Number, NAPX-J3-CA33 SA
U2FsdGVkX18OjUfQpZNMnYdB5/+tow+p3AoVQGzIAdeN9r0kNKhgCHygtPRRUPJpCF+3v97ayAIX3bzrk14RNQE0sFPqpLtSrWe3aV3oAUvNRBEnHakaJUwZ62GtwConzHmVbQUyPfyekZrtUghzezpNlK6eLFdFUmwaJjqnx/swJZNIGu35G57eDn43RZ1h55YFUQ29bgFo8DT/GDUViPgCvhOk7QfyHAk5u6BjGJHnUJERU8aChyb6swiv/iplTp+X6TqL1LK55GaxPLW6+CI8BrWsYmmY+U+1Dg0LRxAux1yCwyMPk983zIt/rRH3odpBllrItPenDiABmOduCf/CMBmjfx7sythWR7XtcYExLWmR+mMLgsIjlcZe5r4U3JvdRMur3U++74kJ6BUs+hKGP2cZGt0DK99t181L0pgA6k2H2P6aHhxTwgMWnxFLVaYliR2itQw/3u0z92wem7Kep4Dbrm+U+oqagigUwCN9twE0Nst4Cw4qadCkvx7PPU0BhOcidnIx2lQJ+96oHf89wozqFbzVaNXvqxnrw6nCOZLpc+CTg0+n0qVxQmCExjQpWXB5ZtCP8sGpXKl1E9ghJ+m0zDhUJDKN0OD6L3QQ31MT4vbz7mVd6Ige0hM8Ig//aAptXoMLlwfvDnvHbm970FEoAuTAwxIOvFtU1ujvXnZodx18RHkl+LyxD3ZgMpjt2WG94ZfUfIzzP682PAfAzqtFxXGIYqeZQkMZWHwRc6SSQ18xLg52kYE0A84Ub9tq2S/khc6Te4DbKiR7p6IxByTblFDRNsyGm4WG+mXIXADb4n0CJelP/6xh8hRRW60U6jDY/LVfc3mSajP/d+bXVZlcUoAF7Ls5mgme+fyIatifkqUIjS7KRmwXyc8dTZq88PrOwjsoiTccL8BVSLAC5DOpyrvvMOQzDbjI6JXQkKodFVGH67XcYgoTJ6/NofpCMlAE6MMVqVEwbhzzWgBtNJ0sXclijhwPq4ONtN05bsrZd4ZFYmqAuDrNIvcwnOXQUAw4jlaK00Hisg7X0+kRrBXO8nnX+dxA18z9+4qMy1mD2gg4/AoaxycONJpVItoPoqZXhNcKjYw4WXPgOsviUcIQSZsYHhqVWNoZIQ3YTRuEUmT/HhwNJK6lGSvNV7DlKnjdfLrtDWOWPML9CWlNyrI2IZV5HRVGEYWyv3LVSVN9Yi2XY+DiLBNF9a6L8sRgfUufnvN8xtTsON2HAVCutJHsQ20KxK2eYigE/cFbwfMy38RisQYLSPb5ssPG3IpDYckaFxxP7XaJ0OChlF+2VwoCQsIlQ2NasEPS7wzWL+ka0dvXaJx7w3BIcEd9NrPlRotOjOe7g5qvV56lxH+0N4hTbaA8K2TZ3+QqlOdgaGA2TaJ0t/+f2Zh2+p6mBc+MCtZM00rethjFezS18gcSfWD6nntGpd2U57HYu/9AtRzwszKAfOQWegfmJWa3tyuDVpb+gdMl94n87yz4p7BqQ5lOHXWZpP0/8ZukYNVGnZFhi3WzCM/T8DcNnZCnurPiBaWu8Pl8daRWS2+/bWWMAVgWXDkSL27HyVzBCPSSeDmWrcGJWw+2lUyCjymRZ6oJ9oohfwGGfpng1NJKbjqb2Vpai2pZN8rbxRpN4QCEVuRFhyySEVxcnM8e9qTQOk7HAlD4qeXbZX4aZjhP6MKW5khQd8md+3zNS1IxOJv/7bF9IcmDY+h+MWWL+5CBrXUCEbRBdeSw6A30DVfyixrvtmRN7gUcZ7iiNMxhfZj2wz3MWG8CC7j91mUdX0jgFhIqliyYoqxJWrnpzjB13jXsnhZgFHMHrvaLhYhWwC38AasbxYjN9cHftZOaxrz+qx+IA1oBp6oVbYZUVwepqwl/pgHQjop05TuCd6Uz4uAI8qP1+PwP5kV6NlyFwrRswyom2oOtT2V4TBwErlDesTPDou6eiC87YVtIimMLjxk5nuMpoNe2GvNFqMF9gCIpECs4eo1miVEUX8i7E+FjzN+Z37dS7RbeRoX9IbTEkV4EgEz3+jIXU8RKqhcv7IaufU7xFg/i68CShn/lSQeCoGu7mauBw5d8G1lGi+DDFPmPl0LS0KqdUKQeqgu4SosLQzPv6Nr23Y3zzgzFuEzgfQRqFosD7PCO2s2FSiT8iuzSDxqe8MBsbPHjd0x37weLfmntoe4rZwEOY8Xb/f4D2Qxq8OcOkAq9lxIUl+K6I0VK2opv+g+BSv2fMDa2fmzwWNMfRmAQ9idg1wKTyx1mWrFBilzgUxoRO50qodPnR7yUqsw/OpjmD44CfyUSCvGREV81IfSZbyi37CHac3FJ4KJ2ZnSjwg11SUAq0jqSRBjZq5KmlCt+WMiu3wW+8UpnXFElpc56rSoNbbrti18IbvYFs2tvYU8UTz4BUXqg6fI0xpRw6LH+2GkGRpvdbLSiztCC3Sh7HtJKVyxyI5ETE11EWjVhfukhr8SDi2NoUVlw9gYM16TaJgX7uiXQXTAaqGy5jBMsuzSoryTSfv0fI3Rc8YehusOEJrWXdeHPFqPHEzrpf9Ha/3lEcKIRUWbSo+CBk4JLvpg9Qg6new0LgU5Cp1VwgowCWgBBXTeGQu/rAXqG4L74SEQpTnkE1gtSyiiLYTNzNfL1t6H/QCyj9wtfcVrAPy9wa5CKCqkd738Yy+K40Ztcvozpebs6dy/I6xW9YYYbV0Mg9RDSY+9d2IByGGDGlXwV83lJB9xqof58Jk2ILK6VKrhxm6+UIqkBZBvd29wYXgNCMASnDR6o7G/BMrKXKBqOZi8p5QcU5FYO5FMKX3tTak1wUbh1a3uUpXxo/8jzWOQUWLgHR32nVR/9SFZds907UO39HPnUIg6PD2LqZWvVRja8PhfG4XQc14/4mWxOHjEXW+o99JmuhYlBAF481RRciqiEHSmbmvb22w06IvLJ1ZC1FxvjkBHCWzGP6YQ50O7NPGpNU8DE6rRUAxsuFWypbpxKr96WB4CL++EzdOd36+pQ3ZyHWxHQetAmczFr+vgXQD6OXS19sewF2Kz1DnKlSMr3wwGGHoIKwmLvM+lK3Br6u1SuMmF5/thnmksrtIEttsfVlbsrt4QNvGXzCnjKqXinuLTcxnY2wo9SHZDStvM/FKwlMUdXfyHtRhuafYRfJ+L1APB2JynIv6gs4wc3mqGErTZkd8HUMHMsS5/7+fewLjq0cLHtqwCgEzt7Mazctx35P3GxhtDcUlmfq+6HqnlhhTOVtJmmEinKswQdg+m2O/PJkHh4aoQhnEhAJwvvBAfUpl0vs6ziw2rKG0oWCdwJUGDmpccdshkL3cet3AWf1rXU4dBx/z/y+K9p+NZTq4OgeouZYdHEP/3M/LMyATK95yHEKcXqBBCG5quAL0v+rrgkCkDgHlvwD4XkZTOLIkaBxaMyr173NXDEK3MqmYh7XV4sbyszLAB/qE7zqotHqlWabXUK1emVWpbL+Jr1dfM2KjaF7ScCdi8P5cy5Mlqhc4/tKqWc5QdVMA8RFho0/kq/Uw7alaz52qNjwpmN4tVPa4LbKU1BTQXvVch9NOBLh9BRdX2OI9gjNPHfYTD0vvajC9WJwSAyEWxByV7G8LUuijkoatN/iOrgSDc/9agGAR4tBai8PEcQjQ0Udu0xISOSqxBv/mDpgbTKc+HPqbmpNoM4o7Ekcx7gAGmcrAO6+TKxBpgmk0Jy2E2K8W6t/08Bk9L/EcSZ8n48Js2ihP+ajsCt6hum6BUZZbnV+vHxNO2qbHYPqEALMfDx3hy67usF5Zk7SXOaTX0/audu8aXWNLOX6FRqmB62P1nFhQoL25x1EYFK67svAbUj5Mw/uZ2pVbTvGXSVStn5SuzUUMSo4CzsVyuZOlEZeZPt6mAl8KhNgxThUsx6FrIgmDvUZwm7XtbSRC4VuTC1DiiRG66JTwVqCsH0rtOk0x/M+iCA/9eWearjNtS1JMA74NHU7lHloD9+8BXj4x1MJ/VuVwSx+MXXZV3Koz2FyZO69q3Aj59QsR3a7/TV2q3/4sm3oyXR7bP3JIn8cBFL5QEHwO8Q7CWgdcm6bQwcqcN9ZYzA4KwzYBk4xz5ujUoOI9UXll3F3/fDCVE8ujRZgANDXZDcQGcbLfYZXGjCfuM0NUf22JXWr9pcp/IjMSYVe1cPzZxssZCRS4gkh+vIGOfivClBrJag3Du9ruANqn0dwJu7FdPoKbKh0YrghjKd82vD9u9SSqqf36HF9UFoxn6xD0sCjBg8OJIMmSVzPK+j9qVhe8BC+RcJJJoFM0Lvo9aMq+Tvp1NrVZWEILF72d6aIepMBku60FHg+0n5T8hmfA6Ly27e1XfJ4dnRbI5ng1ks3yEcW48e55vQpS8YM/wS3etMXadgh+WYqB5JJO0N3lSMFye4fwNdE0BL150WTyfLlWp9QHwHewK16wnNwStEEQirqWeuGbRBuPdaXEj+tqDa56iSolZvUWbm9UI6w8HSmZqjarMGpOLKYBxzyjwtQWN82p8U9f7KlTihy++VXVbV0aVBvn78LHFF/RvbwH3v2TvDeGFndAodszrLgCQZAXtW9D8KEUKUqS/eNG/MC4zOpMUfg96Lli2JeqPEp4nIRwdhsvNV0FbIl2yV/lnwk+9QXQV5KaoVrqUPKrlhjjDyUsK9FrvMBV5MLKXLrNBDbtU71icJJ+veFRiUFpI+PGHoouWKKO5aTNoKcaKdqPUUUz2Aej6qbUFVEIKHhs7BoeOoMIUovdD3pAuzQkM1fTLTAWRvH2n48jya601JPPWkXPtYFtXoXM+wN20tvGfFoYE3aXRy0Zu26+8TRWJ+9EuOEAZbb4QUDltStTo8l82hxwyJlYNd9YiLvuTO51l3nsWJQylmbRrfrzuYP86emR/Ls08AxWS+05/C43utePEz54Dvva+zmfApBAO1JA51e3XjRmPHvwsc/k0hwV5Er75jqsA3vcN7lMDQmqU0Ge49saOqQA7+sCHKPzDUloKO6uHeDC3hvjakzqBzCsKOOA6+V0d7o+J+q4keyJvRA47Tzm0GROhVF86V9jnmL0RM0Q1mv9d396hB9v4AyUrdCbPGTHok+7bb/WLZSNZbxy4/LLwNjLYj5YO5+aEsRUhnITTBlryguBstmPZXbMtHkW2B73vZ3oJ1phpFw7XVs42pVstHCvvNzRblTU6wcHYOZEUZHiCJrIMgoXJf8up2I6PYa1m4QeYsOnZ0RgZBA7mnL8mlmHhDDL5ch7x4j8vrMtYZJgSTo0OnUgXhQT7xopW/44f8gwmgpz1xjdvuIZK/4veTu2rDua3p7XVijoo1LHRZdI8f4XSyO+rvCtCioISVSbQCqz8F7BCKiiKhkWcYjACf5dGEH6/pY5aeayi66Uu8iu0V/5dAoNmQ7JifJQRGUCMHbzNdfWUR77zE7L+bBhyfvWchCzSpr11Ignqi00XBZ3dsH97V6WyzJDUMq/xE0V/7uinTnc4miRvsCrfYJeL2V/EcmMX/pg1llB5l0hqGWhHJGcC3vr80zdgUCjRyHGtQOCxGgf4zd+90KCt9mw+pd+tOCVtPEYB0cKp64DOSkEQRodrrerejkOTiP1DGY/vkgiqw6PipsTzvIz1okW2rcTH2eTAAtC6xDWU4rsS1eTzOlyauXGynXNs2XiNO4pf6rdnqib8mfzBSNNjAMsNhaMe9/zT8vVg1KuvHPBMpRikd8I8Fqhhjh4l6/ZB2NXUXDhSOwGs3bf0dciJxZE1c+Hr8EYB+quRBTfqrGcWXrNUSvPVcbnkQDSHm7ZZKChtnwyQxIr2YJFaM6lZqiG9gtU3geBdAVF/pLvdPIqNd/MQF83cZbFs0blHF/1ZDvgnPlILZjYl84MDV+A5Wf0VUkCHv+/n+8hWCl5rN2SNTOx3kh9BtaE664MpcYuTHQ0oPYq1Jith2F8/XDMHedDT/FDHYOzzoFoQXClMFp/ac119NjmPVINxRfvgQf7TRrs7RWb9bQ0VEt+TMTQXBvxyazvjgqi1YZWgsSYCqEi9tOeTAuEJZ1KFGvqrfm6pCiJeK7rCtnMUSJE4DpurEOx5Y53RP//1xGtmu+DTRChqu7tvUwBAn7V4oyrLo1ONvRErMtjkXz/hu/BuyFXKlcCi8W0XozIlV2/BwmtVp4vI7wNVxlbpfjlo3BZZ6LrWnSA+V4XBRon6Ww5RygxbXvxsMcNTaq8spnC6sS9EU5mAEytNvQ4RoHaljxAeyO7+239wXRQKRdCNkNd5qfGTKUzGp3jShKvWmOXoS8kS8xsQX8SDXnp2LNMEr2ZrNP7UaRaV5ykUNr5kCuYUdIJzHUlN88hAd1ucHRprt8cozYu0Kzizd9kl/GQ2kvT2AHy6TlT2TicKDZjyv9q6rvcEQ1wsysgfCZUg+C9F1yz/Gqu+BXHfAzVUCLOstQq8b50VYgkN18EjVxgWhy/gTqVFiMMVy1ntlqmqced/4T32zk/HBu3DvrbCGnPKMPUYsOOT9+hCdbw==
Variant 0
DifficultyLevel
683
Question
Brett has three 6-litre cans of paint.
He divides the paint up equally between his 24 art students.
How much paint will each student receive?
Write your answer as a decimal.
Worked Solution
|
|
Total paint |
= 3 × 6 |
|
= 18 litres |
|
|
∴ Paint per student |
= 2418 |
|
= 43 |
|
= 0.75 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Brett has three 6-litre cans of paint.
He divides the paint up equally between his 24 art students.
How much paint will each student receive?
Write your answer as a decimal. |
workedSolution |
| | |
| ----------- | ------------ |
| Total paint | \= 3 × 6 |
| | \= 18 litres |
| | |
| ------------------------------ | ------------------------------------- |
| $\therefore$ Paint per student | \= $\dfrac{18}{24}$ |
| | \= $\dfrac{3}{4}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 0.75 | |
U2FsdGVkX19/6axYQKMQyPwsHWsKSuISbcZ2qqN3Cm1v9dBNCHZbN12kTZaDbJQZL4SekUuV7lWG9vIsJe5QBkPbPPBDK7IrNOWYT/inhcd4dKjwNy8a2yOpGd54EGFqM+gTsfV7r2AVW+G8PPG+dzqbojV0dRHEbtSKt2y5mKpowff8RN+eDJoQqJ7nZzIUtjrN/A6fr85FC8Kw6NeVazb4al7h/BgHZGgYdRcqhnJyKcvOsrhePdmMDFz8o/qXwJpdwPFhFZVpz5OOCWQa+NlmKoQFmgvkDMWA75RZIdINS4TDMa8r/N21wgXIatIkvOWU9H5K7Eo0W7O1PDSiI6pFLDABlex4LKtdIwgMPqZPGjKLFOLVhA1/DyywNrgDJFhaFr3p8LQRPxZiUwlWXSVJCCkxo5Zr/8NVqpFWmo6UoCPQ/fLwc8aQSKbWYSuMJwpwmvoe6Y8q3lUhbnSx0Vxoadgyeznj68gkP0vZs91kinZ6CgKJuA0syUxmLH7EHeAAk/H48EqeS7fpB0rxyDpb9EFb0v8lurhw2/34pcWkNHZ3bOcIsvQ1S4K5IS0Qgq5RMMzPEC5Kde+Hn5f+Gzo2eRpCM0lJEScxRqOMgmo00qFefmxMT7qAoj1ciIzM1Jdrz2HaolfpINqvsu3SG0wcG0ruOV/Z6GTQGSmDtpfKyb0B6vZw4O2Jz5scfNRKtWTUbnh6XYFeCrcN4OEavkNPJNUdii2fU3HRmonhLNEc8vi/gbkZOgwUirEgGegXM49EuwS8sYzkz1gMBrkK1oKOemgb7s0Dn5Qiv1DXVB2IjjYhNbycuj4gBqNPwDdkkDhBHfxSLeK1OdLi1+4ngR8UUC8UrIMKfxgDDdaRHK1gV9eQ0ab8zuUs86gtW/HiJqRwfSPfQrPQv31DZZOtixDS6FQzIdwDaYa8gMn1a/3NPU5UOTIYsgU/c+TTPx3O+iCTNTOLM1mvuaKKbWzfvd4y5Nt0r556EeW2Gnn9FRhVBT8o5vpPNbIbE5/hHWkB/i3oAY0qKmzDWVU/bnbXCvvhPG8WuqxkTGLmvQYeyxld0v8Bxpg4vYM4ybBpZjtSQc7q/95b94QFr8l+/S8Fs8Ey+e+b/uMpJeYw0d68R1k0ZiCZLJctHy81MSwjZKZrRzoBA1x9QP7PlF/zqH/rzx8QLWVNDYhlPhEbyhQ7HfJkIdl5llEZkCHYwJkOLOfPFCG5XecYknxCBe1LphKdypWPLVUMYWc3FmVH1FovhxcC3HPDN+jblJQbsOWeAIbOM0Ue3dgFsw46XOKve3bYHOFdDjJRIh8tSzYBl+FdBkEGxuBkAhdMl572gLr2OdBfUhXGoONA8Nt9+6PXARhklHEixR5baOTiu38SeNJVF4hdEism6rsjgrUSUIKFtHyDtIWeuMKMSz2qP7ONEblQKeG6OodTVJLQsJ4RTxHLpVb4wSdF1a+WTnqjkNrV9s44tlfC3ijcUkpgX7JLhshd+ZE78UK74gzEA6Zqh7gmMswygCDbluAgW93eRY3zyEWWV5Zz0QPqbECvE4MG3kviRQIELOfs09I5BVHIcyXBLiks2LbCf/MJhXFK0bgZTZnuWcJHAIXNHqFR5mHhaoVZd3DsEunnftcAJEvhI6TB5AaM5FRFrIRmWSqM5rskLL1mbkBZMbwnSBcTfWVu29iWoMzzRF74aTeTrd9Dw12ZFiVoW6bzDdyCUSr+VeaslzXd12u2gCtZM02lRBf5jYkS/OLkME4E+B6arPCvpJH4Bne9opAyY8QNHkrOw+CokwZ3p6sDyfdvFPGz2rgdgaq5Tz/AH2tGjDti6MWuq2nZ+Q31y+VU5R9zcX5/L5qpFlQ0PqfNRrvgQ2RrYCKqWnWFvkiuKQlmvVlz0lYguCDXtEZpM1yiPmnysN5rnhJvPrQG3CpRZbt/aoqQwUChco1AiJfdbnJ9tLrwAFf2CHUSHDm2zqSeYchkTqjsR6ZQAltfIv9r71tFOfndvEbRxqgboRpLoXrLYRpr1kjCnCH1i9cQe+/hoqEdSIQxk/WVCkX7lx2sAlYlivwSL9qPK9xMMLsHkFU+1nCLfVl/OMuLQ2DS09xmfokFeq/yHSTi6qTy6UhrND+7yx9BaPVcVXgQhHWfHgUf8RZeHQh0rcRxsFqWnOyb8AYNAwkewKkfuRhNd8vSWWgRON7LCAWS6TindRgKhzVwKDlglqFjENEjHgYfPkDq3Dp63tIbOmIqvmAvbpImpSpaGAmiY4x1aniA/rhG5rvc7JIwV+4+Pg3yDOfOvTGCIRkPNrbtKHw6WdHGczhh8cE3fSMHR0rXayMf3W9vMI73BfUPHjfEHf8psvcD7YoJs5YWeDdxSho3k7pmc5WQTYq2jINdV2TzVg1tWIUNjBFvZAz7g1vgo6awikEaSG0YlHleeQDjch6iH34+e25MJ5CtO6uWEi/as/c/wXV8mMzjeWjcQnb1Y02zUYe8nHW+BaT+l3iKFx+EnY+Zv4jcyqBM+NhkVUaiqP18eswAvo5qA0ohN9f0g1lyNYZxAz/RJUZcBcHp1BIoX4gKrQ1QgYVAMFenLz2DJ1ap1zBlVHWih1xD+kB9Rqm1tWokObVbqICe2QNZ6Ppv6l6iDeq5B67x4nplIjFHCuhGEJ8AQxsjyFUspR5Rgid9RLFXNxCfG36TDcTJL2stAc6fI+PMM7TlE8hzrbDtEoNcn9LwVVIVgiPwG504U/pcoiVwgrIt+FHIBf2+OFQ7CH0ZbAfgiPF7sgkJ4retjnQ7fjsAR1MSKQg48TuitVls6VE227yOkOEGuEpBcs0R0v1C9X62pC9W9gYkj3vP37GHjM8YZRo+cBgwXb8N5h1t04xADPxv7QHyoReGxjQntZF8rZTiTT0zM8RHsKSSn4lEFiZbS9GGe9dBPo691Vjz0Cqy9S/k1kL38vCpcYckkEVge7NydxV7+Z3ihYB9LTTHv6VUc9eKMQYm8p4E7iztaGliZrRAngNfN9jKTk1v+9571kg76QvRxATtyxepgw1E1uN/75KG8F8u7NT1vPg/JgE93OScT9vMJTmLQMDRQ217T80CqRfAjiCEPh/MpzQGFOyriOBbkhGUYbI0JztcNshJ0/SEONYOfysssp0vYpG5o9pn/9FV6sCspIsTia27Pi9ujvhrT7XSVQrd24P/wAYeLgz5wNYcBdVrAOLZkouA1ZswVo3tFLHMBaPOTyvhu/M5Af/T+1eLm6BAKApRSTC0f/wtCou5e2LEGAp7GAmKhB++x1P6SBDdaDoXUhJdckmAZVhErCMdunmeX1J7iRzxwGq71aUzNPAHyQ/HRtEIWOAayIo2qWt02UYjDHE2uHtvk56JA+fM9hfTtzQfIibU8MEle1kRyPjkfe4+i6L/BncMf1NFt3464dWb+gcmvrvw3mIMOObXmeaRfSju0J1b6L6eivsKH2NWNS5JUeGEWB4KvKK2sJZhcycDdNZAPm5O9zLHmmFgo/X1PBQr6yp+FkzBUncGCmLhA87gx5YQtwQAREbRN09QPDQ74juN3tdrx+PkwUtVkubajznYZ7K4pfzuBk1+CuzZrm0VCiCMMNs9SXQhiWCFkX/9YVu1nxZIc2wmfMJ9ksmhgZPbkPsCkrcxYNAUJK48ktb3lqTCq2mNY7MINqLR1n6Mxc8UdiDs8eteYa1xEpAl+Am3yqKeVrTbSJXT7dlhUD7+thhsdPLV/n0ZNW6eGws7vs87vCQTIG8Nh3oAEmV0+BDm7NcFCgZYPY956vvO4e+7usv1LZtwm8+MZFekXDDkzblB44wzYza3Vv1Mu6kNQ5EnA7umYIGzzz/21Mrx/owQHrPfl5xY42MX/WvZmv6ywzSFksL1zGdvl8Jiz3gg20SrLrhIETAoN5X8rTrVAKd/iw9Vvp9tRr9bErE0X20zz9f4qSQbZW6mThaRmIY0uuHXuI2e0Bcm1wm3ip/jO0+ivkgtmamBNpOTcnVwKmTieSyrPcZnTEyTFT3Mz5DpltXUCldX92HLo4j+47X3C8lj9/MbXFkPqJBP7bcyXVG/ty0U6ZybyqzJz4HZWs456xXna+L0Ub742U1U4yPRYalNCLRTpp/TMO+KuaB4Qo4haWIzub7mGkhy1ktlEkIIQ98XU8SvrAUJHs24EZ6Wfu5lQsw1fHUw8og0odQSv4QYK40RuJWXd4g7PexNVHGq44SXptH4cYKHQZUeL96NYsVbInIBV3jW7L6Txk57VtCNr7EU+FulelJFLRGirA0Ten1cuy5Uz1t/iY6dSltjvDgTV6yKJ2P8c8oJNqs5xg8M4lBOKHh5Eit3LaYR8AQO9sMtzrGM5qntkPJx7gzgiydfa3wpNHGkB/ZaZLTw2P5ng+TuRwck2UrrNvXMy2/dcQmblTqHnOXQGz6kOuOelZ0OEzZ5EWhCKFiiozlKN3BMkLxBGw3JnwM4cwq1laF0PDhioJkGNeszuDo97xLR4Yv/dcPcWpS+b0DNQgqOwIVQ2EhfI5DWzmrHWL6cxZtspbe5MFhCBvYYcc2+yU/BtO6gqr+HqP5qbOv8ZVOLXrQkhWMgMyyBzNmHrEb96yJcDzV5h44SBq26wMU3MF7RFPZMSyD4uO7xtSFrlctcZ+KiJ7YPvu9iuS3Ybx3Ioiy+OGZHqK1/aapFmjOxu5viHdcm2DbmNyWSvKxCxeXJGfKVcyuGzPfxgnO+j+AXhHNxq90E4k6NICYz/eQuNz/0+SH17NSE1XXbTIacq8dSXa9vDLUphAnmZwUuqM0VVdtnssXR+73Bgx2edi8g14s3JNHESseIDKbMsSxV4E4+aMIgCqBWOJ4aufMo0vTbpW3M52XyQHlXTXt9AXECl0MSPnE0BT/rH2qRNVYWlOTqOZhd6SI0PF86RYp6qsHqqMhbUKewiKn2pPzO+VqjDSNdLwFP0IkZWBkW66yLmN5hlfP1sEcK/WiY4SuEH1NXatbAM3QT0sx/sp9FTF4Z1q2gP8HP4tpiWej1ez9IglvDb9KdLi0/ElB/xUgMeLl7iRAD6xSn86EdRgrTsecGblYU6tiLPkqZ2MWHoHI6tWEucLhiM8a8twPRNyisKR2A5OoL6iKfW/WWUx6aWyyaSWIeUbuZuHMP0gvd0PjHb1Q0Uop4gl7kbDjTp6YMh9l1mVniRj6philU1IrrwxgIyg2DJgdYewynBr3acf9SWsEMGYbDVahbp0zJooan58Lii9bwAku5OqhLgVCfYkxnwSSr5LN3QBonIJPDjM67bnKbxnv1Q4KJ8VWpWKkcT6wSgDSZslycKr94NgTsnXf0mrmU2VKfHw420ZXWwjtCe3ZG5YhtpHvMtUHWnxKS+OUA0FybVFpoQnqoYM/omE62WYmln/c4D0X0+hFhDiPxHR+YQefy5rr63IHIx7FjCEi0smIOZHAlPFGHQHjVr4zp72aS2oz/qsBUK0uEZtPY7aYli3SskQVwCEe7yTqa/K18dYjp1sEjhgY4Fd1dUbOc9Ok9ktVLyc6ry5TIjNUSLLhleAvv0ZOX/Kn57gU1bwherLhNvsK/Nx8poVG5EHc2nI8WeU+UAi5GN8jeizC9l/DCCOLM1iCvMFE8pRbhNJ5N1asKyUSH2LiiTrmTsp1K7zelo3QBySqGEldPki2xTjb4wJYaPEi5oOQPvQsuywJoGm5DnhaCfxhKx24WrUethY/TVwYWQZZa9Fq57JtJY2oggXNFa5hLsn2T315fYT50kL5ExnxBisoE8JwnC7h7TYHzsJYeJ8o4eHyqe4nTyUdPg8eF89S4qa8Ahw30IoHzqQrSLqVELlw85Q1oSuamqFcfC0Bfe/fM+6Jo3iRsWV9YsfmEHooQLlbuvsAOF5XvQIUsATVCrAonecBopmle/cRarELBttY8bdNXWlc+ShNZqBB8yRdLxy1DtRlKD+99KxVuHylWJsE2nROWopPKWJsSFPFWSY38MzyqWgRz6eSpDeqJHqJph+kT4ZUL3muHBRrb0+az88viEGWZr3bZxovfOhkR68BhfzyFwBSNODf5CdlLxWEgi73+j0z8DfGx5+XKVMCBrVo+hcwAPNujZoa0X9wHoq5+mdjfNfySyM4oPIi10Ypi6l87e6JCtVJY87x7NSy/eZcmq07PLwjTptFpv4T2gMX1mxSozz15K6Qs7Utwsxq8nnUSfGVafFaIqu8r8pKdt6QKBzChhAZ5zx53UJbujOpk3J64twfb5SZCXuv7ZoMk53NBiy1NXaRa0Wmsu4MYtF9/ojuKstnTrLs9iK/rCXXaYyGdiF6XrSkNtEzjDYp8sW+U+exjzfstM35F9BXbnEvra7w98trgtHvhY1PG9mI1ZDki9FZf2nwwSKdGkHI2k0M5HrAH/8fHxn0tFa6oCUivZvnnPI98roQYNnN/J2B4WRfb5dWTVryESXD5P3WTslz94VCPJeIMglm4UFZIcmmOdPlt5gANQxDqWrWUYas/3V9rZkWdfMhB6zJw4upi2+99OzBPbYQBYWVf8h36hng=
Variant 1
DifficultyLevel
692
Question
Dimitri has four 8-litre containers of olive oil.
He divides the olive oil equally into 80 bottles.
How much olive oil will each bottle contain?
Write your answer as a decimal.
Worked Solution
|
|
Total olive oil |
= 4 × 8 |
|
= 32 litres |
|
|
∴ Paint per student |
= 8032 |
|
= 52 |
|
= 0.4 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Dimitri has four 8-litre containers of olive oil.
He divides the olive oil equally into 80 bottles.
How much olive oil will each bottle contain?
Write your answer as a decimal. |
workedSolution |
| | |
| --------------- | ------------ |
| Total olive oil | \= 4 × 8 |
| | \= 32 litres |
| | |
| ------------------------------ | ------------------------------------- |
| $\therefore$ Paint per student | \= $\dfrac{32}{80}$ |
| | \= $\dfrac{2}{5}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 0.4 | |
U2FsdGVkX1+UbEb5zWq/GqWUyHD0nqbr2vSEN1PSzYnbi1wfXw+O3xZWuPEgs05oF5BdbXiMHaV1C7HoW0/07b8YLGgM5mO8v1ShbnWQ+ATVWhUdFjCBQ0kH7brKJHtuNKtpDbT4ocx6cJES1fHBdaMXjl9OPqvyxOzwWkix3Lmit6IxA2Zup5x1rjOaff/AHnfVCuOIhXKCpz36KoysoSS9H0hrqlOZW3sQ0CNlIbFI3qLisb6IZ26CeM4ud6A50yIrwKsywEXrsbmY2iSUNjG1YMGdBHtdNjiSkS3ngsm/EFS9Sk50MYWhA1jPv8CMfclFmecmefEkAwxH2cZ5YXdprsS1tPGKU29KWSx/aGSauippq8Bxbl1GN3P13sGlJv0/NS9eGq2WTHWAEgMp/VFnDeawRt40VW5ks6cWyz5fMsTfn8JAx7Xsp8tDnSpdx5R4OT9gsmE17q3eO4gtlUt1lLbLX25kQsLk5mjnPtMsFOrmKCPhB8eS3c1xGy414VLXJxk9QSWHW2SPDZm982dy7gHIcMPzf+t3dtVI9Mze5L5p2vU9mSaKOr1t0vGxPqt/no97mL9gohSDxyhron8DZmsDxWGQSGVPub/lHyoPLqet2JFGrdNHjPItu8girwi2+7F92b1/wABZn8PeGqBLPDVdZs75tXwn2e/3dlplzk5pOtI8rReX6Y04kWQd06MLO4DlCkVrQ82izt/cZe8igU6JB4PLvqXj/J0Mt6p2gLv9njBsQ3FekiyWq06wDsaJc6D2oFuyOdViUw2JAC0yoHoJ2n2dpYeFoK02Zmc40sKf9KueIA0GT0nLmcuuDACMvpognkZnF7rad7gVysfAZ1gHAKVwgvZVvAXypp93Ozq1th3bXuWx6uQhgfJP9a3AdaA3PmojV0unZzcpOaenchQwaEcNtbh6HsxBoch00iUlz96KZrE9eIvBoZNKXRXuEqyZWQ3LQzZuiZ7jJilhqXHMc1T8ziErdIcSMcnaVlnmf2Rt7XWia3FOcqgtXZbSy7wj7F32VjjxzpTGQIai26P92+wyqK8Cq751kF2Uc5BVX3a378Wm7Atx5a7npqiWGVZ/Mh1uOC/NfyCoH531y1d9exQIyKkdlHh8b4FTJUJ+VsJduy5dOPQN4FesU7VD4VibGEx4k95QwTpBZh6IUhuqs9CMgpsybzLyEnyqg8Y/QPW4yjWhqrYuDyyXO0Np8YM76llBkIV1T2Zkb3cGySfjD2PyCxhKGxmVfWh6mUAhWW+unsvljYST1i4Oyz5ayylHWKQyAYSFJMwDay7HplF9Ob4ohIS8rnwVlsj2tK7bRgdz+m5U7WyJsXKHL0S+2Nv+QxhUijagcz+IAFNPuxvBBLtVwfzOPpkK+k+sQdKb06bReLGfUKTlAz7Ws7WD/OpLK6OQka1eJiqI6EqdyiRxsVAxOlIOcFb3lOumdeluWcpmjhzxFzRHZb6Od2dnDUk8VtqKlsNXeQs8HdnS4qrl+Lafy5FHbtwO6x4W6v71Ku6qxz0o5S3tWlOOllDSSuWLQWdExrIBMVAPzRYQLyiGxZ4BLDWx6dKQplsL9AtUhrc1IeKls+KTHK/nHNjkPay9QBxUgiAgf8xrNE1frItBCThWMSPIGJmpFnRo+C4wle0do/OIhtfyXngt6Gt5o9EvjKYt/otpXlTVB8BkNmFIwzmZpce4UfNo/cKKGKHSMiPJgzzWIcjxN16Al6AJ4dLygG19fH78EVYXEiMwiik/LdioWEqdjl3tmNoUcJN+bIMYx+JRyVdkPXyOriwMWPP/fx3mt5qlggE24nBoZhe2tiC6n98oy5Fh+U+Qb9rghIOgbCdHS3QUFiiJEl4r/EYUs/82T0kjJg9xE30EoeNwMBfdLOrqSuCBzdXXeddPUACQc9lutsJnqWUkEtXzSO/ewEGxq2cDafTgMTOETpdzJrht19rXIULDuYGTPw6ct7iLT4l+9EKAKCYycnEXNX3l4ihgN2jYzu2OoAJHu9u1c1DgC5DeaxVV59WDYyR1isQyBogLZH59PcWPmMPEZgmiQcLlo7zmHrs3fgX7QBdQssuNruW74INAcpFf69M3NNPjYxFFwZTpePbLm6dFr0F8wU2BCFEvInCdAEALGgZWUGlmivP7QyjKtvavQC3wtvY45ixF79hhogWiGmcRq5WG3KKjRV9BPppscNBPS7crcDXPFx6lWNz7yV6LOQjLk4z1yyMLc2kdS36a5mcrmuvTRj4ODCYhuA0yLAo7r1bz4d/JkpIYggFc+8s7rJmaLv6AduMJ5LnzkY/BEaWku+BMhW0EcLrVNK8BhcZg0O8/iQPR57hO7LWbO6GjBbvWG5k+dW51Lh9UpKzXJiQIxZzy7CCaUK9b2Vis4y+UC4xTtLL0wWlA82aIKXKRzN8lKKZuyoK9DuFRXdWyHzzOCC/TBP0TKhohhxr468jyMZu/6bXudVScnRi7Z2Z3QdIIUkHJPc4NjzQsNkQejQNLvjQUdQ9cacYN2pB3kduiYPldNWXz6pYRVQZaottMqedBaSQtmQPFlB8166zGb8vW+/zvLBadE5svc00vi7WvMH3sMBAymed9MZDkLh+dWSeiJIc1zOpFe19wpHvo7DEQUF7eFqAoU9UKq4eILAVWRFBF1YbA1nofRwpal5M58m31ScTuarQMBGzvXJKqw+ns8zsH/ZKnxt1hOfwfffz/PLVXQCOzS5n8XvXflr18nHI3JjoVRJRunJ2BfazGYjupHP96pGyQSol/aEBmH2tnyrR8li0V/IOibj2Opw+uOMogzquP7pJU7YDWwq4f59s379BKCODlY+PsTUR6WWUkdyVHxxF7kjjAirRXrbwUXfikiM3U5JkgY3feuoDqCmhX64krWc3doWSgRSCBCsvbTLBlueDKIxhISN9hXghRkZx664PL7nPR0jZA98noc/LtUUeIYgdZ21E4GetQZxjKoDJ9XAe0TK76MZftQjFdk763ywgvWz9W8nfiiUEZWlyMnf64Rrq7X/kefypO6D0RRok48VNQzLyAoP3v41Z8FERKttofnkA11rUyaDFnCca7znp9uuAcb7N0YTQE7yLr0hJk/6iFYNWi7L9ZOvVkKSKN6i4JorrQO8ti3SM14p4D0g2ttnq5ieRtoIfN8O1JGD4y09BAeslYk3HuAHZ/WQyW7/Ft9GVdbUS/sxWoQOF02UICIuUdV4PKp7fk6B8U/4Fr9Be8K33fLHv6MYyBxAx7JgGP+70wSGQEY7u/sgIc2zEKEBlw136vr7M14Dcf7xOx7m/cKLrQN0lfD6qcHt9k7S396mDYYlrMPsrvT1crAsTHdSwkNGK2IJ/3Ihte3XIQ//VYgUVlNKbRp09lXrvcycfm39lx7+DqKVoEfvhkUDl0yCYW+08lw5BeG4F3c81LHQpYrvaG10tQ0cl7i/pkTzhEso83xl9bSeBl7Co0fnOZF2/7ToKlO77ccyr9w3aJZkzmRIFFC/VPAJhw//3UKp5Ht+qlqSBRjMx+SQoFzXiSW4xPAP7aIkSIlC4wiLIlT80ieZWqikg8X9G5eE4+s09wiZEEFh+NZj60e21RKp8xdqkgunFYy2cfCD7vdQSgiRy3fS9Xd+h6BCjghKpLcAUt4QRECAnA9eBziNqKH1hRM4wubH9C8kKx6QoZa/K2z5sHdzUymBY+6akN0hRXapy2Uj0fW9HrVudhaBtby/9FZZbfEAIw6NZ33JJJd4ptuE/TBfcTXIrhgx3DpwBJjFlqH59LrkDVU6oR3Z9WjX9Fbt2Gr1jcy0nfzhUlhn+MGzvSq+ycr5ewk6KlgWm8gSyauiTCUkFNNbmAw2bY7QLocYEph927o8AcrEGS/+4FVtWW+b3Uw+mDW02Hv1ZjA+kMYdbqeK4gMH0dmmIBEsqyf079gw+L/Tc1oJitZPnnoSQKMdA80WrQa+mylrFHedUjkX9//ZDhvzNvJvLmua4gCgme53LxwpBl15zTTE/XKpNOACouSTJCv3Ddbc7xDRmwucyrSv1GtDoAtSuYWsb7x8fy+764riSxsUcnR0+JEAMXRThydsReKejl7GSFaHuFPPeQfeoQqvWOFw77U3T3SoLV7ejGDE3pf9ZLnoeNT3bM5ZUNR2qdj+y+PqBfHO1LkaG4Tlq1QumsGH0OhxQQ1Q7FEn1NfXaG9uXvtGkNKtXhszPpwnui5CN8vSti4TRFmZCil06n9OKnCJu4IAfkMpSviuMEDJHFgTDYb8+RLQ5VuL+GD2dOYOvHFlt8nsYclGMqplz2lPNAytQQgz1N8KsMNdHMoLUq8i5hNEhGUzlAAFKU3pitgPijY2PdCjh44D5Wlq22e0AokdhhjrQI/4HSxtYag4sgK4OqchZY/Nkoc+/BonwLzAFu7zJ60mBL1/w7/ZqLbZVwfQwjlAtm87ffXK1cU4Mmt/yxXSw9oxf0rB1G6Z4kYJyjd/iZl7eDkiqYFaaMQS7RjMiBO/eL9JyMzps4RUZypbes7Gskz/IeXuDYutye+Rt3ZBp5mlLMPpdVYjZdBoMt4Ze7HEwKFjc4kSu+bd/qrwfzWcBReZgXF+UEl/q4+tv3YNOTWPmlY6A7ZExlPBY0ee9en2SxwaASM/abkWrfkU1Di8WTcFAmd+tU33JxxHjh8Wd02Ey+OEK2OHlak39vBWp/f31AyTCaZY8+iuPJPs8DAy1h88olguQJ1DYaR/19syWvx0vchzv5zjhQp2HjiH/7Hpo3a6JuD3PFbJdNzNn9NEmKotgTyJ1KLN2jMkuEbCgBnHr9zDV7NgiuTrmNEVoQa1dh5jrcLTxYlsbLn8EOgeSVVGDUDgUggvZYPEDFQDeNd4q750KauIb6TqHvsC97JUnvqhOhPjdw8PgP3gZPi9ZHzpAzuZ7wDm7i0ujDL5LE1BMudz5ShP3HtBtEO2pL7EzW4868i14t03VU0SYL7SawEXy3X1RpdJ8FFhlgFHRQTNNfnI61MqmaZz4nhEa0/7qLnVoGJ39yCMhfEmOAJaRHkqqsDzqCMiUbRIqOTJMboa43E6I617XUhrjO/0gsWTgvsW+UCV7wfe+dVlsuK3vXjo8ybKxnA81i+savN1XdphYcazcAGzCJH4qQHRIf+nJZJq176YVBQcizFf9tn5mIJFZZf8ay1l87DB6nwQJyA8VXcIoozdM+jJ87FQOC5zD8x3E2rU/KizZD3NIRX4iQXTZNHLqcwvXnsXEw4iT22dHipeSiR+jyBl89yf4sUUNwJSmWaHa0u9YVuwSf/fFBqeL4AFjupvdPqa++8CwlowmU4Fjd5pFwn4dtn1EMGfsZ+WJtOxU8aGSUBGtDKRUvY7eRCX1mBrbx/sjw6JVmsr34/GfXGWGoE46Ssn4U1zUOt+UcCDrVNMao9HPTcwfVST83SYK1QQbh0fjpoTjOmtyJmBtaSRXWUeSncEtcX4dzhslEBn/tv8ukuAUhpMESpeUdxBpxp+PRMnkRB+aX4yd8wXXD2iqIjoSfqfCDxffw31mmF4NIrztFKCqv4CKSSSXt1lUWN+4erz7XPXfj/V+oW/XYgpk3f5P5Oh566h/VuCRasjf/TbweqL79Z2e+y2j8cLoqkBM7ZJzCNjeiIlXUBmSmPHZdgiLbU0gTUOvGxK6E3Svep3Lsz9g55b1HAdfxJUd2dfYx/PkkaIK/TxjCrfP+p+cuy3kFgTWiQLGQoxQqMQnr1B+wnwcTB/PtN0AcUYcj4pXUWtP3DG/eaAEVhWmig+FCrOEiAMguhx4OphfqgXS9W+auFN1Er5WDx/i+t7PIM9r3eygrePPvu/eNjOQSPIM5pxxrk40DRtlfkxYCDHVQ2cXQg3tXgyLGvvy79CZys88bZK4ETnDgkXz/UQT2kHObObEph8SRAaiNY5iMge64NDY8vLJv5WZ2r0EG9sRHRsnzSdebw0iS54B2L6CnKlgK95vWv1HP9xZt17mcs8IfQUHgLudDNV3yF9LgyLZK8nwrp9Rfb9jZQtLpzWfsVOzgzs2gSPlACocQ0GQ+M8S8wF1wSr1ZEsCzMQG91j8w1f9aPYo0XjIsO36TNsEwQIKeLSyKgrTnxeHIKnrGxkCxIZgqCJJKKuTeO0nAoHspIqzfscXTz2Fezzkhc/59+lk0NM4Gb3YW5faRCX8ao5yynyW9G4XJ7R2XSu6u6+1fR9tUQL39GtCAQXMpWQ8/hlmlfhCbvuLH0c73FG5tDP1/8qSRd/S2k3Jnt297oVeEafi8t7NRcslxXLkFBBfsNNMz5FPQ5s4AvtIpe0Zg95J1EmcDzigfK7ZWDi8VbA2d+CDB0kbt0+Re63Evp5wcJexvwXPJm12yddUoc3BZwYuOrnNUtCO6n+B03FpsvDfffX5nVFtlN9/K8zCQtXrPEFBj9Lo6J17SPReVPz3RcAa2Pqu5J18ZZ7M2lcbuPoJtMswFkJ5ONukzmfH5E0DcR7kzImGAcTc+GNsxGgP1CZNwPlQ9NC5dW+8lbai079ldTq3GWDGDcFRKZT73xLwjTPXni5tduoP2PkCL4n4hnHgw86DbxEDXknrGgtITUKgWlnuEX2U=
Variant 2
DifficultyLevel
694
Question
Daniel has eight 7-kilogram boxes of lobster meat.
He divides the lobster meat equally amongst his 64 work colleagues.
How many kilograms of lobster meat will each work colleague receive?
Write your answer as a decimal.
Worked Solution
|
|
Lobster meat |
= 8 × 7 |
|
= 56 kilograms |
|
|
∴ Lobster per work colleague |
= 6456 |
|
= 87 |
|
= 0.875 kilograms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Daniel has eight 7-kilogram boxes of lobster meat.
He divides the lobster meat equally amongst his 64 work colleagues.
How many kilograms of lobster meat will each work colleague receive?
Write your answer as a decimal. |
workedSolution |
| | |
| -------------- | --------------- |
| Lobster meat | \= 8 × 7 |
| | \= 56 kilograms |
| | |
| --------------------------------------- | ------------------------------------- |
| $\therefore$ Lobster per work colleague | \= $\dfrac{56}{64}$ |
| | \= $\dfrac{7}{8}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 0.875 | |
U2FsdGVkX19jnm/OlcFaeARBJ3XugIbVL/RB36j5zgIBMPRTE4Q3XdANh9/xHOxBQehv0rAR+fe96F0M3mAK+t7vTAxwMLASy0WXeLEmWqWxGL8uOfwvmFLTTNn0khzvog1KHYRH3P/NamSJ9KjTCMDE8MKc2XJQxBCSNmZvYDihJeCBykRWcCG7HiiqsaiUDixnIlRd2dPtKLsUsGQzAMkKU5X4i/5hLXT6qASJ6xvJ50eQVpx8KGp8Az8OZgO3QROuj/snd4+NusNHgmSNgifFr9WVbI5mKP9TtA/fQhu1jiemBVyRRb7PY2eCPs4lVZ37xQ5jcEQ7r5cjMIqCnjxQIgIcLp9f4hC+nrPhpyzSCk8zvW1QOtJElKhcPzBWcSNCCvPAZF66Fk2w/9HG2huyTVx5cVfjdZNm5QkHfm8/pU99VEY7JUK8tzvwRlCSrSx6LVzmiJdr6k+bP09B3kKraxciW2sI6fF2t7hZzZiD0MrWUCbbByWfAL+ITrDdK4bDfpUy15PHH34PbF70gWlTWcPqYlXwR+EDU6k9lttkrCili6ZBRTvWR14chq/q0jJU88XsKPpmWVBpgobqhr8sIAxKzT0dz4qdYph7n2wN1SR6bI5B7j1J9iq+79hs7ZX+ZdXxosrogaBHTnIyz+1nvdgFh0GRQQwEMmt2NNWULquAdTBMPnh45WunvEZSRI7sPw90+Jwx++QyQwekAW5ATl05CBZnmxRRuoucKSSbOU1CwuCFRWDqXueGohcrr3wUoeE4aJZDp5/Mcbl6frZroDj3LFd8Uu7pDEe7mZGQOPeRgcv8NTrPRDJFvE3aaIdBAyVr48Cb05FXyQhD2DhQu0fjiDbcbD+yS3+bGwadJSPG8NviREiuaDBtEPLbXqu2ZSXG4J2NXp+NfBi8kSbwUsfY+CgyLv85TR9UWWCch40cFY9rx3evhklG28MOf+tQmuHT6Cy/rUjvjJF75i964icgUkwbxHymhssmc2yVlygNnHur1EOjX0eiafcpIwjHYbwN8r3KkgR6gl61Ws3aYuHoKlKNpt3cojB6RAYcdxsYUcB5DkMqfIxA0t6ZJirg0wvqFaVr1auCWABN+7xnUoCiUYKweAWXc8B52b201L6gP9a9DTzpz09X24MfX/s83f6s9qyuN/UU80SahJmWmjO+hYEGJckTg3q++Wnf0tQwlF96kNrlPEPPS4x2HLdZURZhWVyWE1yxpgcXB1d396sUEwNpbb+0RtWfa2qxSy/d9l2meFMTNfzzmtSwJ7+sZdMH1UZqVAR2VrGG4WpNZA4kVWQVmRpg1jpkpjn+eDYy8yDIZvchg0sx5pK4v/ZkmZVaefQcBSil0lsNjhgdDu7I8CdILD/niKSqS844BW/OvHeKxyrHYBchAyBAcQf9MLdf0XRSfglgArpv5MlHf6yYL/ZA5YfhaokzK4kBrYvqaH35IbRLpmyt+f3K7TridTxPbQ2EkSOZj+/Vjd/J860fMBBGyQfhCNYsK6sqsjYYhlzm51SoejneSP3D1ETN1wFaQNM6SCS9LFQcVSe3mU9p8RqlzLtUh9hof1POVWiHSbU1+tNTPCBA2nf1tk8chMZlYO6GWsOu87j76xatG+4a6uM+vqK5Q+9eh6Gf+crMmMWdQcJ+JdBMRtSTeUIG0wByhd3OZrQFDfssZ/6oz5uyPOPoF05HVVeVfHqpPM9Tt4gDMFhqU8XCTyxlLHoiE/T2c7GxF6OLdViBih8eVKKLQYASvF4V4l/0eEGF/QWe5EVU5dlfpMiTi06dShX5Zth8Kf5cvUGODoCFCiYapuGg5Nbg5Q21jddfFZU1H0U6l4x93P+97fjcE5FiDd10zi5vaccHPsjwit3TjMXTr8IE7HGhq5tkvb9dvRYgpPVk5Vm4MaqGv6O09CtMOyYRk9/MvVmhOgIXtsZXYFh7NScptiqblu4KR1ApgkmJQ0mgV4GwpZMLfcSRPkvSu9DGKYvGLfPn6+w/2z09cQWn2EpKTB8H/FGLbs4d6DMEDxdAiHrXA4g7n1coMMOX2Lrt5zq7Yuauh5uFjnTrbEvl0yBfSGXcY4y2G4fI0EzIEKTlv1karamhX/2AoMYi0coXef4U9WF7ARrM7WbVDFftRW86iTGNCtiRQHEncYt95nww5upyQn8NozkbAbHCuRqH8bMdHoDew2JJMNtDXIoighcieYiz6jy+GvGcNyaB4uoIqrQg71Q+QkghPsEHIxXk33qnQMf0bsgeeAWI1MpqFoQUGnCdNSjRi9R2CWpe1z+HPJFLxkqYDc6Az1MGb+ggMQBoNTTjrlMk1683NVzXEIFAW/kv+nsZfFeQn7U47xTxJFTpGc+ZyhUA+x3kU0l3raNoGzSWLSmEvotDLpGery9ixDoX7EZzvK6aGyzfkHrqWObMHIzyVVtz5kmA/ir4+o+s7x+p3M6FuIlxqDQUZB4mbigJ/JIRNH1TNTrQumLklEcXgulyUprHtsCENDUL8YR2KybaW73EIGVorLrklnq4qtPSfqBReLP2+0BKdBgCGlgkhyN9TUzZUruI0yFG+sQdcfBeUikq14te1rpl+NNZIquHI1L2dB7oaOaUMbbfyaW3g/Xl0oWP/5OcrPPZPuS5GPgeXPv+s/H33lgQFwWJ9lxfR9G1H0USmV8jnmTRjotB04129hB87qQ1dOjioW0RNtA15/5fMAtpOfz9FYcrsAvb5ZgJ08aD/djrImSH5xB+S5Oue0P0Ugs5HlmPPO4wfL7hawtIvlrBxsnvBXnznSm39DR9uuB33ERW24Bt12d7trcTiIrdISGwuEf0ev+plSXe88b39GC32+oln2oTSfPTNQL+atEQNn8QPW97goE/bKdQ3b0G7+LbQc6w7QtSW5ZAFPJ2DzgLhRvnQo7YVpjVjEQN/rjdqv4VQhqAer7LywdI92ieVKNHU2nfIz9XiO+XuJzgoagHCRGNGIvIZDlB1yTuLxvYKdyFnFlCDQavtvONvHPf4d4urW7/hW2lKgMiy4twQFz31/pk/6QgROipGdnsxgxz/4KLDMMxLuy1UAOGMtdRyzXGL/utSXdM0ia4rAbSqb/Q2h+RWf6uz5inuJIUnPZi1MoTsfjshWCXOnnXt4UIMKLSPecuQMnVcHhsaSgiV/ur3tTsqHE5MEcDjpJcRLiyEwSUn44wL+wSMM5zSlw3DQSv9DE9zE+PkOOhRuB+Kt5JiGYaQGlJ+iyx8hYeQuby3pAzdOVJf54Mp8jtyccJWwBjS8qvRNE34cZwi2Ymml4XKbkTBChr4WnZVFlJuhRnIY263FVLgFj+nPEPgBNDqvhMvH9dZ0Yyj0zU88yU8Tm84xTsCmhLj8+Dd6aGviZtPV3U7hKNrOBVEVxIc24BYRbWzz2uv+sRwCsyH6YskYaDKkPpomUuCjCUMt38LTa3jDdQQnYgS1eV/i9FUXn+QsCuV7EUCnwvGFDROdHyvKpGMJRROYxebJvjG6xivmlPO1YCfaDioCxxjvqr1VNwcf96iI5PsWpBHOTn380vJpGCyL88ovFjrigQyOv7Td70cNK6Sdo+ZaPF/aTNQtUH0wKQqeH1rdr1rfpxqCgUpwXlWWNc0XuwEtAOedaF3MjQ/gmQ3oXsQ3d/eUnpKm8uG8cZGBcY0+HFaty9zva239qnyluixoPU5M5nvSw5vjkvs7gFdcBsFvHhSUuVz+3QTQHYt0/qJnPM15fJ8ssUy/PRaYNFPBNV8e6Kgc6vcSNwlDHNEEJKGL+WFHB7RKxBZWwkMrZWKWw/MfIT7qgqQU5oHK/oYUDK8sRSZkc462ZWychvf813Vwmvg2hjgro8mzq/QbyxMexRVVeTgxxSuxsEjphi3y4Ob26ntq75cVvTtuhx5/nPp/jre4FJMZW2doNVX6a/jqM15lioF9y/WOnXMOJHI3JHyKKwP0QRxecyvytjaiJtyoLHPgvX39IuEvcOO3xgJrun2EpeqDQEu44en+cT4hK74n4Qe0+XkNvGViIXzZfRC/GsclcKRGWGU71OY43p2jwTUSIBVBWPrGBkDGyLFULUHSFuGGJb3NBtty5dzdZUSHYIP+3wQaN8NVryMY+J3bD/eELD7wSjBhn18TzAM9LunPdwCuJ8NzwsVl4rjrLv5vdlDF3v20dbQPBDRyP04jj3CVHzgzX3H0zxdB+vdHdF/uzMfTns7qMbWBdlWH17BQk8y/woJjRPnLNvzCDtviUy+KZ35pO/Ll7cSQce4kmQK9CfFswlQWSxcxHm3bsIT5pOwsE2pEjOcNs8bWEv91sChmHVSCFZgCA0VVUg5ySLNAZ9fVPuCeCYRA6SCbzGXOSZ3cEnIioL8Y//xGcLqA+lIEDrF3cq0j9WdKS6wNYdhWRuZrgpeH/uYppbKpixKDUH+yBaCJ3PVdPENFNVfwJSYr2SoAmWUhZXY52TxDj4HnCTjkmwtgJE8hfPUSqWuGqx4XqpnL/eIQkCm/WYyoBAwISKlprwtR0lG4Fd80Ara2UTaihFlEvfEoJDewLrtAQ+jvZLAfTcBDSF/8SZlg+CDeD8Izv6rNmNkgz8eWnTaMFtH8YGaMx2aAZUA0Im3JgQ4aqqHtBb8GbbGGe3EBvMa9XVLxoSC4UP6uXS0pvi7dhaxKgXf8GhKDkd1oyjWJql9Y4YdsAkiQF404yTfsnW2zF6ioM0LfGX3kZBVteHPJnNDc0fVwEO8r+U93TiNpk3JCmlEGZsHP6J6wlNiiFfDc2x8TzMvDRi5ZkkdRfKxF2WECDcq5zd+wD6PbVJbpCZgwvgNY1qF0Im49pyFq9zTRNrh8HETFObdm9FJFKMolPAlzi8OZrjXoSoED6mC3LXMq1LMb1063B+eyHXDtPx0usS+cfwCaLQcOL2XAZ/XHuvB/uXCNSZhegMqMVeauIfggmeKzJKj3xUTbDxw9BBNtlfUoyYhmrVlbG2y2xp8AVjPzj3PbqgGZmjQQp9iciAhEoNZLJaCvkAD5rxEfdCpUt3bb2poErUUU7JaH3xw0E7aL/E4W6GaXJVetMkbd+GfjEdLM3hqv8vckvdyMLUTrcS5cpeAuyEl3ObH0cFPx1QFwGJm2ZY327QPnw7E22+ybSpGSAPBJhS/nlr5zN8exP4/1Q8IPd61HHF+FL9vMZ53sJF5kD/IhrveToBfzW5xO6CGSA5pB4xbbbhwVz/Scqu0l4KrwC5EkfElJDssSqhpKw2QdZNrC0c2qUvEjFKzK9NncEy/YOd4XIUyuYg9OAOUMjjkOQHxp9x9aGcPpzq46vnMM6fDYmtuCRHjZaIrVgmT9EknrbCKdTa21Pg09zMMAaGL0oraIkWk7zdLRFrugbxJboQt5cCdJSpjiRjXr+CIZ4rE2CP4F3UVzQ3UvRAu/EKVlmROj8vKAkMZYuiI3uenfyUmWwVEtUVX7by32KuLMROrUQOgPSA4voag03xFQbQmLAGwZKLm7MVBIBM+FwLYSGKQWB2y3oe6RBtgeTUuyv4bQB8vrKh3iq2JFXuV74YrNCCg6T5gbhm3aUMqaEA6tIuuqjZzRx0yXgLoEppXxYC1g8IUcUlSHLvktiwidi2TFNgj9tpFux0D443xfkgOL8QWEEl+FZ1fXIxjNStmCL+9eFrockwXX86+h1hRAaEYUXG2SLNnjvXTkkA8ulOUR/KW77d6WN+Yu0I1LKl64qUCEmAyhHkSbgYuHds2iFTYgvhkadp6HIz+5JCeVWpq6UENxXkgoF2RNy99N+ImWs8JndPloHBXcSnG+NmYU3Wp6GGtFH4A4qjpX8BhvglDt0Nm1LDYXxz0j4IxDeAXYf3+gIjeHfgjp3O+xUYw6DQpQPaSE6LmSs3faNiQdA0frL3SSgGsMKjgvuPh02HMZl5jKsWwVc8r7pwosvG6pIBhbcPkS59czRX0vtp5CEUdWIhCSwhYplGYrD8IOaaXcWhbQlBqcHJlAKMMGB7iS4JLRzpG6AhoCc2hYauOerih6UfYyjJ7HA9PkdQlRvcLRnpwIZA/wqZIYGhLGrv18amx9F6uZhQ/u1XoyFKE2XeOErrJSZJO176D6BiA9X9VEwXI6aneVk9n6KIbiW4C+3fAGGwnGJ5ZRVztj0unvLNEbzN47sZn6PfP4NhZUUqwSDn65QY8Yn5Py9Cw4oyLyW/iTbto7Tl0nq8bopX7UaK9HGFp0CgMsrU6MelpnfBVNyPnFT6R37ysVgrxVbOmfc/J9PKS5QJm0FLGkSwk/C5HzRw0giFjcSlWKjZAztQHJ989AHTJfrO66IICcgnok1FwbsKQZ4qQjNUQapjdRW+Vmq5iPqA+VxjB7Q7oD/WzkuxB0D0LeTDU/E64NBpY8KkV26EWILkUWcxU6O4UE84x2cM4Fxm1+FeGW18Nh59zBvwJ8NjO5ICJGENEuG7swjwHzvU9WmOW30bYmNYiGkjWFhRFX3m4e/XjSVY/9OUUbBk/M4MYbMaFzYCA+m6gZRELxOjIeaMixNixGtzfK4rnKXc8r0=
Variant 3
DifficultyLevel
677
Question
Samantha has twelve 3-metre lengths of ribbon.
She divides the ribbon equally amongst her 30 students.
How many metres of ribbon will each student receive?
Write your answer as a decimal.
Worked Solution
|
|
Total ribbon |
= 12 × 3 |
|
= 36 metres |
|
|
∴ Ribbon per student |
= 3036 |
|
= 56 |
|
= 1.2 metres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Samantha has twelve 3-metre lengths of ribbon.
She divides the ribbon equally amongst her 30 students.
How many metres of ribbon will each student receive?
Write your answer as a decimal. |
workedSolution |
| | |
| ------------ | ------------ |
| Total ribbon | \= 12 × 3 |
| | \= 36 metres |
| | |
| ------------------------------- | ------------------------------------- |
| $\therefore$ Ribbon per student | \= $\dfrac{36}{30}$ |
| | \= $\dfrac{6}{5}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 1.2 | |
U2FsdGVkX194SoMzBo/iQYhGREohlgxdbG62s1uBVrVctNJHhVHpr167wDYWdLttsrzwucpnj2hr8Y2g9ofHjOOqfUIDhCNsMTwVx9nrpk1xpCxew3OH2WlJGOy7GFyJyUJBcGvMc1mJzBm7YZOXqiJf05jcEluomCviGhS+J+pjt6IEKcWGIPVa4dlGkXdI3dyGPymsa6bckk1rMa7H5nxLoaoQ9+2KlQnRMqZORcDnK0khQk4VorXmqEoakQuAbsQbg3Uh/DjP5qmjl0HEc8Ffb/0FTFsWnMAN2sIdKEQ4eNG03U4LdAiB5nmMpsfxHz/nKwpiiNgFKKWFQf4ZBNavVZrHnlIJLP0Iq92upxS73KAR10jJLY3RyUOceNWLeiOehvJZK/aJIW2KgbHa8TwGLH4O1EbacmhUD2t1Gx8xLIhRrvTQo1BOfn1AnxuVer5TnUt/uJAdzcSzLC0OkKV3svDmTO3sX1U1Q6JlDOGWvhPqdA8RywFOfcnHZEiG2APD6dFW/YUbMKnBVf8A9rKat8he8h6OQptkR+Qug8MbI3HwmHGu7k25sgsc2rkE8o6FCdQqSMbRsMJl95lknQEITAs3nhf1HQmXjgH3BzoUMrMryvZUylPYCH7LEvTT4+PRZanDdJogz1eCUqXohHOSsK2q5aBKpMrOuK/wzG6Kn611D5t4WxS1V2/YjBdx2kbr8zBj4/OAxvV2fCg7PEfdFOyBAGrvhFFdxB9P49rsl3yJ6IP3QsCTFeka5SAeBUbssIIKh1NEnXVhMNzh2Spjn1OzAsrT5yo6+X9nMyZ9JtrwtIZpcECUQ8M62jsdmul6aRqDbBaGEKT0TNtNB8F6kghbGwwE8RkKe3Jo2Q0+NTr+C0OYXwNPtkj5H3kLvnnLNfHw16tAJQ3Us8+vLKfmK2MLFrhmFJ8Z6wGnUythJhzsyqo7cpIR5NM48q05/UPGVifb976M2IbeXB7X0LUzpDuqUBw0jJX2eo9Y2spDemoqdpvbpjTF4WfAY7y8VR8LSMGZ6H6DAT1ZME1WLh/vpi0dhSZclZyUQVA1Fxh68pVHjbEi5lS+Hfue1C9JMWXxsp3MxXygA8SW/RhkvVx6TacgU2m0czSlpv0XozMINaZDPseYI50RDhdOhApjpFLKZElBwsNxLB4QrZCpiL8mahq1tlwBKhCuX7wfCgNZqxIzYw9Y07MYKPCzuIGZyojWchE5l+SXttWtdBUw7XGOpMxlqVq3cY5CYhBD4nTN8VR+1OPD6AnlA1THW+m7y/y3mIUluoWbHOYIt72zRW/+0EY4b7D+WhP9krdN0yWLDpeJ+GktYTCx5e3oUZguouHzBIvLqP7nOiUSV0C7Tyf1jizSaWDcM7Az3Ds+D4uV0QhJ3mJb9+k/DW88J4t1n3k531PiCYXFiVSSviNcCZMgRwUuNyqVqUMNedzyyTCsndGmHVIND1xh4nDmBOBr5YgjyhUBvdKc4PGWufuOZp4jPNBylA4c1a+bcpp8QVGGS2tRSiIfkmA/7BCLYfx52gRPz/sZ+Hy3C0LjgTyuZA+Bb0dvmarQOOUgUe7uTBU3WEYl65HLfpo4NxB6AmcPdWBLXph47JpL2XZyQH4J/tYBxGdlvgr3Bouc6tXVArGpn3fASi78COhVSUtvjBwazRe9Gr0akdFijBv/mFvoQHfrxumym0Nak8nLH3b3ibow3dy03nBQa5ZyX5czm5zU1eI0NFznhdN2f1A7yVFgbvP+phvkQPmdzyZhCAPfOuzS9PG5X6QoSpCFGWRUbpF05+NfkHLmgRXqDLSFWXQmKgKXFEeGM6OmDWHzslQyJz32UkSmZJwLJD92auoXQFqr1zhQSV57bNGnKrTxl2hZxFgTA5PAg5s/9qDllQ2GNYpP/vtVMzL2CJIgbDFW7hUEVSdYOmYrUhqTD58ajrYhiYDerLPwBdtVtejDQD4jg1fyBwCSM9njtaIh4UoXiGKRNyDB2DOoIjHrXDTDLP8PWOetPNJjSC9JlChIbMJDMvBmQ95/JRPcyBrJCBibwii245W7RYX7XK/rVh5yE/zUMrPcQ4PATx2M3fXQ7VeomvKDWEWRfkMHPgQEgvLdi5Bml7cnc/PGikmVhjCshTzFnM4Pz20JJuqYPHCRm/Z18EujDO+qyI8FGWb76MT3MYgmGgxUHjR0AVxUWt1Yc9Ku4eHvHpg4G4yc4Pc9o/zZMZg7EyNmvzTYgECgomRCapAAJQ59JHPogwn44a0T17xRTilmgOvf65SOzKiCRgi3kspg8jDoGYvOSIpzreQPORzC6ob15B51VJ2rp6FkeppiSM6+RCyIfGHHqZdHQRnOGD7io4LHp788RV3pXm8UrqqtnfpCma+2f5Av8lwy2BtQPBkf1uG0QmYobhlwxLWDoO52yJvE2IeTc4mY8Q3BVlOz/5cH0ZOoudx0oMcWE8NLGVchuDNjtvdEr0EWIU3dPPMyR/dBBCLMxwlibHSZB1rxJAbdj/rZPu9d+ntn/fhMIaer65DpjngrVmFjjta4uUBskJzNrXEeHuNk3L74Un6/QuDjvI17NjTiIp8gjwPpX7mrrX2DC/nsNx0AA9ucOpG1ZVYELyAjiLftlaZgJPuf7ASCAunypbIWKJzdk8XCTak90Ek/b0lPiz6jCWSzqxi0m5wvToBSPZuWreiJVSOdyzkskU9tfDab3yLrEMieSKOwNwJxgqhm/6CYARTYcu5IpafS0jKiTeNzW/M/H3Y76s8KBEDHWYZw6TaSUB4V71yN8y6i7ozh4xPFBWI1VyZxrTfjvCEBYjmLvrwISKBMe97O+Au3hGlG6viXVNSseUoF9JD2ORF4xgWNmU6VLcjtsRmLJ/M/IAb6kzXW1qyNzoi5PpNke6GWczQwDJvAmpmiLOgHfD2IUXqXFdU2f85LwhSMj1JSbRUrZNG+ogYZpc5e6K/RpC5P8mUC4D+3zU0EN2tnq4oRy8FuTyC4fJWoQMjqXPYr60TC2kDHuG8v+Z+R87bewg+LeKL14hx8qJ1JFjEry/Ar+vpBN0zDv91VLt/F/ujhY6eFrmvBRpI5/765duCZplhyDJR8YA7S2vgDdsZgHpNYzGimvaY+/VTrfiqVs1+5mLFJ6ksqWTqorEqh2P3Vzs1BOqIOlXQfPAeOf+KE8mTA4tFyY40Z2PCze6pq219e6cZ52nLUsS8+sTkSckBK41kLVUL2ko776AoE32chPsj7SM8Tl9UPvCow9oit6XdKzSTaGgms0PsvUS+7RGEIojQVMlcxZe9MX0oxXhm8OswiVBoorOxkmK1ZVRw5OlocL/9J7/2VdJUR9bj/2a79/pjon+YwaNKfR/j2ZwydIOs3Rs8IHxBlCgIQdZxqwrF2civgtNV9Cqof1GDFF9BnnloUoODJ1qRUaxTYCrUzhfV+0lqDl9QN1y+f35AZSbaRlMse4N1KlrhD++ZQa2AzjUU2Hwjv7CRHwj1hdfd2mhuC1UQDo/Kdyt4uUq8rFUCyj+CHv/1e0GDy/vl3WT+EllOWdBCv1zI6I4DsYvc1ETXj9uBWSqA7okGkFobdf6ajIedSRIbJzCAFi1s3B/KPg2kUSJBsuP2cZARfl6FzPV4GP8X+3Y79BtMVEjOQkzx9wdyRGtnbj1fp+/G6xYdyQ4fdy3iiG6i5ldek3WtInyXVSg3C68IX7IRB/zioWaZKZ2eyH2tLx6fhCW0/DaTAUEfyYD4KsN4Q16sJwBJYsbAjkTCdKqg64H1yjTqf6KSkFP7pDvY8caI+Pxm2CwSZb4qUfVUTUlgplB3xK3hf+8ZYLNs2D0aQPCRKWf9lX4JbrtmiDVFiXh72jpY8vL9eSOnD+mtIU3mMM7Qp5yzJTm7/WEPL8mPcum/JrlGcpLRM2J1+egISGw/bJomSOdfmlelyAkBW2mWp/ZDKhraUm2tQDA38bsA0uZdUM6emN2InLWHAlACwL958aZ9g+n84tqGtKkn+QSS1YXI20JaZEgUTuF1xI2h6JNliQy2HBA53mDLRIbFBecVOnFxJ0cIixWDRmMJwzDVzx6rEecq+jwQhW6H/ilWSGPk/nAQcQ7al63i/oYsFIuD9i0fuAoGMTRFkvS5ivur0YAYhFi6k835ETe+fULZN3U5B1hhAnxk+GSEt+RBqgDXGho5YBmg8aDjh6V9ojaqu2S06N/Pz2MP0s5xGpAlDbIIThEWJ7RYRCTBRP+N1MUrhIRyynXqbaygkWXIr1+FRQv4VDqWslzk1vIct1TSG63UYeRHMd5jnxrEzguL6iOY/bWL+DJeQZS/Y6/5fpnYPqFwozjVFC+Qv7su3iRggPN3ZxP+87ChKybM1vCh/htK4lMRUcNDIvNfryIXaIuju2wpJgMkXblH90Od9p/iXbWMr3MYKZFepQxB2f1UhRtGu9iJrx6729cTZb3NZjBITz5AVJ23y/VutqS2Tr232ZtCiqiij0VHC+K+nELT+UDhhOjpxDkzj0LFr4NnzPWzXGRUbBwtbcdhXrnlcD/izXcyVCb7ryh70bQ4H5B4cbbQHQKQLAwC2tUoZLcwMjhToue9KAOwXwI/4oon+f8Wmxx+VD6DoDdXZZllxKiZwjm9pcY0fPxbsNTgU/4H5eptiD0dz3f/OhvzLRovR6AMG5Z9Ha+HzrKaA5xOdN0Mdj5o66ghB7Pc+amby+GhrczESilXeLGq+X6V2X7tpr4jyAsQY5ILBWN4/ohSoQWn+umxvBKKXu3J1w5G8S25pQYljqDYMHTzap0F13mpsk81iltvQbBEe+0BBKanKNXdlhH/yx/D4mWwzj7sdGu+bXNt5yfb2g5N5w7EyLNRPGnhYbp1xdcw+aKXkCUln6+KV//cmUujCtyLXK9BBOttzRWFqsScpuz6UhSP/YHLl0unRIBy9y2od9eGzWxbfxnFLYsysNZISpO9Z8Rdn7NypfNij0RKi0GXhRgtG66Kqb3AfSp++iOuAVeUGLFvJ+nXGEG69xDyJizfPzrenpWDZOB1izcaeMhEV5aupYA3U0u6oJPEkNgue3hRo0fwA5/yeBAgxBKR8DBAfLBBzu6b8M3X9kuVsrGFUgPpg8sZchxYEMBluLmTerJhTlZlGz7/xNSg9Dd/mG7HHABg3LPosSFQcNW+5eKwb3TKd0PhSfbHTU+iQeAXDKaIZi0ZwYp28O8HMlSM0Qm1q4yZWoADWFxYL4YuwJZrpKoO2itr38KyKGy85zgSwMQ+mcGGcoZPnzTVj0rXjO78qX+dYltUwTBsE6WANLT5dufrRPIncDAP5vugwLHwlXQiaekKIV3Vs6ebN44c/V5V3xaY67rejSlEJQpm8vUf0NqljH+rdM3nFxeXNrVF81M9QpcRfR/fjZHRJraDoBMnjL8zDJ4gQoA1jU0JCqVOkPnNKtdLLqhP4RKZBTKcuGNqSjGUYQuVAMWPl5USpE3ErvcpCl6dySY28rWD+LDi1qBjqUR6u79cIwzgLmUzHkTrBpKIYD3Jf+gomx9VkD4gn1/jNaG9s1cnsq+hHcmT/ZTt4l8vxE4egk0kG7XQmq7qg+ELeQnM+v0wK6iOoUB0JdUB9OsTHHW5QW3CECwuI0uy4N1Y1IHT8vXS4LnatgWhMLaMmabh5XQnoPi8dIa9PmmVFl2k7t8luLizwl1Yc8KXbgs+ou8yW4ZwaEnAE3TmcJ7Crkp0a8CNxjXqZ6KMGe8cGputHME00dbyPTA7mVGoCGWXdJNeVPPWaZisxvYyC50DbxAUUXG/4tZOotzBdSqqkRd+/fSgVBUj4FbVuCgbVICdWzHzdTp1476AHsJKUU1i1ygt71Yj6m+FcksQpiUGD7jAo74h350Gkr0WuEJJ2UAdB1/f16aDEa54g4Yk/7MzvDNS/bhsTMVIHmoYPx99bx6ENJ9Hn1p6igr5mIA60LWmXIeBQiEhiNiih3yFTkznaF9T8ZobPS3JBWT1N6jmuQ6vIh51BLr+MnW9PAUeDfYtN/Tp32DvWiq7mioZ/do648ya2xZb31zu5/DLsT6THfi8+rxeKqLIuZ6F/BxcoqKKukjm3NDsA9LplFJZQsDz75PfnegmmS0tVbooW1Ht2g7bsVPxImIkKww0RGWGBpXIfn4MVh7zrEo2bu/XnQTsvLNdZPfxL2EYrTLQEVNwZzZm4qDWcP6YgO+BnveZDTvyftyTBAy+FucUranog9gZiFypQD7YvlGNtkLk9bxDTC3AmC/NBZdsOzWkhHJpXrRi3UcAVFKW3UKREYH2hZx7xSTNDNx5Eb9rmOtwmqKgCnmDuyQxI+YgtRCZBEp5glYNds/4uSEQXyvUwP6fGw6gcKXu07A9xJ1LdXJDMs++7AWxJSZpWl/MtsfqfPL6lqrmh3hfLrA0GJ0/ZfvmWMRx/6ptAULgni0qpOeFG+2yrGc3glTda9sdhr2ELP8ns4cA91dTyMSGnw3kizUoUyTS5nhyDQDMPaDmVIynXzyhcKNi6PTf2f9R4kSSbjc1mU/eYC687GHsWH2XB2EYLbh68Chv2noYNuyysRx7NJYx91gyI5q82I7nKRomtILOTied+Sh6boBA=
Variant 4
DifficultyLevel
683
Question
James has fifteen 16-kilogram hay bales.
He divides the hay equally amongst his 64 cows.
How many kilograms of hay will each cow receive?
Write your answer as a decimal.
Worked Solution
|
|
Total hay |
= 15 × 16 |
|
= 240 kilograms |
|
|
∴ Hay per cow |
= 64240 |
|
= 415 |
|
= 3.75 kilograms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | James has fifteen 16-kilogram hay bales.
He divides the hay equally amongst his 64 cows.
How many kilograms of hay will each cow receive?
Write your answer as a decimal. |
workedSolution |
| | |
| ------------ | ---------------- |
| Total hay | \= 15 × 16 |
| | \= 240 kilograms |
| | |
| ------------------------ | -------------------------------------- |
| $\therefore$ Hay per cow | \= $\dfrac{240}{64}$ |
| | \= $\dfrac{15}{4}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 3.75 | |