Measurement, NAPX-L4-CA13 o2
U2FsdGVkX1/cdoxqiaZ+DjUGtTdCJ8jKAD+feIzbWeMC0PiA8FTWwgOPki6DV4OEB2bREOJiyWxD9z8WfJMwbDnStEnHFUUAXNgE3xmTN6prMMBxPmt8MqtabXmSXUYgIMQQvBS6fM7UBRaZq1YNBFLUuphaGFYl/nKVA5/UMs48stuj5VB0W14ksYMzH/MyT34Z1j8g8ROl+qms9EueRVeMsZ8xKznzeulGLMwB7xYGPXQYm/qxlj+qiRQ66FGv0whD8dplROWXca4QLT2AxrWuCE1jhJWLGgKhUUS1pNiHZi8XzMQJ+jDPxuZjIUGp8FzcWBwdpb5OizMWDFYHnfz85p/toa0j1wyEhHUNCZK4AOlAQKjhOwc+LtTWPM7kNSY4VUTXySCy7myDax/FZ3Z1Hs8HwoJ9FdS6ERrSQUYn4gLvrejoSBKX17USNegNe8mvzGIYddKbdVo1sP+jde7MnLVB+rAWPN5J09ZuBkJDzOAl8uphV2Nr63HVBoCYtM+/AOFUsqXEOnEC9695i5pc34oYvsgWh9qHqo3rYoqJVqONKPr7qRQS+sBdI/4eDGpCEo9NVn5Hf5Z3J/Hqi2PB/+Ik9JZm8ZN1kWSPo6FRn2UL0FMvU57cmQqaJptvDhZGvROu+12LzCS/NFh6asPZQG/WI/0Kw2dApJWZ0sy5KV9mi7vBcWu5MNzOU7AQ0O1WRugWuFzkVgKFi2aYrLBy7LA/QNuzQXcBNs8LHld/2NTe5yq3sR5kKJLb3E93tBXH6TguaoNT33CCtYPfzX4aRBy3rC5bz4EWoCjdklpIWtzkCpL0ieXXXKU0VMcpuBnwsJ1MkAzGl/cybuwx0Om+Osu6QVW50gjqOYXxQH02QdYP8RgO3rsfLXFH6wuTLJX4SvlFgoJ8oF2VFEcysARAkmnNFbVVEC5JmxDdez0M+k/quYYA1Na9xUszt4EVrBlDFiKEm7PmEcVisirGziN+7h9Skgae2rRNh2Ii9k8eaWOa2BdfqT8KcKjEEd83DFHXTiM/rSFUJLLQYyR+nn3sc86QutevS0C9puoRimluB/K1E/mjuG0d9Rkj6h/h5EVxk+hOVJP2la+4s6vLd6FgDxKSUq6wPPmv3HKh8bIB5MXfKWKylvt0gygP75cYRaK/9ZEw765c5YD22s/egzX4kyB9CoM0o/uWEtCpAmaR4TE/QsgzE5XWwsId6l9gVySITIyrnBE7AYC20t2aM9EfnNyrIsXmNLEGl33SnfmuJ1trWNM7LixIVBpYa5H3GQpcNGIf4FHDaIMKHBbxj8C5DTUhBuV7AycxWUcr7iPODffm1V5d7xoGjJFcxWgrnlMo0Jy15z/tPC4UFthqKfp+NMhYuoVKksfiW2Nu2atQtfHFvVVG2sjMVQgjiw3czJ9SG7OFU6pbpZ0ApqeT1p+FMk6njeJ2kHLrjNaMqfetWOhfJjJ8+npaHLV8Cs6pxPkijnV/N5z3Mk0t93l2EShw+zomvHzt8/vHqMp+Qh8gu1rKACCUeZGSDSky9mfTyLXkzjUPDatyHe3c5/sgk+e+USAcAFn6S7jbNJ7z7ZkSiuY8k/jyBAaAWxISNUg4IBFuRU/piLNdCDZxGLIwMZHaYT1I7M5eHE/IdopJxks3i/Sx4xy0RLBPSRYkhVOKtd9Vzqcaem2d0EuTdLqgs1OYKRyEFRAzcPZs27MTwISUU+1v5giQNFfZMoRDaNGKBsXpzZNS9LH6EObSXyFV7iI8mmdsI1I2K0k+gnahZz1+7ez6r+LIs1Xw+Y+qbQjKw8+aqb02Rqj4fnrVAiZQ5jMofalKsVIhZOjzlPOOpENM2Gpv5wDcM0tuNElhcmKqJXzErK8y+nzA9k0toa8zYcJJpYyh6UIwNIi3KUCGhWBYxexnWMo9xmzpp5WHlpw93CdaUHS9c3zZCL23qfrF+lRiBidw1n6K7f//zeVcjMGnP/xqcelTmEexESlxhhkBH0v3dnHZNM5PUXcUcNMGUijq8uiEyGdabfhh33kDNYX83qOeavStsGUIJgjub72BId3GZMolS/1sdQJ8wcj7wtdRynuig/gXhtok1VIAqaAsA5P2kL1M4n2L8bp47pdtG4qVCDqRrJTNvA3rz6CQ6tzA5hjsNbs+CSVepWbCdU6nowhqBosQHWJG0YkC5+ekv9621BpoKcSwXGWkJY/Dj72+1Zhs9VO21SDCPZEc7ihQrhzYf41fNsfQ0XpM8umhuaL1nySd5m0yz2aDQPtuoJ5nj1LNNo5ojIIOoPBACiRWhDiYCTBnWGSDv+baABetzQxfZSOYcbpRHUsO4LKyTAbdMe342TxN/e3J3nsdMuA+t0lB0gnflh61KcYLBhe4QBYh1tRNM/ww0LazlzI8vaPZCpwg3DOwYvhK3+jTES3MJ/wDF/oOXN8nDBSzzRaYfHQ2MhZzVQVSqdtcwbHu3IN0kxdBkAASzVy7BcFY4OSg74X9A3/3TE9/TWUWqdcO80jNXNqj5QwgOjXDL7xTXCNy6AVgxeuBHIOprswvpukfXTrTlnDQIDjqFiIxonAJz115loQ1fR/VOwHb4gngCmngkuexpeHBUFtvvTPQozugoKNFz52fKDlOl68Dyrq9WGMiXt/qeaczZGB05ZU+QIO1pPMwf5ClRaz+/mHN3qbaC7v9T6q4pZFCijtMJXRiaIwvmga02Zl2F3cAIXW4KynUi3In96mFDJOPSJvtsgJCiV181HfdNl3tsfcel8A3jQmNVVQpA7z4tlFwdr6lSdSZPOyE2S1nsBGfYe82SC1SpBLJ+ANJIJc4CDr/mjdyYnaakAXT6mr1n4WxY+dJEsVyfpmg8ojieRTnxchgXyfMB7H0GrfrUQXFrUdsta6PJQEO2Atm7Rbd0GlQYH4SGtjllX1FzvuWktRovf9XXPDSERrvGzc4uTdT1aAJPaanMHdmDtIjD1tmx7xdnxk8P1dNPkCJR2ewFhIRDUcMICCVM38EH3HeQeYbV859mCYnl7zMZJe/Caex7+ccfExKZSVFFo/eqLJ45VOYDqEOTSIqCiMAoPwHA2N6nTZUBGPySBeUXlRYI6lci7ve8sCfzfq/Fe4pyzeH05D7alvScyg7ZWjkzsqMdJRMOhz6YtB90s/j5KhYhyOUCUSaFIcBkz4VJXzq3Dillv0hi5N66e+vfiuewv+uK9jSiaOTtJ+6uJWDUP0VtlchOpTzLhyZlzMyCjuUoIySd1pvuP0srBkfAg24bkkNyA8kPONAZ4/gxrSIdsDA1tnlzUAsmrWl0Ey3k3HqDojo2LBaHR/nS9VCNqg5+TQKQMtoqENj/QchhTzNFGBEOgAuL2+b98ZlX2LpzT3Q8pcy2qCILPSF6skf+uxXhGtsZeQdXldJAgVufeN3VWLTaJCNUzpNqw0mbtKHLlThfAgmjJQsIiI42bhzU/M0nUR9VPytVfUA0yStDNt4D0zAHWnbt2UD5e3+utXJGLTYusyExCn1KPthF0UHPRVxlPxnVTxI36MwwWfw3dg5kppTGXaVNLgeul9pNk+AyJtSKkiFO2oOl9s9Oh2+76iMGYU4YatBURjkICwaVDkHQxT7u7ZLRDD8305xMiaW0rEAFqXp8sIa8ozb1dsqk+VtjHQv/Q60aIMUFv8QhjlWbUV/x6agvHqLZffpHR9/1gnHyel14rUGoUjcEig4pW1uA6V/rGX7IkZGxIR95i6oI1Yb658Ki0idJo+xL0YcWdVliz6tkH5CsRfE0qAEZII5NnU1dO8V0byYqVy8BoOvoX5G1HukNHwaUG/P1S1y1Yvy5dpTE1w9KBBJvT1KQ2oTfwbViD6AkyG4K5zLo7o+EzlT52WPPbIqWzdo4neD64DI45D4eaVoYr6gtJGYO/2PQ+5dsKFjPTdnI2oDMhtv9bjhLxuIGmRMhoh0m2m8rXi4Hu9ItBsu3K70L1b/3kcYD89Ygc67lv1pW7JEY7hg1xiXB6aB6RbEFdHmjGW4rpotFozGhEVI/HA1IMWQq9VscMPEqGBb303Sz/GY1wkkWKmAcyCEhwV3hpVonYKTTwSlqSERnPJrEbLrst2fiIMUxbVFLM3IRxO+SzsuTKDgPd27wTNvijOSx89apgJNGEIwFnb6dR7JPZjjxKm8akaFhBR4G7wgwcitlFZ7JjEslgCsTJspOgo3V5beLVcLEX6qldqLlHKohGFRBWJ7qOFg3hcGlL0yCjnleDnVlaNayu34OTwNxs1zCN+qmp3K71gVrq0pZx6Y+DdMuJmEPp+Z8NeqPDWztKD3AsvkDbDAgOm05p662Gvo32JM+C0UKNeAjRNVsP433VUpY7XOxEy3YtoToijVs7pNNJD7y6nW+WZp5IckTeuXqPrgx1+/7hEiX4Z5K2VL974IPnIAN/IngPrloxcG0A+2QvVTgLsUvGf0Rk70YanbhhUV1ihnlyb/2/LuCAMuVciSav2WuwxP1HmePwsfup+COfCbw8v6KhNhaX6rmOdfLswkGth/c7O9jmCGCGi/ATIzpKlr4SGnZSH5jWKslKdeOOrAbglzf7L0RClVZaPQHY8amNMie5lO6IQrSD/IvYrTB8P/le1AMnP1rsfQbmXntD55vcVSA51MhFadtmjws6PNm8zdo0MYASDvDj7qZWhAh3fANGJPxcCEyiFb6TsxMwSZMNti4Jprsj1QH9f4kJjTM6S8jv3Zht8fBECwa68bUiDyuV5TGiXzHrDSqSzzkKl4eUGGZmhLKbonj1wB0MMuXBTFu1Fjp1t6G8qayEYsMcI1mjxMOjn2rS+PO0XZ2HJjxWLWONz0EtISr6Nd/yHF01xDEF7uyuT75kVTtcp1ywkA+89rXr9rWz8zkeIZP1HLKRYihQp4mHS5NgXX7SeNE/2PU4zYdMOEtilrlqKJB2vB2TdkvizsftRmEhrL1EW5w1HGwmXtjHDF9zqaNhFYhWagnJvpK2XP26z416x1qbzdYPaQXrdJYeb1wHYo2WvGvC0LrgAV0B3YkGOUtEGxn11Ht0v4it2v26IH6GnSD7RgiDSGqI/9mmzpMjw4aGX9s397DlBB2vkUMmv8msb8INGw/eNYwSUje5dWbLJq7RWa0yjWmW3YKMRLp9y4b33wNj8zVEuDEGUIip4pD74qqmw8w6tJI3w93GS5wrcUMN6UEg2T5+1jiJDDLJfiHP2GhT4gu/KykaoBeklYzVD7JSKSyLiicZeGdo2aqWS/q0KQ7cSqQTkZVaLXGH2yojZvSPARv+qP7FuPiduGN+rfYhDdO8SwVaJtJk3bmvtHNnmSwsEKiXn8SpntBsq+G0qZ7+AoOq49xaOSyiVwJkeA/l8YX4kSD3wfoOHiyHxMuA9viGf8Mk43Przy9qwF9ezfXrc/0BFdq4HCd1N1yZWvEjjyrYlCmEWQ3zvU5hlTWEAjk1r7aLcbcsNme74jWZrhtbrqNGwKIKP5NJ+YSL6kWn12cj+ZQ3wJf7poo8egDUt2bL73yZDESerloTR/fgm7lx58qp2iFkr6pGR/cdHj1YFIZ8vRovdKvAL6MPGu0zaSAvT0cN2SUbenuzQSDWHIbCMqCf2ifzshz2COuHipxIzMkUef7/94Qhr0zhrYPiKF484gsIO74wV1kCbBePijbGE/jROxzh/AT6RiiJHV2pbIQILW0+6VuoVGE0+yhJPXdgPC9pMWSs94N4bHp9Wg+V2OQIX5GTcLy7aihJBugAvlmz62uI3Ickldlolku7Jk840s8VJU9cq5vd6R3kXgzUhDlloF2LOsAne8/XYLqAAsP0D9bEE9+NC+O3+BduSoEaUiuC/Sz9al2+RFMtS6pMtqmUnxRvlMEMwD5X66s9pBKx3qx3vcu/Z2pOp82YGoxxkVPKXPsPHgdH12PfaNOhl5acmWgKHpdeIIqwMFtlN3zZhva7HZvP6Lm5lP3yhDzE7CVMzdWYsjI+9oQJvRwilkaieLgn1p3L/pjziwBp1vuMIQNOZNdMLy80BLfzQIyLSeIwzCP2RcWnxOAUPW45blwvXeLNOYjEyQJc0G9YpsrvhizE3bGbRhURhdrGPT0i68kZG56dFohJuXTs9a2PDcX1sFzr0f/+IFOa+FKCTvawPdbi2j8c/C7+w4wD2r/QoDStKW/+xEnaFqpzIFyzLuIupGCCM8wC2zOswnWmlGix/yG5qdxx07SiZSJmmxuje1XcdNR+V45E3ZeacyCFj2iEuw0UY5lS5t3tPSVB3J7y1LbZRlI/f4QnNXL/PVfYY2quuLwEyoz99aeVzCE4CCPIXTWftrjQUaKlQ/YY9PYBPf1EN0iLdAa1j2RtWVl3P1FsuBoMSs8iGS08EfPmSYBzevPWhXoDpbXHNCA4PJ8ASQsgjnNjrhur775AxSxAzsirA1qmIz5UCi4pF7+yxQEFx3ZpoFkDZU73V1tpHJVLVu5KMMQW2H2SFoVlrBKhstgjjKbkhjqXNJYDPmLPcNqknM99jjHm8U7FWtuWpgeET/uLqKmW7tQprLCTaVqr3q9aqqLnnE7OODv8rb3gXQaxcFtiXmeNgV//rDepe3W38JGKQhBrmAhJsKLCFYs1kAU9wno4Pe7GiSs7dTnpTy98EU40s8je5myzoTSBn1lvtdauEWM4gXTUvNIMULXoAbsz4DvEVTM29mK4o34ryR8ngIOFS0l943SQcbqcro02wfBcNtLiU1z81jyfy5g5XBCEOaihFRXvO1br2YJwvzYEc+9EBGA1+evboLLyD9dEaghuJAfxA0+S6LhXuUfgbO3TRd0SId1fLtFI2m
Variant 0
DifficultyLevel
612
Question
Kellogg creates a rectangular prism by stacking 8 identical triangular prisms together.
What is the volume of one triangular prism, in cubic centimetres?
Worked Solution
|
|
Total volume |
= 28 × 13 × 18 |
|
= 6552 |
|
|
∴ Volume of 1 prism |
= 86552 |
|
= 819 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Kellogg creates a rectangular prism by stacking 8 identical triangular prisms together.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/04/NAPX-LA-CA13-o2.svg 180 indent3 vpad
What is the volume of one triangular prism, in cubic centimetres? |
workedSolution |
| | |
| --------:| -------------- |
| Total volume | \= 28 × 13 × 18 |
| | \= 6552 |
| | |
| ---------------------: | -------------- |
| $\therefore$ Volume of 1 prism | \= $\dfrac{6552}{8}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 819 | |
U2FsdGVkX1/QG39nBDRyeG65SdwJbXHAzcqXyA/Z0qPDyTHUcLZLlXr/MKK+jeWbxsD1GILnjSU0og/mb1zo7iDtMzhqRAJ+MxFkiyI48yvIOk6xfvOQQsrNgODlo7BuP0NwGUdtW2iUOFpGoIQPuJ8GAX2YrLZY82DhFpe0lfUnFPclfaPurLb3sBi8LPQ3trPo4Q51zEjJraDxxSIWbs6RAnu9TOLAC+7mHqL8+WcINhaTrnMj7cic9sEzQZhtdoHa2x1mHPjGKWBVxditzd4TyK8u6fgh/Hp0jBaEMbUahQJe5xI99fJrtY/sj927Jdj/8E1c0lmPAJ0wQTvr5Qqg8gGQ0S079PMByZ/VCF/ZpaP3VjYfVXa8amQqxYc/LANzee8B8i+hzuBuSdDSLwSfZTl6KUYTZawAwxbBMEB7xTC9/xyxhd4j0x07RH2dNAfid9lDwNbFppRaQwjr8Qd7Xd6XuhwHQaj3TXF1N9ws+GJAR7VgaR6wa8YIwXtRxWwu3qkdH+f1g7AXa5QKQS19Qe3dsZedEtNnZLfsLfjYPwZz+BSYRhi0GDC/jqcNlKTWgCBzXWcI3p3J/iusEIBut+el+IWPB0hdGaG6OIY6rWrJ3otMMMuUwAR2XsBlKyy+XiQZaGcBzdeaCHlRvBXf4lcdTrluyUf4C6sBcdio/LQKh7gUPdLf34j+TDDEyAd9HtxQQ0Z5PZrhnsOyrEpjQtm5qXUXE8lRSIOtGcP5GHklFrbGm36bd6gUwk1sIK9FHdYBvux0jj4cddtiMKsl8IfyavCqJGfqJVGwKnmBTofXAcxCY4qRdc4/tfaC1b0E7HtAPtWY1bAtwrlNt6zrOks3PPmbi97uKaJ/4Po0BrQhOgVLORWyhMtZDbQx2xUjMkyUKvU/4tAZsRYXFj/DtzQiAwadef4AqZYN3Ws6bSnPsiE2ukRJbHV7fsL7tJWQMQT10H1v+G1cNJTPKXGNAWQL1afXWZkjwf/Ndhj0yTIK9/wwDSykyLxxAwr5Hi6KmI6PQLwIwnz3jOw8wjmX825Vn9jwFSZyO69q3+Kz3vV5/lbdCvh3chuLfJ+eQgoVes23HtFXwCJ4j25389hx3RK3VmN9EC6JGgT0QfJH6UBMQ3HRvCUae13oJ/ipMucVjYkEKkpv6B/Thw373VPndDzqjY7I7ZKMto53lLnzMh+MkronnkqVPXVq1BACB6gpK85mNtQCV8Ojcvnj5qp1waw2qQ0c/gY+hmqdKdCS8z0QViyBG+rEvOZwTobxtwzY7TzjSFElzgWuGms25q2NPfVQocD6zzLz6fD+0OtLm5N1quZQPBlgPhpNmjrBJBaFCLDK8fui0dJw9vNADXxc/wn2pcekUKzuhvxAK2criCATcBdrrN8v2XJByN5d279Nnxsyz7ZbFidt2h0jqf2G2zdioSUfSgcbTPhKAJMl0Uo5y0D0ApX6bsZ+SGNHsgEx4agoycfLArF83IZnnuIbRyTH/zk5qbaslxXAQp2Wbt70UnOSBtwlFDarwheCh5yRYU/GVZ3eb805+ld5OQLStCoDB1uYsXOG0PZM05bw1TF4Z5HhM0TkNvJRjOM9YBtK1e6DlclQ5qjlw1Frp2l0UCc8Cg+BhhsOoHNbXmsNi56+fYOkxS1t5qW6260wbox9HNWUA6B5x7Qf+DKew6AZGUbQkkcNmNPUAuab4UyCQHn3ef6W5Msr5s2+nlNaiaONlo0IrzszeutnzidVbN+cuXcdaKILd7QXFCfIqfTxm6LSlxniOqxB1ZjybFsxnCrXn6Fyd03jNnGu5/7GbeLng6QperK9hkTUHKoMkw7NkGcaoKYdZd7/Xtp+MjSeGlBozon7eoGNEjR+lGoUWFewM31s5EzfKyw8qvc9R3b69RzcY011K+rvbFrkTXG+tE7eVEN8IW4NeW0cXh/KGXdlw86hAVQysWRqWncSMZkmrKBCDPiq4h4elFLH0X1+zDuq7fb3bmR8iiQJhaFk8mxTChGCwVsF8X8XA7NsrkxDpGvZ088pCQC4jjBUuUCzvs2y5uZ9c2e4WA9LOgvzlF4Hp8v3XVHtcydqoH5gqXC9giZ09Abe4VkXm6Ujp7rvUhDSXDA8yO8pP0zDTz7c0En3XvI3uHlkYU4yeQNG/jIGpVXP/71hi980nHZZEm9dC0JNIPPlEnNc48VNJNHffrUs/y60NvYbUchxUV+QbZLtF6MYVRJZ8YdayrQlbkhj0vSSnkCyMFoGdJ90LPcTGBEBm14jMwDL+TrbewJnSGAtAsKkqGAMpOty8AwYTqTSRXeZrp9OdYsqkisS3u96kIiBMBuzAba3t23TxDUk8eKoOLjeTSO0bfdEt964yh9IonXyKGq04Qfd3U/YcB4QSUdOEqKP6d7lfCzp+aRQv2HdSEe7iaMGewyRZeY3JDWWmPtiND718MzJk9oNRaJtXvVFeLda0QzJLK+skNPCPu1eLY2lGbD6v0EoBD6yJPN+WqM5KzNuCnDyeU28CvtgFQY+RjpOvq3ebVZnutfZoz59oyM+4LlKkUQBjoCccLoHiAN4b2K+um1OlfaLOY3e14pJorOkTLef5y9n3egRdwBWpdCr3WxHfkc54xWZP9GPDyn4RYm4+LdS+VQuDz1LJ+Do/M0u7U1Cb/MACFOle/RfnPpd48CaDnos63ni7VmFW392esQBkqGCKQBUsvvkZRW2fuXkU5mrS+TWMyzDu/Dv/a+Id3lvnSVZrrk0co5V7dLgl1SIzXC7NVrjedRuQDysD+6YajWRZz+Nj1BPmV7wFzjAai9vxUxauIWDPfPEzVYbIIqdXmUUKBCi/KQhftdtJvULKHNEe5ah6hFeocnmWvpkTDb/d9UoqFiqdLI+Zbt0IDLIapFycWmUrPL49Trdh33A5Fm2V8hf9FE0m5hzwPiFG9lLiON+Zcifno5y4nCNRBUbfqsegzl6nKeMb+dfzo+Mc8X+C2UEVUIGuB1EmJ90vShHwgQ61LSEQ3GOIRXlm37FP/om7ETWFVxL5DI/k4yN9CNMlWnAdFPwh/aQFGft0JKDbEuZQACBKk/r+yj1u4qntamL5Bgc0dW1dkDECzAwBD2mgzyf+Qwfqe02DSl0GXXTijolJKXm/0qCqieuH41bxoefYDXwReMnqXYj+TIiN1Y2WTYWvIz3kHehSyOy0gEN2I6TUNCdxzltg/fdgOUiWXu3CqkBcKJmlFO1AHF9dDq8Nghk7rzq224dGX49yXucl5bPHoXlvzB2xbLK1b8IzEkpyw+e5/S/NcTj1b1q/Mw5mPCO3uzNm/iD+HtYPxQsIzHaRbxreZh+67hYul+1AIWZabrQbHCdvFa7A7kyzPAHEHH+hYeCkuBgrqpE8ZqzMj+vgy4sAO1qZq3Qq1C4PtIUAx5WufzdVBbTdmGXQsWOO2hvf5beV9gHyf+3XjVcQcs+NO8oSkoymCdoCndFFGVVCvDb7VH2ukJtJaUutodZDkDNEJTcoJNmZQPpDaXKusGWeC0AV5ohivW58rqsZKPjYLx5eUu2Xkjg5e7YFJP6VO3ZQTIskKo4BMbIfDrYhylQnrp47RjyIVTF8ubmWrolY9DdQ9Z0eja+bJ/RfW9sR3WxlPYJzI9YzZ0wCyCD5BUtQN5Tv3JN4yBG2Uc6MLf1m+49GlZw99+FyP7LXS3FZe9ghQVny+LIWLAAHqJ6wr3MaFvMop1uIdNxRLSHJKcep3ufktDp08PDRLvJ8+PVJIxVrfkIcUosGoKyFKKox1oMK9EP4mM58IYutwpTQd34O9Ef07+95gd0iOH5s0itMVUtbLxOkIbwiqEtdq0yCYp4APCh39LjedRJQtmJ+5ubCJg/oD358LrW3rHEZiJPl8p+7QUPYdrmVMDNRZ/N+bKJ69URpNMv8pOgbGBzcZWNrul0Dr2WUDgnpYkyuJfiUx+ej+R4NtrL+UOgX4sLHVJ9dGt51fmnG3HZg5/HsW90dZEP0cXPvXhmnykgkM1r1mSf27SnzKTick6h35vCRPdRzRYHyjNpfZlc9WvsT+fvVik9zcvi/xqbKgg/8ewLxCQaGQc05p8lJ7PJCPNY7I4+yCj6kPHEjdJYenSf84YuzAbaMum8Ti06hG1zsJtHnqIHIJ/bGafcX8FbFjqoZhjVIps6wn5hqQ5j5sTVVyoqF4DT+Xf5PYkU373tTUG7bpNSCwEkMD19hwluKXyuFI686iSz+5ir+632M38jl1p1qIRq/DIdhdO1OW4IJGWbu82T7pC5fE/CZTbQ0ZDzbsf1t3Y64yzEoMlvcSRUz4VOv0A5dTjVrAT8YWn5ObXnGytjeP34h4d7zSlva99lJaP7jXaOl25TTTQKwLS9z6QiOchrRNtXmdq4ogB9GMyhld8zYqEMtxdCQa3U8rQj2VLCE/0BI+2DsjtASSdGTyL1aI3Pp+zfo5Nu1OYg1JfT+CglMivaYmQ4ez5GuS1VDNPJfkSUJHrXG4bwByiY5+qvUZGAxcRizVyIVz2VryVsQk8F3pgSEzJeeB9rZ5t80Rac/pl1qjqlRmVU9NQ+PqQDrjADx8PcHsZD9tTIUTEy3T87McO6UebxM/qjaYjD3UsyOdnaK18YkZ92M69dox3eG6HsOE6Jv9Yp4e9Kha2VVJdKGc6zsXqk+kfAHXLcGXJ/T39aHOn6NkZO9dC3CcQCvzN+okVF2BgDB+w/LqhAsCV/BlInm1J0xDz2U4CpceFlwQZGpoDkxfGCqfhGruKRGI5pg82gdndFOAeZZ+TbjV9bNpJpByUCp7GDE4ODD19YTy8Gqpw8euUITHbg2stB1jt1t7F0tqgK9hFyLFqyPQfNnDWi4Go3xUOdwLXJ2XgvlQE3whBDD9uDcGO7N4HlBzao9zAHS4gUz7jnXFzoRfJoNDx6beWw5G/zVaD01mXeDv1vFcv4hE55r05P7OIrLysHaAw8JeZEmAvOsCOUmve405ZLDrWlOWQRgrpU3GmNt4PgTDSjaKIzH4f2BYLnfDVY70DPftevJfrhqYZi8AU2O9OP7M3q9pICKNLazqLqJEfi3VJzWKJDuBYY/NUAiIE+hd48LAqu3pfCXvvFWxmuFvyKRd5xhRC/svSJQnwkZDmVqfvIISzDasIDgZU/64uYnjGUZSRkQNfi7QXTKUJF3Y5e3kmKR9m0Zwhf06YIS02/WDgyMUGAvE7IkJxLuvxw5RcYaxxhWNjfalksG1o7bY2bIPCwOV9v51OrFR5nV+VE89JMQ/IWsKVTKYzWhsElS3yFWOFsw5A7CRBYkuDu8T/Hrhm/gQFt3h6ATv9euap/gqCwxNXfK/n0Yo/5bx3tyfmyWXnfvNmF5wJRj7mwlwVfb+H5+4PtyZ+7gNIa9FB5ahqEEZAZdGlE5MeFUaZC1hEdPU/qVYx9keZ7Z9zAXvNWJ/zPsfgCI+pi/upOayIzEvbVP2ImY0z9klpwEUXepCcVQqWkdCqSB0/FQWG2Crp8DW5/ULmWIcOQ++HEidjCPcWKVo5LHmoL0FVex8MDOnTbjYBEpIwWwLsLLEHfMuhcVhoOmCHf4QkA1kL3Q3mRJFWfj3UdxEYSpCkDMJcc3ZBhkvoqEwJEZag0kyH6bnjyn02UrulUcZho1RypylBRuSReQfN2EoqgulwADFRH2epBtdefynszY9Obf07jHgciyF+0cH2fV5HOtBma3tAuWXcQL38+6MzlMqUGNUCiGeAdJwH8TiCbRuWN3DzNC0gbehlv+1TtAiFjVze9quiO+88r54mMziysIsqFt4qTCvj44HTt3qW2mCpwSqw1OdoBHploFfqVknqe2LWlg0UMDue9ktYJX03Kozq8cYrc9nnZ4dACRK4+CkoJKAg0KIpt2Hu7+cVbh+r3KazgkbuWO/026qdPh5DkYSVNpfn21gNAkl2VPRu7l/AoYcj9Y+sNfXeiBQy7+K3jpzT8vLpWGfHMXjhz9YROLhJgU09GfgYPsbh0x5Hl9Bn+RKp4nBJdEOcOT9LpZk2vbVRlM0hvGs6gN7Ntp9GlJLQQn+QNnKcxc1QFV9As2WkJ2QEP4o+w+OLtxy+Ho/SvCmyFQnDI3P4+XaS85FKr+D+phMC0Zp51114YchnAw7nUsHi2ol6QDx2XgzS0iZXBWU3kat53c2MLJJroKH9pF/mv/UgoKF3obTX05OGy7jD8OhgwEuI/mP1QFJ/25KBkXrgIRZ5lyIFGHhvOYQNiXNo59ZbqfBU9JGarYhnI4YWJwEhEjUFeaIYyCDA4BsucxtcLaVmrHZsYRvxrQWPJTWFvGoJI1MjiLaq1ob+LadPAcjKzSndulNdKv0hXYOtGZkpVplp+4UI0pmg15LWXf0BGhYkmF6Or60j8FemYRxW6NpxhptNtRJd2gS5EV1jxm8kseQfBMnQnTFwKHFboQIR89MAukYK76Fe3bv+OocSIj2uhqnaHRIC9tv9kuYcBcmbTcxiw40WVLu1USa627SQUt7NMcLsMMiKuJpSdQyt6UDX+LrH9fZJQzzePE0JOzDkgAQJQIOz6458SNVm/lowuRWrN/WnBrYQklkx5IGFaDjwKOq4oEqwzwISIcf+Dgnep4cR5UBEm9HJGDZR60SvXXkpkj6keZj7Qkn3MDUQFrOvOTxpV7iwaB9ncKvu8vAAHJSv/VZkjzMllfS1BEyO10igYkYhomjZsI2X/azEMOkMg/e6SMqnD5ZjYcQwpbAHbNVdPdAyuTMvf0UPHDnLmlh30gJHUXXGuoKWHBBPI7OUH+uAnk5ii+ulmK2mTb2a0stfJs2WdWv6P0v/YbJxZ5I6Rj/hzEx1kOmGymQKpCyV183OlIjBtYhG483vjQjYdG7wrnqWeNSq7JcUb5FlbEdddHAdRC2Fa+kxWpte6M04FTd7QoqC+67de/kDtnETpZmumcuJ6tTfG0+z2LC3zLoRbfxdYj4ngpDil1dAbJr+62HkpCx68CeM2X+g4n8COMLvpKGMOAmysOIILYZYU+lNHle+6Qngb2b0c2AushZ51tXUvuLVnIFW7qMlfRaNekw5Jx1Fj6ry5hVsohMV7BsJWBVMbm8/Ep/WVXOPjXOiR97a6U6oDYDTCyKjoJllJWmgMmeEa0ixLnA/HkEqXbqrvbsUQaEP0Z5zpIzte92Hdl1AGK3o78IV+1lSkg1D+6Jj0j0oNVPiBeCRBuYPU12zWVEvsFzrAaQrQzbtnUJKrFtJrMEyvrZbsohhLYKeFJUuM3GU/IqDJl8jPZsMdpXO68jA7Qdm7l6+lr1PpuqUTUGbAC8n8vPVrwiiWqUe9aeMHiBtCjJmPlIBHPpbsn2LnDTvli3Ykc3jUCnvasXa8ZiSAXsPZoIguBi1Py73eJtZMgml3/ZGKu2pXIUUCs7mEnNTjPJ6PjhJ8+DegRIPCyI8VM1dReOEDSOm/frPQ/v2vN2+jjonT6ZvQcWFONY8bKQr6roC6bho5XaRFRGR21zPFRJNiNIrp4c1Ej44IcczazGoLrQjRxJ743CLeZdyCdOx7Q/ONra6WwQILyAITWa55rD7DXGIF90RDin1+ssydeURmDjk+iSe9lHmcHA6WCEZTJGV2zQon5EgWx/UjOpeJaorSg6M4JEZXjVGK76tH8Hgu8Lu2hzznbhjawdWXG+Jku8UrzfP2lhijM2ihCfHxF9HUZwjAyaKg6jniyg0KK1VL2gn84gSmUiMD+4VehHvaZo2/T8FhHSv+l2lvtMziybUUUn+UWDMIcpZMZq2GaOHDSwrwLWRQoiWTqY0PkY2VAtE6mz/CpEtaiTh04Mh6KI9bro/NJLsOu0wVlUnP6RpiG7SjRDefs2zY3gq+VnHtoKuF6tkOglnOucQiGzNnyzggMWKhQE7t15sRmTBnGyFVZkkoGyxBJm50Tw8IBV/l3o7s1uilmEwYF2orqCz3db895t6AH99s1UkCJZHkCsv1uq837iIj2A630SdKcffsxw==
Variant 1
DifficultyLevel
612
Question
Ellie creates a rectangular prism by stacking 8 identical triangular prisms together.
What is the volume of one triangular prism, in cubic centimetres?
Worked Solution
|
|
Total volume |
= 24 × 20 × 30 |
|
= 14 400 cm3 |
|
|
∴ Volume of 1 prism |
= 814 400 |
|
= 1800 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Ellie creates a rectangular prism by stacking 8 identical triangular prisms together.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/04/NAPX-LA-CA13-o1.svg 180 indent3 vpad
What is the volume of one triangular prism, in cubic centimetres? |
workedSolution |
| | |
| --------------------- | -------------- |
| Total volume | \= 24 × 20 × 30 |
| | \= 14 400 cm$^3$ |
| | |
| --------------------- | -------------- |
| $\therefore$ Volume of 1 prism | \= $\dfrac{14\ 400}{8}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 1800 | |
U2FsdGVkX1/rvbgSPhQpYbenqrBOs/pUmbRCiuBFLWrsx20KNCmemcSuTHewe5sjTjauE823mJcLCHSBshIcLKLYYs80b3lYtsPY7sumz41Rl1SkbjWp++KbyzTS08UJbPWvmO+5DdhjZ4W+YrOuSR9jvpFhBiDA/BANCNoZk78iPGzkDIpGAX9R1gnq4+ME5ED2DTRUKBpExszCLh43ojXDJwsdVzm9plvO37ELyxvFkHM0KmKAAlkRjvtboPwrIkN2pZD3m5lVmRwc2RBxTsX48us7s6Wuq2GspYx7/c/IIldLSC0cDEP6leCS9RZNXNPx6aEdxYoglo3oD/9c/SJliBE6UVAZv1C6WTcRZ8L3ZMlaMZcUa7zl6AwmcAQRFSSA+Bj9i7yDPQD5pRxnNJyvPk8PB0eca+19M9Y52jjtQfQRkvhfTalZHxtGOg33l8Xsn0Gb4OwoahCZ+2+9qcKUsa198yUgl7SBdRm9AUGcVN44QlzDUvRzthid+RnuRrImB6RFxvGngMtbEZpBokv6pdWfPk91o0/+8Ky0BKs4d87OvmBKgcqo4YWg5SP+tMFBWZxqeqRJ9bpczo1JaEEYZ0E1L2lb/A+c8fty57MCbVVH88S6iLuJfBxdecDgq855A9QAKSwLoDEpkRieIV/130UZ6ApjDNhU/s3eTBpWg1fiOc1Sya5B9aO2j9nLhq+pbahdW9XAeaV6hN5T4DH4qkzrRVztKOG17GoCuHZr3F7pqse6nZPV7AUfR2YYMii4YmWX44IL2GwEkqpQFXp/deW0Jlf1SPQyr2c0ptMAsmD1lEPMM9x7OkgWI6W1nJzBTd82Wf2aBc27nByeQI7LKzeM5/U4/tPOcWhleCwePkbSQiggopYA6dh1hZI2T8jhSAWIwQ7xuxs5GgyX0++/LWseuKvqIwOdLTjEFTtg8qWrHfgVQm1utHlrJ7nwiQ3Tcjrpn9+IbZWL0R8gw31lZBmmpa5EgJfgW2Rbk+pdo6uUNplDBux1CA4wmijGkD4t6EkioYhR57Assl7qFIl4YPfjLK19wiLWaxy2jhZGEPbV3Nw2kSKTFyVAoTFyxS9JS3lzPWkeJ+Tr9x32GsScFbtjdIuFdW1ByyDNGuZ9ZxY87XM9gUSSYprK6vlIR1GpKAiOtFyoKNk/S7Dx2gL7rWK+uic9qRzAk3wEp+jdch3pBE9CPsiQEs9V8kObS4tAL7o9WKFW9PJAi1swPPENGqZ9EmbLg3w8z06NmRpqmcC1JsEWc6HbMHCfH3cxWWGvpkUYFPDc5tukzyDXs7+wnDOYLMAWRV2i6/D6DeOvcMnmvfdjchOg8BHNbU4P2+Us45MRGnGrVWeXURNp4jIWHrO/fH6lbO1/5BLDa82OC+CgvBxuyUF9cz+ROWqfkZ3oucOCR/VPptskpHxVtajGBwq+rJhb6+lm6WYuWFCaGObD0+XNtGNsqnRgkjSGbmUfEYipMdcKQVZWompp0sJJ4cKQrwmec0ZaaSiHR6wCQNTDItcfYzxaiF77tNv73BTOyp4wcEMw6oLtKxE0UD8UZrQzdOIkd1edQ4UEp2H37P6YfziMJ8elyzuFasIJacUaZC8LS31zo78fA/TQrkJxxoVUL65iC3GrLWuSC8pirl0JFTIr2YTdDFIHT38LAbL4IrlR17J/GlpQhtS+32O0krWEdhxFA+UWR1vyTJZ6YWXtzJ3hFLOP/CzHtlPzvvKE1ok+vZreoKz3kARwHWXvvfPbpDyaQTjdT9qid+HDkm+tU0QTjR+PRwGAVkh/eI7DH7uAGe/sCPOnUcEBAg/9WkXDKFxR3TBTCFLuUApY9eHoi9GaRmFsEzRtpzhKU8TE48cTUAUshvICzTlG/Ztf2J/Na6gd6vi66KBt9/7ycD/2ORbFHfs7rJcnZmLjM4BICufWCLV/vO9OUYlRoFreo0ahx5uA+U2wp5yEEWIEn6auUPce/BW1tSFU4f+kCB//0e6Z4puVzKkSVheCsdPrTtn3KpDnFNZRCkzTKm6o5BJ8qksDt3dprl0RiRhReI/fbuU/5jtxen/9e2XGo9AKqK3H7aH/mkRkcyozqigZbX5/Xn58djp+DG4OV/ONlRWBo+WDHBaDUwx/469R1eV0Z3cDkYvjmwwvMyEF7Gqyczg2+QSbceqMtPkeb6nu0OoHJoIXNFo4EQ6U9GMeb9g6ljQo9PLsTrkn1uEWjBJBIFS+E+Fi2hTWIZ+ifqBYmw3Xwzyr3Sbvs8YoHjg76FUrWEw+UZGEbOPOswtY4QHzYxmmuhmLQR64yJuuus/viAdL5lHKxMzyZ1av3jpXsI9ViXInmzxQ1OQmw6MYdtN9oeD3PShKwBzfhpcsp2YdFKU+0ABysAdoe/Bcfl0I/UsrcM6YA1/3VnslPLyZL1SUPAZasFBVvDjpVoqiEpQRZS/g53OoZy/+vtjCQRWKwFBUHo01v5Nn/oZXBMT3wdPmCFIIq6kFcoUhZy7EeTyUAWy2F0sKL2g3EH9UldwB9ULRIujLhKm0LEZLmWuTFT9WwUbut3V/6vjMzNOqNKzHj0WJ0H2lMUnpEkxoLs1as3BDA4rvODY712DROmxSX6FMFJSYJetnD6f0pSwhhhPBYYaCDJUTWz9B/1UIh/v0T1uhPkuoUScCSNxP4/9ULbKCuohHCv21qBSQWvDtqFg3BeFmCUvLKNE3Iy+9gwnStiHdce0IkIwJ8Yui+mt9nmfrMxPAQ/lvx2sUNnX7NYYm0DxqDKBaeGFlt9fItwoRozVPoeZMVZGJvw9WGZnQtCFCnzMZA3akUnrKuy7NT1x28/+65V86/UQ8ewO0K123fhybU67a/IQXQD8/tgEbolaSjCvXTweuJxsGSh21Coem/HGQY0ztMzWr1J0lmXq5TINag0VHYfxXP86gUD7+mkd0Amwv2dFKsov78D8OePxNCWOSVEyrUqOTQFuVD02ftry8uZ0iDp2v5paQKCSegrP81VRO7DON/0QCxfT8zCfD3EjBb+Jxgr0eSTD3ExFHgo/ep/EgD2oZJqYrP2xbLFSQGHl8DfYGubHxRrGF/kk3hUA7qCDFItBMYkOLv20mP0knpDsn+lAl6uZ2EDo70qIQwpz71SxIfbk1d2kU420lSayZvI33xanyMjYes0g8SzZDuY+nRDUUPpKD70dgDMaQe6Xadu/xfK4Cttm4+XnrKaRaxU3QYLOaL6HO4D48s/vXus7YF/DB+CyyN+2DZ8q4zD4un/LjI/qWdV62Mhm/CesgVuQq5QJuyvoooYwCsHcK708LSIqox96tpMTK0JHth7n0mkmpY2EfzOQ2NV60kSyGewphdg/7mKGy11ziut8VzgbkOBIDzy3F7qVhOnyfh+80Inbf5GztFTZqRsdMT8QQctuohWGpYq2gnQpirQUSSDU1Y6bazN+1Z5ZCEUMysKt6iV3L5Rey3zbSTQ2gPGmwibRjpaxlnrb1vKZHekQmnch8kLSaPpChTp8HQz/0JGL/PYZZTeN4OLFwqJCDqKsl8PknkrT/5P2ulPj0+56pHcXLvaatpY724wACvpPvFQqShDGxNHkUFLCk6kgGyLxhQkotQlPH2h73Xu+XX+lofPK536Vpq1fSC6mI9LZ4eScqTd9FMDlItm7ZuwFMmt7Eeh2vkgGYjIDWMax/lhG8B6mFim2znr4qKXwgCeffHDNEcT7wYX6vdVyLW4mFFR2dlYAbn8pcV1FGeaurVS2OL8vT6jRMLxQaaRukyWQoXYADj4Wg3vcRi7sFH/vhKyeJltxwC87byS6+smnuXcni2swOR6cJ3KmH3/ks+HyYdzEAsfpNbjVkK7+t2+s6cf+CEe4UPTBrIebgCoGkY0bUtdyKOKV77A3g9XEm7/Eh97tnlnsu6F+0j+cGBI134T8RSq2RoYVDL62AuxEXmHPNGTEt4QpXZO78qXA58qjmQYlpnZqZXYQ0FfFsI38uTD6aFTp5u7Pd79i9X7eRm7JUoSaklVT9Lh8ONiRL5mIOdT8H85Ce5eRDdKFrinul8lg7kNglygwnyUSiLT7884gQx77nZS1Mtm+hHK4g9QdDEM4pQX9bkOAzxu8WlgbilMZQLHvgOVZn/b9UaNOTB9PV+TlQaECu7q6WLM6+J/L69Ycyc7MNcfpt82WZAvpGsfZ5fSEBRqpLsI4oXdaZN2djPAneslQcklJjgbmRi7ll4Ri25+xjg91bUPZ07iAny/MAYhjvF6a6myVgJdTYUjN0FFvnn+pwpHin0ObZ0flA4al/vDlzOQynoWweCezdnoo5JJDjmKxSgsjOgYNLgpRvyXpeCjrdSv6/A0ofau9d1aSSI+Etev3VPc1k52qcA+UFKpR3b/vD4dCFfc/WHC/SY0HaxXdyXWW4AyxTck5yf+iR/3IKMp/hAHpaG262eXciCcDOpC33nEM2f2qSGcGnZSrSgqS2LWlVu949Y/WeW/cP2J6ocB4o/EzhAtY268mBF1SC3XbAce05A2jGTgwlyyHacV7soxjKajz+4bENFY8hIkGlcCyshutfWOTChlNmslLAdm/jF3MWQtFh6mJ/5ufEZmu0z1w2Zqe1GGN3v2QDjSE1SyEsVbvZE94NVXinENtSnD/I8WvesfELXYlKJ+LZ14EjvVZF49skx9+qyjESKh5adF3eBNkA173yUJZfe/Xfr/QJnCnDPWiAa1Yi4/bw+FzWYaOU+vtRLlg192HLSilTut83+lUs65JMv874PFB9c5T2k5pbaY5QwtlO34V8+5Tfu8tuI8QxHFam35FOcoUtRo8Sjir7H18gB9VyQ/oQtjoob3YRbnTaNtr41w+wNTPDrVOiaOM0cjuTP3gyjvQmilwVmDo/MOqYzrFhJ0s8JeIK1roLQM2OUc8bLf7RnRmBhHvgMI6s3rYxnBN3Ep5zxDdLR+pcUktqZ7ukUjFJyG7AxZn4wmkl9fP2zSUjondUixthW0IB+KLXqHIecgD7qBcTShFPRtWt3MLT6tBamXK3PjR0AbdDWdfNeseejzBRhpuv65YHtYY+P6QQzAwk/ZH4QV5GyOrsw6ettt18RpukdrzG60wdDpf6anMoam9DyP75wJBCfYWyEaHM6dlwK0YqxQuP2bY5DbcIiLon2MQUebQbKFiNUlqm7ut3d1B3UYTkZzIEjY22AthMS3hT/vmvoI2BswqVWYR08b0bpQ7eZDcvvugcDytUQLk/CI1mD4T+BMJOQQNMm2VhbrTYJ4Qd+pPi/Q8Fta29OdfXPlfmHqpBjvuf7GKU5HO2i8zCMsLCMjuSaPCmNgTyq8rgy42wJ7jCXCY6DCHm/Zd37QFZEjmAnBOK3pzKHYAumqsYqVB/xIq8AkCwhUNVTM6qHk977Oil3hVWL32dJ9gN//kFv7SF7fxOErmy9ZEXT4pRnmZU8Rd+Pxap9AuiYeKPCY9Dkv5vFBazegCU27FUSrkc7Hx2HEg7d6lwzBDZPG34EYcK7EPM9ksEHrBW3xXCvEl8uBjOYDUcQ8PVnnNtgj3r76VQMzCUR/W6sbMaY3lqGDH05tReRxeAXiTl2OlbwDdrmlOEFLLjcOsj71B698tqT9eLXqoRTPcUSfDVqMkSguWjjsSzPgm8dseOb+5RMIoVr9qyA695ATtfQR+FgnbnwtS3+cxn8MxjBBZyZkGDCp6hPLE9KmIEsoDV1GyjGWq0aCkj9YXyCnlv+uZ27GbhzuKywt6s1UI9R5b7WJWv8m6XCu4UEpAOQAhtKKQ8bSMhV9xi4xKB9OWmaXS/HtIgvz7CjxQfMmm07VPWyraU2xpApQptHQ1O2dxlneJro45f7W5tWZlzGCIYzB2ymBM8K3iBXJR4zmWe0ieZwcCc7ZwfE0/OoweRDe3qVEGL/y6LLM2g5Qap+Gz9hhkMMHJbnFTaJbKkp6Ux8bkAEIe3wekGfh2xW8wpnxpoW64mGMJNPQUmF59lQromICeN1LJas8476l0vltzj3a+GxvGWKV3T5BJFyguiEqbJgoAz6MjSpbGsWSUe3033rD9yoTUWNY7hF+vHwzJaSlowFeCWTnNzgKQ0aU3UW7ZXrpMHvbKgynokdM4/B253W0cJ86u6ODbq1gS8KgvtHeamYRAgMc0JwDurmNPEfot3aOXNHug8dvi/nDX9H0Sl9ShfIFKab0EaVnl+1sBTpkC/nfoMNmGhsbNoxlKsWQaeKS001gzxTzgK9DAjO8X9IK5xcmx3zyFt1NQ5kPuloP1oznkgFrZOPkWd6Z+p//QixFywWqXK90FbGzUfMweoZGfnCv2UOaTadrhL/GaJ5vbCE3pFnxVgnbrmToeigPe7wWamuuP32/u8dBUJ2J1WgWOd/nGZ61P21T+LIWoE2w8yyEvJDItyucnA0wFMKMsW9zrYWfM5g4+z4Y5aVXwfYJ3KqcCbgRd6B+3svbNHs22AHxrNp8gQyal+7fq1aoVBKAdnPuY1uH5klwBPVTPW52B69ULRJzKmoCUQzotzitOkiihpdcJwwmPwyQ+9UYhAJquZU5F81vSCLSxv/lddGgaqOAVfuB+cQUOsI8lg00lQhNM4lEI0kHokq0lpZMfuFM4bpcAQxvOVuXPZVT69JwzqDofQekDF28bEkPn4oUsiwr0iq4CkCCy6yn3eD7bQFKLbSXxw3dRz3ys6yVk+UY0xXi3A61Eb3gIbpu52WW93fzaIplyFysJVo9VXVS7qyGXCV4GaGcRwu19p6jY8PrUK685Xzy9bPUXoYqWI8Zd2w0dip5+Q6LSjmYcKKRA5krLGloEe8o5RRh/1
Variant 2
DifficultyLevel
611
Question
Groot creates a rectangular prism by stacking 12 identical triangular prisms together.
What is the volume of one triangular prism, in cubic centimetres?
Worked Solution
|
|
Total volume |
= 9 × 4 × 5 |
|
= 180 |
|
|
∴ Volume of 1 prism |
= 12180 |
|
= 15 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Groot creates a rectangular prism by stacking 12 identical triangular prisms together.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-L4-CA13-o2.svg 320 indent vpad
What is the volume of one triangular prism, in cubic centimetres? |
workedSolution |
| | |
| --------:| -------------- |
| Total volume | \= 9 × 4 × 5 |
| | \= 180 |
| | |
| ---------------------: | -------------- |
| $\therefore$ Volume of 1 prism | \= $\dfrac{180}{12}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 15 | |
U2FsdGVkX182eL7mNzndcllqLtaw2gaEAFbSr1geJmbWA29bpIU9ZEFwFcinj2Q06RwsTHPCf8cbJekaa390bJfQwAV7UUBaOJz/bjuevAAnh4snvoOLPFSKNERmkyCNneDQ2nzziDZl+dG8x0vJiVPqcsDiHf5TgmBXkt8DrSn8eqEMC6uulzxd58HmZLK/bGLX/txrE4gXPXw5tEepJXpCZ7MEWMp6YlnC3C4Ofx4lvykXV2A4130OP3BIHGBkNZMAsags7fAIY7CbsArDbdd/itsEM9n0d9l2a6764AJQx/gE1mzOmlgKYLMpTCFJ62P8P8Q6s6HrbGYZLNACeihpusAzKDorYNdz1mnBbUkua8Ma3C0XhDyLoFTEmYrNDhhMN1h0mPIpR5LHK4cSE0kSTWYVV+v7ErYJ4uT6aTalaTpewcmaxgMup/fzTsMy76hkVLt6gxxl/N7rfwgMXprPgQZrv0V9dTREDE4JD8wGIZh72OiVfY8divrbvdaMHPRKCzW88O5sBdL3FNJESPmrFHxYiUV5zf8aqCAmFPhjNIQQdy4BkzzT0kTePhws0dH2y47wVFs+HWsDw4Y5emVcBF5bWjXkMzpczN81c1t2N4e7gqamIM8AJbsVvY+xMeQkGKcGaovmQ6T/hoqQUsv3WaX+EMxjgJyEJD3IYyCdQCgmAXzy6ojQRlZuhJKO3l7LvtubOamOE1PuitHaNp8Q4NadtPrUBewyzqjnZCnXUJKXDvyR1RejDGVY6tATe+UmQLPtfcbasCR98rpirAxgclqXQg03yNI/ru8Lnv0O+5pRz5XY3ijl7/dFk8+H+Sk6hgWLmfHqV5Nn8L36Z+xC+B1Rx1RQERa61i5uLBXubep8HxsugtQBi7I2zX+jbcTVf1C2mJlnr7SAok75GRVI7r4Q/lMjfM4lbw8gN5rdqhQQqb+f3PNLCVNajU9WhYyGKlA853TpilTyOunqfn6UcM7h0bnl2MzHFyWmyoFuKCHwtJMAJjlC++AZgMC/WiWnUbsw8TR/WSB6JRd4p70Abp1s4frLWQYMmbhdZNDIjEyjQSZOiQsiwOnlB5my65jpayBLeOAOMv3n5sk18Ql9trPUaROSUp5AOb7SK02tezQx0j+Y2ubMXy+pM8qh6L73hkRajI1Su7IXv323Jrq6nWn0ErLbrZid2Y423EsrMSk9aIe3BErapf0os5zSSEC6l9RFFkgdE1r9tSs08Zot1I20FQpkOCoSPwOYgG5uwk8ZVio2Y2fvCY7by13dvtWIEvg8zgRUC7Ph9D98dK2A/d0QR3sxVTPBK5CXzwbKGqD+OcbCnSBFXM35jGuCrQF9jTJXTLP+uWBR4+J6VG/SU2E4bvM8II473uQI2041+BN4AezPFfLX3/pFWcs1q2yzTIwdOa5xJ6RH0PsJkHdEhlfayyvRTUSuVzpkNQL7PLdZQrzLNQPi98yOjvTi0r912M/TNVfalhgWZ/SVcGD5uakFlN+Nk3GnzznS9hOU6WYiC9fSDgRcxyoGJERmd8vbr/+XP5GpFOYzLg0PF6fSjxKU4lfY7BDqN/9sMUXlw78HhCe4S/L1ACDjbKc5AJE0REgZX6deKVOHYMq3SQwQnjVizfQ6mVuoP7/KufGQcaKBg5m6w+8uFBhLB8o40M3wo9Okz0tTQe9nh/gQXHKuetxohMkZrjcXR27r9yiga7VI5EMLbHl75e4Om/Iy+GO4NqxEr1oW2ulvP+cKFRUgt+51bSqiA5yJQTGnWQ1Tinozz64n7rs07HZO13+AcKcgrtl6MobRxNp9cdvbsekNNMKMNT8ZlRMnzgK+RqAx1djdBdLVcwuBkdcf7FI7mrTQmmXf2OIAAoNmzJLyW19udq3Svns/TX+uyK+TQSedj37clOo6nRhMMLsKyxp8mwrjpZEh1HQA7PoSJggHgo/Lu9Xg6e+WRQv8YAomPLoSzhXj/PYc03zLE7h+6Ar+XjePG6F3dAgohrNoNmdmFh8l6K9zZK4bki5cI/UQ/jfSvcaoVAD7z9NDi7v4L9NF0WedDPY1eSBHUjmg6RBxSK2VWmf7Nj3shlKJFSqOgaKmQIlASuQe7XZKK0xd4m/hY9CmZvamobX/viIqU69EHw7K58j1A8r0I9KSmL4qPLEkbcV6mmmnzUrcMg1dbmNnYVAmp2l0xKHZGVkw2+EjOWFI6fHTHTS5o573Ehh+EHjniv0kzXuFOjwCpZv5qj6Cgyeuf02wCZVdeMnqCgFmM9IZ2d2++7d3Uw4plvKKnUOWYGJVabmpuWTAKigiTheSXW9M646RCvAoEVEWhgyEMfaP4IdPHrQG52rHZ76LjPyOWVgFOUqnttvB1IulobqisZPhFxJhmmhIpmzpstq/DUkZzlvrUAd/lfoMHvo+mnd/bVWmMyXbvYB1yBlFWLIwQ4jGOsrlq6y5Wj8azKNupBd99yfWMPQoEuep9+YLKYYGlFlX0FYjPZ8iZL/dO1pbcdEPIEtnFwFqocO0q+SYwM/XGdZXg+iIFw8j+ix7N14pe1R3gqxnguBmsM+Ic/coHrhsYBfjBldbfE+TSTb4BqJA01Oa2X4nt8KKu8B0oIlyHIctEnIi+YeYZhFpvTAqalWXkFt2PocFwazdDPJwiDSKddHurFiM9wi2Y0cO2zBgIEDNTzlFec7JuaZ1GCPGBJp900a2h0tKcif8zLqWuQPiWx3hSAefxy05ZQ80qkeOlQhlpWIJ22uhgH5dzPysx8lmZsWcSM46fkdU4/DooXBYg1BDol/crpqNMb4PwmPda4VAurlwDPj/ggtnnlc3FG5+0B27E7co2Q+yuEXqKjwxqI3Xhdqx+7IFz9XlXvoS7icoa5KDmhL+WbhUk8r3XsMoaDoJOIF9Tw7M8LW/5DojgTepa1yGWc0B7iwW95mslM4iArgUSZ1g9JHD9SCS5xzEB0kmIO++TpwD+XWKXkaFZMiY9HltlWZoh+vUyuILKcji7dlW4ePy9iIINNIi9YL7QhB98736HZkBTYMDvb0G5iSZAHIKWDpPe/a/XL9bLn8d6ah80qqFAfOOO4i8RZTAOb5g6lM3tqPlwcftjPo8vPWgtV+ueN1S+pBnFA/8+FORYQyDqOFw627fZVGIBONDGLlMfREFsDX3jQhOxQINz1Vxl0L1jRcxU8FQIRWjC1yQ13T9zDF/Xe1DEFBExANvTgnHJruoFrxCxFeaTdL2ZC60CMw04RcExHdOwkM+VIVniIVUnOoP28VwiSjTxjuuhBSB1C+MU/U9TcOVYfmK1ErUj3mpjP02z65X2mcZTKW/tPUbldK19nLr5YincX+ZavqIK/ZgkbgWJWL5KPpx49eV3mF17hIBmwIbfFM/E0eRf14d7459JfTsw2X/yAYBw1vvNtW2JqPHusO88XCqEmUSEBavMuoYEOyc+1E9B7UT7zIQCPM/UXqOKE4gKe0cjSXimMuPpZCwpxPdUAKT6xRPJ7rT42U3fMJBtTgiywNtR6O8HX7fUmrmOoUTDfmo0IDG+oDZNX69iHh2UBHN0UsMTJtxobh69WEj7Blq9RVEeQul9sMNsL6pa23+hA19yoQ1HFTAiszjEr7FEbVAl4e59d+GxJZyYKvZfyercuh9oXiE911tdTSqWJvKd4lUE3KnkgQflriF4yQCkPTMDWph9i1AxinrMUBCHNi1T8YSscy4diGX6q+Kvqo+PBv/NLGjdCWs7DzBzeiM2fgcvMM+rfNx++++NlQBldsNtVTIKkMzBvsLSmLZsKbE1GJ9hYEqtheTJt9/Mfe4RIk0u6IHFPQe++XYwja2M9Q8OBIIfsXfch2MFzySHPwe05siahTVQ6tCGvYNpgNFFdzuZo5y2KKdKV8UcHc0hZbsHTWvmXV27TqchamGTxGOnO9DAD3uMvWafpk1FxCVq10DIP82nUHqotUvo5bZ1j3lcKXYj17HplqiAmlKqpKDUmN2qNnBGriobOlkoN+N0Lcvx6idciuQ454DsQU6+3hX30ykvnyphtGZzsCFPNve0LHDoV3HTDG2OTCxgCo5cUJ9cFGtG2FzN/pMBtld6oHjF1cozPLsTw6wK7JuHD2LMWXSbKWV1NHV+wFPaEKCXShHBC6DFLoCGp9kfchxbwWdDnxgjZvQCaagni/9OzW2j9XBnsrr8r8Lzg7/e2ZXNrWWSmfOgYhXn/UG4AHo9z+u9HEsxZgbQxMLrmRIdCcu7x7PXUw9yYMqXbn4L5lepw0J1rd//IH99hFaDTAyaR7akPg6lUlug7YPnx8yTqknRPmBARfTe8oyP3xGYlvNrXBn5RjKif/hmIW8NS8vNrK05pF/KA8tcgLrven1E7SmjJj7fpcWowCEXo0rCPfSCuPs37xGoqk9AMMn0PJ9ZpD27cUyZIQRfsFPhpH8wyMyl8g5WGQJcd6a6lfYBBFK/vyX4MoGLOKOe4GarJQWjNsRWXQwm4JeuZWNSIxFX2+0ri1GkDfCzIqHoK3ilm5FBXztyl6laXLnP4cZrnEgH6vPfqRF3+tMxXWri11EvpdYqAfYdEGaKrnA5p2nYqxniooBFa3MyzlSHPEJmi/plIlS64mtw7F9DInUVyzkO5u91Uh1/vy6QU8D7aUxKimrBJiY2Iq1Hljj0+pnU/y49zz9mYVjoMK8Ripl9iTM3kh7pjcqdp1sFMB4nXh4PRQHnjPokxPHGpj1XoXEj5LZvFEVK7xI8+zuCT25h/xbmFmscj2tA/zFjJ5rlLe6R1jYmic2n5cJuVVOIwkuw3oQLn0ltBPHDUBzk2kbRb15TG1iERYkTSKqsX8lN+RwVFOSRRZI9WgU1DHv2Z5cCbapQ6ITMtTECNX1v+CAcK7ceeHX+l2+ccv2W3ERc5YaGIG8Kag++rXy9CKI0Z4i5oCe3FrllTETfOyaZ+pXM1Ua3zkMH5CqiyFYFCspGBNlGatnfNWyMtLel0FNXxzNicGksJR1q1CKPMJ2N0UdVoG3xH2HaAe4OLx1Ax8cJaL9HB9toXS70jZFCosnkzQcZCSaI9vTNNifeWIl/F4F+NB8vHc2goHptXFQqu1ah53lut7PSkbzBPtPP1mRrS5cVEMC4yZUVbvxVLZvDaYao4CXBBX8V/NkiB47A2RgkAro7Z7CqVutjHVyQV1Aa8cXVHwCILsQ9YLfwZsy6WP8uSHnmKkgduEbbSZGcWGLKGUx6ro2fKRs/XF19On0gKethCokr8YzY4T0R7IkADUEdQK7SKJS4hdIiJ8MLnwLTcl5bDZ2VAPRsArWfrqRRbvhB3m+CCMWqvSp/3GwMU0rFwPfZRiXT9SUcYjhNuRGYUokIOIduDH2PKxlddKLajeogN5UF6s27HorEDlnLc9T++HZTJtnzOn+MeDCMOAMjdpXcFCctKg72pv6zXiadGp19H1NBHckUGdQcncepMMHPvg54ohkaCPktdV+tLA7hZWrd3Akdew2zP7RSMdWiPuuEkW+CGxoSXh4AtyCHn1WYgRAHzlxkUbECQlMztr+U3gGyzqsN3H0wcTtSHvItjTp2KhhvYk2D8a4ige9dN6nyUESZYQu0PqEM3kkA+VsrCC/gECGSxDyRAtjRaOixyRxGqRanP/r46fXBkNlHC9hQKakUxLV2drlUQKlpsFA+a1uK2g2jhJmOmDFaiLJj4nB1ms5/J33l7JHnlFY2f0YidOG07Q8os9Dz5ht/ro0mt2lbkepMMpkgs+QwVThobUKsAWz9yYIBvML+x+Ou8aAvDra7J6iQk/mtDyF8qCT6sRZ2Nb0X5KdZO+HaJldUELLzZvDvXMiTA9HtPun7Lx9HX7V+4bJETSCXLk+5xFIZSPd9O251Js49cdFVhYAqYD14cBocqogfGGlsn3dm1xBpwKvxdoH5cYNhoB1cGnpE/csQz7IEuH2VfF6rPJ5/jGJsiNufZaZbkdbDih98B9r3V1gWUKVYYyFsaEw5SmEj1sQ2HbUxNBkYn4WgrGx5liiXR1fVQlhmddA3AtZ6R0ICAamTefKuKTc3VwAyt+Fll43R0zxBY62Ns1bWdlwlpiT8y7/hC4QN2Turjr/emA32dVDZjbY+XgGEp0T3IyxFwgj9fr14RQX/KFOY85BM4pGr7YIKfvsKmI9JWTFtt/LQJz12cpgi1WP21bDMkp9zfYaQ2zSgFov7kQQiyKXmv9nU7So+7SnHBWfGiGsrPtzy+JkIUD4ev3C2bSvUh0tfQENQm0GOHiomQA6HV5ddGijlcTmdtzoU7hhkbN795BQfStU7U53/mDZmME5LImfDknlp8vOUsf3TR+GxhGfZ0AitV7oJjXuvqNuAN/g3ms1xNvD6cq4FkCCWPbT5eKluYmrXkNBu5iV2AP4IBIZthgrVtlXHXzosBMeMJqjTtHhdiBqTzbNqcLYd+JCHXm/B4oggkvKMIsRparVd9Ya6poPXXbeY9FbIrwcD3Iwwl0L1kKTzHNCn1k6qCWcvr1YalljdljJuoFCVuoyArYUXWjoT+KtcraX582OPLgsbzzJsmJ6S4WZqoTy8Rhjc4NMoTbtNdkXOLVJQR62Q4qhTsbUny+I5vVPoQaM0DgEnMz1HBaRxQaajG3LBeHDslPM/kYvU3tANCnJWCYxIY6bMxwWkK/6JU3ahP28hZizbp7N4hcw6DIFCEQ4ZBxeEl9SQ8VkTdAe6ARYPtoNIxDSBz5Y75qGQi18K+M6J82lvkcr4WxWmX51Yu3SwsDc4nbRjx/5CEYtXbiUDh++2cSztl399ID8IyRUzkk+r+H2hOXe+9Z8ERQLy3gvsWmPvqTeiFEEnzekHf/AXCUBMx4LmUw5U4Yth4s=
Variant 3
DifficultyLevel
610
Question
Sienna creates a rectangular prism by stacking 16 identical triangular prisms together.
What is the volume of one triangular prism, in cubic centimetres?
Worked Solution
|
|
Total volume |
= 36 × 8 × 12 |
|
= 3456 |
|
|
∴ Volume of 1 prism |
= 163456 |
|
= 216 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Sienna creates a rectangular prism by stacking 16 identical triangular prisms together.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-L4-CA13-o2_v3.svg 320 indent2 vpad
What is the volume of one triangular prism, in cubic centimetres? |
workedSolution |
| | |
| --------:| -------------- |
| Total volume | \= 36 × 8 × 12 |
| | \= 3456 |
| | |
| ---------------------: | -------------- |
| $\therefore$ Volume of 1 prism | \= $\dfrac{3456}{16}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 216 | |
U2FsdGVkX1/ysU7zINYn5E43Z2kNUWGYlY3twOSmQ2rtx2P/3NQ1KYEIx0O5SPpKbxNmo9qkSoAptSH09ugA3gMSNgEGHqD/x2T6sHI42PaoQMLvfLrlATGgEzTc5pWrCaenld/c7td0Xg73BfRXQhtAaNtS+jRX+EGSNxDdPwdeP5TRG6/zNAGAsM+36OJ/3LRkIoHy3FVzmpDaIdur/knFpTquHpJo+pWDSXF9NUc763oKwb19HTwBGOq0dDQMLMZAyw8HgdOFVtJf84Dschl6xNvPwPkFZJxocUb06KxtKwuD6mRqN/NPu4XQAS+Ii6nnD3mhocgsESytOdW9gm+sO4xGkuIrhVrG5iEqJQg8GBmsoWr7C1EpsXoEgLmfA18WIGze259oeSVI1ZNLzC+stVBnf1/9TUSOnOHYgfXjQ753r9MBx66slq9kIXcf5nKtgVxxqa3t1MmXDVX3Pp4ArVSPtEZfLhHjboRhtsz2K4KSPACakbOZDHy25OXbLieFs18zTVtVafoOXFK1/oXFD4DufTE0MUa6Oq25IjoDrZN6Q7zmIp0mdNHoLDUgQ7IuvNTpaRJe7MyCWVCJPaOialRtIJQkOk4CVMJnOfmlr50Wthpg7mfA6eVnW07fPSTVdPVMllTutnH7mvEn3VX5OE9TvyEhNeYHZaaQfp9g70ulQ5xHpj9UKBS3q4JyO4Nt1qY8S/jj+jVqjXf8L3zxWo4I3NQGVZVpvvqbdjkAu3Ko24uXpAaprNSjGMjyPmw0MMQAK3y4Hy8lU34BbMDSMY8D29yv/A6m48g49wYNiFoL2Moh0nBJaj2tKhy8l/rHTPGIuhAziWc1R2jFyOD4eIAzGaqHUadBKMmy7xrGvQqaaNH+FUkWzMpEfgrt0vWlpLxXgdVYq57D8dgVhHUsJ3b234GqNYbFZBpzAaoJ75OYQfE1kEoOfJ3waxrQLxQ9weSRVqzP/nMkEh2iyTC4pDoT2hqcS3ZQRZcvsrwDYR+P3Nvpn3nVMGoy8UPY7EtFCcEiV16DXXxzkC12kyRosz9kNskTSozXbd9XojE0UZ4tYMA5HfPr75XvbrpHiTODNF136P0T3yPda+n57h56W0iDtjmf+qP01pJAHGxp5/WDqkzrma/I+n4fykornZIwi1dTNDAPYOAdnSax1Y55yFgJjkl2d2tcQ8lX08oQkEYse0BN38BfGT6O0g4EvucGVjlAm8VMVr0wCr4UknxStA4biRMYU82hmmT1/n0PA2gC+tYlbbsGmF2CuOpB03/kue5P/Mt6KOrjPuRyboxtV1AOcRPz/sYujsq8uILhxIKrU/eyhJk3QBZbhc4C5bJev/mMIPpbeKg0LkY1Q45gdOQgjD2OoKUgwgC1nEP3a6pjA82lV7yKlHKbQQLhQi3see1MT9ZdmvZQbRVZXxG5kvUa2BsVbQDuPieYAyLfBITeYbQqmdPhzCo2aJ6XuHRzhVDx9qJlUUMo5r2IGH/bVFi2DOmJ1A5vhC+wJXzhk/7u6Iwwm0BhPjoJmOmWHCeN+TMsFKnqOxoWpEK6P3wG+1fsmWabk14TNzT3M/zZAXLAY+q1jSMsBHZ1oXT8Z7fqsBI4KE6lDK5P67F9DBcBPtr2iJymTw9WbNnQYL8Cz3E0azL80ZMseK7bO0EkIPoQmbal5QlC2geGQGmwtOuuGEDiB8p5agY3mMfyMphMmlRx/J/XXdxWzTiB1lg0nkhewDMsMLJDDxfPUtuPcpeHliFmeKHjcmI71NdoVLb57QSQVz9QzGk/4Zjpfbtq6Pg//BWfuN/+6JyErCg+QmU+E2kf1MDwdsRL1vAvtGihsll3baSpAEKH5cjnYTGsp5vMX+InJl6nMWwNdLWPWF9YHLni0F1s0ckN7Y5vF19TikaM0QYF4PHScJl9hJyVzihssdBY+aQVBKMGjjVfZIIrTlyG2Oq2uPOXBDvWr0LyXenrHnQ8HST36Ur6mi9E0NfN13fdShA4Hm8AVKZ9PwElfHBjkJQrcTj7C3HfEgEWjxjBFxOFybFUXVz/yLsUNgWu3GMbxuulcPTBKfYCu23+fA80UdDG4dyPACr7ijZBr2tNnXnxk2skZUeRqt4acA/bAo3IOt5gopEnP4g4az68gcFP9hVhnsd4URuhYKTUMDHdug0umUDQL/nXBEMrpIDPR6l6u6rwr+A9RSAVVSnZugLWQ9YHqNSj1/zdwIM14ROGU5M+Onrvw01ZGbGCnkPye47kNTX2V+b++EhjNfSr9bWr0efOgj/4Q3GB27Lmay7wuKBTPZJP72c2XHzQQkJBbTDCCechBIGENLri5+3pUvoLhRbNWkqX/hHtk+1SBy0PgllaglUY95Pa1ya/wzgYMtIk/dn14EjWpCPidFlNzy+g3ugy24xXOAYY57SQfO0cLAUFD+H5A/2Z+rswvFHzGH87k/ApxNZTjgKD4gY40KQd/+IYTHLB6hliM3t9RnRiSZHSQTc55kwFCUv7LK+rcqxmsRpqJ6+NdnMLA6eY9YNwxYixAU2kAxixKReWMtfnpCi5vmHs1qx+chY0oXZqAlJL+77r2qy/cpYXLtc9OOvF2+ZWNWBcbXJ1x8qH7XFtAvw7d/llVWiZtEyNh8MZmij8bCZCGNcddtdpxmmE5r196DtM5zPXk9tvhI6Jt826zPExSXrv2RAz8YEtJK4lwsdHU50726HrQ9xiQx8AOejdPPKDXOnlHBVAGPDUFwHbD6vDi91dnrHUlhrqBxTHrST1+W+AHkr/0oD+4BpJ+/tSNdtFxDaKM1moPBMB5vcfyDvNNbUtLOVb0ESfTVn/OEhbEFojSAwtGo4C++widIid8GRdzUbp+msAtbqZmrcGpXlSPcWV2E1Tk1hf/r6sMMoLWSGcTJjjb32akwwYO5djcaalCNsfGHNu53kIQxNi+rGsYOadvIt7rvsmHRveYtlwIGOWQ1bc1RC165D2yYtilSzf02veHOrecRzfwK3bMFEtcNcjrRNEx16hyZjSynnFECs7NFT5x34X/xS2bgVxo/wCBzflfH5umdi6nwEFVAHqRbmcv2N6RXwE/leEK09fIu4hOO5Eej6/lQib5UKAktG/AHH1XVfdS7H58nzRCQbCyqL60OFftczgN0MK16p9ietJ4IXcaVw5FnKGUE9Dp6g/a6huiNSZJQvuxMporBZtEDU+qa+LFIoIqb3r4FnpruSwnfZz3HUGMnarezSXx3kOPs+TZFTkf+WD75wVDMMs1uSY3XzdDFDbzcN1nhels7F4d3civEmKdGwCcKgbFcM6x+i6U8I7rnk562t3xdRz3it95cCw5WhG4ZH4Q+lgJYLJSVZAAyLjPBcdb9dO+2M5Md5BoRUNsQF05xXnbPhz3CL6WQULFh7lCPtuLpY7h3YpPWRih8XKJAWhXBPF8Zn3wz/L1LN1dP1ieyEx5XVjKLEVUcF0XUoJ8SyB/hS212mWR+1PcD9YPEHfZhGVlO7LuYiFekifofxdctYQcLq7wCagxV722Fb/HlLNmv37eTW7wjYeWD5rQDe2ub5NCFx7ow9blyUVQWgi3Fxr4l/uBBdLaWwxglbo5jI+zETka2CkZbGc3MZxoG0VQLVVCRkAWVcjwq8WfRsv1j3EJs+NJV7Wcmgj9Z2jmXAcUMszWDwD+/5AsuuhWTMPpvGGeAAMrobCq+WuTOra+UF7+0XUSkMay9LxGGeIYoaFImix18xtNOa9t15wIjynzxBw4t9KsXlMkprE89bbuZoSdiyP9R1ONztA6FOvJFRHItUMj4Q+xPFsctz9qYUNN6CBoqVx857YAPciVK/6yck0aAzXZQjjzKE7wjKRjayGEIBJCxNzXmEPTaYJJS5hCdJ0Qqs0X00ff8HXBI2yZWVw7IH8RAo9HbpjDcR/dZmY7Omwh6Q5Bo1T94l0p2e+WdWBAG/vqR50mWiNF9jWQ3X0osIBTy1bZFNaBh6wfSVzdzHFBtPAX0SxDbqBv8zWmonJbGjCBBoRb3e5Ht2+fvABIA9vFzFFbeW+pgp002nqwmVko/ze5hykdJcVLCdWmCi1M75tqAGfraaJAs53hGxN0ma+hdaNpT1Y5mu+oVGZhqCTWt4evAu1EToOUiXkvsvKESOLcU5WnnsuJWtXxZm4u8FssM8MChUelgqS/NjdF4P7OVXwnUbniN4a2iBWGSrWy64x1cZNLuBTHYwA75+RkGnDH/hMMMhhbNX8vymjgPfYBWBCR08NTDHu3wNCCwxZZkBMeHXyj1zTsZfmIC3FI/wPNoXxPjov5dBdyoDBQmNSvYXf3UG+hv+rWwoTzYvtJ3On/mN2wb1s7nh/vHN0Gi3QDM+S15vb8AqFR6cggbe83wBzXvk1ye8FB/Q43cwgdLhGDYZ1fcxAfC3lLOwpKp2+CvjMqnwfkhZNKHEMHbhPv/LtDQ3W12o0VMjfzWWnTzljikr7DxzWtIA1njU0QMa7O6nOOcjhisRGMmkPvpMochdNxEeEFDSuZZhDiUfevw6/StI3wIegt7rpolHiqTrCGPXp2d1XHb+4i6pc/U1xJy9PASbsyM5mTcD+aovYnlUyDWlvoRnOjniDcT5mWA6dXWj0z+1xXrCDLe+GB6/gaPmEkt4Ght088+zZZEWOj6/T8+ApzJUMMuR7U0wVxZqF9y+6OgRge/U5cUFAefoXeo5eXB65c9bqjQA8IiGWl3N7/GKZ6NqnEzjIJQRl9Zamzeo6YE9Ad32jR/lSOvS9VzOEGZifc4Yh/w7GlxKJvlFAgf2XYVtrme/YNKUHTY+MM0gi+1m4bbTYPIyrIoWMSgSBOusWbAt+Z3GKKr0Ng2Eu9FKzP06LN5fjeSq/YH5gIH0ECB1zy5o8A4/nrTx90B02W62qq5KWjJMIzGuyAqEka1rMAeEw5NioIFvALYMZrk1xpHXFnmSIZ2G+ImhUIHrQxMzBLQTDKNGUgSToclvB6vAAREIlWwOmioYlNbIsar7xgeWffRtmogXxeWTyBc3r9ZRqNFH+StpFlcBREEMtufm+z9OU2OBTFoc7xQUuiH9zZLRki2EQnzpdTy/AE4LSvLkPaDbjIjWtx+xze20NdDkmpsZcQQSzhkGT/9zLdpBmm54eCP8/dm5f1DT93bkxPs3+f/SEY1Pg0aEhnv5RsW6NuEN+oCjzACRJKUiTEQon65jXcLTlh06p6GGHZxDsYpVGTbDosiVLFGOe/c5zSt22bTi3BbEAM187yMeqPPNmM3wSqoKmtawTdzMAcrsIkrnBJA6wCWrtYC+6+nEwxpYu8KxeEWZSMvRO08IVOM09eg6kkxYIACrsNlZHR2ymNOFxSi6NN+cAp/GSXtjsvXDcfMA3ohHYy7DYlsdMStVw1FEd6ZBPTzfON9zUwL3umOwTn7pR5XqAd2WsyI3zDcVIQNzmKPKyw5AN6RIBWL+274rO841EtF7W3/S6N1Z3ICJ64EkTKxAgN0tZscna4QgX3FBBL1ch1X2X658+q6BsO6YmlTzmB11Ya2IYMIpUJcyAcGZTCtANHqVgO+Qr3pWnC3fk8y9c9lLpdds/tOUnsqK6fUxhBs+Eq2wDoWvyVEcpG6B8mqpXdHRKdPTrJTgHSaQbneYfi85bA42k9BFUbG53+8dvJWSCm7AQw3fbMRkrCrD72uNKsj+342FjrEkyVB/WBdpmNg2Ia5Fg4NI5urcAef7KfBA4pfTN0Fzb3e7mYa4FAGTJhw/H1zz8TC5q6kBPB1QlL/CTmCbLZDBAMfTtyWZNc2FX8vyuHMhRHK/hu5pFOYhDDVf8L4oBOPCGoHjarIt5HQmw7yME0BH5gi9ol0mawKu04Wz74C6PQv6f/5/GbHPFJ+IvUWhbWHaQciNfC5glZkhDvUvqDaAjA5A/95n12IEbjo+3rEaBn9XTiQynuS8hjHGL8HMvGCJCf3QQ1v596My+5YEwvXPm1TWmMW78zsZoHYVu9Vj++bLccb5ZcP6L4VhmOF8t2jhxDiSZtYYNQj3u39M3AdL9B41MTfDm9sK/immMYx4Ua0BbFhEmCos8jdf9XPrXFJQXfoQIn+KO4Ar3MG3BoHJs3JEaPZSUbsFWBVOByliomfjQR3fffNl5gxIIY26yAdGZsQBf2KzRkej80754HS3TOVXPEYla6J6SdMYRngFzthjMqS4+CwysVsyLZZeJnsv1j++tamoiKQa2spLoaVy9JE/NIAsQdeANXAzCcsnpguMjoN6AkV7fiYUnBUXz4wHNIfz/y/L1nUhwLaXRVu/C4xAHr9ib02LE8GHpU/lxRIjbuHN8ekMFrf0HMqd+jE1SJ10L7xDqI5/aAZAeJTu/3agysQlMZm72zjL6dP/YJRBGBtVgv3NcwJGgcgRse4tbHp6fuhDh3ym7GBtXKQze9LaXluwrFp4+SnvKO3CAgOVgrV1L3CIwMKfNiRcQs5KA0OK9NM5bXqV8kQ+yNu7kxTTAVjYHItcqUsTd6PpnUitcHfkCNXTrp9WhznKgTzI14cLPikqIP6SgJFFCpxiWgSBTR10jJloeF70RRc94tVZabq/dMWntA5RhfkhQrwRYYVDyM1nFrFDIlRF3MS59mCaeU6SJTmwoKlWNN5pw8Kp+UYYZF8U1LVwf+J6wndJ1CnjYZACgHNSPsxkBxKoALX7lUzakksXavtH9vksX6/bJ06mT8eopYOAu0tBUzgCc+wdtXqszmxGW3TCWif+ZxnCC5ycV0uc3ytKa7vlcf14aX+3smer3xNZ0RlhHFbe+PoBvQ0f3ollzpjSJh+W8vNvHBOwzcm/Ifq4zhShFE/bvocYwU/OLeG+p2fb8fGTTxYJ8mTtVFEryganTprnQDrCgbjKp
Variant 4
DifficultyLevel
608
Question
Simone creates a rectangular prism by stacking 24 identical triangular prisms together.
What is the volume of one triangular prism, in cubic centimetres?
Worked Solution
|
|
Total volume |
= 14 × 21 × 10 |
|
= 2940 |
|
|
∴ Volume of 1 prism |
= 242940 |
|
= 122.5 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Simone creates a rectangular prism by stacking 24 identical triangular prisms together.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-L4-CA13-o2_v4.svg 530 indent vpad
What is the volume of one triangular prism, in cubic centimetres? |
workedSolution |
| | |
| --------:| -------------- |
| Total volume | \= 14 × 21 × 10 |
| | \= 2940 |
| | |
| ---------------------: | -------------- |
| $\therefore$ Volume of 1 prism | \= $\dfrac{2940}{24}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 122.5 | |
U2FsdGVkX19VTKw+gMMx9XHLo9MkqbKR0CJBQpi7EUB+jjaedGvDnFqcgceNFnnMMCAeJSOzKTV6CNMdygFiOMDi3ffUDP2gN4t9EeyOTzF+bpyz2hzctipcOp12f/N3yyDP0X6ctA8sqtyBDMX+B9gJDWNwLgLA1hI9b4fk/pIU8dBBAXaayDSZjEi9aERMFurgUrvNEtCjblU1HO8NbfwvbtLibd7WII4RtqY0vWd7upgZhSTP0rLmeV2LP3t9ZiMUpcIITQv6YZFuCW8JC5q+arqhn9j1TSBD9E14FTuz4RaAxYJI/DRvmlNvjqHoOPgA/bubdM2bOTifxEZQof+hFur5BOxIEV3dT46lFS4Kt5f891x6nsfq88GnHCXOMYENtVRH26cngJJuRsPAu0aoKYdJaIVdSSqmCDB9ShbeXPe7tVDVsoqHX/n7UQP6hOZoTqMKmmf2TummzpqGFedGCM4+ZKUcaUN+TyPDvGGos76VD2whqOrKGhY1TR+FAYZzQXRdiEW/pQGJgEnQudtDvaLvlutjHOYIIe9cL5VUYB6xlMLdMkm2Ly7wUB9O0VT95Bks0pz2PG+1IYHemWd2iCmyZCtjN1DI8P6+LU4WFDYBFZKghATUidFhihTE6Hl8lwT3JbH2EvBacF8e4J3ba9ZZ4oeffwx07qCMlo1xA8g9+oXQ6JROOIsqBUSaTRV9NuJ/qUp/uznxrUif3P/HE2TbpLmO6XtFqXbmHTXIialm0Yc7uhfP1BohngJm2InbhnoBl2R6o/ErdTLgB8+ueamFZTDm9+HKCn4bXVNZnX3tTxXNPrwNDr8230ZgjsC5vJ8GtqQL6RgAZoDEGAe4sa9x3s3pLMv6xYW1IOolNKjMwA9hFQEBGUpm8Cnp6sjJy3a4SD+xmM0SQr/0z/v/6I6GkPyK4s6HNiATmtG/HCZZ5My0LLwqUGajJqA87ypiJWAmrhTRyHqtYLlqSRKyDz2lq8tvhwlyH9xn6bE80WEn2sIeaumcEOQmQrJUARQqx+ykCYtQ3hHOtNaXOAtk5vFx+SFlNinoqIaSNXeA5CM9BZcTbGf4R7cLdVO/EPbyp2jYdyCEkjhU5gRbkRH+PULzXsSf0e4IOBYwLsMOnmhgYrQewVwg/FHswETe9Qyy7qQ4Q/nzRW3hARwvF6Bz1ilrmYRU1AqEPWLojfKUut6gWBTezg4J5OHy0pHNMQydpugpn9KiCcilC6PMr5zmcfiD2O6klvO7xuo27rUsrbrZoIfIwIYUkqj7kUDrc7BTBfJHtgbTzDFLmcmm1bwpBiHVoCaTL7zJ2BEcJWJVMC90mwCaPUUELpwOJC0du8R2NDiDW3SE/d696r8gV9AcrmGzxHcG+xoIGnea0N2ZqW8gF840GZWSgRu/U0FHXVlBbWH2wSDyZtUUYtKSE3By1Cd84/EdBelKRrxnyp0HEjQVdkT0hZFhpzYhJTclgbxhopcut34NJRrbOdfxHn8Pas/RFy8FLSU7ZMcGKFyb96vGDba/2zkmIoLXobPfknc0IpEPxgPgPXhcs3eyVgay92yMLiAzpzaqR9T88B3oLBv95T2oOG54dfQb85zRjwc5eNKHRTIoazE6+drETk+EMbMC5aG0aOmdVrQBHOmeM0QLRGnQSF/ja+HZBxI9W/+QlNzGfVOXigi0NTTvCZ5GdaEbVXYvjzz2fUgulSacQKtJPLnVRQUKmKHQiNONJsgeSchO+QvqP9j4Go1Bsjf6zTWvMhec5Y0Hr6UirfM/YT263+q5wJ5c8LRskXvSVDjRcGBuOK2WTyEQyP/7pKK0TYKt+m5g41Ti1oethPj0g4OtY3wHMX9ram2NT9dQqgGXBbHtNns/RvhfYD2DJAcJxuOhXnZTbgcNpssv7lQDKZGRj4k7BFSEAmHnpTiypK0icu2KTV7BRAjJiIM7QPZXHiX9sfJW0JtXGLEGt43H/Btajx5KXnuxp77veZuCfUdSklpFOGY3x1DbhvgbZifTx4qa/se36mr+AWH0RAWgQAdmsydCckFQNw1G9+6YHmXYKudQgRfcd2BViuIyqyIIJGzs6BBDQa6sNo3uck3fmh+osdRQrJnT7GvimpOdQElpkdvtoIIRKYGS3XFnkyvPPY/asZ0MZet86dY0DQmfmgt/9IJycdM8EVnrAR6CUYHlrVQo4305HMIOuPJQbXL2GVS2Dkz6Q/YylTVQiv29brzz129wJ+azUZTkxDKokconL699jY8CLebpbgnN5MsHBnQLQ8zdpzBMtgZX91zlNTQay6s/6AYEWBPcVmy5eI9IVLkFxqLpyOVRNnRpm1iwQlFLRQVO9mMzBsjtq17RYLme6gBrt52KxMIXBPKF1LwxAYWhgrNJTiHjJnuzoOVwFnpkvPYIS0K9oxnpu3C05hc/lxkLIEPvuxEaazHrkBQWE/SM52+O7MqgG0epfmIn3G9fILN+2Ygl3WWGPZw8ifCaUuBa2ygz2IlJ+jkIKKoF/WqS7CJvhVtP9LkyPRkY5jxhLrVXogD1DuYEcPdxSI2qbF4URuL/EoKC3W568GBax6AHCB3sBsC+tTrHvrqQ879e7bWftRjcyOBZf9AGSLoRWR/wuesey1wO/pqab/ManF81/bP3xJ5QjgIMZu93AYLZe01OgAhR36FEHTyq1k/9GP2ZlvUhR8xGkM+Gl+kzrE+kXgGFCky5yfwq5mx3d+n3PEf2PTkwuC0fICKVY9q3iv07p9qNBy86ZRjZ5D721kultC7SVTsNdtEUDHYWT3EkQS31FewEechur6bK2xFE+ouy8+6ttmYEor0E4hxZZHIYfhZItROfmbEGp21P7bn5T3MUPkYMJY5vqFpmqylHaeglpr2FE0JGxKynQm8qowRYfbY2q9BKadjzZBvRzu4Lb4p/pmkLGaCDO2oIftPZPUPbKsLStCMH+/aBVkGWeUiLL7wJwX34XXt4Bmroqr9ZliJnvk6cz2XEzrnLUoqKTkQlH0itfMHtuA583sTQ02DA/xlLVfzN/SPZMzqfJbwchvzmL0qoIB3RQWuCmftYb/5UJ/pAN8Z9W9XCwTZi2wKTILtJCRFZDDvjabIEGEof+pD30Y4ugCxc7owVkXU/PB5O2njbdrXkx1yTeK0/VzYBhxznHxwzPFBwX+IH1NedgzH9yV4MzqWh+kSswNvq/cI/2diB1BZxxLRu0vnVe79a5Z1CA6Z86ybjgeQE9O1LAxXh9HakSK+izAxzH/2gkFENI5l3kbLYvg+Epkluj45On6UGYTWObAk2HYRVA3fBgVijEdIvFqpvoMnjwCqMNX82x5fQRXQb6gzGLzmkOumdF/nJcodzVAj/xCbLn6a20MMzZVoKJP1PyOtk2orAJtYBxd34+/FLQo2hYswOiJxOgcpaEH4V868NLsfGVwEoz3Y0NBVjmrkuNPDdDPb+OXNQt15znRgQDl1YiS+emc+sMYOk+cKhDQG+9dKg2UwOsakTG6eU5QI2bs8gFDsPKrx0spPTazb9yhQ9zuiQgi8Gqrf2UnFgpWwV3NNKB4uylUtimCGIrtYQtBTuk3ylidxSq9xoPmPvG5d6LNp65/1TbJRx3K2X1v7WnN/aQ5bHHCNqr3+wFCL4TuV27Ov9DflxqqDztPROLZoKFvQiW94+QT6NfT3u6QJSJkU9jrcioApXplA4AqeVxr5uaRyr1N8QgnO7yAMFPDEt1KX6zbnVJm6tsOC2iTr5T00nSWJCJ6w5K+ygzHtwmCJzhJtydMOApizEdGzVi0zARKA6KtsxA7Npo4enkVmB4TWRntqDIeYD6tuP8rGaLiyrQ4q4i0uvsZpTK76F7OYuo5RuqE2ilpisrXEp/uVqHctxKVXo+yDOUO/Gjtr7oZQl+4Q/2EUKlJmRStypEBSowUOAWc9iKMQIRIcwwOQPjfGPaTWIQKMXYLHw8EhVt/TUcKAhEDu42BntY8/58Ls5ISdII+CXP+zlf8e1dEdmbWzFw63q+bMPtAQztlN7PbwS2i1kR965G1xzJWmArz/up3N7iMrBWS5U5WIVfMn6xNtc6XmQ5k1lBpcyFtR5wk69060uL690u0l4sVoa505tdMSzE5Bia4JaRMCNolezZYVq2bNegPy7nwJ99FPp+xc67iyK0OG+qcLAUREwdGMppxKb3yyR7accsydMb9dHjXpjIQ85FfPE1Gzock1fEh7+biyaIIBjIjBJhFFSEGfJgnr7lO9x+3FaRKoCPaxu9acgWeP1XBMYHl4awyEKZZafeSs4yfDdU2oyWUGF1RAk7vw+rgCFJIwG/kHIljvZuIy1/boMEejCD2Z3Fc+9dDYEOdIaSi9z6vfD/tPpbid2WhPiU78xKpgG3GwuxcsYYilJZirnaca66BTtuGAFQKp5bnR0ZPcGFPXEvAOB6kyQkqPHifZ9zxKcgwMvYfpRCwdA0MUJvYazb+dX2LFbkfWIVwOxon5h/wueRbJU/lSAPE+AdkI2/vgGdgnVfduZdvNhKdJrPS43dANhR0KYLdWwbxflwf4ptwE/hXaF8Ak60errA5CiYoPWhlO528tpZpa319Ff7Tigng32SuCaU7hBNSpsCtHDUnCtn61BB3CDhze1c0JlseIeaMgUyMDl9oGZsQKaNWrQrJgxVEF66PM0nJkhxKwfNZ8pl8J82iFFiOabftOvE3W+2P14HLM9X8h03JbGRrpueoaRzrDnguNy43/VaaZzW6xdLaTf7XhEwPBINxJEioexY9LU/jru+L+PEpxFS0GgEG6VniWZFjPb9+wV45HAyAolGSLF9kgeLQhIjiqyo46aod0WyOCldw0cTkEOILtCXBPM956hYIy7WF+Eo0p0YPPFL3d6rpuXcjkyJK7ZvCzkQ+WPTORbYeOxOK7eMSemT/EovgV0LprEP+3n9U0HQZxQ5E2u6xrWopwt90mp+v7FYZHL8zOtBSncLPCczOKqFFMY34iAXc5ZqaXJCLF5RoRIk2hy97m075y7q+XR7VBT1S2jlszOcmjRlqkBCkwVCF9qa7uYOADx2MvVQiKeInW4IWv6sSqBQQR+/zADO7Q5Pkb+04p+62iE9DspSXmbnqgpKm53SHnf9VtWliZw6B4zfIXkv50yg8YJD2p06LEwxves6lw6evFYDQRMeZsjqRzHgwfjbJZ+AVB3XgU+HKqorq6UL7zRFRjEJw3M+8fgZ5hGER1NxPDRlKnlxIrecH8wPxbsLk1sbhC/KajRYHFTHO4NdnLrRVsmONUPhL6ri43aY/SUSa73IyK/S/7WXlJJ4sfF3umvaNvkScQukRxX5r+N9dzI7LmfK11uqy6JGiYiVorA7/YeA4VOJNgFuXkhGrbxJRZnYjJ34aERFj2MImZDLtSVfSq3Rq72K3OffyuIwouH6eU4iRdsDVvuNuShmYaiAaUMdNsomgMf9XxJrHR3xBKlskLtWXkfb8ZLC5nfOQB739OLTkUIJ8k2i9/MnGdx93IyH7OykyrgyEPaIZXJmlopoCmSYFR4t7WcLgSOD5HdUzqgSZ//CebJ6N6NIhvbx1C3AOfN3h4bSMSA29zQecWloqB85fEsvvI9SGeG7FFIh2KrNdk+DhH3TrZUT0t4sFq2YR3qGEXtDAltmazeP5hLU9V2FLDKq/OEZvrk91WuioAgbxQleyL513k3P50SgVnojeNu+b0EounoIEEPfI4l22DC7cEjJMgqGCOM9Ou/uI8UNxnSC+v92RM715rp5ouWQtIcscMWEWbeKJu0GHVPgkfAX7IUMBn1ZFNqKMRCKbY7JgwC4Wj0gZBxYoRqmii8DHSbhpnPTuT4s6YXDC3AX3OygsSdc73o/ssq7i0js/USubLMhZORZPix6iztpdA337FYpsEvD67ii6uBMelHlprmgZTdz5uN3UigOsM5v9VTB3cEHG17QbOk60rFFSkQF1MySRAh2pLgs3s7JX1VnnNmQJV5bU7J9q9JjHmg/316LSWbAf2qTVBh1jb8Mx9aOgLE+eoTrp4B7Q6d3veBccM2wG4Y0eOOPI32BM4kcbZ5+9yncY+OTqXBkh+1OKXTrYju1iO6p341Iv1eDg8lX4tTOTR5ELasBgMvCG3fYsuXC+FGtwWdLLz1YjtCY9isPyRYfU+f2seh6BE44ot5phA04RhYDuEUJ5Jfa9o4CRPJwNxcF6B32x0BLQD1KJ7PzxxsxR55N4amE6CktBS6wbf8QExTBrbRNetvM8BepgUJGU4N80XJzZh4fIZPNqEtnYCQL4om7qMh8Nl+tT/x1eOuccCX6jfT7ErLAFEcYopCGsaD7Pgwgdx4JANIUYvqG8EOLToA4ELxvrFxQeLe5cxAQd71n4vIeEwxq3R9JHPY3Qwno8G/7wU5R+8NYB8SvtEl7ekHQqKvXubSBuP0T/PKuu0T+yBtJzqAgtNfEJ8UWTbUzJmld36PibPnNVEn+pF05c1AXDlYz9o2DF08rJiI9tTH5amtgq2r2Zd/zjikY2gwMRPHYhNjUylg/cbZ/32xBTaFIuilHcQ/DagiAPnWeNVK7gsgqV702cGwObhblGY8GKBm6emAzguz9OyD34oraT/uTbrZQhD7/AeYBPo/gvoGptsYSleqqPBYgNCYLW1+eKbAO1D/fypF4pasZqiqTribLYzXuQeyy5NM04ibSxDDV9SFKF3u0l/cCdUUOESz/lbCQTHZJfAbpCYW7PMSOyDu1jnJdvfyDlJxU3Gbrqcw2qOWgIRkcHJ6DbGz5SP7Oek0lZOrrzr7qms2fcY7Eun6uJDMBURbREU30Ig52Zy+X2vdMH2nKzwev3uB8636vHE1QU455hZP8Mg5vQgTetbS8T5CDkrOTvAM
Variant 5
DifficultyLevel
606
Question
Celeste creates a rectangular prism by stacking 10 identical triangular prisms together.
What is the volume of one triangular prism, in cubic centimetres?
Worked Solution
|
|
Total volume |
= 7 × 28 × 12 |
|
= 2352 |
|
|
∴ Volume of 1 prism |
= 102352 |
|
= 235.2 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Celeste creates a rectangular prism by stacking 10 identical triangular prisms together.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-L4-CA13-o2_v5a.svg 440 indent vpad
What is the volume of one triangular prism, in cubic centimetres? |
workedSolution |
| | |
| --------:| -------------- |
| Total volume | \= 7 × 28 × 12 |
| | \= 2352 |
| | |
| ---------------------: | -------------- |
| $\therefore$ Volume of 1 prism | \= $\dfrac{2352}{10}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 235.2 | |