50042
U2FsdGVkX19mTaHRRLyqgmPFKG/GzOVFQkPpn94mHBnMEvJoDY86dTW5MAo1PMqFn5s69q4iax4JiaL613jRvHMmd+7nMq10R3vtroCMvciA5DIR0Dhk9+D/lW+NIQ6K7f5Wn5ysvvSpT5uXzpzGfFQgD3xpRSLFJYbawd4ZTAKZV4enBqXsEu5+x3cSBgT6K3OOtWZnlz3eKTr9G7/BD4HX6uFf1n3sLb9f625JrE2WkBg9/r1ulOu5tifDIxgbcLXdgQocTIkAldR1oJd0mCNN7UC0kd24o7FTbFX5nC4KofMShYEGI+vuahcipcuwQNXX0Cr9oVrAC6pOFtpkZdAiH9Owa8cAx8bAFiJDO+yvXI6tekUhAdv5Jd64/8jPfMCei0PgxN7BtSWI776hAy5tUAs12eBgwbrTHYXrGLmojMHGeY2SBRqWrICnSNR4fe6qmoj4dQGIQBYX+aBTMy7KszKXuJ5/kEhwGXPPy/Fxk4qyKZcVrgieu210jvOb4HGlbj2huWmvOiIEymzdc1V5ZhsWCQxQs3Wus0B+8OOJg4tWVbRaQIh82jaY83wuYRFC8ygK6CepaaJO11KLKZmck1aNmmi6bFMfzhjhsnkg9QbyKOB+lOHV6KjCN4zDPcsao7H5Z/zJ7L5g/RSwBVNUgvLj1cBEicSHnPsQrGjDK+Rmo4YgDDlPKko4FO3eP6jSqeq91X5/8/2iFuBS3zyYTqyYPO9iwDBcrnxOhjqeDj9WvjnZDrrOAN6fqdfHoCYnYDnknem2qgVJ2reJEQ+vGdoD38V5XRXLslcqKvcbl0cVZpURoq0khLSOHgk2tPlujg3UdiwRV8V12Ap/GFpajmgA+FSq0KFLklUG/hB6psj3LuhfW/AezBDsWg8JIGTvmS9At3U7YwS2+/nWKqyuwBJI8QGsSX3XRCAZABxY+sHZ+3mIx3mV9/sYuY60bWdrExw0/TqsC/jhcrmOUa06zuZxVDxvTr7MNaKGB2ibUlnpYPMwN8nDQz19eyaeA1nG+7c5Rlg6ueB6pdH+3fyUhUSJ8Dq0OG8IzlOBhybBFEPX5zfAyHBxN72bk36FGcoKy425x6xCTI6I9sPx3xLfgFfchdyHsNg/EFr3M01vJ+QMXdpm+DhQbx91WYvctBkfsPPHtOJqDlEYAbJhqFLge+FNSAy/XE2knbET97BzH7wEl48UYQzBXKEbNQP/g5WJTFyD+zwgKrRWF7MO3zA2BE4AjbmgKyIpPGWFj/9k8ophjkb9MVfcx4EubbkNylEFGypBuW4uYEoJ5VXZ5pfXVhABFJhFalpS5ryU96hgotI/IHdpZ8qe+NTNth6cK7/wAxzHjutTjpdtwP8Wf/m7mrIj0gCUpS+AA4kNHVyZs6RB2jsA4JLTcWKTRY7ZV2SzUpQ+eRW2BJOwqQyEDFr7xJB8h1Hgt+k+OAuLSG48PujnfckHcWdmBnjKgFLUWnjuFV69QGfDtYUoRpBGCpq5WQGzkKZxIQrpgJZ05z6MjG23OlL2eJsdXnO9jq42Yq1rv0iEo+y16BFnByMIYDBp5pDi90u4lJ53Qqx5bjdcizdP3KhY50Na07od0Uclq7YW+kfpl0uHlCoh4xo3BeS8nrfo3zGgxgLOZGjbMbyzCUu+owLuxLIARxeeDoBPUanZxE0w7+xPkkrYulivbFYTOeJH39XzWKyDarDcNMLOlLQ4uJI4+OKuSmHHYVEb3hIHuN437wxYaOe9xEKEjO6VRw6Di7d4kkwooa2ZGre+KKsB6PFp0Ktmn1QpdYeitm9HQdADE9kyNqjRbrzKH7jXPzVsIhFVjcyI0lKjhBGE6DbBkHLZ3Ft1QbKLTWsqHFK4KCCRE+7GjjKOtUDIIbW7J+iq/G+CzoHSsAUsDOOu2qLgVsJrQn9EzRK2yydleq4z9ajuL6TT6WJeV3O8jlxGLcc0gJv8HFCdZeKSU1cMPeTKP8ojrj8qQ/g7tazySIPZUMKaOMYMvtSG4wiPJd/vMxPtmJRfpDV7vHVVofuux1NnvZBPyytTPGogaM1B8d3LOibsSfNbw16hKMkPjFWXSZXFySrqCmk2asoaQr8QRP70KZL7nm969rcNiqlH4Vc2F8Hnp6iTgacfwHHglBNp2Ce+Vrgb7tyrOBM+laPhcSq22VtypXMoucsdyKnoCGoRHfwJqZ0Csr3ykZT1TRgUZ6xLpGiWk3oCuiL3G6BAyX4S/w7pFSEovAxHEyh7upZPEMAHy8C4J6fexv0rbEj1HsmKlMVj6DpRi7rSxO0Z7TQC+y4NJFSqp6WV0HgOpcsJvTPWBA87XveGEdqU8FkwYIOLdXYkVY5HkfmIu0Xai358B/b3kOe6OZiMp7DaO9tsxhYXpdC2mTM0Rn8+hC8oP8cqsEL+/RRbLTH0JD4y+XL3WyMMSeCU8hXMb1BmkQQ/ljRVYGqKMn25W4YqFv/AfUvni1iYerO3nqSbAyNCq50+eqO0f3EfGNvWnteOCi8nxdMuGDm9mHqpC4NAklq8ko2cJpsI61i9mKPeEFDlNfc0m56zNMev9yxfw4NcLF9jF6EzGj1BiCVYSJTVEktO4wF/QqU6m/fKISllmq19GsKRXmZVHn1iiykIt8Fy3GccTdOxzi+pe0zDbiG/ZeHIl7nQiYxZAZr2i0kL2cZQGhvVHOy6MlBy33mL3k7oktgT/e3kUNiq/J7WyqEkGUGOG0TKQQR9kkX1fxv4MC1ZYLxMH55ehzTwOS9Rha2JsqJxDVCfdFzKqGcFn8TDteT7ZfgjTP6NbtHRBMAFeeaAHtrvU5MsKeNLHpuBJHclhWpv78N6wF9EF9tj9QzxkyIQmSq9nHgRayA6UeaSReP0fp7w+aAjj+tvNyzqE+kFOSREQnHL6n4t3cbCgzkWn9vsSMbI5pNQeA0WPa9euuabadJK9SvltB9LlmrYNG2T54jX8oYaAcPbcW8F5S+DVl6Rv9E5vUpVpTuWZx9DEdRZJD2abpg4XLo1ofyrehPWY+rWNFNSIpIgYiWOItm+6LIE0uquEcfkzmQI0sh3GNTlxotPRCS7KTW8TGvllkHYvvGvz5VbmGRM37LOI/0CiFmgDRKKCwPr4FZQg0TCgiK/bxj1LRgGYTJTCpxDoHrWPWR/fQs1tkj8Q0YQX7KGNyJSlRH/rUKqH96y9tWkW+VvOHzTWZh0ru1bsDu+sXL8E4vI5kjrpb3ruhCG3gwh/1e6cEsF+LqwZqt+S+INuforBCNphRwJXY9lij2t4FxRWP5r4iQMbaB0eoWJm+Ds2hIYDfWezo4xoEkLfVS2Ptklrt1IbwxHxRrDLM9OAnmWeUVCP1QwmqFksBefrm/r0xDim94KkoKpij8qtYKV4SwO7b7VgjJGnDp/ofOxR72VxXK2NVy2X99gzb5uA88b/JyvCqAOaCLyjE6bun/ac96nubAd5BlVmCz9OoXz0llB3tbCsCypgaUzM1K1qPNBG4ysnbRiyGf8my6N3VFiBiGpB5yTvL17K2jzsN46gK7H6iJr+G1EizB7U6hajBDfIbbVhb3bqohrqPkkh6HHxmohe59X1fWLvZY0UBaWsaIy2Qf5pBAksmzcl+UdOlvHUwicpVrGaSGcrA3iDJ8zCUgK364CPl+vOVOfmAYpNw1lQpFkftmJ+Fo3agAl0jO7v5OsE/ogyUO5I1UymjH9eefMqabvvjuluNKZopLgerveYumzcc53yUTZzlzGU4zRuHh2qpaNb9opIZ25PYsoBlD7NXlNTNgz0qwZ01ReR8YPeMp1H8sCdl1GVMQQivHWv1vGYxL8tmphJEtTD9Thx3kchI/Qx5OxP9zBgTmxyPIYt79N99pBAbUX8Z7AUlnTL3cyrowy+aTmiG4cGmP9UNpTZSdaJrskm9MKtkVg4QZvtrrsGaFn5UclWnFME2TnZ2Yt45j3koSCqjJ/x+FKjeH4zLJ5Wa4pF41Da5j9VZXgHaGyvMZ7v/8VyYDUtINUed9VZHqAvtAf8SXyQa66i6kDwraZ4vv6P15rewvnx84zzOOXeAD96OW1LMVfbaLjLWFINx18n0xvhBsbKL5rCdS5zebLWW01kxaIytovJgKsWXi+nNvTRO6QFQA/iE/HojnUzIg5z6vaSzsv0O4YzKN5Aq06CdMn+g9yC3sXWi+Z8ROoRfrkH82rj2fEyU8JA0z5nJWsTdpkGelZWdYSnB/o2YU6QQBg7pfp1cIkgUlOcdLfU632lUIcRxiH5V8tR6N588OR7zhYBNpiNrg2d5nfCRPygr/aSTJo/w0n9MLYu9Hl5tr7NyZ8nFUiaNE8Ah52HYH619DOhi4++pcLOJa86A4B98JyCMeW8oofYheAw4OBPnFEeYoEjCJlmTZ6M3gp0psoVaPNn7b337wnQtNakvf+HWEIEsqbZQWia9WiMWPQAO0g73UeDOo6mHC76r+D/qRypzY9l25zg/pXcYVrrVB/SYgruS5dqwnaKXbQnWt3jK/7qi/LB28rlBqDZ7DgYOM46yFnuikLViQKeHlPh19nHuds0jrkWixg+eAbSjdCxWA/JOXsrWEZBIhazG3cakmMdVm67Jh2bmYHRQLdo5Ib3SiUYAe7O40v1Ju+Kew2TyUJl1DGjAWDm+pfbub0ucCv7+sPn0Accycb6MiyYcGCfMyN9wMNWHC9hU5CcYmzJu5YoO8adYggwXe5s1+CWzcYgrLtJIynQeh8u9Rezv3SsGHqCejDvx8eI6ruPT5knnFzLPTiYK5DnAgNL4iQvbeZBBfTB1Q8rYtMQtkFrcg63qu0A9BKHJutFe/7YL9DDgaGK2ERCiTV2u/2LLt70WPZsrk4UKiBfWpD9VphD4f/YXAB73+fKxjHS6c38eiozqd1iKp0o/k9to2Se///8OZf+2WR6JxEgcQ3+6D1s6wW8uhJ+0HRo2xiby80zjeTaroMrBDkIJNX2CGLR4zqIwTZSd1vbt4AXnoyzEEY8dPFpMD1M7HeKmulAbwyeA2i4NupoSr7xB1Nx9te/LUlaqHmP8VC4Woy53lS7UxL9YGugZoHBC98QB+jWUF0XDVV6qmj8yrhnWi716QWU1P8+2gpH+ELMcPGG9NUB7dW4/54yvmfYK64Swn+t2NKWeQaypgBwPgGva4XszCXdIZiX60a/pQXiZp2HGKLX8SYs1wVfzCMAWJjXe2w/wH3cuTJmEdm9TXwZBnRrJnrmCRPeFYiWxozSUEu11naz+spRuE7px7UgoK4oz8T6o9qG2SMQE0S7bt4fTXBRFlkkfOaGe+cvJ56HBW/LYPCfYFBSQUyYrIHJVArJt3F4qfav7ROkrreuMlSmTCVjBXq9m446CuKhn8qZGBhhQX0Can8Dmbtm57IESyDQ/wXAtoRzL62qkjnqQ5QCIFB1NSq3M4WIl1yF3mpAi4glFBePgR4fXfOBZ7VlP4yhmy2TYyJW4Y1GB5PBDBtUyqc9vkBQ6Z8d7P+qRyN2HU80q8dHlqOKp4HXYCOvDyptQQswHiKU5Bz6YlV8eeI+WEvJAFbm0PbZelHC+lGcuXRIJzWhEpqV1sD46tDH8BaObLCRMkasO6H02mLLjjrlUXZ/3cBQG5H4ydhgH0qOvS8RGpjI3kkQMMfeJrFI4b3HsphuAUveneIQY5FGABxILbWNu6VjKqBF4CTBw+KFnoB2LByBFuy4QV++JCaL3c/LxlAzzYCB4PFxNyqZscbnQsxCmyvlfICQ/m482a3AqwWQ4JvO/BfSNCB6/m8oWXZF+Q1Lc+JXqteJtG/YuuF/ZJN0/FVBbWkJ2VaztYxjY7LFKa35r/mlotrULVpTCnyojbzrkV/GSyaYOAdXOxuVC/NyrM5yMaPKKESpP1w7nTaR9J9yL+hevazqDSHXhxfOFLr730YoVgJcm/vF72xhvPDr/sISmjqMxRNLsRgi2TmpHVIp6P5Xdv5/6b+RPwY54hi1c5NETz0nBqeKkNbIQZ057XTut078jcd+NJShYTFhF1bT1yjIUnNEW9F7ar7hlxbpAJHOP6TscjzI/y3wN0PTdqxFcSkTAL9WuA2yKPJ6CPdsCggxEty1VAi/YLNvnq7cXTcM5OzdeQBfKwjbm3jqrj6OTPoDxijNur9fTpnW/VNhuyoqPdYc1XC7lrDq/BTYfQpTr+t8TlO2F3txkJXqZ+r62fdthcbIMp2XgTq7c3b9jO8IBDmaEQS15XLBIyERb0chmWYg3kspQDXu0ZhrJWAMPgCGvg3oxFBZJWUsTwLdkUotesY61FzhZcud1B1CY8Zk3A6snzmDsWzvn8fdOEJRlj+LhPV5mPtJn7dg63/11BG7KLfHSFnph9dAiozHf02ELGYDpk7L29Iaza5hOnyUHTzmnfc0HNdVbvzeQNgdp+mOfU7lThb/IPsDSLp0ayuOvtEnw/UeHXMW+hgxH0Z46TuA4dLuD4l50itntoYcoY9PPbYT2SmsfJCMPLytS076nJT7RkzrG9i3Q//xMGzzMnRO0NgF64pdyOGwMg+HPiOR/McHJaKcvuySJhBiMZaJ04zNVT/57kyrMGCNgYlfooJF65Qyw6dl1JWSaxbekCpFJ9gbfxHtniMcpPeLGQc9AWwFfXGb7Z73H3pVmUczF1pttdQWT5g9RRgDFzNR+xndHmX4nfyUAKu6hNEDC8coQ+g3VrHsdVztVhjtkqCDcqvbTNDhSsgpPX3C6EzYDWbzJshUHPzgELtsWpSJuCF37unM2BefXL9sX3O01Pi9bedtcpOBm2CNZX8Dlfg80jEzDC2Gqs+ol9rZvGBwIyBJWEGtYVZe2QdvgijuT2gpIHigyhi/EuoiHnwmSV4Iiu0WPtF913m702igcrceltPiJoLKy6/Fwh/o1KFvqZgshohE4n4cV21iu3TBfkOShDPtqyFADL6fDY5x+iPFYMaEkSfVdcCQqfcyDa1ib69WCpxNPNZ77ojmaedYE3v31Cq0XjCyhW5fh7lMDz9diBkWMJ62jcpC2KFetcNSARi9CoUbrdOEUtSJ1W0ewGUsNKua84O/7wkln6pT52WToLBIv+dSJwUXJJkf7DxerxDGS22Orjm2tYFku+3CLyFEbGd7rvsZR17gMVU3UhOrx5Fl8uP7Uc3qUnBtWKB2z1EGoLToKZ8LriNxAlWffpQ4/KfhUkrDa3IG066+qLTeijm6ViAgKIjzd7T4cjS5/7beWoY646CUxA4Ul4y+4US7TqQqyKqrjZjTiOQ7Yb2gmsFByfr5btjWqRtNwcv3IPgaqC7DBqhwCMnlcJC7Nm25LHXT7r+04D3bFgyST9pmz1whFAOH83p6xUkpEpyOAw16EdhxVaUOiWTAfbux6Sm+bB9xKag77kq9lraPl5vYEGsLA99REFwpnaPICAfC+bJOpGpp3HKzSi430U7fH1fTVkxAP8LabPC9S2kjJo3pUiJNqu0mDKrct3kXcaOFPhirtOtK5+UeNsjS4z7/SJgPMKgxdGz7Bm0/+RQmtj7aVZuqy5cz6krtfZfby65/JwqhM379wx3EQfm7AQOyHW+JvCjLrq2uSLUH2QDvIWPSARiv2zbUJOt+JI/dkvzpz1iYXek0ryRhgHGTGWFEtbPM1zpk4MJDH1+gYQTT15Xm5EnO8njRu7fylSZ9mssDmwB3TM13rlpKntJtuq1tYkMW4iK6QWIEYrISY7AcNAKzLCLoopbvhWNHqR/fa5EE7Qv+L82yZF3r25TOm6jYYtKy7JPRMb7Jkj19432thkMm6GBhrv2NL6mOr4NB8OOOXaJV76tAvjlGnAcExwS1nn6/aniCpL8/958tvT8QzCfAHFg/ofeWEjHb0B6cmLoRlat5rUpbMTNNsGsa3DC3c+4gLBDEYI7TM7C3TSSuFbOi0lSqucNCdwUrO2Xuk/PgkISvr9MX4Q11b8CySDbMGXTK6D9qUykgYdcgGFbmdzSdtaMpivQwlp5mn6mKc+dYEwgtSgGcJDPaT0AzVEV+GdjasrgXYgY4s7mNnT4W8Dz152pTC+uJtrzKrvmkWfX8VpFkW40TcFLyoRnY8BvhKEKOvdAbmvGx6APRdqkp+OyA9FqsNjxbywwLbglnmgZEsJlHnXSKeXeByuqAi+m9CZEtvz9BFpqCi2GsbD38We5Q87/hM+i5epATFCEvHWtjmfC2p5rd1hxu6Lh6iLNiPm0o/VFzVXg9+k37TVp8CwWbto1x425Vn8zJRSbwTWoJA/M8nc80WbzYOahRguEflDfhTZ4F5xgu5DX1k3Skpc0YRul+mSbuES2wsBvsgSt1SB6ao+Oo4fYqwJQA+28Sp8zzKu5U6AI28EVwCv5Px7U7w7Ea4iaEQd36pfQX/2E3fUBYLv2t/qj6/NnmvHWRUXFa3MkD1eVJIostCaJywpLX/PihQ4t0DtTq8HYRasAOgiEJZh9Y7Ws7tARHEU1VWTzIoGPDhBUMiZIm5As53IxpuKq8+hwqeowj1xs+U7VIgHNaRgZk1f2c9kvMn9h4irAeqPjwZO62zG6pxaBQLVON+/aAQlGG+NPYXHQ8fgYOXT0UAo29o2Ya7Qz1GJaRiPHfcHk9XNMyhQRMQ2PegNh2bSr/SZOUKeEqxyq+EoRBXY/SAmf9Tk5t4aosv0wd6eMsBMoq8/+r14JP6YU4RAO2+yhIKcKbcwXPZ4pqwbcmzPFlHEXtFWh3egL6puzHJAK/P8zNFBSpnhTvsEf355RbZ1yKrF+KGjnb0Z8I21Zm1PZACN7DjDUOAagivA/rFjWFp2Eks5UuIRme1uNu3MrA7pG4TRi786EFewU2sVFgIB+0vIkqsT3dLXMzXnLo6bvPh4ulPrjbuDnB0KPmEWdrZ7pV7ktowQceduFxJTHxphsnQoUMNnQpLyGNW4jo0TLuAckhwPB6YOd1VeQQ9uGy/TKQr1e/uocjRMxV7nEPQ0UuljOeFRa/NIgFeJlIAUXv3nTPmmUNdLeeWliFoqK6QUP+0i7QZM0SeO/Cv/T2uW0aLt06Y42O8emUbI6Hi3IDKLSY4FloHkJFerBBw6mWNwR3140N2VNNRXpBzg0Ucxfm4ccWXrDyBhh0mFpE/zMHcFT8Ssybd7atp9kT/pgBucyBcXb5GX/7IAgsZBrIRK9ivrxhauvLUrZmRjPwFiDUAqvAOSS0s45ouWudj51IK2t7UUHVouHuYzcrnz7wHu1a1tazlsav+st6ySYsv8TFomT7O5YGq0IbGAi2jjyR7w06JrzYkX5L+C3jpT/B/A5oHhYitVFVM6m3o2yX2IHBu/qtr0R1R5Mc46IuP9pX6kv8Sqho2kJfyq1BvpqL1NFStKoFVhoi8FVB5wJ1T0Cp7qHBKWW1s8bkkh26bBVcnJ88kQRdm5t5NQGA/sutuN1b+wIoheAfq5WWjxvttmgPDuksjnyChxNvCtPuvb5pfttQK/bmfVlqGFDCKdy75HLFv6r7SPe1vuCCUpGkOopJegFlMQwHqLUdEPANzO21cXRQqB2TbhdFHMJG715sEOmQScWhTFAVX1OVdn/oz3PnYEpTSCGvfOuN6vYCjIAftrviKOe63N4Kng31NUbOodUZsYLLLemWlZIK9fdtPbAefQZcS4kP7UE/qOpELkIcUJbXt9lRDas9b5ZT76mNQPa0HWPNOd2Ou32mkQea5k+fb8=
Variant 0
DifficultyLevel
612
Question
Bojangles draws an irregular quadrilateral that is shown below.
Which list shows the three angles a,b,c in decreasing order of size?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bojangles draws an irregular quadrilateral that is shown below.
sm_img //teacher.smartermaths.com.au/wp-content/uploads/2017/02/naplan-Y7-2011-22mc.png 220 indent3 vpad
Which list shows the three angles $\large a, b, c$ in **decreasing** order of size? |
workedSolution | |
correctAnswer | |
Answers
U2FsdGVkX19RyX3bvLTEBR98f72VQO0sIi8RWovbJmgrJto0Exe/LNfG1DQmSRPbspE4kMaWFV8/5XkunrfFWUnQa/ap1jhHqF04GMgaspMI8JmqzrmVOsBsHMnFOwZdwu8BYWBuv2XjtwxrFYi7ow9vc28wzs9aVo2J9zV6VJrEhhkuS5hh4NJgLtdkZjN0ISdc7sDKPrQu+03L39N4sxul0wTCZTaWtZusUiBmuqzQL3zaVQ8U+q0Ad8by0yVlHLK77IaHdUAsnRGYqtXZx+g//XmtnLa5tbbokuzlQrA1/q2akAJYCSOMIhzWWoOYyuIwbjoauijENPDgqf9cEaXVtXQKQYYi9GZ9thYR8HhXqKST8szF/CaujNpn8LbPSFEVbESkSCeoUiav3tBKJhDlsdo+NjNiTqiutL+Td356GXBuC9L4d1HIIaVFl5JntVSlgO3B5hDf6/0trWjYipflJpGx6cGTWC2zsDALIm3cnf63Z0VRAqLzzqqDGAQf12uVH6cCYnP85Kvp1iE2yNjNqML5yvFPcATyAxFwmS+YCjpd7HPj7Rj9Y5a/7iut2E59WGtsJ1PoHZcKk69fqKEClAD+bgLT0RqMuxsZwoD0TPhdZQgGNW2x/PTDjUck16sZ32ph0oNsb2YnIs4uRHyhnXYOJMMiGtQu8RZkaX3h3PQeRCK9XT1RgwruFVwkOF1PVcuM9UjVVL19rjFOfy58YXx5p3QqAY+KpfUyqs9OO2rqqur5sbTPVH8wluZnZhuk/zZrCMnZXemPh4RnWfsAjkBBLJNgoLyIOlCPImjnTWzgmAivzPcE+xlkITtghdUmqVvBf017O3g+AewacMwWYN6z3rGMC4SZCpJFrMwY9vU3Yvbo8TXRYJFDO/e6V4ktmBpBDrqVVw/NVcrQRPYhVz7fBhFMN2yF/uZ1EPG3wRZoaGj4jMvf/wE2nubZyx+twWBQhEF3SVBD+GK62T6WyGgY962BeaY7a6F4LqaWx+ZzcTgYEfA118KV7yg/9LGNMyN7trCcS1pznMMoJg0SUfFzkFwYzmbn8RS3bcw6/4TEL6N9fkCJU3K24OQvOyDjnzvHpJWHrXPxyz37E1wGNiN7vzzoye3YyF5pYP1CcDjG937bBX4dG2PNVhw8SN7r3ixapPm9Ibk1oGVRk6IsPust3/aJz5wInslUZCuXKzz0OScS1Mo3QbubCY6lREJkp/arbaV2p9nYRkm34vueE7MiopFeNy5kWxnt/86VfQ+fywJBoyLEmFXHnfPW+VYhd98aIIMTCManL+lRDKOYwZmBTcjPVpA1/c4GD7OfD0r3KXVYgk968sgqLzbbay2JywopoLKHAPnu6bX5VqkHtA7308+Wk+AvTqPLQ8MTL4P9uEU302k8FiwaSgcMarvMcrc9Wb3MtOCYqUVY9Y5ZJIeBKXOt21LPQDzer/rzqbEFKJCFGNQOcHxJ1IOfscWpVIF9NIw73p001rrWuS1ix2k2svWy8A2pEjWvlU3mjeyAKkTEtzCnDSKCJkB5Xa1dBkKa9Q+I7T/tRHDy5N2AIY8y/ziICoAO1r+Wc9CQwdbRGCpkjirkOfL+xl6zm2rCzQh3IvaZSIy6CGg4H+O1OmxbwZ3NdUo3KkwayXIVYw0CaZD2VP5NyaJ68+oRMNBZKmkp4TBbOapTJvMvK2C71H6sNbAWhP5FZ6tMeN1dkmEm+IT7awm59Hs95k4vC7WGzDdYyQGQiW272+kf14dFXlWOVw2LyIG6D3A5mPpivR/ICFywA4Z9WZWZ3bXUMhF/28yxFyzqgWa+tWxKM8D1HqHXi2rMQrWWBXxOBYxckiwsFPf1KQ1dIA+yqUS+W36vn3uceQvthn9AinlAn3azQgkkUk6oX0V1T0NJqUsuQmvxUkIe+8vcxonrtpIfLUckl+pJfUsebjThD5llJ1h7kpSSqn5L784xMI4U9gSje5K8qe5DGp6fm+6Dv5dKnheLgEkX4xqBgl9caImH9A9qNsrPsvOXDoGxOgyNuNxcsOqK4PCU+dn/1UtPMDfQ8Lw2xlFTz3kwPfj+XTDS+8Z9IVh9wzJk7UtxkcdasK5Y0iFfkWre0uWkow7XiTCL5h9wvCKaIkTClrI1JongDyw1ijSX938pfMqDOx/Yds2a8vp4K6D6Y3EYoPilW7HB0puRTpC2TWI2Afq2hgQsZJIyGlee6p+MpIa+w/Tnc2hjXepXcokGcc6zQNwHDSOYM/BycYeSox8vei5vZeJdcLe7Ala6XiWtInfd8TBaRbBOagDl5Ur/Ldjdj+4KfMluU6yGKzO+uhJrmX+iFUYroxhhlKU31iogj7r1fiRZIxVPEQ/NAxEuFeXRIdVMw01mz8NHPs2ra1717sl8B8ehC5LdHWvCZyw5QW873eu4+wW33tukCTGJrjxQOV7bPE1GD/lwyKzj0mIEfM/7UgdJwa+mNygzll6oTl+EwfwcAZ30bhbrT9l98BdVxGAACBU7pF894yuJiqmZnbAisqVpx3nmYyyG1d0JU3cun3Cx7H81v4tiVejJAtKaEU8tpnLyYakthOmFPV/1UAcqKedGz/ho1GkCAx9H/YKegWNaeGpkCPDlz+/A4PJzDbOzGzh/dzwwTl6ErsPEuMtI+K55Y9VaxhaYR05s/MbX2qOEVEhYxHOyXhgkTxQZOJ1nNLLH0E+eLgVWBUbnIJou5GLeoHDMRYCis37uMZVgDSGB4q4TkiHhc682wgpETZXVcJ9z4H+1rG09nt+DlYag688RlcX8PfrwAq9aBQNfxIgtzc7TVkUZhO/hglvB4TteY/PqGZcKrLMqvW27uXUaQBoGOD8nf0wbHZK1DL81wrfLHcbqDuTH03ByZU68PEwM0eRTn4j620Lwbkf+Az14aOxdYiJREfzZGxHZKuRuFKb+LagscnHQzNGBPGOaQ2oKt4dnl4rJD2L5IiR7onADOeKe4DYerfajsRLR88rMtJvvKrrys6g9XTGSD6pY7cyTIBgRcGDXRz+qD0Hu9+Xpx2pUtE/dKDOuv+/ggQPxK/kJz4UcTJqH2LymCCq8i9G6q//dGq/CekN0c7YEwBz4K/DOkpWa0OUbdDa6efpxZpBiIoUkOiYBTuM9FpGDfOZKCDyDGpFLiyffUv+MMgvOQlSh797OHcJqWZnAxIzOQFIOAdkO70h0vjefIWpTWpoXwXmM1C8sJGjbaUr5H5H3vkIsdPevSjQRHDVSdNTmWz9LmluDgYkyz+MS9EX9dadQ9OJZZqn39wTGYBvKWwjyCqCe2Dtxk7BOgd4zEq2RzC6wHk1nBq9IudwXbF2gUxdLI86bHu2nsJiv8WlB/sC6wyV8PEkByLQXmpwPko5RCzJpkfiRCKlljDBzqaUA9zMOM/TkZ4EtD8CI7meKOO6MfM6vC8chhL/QepAIqlzytL4VGX3Dwov/UMDR9rMbj3ch1KTb5RGf/bMEe55+Cx6Bw/lso1nFUshALcKuGD7AYU/AwByxGetTYcIvAA6WZWaXiSSLjXW3R8CqOTOU6RjcBiytIfyx3xscJejcnmTnNnle9E/VwQp5dX0v1xy281AAoxKpdV582Un1r5O57SYbNE9vqnN+PZepFthO//kZTn2V9InjLZYqYEq2RVgT1x3Ub8Oxiu60dAVzN4F8DhNFFou1KcjtZNVjEFZy2NSgiCq5QJjUojNl15T4zdIHLHhulN9qG0QgxrFo7lKULW5b7JvO+sfwxj4zR3qBXY9j9CXd49LXNf0IEkOXy6gFmAO66Dg77btDhoh02BUbWXadNvBAd2EQLOFBsefy0bub0oGtPN8I5tpD7R1pcaiJAPuRfSEXhFqUaQndJhF81NxlpcRGsru4u4mD+x8qTPuxVy1uIwcmtAAMJNgpG6T9YJrUS4PHuhExuHV1HTjtjA3xtMwfb5RW21OyBbOhKykb9EVQfzPrDJQvRknCWDNcFphHPuz/qGJiY7SNbo1g5ErLg6JhIa3N2h97bXNiS1ex0pB8cpzLjpvW5uRR6tWevrs2Pjp9nQW6q7Ttxva6PbMRsEOZB1pcqA41Nhz0cKKkuvSfcuygMIWBF8/cxnZsd3aVNZx5YF3CQfY0Pd86VbqQiTmv7UHOnYa8POidCznxyhZefNzegFvp35XGgHnaatZusU9JL0JatgMjvZWRrdXHWljsEMi0/TjHlj2q8UVPv4i3DWGybVuba6OobQdfgbqZNaOPNJNwTL7QeVfC/SwAD+8/fdr6WRBbaTSpQilhBEx76Z+TPVB9CpHoO+i0ubIADo5FkvtC3GLitqd2+tdtDKafO+eJHBKnf/kFTOu0ZfQpBwJzWlKzzDOPxi3kvWV2qtFbLf7eNeT6RP/OWpWZ68nQxiofHSHK9KCtG5ScU4xhd3vZPZf0cMniiV5MkYZz1n6jLUiXWfw0a+dMBDQWiqh+FgMRZ8sNz5LIB/vOHnYjXeYeQRSpGa2CTTPDdE67z9zRxUmRv7tFE/vpom8obZ3RFByFqMo+6L32bYCijI5krCd99z7PJ3FVDNlN2a3LMnrCfZE9PQqU0bE/wNUpmS18HRYPkyoyTgDA3yh2gxWNY0t21KIu2xRLL62ejvRX55SvVDGZZDeKi0XNpyRfXLQLzjfUqd0nP0KqZ8yuD6oPN7twLH2K39ZL+h4Q/SvNS4gyNJVLC2Lf/flQEsRUXjP4NuaGfwBNnHT/aTftVAv2S2VdulQIkT8seloXCz0kShp1MY6kUJSLvcOceOi5RIJXYcuCPq58HAiaXC8b9oQKFcCWcIF6oQnq9BRQnKal7gFV5j7m1kIvwo338mH5KA0TnysocV4/z6j3MrVeUlc9DGHs7NAFHp9PuBDkbzFwMaLwlOc4I++8Sflouni7D/8ZRgU4gabOMbzIsw6Cmmy2ZiaBBYcxSk5Uoj96QHb16ooC/zu9eAOEG0pDCuX2FBayJ/PRKpD4fx2BgF63Mohm34RWIllg14eG0FCYGwCtb9qXktUIPJaWOEnFjQ8EYLx7d19EG5NU6dHWL/KJFcXTjRpzC13Gw4nNnVJcklGd+0b26Fvun0BIGUb4pf4sVJephjKXopHeGbu3EpVf49PcvjtSYsAcq9Uqi3aEEC4RyKgTumJ4DGSBAWxNIr7U6DjAetk+bwNOJzJCLpqccYiSuzJ9jlWTjv2ORtOZT8KZP+if0gHydxl9W+cAu2lGZuRuCWrTZ4ZRKbDGERA50vnZ4CYG60Qo8K8zmJf56PeUvKAtT/G5nC7BdUtF0N098HfojF60GgveUHC8tmK7fNIIxzHKZAQRI+EQS7D2JcO4ldFAkm53RQv2/4wy/QkgR+C1djX61NA0YRz5a6fvFxtyGDO01a7qoJ0Dsr1lBkTbzDcDDRniv6U37uFFX0+ywnUmGU7eduILKRIQrcT76zj26RqaTonJ7wNihfx+6Ihy46jWR9C2IK8/9cVzOBJ2pbE/cNutC5sh9vdZJkkL+HcxgmskfyLEUzuAhv82qF/9XxWCoRFWhLOZFhugBPFIohWEZKdIZmBZNmWs4l+jjD4CR3D3b/dRAgPUI8v20GWOB8QyJboY64o7CAOtQuMtZ/HeWK74Qm0122Q/IvoNiNZlIfHYpZ5h062+WgJyBsvpDcEfozq87trAxWcWBM1QGtWLb2tHQ/ehEeElasB7kGYCiTu8Y6kegyKZIH49g6bikraDteATS5ZYuhOP65fiVaYU3yP8EOOqkzZWFhGsjNdKokyTGVdV09h7+VjObHm6AHFTvqZxlDWc0yl6S2amUc1VxKefeqEOyxxufXmeOPoxz3z/OxbDqWVK1LJTrBPJFpV11fD4vppw37aWkvxaGm8S4TQuCdOiyBQlynthRiCuTiiuaL613N9AVVOJcLYLI9rQlS4TmWAN3c5izPsKEL81up/h7H63oa/bl5jMvK8Ha76HCWFrLTb11EDvuPV8x5kLGyHfVxkLUC7rAeIcg2MtEPouAbf8cE5riHAfPfKhwptOhUU/WM8ntzY1x0rgF1NJ0OiyndIu7EJaHXWJ5A2LK6hiwhguYuGyySXkfelY+xBDcR2vtj6IfbtOFgch75xIa7r4WlWaShxdcXCGFgW07n4O2ECQwjY9VaavrW3lsd75DKT0ylQZnuriWxZp04R9PBFsBDgtVM2c68wCs/SaHgx9+nUrsr/KlXqswxGqpGvhj9ALnMandqrepA0CINrdNuxPuf8gYHNbd0juwE1kSOaag9XrJsqodRXUzTNj+3u97Q3AuVtyQZqhCPSuHZZ4DdR8lj+EV/nqRGDCdHKYMW/mEEh9P3oWRm4lBu4AvLdf3dlp4OYCmccYSWLQ5xkZKn8GiSjWb7DZD3NKEfYWeAIHv4f2xI7Xc01wufHamTbtFrkb6C9Fdmb1YUCjDGy6Ef1POFIOB7/SUcbRUTb0t9jj7a347CKBJ6ryz4PH1vuEo5IMCXkJ3xewg9hJkTq7tW+V+J9bWFIhs/rhU/kPCBBPQ6f7TvjWYrlEq3nPD67SWtb9ZYN8ne4KpOgXVExbia4Uajp++XhWrfGre7ohSt6+P8f3MRinKbxkYYJrl9nTjnYGZ8nZWK+srqguEH5wDRpL4mSloRnBGTmm0xTSjTGzWsdMp3eEcvkvlZZCyTC6AxQB+cq+Kmf7EIhK149OZChBjMlwUS1cyUhN8yVbHhxhX5PXFpRJREnPNfVsQrzswkJ6mF4LZhgDKRlEQx6xQRQLQxIf4gJrDOsN9CEkA/NxZBKTlS/uhoUDh1CrrtrlU76eGmnf1f+Hy9Ln4lkUrnz5wODVNxoYkEol5pJYM2JpcsXYzKlQXrB0YOATOKWWm3mDKEZET2eNjxTr3rSihzyysss3+1z10eM0Gk0rsh7c142EmHfaJbekbJOma+a9h1W7ODFrLQ36nowG64/xlRW/o7WIEeSkgHtGt8MGJjdq6tNSKc/fuVvSYpaOK8ih6BkbjIh1SIZFFnrVuEaKV/fwvNSHSJht4VjQPVCBeK4h9qhF9EiPKQSQzOFhS1MQPiFjfIcekOGE1CCgEJkM7IHyX/A/gOTeovKqNNuiXwKWgPOdGF68sdD+pCvd8zx4q2Bk1lvv0/QpOjQFJyj6QcZyYrJEPo+GhWySEa/Y2PSP8g1RdXeReetNwv4aruwZRPvBrAAwxyHCTRu9DJzRU3/vHQn8wbPAwkfteO3awJSBvg8NKAuuCaFJJSpjUJC03E9asMlCaOCgSopd80nrRBK9Js9nXREqBWyKLZ90tx40ECgzvXGIO5uhLa0ASARcv7IIgiiaEuy1dT6Low0EtL20XooPMl3reSrQUNl4ijUmeOTVzkebziif94u0nu2yc/dsl0pJ3gFkMXgl70VqfVn5qKdGoBXMlZqg8I01ri5yz9AbfqtMzlGNduN4G8R+XAVmdqw0lUX6nkgiEbBwzuYqJkaOKizTjoBFOwohk0MXYLkot9mr+0xf4nX9l8YXiDfdv5gy5OM1je79+TpAJ/89zE7d6mq1LcPyGBEitleRrRQqFLIm8srMeOzzg1X0VQlurNeltIcIyKh/tigiwHjHZwj845tU45tZ8E/k56dYK8Xk5ycWpb2YYBHcslDcDY0PameXvxN1VT0K7hFc1f7JOBZV5yHRBxRRfHZFsoAL9eaw2JK8E3lMd4oKLe+CsJ+lFXy/fJn0xPoVpLpkHaRtbVY9LBszVgqem88vsygQhSjnH1xrC/sQ3N5LWgQaP+VpKUpGtMgHpRU4OIBjcyFzw4vt6MiyD6hZCrgpbXf6tWMDpRp0kcI96JiaHL3YECOJgmDS7RwIKN+9Xn9q7kPJw7hY7MW0waChYnKItNu9/rqVxbukEod6UMeG5Tx1uhcSTmIwBqK2NVAxb/28rcsXoQyrWFUS9uT8jC7k0SxvAp/UEK0D0Ah2wDHPVggVep4UhREHSq2Od6v4TvrjIwP0QEct9bD9xXchYRqKFUR0R8Dw4VRSUfCgMNjov6s819N7f8uOCPACmDNFw9dLPNZuKCnJhtOzGzsdqCcq4KlDe84t4mgjq4iLuU21vdcg8bVThCetPlgPl7NUHyUHu2M4+nEpo2EuBT6etbgL/O1/ODxk9983Zn1zlg8PCpOnBPTL7yBKbg/XcXq41Wz6nXrncK4dmNV1Mgsj0v6PAVk6TgT6xrMGgPq3zzSdc5elO20zdNl0lMcCwUC2l8VtHOmnP90ULTgmP3XpjAiJ/WHRwXc6JQ8TxT8ns3yRXVK+1t0PSiV9Bk9oWFFQUL5K2MxeVJdhILf3MJDuWRS7VNokuiag4gCfgHlva0T6F80uGpgCG0iHOiHtXZXo3xzpGoiv1sqhuGMA7+SufE2ptf+YV7IViEmalQUZPt9tjhXwPQyvj5Q0CneOOrha7zeLKVUuY0UVNq2p/7XDla4U3ar6h3VYKJA58aIwwkeaBCujPcXZ0IrjUKiYsTsJzZQsT2ULw1TzKqkQT5jxX1Jlc06gpswf/0VnY6YydBE4ndMREZMYX6Xo6kdVMVw825PLv9E1cpKZ0IHBXWoELp07pXMG0sYGdqN+pX0cOHlQHp5J6d6LIVtRxjOqzIiXee6g15HhNSP6TorsI9nwpz70c86HQgbQrSmnY6Ej2ePeIZCd6m3lpz2ARwExpA1qGe0so9W0eTeyVDH7vQd2Rm1P5eSjCbJ5RKU6dn++/Ow8zov7UwBrhSdKaC8A3XqILVa+cx7rs0j4FuXg2erqVSlGC/4irZxrUDAQIlS22ZLDuluyVmqf+fZsJrfg/GvCTJqK4z52/guDTERdFQrdmEngfbBk/EdsJQooW5EivbipG+6BLo3P3zB4mNLgSy4QyjoFoJ6tqW0V/07+MlwFfU3AKuD2XdHQkhxNKViz/k9f3vIpvVZ883cqyaMMqkijsBl6V+WNRioxvmypXMOVdHOk0c6NgjNUmh6w4nAQ6lFzLEqCtYWltp+fZfF5o8V8Tr+LVZ1BW6OjnuF2NYa5a1MWPm6/BW6AVPlXoMVcK87imwNwSH06aTzc1l5fdbgltc4M69wYkgDYbNrD12fmzi3XWKrN4cqDLCiURXa3qWlW5yH/L/74AVlA5NFuB6neu/jTY09n4s9b4uSRIZ5tog4yD7gCxF7RmZ1aAY5MtiPInNcCn/jNt1QbUS70PXPsz11uYdfCb9FOJeGCgcXa30tNluhXAUgWiROKh6SAbkTgc2Jatwx9ojMu3pHXxQwTScsJP8yQgd7NcXgMULMhVeUDIBf5sIi8TS5u4ciOVIu2ivK0AxGQbrpJhLkHO/AHAM4sjRZdlBvmYZOmiQDZJWNszOv4se955Yf2WO01+pxogPHIH4I/hyGqbnDzxm8dWip2yLiadi79vqG87xul5WPe8QUKtQpdeaU0vhPulcDw8bNvl+oVAuIMyyxq4gZL24eljRV1ohiliTH9pNLv9lDbWHsO9LSqDue94MZOs0SkXtbvy1e6MZcomFTX+2MyT6lFLjg3/OnM8BIP77KWt80Ol0dhUmHvLsSuGrjEp5lwX0aDmxseDlBteBpLr7DowW71/uqyHlOO2aN3sfBFB3s+DKiY0uPyles/OAn0dV3ssRX5XRrF93GNyUS0iRfFGPX2/Z+VxsChxISQIILW4Ldb62b40A6lIW6zgmILVWFRgiI=
Variant 1
DifficultyLevel
611
Question
Luther draws the irregular quadrilateral shown below.
Which list shows the three angles a,b,c in decreasing order of size?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Luther draws the irregular quadrilateral shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50042_v1.svg 200 indent3 vpad
Which list shows the three angles $\large a, b, c$ in **decreasing** order of size? |
workedSolution | |
correctAnswer | |
Answers
U2FsdGVkX1/URfSHfajZukOVCu3Ce12U5q0DLg+5sWMKt7mpRqiZc2wqIueOL0e3LQIGwD44r9+wJiBRxJUniKRbxs0CmQDkDNwe9IN+GqgJd8IN5Q5scSLWUsJzt7nPxspAmINi1Q5n3uumJQEOVg5nd3o4X1RXqSfLXi9PWGttN+vKs+112lFTz53A+KUQKExU3YuPmHM0Z9EBfbNYHg7TmXy9TsFPgJc7m3EjG0ufPiAI7PbaBnZ1PWmp/bchMse7Mi0tlDOSnGgRO0b7iw+F+n5kk4RuU2wmbiYqw/Tid5XyFl3Xdmhog45P7JSBMbCDtM8GqvcJRBOgpdCB1TS07eWfqiNcXDsCNtDp8W/n/WAXzCmiHFq0KZaERoyfx4Hc+W+Cec4RgwlJN+LZ9pP+kp07JrMiAr7ZzVhKvT9EgoK4vqWLOhjzSD969U1Rs0HUGE7PkHMu1pcom1HcvvUOcnjmofsPkn660tYYKgFn3TrvjE4A34qeRxvapy2E9qT+ZLUbxdneXWTPqEyWmTLV4klTZYC4WD3oG2S9gyfdy3QjL6nny5NNifZhpc/OZLqjOybtaPKjdqVZrhwmicC69gO4GPckZbojyTCj53DtX68mMgqUQzSbTu+pBWwFMUbDk/YmpRzu8bcpcvYIQtBGy3B6k+XXLKxt3t0Mwoth3nYvJsFlGyg0/bH2uYCDPh+Jm5uNybr09edBiZt8/QA4/pHvjQNDFiKFNBymtUsDhKkYu5LbHPCEzK3ugAk8V7FYMZ2Pt3wXI4bqShOBqxiKk0gjkIxSqaadCTHD7ogmhICjReZZUI7IofSXtauQWE0UCJ6N9rNZHxuCJAkbUopcQ6SLWYgGFw5tB7skPki/h7aS3iwZsdMZPOYAtRTZ8m+cYDVEfDO3EZ4j+97ouenYVuMHhl8Ar7lsQr7hTbbX089SucJCC9NHKEhYcQt0Fduypf/08r1r740hbMfKfQr2lGGiVemzkh0Ze5xPIiCq9Wut/QRmmo3rYKu9XqFKayJoxdbHOYteUbIqnbwVcTIgsx5McPmvPTWPQn3ajsPXDwar0OFGED7wA4zQXAfe8rRl5vIno1bQq42Ka+Y6Hfcfd0MuH59MHSXaVX797u9wBb+r3zkA40ZcTyWG+u01ViyQqC5sT0/uca5Mcrrwwk/M5vC/dOEUok4zEh/xoTjA8TgherN1JlRH0iwwXF291rnL3J7qnDFqDxtWJqlJ9gFvznY5BlXrNjLc92aZ7jjPmmrzdv9NH8iVrULH8Vm+8Ev6aCIVJavtExef+DQlSnEV76I63EO0vj2Jp9hAJRFE4E2ax5GEuuQfPl/Tjzua8XNHOGWR6K1pyIqtZK/ojTblWH6k+Z/hMq9f1Qm+Sf+SLxTfbBlPoHI8T0ADv27VUTgQ4rB0eE0WZKLQA1+clXBi5rstIOlwCsDP8cCGCblr9scc9fG6vfpHuaqT5q9j8OFBcQmtjrelQlosXUSztVpOA4sQr+Q9Y5z0pYIRTawO7e+r9L3DN1GC5HNMf5j8/kYEXKhnP9Blu1XWfZCmK+LyAfHyRwKEkUHC340MNrYkwyunmgbrpaj2jYknkSbOdxcAEFvcLTkV2+ivNIVbttLV98xiCIExgu1g3aw4BVKG7nqFpVGtXzXNTioWoeDuCJ8/1eJAWnoSOtu3bebpVfH7h8wzC1MkNetClrcu64kxEJdR1QW30FbGghuyp+AI3cy5MAI/9zc/Tq/baDQVD80DfMehfktcgDp9VDIvjHb9GRNoVWkQ8kOpaZ8WiP8DG+tSMsJkc6Qv0yXxomAVCa/HbIhuPbZJs6FLBgb448skviLETseDC68hUEFf3Qtp7WHeO7Kd8xgWR34rza6esZFQfaiQdOpba1ebgT0Wrhb8DJkaO/WOlT5mvbHA40yzIjbXI2bYEeyWhGbEwr0zfdMMf8t3aGNzKZmj7ZSTkjVdvCXDP9j7XSk56G6ScrNvwGMAmyT1OeSL2qhSbJyD2jkP0pjKF0wvkFbDTrB1nyBLhOGhborMaY9Ik0dkMWbfwuaH6ZsrZJj0JyyMxYInpsIZucXFcKYp3dEh+zawB8hxpHN/tKCAbv87wPT9CMGePI3oBWlP59x1dj/6VqU964gbuZIGYH+X9IUclI+xjLsHPb8sh+mYN1H8S5THhvC6BAMmp0BPUaDctJKwmINSwpVEMF9G6/FmUpUCyYMRBmez/O+qewic+6070ucIBCVZdTlyGM1V4Baoaz5D12QOgesxmPL1PY5vVXKXg8gzOdNHn5uoBrtRsAsSK+/IM9MTveG5a8ETDpxP5+4mZJdrFb/R0gJkSh0JS+nM6tCBwtTOJJk8UfXlz43XxIKNdUHB0uRCZWbqt7+cDSeIqbilr5gclxZ7y1sXkGokf2H/T4VU5rEnAmbKU9RysRUJ6we90jsZT0V6CFieWuJk7ol8j91rFZZh4pPKmcGa8Jr27WN6MVndwN0HwT+05OUHavM5sSCHr9CXZy6r3Xn/tM/wID+t4ljx2gb94rEfHD3ANujsOrV4Ha2d98oSgj9obAkDoypu80IUfs1ysgsvzYS0SQN6S72r3IFRiT00EryRJtv+nEqkK8/h+aJYBeMG/we8TbaDRiA5ax9vWgzwlIsD+BTr2cRGDhdLPe+TFeFGzs28Pv01jWO0fZ58hlNFyU7u6DUmy2Wze1i3stYd+GePkM4BL1rxKNgAM8l1HgOOLrIeaO7x9etRHcA2U06ek5kGtREveDUBuzXmaW/bS54BiaVts9YBXgY3vviTKvbLqpCXaKYfBXmp0oswgjg7ceBth+rEoXk+x1k9WmIM95YV5KrAu9feFD4gy3lrU0e1IoZZJ1yxmhIIBgzNPNHEuxXhH9AwTpIAGZt+Q2aHsQZWPjuO0m5IwwNve4sebtt99BYb28/SRZ4Mvwhnv1Y5Ubry9q1ea5F91h9JQhJ8vqnqjkMy6oPEdmKcskZkzmzZCDcBwVQvUjFmxcXKLAFueAsysmk+Kpc2IyX+Uz3Jsb1nc3jVNDtCTTkiC8+NUoEuSpX54KzltdBWUntug1OMAoBx2e/AcgOgTxKEAl/pGyhhS+PN70epPwu230ItnEq2D3y0FgY/V6NLh6YmaA85m3h0YCiSNxFgZnffLmdQUbfkqsC50qww129p40qJUaJbHX5An8HZiaZ57wLIC/fhJzRixUD2VL6fqKZYjw0nErZ0B7zVhP4xjYnmFk/IhNY+xysbgbM8WKbhNotgZMVglp9KP1L5QFCWIAVLmxHkSAWtTWLRnutHWIWEt7KXsAugyv/Ae2qeJSBlRjDiismSQV0w7BnRv/IqfNd9PNEsN5sP/xYu4JVjUjOxVBETJlG0PjpmW8wmcQzN5TBd94MUXH0oht3nyw8+JXfmVdTK7EL0ug/5ebdb6HI/04ouHFy/iiZO4xy0RpQhH59U66tyQ8CEl6o8AD4n8la6/WLxbRsEnV01rgqcKIEQ2zkDyo47PyBu8oObxe/DmSZo306p2RZwQ+f6m4Gwv+lkdjYmhKUueuOeJICDi+gnHD0wGaA9Oo3BwCCb1N//kqzWqZGRke8QtuWPFZxbOvbIKmemsj+2hmNHew2/aOetOiGZu9IXzngaWRP72oOgF5B2hIHpQJPg+c72S6XZEe4MQtpL1DlQogStC+3lFBPi7+80f+lyJ1U8NOl7ocMRdZMrCgs29HUPIbeBNMMrNeofsGFI8QT2mWeRiCb557s5UBgtawUiOUJtyOup/3cu4m2MAo7YsGfCrTNe3lUvANQDSmg2hZNkxLBNcaYZhdtueNSS3WV6EF5wUDmDRe7R5+aLo90t9X7lrWqEV/b8JPQSQ0ufwg9VwqbUX9eXJ4hD+8TAHKqFBm8pbxFmGHjpvqJ5mKC3ugKNS+Dtjm9qFt0D/2dViAQ2DJtJXJlfKaL/X1qckjtSME2Ew7LhO/n47Z57B2wimTReU3/MNQqOSuc8IYB8vQg3J28x5AuyUHMwoi452FA8U5Gc+UbcPkSa3YGxwRwxwpCEKfHh5xm04TV4EMqsYUEBLzGfWc/l4/FQZEv5cyuuBVOmxpAf6GmKVxHXg7ft/rzh71vaGWJRdQirqMRyYTeLR0dP07dUspml0GmIM2A5m+KJcxc74tEOCGO5f7ggyApEPizVj5b2Gz169odK9LdqFWFT5MhwZrjWtm2OhYlm2AVkgL7uuQ7yIN31neUlOVX6nxZMe050rXue00+pSjXfa7W46K46HC7kKirJeCRJAEE3L5QXKmws/YdWix6OlRTajfd3EAT27K0QYMJzS3cofliG0Q6bk9gk2PKSW7/Y8IyDN2yWJCDnG6IqiZaicsk4ehHYd8vXGC2HDgMu082vGw/LTSgufj5m2ppDQAsMT/VtOGfZvCnw6zwsNOwEQJ8edG9O1UcEHJ6bPSCJvMEOCAxFiXSzi0R8G+Bs8LRB6lF5Ax+RaJmTxHK20uFzVuRaHVXKLMAu80xPM/gC2+f0uhKth4pUnolqKdIOY7dJ5B2e2YouuQrTGbMg+KuNC5UC1H087PApBjpJnPEdD1lJONITtP9nx0l1zrhuR00UB6BZei+4QzpX+fysb0nMRJTzbDeOyyad1ncWy9AW9ORtmgwKN9bEX3uNqEpDPoc0GRdyb46iy24xsZgPjztyEUgBy2H1PpEpqdHz2lXHDNQuTr3xPO52/6uVlkKhJeS2n1xl64FZW9CT8zL92frqwhhZkBLcijub8ZngfQYUTzO4b4oGTf7bJOlJqHYLlTGH4kPB3HSiq1XnEE8+PwuKRjPFZBaXtcKTlwftGgKSSzQfAICmBuxxZLAeZxbHJmIrbmrOtBr8iceI7bisx9t0Ftzk4+jdwcxGIoolcscZTwfAGr+HtIJT3J3dvDc6IMCj/dhN6ZbJ3YlJWtDPkrXKwdN0TdcXy6msjEVX2v03MNp5sJa1qyIv7Uk5rFcMFJSaFUdfGvgB4vNtlYxdPQedXNAwHQjQvSQezpOxB3/zbKhvWCcZrmD/yrmfHQb2/ibNcvEXCEIESbyMitmQ0d3RgFkqU2p3fNgUc1DquWcNuMwmW4s++Zbj+pcMhaDGgDpJ/ELXH8MLoJ8/kWdiwNjYFPhUR2p3gQB+GoXq+Y1aG5UKIm32DOikvPV4VGT6c0V5YKJCh5s9W/D1rAZ4TZJbP5RpLBhZHJaR6mZ5VB/vkdNeZ9VGbaTI+iOcFIWfEoiLOyxTFLaOZgL2/39nQDqCN5+iH9utfU3M57xrk9O7hCg4O5YxeoGofIfg4ir6F/2UaRN+A1aNsEeknGHI0A1iKBAMIl9FxgZVbeeKVm41UYv2rAyhsMEg39TTW0XTWeHhClmS5JQ4y7jBb64dZ0XFSh63z4zpTPQ4Sgrwpur0lwxKsNoSNvuuHfdHuBJ8VJzTIlnNXWS0h6uIQV3R5Jf34dg2LgaiswZFEEqe70PpKwC/GOQHzr9Ep9PvsA9ILGJFMGsgN/bAzg+D/s53OK7UBbL2yC2eGZEbY5pgdwuVi36nQBO1sIDqPeF1cZx0375zSiJYFwjL0A0QzLPL4pb1NTdM+EW6B25Gov+QsgaH57q2CCLnKSye4Xt9yFiN21J2JoQ5RxwnQlxgAkjtsFRrrWk7EqaEga+bXUnlxSr9hiHLyDUFSfgq9JP2K1AmxKShqUIMaRKETCGmLWTt9qoa/bjb54qy20Jg0fSBnaHjl3fWR5IC+Gms/mBc8CAQOhHzZb+zarIcwkGUyIZfWxzFqk0OEvXH+EBiLX6Wtj0dVTvM4yW9T3yjrHqLlucCzR/FPxuCumLiAquDBATISwqZmRENwaymHi1S9mP3uIn2do/8vy1+JFrJfBw42JKbSQw/96top3k8HmtASkjJElLH7Sezqwgc+eKrog5hnTksHCjBgwNWb5fWn6ZZlQDRTjnNCk6hcD/V1+udjyxE9xRhFQtmI6M1Mu+5EbY7SptqmCHrdOXgHYl4EDmZxHd3tIuy/HisYZ5LLMx9R/1lBwPU4TsBycU9+LjkY2zmRDmcVMGyxcvurIId7vaeRIZVOshUq5T74ewDba4k9gjKDR505SCf8DoMore7YIbnuvTHorBkJKu/GhYhdcZVA2ssQonh0rJ2pDhcCzyBppxOQ90UCZIWUOBe19wbp9P3lvn9jL9lSfo7VsuFCzDqWzbppJK1PhER70qsfT0W4RXzQMylJythX1B3BJWasTk3t5P0fCCUgiaeedGUtF3Fvv0Q1IsMC/Sh5b1tvYQfFFYpChec8hMW/xVq39vkcmarLD7pEF8n5AtyMLkiIyYdo6ZIzwC6sZYigLHxUMHSQRQ8pL0N/zZdnvGDV60Qq04WBvLalxsuDot0tii0seL95mJIO5SIuilT25bPsAgBw9hBsNKuQgOaibZbMvs5v8bUBkl7Ev9Da2mRWzt9Dq7mU3F0LOOViWHCMWvbzqDancVWJ55XzGoNJhOJdddPlah2ENmHcm5HbjmPBnVQ95eZcDjEUCtY44SbUbseGZMGYq6CPdPf0Md9aPRh5K8uA18edJKxqq28TMCAxepUi3TP7mv1ecpsntAvCh/j/38p5C+Nr3018jY3h6cBDqzp6wuM5HXNiMSIOa90NDGj70pPMCqSorEr9DYsUuqUP8TAEsFfDXlCU8WMj6PPDb6zDFgXFnbfBcuVtwFVX+1edV81ONzi2tTUX7p1NdFph9HEEub9wjbNAsuaQaZ/ekDgPyNwwbnSDGumxfwlLc4B6X7GNwffCjdmsONFha40eNYwwzVS2ILPS3o6sDusAE5/h86lHJqu+TU/txejKVj6irx0I7l/LRBjIm/eUO5Am6j/RC9lD+kdPCVs7bDLGrQA9IsQ/nMhEtmgtVUQxesOnMyvgRn9LTi5qumstYnGzI5X0/mhDgOoZd/FBV936Vjf2qsBc0joGHH+3v1isxUYzvtab3W4iDSwMRQej2l2HRLR69QV413Vx0gH8ry7KhHQGZ4Hjy551c9ucT1zjevZPzcr+iUVI6ctV2JbeGqSW0oNR8r7L6zDGH4A+sp+rmB59QDI3W78lOkYPAk9EVM7/jsNEqRv6NLJKLjvc7Hb/htsmeDH1YJuecdMKpPkk4IanTXB26bFvn3DQi/WxQCJWFgM1hJKULGB78zdRMqcRoTASzjViCOg+2mWrofAjISVkAhax9j1YPUwMDa4oACY3HTQ0d8BfkvOd0Yog1jYZ3GLoOSOCpU6uERrqVjcWsjkdnA6u1dRcAFqNoCn0MZKWzlefMrdiQRjkwdhNetSPzXzZ1Sk1jceujZ4vZpcKfL3ohimXhn5LGN+BaujQSk6LT3CA/dcNwOU8wzdbHJDsem3ZTRp6I0hDqBnKHGedM+vy8v2cckEaMhLL5QrrziYYDG5b/P7IXHrtavcZ/lFzu+yQKCnlrNweg+8/D80rEx9ZcHJXKq54/6N8UAT1mM29gd6O2kN81uB3WTGlOoq6LtwUif4DdHZBOiKgcfO1W6IrAswsdBy0/mOVP4OZPRZBHvS6EidnFla5ps91m9EOzEtbXzKYPbh2NjGE/DIrIU8iNnctoL7XXvIs1x7T5w6A7znIpWf+bG/Z7lLJPo9csTbDr/5NX/1oYfKTJJLaYsb6eQICeidfDyri4S+ifwU4W/oXPsGMV+oLju7B5ODnZ5qm2ZTgUTnRUbrDySswNef9WcYa8eIX1aDy36nIWgJkKSZOquTwBWvZ3fgZEYJVYwyW3ClH5xA1EHoKlPlCFWa82uL296gp/OI8Tk8jP2dxe0ddsGgmRADzsPw0RTzDqBsWvXA1aiQimo1irYuZ7lJD0z8Qkoh8Zcbv8hl93k153+lnAnDeZCLIielk6IupjQ2+1mB5wgfksW/P69O1l/kWNSic136s8d1wsf4skWXUZUjCLLnst4y0L95qWYvqI3AJn6oOKSDDrT8T+EWuJBYEoB9++xSr4t2Nku8jRdI0JdIF54ov4b+IQvGqbLZ2YaM7/wa+InFB8HbJ46wesBjI9gAhzyZUsFoBKt58LcUJkLX380y1gj4LK/2f5lmKykITjrPKkobhGLDPXcWMQgd/h3myB1IMEM3vXEOnfkm3m5lL5WbUV6sAiO45ihvuchKGIUepVuJINaAWZNOrerP+uYNUSLSiSlmipOxklJpJ9aEXq9axgpoDyuZyoqsMxxF30yNrtazSrRBQlPUhQZy2+v59P67jiecVlnZLEJfJTlPA6RvOJXQewThkzb4tdykK2Y5brWYa0QY4PZRxDniZ216VUcPOKDYPGvo+6SoK2bPHXw0Ho7GtYtK72o0f+PwdIJFwOhnr9vbYgIZELp/XXUmUidD3+n+2exQt8eTNd4iSEqfE4P3Oqa7i2gyDPGdeAi/MFSvkWyqT1mKxjwg4HFlsIHHetvuyeR8RKIw1SU8V4Bc6iF9/0Ytj3kmgRJbGDQ9WHC71Abng0OAz2j8qgyTIQ9j5QhzPQyZFWaoPU6czfyFXHsLnhKuO2Nky1fmPmHRTTxUaNPAQJx8JlqRjxLkhVuLwt3omoiBwfOXrjHenim0PD3r9quv5FRcBDZfRhsohpz7jCEj9ErTm5tHOcJDYD1duAdFCr1NoxKGz9USSdF9Uy3XsQ0+T+NF1GKTuenQro602SGELTpLvL09TKhkVwQl9FT0UQyuKqo1joObvSak/av9q3BQWJ9NVDN3EexxrHNsqkWwbnr8z1jvzk8p8SE6YmjzpGG2wcABcZhyLIKcrDFxxA6GKMDdlTFcGhAzWU81jqFRnL/UugI9KPOBG+5nliAFIHp8TgGjakKEk8gL/ktAywayAZaR3LLonZGuAxuqrEc+XelbtNhGPqX7ADlepmQUOsITHEG4M0SefY3w21/TiVD344dRHeX41/wFV4fdCOOpdePHCXy+s9CqZ4rZmLElAvFWOL0ojDp4tYDXk9RkTs5M6eWx8u63ML6bYhA1qukQTWT1ZO3id8y+IB6cjnMui51lC5SxxvLcX4BKGpydumMy/oWa+dtY5xBRSDKYZRnqv9r36URifw4+i3IDW13i0lTy4awKR4/nyHHoKd1z3mX1XeAlSF1dFzExHwvkQC1nzPOY75X5JywkIYVgIGqgdSdGE5r8V8ol3ht+XBZDJKOlomoxQtHOpeBkA2zNCCGGnf+459EYddkKbM8zbFSb3ovEWlBHE5kVvUABjDfLpvTalFO24RTBquMFdDf7AiIbj9HGTvltmL66ze4x+8o4o0Gcpnded7xf3zKYd1F80Hg5ONF82wLJ5Of6tzxFXHfbxpFpelpFRkmVWBihYrCdHp7tA1/0RskSZ7WjMBlwWQakk7MlCuL+uNkp6ELtzG5gSvPdQj8LwjHqm8cPH2uA9ghWKOCZf7zLvYrMoxuHhsvM6BffxbJh3ljHjXccOmegv9czyYiWP95SWPMjAw5TW9Ujuf8ZCwUzH9JD+jBCmjzO26PsEsCXjw5fQo8AmDUBPxEWI8m3ylT3VB0f740aR6y4naTQbQztbH4OEko1EGwqro2Q+oi+pmcLqs0pV0QzxevdPTAxIbg/k/Oi7AEbAvGF4Nxr8S7qwIJbIMfmC+LCGb4Cuv7j8wlMaPG9i7xoH5doeg6SW4rgGzUPDqEG4d/6oR6+27R9DGOAJifv0g8=
Variant 2
DifficultyLevel
609
Question
Cora draws the irregular quadrilateral shown below.
Which list shows the three angles a,b,c in decreasing order of size?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Cora draws the irregular quadrilateral shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50042_v2.svg 180 indent3 vpad
Which list shows the three angles $\large a, b, c$ in **decreasing** order of size? |
workedSolution | |
correctAnswer | |
Answers
U2FsdGVkX1+SirKmJcUs3oOYsdMb8vFQUAZnR2plqBRpQ9Px4Q119nAEoN4P04vO9DL4nEZ7iua5FmVXD0xPITHG2ZjJV3cSvjrMXGQ8gU4XigosOOD0fn8kYIS7qVfPt5Jyozl2GcipKEsBglOxmfaCTbk0WtH7thlQYmogC/6pmixdpxNwlMUfkPoOqZx9IFMPP9w0Q82E8py9o8x1DYw+0khOJAQFcig0qu12PX/zZCLcNoxONqbtstXsbKg6AK8IeBh69ii8bpOHzaBdXmrcKmj45YOUTjYVWsId3NEkdjH9dRf1i+oxA8tKnjTGmsny9M6EucE9d6uD+XKKeOCeUjHl4XsPXaDZdHtZRiqXINuz+tiDU8mRLn86DNTVlZWYc7jWbqk3Jkd15RfFtSHkXtKxvdowgEFva5zwkzwgkfdpdrHT3rHtqYIzBu+uwWTenClvFd34jk14Tm8SZjFmuHgCek82x5V+b1a+ATWD34ct5sI49BvCtRxl8zfZZHliYLwKTg4pD2X62KRMoQE1mzp4ayGKryU4OyDbM+jsHck0dogJ4uN9EV1phwmwbTrIzmKl+HJP1souW+ahlZ6Hb0n3yzwaD9Asf50CM/aQ4XX3TEUKaQuW4LOlW70x0eBxRf3A0VRS7bV3K5IDsf0d9CSVjl64t5Yrht/yQJlxXRFtXCZJzaUdVxf6kelvEETXODbjbUSHPvda7f1W90+45H6HQZbDCcGkIQWDJ3VKCdt1mGbysTUSTnA62X/hyb+U+YvUi8bap6XOw3UViaMhtudGzdQug1aotcc4x9Y/O1e/eF7/SOdNQQcZ3ugCLPEWD031Mzzp35gDz34dd2XOwUddmxPqD2JpVtGNKZ4+hCg+mCSJEK8BcgA6ZnA+a+WGXMlA5Bt0kSPoHyOB3kPSocgxi32QJ3CQEznXCRllf96eOuCBcJdF+9AZUVrVqsnDvbUObTuQsI9wos7nfsxHPhBrnRovaacw1SCbe8pFpP3/6/FpuqM1zBYbMdyR0gN+0vZWVn1QYUvDfSRWL0YSgtjYv8PKVTB3+o+ooqmSFBKhp9ZHFmBdEaXGseeN7dEwm6sRMCzlCompMyQyPiCs41EgKdKg7ziv/2M97CxkOPunlVbJZxCq8DS1NYSTapodEVlWK6m6rhq9ZktoDaKF0CFkUWCn+E3wF5WMSf6rkJXzfcxzJa7biKAbecjsxUT/Gn5X+IeybZYT8MVErZCmtAOD32obdOrEOgQaFsIXAk3/3j1WIgmZ0Uz5PE6FDbZcoHlWFwpQ1+CSIHKvh6elEGtnx+r7Oyj/8nVHbkzIHLleCT0pEAJp8xwi6hY5G9fcVYeT9DTRIWY1TZou+Hftt8hYT8JN+8v8bGFQBfZc0nJ1ZT5J0YZALx26LCSv1n1waV8yTlXUKAPmwCeML4g00TAT5gR0VDFbioV78J+oak1b2QE8ONGkQPDQ6v4TLdd/bswUvv+qqK9c9420FoKjzt1pCyyYKXqqFVCYQhidtY83haNn6eiNXAT9nOCyLdpfdY4OXUwJgF3yBe9xCnSf0RB+ULwL7EmvX9LN/TtyUk9/rXuttpTPBiYf1ohFcogoMR0FqpMfZY8Y207NWye6WHVgFUdsIC572/IN79vvQKbiB/iW9dX8qZl0u4kFOYN77p+KNrsmwydblPRNOg1/HRWeivkjeu8BJ44SRWc34N8A+wLhY/iYCx9rLbKsDLsYMTbv5HUXoxpCVCdl0cYxg6nyjrUeS9WEJ0Ycl4myYCLix4IitYPFoZOtN8Q+WkNJ0FJGhFSXyJBHY6AAUBQGwNnDW3/kqp+NDcc3ALPbXF4AELP2RteKwspwT/FxN5jEZ2c7pyOj5ys9OmNqWf7O2C6RVMx6ebF7So74l1HPdI8z5plmj/PtawTQmQkY/yb5S103RBvXtUKXEXnsbJ+V0H5GjIOyTWJwBLFlLxIJWoIAC9cGGZ3z6t1tVq7YiEl5hCfANlU+49EDN9yWhdZJu6R62MqS/MKsKPGSZvcsL0u7TJ4K/RHeSd6fzkVHHvIly3eDptUqMiq5tWZc/rra1bPBNzYxt3XX/iANUcQtktz4aHRUb9itxv1S1VXa0yyYsV0Yn5UmiXhfer+U2fEpzXJIdXyE7iMBJ4H7+xandtOnWr7yfeM+nx+lfoaPSCDnQzAj8Axt+mI/7zSd2bNQg+AeBdMxXJIQnPEOCxauNoztngMnjZ3LIVyOOIT88xJIk4KlPkyroNOxyqXyVmZ8Nru/AgnsmUJ2gk/kaAJQpI4bsCQDh/g8nWkxEFbSvPR6mDVWgc3I3ECah8NhEK5KfDbfIrpPYak9RewAhUcXTYGuPe7X9ED66pZoolg1OaiK7IuCHEIBga8tGAcXzT3gjsTwRnXgIqT36iJE7M9lSI0MqjN7A0EYeUGiGLzHjnxJ7P2PAhR0Y7AzxKbqf0qom5c6Dw0Y1UfuhBd/WhBftbqGHwFys5UZSZiAhHN+BOcrNPKLF94+4RWN0SrZl1XljWycNzAvURiZ6JYo3x8jFXcjZdRcEF45m/lez7nQbzFHFmKlkiS9UfkmBLGXu7L9115JJC9dIjZmse74xdr/5Jwfw7K947187lHmM3GKuCq2bbG3SxDL9W/Z9jxTu6iZox6CXcIS1htsOAtltqVC+QkeDKPJNHv6swgV1/VwpIMppIbMPFwI4DZel/Q8JqAuSvO36FSoodd4Y8rRL/SP5KRQF2QsGkHOMYnpoS7CULFJBSk6q2ubbV8cNPSPAj4sZR4kA23liYvRmKCm4WYHiAyKLu+1pswuDnQnwHjVbyliLBXnaZCjUssMonOIimNxJsw1L8JUfgEMTCQ5MpM14B/pp9bUUR2pJYCJy8l9fAEHUKrK82AAUMv+TxnVkUkERqsMPed6ceNyuZ34icJIeEP797a3SGOIk6fOyyBp6g6TD9zXbgF2uNHQfWutfEmB2JQBRSdkvbM+du2NZ5wpKCO9KIRPKGNxyeLCnjWk4mz4vtwvRoBu/0LMx4cpH4qO+Mxg+QN8ad+IfY703wvZNjbnWQvFaAYOiWNOyGAI/vje4/y01h++KSWm4195BSQAxHDvE7DFidKDimiiyaUlEpyAHVlFjTecMTxX+mv3/n0FZAdiBdMTq98JHNCV2KN5EhTbdZZb604Eyhuu6yp9eNWECGA950LIUWhEExB0D+P7mfYzEQKnTGMPUEtGbl2YEBqNj6Zew0SncVdFDj8OYewY0D34WNCCHPyqoKDFgmnyDxIbNspytmDhpHGzuscsspDDC5TCg5MZ/hQRLE1tr+//A/MjHxoMB/iUqqCjsqtZLcTCniv3Jgk0B+QcV0cwt0BUo5u4w5OLJ5+9S/dXeb7Hk0jCh2H9iVWlP7C5609RV0I7vBI+PEMXsiSbxK7eCrKDp+8gogVnUwJWfcd2j56lJwx0sV/kHfjOnV5BfFijCyfXRDLkjGzhP+VxTU0yJFbVVGs1ydRKEMdf8KLbw/i/xv8sRKaZZ1tsG8shBkTQYfPAFn6zA92LKXhmFEPx+4ENY4Z4i1bq1EEgbX9caTRX1dBF1lGAkjqbQTeekUIJ8eS7Eu/y5/7itvXtokf3qGRow+DeSHGfOMvaYLWuCypwBVi29LK/pwqdxot5z/8/Dr8NLIQboatNmi9DV251mVWO01ng4nIisixdm1Tzejnttlt3wUA6XcCPFTooNNAWuAd2zEVEP4ZDp7m1/wKOyQhpvuyb1CID0IUiwDL2ta9MQriSe//dNNUTRRuWCs2B3IyC2wq0Z6LzIfF/ujgg1wUBrnvD7EwXrdDebmUiS8EiZGbjVkX4tB9M7Ah7xJ/QQ1Q56nJjTF1RNNPWUlgAHZhUX/k25KPJGMoea4G9+g4Hi14IWEeuwXo0bOLkFmgQkXodr/VmFi1E6HkjMJBG59sRmLeFQoX0B0lVB+9hCm6Q0Mdayz5w0c3aCHGZeUQ20vmJP/ShGNHuMkKoJAqCbhgAzlzT9JrKk1Njqm38/DjnEFRnOkUhfkb3XjH1+3B7XizGWBVzy353UkU5bqjyBvmCVfpEUMH6wUXL7OjRpgbgU5uVkcUlhRZio10l3MzJaU2JB4K0punk4OtmyxAfJPEQEUFHhD3C85DhJ2Sy0C7dLM9MzBYWmuUuCkkb1iiuk8oym5/HqVCkKDi1yImW/Mw8xrqP7Pd9q/UnvD62o2yLGzJmIS7lwQq9KKy1HKIR75nid5LKv4ANmDA9TwUBKZ+V0FXD1hbUZRvnkYUrBxkF0NUzB0DIFlFt3/G8I8HVSC7tQVDAnQalBFsVHwynHmBsLzCkVO04NRER1uaWuBFMNu6/42uZYJX6f21Nsg9ptNt7ejWu+iwp1ZZAC17Ao6kQKekuSV+V5mEf24QpH0n0n/ApLgpUv0EWg00cwPEbxFMgc+wHV344Cmazlinibawob4TumL4RWMRJk+GDUz1R2Hh2ONnPfD2w/j1ltUdjc+Nn3PAQYgFAsKTk1oKSjEXMnwCbyYdB5ddBh8sCjK9BXQXDYSuj4zC3q/Gy1WR0EQ1Nw0zvowUk4Z/bN0vt5RIghUS0QBhxjXDR/lcLtaF8HkkkPaK4yvcokPI/B88k4E/ZKdLeXp6qGcjWu0mdnAygaNOC0IPSWzeijuvZZXEIitjAbrCap+VyKTyOU3Tl4pOy0Vazwy+y9yBHyuZvyiaAVYSfZGqpwbbJv32n7g8rzVjiGa7JmesQxQw8PClear1RzHwz6b5wLF3NGL4qVHGSZ40Mkxc1wcHW1S+h75CWhmwyKjcDW7TDPceazxYNhYcjnqp5ykFX8+4TNjGPsJ6RbYOSnvSOk/N87522K8nBLJNCOM7/qXE9d3BnrHuMr5IAy4oA189D2qj4bhGkoJjQr8HwffCaF3T92APo0lZTvisDLLY5zvJJL4xuWJ4vxHocCQ/pibaPjxgNazmukC9ztZYZ0ahwdRU6lIhlabdwZLY1bKZVzWVmdgIK82gDzmpoCCCLxE3HT6IfA7dDay/MWXKIF593CKVjWmpiXmOtTzyHwqrYFP5wFptsiQelwlO3i31P/9ZBdYf6RfWWWFJbHmjlzlv4wQVhbDHVVjgfdpoFQWutBvo25etRBHD/onnoKVoKW2yq1lnuxXWsp04WbaYOKjZAGXZOA/oWXX0Rq49iwmNplKl6vkqhfePFrpbpDq/WkvFMVYrN8zonPjeDue1yJn12fduUf3nKwFvitaIqicZFUbKJyqreXsfX2qjNPyiTl8gVgD1t0oq+6aamtSIPlNaCPfrtCNex/u+pmWwtruUyr1RiKKr9ZCiZnvND+0uXfSmRW4q2hSrq55va21OyUAfJI23cHNMmr+C0Q1ylBw3ipKCNtZWmXZT2WXlCTSTstWFU2yzYxOQpdEMFIzfAHzneOK8nzDic6DomnEZ44Xor0Kqczp8tcy+/qtAmEN9BfuzAHx1c5S0UoY+7LRuY0W7pmUUwwJVsasroeIuPwqIkj9oaxZp42wg5B7MOdvPkp3Y/n2slKU00DNcsSwT7hI4PdSl1HW42W4xJRHjFMvYSbSco5Hjqgm+NqdB5iVNTnjirfjXdl7/cVw5EFXmNz+dPnpi2DAoNtmU5GAHcoh4N0ZxfnyB9b9czZzapebY+xgTbb0SoIT+hZlOlWSk8gNJu1SYZ43R+CLrk5rxB17r3XtFpfEuGFRn7Ep+BOl5elKJObYGqRvTnMFKIKl+gsbCGhVu2J5RuZ/JMd3HOhX3J8AjOt31K8dutodpsfrHACGo4dXDPAdUMFlBy1vVnsL8C2GQxg56sgrFBt0p8Gg9GyAulqkfFiIA35LF50DEECbcm23MYOvcTUzh+BKDWYzTjEUS8Wts5rCtE4BKFUjRl2naeAwq/yBCHK3h22CoKkMs1viB3XtzuDh/DNwMTCGBUtOBAwZkmZlYWJ+Hpv9tCNOGE1f1e/GK2OR32DcGOxLlYIOQVAgOA1qX72TeHTR1L4CovrXXy36f8uxeoBDtwYsNR9ZE1sN/imkYQpdgoGyHhGCDOS6mzzJbx/SxpIyXhKZV0k41QV++27xINFd6QMG7HG6FoQSf8ElSd2aSytpCRv0a8B8+lcDJIYUij1DTwpDiBVFNrY5yrfMn0yjFmSS8yBH0kTXg76wrL7IdKLgIWeYj7/GogOBlJDD3ecAs8h1eczAM0EvydETxPJrQhPKSYBCgVz1JKX3xZX02knF/undwOChfMeHp+6QsNeQLOM08Irmet/hSSomZC5tKr9zT0pfAiFaNig55t5HgcriGnZYFI9F/YVB1qLZSYj7TFu8lcDnIoYDwOl2SnQZmHzRCWjzbdMx0YMEAJWo+n1+KBgwFRvYUdI6cij5UZN7yv3CqaVxBzWkBEfD1WzGqaELZumnuzUzSQDgIXaYJYrUgnPhIbWm1gtuB7+C2wjVCq4BMa9AXMRyqEJ0+pRvl2cW8v/htmS6OIJdhzaTJ4oIdwLjTG2JWkbPmE7CAZuYj+1oTXvZvZooHH3MFEVn/kstazMbXfHnCGSj3YqVvTbRrEYRA4IjrLlcKbaPXtMC1q0ub54euzRJ1QBBeVdSWwU/eOYAp/TfAuxLEJvohgZ2RTBj2HYx5Qn22xxlMkC+EV1tHCRwLsAxUxivi0pWPKk5hWkn0ob6lsw3o8lrD8jXa4wEoAyDsAJCM8wXFtYrPqHRfnU5NoJFx86PSZd7srppF0lIxXTSitLA583SgV60oZHWqJQJKa+p/iJ+9yIYhqrroNoifaTZQNJWBv+pVpgNDKks58FvdAi2WIqJxT4NKnwQwes1mh6x/a8vp9D3tu21A84Z95+i3w7WVgqPOm99drPGppa1bcxxP8rKiwn2+3wZ69X8Yx/Ujx3PC5R3i7sAu4/+ScggvHKINbJvWhyZDRelyZO0WAChAnfY9pEay4CKNVoQLtGzhgtiMhvnxDEYqFKyQfLbY0aLTFt6fz/OL6d0UDaE2JlGN3w7GwHYyglu/SBUFXL/BKk6GpGKjDjz0EXMtrrplMJvSHzAA+YL9S/U8CUt3pUp45hUWqbDtJrF2z5cR6orosfodtJR4TAADWLuZO+z4QO7frdvLyshuIjO1EgOWTYnRlKFFZxjTqfJ/4hE6nV3jOCFd/Spy++hBUxrkjY3vml+f6kEP43CuL5nq3+nMRx4Dikuzkmlt+TJv9I8txFotLZRKg8I/xdP/u+pPmJBEtn2XX9Wol5LH/HGtw8ToRXih/KG7B3YJglFLHSIPXuY1l8NyCKoXC25P9xdW9kxEVAQ1Ncsc9fWSygMGes+7TE9PQ4vQBwKBVoKfjO/M6UyjhkbH+21qNQm2+JBOtb3UZ3icAjBAzU6t3I/BAzD3UYn7n+896MbMYNm5snWFrW9LJRmLQj8O0/+1iiOFi8CNjSm15YGK8OUdHISJE4lXGL5tURjyHItBfyuj72ku6HpQTFbqK0QKhamrUSpdID2ab45XBOuW7rctkaUIHQTFfHkFNQdtLdrYTbTMy2ZR54vS/7Qgwrw0qADOu08yX2cOB2GYRugC19KhY4PAylq/xNN0zXwQGupV7i7dVTQkq8MvIheOqoweMh/1rLFfZdYaOStXB2MAy+G0N0B8yqJtqPte4QiwzHJ7fFLBN1eghAvjAI9u2LnkWXdz/WeGwCe4JnCbWs3Dr6c8RbryLyLcscvaR9ifEeIZFXRNv0zTaX/DzPWztmBpBcrCsNpoz2olbWuqEP7Npj5CzSOkKPqvbfGLF5oJM0asAU7nRMj2bNlSaSsHmvr7E6u9iuKqrrj/awd+SxsLkx7zZ7BOYCdGkUharWVXBt6DNTHlF1agQbdlGPSLgMsvkEesgJ82kuMPHRTgdornhijI4zzUWtOxYJ5LSI+pnZuYXcrd28n4OsIOdZJ0R2Rf5wzb7v/CsUIksuQK2iRw7dyNp85MuwWXHAJ3JquCNI40itHqnT5AAjoThCSBJYMMj7ZU1JjuNZmV9hgVkS8v7x7Qdf0Rzxs1tnYbi8jnPS6DTC0zsAbVN87Cm/ASARRoESbbYpaRUi3EgYYCW4OJdptWo0tusDNHUivd8GpHmuuakNjB//lR3yhJLOPXht6o+T8KbTRRaL5RCr4OBE7qTbdUS4va15aHAa+0VuyErufm2c9++Bpvs2LkzyicvUQZPC09V1VYIh7CLh6LDxFXeQXodKvP8fxHp388gfjbNT6/3k4qEGiry66yaKSPoHmeHNucvDGhplTLFGmasO8nRNuXE6MVqI3zNQ7FeTGb0bfOw6KzlsMgFEauqmAKXtM9whS7KZZBsaslZuH7NhORMo3+b5yqzDQeCvm+LN0/NwFHnT4GkcK/IrHmdLtTmFN0bmEy/nOqHf6FIV+9MwReVj1BKME2WyXO3uLdAGnEN/+dPQLDS5dk2pQ1nbAvDzlrohYO97ib5PRVqin9jpluDRLQOn9DdTii7iYvB/FF5x8Z/sqe/LZYdt/FXFusUQSgrbnE40WexOEvGIMD/mX+s5IAFxhrhpwvTtyo6Tl7uQCVz7bUmqqnhSAM1TunugUJvQP1y4ar9c8AvsdKvToManKOCm8m1JVlGdjrhV4gUMagOUA9oRLqRUWG3Q+siXRSv2aWdGDuT6V0WUVWeFr07eibwJschnRIiQxp4hgDM8JKvxnYx2zYv7LizeW8p5y/uW4QD/TaxShaWYdPtvqTeQ9gqjjaUa4J1A4gKBcaooqwLIBiC+yzKdDt3MlJLbzUDxeHx6unECFd0Prx/4xwqz4Uzf5Sgj8vC6gL2OcqFFpnR+d7dq5u0ECfqC5WmcAYpgd7jg8O1PG1eIikYjF6jz7xBnruTe5ras1z3jCO2NmBpSfWuRCjeTYtZINOWVwlZiyCfnw89QGJ5Ln7ZM8MyrbfWMq6SrXjK8SX+pNGKHqKT91itGJUrfvD4bEK6bAvmjXHt/PS76p/8LTu3LptcMAi6/oWI1WfIysFNjp3PaHE16yAAEi63HzU+Z1+s+BfePUdbpjyB0hYFIewtNx144rPp4VXfgZPx60yvlBG0JElpr6mPlLs9geTqMTfa8a8pT02oFr0F9tGYmwko/KsV8BRPIgKIxNPYWDxYMwbBX2gMfK+5J/ZFvT+x7ezfHD7e+a2KQxWcTkvhW5teQQ0B+xzUrp6UyoWR3VCdnEfQkaMWrl1ZfNj9xjCRDtewSkOHgQxojBaPmzLNZaLiPrDbBDUdHF/FCnlDUHKtuFlSBJA8OyV7dqmdh/SS/MBek5OEHJ6uFPU8hjDATKWw3tkbCoLWbds646Esu92cTXgS44jUmc8T8nfutdCcZFAMpS5fxoRNHN6yI1J2Bg2wr6/DVxHF/MWBYQlHb+tpN5z3ejnQpfu7Xpu22LeSRpVL+a10JMlDq6jLD+eICJPt4ymkvt/c6fyhrbn86+K93arzmevn9o5VFObkyr9JbBs0J/JXkQ4LDkBYWSFKpQu1AZy9Y98sOgRW5ULZRyzmRUtyTqr/mgzJ6id2pq2NEsSYOeEK2eY+21WtcxCyaCs6DX6X+Sj89pFvKyUDnxG0OIeMdiNjnPfSHHdIS4WnLXXOyn8bu0/sfVaa9S5MQeXrGahYNo3bLcAXvk6Ls8msroJ7UMbCVZpdKbQg4dZ7AsvaRUjqlUWIFUU=
Variant 3
DifficultyLevel
608
Question
Elsie draws the irregular quadrilateral shown below.
Which list shows the three angles a,b,c in decreasing order of size?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Elsie draws the irregular quadrilateral shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50042_v3.svg 180 indent3 vpad
Which list shows the three angles $\large a, b, c$ in **decreasing** order of size? |
workedSolution | |
correctAnswer | |
Answers
U2FsdGVkX1++hZ7yAtfRz23HwRgqu2ooiXAvPHCurIjJKsxrDHI+DBkkL4cA+97gB9rZ7K3GALAmpmgvEp+0WehZQNKlgK5hJGLj1O7G4onPplcnZ+aeqVt5SRm9wyuKUoUtnomZWFXdSz4jXg7Fb4DFcvPv0Sj19xv3kxFPAvWyCqiLi/dbEbZMUw6rfJBIwXwF5t8YkSAcp8YgV4OQXaMJUUg7eChrWbI040SRjjpAYJ/fvxTpWEkr/gq7Cai+HHEokFYTXqOfd4GiTmo+e0l8dDC44ekEr5UTDRLIkS99Ts134qYKMRK7eeIsTFeASgIziv4mc9FpY7Zo+/WABTNySmFriDQQwivXOZnLUGAY5hdH9c8C9ULlcst8zGbduDEn9sxBTfXGAks9nvjVAyw/P30YPvLnAAan24Hna5b0OMHqM23IpIFzifAnyh+Qf/2L7o2PeNQC86PIFwjRncmhR9rpGWmb6QIMYKSeJnEW1aLSarNAUyVC+JsX5c7A0hlvdNtr8K0jUx3aa2lE8L8wkxxr4tr5WogErEqkdaGex0tsv113vs8pbC2La7N7ZRNsQT5OP680os+7GPnwkNaUQVRwUyFuF43mJ8upElpM0oTAlzFyXAPY1vvmDDoO3o5pRe9t4/ttcVvlvkQahL8wmkVCf0bMlSKdgSNFrYwLbFiV1KBQ/VJZhowtihhR50O+HhUsGsYb3JCqAUJ3KO//xkwz0pW6IchSsquTJiQwlgy9uZZIKtLAFWh+U8sneoqTkJ6OpX9tNyz7AzcXjZClCGfoyfqYcKr4inmWS7rcwHspS5gQayWNdLyY3+67rGfGLq8cVry+5TD5wcN1cIbTDAOw2HDD/6jpMS66dfmXMd6BNKv/sDph6K8Wx5pDERI0Yzwe9Xdi+Shq4PL6GmuVKuRnsBEom68BDpc1kJkSi/3GbsVxKgQiM4A7zLg+6aNlbp9/FYwq9wbyyh9GC7yDcajqRewIjTfhHXEYlMEnEW1Jr4kgYeWyNvqa7s3jC0pwqayQ9Ik8/TnOh45dTM6s63PTdUIfyn+bJHv+Qy6wEAxisVGp6Yp/nvib6Zl+E2vQPXm73ktahnfIU86WKae1EhEH2i8xA6bHehTgvsuuN1guEhJhmhc+hOBYQZeuu4F9/W01Y5dVwHP+GDNVIx+9UkGCWMYYi5bbwSalA7aCjXqvydbZd2o0jP9EaPp1j89nsefaI7BkRWoYM+EZ7+2aBa5DwKZiPUUfbapJBcpS5WONaunxRRa7cgJSBlMufmO39lQpcT9iXXV5SMlnbqePxcq3Xd8WjTwyrkz/LEqeV3gwIYYpKaPAtu1lbYwZjUWEFy97Qw1aUzTbvsRiyMxTLm+loz1hKHMGv4EFr+45hgIw8Cml9UsfzDBrD0RpKRLY+6SHfsTqOombb8sYCVxh8lI/ADvUV7UueA5BWZIL7X0BUnNy+ugX6zo9kZlmujl0e9aq6TlFvunkpOQTI89sfFZF+pp0b99VHHFLE77OOTaEn1Z/L2u42jOM7ZJ+HjCcC7Ko82d4A/9IGOaxlGUhiKtvgUlSlpEnx7bwDgo3STAWBQWXpbMn5Q0oAk1jYlkgr9WppG8drfcTBa+NwKA1DtFVovqAOMVImen0FPob9nOKLyVQBfvDW+SJlk7BGJA1ZLwgS6W/0bNAR7dQXZt6+ZV1nA+1TeIBwXJdjIsrcX056v2p1j+xQUT3O8waIBRrAQSw0x+QMpWxNu4cCiTf5FzYd+ZWDfBJL195c9LeH2dWLXK9gqFOOVnHDk8PRb5mhQQMLpuCH7IcCfLHKBA/v9Kex6zhEt1NHdMzHMZIAkTPHtw+MNDHBrX8UQfM2CBNcjGck8KNhE21/FMPN9GWF1V0g6qpB7b7++X5FWKMUIDmTm9B51rmh54ImnEnMQwJDkehZ0qCwEW8dosHztbffziZvIW8UIHPB3BVcMYbVfo9BwV+X24d/hg3RdmGikmazAXMw2uQvY4VtLI0kcleybV44FiIJIX090yKcCKNiZo52si7iM+8nptLqY7PkAcDNJuVRiHJrSRUx8Tyerpb3kVG/ibRAGAPl4opDxvPmPWDBtla+aLfI1+atBgzHEj50SE1dsxFSHmJbq4GXDYsnSIs5ihAfZoTESPsD0QQRt/tzLDTvq5Mj4VKJHgEwsTQGiqTElhe913Le8MjzP089BRH2dCqIWFi57UfYbVmDfolwoZigaxYCyoF9JBWBHH47R4K8K3fGw6IOo7EEngriwoz8LLzHUSXnfBv3XUTz5zcx/nXi27P0oOcPGFeBqUOoUmp7EiyIfIewXzwKIIy9/FmO7qPbTIC5M39RhR93EsGqgFQZ+4SAy9/oFfAz3CwWMEr9Qo1wu7fUAKZgMxQvZ1JCAiQ3XnjJwtdeg3oyXOJRT8i9WZC/5Jhm+fYMBsOoC2sOlBFCZY7OCIXf1WEe00gMy9r2mb2PTYLgXN4xjVazUAZ7JfbG2vkgpolAZX8scLN7F9wgo5tU8pzacLv5sAaMhCAR567NbzKXxPkBt4c4RIKUh8H7j/VZeegeQVZQKNAp1QMq7kmqblX10KRHDsjjxv5WsHL0N4+PrVy7DKpM4lHHHHIuNO71D/Z/ve3iY9i9nVKN5m2c/4+PZPV+q3Chl6U5dD77V7q7y+qi3tIF6SfIMNUeZ8zsHSBELfQY16rz53QkwFi9O5w3UBaEGD4c4FDwbTE0kCKrjM2OmSAMxUvS7i5nR6H5Ubv5YA4R02xJmvSnQFc2bywO6sA9Chli07v3yeQFonPsv6bKij30iCeA/tFCYiCru6LGVA1YQGEhU/n1MRI/Yl/w/8k8b5WrLj/xelVarlDQ2sCcFpZ28X6TNQJhunNzPpX4ifZvFo7wdtTWGk5X3/KNNuqiW9lUyeKZx+jyR4F6CF4zW/opBOhgufl1XOIaFh/q57u4gH0yeOMFPQPLaaFcnZaxeOY00cIkPUTmjkwkxbGUZWRp1RtTl2zdA5jBGNT0hvwlYnmvXdjsO73RIe04p5EKUu+Tyf/HBoTOt+k+iNgCqGzJFOy08UNH5uQuEakW/wRnY06MieCcCJ4Z85LbdLUXwisW7BRBiaG6eLHgN5yMfl/nI3gIXUGfFYVrnCfiAFgbtUslTSMXai9imcm5aO4aV1dO8tyOYA+trF+4HIxXA03ghi1EYSxwu4KdwZIl5xF5ebera10NLXxM2B+8R8QljufD8vz0YHhnqmFdYJJdlpsmZ/5bj4FgEYkKD/nkJSivm6+WKi+yjZqptuWDyVAZh5PQRAsW8kZHjuOfQmDZFbkqpLB7A75ehPSdKh4nLfksoobJwpYH22Bldcfdd0E0PIsjQ0l4RhsVtQnT9oNfZLCtiaIkH4tSsX+i/PPHp/qppwPWYqyXYm4U5MagF2xiNJf/nx4RSgTFDq92m80CTDlDwmnC3OLPEVfhTIhyTaNB4j7QCVCXjrS0f/4OibmKI7VJ57whEpguYcJ7chO5jZzbsciOb3rwlWONSHM0CTEPngAHmnhlXGbyMMRZMZh4oAfDVV1eI2WYmuP+YZtk7vlzDZRGk0rfJtGsTaE+3DkigW5OIq3udgCdVpGOsIqTqo+VHWFk2Zdiid6xjL1jEWPDE61w/c9gkF/xQV+Al0khX3wCsi1A+sXZqeKU1D9uoU6ztxHIhY3VzM+OAe7zhbH21JYnUoapK2ttAGXOwi1Hkc6J38TrvAJNp8ETVAkW274vagAaAXdsAJ+mROhQFzqqPFIjSVin3Yt0rJqjrIbNN6HSDtSx+p4Ap+sPmzwTRma/V+h26iZM5+NXtJNPh5bWxShufmXhpqTyGUcwcsZxlJyZezkXQjHk2gM07duJOs6l3CYM2jqkXQ+eMsdo3NoDWvsyO3azCzb+1yeW21qrJH5ogPnomwOlmrqD6LLCYeaRSFbCLYz78xbgQxQ/5Q5HPzdPP448pZiGuAJZ8qjVkcwuITdjZuE+EvolUDnAWfDuGeQ1b039prWGmGO69Vt+zWPk4d60+Zabq+oejc+0OQSbvYn9sqB4DK/GGgQDYUOuO02jklEi0ayFeZCDA/sO3Eb1kXhRdFt9vlwZQi6+Q23VaPzkkkBsdMtQOCkyiFmFsIO1T4zSLmaheicnq2OYKyKhJfcHgPx1Xu9eGL5BdhRT7si3+c41GBdux5nHfOu8V+oibfnttJJApjCR04FbQXy39TRkEJIXC5Y0N4FpcglgCFBkoFXlIrIIz6qnJrbxTlFCzT4No7wjKqJGpc4bcojgtoIzUeouDMm+WuDp5rGdsU9SSCbgB8uRE8zVrojgR+TPwYeAhQpy1AvBrSc6YINm4Obsr03VcQ6oXMExTyvddD7rUkCG6jx54T3YrUSHOfzfh8JAKdyQZHafr3PUh/YXFHt8kIicJ6giHBSdovNz+CHzbalFWdj8pBsGYFVEJJW2HGS7gGAc8SqIBFdYo2tQ8GMmHm28tHsOxH/qMeQ3BaMmIFjG4ERO2JWRFeayFa/OhCDLsfJ3/qQQ6zj/XJPGpEo5dgMStGVDQKvURL3TSstJiTyAubTdJaCqU6udbQD784neK6coEQGl+hAs6BTbmoDUmc5ABCYRTuMzZMQeV4OQAOLSI96UWv/N1+6bDLSFJx6Go/Jr9MbT3ni6bUTjdQN24ItBnzECDV7OHpPGrp+PUtXeCTaeZlnuPYeQGRF1P6/0bYK2V91SWoM5T2BPhInsD/TH2tLboblyxKivvDXYl1TyBnltdmE2bLhZa8MCNAc9pHj4HlmmNBGU0M9bsisHTj3jP2WidgRsR4MM1T11QOvQosDa9UXJ4tHojp6JoTasmxVgFZjDZLz3CaZJ/PJmflpQQveQIJKVvQ/BXFBQhyW8cE+1ai90JUMjAs3S1gjngAaLDiA+GtUg6dXj9hDMWOyCpRxzOcbJnykrs0yBUd+hFSa6J916C8AiJLPcKW/anug5byLwk6ezoaA5reh8Qe5bI4n0aWgKciBrFaGqYFtpIIPQHsHz1t7vsC/UPT4/g1153KsCfQTOi6QfI2lRNMoOe4mIPLSxD9RjQV2dgGwXzgtElo1mZChbxrA8Uovm8/nvnEIo1IVD6Hz+btRl1aREgD+mITq8nGta3dqgYx7mp+dl1kiEGCTmKZ9EktCVgGjtAKn3pYxX/lB+sH3KmquBjhVVk/DOi6bx6fjGvIhbSzBVqxnhcE/PMdnOhldfqGbtKeiAttKSl5fMTq2sTKmiSs21/cOsfuMvyMEAu2ZqkqRaGWEdWYHO4dTrD9Cc4GQiXB3SDrk4KMRaUBfRegXuQp5kOtbVHrEoFIoYSf127PsKW/p705952ATzY2UGvr4AySiz32ZEDY0WSEFGIYc7QuB3ywvmdzyR0BicZyE6MyZeQk5B3DINnjWhe3cKjLI5tR1Y1Z8xverk9gH4y4k9I44X9AKhTD4yxZB++PVy0CIw51IBdx+/Af4l2uHo0uHT66CQbWuiYSprFfh2MHf6OkFhjC6DwdPmdPUdsCN+4SjQP0EN2EOpIlDAS9GitsCNFCsiTDAE2R0sGPm7u0zSmrm6BQIDIisiihglmQKXZ9bFghe6wW/XsIvNzEQpn29ACRukcHjz1PmovQVqpS9CZ3CZ0reBVUyd7JFirbcpR03zwzEzdr0evVgBGLycQuZPCOEBVbANijEjjjboZjFYns40O1Td2hzRPh3caTiF49uRswqsPJWXMZsKrzopm6I5jeb25sLJJ60nkH2iJTeP1aAeM4SUygsEfpRub1wkiC5ukMn4NTAYB+hofiXjA2ody0nnpAVFwe1D21cq3iQrBEes56ln3aooNADhHb6RFUOObGKcjLunY0diqX+cvf4mTcNgLNL6Zn+M6AV5heexTAp9Ij/uM5cj+LO1w7huIMcJjsduW5hLxnTTu+yFXwrtj5KPjslg3VsuFtbYDPPociaEz1372rm2//pYsQtdwIZSILbB6+pS0mSLGol6X1CTRrJg2oOgwi+5AgBGj+ULY1prqBen2bqIjaAahvlPnEQr3uvPK09oHMK52diwZb34tkP4ZsW1CelTYxfgffWvhm1bDxFvrj3MQel+e7Jn0Xf93OBhA7cOeTW/rDVYAs1wWS7ja36wtYHytoW7n5XWYaXyhDWsh/BB65biNPvoVsD3ww0uFGu2t3FUQQgGS79gkgqaUFfgMm8bsqn7odckzze9Wi/LAheI8L7qrL2ZhUNdDrMOIpjFGI59pBCZ2bICdd64cyu/VBS2dIZ4Xtd17lAvyiGUitCoEgVAAZSpnt5bscl3ctw57Dl1CNx/uuatk9HpUGEwfC8VlosoQPm6qzzGKAHxNn+6QBFcvlM7kP8GR6Vy7E0XuJTgKngt3WOAI8ETs8jAMDk8eCdZ3tYL9fKhu3q+NECPBoFdLL3gUPvrUkV3lIPn5Ap01tP82eFH44VpQ3ol8MYem2a7rsoitdpANP0lX0C4o5cX4MxG168IEWgdJV+FL9/Y/fuQzSHj4M3/gvd+YiRjIA+Gnv6WrgOPIReZNeTqAiStVzdKP+7L0KwoOJfUEiOCpFDPcJH7ecv8EIO7o4SJYwPy166wImxxfBrqyLTSd/8gZTAKXFNhyaUhdQrQPbRUzxh5eEfFipt6R9GIGb1YlZJjXWjd3NdTulsqyFgKC8IU2I5wTMxHrOMMcOq3eO0KzCDrNZ+pS86xG5LujWuiKaJY+XXmtCfFQaGm7ae+X8kLhR2JrXQNhvX1SRyXazdSogIt9NLMjw7yUNJLPlI0MbtPIzXA76OX2nykhAYsuR1x6GOflLw9sIxt2XwmTBNkYGqYGBZEPAlQ9jYf1uxPFK8+0OrUUR0tNGa4St4QqKWB4ZZwBP1jlTxrnXlb/ucCifj+cjFa4TPJWfHOku3d9x+yAaY6qzCviHBPmluAlPVqo0tW9vK7mhk/A3yVxfhXsCeFOLLsuibQ3B6eiqB9kwvcQvNMUHRr8dVFcTsuoalw70LMSRIVuzaEa4137bGgjvPUuHAwOUbsD2LJiY8iyVkqgx23iABmBYfXJJe5hpxysmLI+A69wtIn1j7K7nfW8KRyeiRTAVYg5KhDupOSzLcSsymk9XQGGGvuxN6S6LoANOdv74Wps/TbCptSn2rzVuhXA5pnLPJEQxoQ08uP2fnP3CJjfZeCllLseq4iePeln6H2hEvTjKrB9dGBLLs0MJTG9OrTaJptDDJ8i0vofIRan5m+kodbN3wiDS6c+BB71prgSBLknGVf85w3ZxrqDuHbMyyV8vZxJwItcsmj2ezcYxGEzSnLxpTH3TCJaE/wbpnsOPIo4poXLcjEmgmCLAqEXTi0JuBY/F/fK5PzH0y3tt/WH+7VkCfW/cN0iYZFpragfDduXf4Qztzook20HZBT1m6F7vr00M1et3BgsjwGhx2XWrIuJbry1iGuUjm8ye7WskshSNSSpVTn3iIF+htL+RBx5dN22HRYj3C5a6dv0e9t9zRYjwLvBQgtE1B0LpG7UVrTzaEZoKS32WKVCwfk5xpw6d9dqmN9+Z1EQuKnhx3mvx1LQPpPKViGor1CNE/iht16vzuHmxrP1hlzlHldDWNZaI7WmBBicqx9WtpOoz2hQ48stNMO8dybmVrvSliPYGYY9ersSbUDO7fO8VQFEi6IktR6Q0PlRqAiPZVBLJzQifgKwg0Sd/5YSZ2cs5cdU9qpOesAv3ND2vlqoU3h2pNVmuzYcTfs0n/FErqWnyRCZXYvVZ+ZlP2x5ac8WRTF3GoPzh36WVtLjCrFa1H3Z1c0F16aMD+IQ++U67h7EU8E8g1SChps8Toq1HWVMZdFGmRJSssXpYWSTEGqb+SN5j7ohHQrfUh3aBa/gv1PsL6L49GrVyNB8cJ8iJyoozVmGQLtZON5shbi7mFQb01bMNECGtt/cVvP7ZkV3DqqYYAHoAkCBrVWFSFx/7ZyxlHfuFgL9hAqpQcy4EFDi1DTPCLSSHzXn1xa/omre8xgvasbpjWsUdmBi2Ueh7qbHJx1tOp1g8isAXzM2dzeTo1vVqpp/ql4vaFpG5t+9bLQ2sqkXYK45n/KPLF9f6EqYVF/Z1k6ULr2SJmD6RxD1xuoCdu8Nm9KzGsmQIcT/HW9iRmxDaERf8PkUH6NZTkcEkkkUkXDbdlbQIA9HbuzyU0vuSfeV7YbA3afOEBX4L4BS4pX6EczmvK1pOvMUcZfA5DOjj26DtQ+ks9OChc38WLLJQwHaHDk/TIvEj0pBihBnbgUy2RZRUs1cknOZGDrotKKf2RTV7bCJ3f+Ac3N1rnp2F4wbhNOabJssWbFvVC5jRCspNdTZpDSEzRXBHaIZDUEaij8jY7q0CUd98DvGPHQ01C1vZMoeu0VZ/Yp1w3pYaESt31H24VWsK83LX7NXPOUX01Rl0zzeaf/D887eHxqou51REu9ImW2iHYyZx2GlS4mNwMNQIugLKzj4OwDo26cOb4r4JsuQeGZV0f0OzR/7aUVgrZ/L9VlujU5T6YvTql9NJ1UpKg+XdU/X+oWaUjvr0mMssbijsOv2Yg55dC6e5xNBqYrwXaO6nW5q0QiIhUKtgamH2bsS8cZuKs5q8q968nBMNWSTkjc6sNKlSm5rd1XHA1f/yOKtGJszkjkcU7yVgmDIMJeXGREFHHHN6UPKIf8oJiYAf+J4Or6onTtca2c21X31kOh6vadf53DK9koTDPR6lzMegtP7t9yF1K6PFP6TgvrjU2t8/hhQHkaToV67qpzBKFAYoX3UeR56mtVQc+9wmb3VDrGf7nqDBTySm487ouBCYeSjgnKLTUItCeiXDFmWvhCwoBjXF9IFBRLyOkrQqg4xT+aH9X6GthUHaHIGfcNu7MJPnK1FnPZ1Wspy/b8OeqrWUL1vx+6IQK2Jb74M6TG+xPhI2q+pmyd4ViMZ01FePTI71sdUhwLcIDTuhsttPyGpUhMdb8ICJ5mJcAHuGhTkq8bvRS0Br0KfOYSs93lwKAKGEEdWtzGhZqEV2ow4J2GUZXH/OE9CfXftydIWiHyIfE8XXS41KdHXU4+MU8gih4z2zO5ukT6V/A4B6Zic6pmo5qnsZN/F06BQnkFLkXNuFKCHHWTJRIO9ju26/NtA6YorVWFpCnMsUEAO3dOecc6XanawdIo+ne87QzRzENRigAEOAhen/FXcazYh6VeKJPDg/JW0bQR7yBt7hje+FYYhe1rRvdfXAPkE3qxN7wxFjNPVgvYQPfhyCsKvmGqi4tN/6X7vFHqCdL4YPCMhI50/A8jy4lSKaQ9nXjMmOYbtzsNU7lwpiRK19A4ADeejvdaUY90+iEubbIztdgHa1UKe9tvwSAs635uNRpt4Ph9rPIjHMsqjYpV+3YWji0B1oXO40T8RKnrlsxG1tQyOWA7o7Rgl2+b6AksQQQAF1UmOpsssVi8cf8pehSVXEZMTn4gvHKVCCQU2lH6GyhK4ItHcyduVhESeAjLqOk04hYwhHdKm4bZcGGU8VGY/gtOFgETnZSklRoN3FZfs7AMyuyztOp4eqOz7GD0pFkV0FbrZwk8dVoom14KkBmm/F6woFLFwYTdVdfSeb3sWRBLVTKcmEqk8V+MvTd4eMaY5Nw/dmP4XUX4n5K+0aSH05eBbW/UJB2LldDF8OSW3M=
Variant 4
DifficultyLevel
606
Question
Junior draws the irregular quadrilateral shown below.
Which list shows the three angles a,b,c in increasing order of size?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Junior draws the irregular quadrilateral shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_50042_v5.svg 150 indent3 vpad
Which list shows the three angles $\large a, b, c$ in **increasing** order of size? |
workedSolution | |
correctAnswer | |
Answers