Number, NAPX-L4-CA17
Question
Curtis makes 14 pecan pies for his restaurant's dessert menu.
Each pie uses 41 kg of pecans.
After he makes each pecan pie, he counts the total weight in pecans he has used.
What is the last number he will count?
Worked Solution
|
|
414 |
= 342 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+C5GHQgJwRY2TEmPYxIu5fPkVP95bwiqJ7aj+8y9yL6hfDTUiXgzVFMBpbqm0gcqtP3LL61hJb54UoOzI/lN768ohLWjnOn9z1OemT6NdMQRdUCYIoZTcvXlD0Qzg8K9U6jMxd7OgPVG/aM+UaZKWw+1UTZCpCOvFX5PuQLKMWyWfiXLq6AK3vlp/Z5RPg0Cg1zuh9GV2aNIfH9E3BSXV9N7mX4+5j77+Owl/QGYdT9CCA7G41xqCgQ895DbRX1ZV2ap34CxwrL4TVOhXYDDFZv99h0iPgglEcmUA+5vHM1y33/zF3fLxcp4uiUHsMjtPnHVRTZ4yfe2Ynx9nqQ32+0jJocX8nVrHjdg6PaKDtq251LrqA9aSi6gVTcnIXfYinFfwrX8La2ctbcQ7TsM2wIHAZGxcVG6JxbUPhkAzvS63hY26zjwLQ5FCNYUic0bIdy/Rku5dweyy/fjCEBzaseiIbl4jvIIowNCRwqC4oRdZ99v/BDBfuYHgePRvQ7DEOdW+58GEDo6mKdkWU/17BxNWQg3QeVi2i6UVWlateoIfhcaghFunZX3r+KC8FpxKX7RSMFBmg7tgSntUxZ6FS8QBSfgvQJnp3iAPEhooVV1DaWLZQktL954HO7pSWsOWESk0Ohkdy6U2wxsoJxcti8BjRHt7ysx3y9I0FvN68Qsais8GvEGlXCOfx6OgN1IElhKTcaWnwnqN2NZMhNTLSQFG46aKDBUp87dAhZVjvrmBZ8PDGLF3XuZrquGwj/vlR/BFK4QXPx5h7WYlOtqdRj3cqGp/Bn+a0u5yTzVK/Tko9wPA5C2k6uxujT4vw+NuWf+UlS5tSQBUGevVnn2Vtl0VDOjsHAZtZmkXsIPeSi/8gy4AFGNAijKIuBFMDkEyMGmxu3PPu17IpGs+tQH9s+f4NKO4iOtapL1y4KU+SVCrZKsrUqvrMuXCVoYunrYLLTKRzVASr2pDO+Ej5WZoP4btKd/W0YSSeK1Hn38DLcL4HxgP/CmRYGNr1r/kfCkDCHc3DCrjFHd42By2oL0gxSwpcUE/hv3X5Qe6Vm84cm4LxZZ9RwCvUFLo9bfI6G4FhU2hCG0+oi+88Zs5T7vpGkkj+dpn4HX2vDkSg9jM6nCT9csViLgpY/lE3nDmaXdt1ZeQmlLUO7iLGsvJlMHGTrNDQZHvSz8zeC3ocN0Zzr0G1M40+8UqY/WDY233WGaYIy6TUNY+2DoEE0IhPAPHebCv3mZxzHiF6xmzJTwbBLiW15XCr4g5I2JrBi5eSDF3iT5wv2kDznWVCoxuFoU9kZnqPhc49Ihj/lUC7F/J0F0VGcPkphjYRol2BF17pCnTtbCb4BO4ba98LGVYuAarIZq3TMjSaeHxiexUELG5Z+GbMFESABIu3DMFJIM2ZpVWuyldhLCU4rOjVszkY77RQmsQHI1orp7jwDmMj7ZaHs5vn9rrob3qzDVdTjYFWa1hs6ZP6uPYASHn5crKKRt4IXHtMogYrtjFfULLXu/OdWL0sSmZs6lyu3EZYNAb0bLZfydjG59J0nQTrgEqHgXGX52YgYDvuqH8wCXY+St1QXk1VvThBELisqo5F4p86lcl3UMaFu//B+hyj1wCpF7gGZ4rCI45B/SFYemUsfgJy5oBXgGrA7wMm0oL7Sdm1T9L6x2DgBLnM/oavnhhqPYkxgmvVBee1wwDuU9Z0nTyUszwmupdpeZyBch5iDxj3LXTsTTkWskJ/k8JdqghYtydWu9+k5suKkRcCNw54nCHgPAZEigJHNJ/TE3l4NRLNE9HAXAx8SA13IVoIc3OTlPIZCIk0zXfze2tBYhdfs1pB9F5LAUchH0f6tjDYafFvX5njpWICymE45x9Ozxsht3b/W7KFrDmkcs9j9xZDHLgYfBMzMiA/T2yfM8QhgTaXoadU86REHFwDLZb4sarddPjGjqLV9yWokxelbi8IQTsogWszncKK7aaF3f/k61w60bEiCHoO8p/zc8pcB+7//r/z36Q0ey6iUflyt0CiAGYRHWXRniRo8ytJ7PbvvW2svfWE+2ASwIblaIBxooJPvz7VQ58rf32FZOrVbKJySKeNugIerilWL09h63ySv/E0lEVG1O/JlafDMog7OjmoI9YIHm0KOfvAsEBsksa8fvcNUFyQJp+lDyZr8uQrCItoDDGSwgPv8XIr5z3PT1wivLFPDjKyjFzEMUm1wiYcSOy4K68rMHS9Ob2mon7+zeMpf4OYdmQDiKv7pWsvCXmA9nZjyaGO8PRk8ALLYrWpD18MtAQpdloeNjT9ixrjVXdvCZz8sRDfL2zjV4Ea7qYerbP9WG+oTOlRDFyuvOelWOKPat2+b7Jj2NVMXEf31MlEBpNINUpfTvwrFJOsSemrvKZLgPGIa7daGB75YrmBxwHscKqoZItdthgTRC0j4IqhcQpAiIjOz7OrUiV+JxK+yrzRvUByovYTLNFFDVyID2oWL5m3p8ZpNW4PYioT30SCtNYGR9paiOBZXhS5ntUsJwNCLqfb1pg+ZKpAQpIgH9x735uHQtLNgS55PWokE+jOz5HLXIjY6SJwYxnk2SBNsmYN9lfOxkZO39Jat5jHp8w4VXeHeblRaVrqK8YJS5gcgTvBluu6L6fVEvktM6meJcbUEf7d0PgFPfWmT2gXbO7xWx/VpjJJYUzIWnQ+FtU4Zl1NudNTWoYHe4zXu6AZE2PDVgVI9vDLcNQKi0hJPIpFVf+Gl6RLwqoGUDr9Ve55qlLEBCDAz0tFXIS02Q0o0lxZUSSYAiuoETOLu4nQSyw5+jo3m8/ix8O+Rp0hJuT84rb3RdWBbz0C5KeGWWe2yyRL7rIyS5g8uIkUEXZYTePNfVvcQIbAD+g6n2KBKjzHxd7EiCK0wyO57YU0tgYamvxKBXJhES15LLEJSihgoBJPB8KUCHy2fgpmrk6QsPyPKwXLM5FzuZ6fkc8kMVX5knVlMWHjHo2wPXMEHt3kCRwOnRvOoyaTp/PqlcGou0c0hftnkz8qvaMm7fJCSl31GafnVVNF9L+N+4bPU1JFpN8/Vr8xddUQ3mvtVN6SVJFj2arZJwKuxPOcRdIGLMbfwy0Jr9t1QLNPCGl/NXEja0qynLUbUmSQditap7cviWgSsyOD/fzp6AA5WpkcRDqrCenmx1yZzqMF5RrUzj6ZYB020R/VMcZckR+wCSbiaaNiivdBlXw1Yh210/eavqs1Zmf0U5rjVUI9DJ7m5IAZE6wHleB1+ml99CsndUQerRvpvdLPnJnvy9pWbnWe3RVhW7Nowir2AN9jDcCgDHHsiYUWhouB7NC0SOUBSse8drv8J/CMnvlM04MZMIO3PCZgVpBLAZ1eE4rPh72MX+Ps2mzsuzE1CmwgeV+Kn/y4q8ONOiuYyuqRhicjUJqcE5ndAooQSxiP6SDL2+qdO7M97vT9rhPjjuYclSIoJP2ogqd7HyXuSE9lUsDzq6bnIsrPiPrBssg+XAFst74oIMAiWz/M/JN3jsv3ZhtP3YGA3iwH+oZr6SuHKXOPo5x/PjKNSMi/IlXmQx9+v41bIh3tbiWU/6o6V5Au46QrSgM6S68c3Sw/hjE4kYUIVcRAiqgjIFX1Qwxakv6aNYT5ShZ0KQy13FsMbJ5hBNw7lNMrjGWv3D3l+njj8jdr3iMsqPBObRmLfLoQiN7DAGwFGZqfrPikIL8cmLzmm+qs30kaaC5rK3u4fHjJLI6LV4nLLH4Gm99fHhbVwLo6khWRFsS1Hm+BQ0SV8iMT/9PluVkh+bcvnbdWKTn1+SbOd+YeLw+bBZjH9h98I5IvQRkBHADBf0Wyk2/FP06VKjEG3nlRYytSRrWO+jBUJw2Pe3R8wMrJvFXaUj3QwWYkK/Dj3mJomW1xQze04a8R/omX2ge8/U3HKs5JnyfRn8UpRW+5Ghx1BUoB8Cz+oRMkXw4InavVNgnJfc8FeMBc2Ub0W6Pm46tnQ1thL7SmxE7FONXfy3AN6o890wBgNPoO0vJ3n/BZdEZKGUWcIcnNtU8MCKFv8p3apc4B+vxpSYX6g8UDZKZD/GVu/d2UoEIXsuBoPRelkHwhrSBmXMQstjmmz/GYOEecnTJ8+PkfTNWRxpda1VeDteoCQOeKpW9Bx95kcCr2xGd75Olggb0GIGhFFj6OsT+L7aU7k7wt0HXsydMAyr8+g5D0hwrKC/G2c6CPFigP95tXPUSi+1fw8vDypkmqaB3W1E5diUWeAu6tDEograJ2JDzMMDSowxuj0+JACDupGJnjdqcY5wWK6bqZfsGYRDGZ5ScLwP170z45p4CyDEQU19+Q4c7upMWjIbPDq8cN+jR3BWXatQLdMbeCntZpW4nqqAKW/w9WNOkT2ieOmH9umKCh/oDMa4TXHeqAl8Ixful90d60AiawnBfbKLaOctmpkXkg9OIT1nFvxlCuq5DeFCC+LD01BUH5jQq+Q3GtrchppeYDizMfu7BHx51vZls9avU5eMSeLFsN7c/+qH3QzN/RHIx4B/R7J/pEr5154Rcvz7isDXAimUKeAtpbbedYtyy0yhFyMxD7DvEV7lnEP8Agz7gk48s7J3nhd8u7QDrasnrgHPkA4OKkGa73rzeHViSJA/DOOUeLvIzo1wdKtkt6ND8US6yCI6gHQeQBy75gm3hE+mGQVvoibd9g1bjTAVjoNloN91zzsjyQvVDhQWZektso82eBFem8q+iajUrHmuZyWElAmPE/L15kxp3LyNBOKvqf4AFbRqPFSRV7+ERDdahoRrnMK4BsduTZ9DD47W2q4952bMQVYTCtbiUM8OOLP6PNYJsPhD/lHyXiYVJ+o6XJtaJUPzwMDy4h2aqpFfS5MeMcMDgzHXE/Dp8dFgyq0zjOw2zyPyLw4Gg+EDPCL4gNcvjF7A8LHJ+6sNfLl3hKKKqeBXY3lSUZ7PET9U0FH4iSJnaxsiXHl0Tl1CQPLmHz4bqSwEvFuGhmZP6in5nEuZsu4cXzJb/k29eyFlR1Zffl8tslJLtukDStjcGGJao9jp8vuAmz0OJjpjmOsYl5+7VpDYQqLGOxYNvXuDBoj2ktkCx9iv6xkdqrwCz6M9QJfdYR2TJ3towEzo9h09BhxbUvmG8cyURP+TK3YdfNgs+MIqsxTcW/NHHspGZ5vsjtInGVAlRoMBY2TQyhfo9cMIsCxUBXyUgY2qK5I7/qSpbpYkAApX6kNSE6w0zHUP4xD/rYs21y+KMzkBbXyutBPaWBRaIw/TiK86AZjoeqI9hWNhie/JZRtcKAH9bodKMSv1c53UhrmJywZRM7SSkarM+eja5asjvPlV7UEfvXrptR0R7EXGHUPEjKYGObu89stqJ/Z3UwLDSQoXG5R/WeKg7+Zr/wD/nJMjH2hGqSYLUmihelxkeJBWRgF65aVxl+26ZKAJpoeFEcEeUMi0zADhcXzx+8yS1zzHurOmmt8AxsuoYHHunumr+9fUNV9HcStAIQodG7JlKNKDoCTlU8KM+RybmEhCMIcxiGASW5u8dRq9M6z0XMLrehmB+QkxIS6xs+N/TRFu/P0RM1uQzRwmU+BBAJ1m3NaVKstaoACdhT0t+aUi5TpFFbqRocv5EJkM//TaSWT2ZGlBRZx6wHVhi6OGvOw5s7f58P297eJhxdquAHZR0MNAmZA+KCBmdfrtQLdahJTxfY+boCusSaPuhyKDIMM1/qfcNfCPCXaOx4NyAFLUujeNhtJRvpt/j+xssR2MNu5rdfut7JCx304EMgWZowjJ6X1zQfVCJaloVeHLla8jJ/cK8fIX/PRas+koCwkcWP7VrONa2LmokezgZpDh7MKnX3VKwUlRL0tX6lDse2d/SIqbn1xl9DwMlDTIJwKPkPklipm70xux+RTyN/7yLFdyooictvOlggtjCi24c3TbPxMWa05yobcUKSkLn0wGEwPrnbmbi4T2kW9riaQyDOhCMx5Wg61EQL5DvaSJXrPqSIMRkgJK4DqQ/V/ChR5YZQAVWzl/UBk/y2Fx9Gnz1cIILSCNTSyFB71NmT0Cdre7zJb63l/TM492OOw/UXANf26+ARDcBZ3EUWjsr7gyacAsCmo1Pol5j2tIDB2l2w4GhIR4jOdPzrNcUzhOY6z3BJ4NCRruhXzvr2tiraosQrmV4kHtFYX2z5g12rMLqyWPIgFJEGonEIVpa/XqFYaGhosJLzsujjJ7YWH7ypq8S7mF4BZN0RIP9rPjebULTQgu3zgRl+K3jz3bGRWoa8plgXcgE1fQz4IUAn1UO4BptbNDq02xiXJEzt93NwhSJGTBmBMQdqbY9JEI7JhAnMVUdEgJOfovTGJDrZFdc7czhbuc5fKf1OdRecS9bY5vcmCX/23YN5akZcvdn3Q3Zgkui236jViuum+l+dB54gNuEbJGNp94NnCa7GSIWx+bYo2GDkNSMSy618oizYnluQ8l1SJkUVlxHBdtk6tCdoBW78rE2jxlOEqqAWxV2EXbUznvw2IjChdY22r7TChZSzkDXlr1k5QR1n+kj6lVcTjO2nBcWyHBIhN3XhK4/M0WIPCUZFTAKHMDibRbrqpxLWHXwU8QPL3ErvdFMj2cKiN/Y5eqfhwRTIpKZ5/wgfs/TJ/ipLmZu9d5GdpTBinCCKin11OfmduCabCR68+UhP0yppljTt0lE7HHjDBeFFjPcxFcm6B11+ZGbyL9DrGwKRSadv4ZiKrMDwLCgEvxXJZ6IfyK1HtISAuTCilshLyj/FU85GpE6C5tTqUBzWecMJ/aAZZQ7XB2dXRdAWinHirAvbYl0RPQgCKV1IAQD9o07kxLg35/QCqJ48ZFTTsDqTJ4dJejj9nFFz/A5gazNgqr6utmQibPmFgi9oYYirpfYVzIAVqgHm1CjVVtTJixm4ftorM9+zirHBzO0PWYBvF0xcIxf7oOl4Q65LazdDdtq/cJX3MDyFuD/Zto9zJ/ALv1/tboOQhnyg4qe0MVPTZMuHVEVZ8BukQhhhZ9x8bQW7yMeb7FpxJ/WLHkE9myaMshNY3lo9E0Qyunhlil+B37NPBw8rUb8c75bcc39Qe6d1kiYMlTplVERvE3k4bo9xtKR/T3NHqFjWnJEveqSMoNiM/1+qy/TOU55UR46Z6eDqxjN9eqMiTD92+ChGfPcK+GXpDL2lmtdmrRKVgA9ExxZIH/mQPnOmv5L4X49ZE0HuRKyYyMzlfiPQAejj5n/V9ke0pI3R9Mjhb4/qMgCUoaz0QJRtjsbtgBydFA65/bIFle8U69as6//MVzpw1dRkPihwQpYvrbA3zOXQJeavTUZV+wpfDmPQdn/+Osd5D886B62ZZWAdNg0neh1bdg7txfcKA+k8fukl+OwqkwcZ4gTm7d6VkcQBo5CNYuO7/HQe9XTB7xTNaCIcV25Wdh5o+m9MVJy0UerexG64Nis2L36SihY7DxidzmpZo/wYdfg996DgwVwq7bz2XxVjodlBb58RjdeEGj6HIRTebMN4IKBLQ02eRsQddnI5Uhyy4Vm8Eax5wkhx+uarNY8kxf6EQ6FYvmup3nZ/ZZi8XMQ3afO1wsEdoi2Q0Jjb0FuvK7kqepjoLrg21eSN04lgv8aVtnZyf/vi75z3PJqfRmewQAr28sC3zBKBwQNISK9Sq28ILC3GftuIQG+kgxFCSK9TTe6G+J8zIfGNywfuYBC8cyy5IAg1v+3Nu0AMMnfTw3Zy/2ccpO7e6zo1zVwc82EEuSbJNGCckhO1KY7vgQtLzXVyGntnIWyo0NIEWbwKm+Jl1NM1TKcEyv+X2qhCneFtBHJPdwMQRC1sX2zoK/DqFaPB+w9pYKXOmh6mpYQY9Z/TFonv3MNEgqXtHo8dME4mSs9rs7tTTD0Yos4LfnAOQuq1jdc2/zj34hsAfkYo6zbigGP9gsFdwrUiCU/N6ZlclN6TacMz0FAAMfesfiAxTJf1r6UaV7CoT/pHyXRiPRNfD/gr83t4uVN+H0HG5FO4tVbnnrm1B4eFo/mjWU3jpvxpjPEVMdETs/sj90mybun7wReQoVNFZTvi7NvCklRLt5dkDHh3dDi0XY6i4zOALKEeR4DeWlBKhQhuJqsQw5HQUN4idLwGCejSDBO2VrBF3RtV+kuw9saIjMJb8PTfH5wacbpBzuGxM4jQGHWMrKQN4MKw6C8blYuGhPIOoJotNPv5J9pcjxe8xCp+wlUFPxRFnQuXVm48yYnZ204CsY0n/2sbVQOXw+z3Vd0Y8ckRcI9LGqhTK64EZydaFeLIMoFPaF0Q1LGcBm1BFxlzap4XBDGPG/tD6exu8l0oIE/nK/pV2A56TO8Q1/Z03Xbe767hWOK/JBvxT6+9+wQ5Kvr8Q4TcMSUvbXqph9RXIcCsseSq56+1OS9SDZ4UCBR0gZxPMO1ofc7QLxiWApXHw/r3s7kpyeI7JMrvUMOOTwuE3EYep4LHdzEqLv4QZ8K0zM2Cn65lz7SWy76kllm/3rUDVIPJvaJzD8t6j4BZo/0DCFLPFYFsiM8l+oMFIjLmr+ZGkHrgfsFyhlshkHmmG3f77XkUHTndivtThwxJ7AVBmuAVdUA4t5jGHJOGzod6dty2fxINQhO8D30P9nhOqbpevHFug9xNNmpxp/P1cj+KZf14V06epDrp+ulLtb1ondc5vyxvg22mLriVlqWhOT4bVE/JB9gj2ywFkx7s2hezZ+011oiWpv387BfaJT0e7zWERUSS71OQUkJFmSuGW3+bCGDOAlPYOByFeuNUJiCLQ7hxu5m7goi3AbpT/GmTziAePRrz+5wXCxI0w7Inl0n83LRse+bOrJHDF0a52v0ZPs5kfmiheBF0o6LXztW8xFuStKXaIouVIY1uhZo2mHRJxsgLchdici+uQIisGYUGSyb6WL27lHcFoFF8nCprRkB7VlkO6xwK4MaLGgdsIlCvzEB0cROi6N7ZhBLkKSVM/XV06y2VrRfJATsjKzIJhpXDs4YkHZQg3DQhLegzdDYQDs1wgEy2nwB0qFWindoSYAV4GLb3zWB764VdyLuiC0/otPUOcE5GHGi6SyiNlGe0EfYoNEmWiCWrzart0vCtMAJax8Hp7vDSrfJs++SJhQf0OJ7RKchEktGoKNKME1SRenwfPisul5B79c0sOYXi4mYXpB00JGnhfVmWD0pbk86DKlXaFFFtCtSeEa//fzKR7lai2VUNPk18EHAHJpTL9xadRuT2WHgjQzyEvXqZjgErwneI8oFe6WG3+YlufwOiudBN9wYtg7QVcsI5i7+0IhIbF0gzXWdwSivFvruLFpq2CFrKSGZNDnIrPi3TLzrGUBy/e7aKf3HXR9wdCeojrYAy2+iqd6YffCpf+FQAxIfF1LQ8fz96kt86gBDgrqCrA/ZcWWnIcxM8PSl2YCFZqGfX9T8EGvTc0iMhGJDOMIw00msEKhjL/VcelI5QhrvQaJuBZugikItzd8w0ecFpNimT7JZKH4P9RZNKeLbXwXdv/EixlFifJbW53U630K+/C7INv4baEyYL3WX/2zC/xXUnQSF9cQL9h6EAYofd9YV/o+IYmVUPb6cVQXGfOdK4ci5EZiLC5x4CBrUdz4T4xtOUmMtuXcaRrTsTxSsJ3aLbc+tG2Sa35iRHoAFbqLfM63YagBw02PZQKdlpISrR0hcln+Adih/RPaqRwCMDNRCSZmbaWKDNAtZ/0QEvJh5fAEfJ3w49329zPbxxIxTQklqR+TktTU4c6O4IrJKzQxwodde0JDuIK8Hyp40JBxcPR+3+jgRzo1FbUpQ45OIwg1kRCFsaovwzLjX8IediUttdIYKKjVCbPWiv3eCdpD1dNkmgdbWvhM+Mf0xcJwPK1BBsubFsVW/Lbw5hLsIkmEl1vICtlccNR7Uu0Jad2TUGor5m6oPTnOmxaURjvYwvdnqvfo+0m4SVp6yeQ/mlYbbt8fQPwPA32/0r60cXoemRtX24aVhWWO9IMRxrEe9hTQG93aSND4jaZ/AON8GzMvUFcvirDIB+3j4pNMqTPWEIQXQnG03T38L2EFSKhvJAtXCvIKm65ga2lLJ2dmbjOAyr7h2lWoECGK8PEJeyuLHS75eaxfcgOWEZUPPcUsZfBFV3Vlici25uSfGtUzxctZTbLKNR/OqXNLt/XWwthWdgMef6s/YKr23+Vwcy8UincgobL7OsGdHLWVD9XBabGR71kz+JTyrkL7bOg2VhSh+jN6lZBF+LEplIUlGy5mgVm7lXpSQgkxXdxmEP6WmcDaSwxTobmIRgdVdTGPLtVv1XNIk+jjzhn1woyK71EtgYZ6GZt94UqfBG1DebAnRw+aes6xJ3lm93Mi9CH0nC8uBb5plAy5MKO3KWxDdSOO8oV6D2je3+i/0jDOzCd9jsLOh1jbggw7V2GUWzbBT30fZUGv/fXKUAWYRHrGT3k170cn4nf/7QrTj28RalfeAP9TUh6Y01cH+e0mSHvccJs3Zw0R9xHEhv1ozCcRhWltg59kVqyj6EYYODT1LdZuu5rZbNPdZ4+Qqz8g4BPvWEIX2hPrKgra6zUzYNJnfNGzLJ1uun66TfGxpE1zeKIiMG672t889KjSYf5griZ+nMMO9ZREqg+0VK/LpHBUwb3BLvfctu2n9ALGGKTkMv4s2NcwT8x8TgCFuo1tSNd60gXNxNcvmK9Ow6D2m2UVzeX3c5gpNgHeaznAaEi7nel5qSJhecE8MFDa1rgX6dGJjeTw+Mr05fkuqWSKpZl70mZWzEFBejvJMOpSBzNRDSqIsUGW706cK9SG7m48PhkpQcbYixCoRMeriTRZzVVhCTIRXW3OX6tfTi3x8cfbPCGmlBQ5bje7pHuLp/13pPPVPbasslHe1Ib4Fv0XkSuriU/BZ1N0l3t9erD5ot4NGq9PMnevvssDVTSqpythUeRWcEnYJTI7Vv2WRTJAqVgOHSWzzjquCPQNpZ+eAVOoBaVp1jx5FkBRbyyhwFUojrgGf9nd2epttlBPQhPtNjbprWyByTFWqbqVgdwLnXrMvzznCeRt/4U6Xbnb7+uNe4ia4EjFNbUEzmDFwwZjnIuNxxmtcFvEMP5sBdWtBBlH+yxWXgSCKKfw5sEZ1nQOQjiUzjwyrRQhgPJqv2KWt2gIrpGJgIJimfgBMHBR7xc267j7XCQdaWR4hjifRmAy2ShEf6Xeg0LbLARQ5q7CqUoCrSPfTAJZ6WujGRbKoBHlMzoq0UWhucAWkHiFDNBw9PAg6CntNKCSHwbGot0uEFjtgFTnXp/QWwOaXa3fy2zwbDKG6OLMFNh2bLW7LtZ9QgHIjF9t4gYTWcHcfZJUXLAzzib2kEFQJF7UHC4Z+4hIeHrEN5gX9wT6mbx2kaUUPr+kv0zgPivL9LUTgqT1LX7lU0e/GHxM7BOP/l/7rbyyson2YcnQfBStXZpEfC9bs16guc/O0mQ4pJ6xLaHNtcSOBENLnqE8LWN1z3dOHNtMCoCGJRaRigRrtvTEUmvziWtDy2+yFAzuDgxk3p72Rab3ElUzyoa/oNdE+DwqWJ993Iw8sGuMpRssgpnm/mIvd9wU5CYheK01YRXct4CxK/0MmEXuvVHOumDczcnXGCdT9ZGSM7O4pGj5wWDQoMEaQUWug8MUAf2VPMt87XfmrzGL1V9cLWXQnCwces90bhp3r2eRxoQNE+enBLiHb85EQ+zT4GiA30exZ2DsFCARZOIAQjBygDtFqFvj7qa/4Cg+wHy9+h2jKWkfLTt+wLR7wGB36vlPsxbOTivno2Wrx4noT9ti/pUu84AobWjudajJQUaf3J/XBKqM0Xegvol8aoqrPGCaru6URaNcX+BnoRke3S/+NjuCdghgvLUdB1ySP4QZqNZ2nZTGiRp5PfBDiaKNnNwO3amftQ2pRoesD/VEwam5tbSmeivZlgxo1NoV30/GTVcC+u5djEAmMTKfwBzBcHHpAbvoVeT0e4kSNotkp2FZePTg03SWgxlsDLY4nW312bmDOfj+bcw63IDAA6g8eZcJlPSP7wx13c7cejDKoe9y/9PRjArmCxtgVT0cELjyQdDliARvWP2ktiGSPr1BBIqnqzRL6WLFKBIVukqi92lgkWdqrlEsuOeGJkM8QE4OafO37qLeUBwZhVk4Oj4aBoiIUrXvVv7ABpvRLV1RktzFJcD9dH437lvjlNDZzEWJcxOVDYOs3b5hPRnLTPG8WRh7Siojq2N1KHh/V+IrAeJeaj7orUD/olK/KUPvfl99XW49CHNT979ldvcLKclC6biM+x0ZvxKqwJk5KagRs+USuBFvrGfTFk+73uVi6mFBSXqHjHfhjXXaYRCg2Bm41a/a5iQ4uinev6y8gFw1yn3K+zHsokIcrgkTHdC0/wgEuIWxvHE0x58xGqDtpdDGPV+rgNf2iViNFlIZX/IahXHuDu5bGkxMYmjfLZpN0jnZ3ixZYD5mRHeS1k4pw4z2tZVOT0L8GD2VK3kPtx6vaHRwFuxHU1UtEjU4pKtIsp5BsPZw3JOntUysBZ5YPCL1psAPJCez5d9/SP8orEXM6h75T4FxYTo7SXrktG4RQA1TrYik6JBrUGDyOMl2ttp3ZO5F9oTV+XbMK0tWTWjedRNTyA57wGBZa8AxTu1KBE0WuQlNsUm3p+3mvVPnAfFd5h78oJS6cBwRc/ECZ7PeGmgHHw9vmtxMOgQDJ+uV7BoyLbwYfQnViRc4DjAvOtVdUTKjjbosR2IZZUdjU34l7Q7zwCFtsAUq+/S1ytYbZUrrIMIrEriNvxfBO40LStZycDup2vYlFE/h6OL6OHGikmwwien/80vjTnurZqxWLTEK1JAc7Bq1J+V+phTnvu8jrBTNFTAyXs8TtQXU3CEFMaLFb5VVE8BeFv5FH5bXqE6h0E2L63dIZQ9tD0VQ+65/wCuexAUVNwJ+cYTsvw2PEMDuLfiH0i9BJRJGiV/b6jDXriIOxO/HoCR9g1b24kJL9qOOQknrFn50KPhAsaWRlWvAnAz9qFgFGyJOie2xk4k4+D2ZPWBJFVid1HIKOOyyoe0r1oSCe0eDXQHX98nd0JWJX12Fg+la4oLn4qXtNXMPk8o5uFI2Cnmkg4XwuwEQYhO3yXQtc/5OtJccIHPTYa4iTO5RuPEJMsQ1J2Dt0pT8xmRwXHkDCl2TlIXJ4Td03W9yoTUHElMo2GCFWrJl08rg3PgC8nEdhntZilz3tU0eyXQtSV/PVVj9LI02pDCDQLELhjnQwQ5zYjYy+626rMqUbtl6W33TwmTP1ggGMCgqe23muoJyBE68se2jumYEOy0zGUvK7J6vM7E2QFXRW81FXPTC1t08VKArcKS6DKd9pWQ2OdeYrWvMKTqldlygAgO9WjOC56b+0oPJRbZClBMEJ8SG5lxYHhNftqHhbcjEy5oMSTwislE7KRAQ1TiHyD8j5jhV9ptkALpdbZqj8tEUAXS3bEufVsEp/LV1904CpHjPEJzE73jvlYe/KT+ej84AR/K111srimURJ6R+slY+J8V+DlHCkcKesjPpyL1cCwXpmn/h5DFxLrxTMStNonnzaaDpjov4xLS51xLnhqM/IMmQJ0u4eD/N2PX/rov3rLTtjpKHNCdCJT+G2kB+KI7wFgkpwVJ7vULNepf7ixowxWaAqRI4GaXKf+4qIdVX1gJvxPGrIb3YgonkPhzk3obF0HmtubaZceRgAiXrup78DfHkdgb0P81wEosf5JRHKEpf2tWK7zEGeGgFcer15+4UPYne0vrjDtllWIpPNOFsfKzLIY2eSkQHUqqRso4y+cmXM6AARx0NHJGwEdCmNBvs+7LYYWzZoFLOjgU1O3txqimeAgSpQ6FfTsWG5VtJcDUvVVeXVhBSVEQ5PtH1DwRDZXz+MHlFKzjing6UXu+tEV3Pufx/1PrrIYy6WZlpflB2ZiJt2jcBtUM15em5lzgT/PeOrG/pAmYtj4KZ7YaYG8sKjs/WAXf5tyDiD2qvyFUfKUm3AQ5RT72nWQk5cG+Vw5xxbbnTFFEcwlhBPguIexUZrDsEYiEz/mUJxXpzRAeNl0UtvOfDqsGB2ZeVx/vgBu+W7Ct2r4cIVw8Xq8yXyVBap1Zp8ZhI3OSbCJymihJAqPzM+x/1e/VxRn8v0Ea0M65ssZpye1PQtrvapWnJQAJR0U/ZbuIEHpObLagDKtpcZ6RK+RjfVfkj8NdyA+a+5O4Y42BA1ItH+9yEoVnhL7EcLv+UyXcBBNTJbtG0FdJz8JhfAVA+kLz71IW/noRmzOOrta7Ye2KvgfxDxlRHwr+EmuwKlJb5jm5n9RtGlcTfcoSFKioOK7yOs76CdcIj+LZJEGG2/F5RVjU6qRv/0PPffX5VqQxcMb+LG9s0jLXoG6z5uLtOLLGf2QNIwg5EyreYGTtp+aDoSMgBTJhqiGYf5qrGyFJlvH9PCSzvtX61FyBHQJWufwB4KOqzKPq25ff8zheZ5ZIjY0ljayqvH6OyrtwnItgx/T9sSp2Q6cFMd8Q8a+X3nkY/0+RK0C9heVeSc7fg992SE5Xc/U6uCMq/dBnSGwA/9BMC1Ylwea01MDTvS+YK8T53ZgAZ4w0OUycGJ/kewBTvzYzJqseKdjPyfKiDFQRBedsEmoUuqV0uKKbtNZ1f5WBj1/8H4lKMPXrSQUVouUj571yPZ1fDTegyVJ68ERJcmlAxX8udseg+4rfFg1+Ww6ScWJKlqJOBH/mYdg793SuE71f6p3N2sWXBaQOWoX3M9rD8VHgR32q5feZbVk8U14oaD53ejZKZhw9fiADGgA/RZ5HyskHC6q6/VvOx/hAoPGsOLxlPzdpcRXa4KOqecK0MhUuc0fqYLfLAbvcTqzgrw+a8ofaA/ZJiK9WKLMpZ+ysKW2+TEP6W12
Variant 0
DifficultyLevel
599
Question
Curtis makes 14 pecan pies for his restaurant's dessert menu.
Each pie uses 41 kg of pecans.
After he makes each pecan pie, he counts the total weight in pecans he has used.
What is the last number he will count?
Worked Solution
|
|
414 |
= 342 |
|
= 321 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers