Algebra, NAP_700032
U2FsdGVkX1/9EDK89/orxxW9UcZjyF9vO4eT7f4RyjGDwpPFlvtWHq/LocN8XeR/jaty9WaEEX8b/O44NbVnJmYTHZE1M0us+mlMhj+q3NoBzzSQsVAjX4rkybL0hRuCBGeL5R3h5+J4qb6CoWX2Z1+EJGZM/12Gao6CGhzcRXCaty0QXoJ6x+DdSB55MzDYxgVRuVm+V8RtujYrRhertrCqOuFnUjnVQA/zaNbwMLhZa3ebrveyFYDnCr8K6M72LUxE2fagQPQhNolTw9Sjn3qc9pp6uSIFf+hGo3kPGHnKK685Aq3p7EdpTwgGEx7/UxCnvMhF48V9ddQBopBcSVn8FrZYZb6PCYJKsyi1tfqY31htZx+US/hOiBaQtOCaBv/vT/1Yw53QRGvSFVZ2FRFtbXBUADEZws8YmOAmzj5n927+Rq6/jdOSvC8Oj3m9wcEq918PR+V1Bmu1uwxcd8xa0c981CniyFV4SOnZ7FMNj7Npu/zFsCtTBusfZ0frc+Rx3QnBcjoztHiXlZGF2l78CC8uLABvQySDRzsShNj3KgK7ssdBofoJesj14to5kSVTaRhyg2498GsHziu5okAirOUent2+OgeFdx979RyBL+wvbApyokib8Yos1NgwioYxH8/6WjHQ4OuqdP6cxuG0h8eL+jHT9l8lAy33VETz1U7HGAeWkjlfGm20Vm/wHaSR0S1qH24de2HELq/KXRQuO0ENnlNgmLlZI5mrmkGRw+DXcO7LzOretjVB7LdwAfMg2tuTY3Jq75UKeDrSsqaRBlzhbvb3ZUwJxtGbQRQsMDLDrK6DiEztHYIGu96K8HuFomNXOnZFg+Zmp8OeoWHEtvQ3Jt6Gv2NVZ8m2ttcA0IdldpmR817Yi6pKpUIfuxayUM27yzMB1LIzZvxXz3BvImj8gnJm6Guodx0epG+PfKXl75QsYqlYxbx8wRwZY8wiyh1OX8pmI7noeuVkQOUbczbrYEbpTJKW76ic3Lh41uBQzuK6fjbC0WWeP9t1tRTfNTSNZSxJstbt0yTLnzfxtQwvd6rtk0xxY/rQV/q61xy/Nf7k8c/lNlBMq1SAlhAAVHfJZ7aN+aiIyqLpVeRIn2m3GMzrgWAYZjtu1+VKcLheoVI2oTUFBw3+E5+5tQSxTF6InXktqi58cFSfCj7czltXHRIytbu9/kajBrItzWkrfgk3Gtwqz9CEkM9aFSmZkRokDT3Pz8ujdjD9F4t/7Gr36A+eslIc1Y6eT9hl9/qmuKwO4shtyH2kVY2RzxDc76F8FH8Xcy2r8JJ09HPAQbEbunanrsHCrmCEoQZZ0L+7B1DlgPPkM066F7owA+n2qNCaNCRZ7LUzDraybsVaDRO9Ame2ox/IYm/HEXwW3aJzbrgR0Bru810vNgXRoxrUaXKH9QKF8ixlfCega73zvGme11aob1i4iR7Omq59k/uRWiDcp6EylKc1DRC9lE6hZcWPoMtDvCB+grxo9amLgZGUiVbG9FjtqTSzM5BBYurAiUHTeYByfEsnqpLFJuBt5sGzOwUFLIrrHCwVw7knbS/2PDPobQ/Rz6UuoV0rX9L+1BQ5jKs46IrZOtEAIzkZ8htlfzfj0DJ+Mj5vRYC6EEhJVQkbLsHTEPjDDPiwa4bel+Jj+9Smdpbw/LEM3bdUTVR66d5IzalBgHDBmNERwB06C0nAUEKwqk2cX2i4fiA7OYmkV2sTIzSBQe6j8rj084244WCmh96Xpz4kSh9G7IE/Y3iaCQ0ygd7P87ASpp1zK/yyFnbxwWTBQycVm0L7dxBoga7sbSzHQJmBK/O6t0a7/oKrb5D8aamxH6w22WIa3xkzVzs/EuWLgkbvjqpegsm/JfwbUMFAFBGhiaH5QHUisAcFlcNO5zdROE+dwQpJrtmdkgs4htFQlQDz+nKhhRxJd0EbB1Rvg5nLG9zYE/aLef9j/Bn34gnlejjtQowxYrZ+ePk4cPBgHti/jof3kE2Hr1Iwyz9yBwyhuq7L0qg/mDbRaxF+xFNwQh8ac4rJwSQZWX4t6xpsoXY6VvpKowc2UpZopjYebXOaQxJE0ZHhCNAM/da9JTvVP1rjkJFC+oK/NXAzaRr/XvE7792a0g0JuwEuE12gdpEVwVCG2EJeHghbbQXMtfI89Fer8r1yVIfiWYepROD2pWzOne1BO7vIKXYByEj0U6SWnl6ia4W4DOYpKTmxExgeyonTCfY6xyGlY1hyDDR1euV5ChfzWTXZWGH/NZVpcJi/GLEsxOJVGeXReV1SqFygzR74ga1TxRYgFA6bI7INAx3ZFL2Vick+wH3YSKlu0bqR0oQNqEf+rI8/T25sEm7v+hcCDlR5dSTbe3ilGJ1mGdk8XL+r6LAM7Ri6PL/u1Nfeh9MqweGrliNB8GVnNeEeqt2Rw/ZaM8iP1ZQ7mkoNHVSMyQY4ReT7LxGDsJ74YwlO9AWM1HUGBHzJ9ZhG82+8ebPhahVAwor7LfhmY7OLMLBIysdOaNb+Y7d4or3XAEoll4l8DonF/VXsYp0RrcIJUOKOLKChn+efwwIjzvs3YpGaxuvvCF2VQomHS4MZviL62CvUh+tq42GY66GErFBkKEyRtfjshCiU8abvCjhGRmoFzm2xPaW0QCOM2AfkqNsquh0NrnkCAoX9qFxlooi8BZwMaQEOXOJRRbAWe8XGrfvgQYE/zzSgWGXgM2dJBFd0BTTacvNaixQuzxIVQ4ohVWd5By1VZC5UAHj0+mlnnICjx3fD5NQFynyvM2czyqCGnptZBKPwLfGoLnHaqOFs5iLC8+HXqLHhe286Glp7PKk+2TmdImqN7fZ+HEY8eaQxwFRNa30mCwo76ncudyF9+zdlzc07Kctv1rHx5fz32AkyAMdXniDSnOU5aD5myf0JqsyRu/VJ0aNruvDvwqoEy7l5rTMJnBtmrNaQEYuU9AIuiztpxtIBiNgfJ0Bzw8hSYP+hmyxuUHGCxDObpdfPhRWsn9D82x9zJO8lx9tZvFf/QLaB+gTRb6BAztvR4U4a21JURHfuvX4iIdmJcm1i9DyGlKElpwqlr/EsfGg5KQh9fbRijjmwrS+dBPHSMfLjrzmHtJIBRnUz+p7YURy7D9Di5pac+0zjS8rQ60zd+9W1d0cUCfsP2xZ/M20IButuRKzd8GEagvu+l40V2LH2r6RgmTR9OqakpYQkbG0OIlUAK8OmQukukO+IHoOh2BJVn9nQZiqJuEsl8y8DZpOnnsb+xaKu08oNvx6tl2NxOUOzllw+P3RKK3+7usXdgxXOVjGTxAszZeyaHvK8Tgf5B8yA9VSpsqeddTJSIJsUR8LcWZpe1Xmtt7WNAcomjTmdgZJgJay59HMq4J01HDK0ZtG1D1xF80qFC0VzsdNFezm+gkdmJMpipLABBgN3egr03YkHgd+/2fAICWZXLYEvGC9i1lfb9G75AbrQuM2mdlDLDeylXRArNKaA1fQi3k2Y/0P/CjYt4eDALcotI85nCFskQAPmXjqwPj2qUEJkIo90civ3mcwq2y7hMmFEZ27FztgEHIiiiOthp51JqsEv5y/ciQWa6gAeXLYdNotQVLVMyC9P1qkY0tXFacRiKtmnYwRbi4tdIJ57cPwKxMWhDOtv8Yms8F4TSEtiugMmtrYWwtok38DUxnYnaLjbuD5OCHzwJX5ewqKE0GWHNlpuE9NUk/AV3yhS9fl6tBb+/SgKlr/wrx7lBwAAK9TgpfKuGA+1vm8iwU5i81mkig69vvi3OUJ7+fu86YCmJ3XCwUIEK7fQRws7QdedBmnphAI8ZbmnlI+FLdKyv9gkeGv5xuVzy153IKXkVUmGlqAuczZ0Cs5zVno/jw+dBW5yWyUJ+TRAruAvaEYqgVP326+A7JizcM3xKldnJn1gpkRAkiNapfpTLaVZWwE4wX2fk2Yz5ZaxFmLvphx3kmLL8kr2LuZ3AMVx5sEvtx3lApHkXjQaGOm/RFb/+gfgLI8Io7+HHwp8vHlv/aabl+YTsv6lasMhpo6KET89c+eHAjnK+jsgIzwzA/VnznhWOHKrzEQjFizJM352E6JpywQ//jAn9qK4eeuvw1hQL1wmdHnMJtxBuYCXnYPrJP7vo1NlrQ80Hvk6gKAdgzpe/QFu1UqgCIvY2nvs5zuoYqs85AyAGSD02jH/pA8YOpYu1Dse6iuuO8RbaXB+zXTEwmIjkcjxnsb4Crwa/NnxnGR751jIHC6oS0KA4AYCl5ecFSr8QRxM6UijU6FeZVXgHT39h+tUF49P/tHkazqXV2/o9PAiN9Xu22OhsSTEDNM0FJV68xJn+dr3TD8/gFfyroUo76BRRY2ZcmjeiXt8lluH6iDWnxeTpA/fooxySfgVR/jMg0TF9SOhPgRnHaytfiEO6FCG2+RfqPr5qnRHW8w8MNOpmmsvNRKIVHFJzxgPxXQte0hPXmtmf6ZBhgdX9Bx0NJComZ2BaPpdoVUeQaeMCTHuMXpK81bicas4CIK4zmQrao/gqSwBaHILXQV0tDVMDeAaPlBBC7wCUfQHGWO14fGGoU/qcV9foP9Lb3ey7UJUfURb5fOi011GbnbkjYOjTpr3d1JJVUiWFP/jC6btY1Bago1lMwvnuemg/UcJ+Nxn4ibABCbwO5ZWJTzMiOGVf5IEZfDWPX7ESCjTOyezD8lZYB2DqX6tB+JhfVO936n0W1BWt2+hOiEZ06aguAXwxa2SXSndLmnns4qTMPVyqrTqO+zvi6QDjvmjX1MEh6jj8iZMoSDFAAZ1dYVcpTTIn2bflHa0SgujY0LRCvSPwCcCMO+iIilWeHA88ivEXr1NUq8TmNvmZPPMCOz6ElYPeZB0EdUY11M2R9CfqjMRPxJHu62w/NpzyVSPBBa0L3R0RFK21ntTxhfKM0KBfdu7Gp8C+OEmrHv3lqBLzkHERf2tmGGjBKVGLOAu6H3vVurriqTV3pv3jt6xMG1hBSxQR0FbQn+KsHDLVwpVvKsVMji+e0p1y2FfvuTCT68VjHxLb6j8Vw2djwnUXUZGylM1dqboXcwzLMPeh3+iyOSUnwJdpBvWbsxjFecBHMyecNCtZgaxmU9kc1wOIVoSW/uroeY1snh+cv32LXnpfoFHR6dkapor7Y3NRYpn0voCFs2jBYjyDKC7ju7XdI+at4ie1KdqW2LuL8tr1rkUQcrUnObfzO2iumijTzu0qXXml8czqz7xu8bRs1X7BzlMa00pV2E1rGPbtWOvWpFJvd3eIoIiZCIQNQ2pee3832kcVacEm60jaGggHzzirimKixNA3C8GLe+qBh648MToQgWEWrYU0Q472sSLMg2s/MoqOuTqZ0yotVNtfXMcRq+ylT5NFWDhVVA9AEHt67F7wPOg7rbJN+lFFfozl7M4dGVUsDo8KkU+VQXJXTU1ScTjcDGE+3z3zHXfQKRk4RA/k8hCKJCxqHOhN06jFWRtBxeyTM75rKVop7Uf2hYTSfhIdSi/The/DmxN8vJRvm9Jwpdvp51FnpJtSGe+0mwp/VoEiNri5mtsgCrgOKvBEveBiGLtctzcikmfe+W9de1RRwLrCJe5zkxR4Du3PVx9lNRINbMczv+90l+g6UJyNaX8REMxHnbVioq5kkPn+0SVmh2GwLv3523qpMOicb1kD4zkSDETSYcsiR8SMZJ3AbQ6SEft0gOSbIqj83gfcFOaJtkAq2UIgTWaE4eBSedlTE7I6UEHjvR3FbTykVR5K0dkswEKzTgd31N4r5p7H3LnNEDZlQURswilGQqgqsdPZn+h9me060+1dRbbhJ0tBtMVRFBXl6WgGj/VYCZ85S4bOQjrigs+bgJqGJJScApu+cpORLFN5RGuDPncXGpQdynf6kqwOvPWQYd39kCLEBi3AdLv/PgrEaZ3ITNObMIIK0r6B5X1GuZXcHMyLUKbAkks4Xd4xgmm/BITJU5NtFfTjpmiX4cykcNWzIy0MvS4GoWpFhraeQKXI7c9rA/lQHEzd9g6IDtPUAG1nZCVRmKBauodM58njs5bx8Knztiftt1DelciyyDqrO/Q5oNVxKMV5wFiVRxFby9PNreg+Ogulqk9GAOT4TXhErOUcpZIXVO41TcQHkjxfBwmL4HJu3cszIo7ai39ynMkOmz/KRUVRlviTDBFTwVSDWg3SNe5PzipoZ1qxLIuodawXUikFlSlKm7zU711+824KLNhJ35SYN0obpVu5LCy6RGdoTZj+GMt24jU2+9siQ+4iS88A+zM9Ew83cSoyq0Oqv+BiGjx50JAqxmzcDCOFabhDPv2VQ17E6KwsXW4Bts4yOv5RpP16tbEm/Wrg0SyFSWtEwVLU9fMyxo2VVjqAR5K2shAIeol8+VoIwAMCN8UIEiR7xigEyeuOOXr702KtD47eOPjliyNlQatUYRPMaHcm+st81gHCnY7CDV23yOMo+UCqehfIATtaEnN4jY7QjiPLDSg62nUmJEHnXY61am1+Lzn+8GgsLelV2bi39ZQJoKc4k3bqT3mMUig3CCRE1YPnBcztC/PAoETWF096kkJQcbG3ZKyPkHGAYP+4lKxRc+3CiYhIUTSeQBb8pB0qDenYZRz4SosoFHMtCMrm6TnLITLdmP8MKOToTLHjr/Xmr0P2/TsKjYkoShrG53oQYdu8/NT//gS9UcWuVsAiNC+ahQBNRjmeM5tp3hgvusSnv0p8UtcqP3HUwyDyOMedvEM2BuM/L426H0mdy9W3WRP11n9fCjjSiBZaSnINj3eMQ0LALnUN1f6luLCTkfbgMW3dq+psNnDKla2qgM/fWbEymwwu8V+RWDuNou9u3sp2Hekj3OztINzjmqRf9dE42osvmcbllL/ByyssG/agQmf0CT8iaQE/l+3B5ts+HkJmC6D4QpCJNeromUXpL8jFwk+UUBQEFeGEDngUSyHAeSK+cYX/TwBIji1/RXHnMhWp85H2lp4k39MV1cttCfAOa3wbcZe4L8rDE3WpIDQvjBy2HokqZQMJRshoOFjFNu4tzd3ulUOnUF48TS9EtxnTLaX/aAgoDxJoQJJVcibvXHFB5H4NNq38ROKZOx5Sn0AW7vurwPSAICTq3Jd9kH+407le4BXjcX0N+wa/hZtNZY4xW6MmIc3DMNPTXZQ8Z6zny5YSHoxCh8HmM9KoiFx0odYH2UHqxW8CnOFFGx2PZEvZfKiHQkRIJ4Ol4bvoU+8PC3f8qHk99j+HU1eLp2CPVdNQ2f95K6G5P65xL5FT+aokDsm8KJZxg7x2CdATD6pfl2c/O8j+GTiUsw1dCNYFsB//mcNy+BhFYK/tMXZuFL3sbdo44hkNFVb/EuEHmu7g2XHZO/CWoBfhpQaS/8fbG+9gaZ6dCli+cyycazJGVN7rgoh3KE54PioY+cHqFB9/LQmagrpIoUh7r0LhkeJWBNmy4WU/1W7N3RD59lVv0wl48n8o9HcpSrK2Oeajv8PsFoR3ZmdhMi7bLrV1fabTCNtq+VYxPSa8yrD8J+6txtEqPulm1P23YrE7xfBcliVX8EdjlRL2PEa+MofHneZ0zZ/0eWnPeR/7l6FL/roe4Tea28Ia4vhf7wYmMu7+wIOnn64s71dYw+K8L1d0XLZ2iXv/OZintpvFtK6OltcM0iGhZiviylxCavVGWjoTOOz7sHNGWUvsGGAnPdYspvy22klxI7txXyuPJPRbayvFWxiPBAOG0XEc96scfbLFE7vKx/Qq2NuiTOblt8llYdoyK4/hx0A3SInDnyhEi2NIsJlFnAREoC0eTpi1iLygrj6DYc2zZVRXxxPhLeACHq+hdh2ZUQIlGbWdHmcutXVbMRtuhwN2V5T/ylxIdWZ/RNPmWShOtwlomRrvLHNCjvHyBxUCo/ijXfk159Nty6zNCN9MKgK0U+5KP4wo8IOXcYmPak+bB/EvxMt26xFWQTHimIC+KemHMU5UBryoomNYzjTBw5qx444tLIx6lVaIOme9C91+i64646StQiKUuEsT14LLDSAS3+ULHmLP+4RNd0OmPbF/1q9CeT4+z6VkUKz5zINoLpxe0PNCz5veoZAkRtHeJPN95x1ZLYL/rAfHF/lgNH8bA2hvqBnfe2Orj/KxH/v2cKJ4X+4gWancVbG6nUiUbwhO4GSyAaoTuSK25e78scM3uWmqkZ67zKo144cEk+VkObYBG4cE6Gf1Ghogip7tqm7VLRecu1EstT2jWd86QxJLHI5y/ekLhvGKcqovt1aivaHHynOoFQhp2H2KZuzepeBvD0zOkHz9f6AFkjyh/77IoyCBFFa3aeo0sMsaft1eDIWs/kw+q+/Ew46xxdixfyt067cfoc9kqEWGspZK0lISfO5t4Y3v6925vV/BqAdsE+JnYQ0nKVeJKIVLWYRGvX5fFm/ABm5CdDs1FJFXoIjBWPsza9d6pFJUegy/umNUSXaGGLxIwQKji0iEwB84ooePU2ssTxq3W5ErDrXHwiEfU0MqocSyJswIu+aV0qCTES9CC1zPmwBE7twf0Mszd1+gFoGORbdCGLOln3OtKz6IQXWQ+66Bj63SU+i995DEdGGbxUYpDRvxSCJyh/LFlIId80e2WizJ1P4yn5qkT/5C129Yy4D4KAFls4yhb2LFUog0jWSq76ffd7osbu4IxvnWf7aGZIlyPF2KQyYsGW6St+vJj2NqmO/MFQ9+wdu1+V79YqROMZ1s6cVU1ulWv6QyIipD7qK/aYiWRRM9Y6KySbwcYF34Haw3MW0cBUdHC2ynH2JwmnuSsL2hHwFmak4I/16HQdYjv4bpF4jY+460SPZlGDmEotncTVeO8u+RvvQUJc86H5T3mABXu2LOboFXqafyIgxtC8ZDIwbx5va6cUW6qRqNSPJQE4Etjj5QVfCZhFxsf6ukLKzlVgcihUaYu3d6b0SYFIQ2N6qycfcL54/lioAebUx8cjuM+ORtkT4G6eFlp0ZvHsQFMjdiil75PR1xF8aL1YUmEZxLY9HJBb1sk5icPeHuS12G12cpZrZvZd4hMpPz/2pGVE8narYDS4L/mqGZDR0zIWVu4KfgZS3XKivZ5kQUDbTFuZZGMj/LlMEMWxJiRkGYfJIwr0CwEexUKRjflgxpj3VW2ZTk1rav+RHmS2qHD2gfs42Lcqwo52ua3FpjWpQIdYh7xmmeni1aLLd91WZGNvX7Cn/y8KFKO/FAaDfDAavDngEB1eO/agLPGi4s/7UXrDtVBnJGXGE/C/Oa84glmiGstuFIW2NBZcrrCHKDWRRcD13TUzTNmBnrnmkf96lMJo18BYxbvNaWZbpzFrKSFwoxmmbvr4zjjosF4KfvR6RF8aPmMc3hbpoFkpjlptgKfPIHxIOUOKpfePKeQcaVV0cxt55t2B3wfPl5Do7ZrxSDUVDidiqgI7YKZ0qZS8nWs+61z4o/8JuiYp5xBY5a6RQX6bx1s2h/Q7iPczLhfTUkk+7+KRr1lX2o5994rtXQPlmUrAYe6/pqfhyBjgD7RjIDvre7RV/MUbvAlCee/8vyoj43Du0tjSFntyovr1WX1+zacSRkkm8iuNCZOmK
Variant 0
DifficultyLevel
515
Question
If the average of 2, 9, 15 and p is 16, then 2 + 9 + 15 + p = ?
Worked Solution
The average of 2, 9, 15 and p is 16 then
|
|
42+9+15+p |
= 16 |
2 + 9 + 15 + p |
= 16 × 4 |
∴ 2 + 9 + 15 + p = 64
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 2, 9, 15 and $\large p$ is 16, then 2 + 9 + 15 + $\large p$ = ? |
workedSolution | The average of 2, 9, 15 and $\large p$ is 16 then
>>|||
|-|-|
|$\dfrac{2 + 9 + 15 + \large p}{4}$|= 16 |
|2 + 9 + 15 + $\large p$|= 16 $\times$ 4|
>>$\therefore$ 2 + 9 + 15 + $\large p$ = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/mH6x1bCVSyrTd9wh6eU42HuuoTzSqKN4QjUv+TLEZfMHKFTjxsRdHiD2gCLztpnSb3nkqA7+r1fK2DZ/j31mKL4aydhq8QgQXOE8MqBhBFZs8GbeGB/YQTacIxmFgDj6AVYnXxqJeCxPeDx63XqxkxMQX1IInt7/kOaM+3RtHFkvnLsJpyOIyVaqFcQkX7/hElPnZwrVAJjjdGE17n5rGgatZ6hI8IygphZ1q3xkl7UgiNjYKG3QTegk41/6Sv0Yn1AbOEuzEUEHC0PckrszVOYwKpDem7Ty/HRFZrBq9hcq5SQEFVMnnzmgbfLDjZUCec8DV/5BriN40QXimeFw3WZ4RVSb6TZcUhLPy83xNckRNi4wsK0hTgpjkt7RkL/TYxNm5jaaB/jpalEpnERvql/e9SpM4HRd4a+a0jaBTlEZDgfIdVGbai2RmhL1VExfez+pxgvYZevfsbc97SYnvvUH56zf7WBcjxRSd7RdNyZfz3N0mIRkw8cPUXJtGWELVOCVTa1EMORHbqehD4iUnVdcWusyTvb9D5gbi/uWOdjIP136exWedNoLU8JlOgSSCgpc6wlTheimqFxBZnYKjiFbtvCg47r2f+HfIKOKcpNbQXkVOSzbsdPJ9YIBYiklxKQaX2IW1nKfmoSnrP8u15ttIzZg8THbpGbK4qWvHLLEVkUN9gIzuHKpueV4Ys36eOLEUxxZj/KGbPMoSj1fk0dKymMZMz3ih6/4vqwr47PYKU63EtfVF818K4aQoynUSs7w5EyzQNU59KzWhuzKqgIBaQUACXw0L7LUSa7Kt2nlvvZ/Ze8mkeHT0VCo7R6CsLTgWhyOWABDsF5Q7rzsTOF2ab0oqgkv+bapgc+DeLpBEBK3/5u3A4H8mHFbtbUlD6a0kZhBTWvTC2ohseFp4r26+HxX1rfypDbbTCy5T5/X11t0bt3K35EpO8CwbPv66WeV7rsccPkyu3nxBtD08aNjZNDU2djiwC9K2WfOo9zkP+qzDL8VSrvqPveAJsXjWFMHlR/YRin+wrm3hmQL+OBvfUnI5m4KgZUDUSYgX/421ten9w3Z9RLRi/a5GzujUQC75yWgiPCrYY2gdQg+pdFOCed6CE29SE62/HjjliKRoG3EZfh63gw9pNHqt6sYDWZGebvD9YN9+O7I/ZOkY9GS1xkwI+VKRDXWeBRe079KIYt48ngK3Es92me9wIFXpAl2cwmG0CgGjyg/TvDOYBYJ9qVKVEykQ4ywfED9swObR3yF+R/jklaACIrHHAGdPu27W/1oXCGjku/Pq7KkKzsAiN1C92GeAMpAOKR62Av0RDmO0jx1LgDWWwyhZq+KLryt01GjD91e1fPrQbjCgXl1d6UCtL8P1ADrtNJXXxndFHu61QE6rHFXl7EEBdB6hERXjvA7EXtoqfl2IFMOjkurY/xqHECZ8Z5XdyIQ7AUA7IqPkBVqtQ8OxnxNSGXa5+hAlFifbOS/XUblWmZ5dM+QM6JQG5cJQLaIx8Fh2zJ5/IVaA0Ss8Jc/u4vwgUlPSOsPaKQbUc8yfHTea4tU/qQ1ED0DdksptOBKkAVSJNtfIOJfmt3Cwwg9TnQEmpgAQEbYlR3PKbTypjEaqEAs0q8X72IwYwRhndNAbk5OSHVWJJA/j1FCouAXP+/mUQXkhnh13QGk5tg79L8OhH4atZBd7EucCrMtA4LPI9dMuy+1DGfsgPvLNggdgXP3DxG+Un3KrKk7csM4niOGXuazuq7ZI9xL9BPuK52PzGUznkdILgwQZ+TirDdiX6/CyYVGjNHt3bTvZurlkl6JJ6asOE23CjVblTDw1GlX/rCPhNWxVe+UBSHZivaOV5KH1dt/+AS6vu8gvbdgITxsh7sARBcfDf+/hS+maOkbqGxt0q3GecdcxMmnu3cDnjW/tuxpdlkHsrY9s3vOkw83fj9XojCDE6Gpvqo8Hyw/3oZyLbMPd3qJ63vjrb62xclrgeKy1DsgG7sO5LO5nfeEU07O+W3cmVxGxJ2c/40PLltbRdVDP9LdCn5kw53aqk5GrplgHTarfj5OHP0XElw/cVzwSuMGDPFDfzCa6MC/F2DtJnmiPWqWtFCQNNmf6IY3Zr/HGiaQ8cYE+qp3c9guZ1vNdoti5mTOLCqPaYCby1jno4ASqSAgauTp6CxaQ7qYxFShv/5pfi5YKOza6CnWP+u3QjPqvVUlNkxQVDokC+o0d7wwxgK4lWXeW7QXzh1ZdkN9RvUT4CYEbE0tbiQgUd+EjPftnH4mGfA39j+M9Kihui+I2Xjc1hBgNIggYZaTCsvfSLbDBhAj9l0R17JFtXebwvIpc3EZUZ48883Vo/vLCbMCWDLO3/QEffk+5sl6O+sXRBzJtace97hfSgNDUJW+VqweQOlvcuRarOrlauu6r3XQeJhNAK3Fn7IxuinA+MzhgMIOg37KwLuY3yIL0JfPJe/d1nEx/pNBN/aE/aszqS338nOt6BL75G8OkcDwytySDEBwe1f2A0ISh/sVaZkjbpM77aHRkCtSRY6dkpRYgOt9xAsxndGCnBf1MMjtIu+fWQp9gDxGX/rE2fEpibxyTj1d+yrsVeB1Pu2zV48kPZNJMtcW7ca4AcxiX8z65tm5Q3qcgQX7KrdH1hdsbndxnCleCOZfFLXP4BvY+ZlKxpK8pTdQ5Pl/lfQfS8Q8CFywHc2dftw4gnmSvkrgizONGZxiSEeN88mtG4fYeBX0FBXpcowflA1fiLwrRezJk4ymIPEHQaRNIz4fqrWMdUUDKLTdgnNQKx3aKqV5UeWs7+9B/Kd0+sKa1K2TD2efh81hLe9b7yrqPhE0B0sibKbSx7n9PhRWtm8swvh1QqnTdqAcu3cDP1U71KcP7406QURMS/T/4FNjwXTiH73Ctq0m5CaJSySI7mSjExDjUuc68M/1ARUGsB0F3XEwV1YVCuxOiCZhH5V/Qac8uCDkPFnf1agAbHWT6ggQBrRi+s/WcGf5g62fAfoCGEX7C23BVZyTtEWF57vMBPLGcscVqyps5h10gt9JAutz9BmUBRsbHwlvR1QDVJ2YCvP+eBSArjUBozZo8c+Az9SQmFWUtGq1vZddYLqjLN3dE10LsRD5fdCEIplL/L7whzAoGsK0NWSQ8lHK//r50b9PgRYcYufUYz+U4HtA/OTaJsuT009aU5rshbNpiPWhYH/Ppgrsvj+j9n3FBb+0F8WL2ePI+GpZE7WMqXTEt5My08sprQhX9RPbMqIF0RCoYYt1VfHi+HD1FxPMRRRFrQPP50RaErNwOP/h0XTm5hTRm2KU9VRZL3Mm/pYkR7bsScE9kDAQsM6te2E/ckkc/++DckDz5BMuxX4G0U7WCIC2VprXVJg4T+y34T6YAyfEPXQIYeZ/ys+8fJF57fQNIgA64NoydzyOZ6lfqIXDS+MKfR6g+XpwcHJR07FcgjYKSgG6SBsJEDGtO27MyPwJMPx3jLzw90gkn7f2MVxQGyL/gHcqMqAXekCQc+53QDBddWcOJS3k2BuJtjChgLx5OKYDYqGeKBloHKnDZHLO3q8wrmOSYv817lP0832+UJr94JUAEu348NFIYmWItoi2khD/3IinZQRNBGAAPYRMYU4xtOs3GhZQXprY8XltvwodzUhg48ZKl9FAjSjKYRFkUF1hE05nBOkwx4uvjijb9+bPrOsyIGtr6LiqOj6lZdWWCGc5XUUYfKNZfjOcB2SGyA+NjvijoFzIU4us+iQCxGwYV8JHa8t85cSIU0xdO917QmHMHGxqUzrV8IeAcajHa6QNhzMk03OMLh4TeEZj5sfNdHOsJYho5LfObZgMX3sHDneYpf49396ylKHuKabeWbVrAmn/w0GY5fhTgPzwj4biw2h5++JwP0yBDFChW85Hh63RknetPEand1jQlTl4dNJqOeiCxJZS5HRiQFTAaUZX1eG5PncpYcXwcx7U7yQcOLePbY9FYGKbx09G3zjdSfAjMv+jlzQXKIZOqj6mjnNIxwlQbYC6RKPEz5TJdZDboPdwRiKkjAyWCzVIZt9zzdIjTRewuByRJaj54FYSVHbRNCyPuyC4lAFRCv/3/5cr390z/w9Jp8ZOiu+mYG7lnhbMk6FNnZ5gphcL7YmwMn8WfInbT1t1E84yW/+HQjWva77Ey/3O1EPft9/Ce52nyWxAbdIFoHBPOv8LbMb+LQXIJ6q+bom7kCPikjBwfmcJEqWl4NYXY5lqI+f6Cz6vDrV52Mo8ATLDnluYJBK28eTkWZpAVfGAkW0JkMMZhlQ7bh0tWPa7UZ7VlYjX6j25ZGIOf+AodnBDZI9u9sGCYUqkOM1p6fOtWR8n0N55nODSPgU7arkac4v0YqpBYS0RX7FCxcHur87ovKqRuhvuYBBiPWcqj6cnE4Ac6E5mG88sbWRYN03Et8fpbtMwjGCiUWd9l5H1ZQ9ZKKA9PQW0SrBOF7ZVjAiki89sQWscIpfcgejxGM8dElUnrUIThC5Ey4R54B97Oow9hyHCjF3ne+nBk13dhViUAt+ZtyrjrS1PP2IywJhyeR9xoQ5A1FThwD9KvkeGqQng9hNpBR7jRdsDsEyty8UsBnwq0KM1B2fgKTSqNI3eBtWLuHDMObAg0mgUfeEtQcrOCDGf9x9dpTjQkwZkj7Y9Dzkp5a6c61IbhtQFRan+Qg9myGR3KTmgPh8N1GMEy4mOn6l2uVkgEEnuCVnCiEp28I0n+mt0Dx/FiDsnA08AUkUK2Gmv2YgCC2fjWy4vS98R+Zu4KPzXN/8CQjSCfswHzGAe8XCUO11YhN8KZq21ZMjTNAoZw8Koo1iMJni7I3TJpsali75OsPtm3Pfh+hqk66Y2fttNucDx5vS8fHgBW+7Pbdr7yedW7j4EXNjJXvJVq261iOqhzNpDpjfx5zwMTYHGor7LcA9unF7R9AUgC/rrC7nnffPCPQbOwua7qjBhTP0Wuz/eSDwVYhEuWsCEqn8xt7C8MPBMSfOGdaDYDxXN0f5Xb9OpjMX3JhkNsGvxeDrC4hcMvn3Bus2RqHjg45TtQ08WMFnblfjOXq3IaHF9NhiSjLUvzZP4tLeO2wYgNm92s4x3eF5W0srLQIEj2fhFftn+8mnpRd5zjCg7/3A3VjosI4gnfXwXIoglu6w/dNW6UaCwxleMOaPphLUBOQOwmFIDROdCHhWpUvr47C1R2XJ7c8CAMXaY8Geokdjsv0Nh3e1WZiyBKcICAfks19ekce8x8KT2lFFn//xEh+F6J7ziAIusoqqhiZEXIQvXtVQHIVuEm3BH1Y8KSBDKvrF1nU9yiCdAKMSRUHyyH4e7EJ9cfKV7RZnZt7gA5vGMo9AZCNV0/k2MdjJC9YomXwImcAxzz8DTyyOUKh0LBCqt4rDWVCqANLCkYQHc5/0L5mIQYgpnKV91x364d63JlA2KsgExYc2FP+WGb2JZ4BZL4RE9MeoyXjFiRgRHa93k0tKIkgTa+3BWcinoIv/1JKtRE2nC1vc/AjrDRRbMru3D/WMBpTv+bzuE+jH2eAXFCl539tePw1I/WFFKQHueRrZTggpKaAZ6aWH94GZm/EeldjQdAeGqTesG2eCY69ey4WQKoun0A97yYfU1XHAMMw6qWm7B8ina4GRI3I3sPBQlRnYJFWoDGqBBlmqRe9LryojpsX03pTmd3nv1JorZ1Ke0LmgODRv/mu1BAaD4pHBIASuQAHc/KeOBihEMQJeqRW1db3nJBrccwVX9FjBwcxRFzWm9reACp0CLFiTFONuhB2nRd1+sbcr7OcJSF02ibbGO08a8dqTId1cULCcQS1iTvUYV0mhLtKJvjAK1hk13+4ezxJrywWyro04V1h/mKHmT4sC2Yf7INSISAr4uTXCyFHM0gX9h8Bo103wWaPtBQ4Bf7eAjbvl/NtOEcUC4ZInjovNkI75Vh9Imt5wBiQaPzFoH2DhfrLFVBHcJyxVM57jRt7LSUS66uXItecNlCTXcZu09BhAC7km+Rceyyy37qto/p8vnZGpQuWoF1tnlJ0z7Mha1Fd+0j7+8JD/GMzqUiJTqI/uPDqfnnwPdGgnqd0my6RXCktRJB7njpXTmF6nZbmgnW2Vzk2AuwR6aTbsNZPl0gRLuoVPEOTZA6pDLQ5oKdaYDJ/wQiSZHD0xcEoi53TRzbYaCUzMvLINasQvhTzPP8AZh57JFpNMoZShA8kGQ6oE2a9lQ5h4jAGFAfdATCAA2aL2rEY5gxU71xfQpUIWyDrDpcZVxZris+uphUewZMD42WuhANnV0NfotALamcfVFSQhTki4c/1Utl1SW9OmGYef+iHnoFQucj84sgJE+Smh2+QPPuOqrO88FTe+zvCfZ2RMSVrwPYgWK1ikRACSlyBDjqZjYssecxQcAxEM1vpuhgOqERSmrZETS0Cyh6jMEhH+j1UUCplEBIvcY+RpBTOcDHCKmucSJs3ImEC7gRUPaBfywvXgqTilOW6ZfoFrfFt4Y6k3h1U5zXdMBZ7UwYLEFzvHjpmC7+u/6NGRzWgZUmsEt4R9RALMyo/+Jz5p61OWxDdBRAsNBY+oABNyw7G/VdtKUfPPvUoow97Tb5xOD2UgDqrEXumxcb+H7j1VeToH8zkbfaawrk7IWgw0cyG/WmB3uhMnf/rY9z9e4wQK7v+J529F83koPVhsGedMPndn9fqWFfGSJzMcecHn9ENptDQLe8CLiROtnxuCZwWYPc2SWnwY2Jkmp11esCjVOl5dGVjfEZ/4IUpfHCmSCQDWk9Ikjzqw2FVCS/BpanHbN3nL7ERVfVAWXkQJmP+N5pUCxsgnTSAqVujljabuiqZb8PsW4aUDyKJ0DccLDQ1/fsiLDZdodEN5p+ijIHvJkzDfGH3w9NN26WAnA6Ab4nGiJW0TCyTrjqSnAtgZoR3KfEyN5K5Xg1pum7PI8sKaADaAQeeIjR5UsVML8DfoFuAzV2XscN66esu2Vo96/o+CvTQ6QZORyT/XlTShSBGtHS87VuK1z08WNMSsVTTaaGTxmIyWvstwU7XoloJVXVNjdjyDCSchcYQxAm/WIkpKSeQak0/IGxSSvpkk26zDpQyWHCGfJ8fH44N8AH1+gC+JqEhm5IMLj0V49Ml+PPcBH/MrxzBZL/pW3w2G4BsOWctQ4ea3vu5i3j7rWDtZycS/n2tKQKvVgLNSQWY4OZUZbwv1LRuF6AHoVNyMbuxg3K0t64hFSutlSxBl/unu8RWr2xtaZORNM+B3ZO0+3PN0PG5vFbYYSKZNmzCNPjjUvMZXQwzmoCwCOGl7JEYK4ptfQ9CKDphLQ2ucpiFBC39ERlRP4hsAvSe2CVj5SnMm0Oj65Sz6t8b5jPnXieqFMlb81a3qDxWV1xctg/pMUHT8nzPnso2jSiDFrSi1Mew3jssPgXJBN3nwoQUEjr6nPgPw6umt8nF6W/TkZ4UtEdaXjMqjOmZnkUtFZoNpaRp1f2Ubl2wW8iiU9jwqNUI0bpxO+FMgQD/yN8/90LUkK4h8ekR4wxfjVPufu1gTAh4fYy3Kn5U20VFWg9IvV+rbnfKjt+uQSsikgc+k7fbbYsZ6UZuVu6D+/t7AWslDxg9YjTABtzG4LyPFQCTR7BwJf72sSlHbqBJvlGMmvMnitTb33Sx9De+3mErPzmxPtZcQpJv2CnFrgHPvX32x/6wYpvSE/Q8m2Kv9hUxvsZEhi7ZIzmIY5V5QFhwYEt1gylQU08j0K8xS1tIxDWKvc/hUUqtd/11F3wwJ8wDqtN8KKUR6ildPE4CF6oXRWRPHyhf/L05SVwL8HDfdIGUk11MOIi9Ee8w4JXXCP+kuPG8hqkiPjzyv68wGCgnldSnuA0Uafi07YSFIq87v41BKIjhk+nc8xPd2k9i4jzQL/DlyJQFqKbxf4pCon9EvQ59pGZlblepb2Dp9rb/wiXNTHCxAVVNtKZ52Fu5iZZxuqH0Tvm8zNQDQE30ZzgDWPlXrPm9ryeYqtFOzTUpujt9b5bJij8d+qGGK4rw+df4odSeiotUYyb716LmMNxTqxSxGyVFZKGDd1NnwI1YGNtyJT5NI64t5YBql1RUATZuS6Hsx9kW1xJPaQePuGHR9PIhODlIOnr3RlYGxyX3pqyO/CAT/tfLFEm1GQ7IlCNvYHJvxBydP9BqzvMkegqcUD09xejIqmx+sNJTMWltQFQeyUHvuoFv1g00GNxhFXXCrzqMxS230mypOdJ6ltpqi6okK4WwZROv3h/Zz8oeaVGZSyNHje7E283F7SFsYjmXr3R+T5xCdRd2NGF7zm1aE8FtLG+VfDY7iGlOwTb5NHXdm4Wtv39XrFuMrG5m7ycBuBuP778WnssDtdtmGfnfSJFMS8+M5NFOn189N+68XtkUrNvRFPfR39uxrFqvK8hpPhHpa9gm0ZtxTwQrpr9s/s6F/23Cel6YAs+HGcLUbHwF2rkaTLR2Z7M6w1M+r+O6xf6uQds68jA1IRHd6sTLWDAHYkh0T1OZ0s3EoXo1/6opXfbja/E5fbgh1mg78+w6PZlbLwVC35wVYZqBbKSJ4+5ruyIydX10tmG8wWVhtAf+PLxBXc1SXLSPnJU7Sd23gWSadjO5JY2/M9To8SfsOOAIDsRLPBNFn0MTnUqSnA0kWHHiHtKhH7ATjCLt3H6ZHB0aV6ckOZGzqZ994oCzYC/m2M4+8oTQ6HlxYB/g94nCkAK0g+GD4FRF96McEYCS4M0YBa4cNd17tUKDuzLDxwZpNZEMakaEPMnbuGYiZRZCZLR/mvQkOJcL+TTeAnvnyF8ybK+xWT6bc+dHvdV4XiedurgjSI7/LO5XWRTx6MCBsI6+TBlExoEIQOVbeIZPxSEKo+r8J1voZhQSwrKF38NFEo/YUzLnCEOl/0otuYku60KF/erUbMuAVppn8YEt/ltD+s90MzzJQInY7IZwfiOCVQctES80ADUpjdvphJl4Az5w7ABm6YK0NuaSk/RZ0O0eiaJd3spl8xA3ocF7ALw5+oaMoT94HDbN2UP4yDlBsAmBlwjuW8gzC3vkJ80u3qzSoiHqoQIGKDCWF0kwxT6eWgo30QR5TYwoMZVcW7hYnpDiTxblki849keqmaL9e7aGtPtvxGLaLZLVPTR7AOFYYUIRMURsUj2svkal5UiS4T4+a5BVJBMdP2NcLf8qxgmVmyfZuOhCJKd9gZS1Ku8Ebydnc0E30pxqCDIPVgJ3c46ZmNtArQHhIeM6PkXO0J+sRtjlnVsxZ/b5Tfwl+sfNkIsniSNYSJY7mAdxYS5sqrD/vy4Y+YInw9YJrsrw2EccpDXRiqVSp2TszzjQmIxPmPtS1nWHZKt9qfeUWMTrMXyrl4cPgeD/Ha6p+s3I1y4tHEvW5MpGEz9pCuByveK68Yvyu54oqLL6xXRh+T3y2ggZwP21BhvUqKowC2TSi5FbMMzXunp7p2Eu6UYT98QpkWcFnqLGZ3y80hM08/HHPKX7d+oBWmcMszj/mqb92bp9WIJ4XnJupym4e8nO2TGJCCi+Lv5PfHuQJnQA22ccHEqW8ggDB+nZ4nNh5KjqrwNTEIrX0nMdKE0J3UWMRqvRUZVA5KGDFVNzOkBBr/+embrjPImbEaPIuzSm2e3WYkMOk/VIbrFR3Vgph0G5lUPnKHlON0z4ralBMoPTRbcP91b2+cTF9PqXaRKpZaEBudywrxV6AU+LFML3JABeduyejEsNooRl6C0lt4ADxybHCbkm2JebcJBWEa0aVfXcCU3CwcdTf8hFA==
Variant 1
DifficultyLevel
517
Question
If the average of 1, 7, 9 and q is 8, then 1 + 7 + 9 + q = ?
Worked Solution
The average of 1, 7, 9 and q is 8 then
|
|
41+7+9+q |
= 8 |
1 + 7 + 9 + q |
= 8 × 4 |
∴ 1 + 7 + 9 + q = 32
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 1, 7, 9 and $\large q$ is 8, then 1 + 7 + 9 + $\large q$ = ? |
workedSolution | The average of 1, 7, 9 and $\large q$ is 8 then
>>|||
|-|-|
|$\dfrac{1 + 7 + 9 + \large q}{4}$|= 8 |
|1 + 7 + 9 + $\large q$|= 8 $\times$ 4|
>>$\therefore$ 1 + 7 + 9 + $\large q$ = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX19oyWq11RKTxBHYYhB36yoxRO4SxobQuW/LHdD2fH/FDhWSPlh3Vvp8lHAwt72qM6IekLv8RskmJuadJLS85/LUnf1Vit8gX1pugIFnEGIKQCVpseU9yg+0DOTEsa0/kn6a+XrxXDQR21tYVQNRG1Ax3SlXKjnH/F04g7E79J60ZCmYVBVdZuUJuXcXrEK6hhhj7m99eocRcBKCenr3EK3rH8gScoUoWKMDwq+UYM7FnBNTlfcaze8GWffb0BU7OU8GFEp0LyKEShdL6kk8xJap5VAZy1bv8omQBUX/xnQfBgY0gyapEbIlZ2hu/gz5dakrNf6YwSZxyFiG+TUtpitYAZ40rHVcx84SVBSM032MlVONYYBqfrq2i55XqT3MPjl9UOVOZep8fHmBQUJdSLZbnFt5/Gd2DFjxL16/hpets1jJJ/fWmBuZCNahXTbipr+Lvwnr4WM5reujj55xosGuH8VQ5sU9ea0p/D3g0Moed7R+nXDc3K6S9IVJdXAocBQQ5Mn3GR8BD+Mr19OKEUk4Ys1FHHGNE+iW0r4KdGmQl2Su4EZXFGEogJJZAwYhDeXron827PieRCAJSSWIxqRF5L4fh6KeMAwehZiycNT6XH+XYm2j1/KKp1ANJCiqI1Yc0RrsPrR0SVdCkUB86e0/HCaG/USq6pVzhjok/vxODs82fr9wkc4QW77MOf8/HOeiB+H8txpwVcq8A0h6AH09RoJ+ONWYSWur0uNpWKsxTZHgyYQsEOElJxJqZ9Tjq19t0vfXLxKcrW7ugw5Al0njWsAShfl7OQ42rKPzNJhmdOHTjhh/xtKvvLoXgPKZSLP7yr7yGWkSfzdmLazQkWTvzoww1GwLTR4nq7oZFpa0Yun9XT5VXVQ8jfzSWckCJEJpMU4Xt/rxzWHx4qZIogw0OBv9NYlwTEHYUDUIPX4LltJlVB8jxMp5XdNbyjFHeuAf+gcn1Zeachl9rNPXO+LmJrrpm2RzUq+Bi/1v5r1lCe1qBLF4pOSodcJdKUr5VY1UVILn/9Wf9gHIEYPdo9r+aqearTU2JG+rd4T7XLvVveZFs0PQ4iptQUpqzD9XyvlKJVmHXiu8XE60jcWkReyyyexBoXaylbor0fEaVKn37wZA/pYSAFbyZALonlFqyIuRyKBTVW2aY/cgd2AeBY17D/9PrimGiN8eFsSn+969xRoochU70EroeLEncCBKPImnAnfLdFHwRMMVAuhgyp17p8lC0mY/IkcDe2WkuFSLVwZBAupNyII84v4Xyii5XrC7H2TeB75VIhPliJmslrgUYz5uV4F1lSs5z5yQsIHx8ZO3mxRq63BkxrGyN8U6tX3CwuqnMwiBhT68u2qRKZM94HbbI4og1guCJso7Q8r42elbiQ2E2jbDJ12aomHclEkxDsyqTrULsjxRmWmrECKgAIhm10LBHeGsgVgh0GuGBY4H2oIWymAeg3qQCMGp3/GXVLyBc9bbR9tjCx0g+or72u2M67Z+j76jUkJfHWAnQ1StdIjkJwEWjkdhebT+pEBCYQ0CAnaIezsDShXJ2s4cajbhw22IlNChootF1LLFXQ9Prd4ba/IpleYbM9vjSVeRA2gkKbz7Vhp9TQ7+sxGKkJ8P6g5a9GCgcso4djTizV3Jn6eZhG1wSgEXr5ByTkek99k3oDjQQI/YJLrrs81CaF9hPcpbGLsEr13+UENnpAaGr4JIKROhuT6VtUXz9J2YB7a3IpIieiUHenn1z20OPvaGPpsgLgJK+T4660CB/+2xwkJ0TJcyqQJx0UGFeAVAOGh8AX2kzFXqqpA7GJr/KOcsFFcaKCW38rgkD4u7TitKwVAECbUXUkQhwu2FEyV2bDKrELhlw5Lgjkq0wPI9a2NXM/KwQgQBLx3vw1O4Zt+QavZGHv5ldU66Phst/gNL7X+RS5raj18J3FVcj/pXq+M2htNE2sYsP6UD5gpKwRFCaC0WTCkaHV7H+Jvr7BPzU+dtmkc7IPAc7oI8YOzYR5btDUFKeJtgUy5D7LPzC79pnl6hnrJKBdnPn2mlA6HOiVV+mM+hhLsHTmZE08Sizj+Ni80Y71mJ00FVOgrduZeJ5HKy0iDShc2j8jbXAhgrLiUBhvKh9bsA7MzWNUQY1owqSpNaJgWc1pTENMdJV30EsqnUq4CZEQbJCZ/BniK6/80FjjxUSsntAj0Tpzh43jlaMPCmDLPIa6823PUN9imBdgDnRWJZ1iSzuW2JcZFyS93/4QSgC29vPiUlFzLt0A+WaYhGiaws6zxcZIrMGkjrqNm+n7hDHI63sdQ0XFFCxMNVDVgfIMuHKwXza6RVCYDu6RrwY32jbQRH41OJrkaaWonkXzmaaOLOsp9qEYpwPziRj9Z5uwVOxDnKMtMYATeJDqy2n+Yvmj98SpDTUMWrCioTqjxsN5pZKdYqazMMiz/tXzgD1I62N21Jv7iRV7KR7p5uwd36nqjplALtOT7xsVbB5OJu4L8aC945RA8RFu6aufmuvVZ3/gUS7FvXVv1s9v3eUg9nUmxdRDQVXZFDpe35DW8/38lx/HcbzMthhyeOSRpwMuYo4RdCHOmDCBrSO3JOOpbaoHmgjEvIpa2lGQenE2EgCzVBDyLYVJXUAYHJPqY4Zp8tr8qZNBCJfik+a1j8ToQabuH0aSHMWCc1DHeohEdBbig/Z/Gl9ayGs7Tj2p3rPH3cbam61bytCqG+qJ2p8USmILrVrc9dCDsOTWRsaH5htiVSJoniRETvpwmahbSPfdAxiE1teUspDLAYyRJNm+XnsNSYOk2Mq8kgpqHTzdYPfw3mAHheF3exmahT1QXqJGdrhZ8n8dMjHpZawrBb9Rmu4FNxTY64AHd5bfeJj9q22Tq24N/7bllMDJBb4TyJZo9kf1UYh+/xE/atog5A7wI9RsHMPaZHDvhLRMUUySEOTESqVKE1nYbqCsoucEFsu8JftFapyhouLGUhodpDP5bTOIVkwaJVSsNNtM48FzWfbjT1K9BxuA4Ncu4tbQUK2AAJclUnKZ9KSwZIUrVIR5Q+dXj662jQi7rdu5AsEVvJ/Xr1d/ZroOapN05x21Lz6d8JhMD/CYvPDIWJZrzZaiUO2Mw1Ht/6rLANug7oXCjxG/9MJRs9PmG9QD0lM1TrszZf7s+oUev0Xg4n+sizgFryuf9t1+BQh2g2HOY6ofbcWBgY24Zt0v5y58wsCqv/UXb/dIjAlM0ix2Cqh2v55nd6Tp+eDDbqtPo2UZMZS7OiOygJXDwYKlTkHPcGdeNMI4uQU5DlssqsTD0OhRF0EzZXL8Iq7Gv9dyKShYxAvHDvNur07WVwYkYNndUcL3u/VH5kFrV/3KvCTexJSjlbASo82dg7MzA1L7gKH3MAk6wI1hhQ4WI2gNU2WEQcjQzIyXWzTlxXevoFE8EvhqQxW+y4jQKmsa456XINwJL7O9rWi96PhTus8oymNqAtFznRrIGGUKF9/aJs8gl0DdoBtPbdOKrFv9W53hlicB3lkIY2d9GOrgRVXphBANAsSCDPmsRRfF2bwLwytF/HPAULW38919bL0a/+OKkhPItCP05w2fGUovMO0NEVcvzHzaOt35hgKysiIxXuf2tz0W7qDgBUny/oJsqwYCXjnw2t6FaEhLUsJfJD15HLrkISgLrbtwE4tDffIatSLapV7XVgTIoSVx/hMMow+UYzUQ7d8tmpDCoIVCJzKmtA6cptc9AhOIaBq1kiEieAo3Ish6ZdHNEbrfwhxHK6ZAXZA9v2aycTdIyuzuQwauFi0yloxpP8JM7JZHEBzdfiVXhLB9R61HQI6F40cJOdIPVjo5/4It3NbolsFmr2wb4qddR3l1gOrbrZnI8O42Fj2nIe1vWvrBzVGfNKXRn7gSPLVcWmRr72mt01sZ0o7x2Agmv82VhoC502HZ69jtU3CKklEVaac1/lnACxOqEaRSoqz4fzNKcpPjWfyb4KmHsgti4sQr7v4yAeaWrTn/Tu3vs+AGO/ah7WkHDSgXEHnVbq3GG8ZuGPGy13KWjSWQEXpOp1skyG+Kt8z5/pU/tf7F1/slAUcY+PPtBUD8BBXPnBWcAHFal5JqraCYIj7IIgnbfpJqItcqLJpI6Et2gQvnUMZUMBv0/0fHwKehncQ0O2MovO9GXQ8LLI1D8uR/qfR2giMaMH4pJdMivVTtrMdCHQ8dOf3Wb2sCmajE4D6qWad7yTphuUMqBSf5LPVrTAAgK0ZeVeRoQpEPK14GoiOLzd9NYdxAu5Jiy1kBm9mD35DHDzOAxk2IVVp1pN43u/oNpoDY+scIDnEDIXbo8/YSQDLcvBwTA+uvtv3UUDoype0ozBQt5o8cDVwdVHtHlxlGcAiqMWE5dczTaMz+zWIPOw3zq/NJmd5k0k+g0YBL/Huy/NkQvX5tDTSEya3zF3g8tNlp0xLJ2yL4FFzBhOhizFIFDTJm6XA32bvOOkc9rQWnaNQZZZbmLYdxca/yVSzrL26pwOFS4CsuxCBaq9hRezNzhPQk73Ozs24kmnLtgdM7Wmp5UPdMJ23zooW+cSpZJBdH0lFDQKr0Hekxz/WDLo9e3C98svVUsj2PAFY8VYp8GJou4omuuRqgLOBmbtu/qoPtivXSyRpq39FDjiO2N5J/lUEkxMUZyr2anKtPHoe3vudb14YgnzcOQBN5WhzSmLRzcmMQuQjykHVur4CQ1UmyHCwi7L2eYd8sWrgmSrnfEushSuzgcpyn+M9DNDzBPsTgCJqmVKwkhhBrdsYyjQYXUkqhAQEYR7+gC4klGMsnz2hrtJpz+FBtQLSLgIbC+R6EBGabMRVAu9Cdwo/sl68jzVIren26s2+IESl9v9Dg5yXsbpgWvNh4Chakh7xHehawwvW5eyBrjJtGzxYvGqjJfAOjeVUIEYId3Ox5DR3MnlgenkcOXJf22xqAc7us2vFNwHE9arQtzcxlIfx96H0Ok31twdgB7EgibmHqAVO95XCj1KrbjiXsIH8sUfXiOY6NHBX5IbpnXVuuwpBK7p8kyjYhxe5JpnmGIYc1HXeymy9UN5acmLKItYcf4xXBjFsGBobWKycB7Z3pPWR5zu10xp0WPdcX6QTWjH8omv1HEPbmL8bEdh1sCyRX+ArQnN3DJPzRrNzkqNdlA700TJMZvzT9h7dx9HTM+nioFyzeM7roenjVnrzyYYwWQcKgG7aNFc49nHjUhfvWAWso9gPN50GF71JBFlL3/dWAP69ZMxCdfSCFA1Y+tL+pzZGLt1/FVRTp0VzX7lFxjMxZt5DckPttRWf1EH/gyMh7B7rHptzGMM8bZvb8/7PsKStp9uAxjzpdOWvA1Z9ap/MhL0D0BxUXV/zCsAeYD0PUHxONFJwB0V97LMcKZkiUwPTa771TdtnZFiqcir1FwgfK11GwDvhAsb320Ffi9T2vEkScKIGvl4yWvYG1DZTylbqJMDwEtEB4fwIAXPfOj3/UvuzJ3+VWaRP5euKjRcPesDAukVit8WXk9dqNwYh6toYVefiLA0JiTQFSBWYTSltGoPxqj7GyRbleWJZZYw1Y4LzXqvrL7oy90SUWvWCfMia8bXx4cK2iMKJUiO6hn7Qapxc5LxTCpHpqo6mpNEPYmhA7JiPlJTxK4Uxl3FgavC8DiTuZzWGD8Z887QofvFb+1T5KOBPCubILj9DXN3gH/1iXs2oPKb/4iI1ZYu6K10JxuVUI4DgH3DJDXV++zxI9OldLpRRTnxxgOV65sV27G5rX42ZpQzoqVKEiaIdyyRMmNtA7bLWwvF26B6kyIK8eacHto3QXOT/PiVk8Z0VZhQXdWRDz0brHecc9i3Z91wKTRvEG+z33KnzcUzrU9E8ynjgf1VQmHSLliVjE3cvgLGNiyAMdpqp7iFrUOipBRGWaGm4I0uzZSlHrXPGhJONxbtJ3PYSX7DteQrkVCR/vKFcM4T4MH0DXFUO59v2UFoV4E3BgryM6XBGn66sOeVN7j1DBo5pX1An43Wd1B5LcZ/A2tSd4lC+16jkjICs35FLxlpVB2Yps3x/gotmFPdvEY2WSjqHwQCA/NWJWceO1EXR83GJ2V2RlFtx4VV3tyUoeu1P5TVJIf1RDBWjqCxP/lF3nNoqxb/2CBverlu9JL8YADJW4XLUuRbuDrDQUjx5pyRmjnCTKQ/gLuvg65GSmccipUTUGp8JEGRsm+pr+xPH8NRTzRwAU65s53jAzPMlusT7nc/3vSlc8F8X0c2WEF8VnYt68/klLUgDozQk7zWYsYUPpYr5S+adTtLPPjr5xmWTM/ZlRcQwxGuOid+Zw1PhfuF+bR6NN1kNnCVxp/g2XQYkY1QHbitJXc/uacjw1puwnh4+cbUQUxy4cRRWLIk7+A2N8DyvClcR85vivPkniSHiq84NKFQIiSeue7tek4nCAIPTqTokgUvu8LJhcwAAiIOYh6eO/uS+0NFOg3l5uADWca+gXIwIw/blw+NPAP7EYReZ7zKasfCcrUToUJdKBa4dDiSIadO9TaN8SwrsG57sy06o7zmnGRLX2m1LwziSJOOPq7ZzEIdVwyc3J1bZgqgHCdvqiBpY4a7IDY0/b9yx6qmK/avLQn/4Y3RnrE3GL02R4+wCoKxIXpaVn1hbFXhLk2r9gBPdpQ35HfROtPq42Qfj5NaRqCKWFrJ58gZbszt18U9kXFWUZZ1ftTNCk3TtBmEMbK+mRacI9n6SbqDJ1LFXNGEVkRiQs5R69cbBWdFoLU9QhBmbL0PQ3py++ms20ou0v1ADjgDDVq8T9B/bfh6Nz+NXWtnIx1fLjki4GeZW6I0ryqDH5pQBs44/uF6VIUKX/T/9lH/XtoFqnnfTJqste1tHV46Cib5uCF895JcynbsZ3+9ILm4a3Wx5Tiw7jSRZPmgTPT35SNHo4XtLDLI5FrBA0S1Q/ZL5088JAlmgP6NPspyBpgcJNPmv2Ry/dcCh81YqnpIA9kxIcm8aHGty0ZHhRyN7acjEilLQJzind9JCkfAZHPybwMcHVXNm4feTglhx5AVIeqobDH2BujHwXnNWSeOc184SlAePUxqyF9rs83wLnrcYAjp3kpHopKRWgwDAvYvjsY1YHR2F1V7fzXWLYQhq3K+YcpFbF9hq/mk7EouyS6Y+txi4HMO9ZvwSXhI4oqR08JnN8cDTccjhemMZjWLBfwnUoLy/CSUzCGZNzm8xG28WcSdlnunaqHMxdiFctKRIIcT7/Eh6950CF+8X7fJHyIeI4ghp8aRbyHUcICpVzAFUFn1uVFuZ4a0SDl/iPsahiaz+9qPc3rVUOauVVCZloyd45swYrSY1XCetJ1ZA/dvRuxdy8SEKsiX9dOuTfJEdJYxZUY4MUQBgLWw4QtSXros70F/EUd/W7JqjwV1TrlK2pP5WQhdZlh4OmiheEwyk9YzMhHGYzsYJEFBaZKwAy4quhM4P7076BkXzyUEgVrDMnWp5RoprW87G9b/1t4SjLpHmpOKTS336rdcqvW06sZRyorgPR3EnYY+BjIfIbUDXcTZ9ZzcgX0U76xpldeM/D3P7OZAvCtAajsOmV76W7fqyiMiyIkVy6T+OWQzstXWKEaA8xWD0bfvFQOIkQ6HFT88g7Ojf/mJlx1fOXlDBfsIYkVDewrygT7m1X144I2ue6WtIqcbUZ6UDP6/PSFg9BdDEIeVUUgGhlWbAbwjjUnD9V0C21UlqvfVdxr6wNHyBAJxnW0+39KoNzrowaQlexEt+dmcecWkHfQrqL3ByYNiYPNE0lzh7TK6rHs8QoDIAjcR/RkmmCJ9tJZOz6sCRMRbGMScUzrMLaD4T1eoWITXjValz7NtkXeWiwX2FCR7NkRpXEVQdL+cVYDzJ+IL1/kypyDHUePL6jfmUztc2thf/1WDdU8TTiS6x2XLZW54unPvaex5U270XxUcLCTLXazofH79sXe+k9RGya1cCwW/m1+26WFeK4buJKFYXP1icgIS+m5uyjdeMrGzFXX0uwpR6o/0VGN+FXAZfJsCxRTf24PLfLIDQ6I9izk3iAcMeVLp4IuutKQRaUfU4vlMs0Zd49NVPr0qICWAxfwuw5F7HybtGQBSO5UokbgErE7WOmESFfcekkMUo+cZmZgOx7jxvWEX9QKNYSQKJ/MFmoTOKFof6BNUVjSARLOpl7MtB6CxExE8IwVLkgW2AJHdB31sq9/oJp9Wm72rFtWnfOwEqvcYIpzRZrdCh9KNbqYK487IgH2v0hvCkC+/9mwiAxcJwW/nddJXRvZwHM8f+SZu+Eqy6RY5gnanFcYuz/RIt+TVIRF7cnyV1W/zWoR6dm5pEUZwjCFlZq8bXoTbNsD/qGsFzbhXOThtgEHHDLsCKUIXqkKSHXa65WgEitHs9TnpeN4H1z8tYaX5vbFjEZVJ7xwfpIoL8r6KyvnBl6VkSuh+8S+uFZXSrlJi/zurakZTYeaV4WzuqGLbL/6aR6Fd0Oj4DQ5p3IaiyIdwklICvyNreHaMZiGUVLKE+RMYNOvXN/XyJJortWY8U18DDGC8idK1lRVQa+uvNN8CHm7M2GeLhFp4nc+1wXibL5sNct0gE7U9HmUTHxjGjU8ByowMzoFA3KVmtWXGuOkdlf4zI+ZdNHwXxLd2B2rnkkEmQUdAgFzeQA1jQBxw2aueLXbU5NdIV9TBtkQJMuu/yW03/THKoyAmsGphoCg6pia1clYSpFQTbFHVK8KhuI0mEFgMk52FLEnWgw5rjFQLoOZiL+pbVY4NSM6mC/cU8a05anW7Xm4Gvg8SHESWux2x8e4n3r1L36RrSg97TErj0cPlRRkLb6JUin6zSLycZGB4L6P8KbXqH4Iji4YziLOG/yoNx9I7O4mNThwFjRFnBWwVLrcvRkrUawXWlqf6fktdqz5nCkMNxZoCsva7HNcQ4FX+FVwLqz3vq1jd/ZQpjbEnA4C1ae99jHi+OfrFVdLrCh571MgYs4a4nHUhvlHoy6/ry/EsWS9gy3ddQzXkjdRMgUxMH2n1w1F1+vFfJWwdWIWtQwG9kcyaVwInVPofIanKQsl57pzczP1gG4y7v1x1jBdhMQJ/HcmJFHbmCJsTTslWHGwtJub9vmGmJZVp6SFoe648XNvYTWzo8MIZRaQP7GBclmOXiQu83qk7Hf1BWXglnD71ofqYwLwICCgwuw14LvL8UO8gbHVJ6wuO5iNSZ1Pk7l96lBxKaal95uId72D+baP2WYm1EtEH+LAGNRgOA0DYAIWZV8hUgCuLPRcjbLlgcwkh+746BIzs4T0hf6O0tj6yG5DgPUDHeerTC0akprOzeDR9dLz7pRejHdoNpaOoKugujHGH2mOKZBGvCzS0pNBmRmCUhE6sV13tENIAb83r9oh2hflHaIrsb1aDuigKrBd1bkMuaT3Seg1zs/teozFJZff4umQM5+uEr5eaxpvi3TQMxeWgiCgcpUOWU/1XVbkCk6GplX/JU8uSatEu9y8s1vYA
Variant 2
DifficultyLevel
519
Question
If the average of 5, 12, 19 and x is 16, then 5 + 12 + 19 + x = ?
Worked Solution
The average of 2, 9, 15 and x is 16 then
|
|
45+12+19+x |
= 16 |
5 + 12 + 19 + x |
= 16 × 4 |
∴ 5 + 12 + 19 + x = 64
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 5, 12, 19 and $\large x$ is 16, then 5 + 12 + 19 + $\large x$ = ? |
workedSolution | The average of 2, 9, 15 and $\large x$ is 16 then
>>|||
|-|-|
|$\dfrac{5 + 12 + 19 + \large x}{4}$|= 16 |
|5 + 12 + 19 + $\large x$|= 16 $\times$ 4|
>>$\therefore$ 5 + 12 + 19 + $\large x$ = {{{correctAnswer}}}
|
correctAnswer | |
Answers