30085
Question
At a {{store}}, {{mass}} kilograms of {{product}} costs ${{cost1}}.
What mass of {{product}} could be purchased for ${{cost2}}?
Worked Solution
|
|
Cost per kg |
= masscost1 |
|
= ${{cost3}} |
|
|
∴ Amount |
= cost3cost2 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+hvafzFxw892TRWQnqxy3OtO2RTxmKXWxDpTS2ZnpUm6DWLziZeKcOjQsof0GVWJAB0iFbdx/C1Ftt9GFiwM6xcC9UFt/rEom7ux4/jB4/qJwTVQj4yWRp2bsX7aWXq92Sm+RpjYmEyGtgvmxwdbRctLlBv+eOlS/E1oy43VP++SW683rJ8Ody88r2Y3msvmbv85IW7ZnuPLD7s/KxcwbO+j4okm4qe3Scbh10oUyKsp9NKM7EBu4ib+4VHU6vbP3r+n42276Qo2tPi8CY6G/FmBfwtSZ/+Z4lHyggZZKUMv5EbX4FwI6AY65eKdsQSfPCDU7hp1Q2pJokyz6UZB8pjskb4rQrobCopX8GbKe87x73Zx4EnOANs5VffYIS7Xp9snBZ7A8GeofgmyXa6TJk8meeo63wX+7QFpRUoJ95RHcDqGzs4CchVmWmQ7bT3zA2W1wYEv/A5+pdsOUneiQKwOLwSVxUZ8WZUodXSGiznniI6E+dn5hVkU5cxiU3UEgJJY4o1dgFSj0dAnZKheEZ2HUZrRg76+cLFc0Ag/Ln6iS9yBg/QJ1NsP08kAybhXuSA4xysYBb4tM19Xo4KkKod8aRGlziaBuF4oAnVVUEXws2/+RTKkYwgtZLbvgHj/nbSL4ZKUNmNy2FRlFjTKQPbaGDtbmOJs1em8JCUpYOdPQh19BHtD3ITn7lFKVAwKmmaXAsFHz1Ai0XHQcgxFN90f620+fcr0JJehZ2fJ/159l8YA0u8ZfsHyfhzyDaDWCJB/TTGntEq7jfWrzv8umSWjlioVfkoRh7KQJEUYZtNgsDnwrtI0iyT7jBtlSMsiV4xSBKSEH78L3uiYDuiLnByUXyWqDnXEYWXGkrJnrbV0s+ahk+pfLK16pq5+kNavFmdwnLn/Kl4gtxz4PqqvSbSYzeAwR3+oQd2XFKUnMKAMC6NwzJoVqqSKxtXDB/D6t5ojJoKsS0F0Rho53+Ob3ilPbq9tjYxWZpZcN3JVxnT4V36IrYdgKvvFK61L3UAiWQcLhliDMuluo0QFPgYXFwLaQB5DBeDZJcxFvlpupapMfd0bb/8bpGS08kHlOtRk9s2j5pB6g9cYsDqPAoQDCsooBJKW6kIPg/BE6NxF40c7RGUSdqxRAfJZFPi2qCqg4idZAQNu+oqug31xxvzdb1Mi1KfvdK8iPSRjMPH6+mdm/Mhbo9NBHr7MxuPl9/D0yvB93mO4s1Jxcf20pUEOFuMLPxVQ3V9EKp7/xQ8mARdyCw/8R9Krfe16bJhzZgagzAvqYUgnVZOTETdNPvNibHjPBPzLQRn9tPAfE9WX3ZB+qsbk/7ZltsfECztcxVtpcVYzZIY3UxtrPKbeQ1fb2q7z/8qwsL/xdFkfqT+1BtGi9W39N2aWBNsYkYTWktT87/BnC0oQKSDAcaplxwUSYOGh5QxPkP/QgqEbGU+qvPNgps6zWFyUq8L9L6AUk06NqlTLi8ZbXalE/rXWVYW1b+YZFBLnFl9kjZUREe1KaaO7NREvzVN/+J1iGEq8rIPY8+UxVrCDnMmbpwLBcNgbDmJKrj99p0G+tV9soZ6gjs5tvBAySLBGFrWM0zka4w8dBMvkqiUXRQRUEhEDTFG/ZaWddL7OZ7WIW7UNaObKeVcBnzdsnRCORtDpLzCFB0Jc+qpoWM8WB8qJmsNyfh6/dkPNweYpj2bn/y7F3RqAVAIecMobQka+xDcfoGNvKHo2kZFTP03rPpjSnl947vEN6kIitPSKhVHyGLtvYbVhkdWxyXEp4VORLh3kMWJfhK6yUHKG8TNfmif9COqWfOHDS8vBh5VxM+koSrqcL/lBWdLhNzdXxXdyZzein4mglS/iQNqIdMBhKQkalMNadZ4osVUUB8ELEHVfjW4sbL/xIVT0qqpYsyknKN/7E5XhVCHPJ73wpLuox131smhNwvVHHQAwFou5YBfp2fAayk4mVSwUqddqEWARqovIuCNyDXbHfiztYwJPaMmCC8EfBTEY4Wid4gr6Pbu6RDymAqJZJpbvYSJgqHDYZLF/AW/reQluc2oFuZOeZRvHCsxRpdkUCbVeP0l9j4KY6zz0S9SgIzPYCJYqhZJLv0cLW+oYaMaz4cEun3cZlk0VSIf+lAUPHtjOaYOjhqAc7mwZ7Kx+Xao0htkCfPqSkMbv9mHcvkTYHfpenRHCwIEcHqogBX0mAl/jXVrZE4qRwJgOUB0A0wDuCd/ji6CKBpRnphNrLRNQrVDySFyy0gzpnJ1ByJE6MIL8PmSPoEgQ9/6Ycy7m/aP8YWUz2v3l8mBICB/a0qzItitwfCNbql0O+g4akZhyCz9H11gIiVCQNCJ1FzJVrJxsRuVzMvkg1iS/nWuGJHOCCkm+OA2TieHtiIJl0XGn3Q9GcXk6JK7zfrfWvKopEiooa+5O15sKWq03GSWm9QcB3MlpD3gXgZ/AWXx0kdLVWAHLQkJtxwAoazCi4IlfK8uk8z/lQL+9ToO3FMvE08Oa2QQoMJ37GTXTFIjB/6luTwPlRlPLjRmdNI9DcnY4znxGJKjHusKUTUs+67qPXTlfsuopQeEg8NrEGLizr8Xo77E+gD0ZHXptvp3zEu71F6vsnjl71Ki3hRzj1mqyChleWveoujX1QPA5Ke9hOlUFh+wj5wqA1pqIq3Wfl91LVLnAA7SiCnDMvufkGuPZdO2EOoKvwVUqWtCn3zDAZO6FglNpMvTTOg7G9m1ZkoWPJORXWuBYcq5kMWdvI+N0wLCTc54ITJHIgDs5JCYqQkvV+zo7O1W2VOoLPbpQyPlX4/9moQK/wJUnKzZJZFuBDcOe+0eS5FclrdY0t/uDf6UenbrIazznKxuR0OeAbo+xlkMAhJdmTfhICkidHkH9o8nby7K0fil0mjTjvxFv67cp44SjrsHKCPseC9i7ozaHBYRioExN1QcSHtbLyiRqgMeh4Kt5I1u2KSO7P9sWu7l3M1UJL7mLlUiZWujX5kSigYh/3KzzoeyqZoqCRniFBkFnhrZx8VTyT/9yhfu4/ttaZUIYS6tdDI+R9y+xsDuxnxrvUEkQIll144b1mA/6ukqyVre2j4hEZoiKWjVK+eKUWociPE8IBnFtg9SgbDR+eQdrGqvnosc6Y6O9/Rl19qTvmRrzIh6x5jPN22T1QWh4mXGi2MaHQi3VqHleAp3N1PNdZGbgsQJM4SG+RLpJBGyF+zSS7ZlA7jRSj9hLtafyU9RPScAwHEw2JcUzFZjBuElXho9fpl0ipXDLNCY8Oe4nabeqTyF3RzLSD0L1YJMaEwK6+XprURGuK9z8z2mwrL5DVPRW0CdmV/CDRbyRsvtOnAnmRwWGTa4IdHJ98EtFj2oUR7OxWuU6BopXYuhk5XDoQANvUMadpXIvc828vSNMgC9jXhx077hi4+V7eKDJDve8TVJLd+zQmOpwnVAcNVdqiBp2UTrPmEmJ1SOFAxASyoa/QUtiN3XIDWXuG8qIQ5uqA45Wja0B6nwbKgV/ERhLp1hHeuc6tzzzl76omV6Xzu9JFPHj4Yn4oNGbskRhQhW+8X2Kzyt2BTynSWGfzcWFFehzbbAm3gv7T9B3+AIBnFrLPzhh2IotcTmr+y3GHGXIk9n+ETdIzbqzfL/HK0ibXIq44crRccqz5g1pTt8wr8Qsh1u0HHhqEQgK7RDHa+dYCH0Fv8Y70t68dMiYy02xdeJeuSVHX923jlYJxrUIVBzkUxewTB3kkvwvs4UEjNKw7cHkTWQ5G0ZwkkMNW1C/hxhpt2wYf996MHeAiPbiCgDF1Wk+0BPYbElPv6UcJ+m38l0G1FaAVVOIh5ixHDJbU1HA0lsplTBNlO40H0vAd+dOpX4Ri27GHe1XQGVQkfw5roSlCslOgkrP7c5SHrmd1G+ed5t4PnibwBKfZiV708uQoAuo72WhNMvk5d3hrZqcvjQ8cadNMA37pOM/xDFupymQHY5A6+IAdds+GxG+sP9yZ9LJDW7pOiQpd0RVI1Z5EW90pznS0IgMu2xR5juxdTKhYNwSpwL04v2QpjJys/uyYlhZ03vKAgK95+ExiaJZPjgnSKhtqRhyTH3L1TIBy6VB2IRRVR+ay7aNM3cPBmnZ/dCPCQa1lhqc183BwWEkGimfGxfqPuW4crLfaowZs58VmI7QTvIBTkYAwvpzL6BvPT4OPGPRKhw4W5d0/Ffqf0NAMT1huPoO9S/jHmVfu6kNIqp9HhfJ5wop9x7pAFLomXQ1ygvT/6ADOOJkx4IYpdFNBWS2lDQ+6VhQ9oqbyc9jmHUtG4IzztBBkHLxa3a4PHaByxkSiOBjMqfHGHgLrmxWY1qKhuNoBgOF3nqkpdgcm+rwqrWNqik8Q+mx6d53/nd2qyZhuO9bEMSzmE61sWUpSBt5UAyEiFomXXPXyk+ZSoU6aMajY1oq0Be/jrtHa1oe2mVQRJ1ij3MdT0SOcSU6eaLW9wMT+eb7W2xwRfebPcQ1wn/2x2gF5TGQxISkikdlGFcfJBLepHqKapr1DeJgKh4NHo2oTvyli6hcrsqgLlSOw271WrdiZbMe0RDe2aPVRTux6a2Xrtz2kUKuZTQdF/qi3gl0UvPAmuCyA2pZPEJyHGsLdAMKfzhHJ5ac5OGsrRMxQZXMRBZUHqPWLeSBCkYn0GPDsfTTt16lYcFA8YuZe4h0LGXzoAlU7lBqZjuGonmeIfOwGZ8N/s0HApwyqFKIxIIL6zYVzgcrKrKpwAmX4IPnXw2rQDukoAw7RmyBYPJ4HkxduUoLK0sZC8E/vh1NFEg7fe4FQMzNWZZVE07kj4Jt75WzC/F56MGQvOOk6yS18eouo8rf9kyVXlDVzE8JaS1VuX2uFkDcbe7qip48xDf9O4ckDoLKGpqfd9v6cie6QdSQlOPx05lzZzAWCWx+9xN4GEnuSKqMLhPaexD4rBhw0ARLd+qlpd3U6tojEoTNKwP1qd2mLHF6UIzyyTZpKSihhVONXgaOf9dGIO7XDlIxU2ytIqSQ516jMmsyJfZYCSFN04B9lei1EqSCXCJFt7ShONurX9VcnrPrycMMR/T4+ZeJdyHh4tQ38IXlqvuLqWkh21f5m/adRF0ggVYvS99JsSak2K6SDJd+WyrcBTqnO1ofK2gRa4TCREZgR+w8wY/PNNURyYuM6M0uj8h+NAfSkSpsloPs//IH261mADSIZxm7T5KkvIG2EaXaRqRvvVRcQmLPaU3hoVFHSqIaIypxTI/edgH/e2zI2/Hlwy+KFQtIxDqWs1fQl7QtXP70fzSPslm8V16SqrtfRmYvyawx5qsXoS6tEqRB24qrfhquJskU7jT8iMwFUIyWG3fH+ZQBJS3A45Qt7Xj9fqkBfyt65KGB6EAh1svzrBF4D0zTdnsrGpi+m2nyNgGXC1Akl/Z9Y0UmTMkPYVtXK5lnknsTyouH0nlPlGcCRMuw5qeL61DXNDitbOWkq2FbO/gzhuQ6k9/KTeoZam/h3aZRKyKFvmzXKfDeC74aKy29wJ291erOz0ckIA1LeFOGcYxNyZNWV4ZEZoNN3cisVNAA1Zv/dHL4JrhU/vZKhASCjTPOm6eZShZpaGX4QFzek7CHrbcIjRU3/cRegOoe0ElcziskE1s47MQqeWaN/h/nJBRtoFXeouLyLRPl0OizRgsnlbgEJFbUgtCQDRtiOqN6RzTgtkP78FgOSXRw7mIUiXlb9VPw915urxXVAv27JIvwRvwNRGD7R/choYINEDuOyOKI3M6zE7NqOfzHU0Vw3IjO0oXR4/WtFVWGrPLboTsDQIJKKNeBVHkhTqr7xrlyYiEGG3xI8rPbMfBRAKiItf1HXzM3MJbuaOZ+x/j0Xa8NgAPAqf5K5OIqcHSDxDFUykKdg0Z5nsrp4lofdV+gAez8R2EeRcyF646rArTliYbass0rOIGJ6QTy4AHF2TBlXKLyWk5Rll4+GPQWLhvtvgcHZ9wNFuIFO5vxDX/N3iB8OU5eJ6zLwmdQssU45O7+5sgTQavYM1qtCiZyMI/nJPIYBdz6e7lCyt4BgdUH5ti6yNGkmrh3NQVjMmySKTV1vc00BWqxFj4EGfq6Q31GoVrzBbQHZ8mrW+mJhxJd1MwIQ1aPC4xBYljPRMdn/QlPijMwv5HOaePAQlevqqIe9X4MZ/A/YeTXX0JZmrW7pNxFv/rGbUjBO/zO4LLIMoKLhWALBEnz/K8JB60S0PU0ej99Pug+lBOTycRtoddsbLbw==
Variant 0
DifficultyLevel
571
Question
At a health food store, 1.4 kilograms of dried fruit costs $11.20.
What mass of dried fruit could be purchased for $48?
Worked Solution
|
|
Cost per kg |
= 1.411.20 |
|
= $8.00 |
|
|
∴ Amount |
= 8.0048 |
|
= 6.0 kg |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
store | |
mass | |
product | |
cost1 | |
cost2 | |
cost3 | |
correctAnswer | |
Answers
U2FsdGVkX18JbpRbehDcnp0HH099NlbJMviLG615M6m4081sqID5FL1dqhO5GIXdl7U7NRgFJY6rnfIiVmR/DrXLwBqifHfhI/OLU+v6SBtvQudNNs5UXXXUXoUqK85S8F3K7Jpr8spGDCmAsTXU8gvV1J72MgWrcDrQ4cEUB3iOorMApFMkgQfe4+xXV3X1CNP2RikquBpBtEB8ItLDuy46W8vvB5u6vTnZbrrMDXf7gU2tyw5S0VfHTTm2hcq9HiJB0/+W0ozmliR3atNBPeACeNB3eg2yhyfX2efFbSSoPz+QeH287+0tDfwiRAffNfusyRNpKZ0/fgsIerq8wl93R/4a27CbEerUZ6wirMf9UOGraS2/bDe8+0EtjaFPQoyYsPGekmpGXIwbZiv+cMAs6oD3RFChYKcrGPQj3XXOxauR/kG8dy3BSm7Qoyyyi2Lx8LbVfWoCeLW2olv9fkS9ORgFcZGLvy2AteBCQBB0QBEd+rZA5j838pmoJXeTGR+NGnyuGwuR3KYJTWyx4Rs6EqGsx4yeCq0AJJ8aKVcT9SNspoSlVZhCV6IANsvgtxzRRrtkadefZQJRnAJW1LALMPOaARw42VYa9Ov9DgPExkx9Izkaks5QxFrj4QGxDNCEkFWPY/UIhjdUvRpbhUGkG4nhTdAhaXiIGi3Omjrtyd+BD6fSS3qAWTGGCYsbCtnG/QgsabXbW7/hFdzkFLUvWHqL4yOEhm3E/MR+APbkjcbd/s8s7cRu8ki8eaERwvhW64cTRIabKN1lVslqS1aPMtlkHUBxcwFkNCaJtZQ8qwxhZhwssrNkhZomxpE02kjwn/W/dIpyJDWk9q2i7mQHu7ltnTaO8TuxjP3CrKaZoTl7DUyCdqae9KVuqI8KMsujCSaTAIewjL5GdljKmwnUJCwly/5/5h+wSZ3PtIMv96MeafVro1+mk9bp9J1RsG/q/yg/w86XqPnPh46YHdpgNJfscxrBjiZC5RM7RohbjZfqYfmt+ngUZftv5ttnlSFXJ9cr//Cmbr/bWs8CuEy1j79dQ32epZSJiorE2X578s5LvDHkyZWaqwjGkRNP/at4DGp4HZ/ovhYoe2uSqkzkbF4SqVIaFkZWeV2G9isUSePVUnwmSIEinLcyEQUx66Ncso/y3OsCkcXlVjFBThnUzjh5RIkkEfgCMEz/gWxOdh1mZ3i1eS6fIy7oVR1R4DQah3S6J/dXFftRgJuBc4aNWkhBY+bnZTW7OfPoROLeiigcyBCQQW4XA22K+LNZ7TJ7f5TlaJr5VIFC11riYdM6GEbY+7Os3R6C10m3zFp3O8VbzMjqzJXsYRPVfUrcVoIbcDnTA+o3DWzfMo0SFxnX1k4O13B3pv1iH+0oIMg6BhDCeZ7Z5PTIe/WITADSbm7y8anz4ilV/OHESROFO5iDJBXEqsCQR3E3dAlIB1ZH7OU4FK9mSuBDAgCd1t5l3Ig3rEyRgRbGZHBgwoIML5hhmmTuStfKHKlvVbHZh5AdO4BcUJ7jATZL2M2j3+3RfbrZSw7xyBxiZJRzzJ1gQbmLlWt5+BvAm5CTYGo6+4gxy9I0vmZppFwSsohG3R/vsHCRR0/4Q/dakl5BKvl9NZonZ5g88MdkbqIeV/rWXYesENuUEZWyXiUNXL8MpEO5+2OGldMedLkWqH9cUY0bqBgpmbb4U4OBx3VAdLeYkZVfpxHoDSbi40PVL6zv4ADB3gJl/rHa4U/nwBH6Hae+YkLjpMw7DfAafnjkuXgPPBTRKUERBsSdWyvoahk9rHg0G0WjKXXEYkt0tZHP4tmk6BTNa7i1WN18AyeSzBsQ0Xz8qDMSHPjckAJQCNsGpKfQGnJrDLgW85u2YHddVDIjO0KUwC2HDu9T8/7BhuouMRQ/MxxabpGVMVGt6NKAyGTu6oTEhByLYoC44AhFd2GnYk3xEqX2s+UGhA0D2zlIzMaB0Hzy4Xkx7W2QM9MDKpZXsbC7OQTl/NiOjR4eC5DCe7mNBqjGKR1cwC0JHN/3zysJvluK+CVdBt+/hZ2778UBGGE1obvlhaD0arY49hSnsTUtsipqeGzrtXqAkCubhY9MbcskYgbEomR+JNg1Z40uUugLykGDwWZgmBWHAay/DNW6F7SDRkBNs6I8aFzEd3w5M7Kg3KvCZllovyLRNb0OP9Xcu053lf8G18ghkK2NkYGy+vnBZ2sWuk0ECFrz5iZyH0IBWiNj2wOy3Ggxgon3C69ipMpYU/Ob4LA8C1pamBO5KRvGCoMlSLgi8MSYxCmGZQx5+0nbkq1IvWjTcZ0KK3lRdUm1naYGhjItQHH62u9pJyF5mPQATC/PDrjy6f9pQ/JQHA3c10RFTcpSMk90UYxp9oN43jhOdjeZGGS0ERg6sc9IYmXe9fC78dnm1ygIAtNjpKFBDrHmNclZWypwl7zkPeM/+GDsHHU7dolKliwCvKXH/pADYtNvPSY6gW6vr/3EL0AW0ShS/MD6uSXzpF20wpoIocluFTmfLlsXTMkiV0gpcz6oTbL5OovEwfGN3dzO670KSo+jtKTDKDSO6zg1uf9NMsya2+F3msx3Rb6kMadzRAvMQbNNhuaeIMZ61tRdLJ6Ui1UeMjGPQpzWpSP5KEwtAqn05KkVze+hrVbEzVuV3H5Tt5vLCXmaH3/GQc5uhi8KHQ7FwyPa/VbAw6ghMno9j2ctrtqT9a1kCxLjgh1yxAkf7aWBRZSXszmpkIWABI5KWIzQgkxRbXaf3eRMyOPJhFJ7qhdA8sgW1HVM1SZJ7dbZeAHSVMsM0fwbHH7dYn/WlaAkCbKKoZxyF9Lfpo0w0XgA4wfIcuyjrBeJv/X7WAhBzRTdibS7Qg3YMGnfemG7CHI0c2Mk8QA1fB3k7IM2GTBq2v67GE2rxFGjZ02EPuU9rguRb7+iEbbTqtUumsecru62AeAO+lYiDclyCO8M0wqY/RVsxM2Oi3QTyPTP/0quYpd9s7NjplzHwk2GK5TB2hgN7pWZSioErfVoqLsfe4TMaNOyhsOkWvAqwezYRj2YEuvUCxfrT5rzWKsUR5vxo5g4xrv+skZIn4JUZWb2ZQEqhrkpYYjscq4NCcMMU5cyzbgNSey72LlZs5zwP7fYWzOYj5VsZhZn33klQoZ7YmZkU85IgyqZ0hn/+hYtC9SAXlwobGUe2peQSFIi/j8TrooPI0OR2CWyWG/ugYDpdVWQpETqxss8BwXeLDzGP0seDUJ7hPwzjA6buMkBU3E35/3V8dS9WKhVnF/mkRxTE8N6FDW2a0jytgpmHrUq86WgVk1p841Jj7hwbAc2/8dUiq2dM4CKAiSneTunGSZ4T4Ge1EWjojv+SpZ5oSv4ibafhCYH62hWfDgy+UQHXdydKb+cGVvLjtPr/JZ9aRktJY5r6JF38enrO5LWBcqAlqLGdRlEycP18ArwTUbK4U0oWCaVv8uxilhdb96rtV1TewQrz0x2FiOSQJoY0A6KLVuZaoG5lTnYWIdcjiDpYiDbJZm+VBuXZAgR1MJSqrDQNJv3rzNKsjRcZ94uL42Wr9UoaWlqdE8UCmALf7MRczP2oKs2YzNawh/sz1/vFLXnINRip6x7oi160Cu64a9adtYtVPsGUc0rLqJS1JShamnJPNOlBcyO4g8rgFvFYXT/pGhugH8Qf7CbOw8BaLnrKMw4433y2QRmgGh8ixgq9Xbvt1Vlay2Yr5lLNGXJORdemCsRV/PdcH/GRrDcn0spfLyrmbQzvRmtao4iLHyEX2UErCPBEBVYLg+dT3hC8udUhOvifZ3kqYDatdtVeim+AWH3UdLijZwbb85GEfBCOXSn+vuKFU6398aB4UeorHy5ehKPH2R9/6k/MI0smev4/BK6JUgJpZ0lQQoIEEePBPe98qGC3PaYTrkHOf1x0QJrK6l7bq4Ck00YYri7MqNkiP360kLurD34D72aoO7eBXSA3Mm388bPYVGRtTGy0/LMavVoIZ3fnf/90VMvvFzJ721F5BLyQCW6n4SLHVt/1gyylEHuV74QD89CV61qhuAM2rhyRai5gDQCmTY1y9FfOg5H3t+mCTzQHDPpRs30w8u0txyJ3vigN1Fnoa56KaLGUn2BZ+sVJ1RXLajpa9mXUuaA3S1OpxZMKLWGKj/TlkHSRRM1Q4GA9+YhiBYX4/4a9WS06oZkVqQmkPjUuF9KzuOKIyOjlAYfg3GhYf6nKnzXIk2vOxyjPFUao0pyxwAqCH1ivCO8YqrewX4azduwvQozuGu9zQbe34w7PTFjHMzRj+9aTob7oKzn4tHhroBuvrbn92kL4YR66Jkb7XOX9ySmZ1ag6/vbvyY/cmfd6DoS+MaXr86ApFXqsS4XV2Rj338e9QdZHlXYZlgyNuSafiHOzG2WGpdAsbQVgBLBgqsLU+eOjFH2ki4wqvep7N8PTxWS75coHIRk3gUCL42JwKi6dtLSll812gI0QErCHimYKXQRy5lshLqCTQ5p8ZkttjrJhyfat7kSkK6z1PVervJFMedbQ07hYfhJd9v6Q17PqoINZMR+8I8T43z77goUZ7Ilk6GCDQ2QqT/15xFLhsl2attV7CVTi7G+DGxkTe5p+7EdpNBd+F4JsnJ56nVApdyFnrQ1NZCSLE+miVySUVY/r52kqStmKtDN2WaPgKi+rAtuXe2HHaZpDoEDU6/JHK8NZtRmVSFEmLv7JKgIfcVZefAHJj3fL74H1wRtbJ6mILBawDDFbY4q8+c6Saz6t/6EcIRNJWUtFqhTP7Z2oOC1VmNSTNn4weSdyNf/cxBaBoNljM5dOTw3pfOSqP0gBsLp4dP/N1x5zAxaZh7tkkr0gHUnkYQPBtMJbQB/kxz5b+6IQjznrbEituWyp04bHXD1tDe7eSkXQyBm4/MffpGVHCt1zCK5qfV5YAmorQqffBrOMGJxv4kJv7ssceWWtM+xq0F8LqYxR+5LRgJYAnCcER9So2K7BG352BtkEf+uTpv9S3O8ETujNKR0NJXdJdopi/ESYVnud0nhP5GQ2gYj+w5v5UiA2P7ZOw35tuvC8Zl+LhUqu4BM8rvLK7pN4mAY5cKL7VLPYjXK9aeXBk6+0CYNbOD5OdcuKbepAEf8eGJLW4mYRklPjRtANfgYIfkVuGxBOCzuhFBwWx05fLBWSsmYNlQHSIdCSuWdjRWBjyraQqu2L9kixmSEU6SScEcBmhX1DxBi0xKgfZF1vVUXjyVeySWLT/HoQH2qj3WE3U6S5lK8jkPJLFZ8YV4m2u68p8PPecwBcqYSAEy4dJ/+p7SVEBZnrk7ZHNtYjob8iTF/F6cNC0oaMPE5TkiGFmdJKq6Dtt6xQ+hvrDwcNzGZs9PHF+rRXO0Z1zKIZbP9r3urM89HCOt8FGZi0vjW7byt5GuI6BtZoxC3M9LdA48tPS4dvFuaG2jB1iDap4O1/7/1yuGI9JPVVmvQmIy7F54rYqNpoGoLyq2+CTyLqs/RZB2OfTgPRh8sst6fsiagGOiWMCcvcFmXe/4VbkQ8B2pOTVuis6OxbuMUxqNTFnUWKLod+hV2rOwQABX11w+fmgHXZT542M44A7x61NVOaq5IV7Cg88o3l6nAhIVl76V1cAqq6SGvGWmf7rvO62/kg/Nuhu3FPDiw3KwU+uY3JBmXuN0p/LC7rv+yjg9scyqrHXF6UPbwS2wbDXEi4puCcTo/eK+g7bqcDSbakE1IAecV5SzV/Bvl6TI+4uZTshPw81rY/1pb+t2llMAYm8tYuNG7ZT+McSfBxSqWHzeHsAibXXyPXwZags3b+NT0ndbrhqK11rK+HwcXQecy8V/rLi8nyf5LSjqCCTdRz/NW4IRUsJDUEw+dum7qrWvTZx59oRRDm/6sfIlZEMGt3DtipZgD2350eTXzA/LUW+ZtTYQL/fMEt0fqbkq1mW9HeF2oRJyTgjGTI868L4eY9lrrz7ba1rfHuSK20tTzMoXew6bQCTRhuqGj56tEqiTdp9Tdjip/9rTX1xxSuQUYj6bmzl8Li2/vD1bnVizHz9jFssh6ZxR3cP0C5cJn8EoxNcEyJrad6MdR6xQDHTujeFQfluT34YBWmqJHCOvR8erOeqznFT+s+tQ4BxmNso0QugIxkYtZhPs0Oy5Xm3RICZylO/AFVPdS2xmTliUash0xfZkv1OHTWSXkok0FiU3rm9YrRLOGv6jRHWHRbc2CEFjSA/TsQBYFgj8WHcF+uF27m2zVt0Vo9dtfew==
Variant 1
DifficultyLevel
571
Question
At a health food store, 1.6 kilograms of mixed nuts costs $14.40.
What mass of mixed nuts could be purchased for $45?
Worked Solution
|
|
Cost per kg |
= 1.614.40 |
|
= $9.00 |
|
|
∴ Amount |
= 9.0045 |
|
= 5.0 kg |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
store | |
mass | |
product | |
cost1 | |
cost2 | |
cost3 | |
correctAnswer | |
Answers
U2FsdGVkX18Ysen+/8WkmGaiieggqktHJSQtFupMPBHFfe3qZ4QlOEP6topgEUkr9CTywzbD2D/i3FpQpPpNjnjooAg9Ke36CoLWIbLlAn+JH4XqiWGKzHVDBjo1I8oB23xMyRmFc5mOyLKN/2g0wb58Kg/2vDfkxEOkMEPx/WJVpnzAflB/szEsWU9UP6AgIwhNZapUK4+gzP6siveE8JJU3vE9hSjkP1tW1tJC8XFkYK613udJHpBIJnqJgDJ7J85qe/tQSWSgML/SVuyyIGM9uSLbjkCv+rAjtBxQ4gTgVf3uSLz1QEpszfbu9fE/SjRsASkcdh6cFYysW7/vDJpcJXXdNUJq0gnhekBuzEDZVx9X434FdpkRCINDx9wjnWh9A+EGEawg933pKnVENleHRAqwuw+OztH+Lyx0yumJdFThKuyBFf3Y9eh6PKq/4car/Cc0m2gHu63zbn7xsMlmtpzja7G2wMxLN89xAioaKcrXhCkS/vZ8gxXDuUy6IVcOjkfngW7ZIkHF+DlsCW0i/QFC6aEPSaTXCIDlpEiBfHu3awYLCTYUQktsW9Tg3r0CnIwl84vzJu/jfaN7LE+XCjeyTUrIvZjIKdn+QCbcfQewcgfQx+MxnirgCC6CCUUOADTqMrvBxB223+i8QNo8lhOiMzO/yflfcanFB2mQ0xiMHRUpAKh70Jdq9WdopWd2vsm9fnoJ8DcS0+RlNyG/+CtW3WXeohDBVBhdgdnSjudXYb678KAP+M4OHzZNm3Af3lUx8Kcj4Z9QbiSzL8j4nPps1qA0vL8rLiajqtqIFtjnXKju8Pjy3LPotYYquNX6S6W9IALo9g+rRs+qCtu7PHEIiQ8NMO9eUIKYQLfhsmF+pmxsQP0ld1CMJDb/T4boWQpcPOvTWXtTGm0j0IyqbY0GMExp+FoxOkr/do9gsNrAt+thYgix6+sCZwTSM7JSaxTPkLbGixebZ752j6sTm1yMkpeBT33tz149suK3eW8zsoEJGNonPeZNowiwZjiKjAXafILgKBWJ0PrODNpIcgruTa3m1CDCByHI7godWuPNuvH6NiyPh67CLFCPprnkiLeaCmOlGYCwHx8k2n6QyJcHtTonza1bmxucrvTwn+5ostm68VaxBFMtFm+ky2TYpWbZ28WludfaRWeYQjVLIShX/A1S8SR7+YCakoNA7FmWscnOeK4V/kjekjPNDw/BjWv0/tuc+Up41LMki0olKuNVrmJARFKJquq95wenI76fR1Z9HYzyqGPhBDTTd9Z3D1bp5bkvLu5MJglbdu5rsgfmI35QK7OLmcf1CXGXw4YPytYIRWnSfVmXoHwQzc8Zd/RPyuIDi3RVj89VdwAILV1UzDM/rzqisHqH+cniN6Xqg2iHY7e06nkS+KDluknB0MVZmbq1cSnlJ1khdANqqjxtTsoCe5AisAqaQW84/bxbFn+BgBfNhlpRfN30nHCy2OXtskSG0Y37mHXhrPfg0FnoC93OspMwpV1IBwcvHNZF3ZtH1cE/9OVGHLyD4mN5FqORGjpwB9P1lyo+W1YMxXt6lOInfDoDB+9yqvmz4lDfMZrNhHfrRlydfmP7p0Qw2BhZJkVHTYClPlXZHR5yPZSTCJ8ij9UPDboYmxn8OHvvL6MNCs7ZggNVtYPtuZpzVK/mt0KRbHait2kJJv/A6wPHdSax9BXACcaHUv0IUZo57hPaILIpTgxPRh06yYVvY3z1XWwTTXmd28P/RY+lhzyNlNOb1PINvqYOSlFEvo13s+ER5zvprFCBJwvLp/DKSnYGGKzj8BEqfaApa6BKgUJ2gfde8TEijKHHkLPNbqpirDQ/0q2iPsncamQePiz66rsr7OIXXb8/P8keFVeUNKo+v7E6hA2b4PMQcMMsNbsUjDR+DLLtMyyvTcF9KvRDaaUS2vB2XTylWYGNbqBphC1p3qQbIyMxOV1qjf5TnULOg77a7iZ9phpMTpYjO6otPFiNBAboQ/Xm/trJJQp5I1T3bUSKtvzviyOQq/GayndutrC59LJKFFp3kIrg7aA23Nt9YtnTphB6vYDWJqQ6QRSkXQiJ8skPLD475Od6jtlVGyNjo7ks1C7bBoQqDpiyKEBWXsLpYstYwCVdlbSuWZPFULIKrLnIt3+3hQ4dPEEVe9ZXv15cCTq5ZO2uNeMDg1X2si48lNXm5ot1kzlQnwPqivfV2HgJhzdH2OXqUqyyPfqJW3tJc1r68aodXHOi7z8uMY4kYaAjye83prHaH4fVa0EMqtp5DbdxGYTJl4IwPk4I0wmMNXRVYXL43o2jL/un+C0JrPm1uF6HokZGqpalHzwWbEgPCvmIJ8snpZ3dJcAV75x1aZUFzCRXLdbTrL5+zljVcJr4iVswK54NSm0Fl5BOyl8JUtR9GSa2JdiC0eyPEDMwP/Vu5FkIryW2fnJXENkzGMpGwXJojYqkp3u2GuCP0XyHn6dKXEtZbM+zoARCiDkt+viTNr9SNiRIz7BczO07TCxP94krE34fPuF1WktbAoc+pkLMi1O+/DgBgyruU2eN7YWBt9flug6N7c5f9HwA2hiiVZFL6/7SSPRDIxtDxGVO10LtFVXer0AT+xR3voxYi/fS3TbT+WPS5yws7wjNRMyX84ZbAKdIldXoh2Fn9+b6csFPmgDuhsc/h5FO88AQUI7SP0HFT+SIm5T2HruS7nWyKhpA89G8cIouew0dqUfP62Wa/RuEFWoAV2Qo2BEMAX1qsMF0v/n597LF9Lv7BdGIkEwSXPX04L0i4m34cQXLoH4/zcov1CACx8IIuyxiSxSNLLuaek9AtMZ8Ffx0akq00d3qp6lQFYUrs60An0qwa+KJGpTBrvrUgvOuwiXy4mNsejfarxnGpH3BD6wzZbjMVZVotEVJfplq18oB3RvhblKL01e4XRBPs78fwP9LxEv1yunXzOOfCnzsQrBF16FOkNhFZP2d/tnZBOZ/QhAzUydxQh3mefC0rcDenWhAXUBKh3fOY0UwEPFzM4mgplcvnk4H+dpyDc1SlmbH3hn2+c1vNljZdP7LgmmCDQ6j2O3NigUZGLTPFAy017el90CC4UflBcQZdlM9/a6Up5YxCr58IfVeo6TITaEsa2+k/tWHPKt2oByfNdD6mTwSXEmamS3UWsqnsnIO5WZTHRl38yzfCrIfyV5vFy3VCjvPCpK26BNwP7mdC8DGSvI7ukMX9+FEz+9gFq1Eldn832t2Xw8vVUJ3Y8VpRQUrVn2H3vicGzW4sxT5VIpP5DObodsxpv/qC6mLfXyRo2/Sv8FfDVqaPc2rSV59vgychBA57q36EKEh6PYbD7/tmfIpxRqSXYWPrntbZlbaFdbYLqO80g1NseKwQqrBINbMISSqXSQ5lAps59Pt51MrYTYZOwm5DzVlnJFVRRKVUSXOhF9ZmTul5WeMIyvrml/5pxADdqucjka52Oa87DFj636R0IaVSNvKoIQv4rGW6eYNx9akIFXs7wKoaQwSboAlASVJ/XRIV2UIrBJp/6k9bJ9G0iLP+0OK1CMkyaGIM3bJEtrWj5Yry/gIbv7GpoLWBcjxGgxnff2H2s8dE446BaCXcJH3dxL0RdURdulIOu4qKYwC8rP4r8zp/eP0UzlitaZq/25XHsjpcaq9wHwtyfDu6MjTzPoJaYxABEGw3iH+TCszqp6RPXdsMyZGl0ghZcRQVMWelLr8utWn/+OwCh/2a+tzac4EiLz6lZVeskYmpc17KA3js4i1F2pn7E403Ko+ZZNQRE/cV9FA/ve3Yg/FEc14Sz4sGVz3I/GtT6LP0sm91L6LuvthaUU6DuWvGnSR3P3VNYG9xd5R08sWir+ulEoMoJHZtyR3Nz5xpXa3YUBkPOD7/IoPY8e667YskTkGtrYg2AKFFYeQNbwqrdU7yg0iSaeX/kxWsDLUzO29NRmMDyfqgD/hwummj0DyU69JaHQNe2oHJlY5cHZ0uD/m4RRsKS2mO3XGMEkzEpK9Iqql/QMiLsJFnUwsp6EiPuthPyNaxB4b1rkVFqIgDS3J1+L1qLdk8Uw+G5ja8vNhdnhIs20L64HRslv3Z0g3jrfdQ9HBXdGjR1FdYrRtHujYgN+GjdbkYWE9KJ3qbZDrwgbVoGPXYHMniSPst+ZSGG8HLUtiylDpB8OCz+dLg7UyH8OAATwxswis8IIjo3vZp49X1wA6/44uR8PWykY8gzJFfn0x7xgBdtEkYyaFhZHCQ3NjIaT0vlvxnUInEzQU5lPPzkKunGrV9SdWBFv7tlhxlC+bc+PichYr7hPqCWWxv+D4DjrBYWeQsCfDXmPQ8x6UOsV6bRahwuYiWyEe1SIKbtoSRIsVlba9J5DjfMR9Q0seX5qlC6wL5V0xVsTf4IibivD1uivypnacrZc1xOH4mHpr2l7qHUESVGB3DI4wWnGUAaAf0Vd+mE378b7YoT0xI+0UWyFXqZ1012whpjk6Ok+4g56/iAxI9rJjsXFPCKTYb0eJ0YgWi93jHzAIdZQMXc/Jlse1WT5YkN6lLYq9okcBKMN5dwnqsphtDHpR/AalNMJqMdoWl4dI7Z61PBYFKrtv9BbmfZq4FMim8BH0Lzvs6Zl0Z8w+SFMJxa61IWwVQMsw3sXdnvSIxqLTSsXkXEosOGI8arc57E5wNGDYDeGI4ndteWlCeDyFpN7QwXHG7+n2+Hbyq6zKKgBGGVtlViZioegisZUMwtXqGZXWsHbExeZEvV0+ANhejC78DDnBWYFBUje0AqxMFyZYvya+48fDR4RTJiKTTz/eszHEVWR+GEke5FxsOAy+e3zYKT2xj6Y6iR9IWz8eiECRsigEQHiROIxqFknBuHRD1XvHCwKeUMJrd5V3FNN/IeEICC1tuHNN19Xz/bgmjYFOMwkYOliud8Z38SB3QEPgIhz/BZ/7B2C683lbNdf36DI4AtjLFq71UL7qrtqJ7xauib+1dDcBo1udhQr05xAgtDzzDfX9WPDuFT9SmL1illC7vE1rFgECFeGARHW/VpkeQGACibneJIyNCh7/O2rNsq5fqVYw/J4UiYupgAiCEycp3Q7hujTUnqo59TOJnFt4mo+SGHNAUxx2VMLvZf3jxURfz8UVBrAYKA90VEVPZq551mHJD6IUqTkIFZnpyPM2QQpH05693WrR5TyxJGGqeh4WWOhRvIoiUGRmA1dOuGxcpqDRBmtWYMkHfmS/SRC3A8ZHyKLGNeQ0FZjuWQXPubnqt8INr8T8mKMawcRKm1X5VoErqMo8sqVCcBRAozf2qRL6JT0Cj+acjKcKNo/U2rd49oVspF65vzA7hNGkR+h+rzYdZrCOWZaZNK296FITZ5oTEbBdDcCJJ6QMHXDzi63UqWJVJBlOAgbUiuqU9Nrjx/DF2hEKX5oh5o3jaoGpW4UJ0uz7tXeIF3b4ujB2QhWB8AO9C45cbGjzWL3aLg6Rw37/GXCIbj2q5kS5rt2mmMsSwCx1L2jKhHz0JxCjKWhJxfuPNkFOmCSUHSOrr4X75QljvYBvXugVjFL+lFbjQjb/O3hpilDiOxBYWQE5cYXIRMBO+cJ8IVmRbHysl7y54zjEpJG/gthnMKUfCLbmcGyCNELkgWzOcY3rS9IITK+yWBP+btWbLDRS/aUp2DE9sK8NSYuRibY2IFnVvPfatwXTsvn+bWbutxYqgFUqBjEiiT7uu2LwvHa8ha6YA+st4e0mP4xpQSLGkgQpodmSmI2NZfPa5eHCSKerDa2Y7Ay3sPE55wPUwou3uq9QZVMAebOkCb/txYTqoi++cbjZ1GzG8zYQ/zLxdWgomxSmNkfeaWZmMVo7K3tE7jrZAsTSD/nKIVIyIIndlHlxHWVBfS1JRT2S1k1rEqf//Zr5fQ/XOQDj4qf1Wi2GlIxr8EbuzcBWEPMR6WO6Z5IA4LoYRrj1yxOJ7Dx0f4BIVVRmeLhxnm0aHQNaWqFnsfFA0iazA3UrxqKs66yxddLWVjVP9lwctqIaY9kPR0ZlCsPljC6dJ9yDBsPZMlFFV9Jj3ktsVJ13bPTTIPRt0fJR6ugALVGIIi0ePZ8o/TCWKAaH9f2qe0OsqC5rO8YM862M/cUIuRxADr8UczysaCZhxzoBzDR4ryMkj9sNOtEcsnHlQRG9CK38b+nlgLGPzc8RrZ6Kdc39gzoHpBF8JcU0LEHn4mFV6ykbvbhj4+u+W1mbtP2s+F6QuT3MUJrLd00HEK++bxBshdbcIzzSCEgZ26nivYR7RXRcuN8=
Variant 2
DifficultyLevel
571
Question
At a butcher, 1.8 kilograms of pork belly costs $21.60.
What mass of pork belly could be purchased for $72?
Worked Solution
|
|
Cost per kg |
= 1.821.60 |
|
= $12.00 |
|
|
∴ Amount |
= 12.0072 |
|
= 6.0 kg |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
store | |
mass | |
product | |
cost1 | |
cost2 | |
cost3 | |
correctAnswer | |
Answers
U2FsdGVkX19d4avd+exP2FUk0xAvcLcNKQpXkqu1mq9X3uYr/W6TiE0sssmypufWDiBoOTNrnYkP6MVQAow6oUTGbpcAfAvX/C+a9+7vrvndNuGADxdcjOGsqp+5elL3774NRQMuC2DL4mCtaI/45lT+YXXRSbitpt52v09n6JS8c1ODCSlrI5ExeBMjvNGuefrOLH233ofm9M8a3TVrC6hTD3rkDTQiHamNW93BH9hzP7kqis/FIghOPa67ImLLhclIOLW2uiL63tVcwmj2A+Oh0lhvTMnZouvk61NoqLMSgOI2ihCHTaAxEm7i/iN5ykL/4jVQN2jEMAcPdZEf2Nc3hMf7IxA+WE5cgDrlDADLvxL5q3oQcHdLJ+5KZzgKuso0l7PTXY6zTIU+3JjysRKNSOuuee8UW7GPkLekvsIu4vlXFx5FRMSifM2tPHZgnxlp2AgIKtadgf1raiMZQXb4nfYsHtz71a0MWqmLVPbl3+M1Y45uFISSeRWS+70kksjWSgRFp+q7mp4swwvIDjkHIIvb6lam66AlRZ8/p7g4/YXC71hJpTT6rVLevz6RvV7IyLI3Hsuc17mEBraCi9d/b5ns1t4/XNyXdsSWUzw4h43tKstJ0IXQxTw3u32m0/YwEFQtDgdTdmBX48vcUZ8ZGQZqqT0XC1FsJv5U1ec8DxQBGXyoN6SucazXEpinrfiaHQ2WocXr1y9rxWZRJ75Y7Ko95Pdt5MPVZmLJgJ9cJYavoHY5w4OC6a85QpL5/igyy41v/cR6Sii/HSTE7bMP2eDXsdinjuEBFambaf1t3ElTA30Dit+Jp5IHhW1AseTTfPZc4fd67M8jmR7XAmaZyJsxZ5tHKmOkALwUy0ptmU8R9ET0Xc3PhVHC6G6CR4viREgCKsQl4fmOKiiVxp7JrqJzkgu1sgsryGk3vMfqqHzpQdJmlV/+Bujeoh0oZLZWVwffGQbmqHm4gqg30uJDhyR6rewDzMwziPDwzhLvDkc8CaKqT3/7c9A3jPk/fzyMRjYaWqPdIAmBb83Q52+2IEuOd8iTIDTe9nkoKKWSNQaAtDZxViKOnO015azRwoIyPeAHpOHnfZHm77rz2yOYKwu0iHDgzI5sy614CKENG9rSVYd9vdWUdPIYiP+tLL/wR3qIIgLKJVzT5IdylL2lfm/kTCLdEZq0k3Q3rIbWPavKw6BPkxmxmDSu5jFwikjlb4/noJHvckZeL3QeC2ykx6FJy8m5S1KvvlqLtkMJSiMELZXPEWymusYdWZD2PrBgumDp/lOitFtLbsLRm9Pa8D8J/AkLUcVudqgD9MR5mnWnz1wGrXSROMQhgk6Qs35yhgq5ZVjizZR/f/Ck+tDyrgCWpbC0XSvmQAyEf6PvQFlT4//kl7fwQm3ryO2wql7xar5b/uiD1XW87u4ufcC8np7SPDLQOOM6y+8qLWKxSCC632ELEazp8CWCo//1mpvUKW7QKgOEyAC/aRxrH9GI9Eh7uybxeUk7doR7WoFwD7C4tfdCN8UeGC34M9NE5qHHe1ixP8S9sLWhWMeqj+g+Vok0Qbt2bMCD5kbyvP41r8uMUtgMugtvz2SdsCTc0E/95AbFigIUVWwy8xNGUoYd3HH2Ymi8OAvVd5LB631xyrjKr2DZliJwEwYeTot2hbN0FBW4zRYA+D+lCMoPrZwbElKn2MXjQ4950bmmsFWDP8uI5DDPWwmBN5RJhtSL30CNLBLEHTUihn9diSV6hUS2lC0BMJUnkxVQdJ903bG7YAfbHD77T7nTeAwSmlF/9Wymwpb+mQTFZEwzG0lwuGgqdjWLunWVssx8ZMS3UHqvjxdiYi0toYV4zYp4903uEDTJ0XxTbEyW/6vL4kbN/3n3ctMCjWrjlOOigCyCBfAg1lpi1VNDiA68A9oi9AGxtxYJQ7obW3FXoItZzCFdZHUWvp92NQUXun6LgqID5VIUUOCGj8n7dR88/KM/hpjhvBsmLGI3SZ0pqa/agjTAN+MJv8+QarXBuuGezm8uIy02sxBPBhRMTeWfJyilMYDwM/msPwOrYiGbVcmNSeiMowEwQixzi7UDs1BVlABrRAp+fEphIhGYwNbftnKlxt1TWxSvJykS3G/h6AixA0z3suuu0tzv8R5W3YBibVX6kD0/jp8h6L2WiDiOXFeaYVLRxLvz5Qf9HwypW/kP/yhGI2OjdNiELnTTyPkgN0V6jRmC9QDmDKtJOcML1pIq3r0ZXWnLmV1+LcUmNDuu9J16q8nzbi6RzJ+Bo6TytXdI9UiUHEw92W1yECpwEnilswh2wCQYNcmDRWy30Cse00GhHL6GaXKLZ95pIlA346XX/9y4CcK/b3sZQmvKm5NcVY6XmDAdWSS8jktsp3vwv5W8JyUZQh1kWWDNQTYOAURje849Uqjn060KiRGsVU2RZ7Veqecm6Uy0apggP4HmiBoOBtCMO7B+1u9yNQLV6i7Zu+ZN5TkZLhTXK+2/6z8269loJtzVr9BPEEeQA53nGZrOOZw32K7rj61oC8sS9og8gpLProxumA7P7IBS5tIbN1uoZ0MavYf/euRdldrt7ZEyRujUzh9B99ZsGZRzgN019zflfv+IZ+X5c4i6rLBog31CS8vVei0GEvFnW6pRCXrRN/qckazvOYeuXldF35lmOsQp+XP5t3aQzKx8pkFkwAif3FigYeGBvQRc0MI1idm2QOj8yMIXt9CJQXKX9hU8KBPqI0mLps6CjBwkFLnwlZrnAK++G8ZH7Cd3esDGCR6mJJDsYkV3DUixs/k1BFP6O1ylF15KTn41Wo21iDdPUWrwBx/4onVlf+4PVhjHQ3u+pwEqHb59yhWhUjqdFipTrO89xy9zlo+uz9JbhSI1cyqev2gm4cvdltbKOfc33k1xAee1Zss9M0aS3KcbE1/819gzbnUBNPsHwVaEXYkmn+dX4CipIL80z5Es5HtikDPJyvxcETyEJh1E9HX4e2d5mUTIvh/7RgYdiUHqRLBvddljoiJwakcNO+B2XZZPylgEd5i4SM9gdhDbNghZWLG3d8ZSKYNC02daUZHyYnn9kbdvutgXXPlPT+D65kneAWzpik1hrqCcyLBwN51SdP+9GNjFtdYC7a5ovg4qgEBXRVlP+C6udHWo3sKMEKrIXiIRR+JYDfKv87ERUtdEiEeNrjDncnmncyOqu5E1qr63PkLFBvKNAmWitE9Qu60klQkIyrCPLcmE5w4w+gUCNrk6nKYJjvnPQHlfntWQCdUG3PUzLRvqGl9occzIPjm4xW6peTTH64zrnknL5+wMiDEm44ksNpiBDJ1IznHcGdbPhwIiaclpMHd8ZuJh+vC0obT3s59MhV4VVm16rfpdNDHsd6rd+Hy9yPvNasSSA7AOkk+QuicBKcjD+M/COZ66jkeVrbynNpP+Uu+00LbT0r+sLlG4GsKjyJrRcD+GDLKxCOr7rUT4V2lt67qAsWB67p7UXrU8t4nRjeW68p7fhGjjNMw6mGHgRAlo2MQS0TEdlh5O4fWXR3U1p5oQE542nQekp7u6y4srdj9DSecaOSTqyAA9fLsjyOVPAfu0W7R7hB6msB5ef0g/kPy150XkWvWvqHnjX3XLdyfqWSUC+25f0n7u+kmcsysipidzkWYMIdisgjMSSeVvVa4tVasddjq8hK9wZOTwdVEPCrG80aX5MQaR8z0s8hxqwq4GK2f7kE3ivgHM1GJ7TcDvhYF8MPOghbl7QDyVQznJCWDDhj4flY+FSHb4lOlUExXHTvwnDiKEi7kNVrlPMjSUeyZ2uES3YzT4PjQE0pMzfFlOLtmwoID9UzoWqvyNtJp2co2wydJqt4mz+WbKUjMBjEz59dPLH/sUnxUmlog5jjFzEKaG4PlzcTVBpg4Px8nKLtO9nWsd23sERSRIHF0b1NSbfip2aZTHwJLf18RhZe6x89kIVRDGKW4C9FHJ5ybx5ddJeSQN/LDc+W/jgR3xIszg507JAYUg6m67x2P+r1nN5aawxkb8GBM4/hmCrT4fyx0yIAEgWEhpr5zf3xaBHsKAQ9BrZlEE2KGDrtlNY7qDGmg3FfjfiqQdFX3WhZVXxc4k92DjmnhkwG5GIIpaUuDXfu/UtMkTUEBnigNCf36RHaXm39JYlEBMlxfvXWPslasNRUmD8+hdhvkL3tNESqPBwWoqebM3CITU+ELgNULvr2eItLO6sJOwPMaD2zpQmt3UuHSn1qpEhqGYzZi14BDr0Hplz1Q5Lb8d81BLmZIrxsOCJq7akVTeIjgJ/5eEhZnKeI+3xSPMiK4NT8kkQnE374hvDwZ5B5ovjUIrKtPMZZJOMdY5G5PKHsQ3DwxPHSl0tHodqDQkZJaihy3lyXIGxJBQ27saAHGixw3nYWooeKt24cENz1KPlJ783qqzsewyDVlDBxq7rNrWpWG0JtfujZEF9GW5zudrEmhKmeU2gUyoRptOWdrjI+Mh4xiJpEVfIIvWQ3XLNXLlhmQocCAgOILAsj08EkjX+vMVI65O+5OLYfSZQWLTaXU/vgBhIvwvNsEW3WrRKTwmfihWNh3LlzIhw3E659rCyl/J/OiQPfv+47MkGWzFQFKmDzejXMGSLvcfGlrGycffD7ITxuq1xiXnC2vKoSAHqab0zOdZBIbCfLwS72KgVarFwARMaKpZMlw4b/3ftEWkxF9RKsJws0LdsdEFwvcUIyCEdeczuUW/Z6qZ4cBjF2Kaxc12JaQXLfApHxdKfO0kPFL5Z3DKUj1Pkdxs2bFTW4QQXcsLsBNTvBHiYWAlaH+JtW09CEPPpYY7SP85gV/59yi1XgBztWjxBQwL0iT5Jz1lG3iZdzZb7YZ1ukp9hmKZcV8SswhGkI8ej0Swc2OvG5OGTP01EQFY1ZnKGVoj+b94XZzaRaPhEQe7fz6iWT4cMPqQOfYXrBWok7if+b8fbH8gKvU6rK+u3B79/wOEvMvKXQMxYJ0VvHxI1kz2PUVWFEsDmKiSZjFM6p3aHS+oN0A8gi8vUbr5Oju/vel8yekvQMV6HlgLvEij+rl90BIZjKDguKoLBPjoHyfW8qCehmJxAlviyEJ6Ebce4B3L3uak4M8H2VBD0UP19lHWU+TPMgsu4mlhlnTMlPsDVhvWJcMrcsC0V/UAGY71jKwLMIqp4TBWr2SzL9lP9u6OzUl7es2i9HB6fM/9rlUoDb/F7aJhsa853reuWX1O/hO9IiAtXBq0Ohi+gFLP4At1SwJSCKffj4kNLI8F9T7DNnVNFmap45levpcIJkm1qPkHDE18nbh1RHQfQqPk0BJSPJCmpVWadpuzGt6OADzfBRDoalwXKw63hofJErje/uAJpw9klDDk9fpnFpDbNGEGVhaDHHZqb9RkfsF+DDp5fReq7NKQyKrY58jrk50mnY01IU6WZErd+EF4PTm+dggdvbsXakPKu7voLJMvZHBmvR7XoGQnT+i92rUFcCL2zCr4KT7vWmeoJo8QwNo2PO8pCjwUP5+PgvLE8UKdpq66tdrFCZXM6E6vKYrQV3W7sQnRnt1MwELxfhpz9K3C3Ueiv/SxWyvHcdsjwnJxzMwk5LyNe+wLdnyLyBOb1B47SMKX5xQaVNFIOwLxBQHyQpeAOlTV5vmaaFi4aRQFkDV4Qf3F6gi2J4snOCTeohYyadGBoYtWlDAoWE6AP5Bu1z+qOmRdiA24cK4WvkWXZ0B0ho9FZcAgdqMKOeVNTKCmxhGqwGLSNkOirT9FxG/WTyMn5x58fq9TTO5R3quLk3wnX0tuMNWtBC5C+Mr0HmeF3KwcuHykOhWuACXtjX36D+dQD1aS6f6M3aCbOoj3RDX0Biw3iBM3dsZ0aBqiOi1NlUO8G7YhHJnSdT3jP8mMvbmKnmq7yTWuZle+TmoSA9igo7kvQjhdCnEcB5GXnnzmsq+lHlPmMJN5t2Hql99cEdKUfEOB8T44atUfzFQO4zQLhERM7dyNwJJXFQ1iTjrQ6ZdgLfgCiKAdvFO6GznAGn7iTyb+Nfr6X2sDWMdGit9eLiKB+qvwe8qUAAGHlFJaRH7EtPs4R3zLGCnaTf71WW+IQJyjB9WzKLPGI9uqx2floFvcHmLtCEfrJtva5Z0JPB94Q/1TpdiQxajgbDIf/y8wuStahjB+eNB9eedaHo71tPJscjwbdyeS048+ug==
Variant 3
DifficultyLevel
571
Question
At a pet store, 1.4 kilograms of dog food costs $9.10.
What mass of dog food could be purchased for $52?
Worked Solution
|
|
Cost per kg |
= 1.49.10 |
|
= $6.50 |
|
|
∴ Amount |
= 6.5052 |
|
= 8.0 kg |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
store | |
mass | |
product | |
cost1 | |
cost2 | |
cost3 | |
correctAnswer | |
Answers
U2FsdGVkX1/hW6OOSKM6GOwb59W2UPbLuXSXp+sZGC1lQRLOHva4x90BKd/0oNHaQgVB9izJibXFpRe4rgDUU7dMHvgXLsH06T45d2OKtVmQDOzGK+jlAZeoltRml3mwy/OVzmmQnhlZhOA3uGjQoobj+MJ8aqqL+Orf26lf5tYBehbeWUXT8yzMh5YA6UNpFETrsY3TXdQs90HNaQTInw66fTsabISlk4RlJBKnl+q85TdD5qijS5VBMlKXDurw7f1DByDsHE3rcajn3WviKaf6E7hPpMWoY1AXrFCAWpUgWg05g04kD54pRb63E2Y5b2xcadopd/hAwo0GbKjjI+hqa4SNUlL77xJaGoqOcCY95p/e7LUvspvLqQaH9CzPgzve7yhYUAYcdvMorgTFwWSvhe2jfM2uCZ3hGoHCnlYUXzfIkurKvUEUfTsb1ckZoxiLDUfm3PeulWjkntgqt+Si4o3virf7PxVuRN24YCUbG1u4SlVbtFcI0C361cxOz04kaknlDR6LFaU2ahf8vqQi6+V7JMmBW5Yd9F0JqeAyMF+46U5vNh16SxJyWOPYaEvOLIdSD3JQ8phZ2TSaJS2ZBs/Lcl6yAMcVEAVc97Id2qKX1RwBUEjcxXLRTlT/x1UoUmxuMLrHLl0CaGDzdtIwtAV/hgnj6UTFU6L5Af96B1ljo0iErSM4vWUd64N4HbkXZ9l4PNxiRE/oYhpt4EkNv1Vwdf1zsNW8UD8/ep+mUygVf0GCk2nvNtNSBy+TmLSQia3J6YcH0oC0S4+zIH+xKP4YOB+osYNRC0NZ7MikHEpMacGXEAFZ1RrTCxLm2zmNXSQAlIO1Fn4ZYDG9hw0sZRh/2XUTzUMamFi+DyvY79Nh/hnNdl8Y6x12/dAD3Nf7XRpBMhYrGWe7GG6uDbC+QVf+8O4wLl1Bq69zcyDTAqrUZCdYamBDlMqGkzBGtMLqrfN+VKoY0vxnlyg7pLCCOeeFp90NBqbapIU1JprTcxEKyzlAbqnLv3QA2FV/dh2MqLpk7MKXmGS4ZbpNMsjPTVnmXu8zUhG2ChtM7pFC2YnoNs10gdgrBaY0zgAGQoqnaTY47AzFWMBANRDgiwMl+LnjQY9FpEigFliBTT2d9CGXagNkRVhJAeoglAbs6Hw8JS0uP6dSjPWF8mk2o4YCCfQpK3uIrpvGRktPr/uFmMdJaHfx5nYIFWFZKu2LV3PPBoa+43QQ/qnC+jobXxpNp9DxIJyAQWeH51fy39no9gyDh4NcJkpSKfuYVCMAXLx6+wf8J+lokKSFBRHXEz86jVGzdMqhVx+6A7lw0oywYdvCKBCUTluVuUS+buMsVvh5sngL/iCNprY/xbk++n0fT2ZUPCJH8GTExyDQlZnIb/5yOOADj8CtHmOR7KQTHsoKc4zpXdIKulPMtycevGRpK9goc5A0Pi0PRXFzIXkWEdhlFmdJA1eChjoZiMS64f9TPfz7ZLep8dWnayT2sG1jTiPhApCyCgAPs9wRKIXjA+VWXjcXofe/6dxnV5XphP1wbn46KIxfK+ZcDF75W6kdgZi1O0UPex73UPjLzySZlcKykmQ8IUt8zg67wMeI/aKbtpPB0Yb4v79O+ee8lW4RzhuWPo3+6qYDicHsA8xSqICtoKfkSWS6zFzpdwBSqcG24MAMEvVXA/Efkfoa9yQyCih/TV/FWSGbVsl4UnmtKCbqArx7RBfxV93WckiaiVJGZqpubETZZBuE0xyfaNQdJJI28kqBumzn4kkTyVRoD6C9hcffruDIiUdGvNv8fPapvLNFkIXeLPSDcQPnFOcQ6eML9wMhX0883SNp2Jz+qpKc6v5ZFgLRXOGeKZPUvRxWRdDBWGMxJHrQheKhntBx25h2wpxg6vR9OosubhT5w2hRURwMO5lSxpCpBy6k5QSZZqcHP0LM9/DKfOLfG9CGJul6u3ZaFzZjGzbnfBPHdBTAXqKOAH4fEA9ccf4+YJY3EE0cRPxyCeL8VnNW0rT4pYkoZMFgZyjhVbKQKtcskT5mVDmGYmB45Vz2kv+FnyhZQOxA3qUtdIDw+oRlBQsdOXyCY9BhQL/j/gNdmOmCqyA720KitgwS0/wI9Mak2kO2KylL1CicUAQFxpZEuh+wTQVUkn22LAX0cQCvtO7M/VBRLQzHSu/Orxvoi5WbxCXTAnBNAsWD8c1Uoxagi1b/OqGSYz8kWYmZOWTsYyC5UPYig8C50GxJkW0H7L8ZUfGzA91atxARwEy+bWPUYaxcq4lTDFbvs9xyLr17gskaOcSYNeg08w3H1oMg0smvH8+jUciErMnccUAZ12PltvCphgPqxiN5WpToRScz6cumNTT+0C8ufA7nxPupP6Y8mjF82jdlpQ/algT2jusvKEu58k0taDXLvbURASpDzWntEqUVsXTG4v6wmDo5/yPplkdwOgvNtfJ9sbfLxkE5vcdoQwnblX1E31nQ0veXmmQoTS4NvrdjZ/RK7o9C9n5N7vpHyGYLSG1CtG1uZsX30u8eYmnv5mrX1g5A31J/u1Ip7vv9OtAStjpFCsO5c0vmoghhJejEV2Sbkzn74iBi1Whuic7VOfIoDjfIkeC/Ca9B/u10GYDKWZWbP45WsPrZBxWp/+1yy1Uil/wlWvSv34fkeTxfI23Ov9rIdSfK8r5L/z6Qel7XdkPJxJN6dRtAube0zfkZTPOnOrhR8wzZs7VNyqRmqSF++cSNZiaNZU9Hy2SUwHHr65fnWqivyKjukey33e8yi6Ui42+7diW+wABavrGGZip9DcquZknbXU+YeffK2NU5VQtDEMERBfTRDS84LJC7tatgIZcmSHJ/tT41+P8KynxUQTra1Ug63K91sOXJeqDLNo/KCJ8ZJI+TcQvyelQx3h7EiPavX7DJG+zC1830PhC/OoF0MPyq9WC+QS/VqmaWvNFmsPbvZfT4bksV0La4+DB+eXhHWTu8eZsR0zBO1d2tn/retYJ/wTv954EjxIHr6DIPiuLylla7KO+igSa/Now1o0K5wyoP71I3ENVODC25OVb4agQJ7um5nVyqpJ1vqyZy+xniN7MOZ+3eNu561mj90zINcRHAk7VjpI1PF2WzAd5PYhn5Rw3Yp9FX0Sq7p2opN9vpL+LNLHM3FP0KQ6nZ5epHhu35EFpGQjS9FhdBZMhO/OVGSTb/GkHNg3vec5+IkdR9m3MJA2n1r2nGi077bU4M98tr0s+9w82OfcIK4eU7XlRGsygyzttt8ItMc7CKaNfe9laoioq06yY+7e0HFIseWTi4wkJSVFN9v2XNtnZteRtilFKUMWsRTMAxVsSDNCnLqKq6wbN1VsUt2cfpY9UnHysktZawSgWlzLUVNG/A8tdijgTDNsRAGpdbOANCFqWeNPovT9ZKpnj7+LCFnOcWpN5zGh3+MDgFtYNVZpSs7i4wfbvxc1cOWriW6k4Wic3c7NSPbKPGAHkbS+Bu5h9z136N4fL66jQ6/xjYFfuaEwBLyufGtgz00bKGVenjDVAHVEbfoCv0k+VUoPdwv7Rbn+VuUP8uE1uDsT0u3k0NTlm9Xm8KnX12PMToTGiFgbMdsO4wRP6efDtY18sIn07twH15CS+KBmh9pSVFSkTiFnu4391TFv6wBNH5BO8CN2L5dsW8oxYR3K4hCUSQLZbEB6wcI1htUpE8tqrcj325x0PaSstGkknCYV7tOU6LU5vTW8+IQXE1U9CHvg84olAdQ2xCCr5u2WVNiYctHvZZWzKA46JcE/ydAmJzY+yvEdrZNhzDEm9L1lQX7cFxLeShOgdwdCl9EyztZr7UAtpPUkhAeotezXZ0iPGieUt8PRxN7V/yGZTUaIP7AKkX0zr3Hi1opj5gcM0R3s3uBMIIvgKl3OTxqkW/rU68WVsjmkVEm1SNRjgCsYOYmjC0iNRh6fyWuiokyuF8w4HfRpYpHPqBYjkDE/WTbeh1eDktbJaCLRfeOoJNtfPK4az+ym3uCMYNSAR1xYnYuhr007E9wPdZlR0NmEKsMbiaa/eP0bJE01NXAZQ/iwPYFwzyZv4+uTtuLyqD51QEQGtETS5a2WEIo+9JLLtcR6OXr1YunFsa1sUvqBIs/qxYG4m6e7zzlJhiHHGuQDIaJM1gHxycPUIsMj0jKQ2WemZKAXUkGwGjMxeT0UKcuolxmQrBPRM/HkRBq4CDnlhJ8GYZLw7AsiZwcUdu8zbkDfQS1DBuazVRx0tvs4k2aClzo20188UOgs4Hc0YjDkKMPqqpNeeXadPVCWuh7AJNZun4bZxtiEYgDvLiRn4MACkC9G+ot4vei3dxc26QwsJ+leH0H1AOdDRiKmQkMPOd75qRtgE4VCsGYYH59peE4QdzLQ5idfLDZ+iHsbxykQrEmFxTsJw6+LEqrAzPUQTPhStzdDhBK34H7PCHvOafuDdoSubF5GW3jl62IlcJMLvZcw260kQGaHzSsWTGnx/+15MPMfzYRPvfyNF4xSSskhD3Pc9kBxQI3SE1w9ufNK2LT0gQjNphRmiGGU70Gekh44pVN/n7uyUsSgLVbSq8065Yebn3bse9k4oB0xjiuJgEPZbOP/P0PtbvrioFZDIP2N30Lke2dmnVLM9XfuOBH/DN/qM+kAHavfbRYgAwSkGP5ZpvJDplRltnIyqOqV5OZJ0r4eY67gyAzCiVjrfYC8H2UbVfCWn+XQC7VQjF6jBo/VzfZVn8tRcG8y9Zx3FPGLhvPdYdTpUAAdjUXr0k4kVqqugZq55eKH+xquL08Q+nPmLWbiPRGYaJKtczwdZdRVHx4XUkf9z8DWUBJcuuhlHEV8rKLFoeQd6Ba7+o7vcrWdMzZjQGlf98iFCslfV9Y3+xTjxm1ILJNEPzwSAxf2hqT4h1Z6+DKgTdcnprTFTdeHTNawwPDHIUpQBepHLJK8EcUSDvmaeYOhIk9i/iKUCTeId39szSQDnNKeGokTpZj103LdX85Oe19HU6xOqKIE5kaBlIJ8f5q3c+kr2W8Uix+sNkIZ5WgP113oXzAsSKL36P/e6obUNvNIGiJuyIp6oXc6CgixCVwHVHLV+HF6xUMplmFY8+pSCa+Je9tjdUdpABlFjEqjYotJI+elQi3rhUSbJ7CwL088mCL0JnOOw7VurdOCDqG23E3ftDwijhKlLhreQXvbz+so43zsXvyAheDt/A403OThPEI5NGbdrjy/Kd9Lzo7xiqFw62PY0h45DH2VRLWeGjaSrUwVsZl69sqiAmuYrEjU3V0A1xuTARHoEfztH63E3yN8OBCaMfzPCrzDySD5U247hO+5NzvI5zZm/odYcEVSK47cKz3D3FHKQAZDtNQ2rJctiRffF1C3Cm3fuChcGGgTvjnpeYzcMqgjnSugt/QPLQ0F/o/++fWVm5XiWUvE9xXAxLdBTUXxamVQWHmKe/Cds0jOgc3VLz404DiVCG9s4QLFIM7yxBFORup1PQ7oePtiXTSHXS3OAqEJlRe0sb5Cgi8sTshcTYuawJwvwWqBKNG2x7cw6xVmMr1OlOTtUXamvlKYzzExrhVPkzfYStyhvMKhxU+gOBfpW+FJgrL1d5U33gilcpC8+QI9YaPgm1/2RrAm+7MyjQlEh5Um3PZb3ydN2OgzDbHZwnLvUGzFwrVHOikIaQt8AWWM1SYZlxHJaKxgJebp2RCKo7TXMDjPI+0v3f3pXbM6rK8c9z+X/toreX/G70WIsK1jhKZVy7bY+pDTnkOUiJKo+3RY2UNX9AcJDxqDRaEu/ua1nJgYvLMquMubCWgs6O4qyiwoaDnT32K3Oc/IIKrXosXD2kPpJn4glRI0fNa4Gvqt4CjK2v+rMynhnPolQVZUMqbHlK+JOmhlndteqXWLDBGw0Ei37o+FDrAVs7VdJWdxIJzZuZovgTkD0IaWDyEhwUaX1q6vBRAat9u6c+LernITVkW7gCaFht38GIBDM2wQtxftABge4UgixR6azJumChMWtI+5kOKwg0Yzg6CFbJyGzHCeY9YY2g4cokG+PuLu6Sri+wjcBYDqwrfat18hEWZNR6iK1YRDPKpyXBlTf/NJ9h/Lhd0r8OfbnWiB3wVuELGIWcJdPkWjjNIYzu7R9O5isOJtB8lpiMgimZEKVw5708h3IuXeY27k+pjMiermmjyW70Q6RYaSNe8D/7i3gW3F5K2g0Edg0PZkRbbxaCZcPShW+1lHCCYjT3jNtbrO1jMzaXNfBeaujXdztPbqVU+Fv3ZXMQ6+OJnaT9ZeuRH3zPPuQPAplJNfEUPx52SbbrgYdU
Variant 4
DifficultyLevel
571
Question
At a health food store, 1.7 kilograms of walnuts costs $18.70.
What mass of walnuts could be purchased for $55?
Worked Solution
|
|
Cost per kg |
= 1.718.70 |
|
= $11.00 |
|
|
∴ Amount |
= 11.0055 |
|
= 5.0 kg |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
store | |
mass | |
product | |
cost1 | |
cost2 | |
cost3 | |
correctAnswer | |
Answers