1/4jv22+ARfvEtgN7MMz39aghiK2c4kpTxLizmG+WdSGBtbAqSv33KR1NjhomSqC43XkI2DT1AqoGKuXqjcLl2gTFMSXB5shxhud45b3i7gEgVpbohjOj34N8SmM2Oeswl2DkNzxGPnuunFTS+7pRRtj1iiqP0HKH+/HLWtsOcL4ZQXiNnmLSzYFtU2ksE+4TI9Wa1bUsv5rFcesSbvDxf8FRPKOG/qVFxWC8djL4F9VwGON0M2WhUStZqZkb6vcang7mZ7KwJYTlYwhB4vj3WDR6ZUI0f9FOMc6WxEvMan5KTJwmudZhuJfmeyFIJBoXXkRE1/WgcCBKLQd6TjwmGMhs1vF8Gfbv22J5jjxQkuRXUasA4HfQYikC+MrVPlIfxkQ25+INEZ2GNO99kQIEpi7X8bvLM+SSWDs83rby9Kb0DkWqw5qe4OqphekoOFZBgEOVe+86NORyJgHYf+7PwKCFSx5AUre2uyImtMUUzVShDBb5hC/8wFpq7HsJDzOloXeG2Jjkwodtc9lPFOojHS7wuM3xcQEl4TqjPzKlxOiDLt9JfmZB0P4pbw1tAhWJB1AuwEh4LlRcRncvyIflWJnBcWxJAzvuwpg6COZOced/02OB55CSw7WCMwth/KbVdV8pOY+a/nzVtmIixeFwfiN0p+smC6fQ+7tccISS56wYB5XEXMY+UmctPYeiTHUh5/8av12/19QHNat7fmtFC31TOMo8mF8GTvWSp4gUuVPkZP53NFoj8UwVgvYy01WOQI5glhv1s6W8OsGp7c/mZkG6VtkrRH1Kz7GJcJBI23weNT/ml4v1PeNiynWqguqRCXg0wGmbEHN59+bdaQ0uNcm6g9fvoh5CggoOXRl9f+63JjOOs76vB/8JItNk2ebcUqOpw3p4WWVljoDBh5vsMhvgQmFVQ3U8jK96eQrff4S50Qp7quIxU5MGF0DSdE2GEfwaZPImqfhjXrZxDOOlLaB618dlSdyllnEJMz8b3YwbgLpYN11gkrf9Dt7RxNKR8bc5iKpxASM0oCysnZmdbgVX2oyy1M3ckwYme0CBlZKY8Y9trC864pKivNCf6d07lGVLj0pARKNoAc9HxMun8BszPM35+DZahePq51V/NWxmGEXd6Wi8+9Cu5IaWaA+q/cIgnQ1BuC9dXf32lk8pE81M0hun1W1kugLZK45L6Nk89fDiuEBva1GdITiEvRx9buT8drQqSyiIb5QDzpx6lKNhHQuPKwblb3ey8AX6B0CxAubSnjeqR2w2BK0/kpCS8l8SNSeCR/aOcVi4wE7zQloH2YbOcJxyW9nWhn6xkfMjf0x9j8OmUkfh5GGLMmKTioIHJEJueJnoE9qM1zy7Gf/m1AvjclusgMF/wZi98vfqKAIGCfnZr5Abu+TYfVVs0ZDI7ZA9Ub+842ZrLp62i3qT12C+oiq+yQZaCqdP00yeo1EUSWyjpSfpYjmsUxXCWcRTH8gzRYMgdkIuUTH1zChbb6NoR5ytbZu28sOy2SUu04eZJVrjaI5U2CA1ekl+sizMUIxZz59u1pAvavwPS+dahhvlFBZy1VKAiVzNaWCTgCSyXXfF/4TUZku6yYZkxLwZnlM2A/tqKd7+atprpDGj00ZP1DAwV2dTHpmnMOUSUxOWQJvTxsfKeKsi7ZPQmyHrfq3L80TCpp
Variant 5
DifficultyLevel
598
Question
A cinema complex provides 3 levels of movie tickets: Gold Class, V-Max and Original.
Original tickets cost $5.00 less than V-Max tickets.
Original tickets cost $21.50 less than Gold Class tickets.
Which of these equations correctly represents the cost of a V-Max ticket?
Worked Solution
Extra cost of Gold Class tickets over V-Max tickets
|
= 21.50 − 5.00 |
= $16.50 |
∴ Cost of V-Max ticket = Cost of Gold Class ticket – $16.50
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cinema complex provides 3 levels of movie tickets: Gold Class, V-Max and Original.
Original tickets cost $5.00 less than V-Max tickets.
Original tickets cost $21.50 less than Gold Class tickets.
Which of these equations correctly represents the cost of a V-Max ticket? |
workedSolution | sm_nogap Extra cost of Gold Class tickets over V-Max tickets
>>| |
| ---------- |
| \= $21.50 \ − \ 5.00$ |
| \= $16.50 |
$\therefore$ {{{correctAnswer}}} |
correctAnswer | Cost of V-Max ticket = Cost of Gold Class ticket – $16.50 |
Answers
Is Correct? | Answer |
x | Cost of V-Max ticket = Cost of Gold Class ticket – $5 |
x | Cost of V-Max ticket = Cost of Gold Class ticket – $8.80 |
✓ | Cost of V-Max ticket = Cost of Gold Class ticket – $16.50 |
x | Cost of V-Max ticket = Cost of Gold Class ticket – $21.50 |