20052
Question
{{name}} pays ${{cost1}} for {{gender1}} prepaid broadband.
The next time {{gender2}} renews this, {{gender2}} decides to purchase extra broadband and pays {{percentage}}% more.
What did {{name}} pay for {{gender1}} broadband renewal?
Worked Solution
10% × {{cost1}} = ${{extra1}}
⇒ 15% × {{cost1}} = {{extra1}} × {{fraction}} = ${{extra2}}
∴ Broadband renewal cost
|
= {{cost1}} + {{extra2}} |
= {{{correctAnswer}}} |
U2FsdGVkX1/CGF5dluzZqnJz8o4Y7v6czvpdL983cwWk6e8M+EpLVd2r/WrXV+RHpWbGnQ5/pkdjWJ248o3JZKie+R0j/YYf0FgporqJ2H8t6NQ58uyppvLAabPMeaUdIPwNK1UY52kkdlsHyzumz0q0qgxi1BsbhONeoDPqzcB504E+JLviR7Puqzbr5QmR7kPDTHjb4pqOq40cziYaXH0FJq6uG0Z/Spz/tnnPj9GKGFkbKs2xasLNcbicIL3UcoSzPdW08YkfcfpmL3Hxxdzf/FmKBuwx5IHD71CUra3M/LxyR46rXlTnxOXbHtg+37NDsH6rvUSOUEoptsFm/3elOBrnFJSdZnVQAQDcJBGY879X6J/8DcbfdroWgKrNpCEtnBOPWREYMM4bwcOxtoqj3fKaRtkmTuBdm7XMO/9UpEyZzxhl0jTC3zmZ4D2YAM2SfE/xj09XvaXjXGXE49GRPddC9KOZI2cm+dMgB8l7lE/Mddxb3gqR1njx0bIfHQBjDuXM3VUwfeDdAyNivpLBcqRAUl32mskuRMZxIRHeYzSnsCJ9vLHTgiyFTuJY9m36UBjqwnSAhu6h96BiO5+LyDXDWrnc6ryjK5ntJbdjTur91qNtpfpKTrIHElTCdazZ12Os/Clv5dmMA9EH6NNm8Sf8gLfIvKDdbEypb2ZBOb9TEdb0NItujVNMcRL4T7ZGcNUMuZlIzxO/GEywfflOACxdhtXXBpTDq7kmJGRGMU60EYBvHjVBj0M+x4Uk4cW1LNhIv+egmFRtlPxHR5YuEUPv0C/ZoGem2xeS5QeP6pEc84wRYZQq0tTddUdHpBuZ9XNgT6V33801GotBrlUBa5TjwY94dfhf17w9Nw1eaEKbHpV9ryG2BdF2XpFLGN9HFwcZph/t1W67khkTFeooRZd1acVVJ+odhA1zNV7Wym9U3qlnOSDmOkRxdxaRnSo9mwwgC3CQes9CYQMuxun272SYGqfIMrJwBrk8J7EHW03qtn1I+rkJMrRk4wVoFHAyEQ1Eur9u/+DDXxTRIOR6bt6SwydoSIW+8DVEKZOfVRknXymP4TNqEi+t1e/xYolOhtVTuCBd9uokayYauYCKtX1pBj4DB4E2xlXx+lwUnzwtZHu4EPoPXyiLFKTcm6JTPStu/VIlciqBetyOMFD5Xhu3SxCAub72hheoUZzg/HC+vMaKNjtuAoirUl/lST1JEh8LbYJjviGol1QafdqLnwEtbc9/FdbV5mkRqCZDyleyitrh7kOG/6VFZmPw4/43T44F/RQCJB5EO9d9tQpmYKIj8DeqysRr4JLMDxi0sQk8UU6pUHf3TJqfuzL9iT0lbzptEAwvpkftOQSajoCXDDJ88syrWt0bBVIFr3REmju0sTZhPSh5gGx6z/+4lape6ODJpiagyFNUAik1vrk4wS+NcRC4f0dK1uyA8FNv0PBXiS/5OZ3bCoTqdKlJWCI2IVkATnFkr83o8Xs+tcZr9pFGLofjeLfAUY2IimrE4lGwXntjNkDxp1NK2pYFZ8yArCkhooYVdO9x97jtLXHe5+70/V4Ad29pdJPADuDDpUCn4V3zaq9tumnwWdFVUSqXABRQ6XyvP1b0B+HhtSS/aCWjDb+wRQRPJOjaYsCO6cTpTXXi0v7tqN9ZBHSM7Z/ZV48Eks8qDAAMEN02uNfZYF5AsQwNGCRPDTG4Edx24FR0Xf3hd+GZva67tMQS9dCnHuQHC33Dee/uuMA7NnvPYhtE6PERx/Pwt9PnX12mFxrJqWFrhgvRnahfGD9oMrUjeFMk+C5u8PGKu0jfcqjnGJmulnO4lecP11a7KPwMYjTmlqrKPUv2rYJ9XCsFzH3wugLvP45QyGlxTRfW1dIk8TPYo6IVuah9VBwZR4AoqBQuot/V7x69WyyZqcVdLmFyuXCEqbM5ZPOkS2a11vDhqBCBIf6eb4egpZzmNGzIf7vNdIkXoWzFoDlTIETiYZnhJbqx0sJmI34/4DeTdCu+5yi8jVDSqk13Awkdql5xf9EGXA1i4zpGmwxoCBjJSl4l3utscU6j2TckMf1XVg12eubKMDAESrlpPwDVRNOiF6zOI8r7IrrsjGPpX1++ZjfQFOHAfBCxuaO1/yQOkKlNB8qN96cq1yFX7BCNgRTJBCfulUWbZltgQONyqLX5X4ZMUM757IWt1I2Lu8t2zA8F+KMztNRcha75fVkAT1qvq9D3p7Pphq3oZCKGgxeyevoJ2/QT7dVh70ZXIA0Vy7NrPBOy5JEe414PaBZxGpMySZjcOLkOrA8QqfwCD8RwxKCLn9cqwaHUVBPDaCQL3Bp1sK1N8vijGKhx3zJnZKw9IIYwWDA2ggUNg3MOg85ehYQB5LoL8aaWoOWmVIPm2CU9pUR0zRSiGzm69JUOIExwd9EVSmAoUQ/c7ZXhwDamCrzYlVvOF+4JA0ESdNoe0ipZfCaBglEYanFB/jXtI3Kk1PoXaHOeGyRyZyAlPneCa1C36/7QRHKBm3ERiyNysIwWDM+DP+mKvxnU4jotOUBjLID8yOQSOlC37Q0wHVisXWmuA1Ms7f/44R8Al3JRNv+H1bf8+EHN0aRamY9sdaaGW760k3dl3rDUxACHVWxLmNUzOktfiQYT2QV7wLC5RerLCLpCEJnNyB809vuVq4ZGDMmNyz83lgEiE0xSuNMiqavoxZOFRQr6rckubAQX0p+/6D08m9T8EcKpor2GD6cExF58gLWLelanV0lNtQfkVdxlAGllW5N4YVN5TPC99YKYpPaunqpZSan9rebTeJIX4owabwnb3cqTwKch6Tz1G/LXJTvlYPP5S/SRPX/WQ7Sgp/+nQxslXci5wzk31ku7Nd8if0XwMqi+R7i/kOW3QIiSxLNLpZ/3vOzV2O4RPjyp9CcrSwozrjaMy7Irzr9hPRWE1DgBOesIYG4HPEBvIy1DQJklJCgwEv+7En+CT/jithLhGts0pk8x0Ukgf9hbWY9oARTFJsfmjiVi3ed5xEDQKqqwO/0vSUZ7f5D398iZeo+4QoiFOl2EG1kwqPYyJwpdfFv78cEwprLLgxcI9IlZDCTqUZ8BdEGvybfWzrUNyMPxY8/p0C2uNTkXyN7WeRf/mus3xr6WG0azOYzg0A/ksEZb6sl8I5irKCcq9bAuxjivMrrF2GAZTHqUqZa2LzdWm37VeiFD70cWS6qczhq6UJDXsF705/Sk4o0NeR2O/ZT92IRfJ+uanw6pJ4O1kLfia06REcXtuDy52zPC+wR5HCfYOBFQ9eMhQFQ8IWRC/ZodPS8+rmgh0AnnATvN7lqBc6aWJ6ZUh8qDWMvuxm2DfefKCAtkn36a6Xr8juk/gcPs1h+F2qWrLnl6UxmHqC9PjPd9/qyFyWcxJiNoE8Z63leK3RGhI0KhJubgCbrSAMopHoFgd53657UwLTVxXVYQXJIT11tnJ1SHPYaoDmUvd5yVvXy1NOVKqHmZkl7QqXg/11TwXOmW7V6bMRZczW9+p43TgRFv0mKbs7VMHtKKOugVhURmMTnl5XtqcgavhAg5i/+IcjAwpFHvzqB0NfSkSkT8FHVjtvwkMtD5OAfX1JktDx+8CV1U6dWoKOAqjfusSwpvzmercV1ZbKBYFSv39OGf4K5Cgs0CDGwnhnnRMMVk/ciNCTM+U9KnQTwBcNfREsdChjCdn4i4Z06D4n+u4AD5RIepyx2c4UxEuZhZx10Ra3dh771ug3moICHljcm+NIgWVmRWuUxauIkKwFygJZuJKxt3n1E70XMcgPF7NaAGiHtkDjmdgX3/LNYUgc/2KUVHpEqelFD4t7reqS6JA+FZm8t6j02jJevFMgiP7ET8mknAGRDPXk/qtN1Fbh/z0yDRguv1eixyAhb/7+E6hjURkKU7BCguqXkB88yYxsfVEq6dq/pYx1gI3mYKUK9ZsYjooILIsDO5Fbo5N5xmfH4xXevcbtGYNZB46cbGh5gZchYTs4U9YvchdC09MmChVxJUJdWGavnmcoZoHZpA528qItWGh15gfqvXbyH35Mw6hcuoI1QR9Yq8Ngxp3ReKgJ7SFQup7wGvEBxHtTN0KcX0ZBn4Mz+ZoPvA3ADnkI6oZaCLEdtgxX5+vZOZfFcVSblygxsnzmppSKQD+M/NqvvKysQa0JpgkTxIpTT9o+vwpAlEQNajpfIQ9tiBCKDZwyuVoz/vaR4u+GQrQJeau8FeAuZ5eQ9V+7sraYciCKj3EjFDxYrCea3AYOV0kKvxawg08zv94P/y3s9oY4JMzd9jX53jgM7ANkyVes3jV9Frgdb0hE/R4l2xckh2Nk32M0oeyIs2eR+fzKp415d+rolW7wEgKD2Csj0Qetn4K/AwSWfQqlFJPje6aqkQ3PwGbxS0nbqPmh85lMPDmHfrIpw2cVwSl/WmI6PnTUsqkhledZxT7+ACEyyI3GFWBdQCckx0ABwYEy308Y7Y4uYSbXAjqoCD6b3rN45g5emEeannCpH932X3RdeLwMkrdw0kQggJWYFLotx9SK7csiIIZQKkJXoFViSv1o02kHBLP++kUE9Jfw4ZbmehMSRr455UG4mXrjtSRgW2OK2sZg9souA7FnlElBEuJJM58IbvFoWBGUtQa97iyraksJXXp6g63WRVKiApboPAWiUcoeQORW9p43x+JFQTsCKnBLZzFUVSKTPW7d+O23KGNw6N1t1dH3dqbsyo4CJmGqPKE97mBUknxDKamAl3h6QCN9W8rx+3qUw4W9rFDCNwbvgbyG025E0vabK+qMagIs7gxHh7ZfyNtH/WuyO16+U/uX5f+SexyKxym2qKnNlObEQ8TdaVSid+ZrsdHKg8+SW7NCEHAOsvG1v0elt67UCAamGXut0bwbPv14nV0FDO4u0SutSPJH+IackFXNB3IGwHgm1Coe++EDKrRAeLQ/0RBqRz3DTEBEjn+xzkeADHzIVcFdybGueWpwNqRi/n8sZwDlAfWJiv8EY5mcC5ngfqlms7aVcXFnK8CfPtbtLZKbsIQbcNQkNZVVo4NKeUoqMNhi3TiOWnOj4BdxFHt+I9f2JhAzzF/7M9Djr72P/E5xygSpj54IfurUl6tgPF7OH7kMI5JmQKVNL86OmN6vSBZVKhlHbnvzCgS2vM5EOpl755HlDk+UYNyHI7YOcxwQ+0kKjrog7eem7XKwbmWyJZ9tf2vhSvFAai9TbDLe4JnrCZBE30LboiEnzmcCnADkabcDrZlr2RdSkPXPVYDnwIE4nfTinNuEr2oPDp9Wbtan7WKU12docyw3R86kJjxiZlDFh0C6JWW4Wl7P/woG+Xgtpt8IaKwMjcw8U7lbQaBiUZS5GlyBaHxZI7QH9CxoX9o3UhmysC6cyTR6jab2yfHrimPBmEYkPmAg2RcML0wwwP5mw43xpo94jn1KFNhQz4jBa3jxY/8hquSkORziTypsgSEu+HB+T2I76orT2B3YElOMDT0Tq/fFt9umL75u0GhQsar9E/3A0kCd0g69LrmM7Esa4GCPR+3DFxqp0e164QwPbVaFFDgL89NAbk5Tw+4V9ithKc8REj1+9P1NSbi65ZH8P7CzbbNfXih6gr99qRhB1VjQQlHtQhcxUL9FIylkeVWNX5nUzk3xZcoMT7dBggtCSpWh69Cuwty9GcCfxrWimKYvGekzGegCZyqH8e4l5+/VhJiUg/mqjSFEu2tnzPHs3c+122A/L97imPrCp0zC6gnNyn/tGbJb0JMYZG8zafquPSojFsTEHwWda4aYYoby35tdc3X+FvySN0+bUtdxhwgDgxjqNCn96Lk7W1EiGBYYUHeSbeLTWZWoWP5fFmLfrej9BVgkaCa/+/ANQa20KJ5jGT5bLOX/BsIqa9jeIqmHzVvaDAFqnQMToJ7298tpONu48axIKfjJYs2EakTdHsDtgfYNMh4mIveeZdGqN6HWSpSZTMzyVHQH62Ns8XX7GEwa+qLAfdrgZRDdyQJu08s7f0OlUOx2QGHOeALouhaFlpFPADaM6V/XENvN7vXZD6LCjm67utm+7MASbANEMXicVQUXoHYtbq59W6SbP+l9W+HvvANjV8PT9ciI0ntpr5P+SXQJUO+2V64JcVnZkCo5Km9cUVUEgqpMeHD4iPYWiHK2OUvxetBXVz28E6HKsmEa5fAtnKVgl4+jjv43QCtjZgqF1IlY409wPKNg3GG2zV2LEf0YQ11i2UjaCH5YfM/YoOotzCjRwGPk+UPr15vwOGajWsBOPr+fWqO4a2XAVM546DjYCALpuKoW5/safJdXneN2CspehV+V7xotD/l/jV0fQMqGcbETQcyeFH2kMKJoHRRvrsqgFDffP8BspHDhpW158if75DKoKwfmzFVzMG5MGFtMDr+NcAaYU1BZV9UqoBbwXsVhYY4rOoBLCZIIN5ealAm0NVY397CIKOcPjyOQxpnAcBDBcYe1fhmI5tSeWtTWx94DUpk2+ry1dz13oLoHEPf1HHrzqs/BqIPSGb24t4JLdViuQYzpFDESgwp0obxmf7fGBcUEp1V9gn+fjwbGFX9GJCUQ==
Variant 0
DifficultyLevel
566
Question
Penelope pays $120 for her prepaid broadband.
The next time she renews this, she decides to purchase extra broadband and pays 15% more.
What did Penelope pay for her broadband renewal?
Worked Solution
10% × 120 = $12
⇒ 15% × 120 = 12 × 121 = $18
∴ Broadband renewal cost
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
cost1 | |
gender1 | |
gender2 | |
percentage | |
extra1 | |
fraction | |
extra2 | |
correctAnswer | |
Answers
U2FsdGVkX1+5dGgkIu0WjdQSJPubF5ynKbloDqKKX2nR+3loa4TwLAPMHpNKXfERN1SA+SVq5L+X6jIcNiAsjLJTUueIGvtHhSanm46oDinJ+dU8asCjlhLxDO65HviTvIUQ2lwWg6UfTfUBNW5HwuvC894y+CM+E8kiiigTFJFd7yg5xe/RYSLY6JKedMa/pQGyBeR/GwLcSkjWRNkxuEzS1YErplOMg3lb6QPOOrY9zgOphkEr56XAnklmDRD9qamI5OuFyXxHQRSlqoeBSUVNEdHYMeCrZSe2KCzp7ul2lFV5Q88I1FQHdQvQKLuzn+tTv2ksdE9o9YlWmhu7aVPo3fysCqkRmnUFOfky3nUb+ravSq3yI16GGpxBLWA9+4+amKZy+RvPUg28ymGir5UZRAVsiQYKTAvue0CTb7KEqcxP/OpjVWxUVcplBnRCEgBuq0QX4rAtmMsHl6ux/fmqKXVYnA0ZXngptRmvlLI8ghkP1dKJX96tv4t1TRlnE4c6mt+02lIgMlcQgJ9vkJgmqnj4tFF8bA7NO4AYWYEHi+b8xqISrb+WffV8lveL6RX/IUM4UJHQsfzcm0iwXJwy0VOK5RYoE7bsVrIP28bGOVuGZ/juKIB76mLVp6vkWuByfOcjL76NsZYDBJJ40XRdf/RxM21Yxzq37A98+UYl0G3TgEHKiREUgdMBLKDC96yFYPM3a3doSq30XkFSrVr3R82LL19JuwC8He4uC+7lugF97mV9fHx7wW5twZKVewOkn9/WUej347MkIA5ktyLYzi7mFxnHAYvh7VW04+yR+sCocHe416aFGTe1FAG/Kvq5Akc/8UKF+PTagvjU8JSKJ7B46gWFGNBPRRUmv45Qps+KysarKHGcYq0re+On5tAbaiiROJtycf175IUqt8u+fLvQpTfT6341OyEeN0DmHjxVfrNOwT5SRGJGdmNwl15YiDKNvKfRfbImQVbjmO325J153JI0A5LOy21vIXyauIfaODMwX9yLlvapd5NojgtwL8f9ArE1BGHFGw/XBerFzgKH7dRL5KQSmztn2DJQOSK3pBIhES7oSq0WB5fhFHjsme9lTk/s5nSeCPL33Jr6tCvJ9Tfd+m3FgfGfRgLFjzi+CkOzpipy8jtmc0BK8BO1QDbsCj5cFZBLeLGewD+5hnYibl2k8uE5KQM91As6IqJZjwIJh2cKOq/IKPC0/lKi3iQcVXzADdn66tOt3yCFzg/rXtD/8OTGIAzd0ntIiT2spE2Lwn/g9W9nRMCTHWXOi2TvnnElgKtR7YGQNa3LpF4yiu9Xgt0mh+e/UTb8tnWuCLKDZ6VQu6mWWIe7411xxidC8duTd10iWR5mdWMA1dcB5wzLW+eNLIdS1VL3AL9Gz/6mFAEiJSSZeQMFAeY8kuMKz15xzq/8q4L0aCHw+dJVJ2jrDlwjE60HQResoqCL7NUWWRrzq2qPGcC+L6d9k+TxovTFfyvbwUQehtnFqBjXjHFvMkCpFsPSZN5ljRvey2g5+W865gAQWVOwhLMJGh/xwX5FF9BO87V46zm5xR2oTXtFu5aHMCZKOgQlZTQi1QuNtkSSnGTaInxZxAiDv6E5ogzFJhkWENlexNzyU+LFTg/ELatQRPAURX0AjK8yMiKYMfbLXhktzWhDSpWa3hc1NcyFRPz/t4cSBFhZAE2Szvd5qT6uM57QmlAtcjCZIcOcrlDQPS9VzbUQw8Y6R47NWd/CbooFF35/L3wIbS5Shf+Wc8DsOVfFYWJDNLvBc13DRu5V5KlUwT7QeOQgoHlN9xLbH5lAYQkdUULrlXZUITI7+pznyat0YykfQZ1NQY/zYpJIXoPZrmS65VkOaj2uIe+QFfzxGcLQHZ45NPg7Kt2FqG64YMwvppormhD3EI87BWuJrgkVaI7mm4QkbbIGKWrnc9RK7W+vw31yuJVzSsicfnHlfyPt86ItuB3sxxO0fXrie5+ur8Ye1tjQBFT9343m4zE2nYeQDxlGHFB731MR5tBJhSwYWlMzFtsKX2hMl+0ozFCwI4qEOoeYpz4kiG+RYu/pNlgwxySbjOP6j8vmTsW9GgbFxVoYgDXozyCf89oJu4GW45M+P3LoB5CeHiG3KOKqReEIt99r9mZSU1r9uhlmHyHnBJYG6kN3yUEpFfOPa8NqzYjhKmm6UjlbAqZnBjw/q1A68mTApdBmX0ElvzjNsX+mKPvkMsOJCWfBNXf3LeWQP2mYqkGt55/xlrFwjZyWeKUh7yo7WU14pQF8ysSK1ae5dkHentK/jknWturKHjX7I4np+hblhQzmFS36mmQ143LkImNOUQql7ZpNtpyF99W/TGQDPjYTpUrTxs9iapY8qjXioimI6jD4VDv0QNu1VbiwG2lPsEYlE4rsrm6dodIzvSaBF3/3jFKOjh6SOSC5AJ70H2o2A5slT2eLqUljiIVxSmGcf2adM3/arIiKMoaGSjCshCihjto6f5Kydy2/6Oxmx1gVAc81e2aKdlyFphbRqhqSCuiMiZ+szvu4f0pbJYELDna5v2a4ZexSs3cBNPHFBxbLZ4fZlNu8pQQ5lAGt/9vC6Lcv8LIceLvvYlXDogfgzafJX4P/xz1TCnASaDTxudTSV01Re9trjz2bZD3jK03KbzL4DsYnOc5RRK0DGLFJY1jIHq4ylc4TZWmAVBLAeFAqnWkePu8Wfkp0GLEv4MH1ANN1o/SsbLCtiezEu8JwzpFg76wsOdmm0NlgUsTURnvYPiQNTKpnoUl3XzyoBtpc0hzWtIsVz4plNJqZhKWv6TWkWftdOExtYn58Se/ZabbpxkYSSmWbHEf/geb09LMmA2uLKMplaKKzQqgm1rCBprN/TQx7V8x0GeCoW1Rjz88iVjUSBIoJGVQ0tBlJblYcYwucxp1EQGOUPRTKDGOz/ot8apoWNsFC8bTUqMwud+bf/auU8pF5CCSbkLjo0up51OqZ39CHhnZzUoEc85kSGLgBZAWBrmmOj+uQv5WjvWN6beSahFP5FaXMj9N8lAHqi//JYBv6yYO+vg1ciOLp3OcolxBagEntnxI7w/RpGRArlRyOKKEqNxBRImfXgXsN70hg4KA52lBX2xjH9lezDWbWAlLDtX5JRDna3/2abCOofP52HBybhZtgGf6PnBb95+mXgSwLJJNISki35knZ8ZSaVxb5m6oM8tRw0K27UhEljwLgmwQCtm5Ubh1fvcIq/B+3gsUSz8MdLXy09MzJBiD3NMIRQU2QMgMwdx4vbeY31WO6F+L8CWUFuu1zBArCdifhINCWtM1UdhhEeH32nz/uMSV4mnp0K56bqbKUzrt/OW6ggqILttPrJiLAR8AhO+zHJjqmQH4BDbfmZ3cRleidu2acyxP+GvPaNWlT1TIiOlQlDC1mVdcrQ9WAO+1bCs7NvFysB5B/gVqNg1iPW0vPSd7Qh+eT6ywgohkeyeYhOXwXKgIW4Q9Ru0X9bAu18/2HbwPHDdZzcIuwoN1SptJteWW1xALxE2ujve0Kz1vFxlfjTNkyhBv80Q6y5p75Db3YK/yDxUcrw2iM4uSLTJ9ryGYAPXvu7rs03KDPS3yHTaC6VeddlEJOXSiDGkZreQEgHn7oX55XpZ0wtlQpSnWHzBkhtRkE7zkDIq4T7ygPOUSqQ92Wd5TWmysfdOdXHcalyufzyZazOz2ZGcXMAkKIp0ceiDboaZ8kq1dXyOVj2mtCShBZj99aeiIESIYcDySurjX5fXRYy3LCkdavxDsS+4ErPLxkc2Sf0XwcVDyXyJ50MWIUNI+WImh8CwgffSj3yKQ8XCh7NEaiAc46Sr/sXSQsZyHmJkaNHhwiFWz4AI6e8YYeb3jpdik38rpHU4pGrD0CqGW5GgmZPzrM8hcdN2OyjLq6bJiAJs4XsPB3yiwaNbnLEt1KmFC2ds+qWtIBPzBwpInz9MONfySex7b8mXC2cfQ0iCHLD2nfEABJiQJaB8mIUD7e6ox6FNXKi0RaiDN45nKw8Q1rnZqxN9apqjiCCknYF6uCbPm4Z4I4wGjUZaJ0WhYX2m5yGzVvgnv2dmJB8zQf+88nJd6/Sc2+3mXIFtwpCRXfsM705IFs07BtaBEkp9Mvnb7g2A7XTX22XbFqdoYdEZypTdGDSfpAJz7xjg+yBvtrHmy+Gwed8yKS8bWfu7jaLIN3g9xRHThTnumcxMJI/9F+777jS13vgl+L55NuoYd+mBh72FwTrSSyrdJgO/LDvRLzseK+CxK/x2tVK48wDBmxfRk+kFtdd4b621B8adVQ2YKJbAVEB/PWed925PxT3Mk94gL2FJAotVKtTNsGK7BPlJ8X9bCiRsMRHnoXkBkpz/VuEaRjBMzPyCI6sQ5955lULDsZ87TcuAEmPjMiw8cAzX08rv1MoeJL0jRTnH1rJFfwr8kB93XGOrT2z6xhVHibkd98cODu3qGUtpPZzPSQ3dOWo0BqPiYCMmqIKCwBiEZ6ez9xEWBZmkQGcA5DA7YSMUI5XRV+UK5DBLZTrzqYl/NZK+y1VOavIx9FRDjCtPzpItLmVRVaCDbP5zX1UAAyAUpSjxqHZ7nbYbXYM8A2GU8Z8AkAcOUnFPbaB7BPnOQjPgX3+vVf5n68RdUTXshgnOVgnucsXMBWFWpXkTDwSfFFNR4/w/YXAvkfU7bLRnBmn9glQHXroR/SeJGq1N+HfZ8Pxa3tU3U/fhfkvuEiGVGAoMcKNNs0mVLHL4RyV/dgNk9w7xiimZ0E88Y0qV3R7UMuOzEY84DIwvbfFNdSXEOqcHNoqgvWnnRRQX5IChFCJQh/remFthzinmfmXzSM6/k8Ji/ureufd1Yo3mw17HMGsVxT18/5/KTpD2GjfL9OBf1A6UrSX9zOdNoEoAFiXfqkKr7X12T8tdZhhXhSHgMnjB1mVhRtY+MokvYNUUS+9G9VHdmy74fwWay7J9OWvhbiYOV0bYkCnHTfOHBqJjA7XqFNOFKGyOt/pRZRkfAtcR/x1Uw0r8vgy8loMslzYXzkKksi0Twi80aZUg9D1wefh5egBbl+xslTqoec7Mgibc9gxbluJRxQMi3qXv9p7t6iydk55KivoQehcUWRzZ1LTsXdLuKATWIFXk3omQM2/SdGAJXoScC68Qx7HtI5W/gAMzsu60xA4xzbH8kCe/p7PBShQNy3Sr7yxwRJTf7q1EkBrp+WRSD5v51aEastd4Ajpmxx2GVjZns2/AhsUMnH1QI42rgwEARA5dCzG5MEOxkiSlOQscqtrJYEMXQ37REGwVxnXruE8gghzMUL1upwBOpCUEztBPZjEcQRF0MRmAcINdwLk8IBwdMMaf4+WJkfbYVNq5u3wAtRJjNEgR1OwPRuL355t/zwdExqmoaJe7Bg1je24yOQ5Xe+QpkXEW0g7s2X4zBXaVX5PwQvMQPphrB9M0kg2VLAHzwqALC3VJ0xtCQ6jGg8RZe05Ai/+lsQeHvtOKuUVZnZNlD6f1qVklzvKjCfPewNEeNA8iXqq3iiFeg3JWIIm7O+DY0R9hhqxaiDP/UdF+iXrhW40oQrN5sD0lgKO73X0jycMcgo81m4a/E47//dhSjbt6Ir4hR/scE7L7ljuWfbpuU/K8UcQt87+cB2jXv4g866LVvEmgCdBPika7EqfeEW1Llwki9Xa5K71X7WGzESjtEQh06ZawRuj5MIHmB8fbnG1PpBmnp9iLJoTnlR5o7TXMNMpZwwttTGpCegiyD/RWfeMZYRO0Hx4VtPs8XV3TFhmfDERitmgpRVpuTm789yHIKVW8sDJ1C0Ghq2cvUcpX+Ccb1ddtfQ5zCIdeyeLPlvhe3i44FVELRhhx8MBJGf5doGnjdQoZyRvgM7ipMOmbfryNri9g8ROIIABIR4Krvy37hlHAVDjXVN5bIh1VeH1S8w+zHEXMNTL+DImBIHuhWVWxx+9jXco48ElEWAPxWg4mMoO5Gs3Z2G+ZJWg0uzBJuju1cqZPyXWYy9NHvrDUY+Ubga6kDauS6tbfN5pxcD9UO830HcO2rd+5awXYYpAUgF20GNS+Z3nB1vI34cp5mFqitg7MHZfn8ejWVttqS6WKT2v332gk7j/djM02GULy4zSLT7JiPavgxLJTKFZEjpJtCUyFdHDILxLrSqdawGjkazi6acTi5F/8jma4Qcz5g5oLxpDNLrHf4h3JUGRfOuGog5xxkckmSbs32/5hjfanC2feLSP6Lge+BijKFTEjH8Dt2m5qIUuQ7hF+vSjRpAFk81stP10bZ5YOS3Nr0WYRtAw4MZoDRO4+72EfM59hgmDUuXPxTEH+rqaJtxaz1lD+WJ2lLlkhyHKGQRIVAtXRCSJH+KTxxHh2lPiE7R6rWzEvuYTV3SXdHO32Fiow6Ld2d05Bi0Xln0u4qpOoISCzTTANVvd+zYRhRlL0UvNBKNkKErD6duhzXrrGU8oLKw+t9cjIXhAOXLb95ipuUg0ahq+lB1vwFpocYgzxRecv/GjXBKqOeb0+2aoLRcGSlApb8fGwiyRi4NnjDMHSfVaMPe
Variant 1
DifficultyLevel
566
Question
Bernice pays $80 for her prepaid broadband.
The next time she renews this, she decides to purchase extra broadband and pays 15% more.
What did Bernice pay for her broadband renewal?
Worked Solution
10% × 80 = $8
⇒ 15% × 80 = 8 × 121 = $12
∴ Broadband renewal cost
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
cost1 | |
gender1 | |
gender2 | |
percentage | |
extra1 | |
fraction | |
extra2 | |
correctAnswer | |
Answers
U2FsdGVkX1/FZOQEJP0qpq9PH1oWnqEMXHLrxkkCvjUOBWLvMB7X1YU6dUjKYWW9os4Tewalj2Qgx9q1I7Jk1lfEQ2GYK3PWTJ6OPR3g5cy5ecf5zMS+VuVAP4Oj2IL4wE6jxJVpwCUgUEmCHoRyNswbW8NcKltu5O0zIdogzvvOjkLDFUKld3+2eWpbYLoA9ZpSia6n/JjMW4qpZFQEFDcs1VKsQKjNwepzACBgt5zImjpsSYMbKDqzkXZIapun7Il6fd5yF+BKVplspq9JEaKEm6dGrQKWPVe3323MnJFL1RIjDq0arPhBvvLoH9QWHXXRSYAoGs7YXcV0BjBRZvH0ZFGvYPA9/HTqUgD6jZgthxt3WuyswcYbjm1IphVAynzReu7STewOoTNgvZNCmZowZFB+ptCY5YW6Zhzih1P7H1OSewHGdZ+5hGI0n/qDhCEBVrzG5ZOHYiL9qvwnM8ROtGwAAtpOyZLGy/5ZPbQZymnH0Y9X4UWQH4w5IMIpJuj9YY7TaQLeEqaubyikuDp9ZGknd1zWumcAEtCyK9AOUl2GNdyyjCXuJjc3bwONEicn60WzcGvMRGUd14GnqteEy+zPvSEaV70JdcQan1q4orKCJkJH6zAGUdUg1pv+Erj/a720PFadaoGmqiEIjdDCGfb26X2uKfx4WdwL6bEIs0Ihl+R5foPmYHATQXAhHGFjJYxWB8JxbNbXF4v2NggraI+pPdVb8lK4QtZ7D/8g54jBYrE7MrYGjz8Z3XiYoeKEgLIYItsWW6vgdic2tLhD8UYOieF8Hrgekfn6Svmd0frlhHKxUEneZLmYYvd12a9YbHJvXkNLUcDMIFKcjhpR6Nhioy5kvWvX1qsS9ZOLIvjL8dyEQBxRb6BQVMgnBKXy+yAypVoo0BtUx5DscEWpw3hnGjm+ZpnE70r8jIJMKMbY17B4vxt1dpKXWp1DZCrh83BqkSCKaZerEWCo3+leiwxBk8EQaYEZJxHgO6rwg/YjCaydxaYI+CzoTFrCquMKwxBoyfj+If0jnzZk11084rYT8BBf6eTFfU7SjYAhihEo4fPYVZ/nTdq/sBwY7kFVNaiKL60E+qPvmcBwLXAOlLdRQvkqWeXU0bvg6mPwvzXhCcspYZfu8IHK2TKpcjFdMvAyeXTHfLXMUnutB7HsIeu8JDjELamHJsDy+BP6SGKGOKfw6ZgpZLh1tcy0OAGRIHmORhgC/qZT1nXgHsigvZ2kACYWxwxHsItE2jF43rMx5hjzFHwkhgIn/rdYMeBxbhdG3hpGtZ10llo7JHqIoY7mHUGJ1JWXmEivdh4zEYypea096CF2trid6k4udXVGnC5YCgGEhvo9wGE1txBlaKPgJL8g1Dxh7HwfWqGv/xcUmOaxNV3o/X3eOQbsuZ0pJ9iw3tuq03tJxs8NkXSVHUBLWKXbfCC5B0ZSbgrDfTzDXeXf6bI6hhnGbJ/mMGLMVFE+ctp927jmmCn5QfknGmBM1dVsOeyW8e72QombYmRC5wR93WB/8VR57UCHQOKkotOeCc+Pr0AW8WBo+gx7DPXN2QcAplX3rxtBeKUq1sRvOtyQV9NR2eaOF3aj0QCvHjx1Amo6Uw9LKTm/MmUKVFddt9TjwMs5RkZ5lOXXdSbO2DIVSYdrn9aSF9q2jrdbV3PFBjFEz1kQ2BTVa6FVbeI20g2Lv3Zcaxg/NAiLHTMG+BXcPTzixkzK01D2UU2mX1YazOGflxnMWvm+5Z7y/Uiqh1oqKGlLM5IA2cmNAbFrmRhnKWETmwPSMfEqCqL8lVvHXV4dZNXBOS94P+sXdpjr7xT9JE4GkaVDc1ehJOzXrbHCZNOCCd4RASieV9zDRtKoKN4HNj4PHdz4spQBpt1g3QYK3LYe8+E3ApvLpcX7p9tyZ/MLFGuroyO/T3L/+5PcnxZL6FF5QrSwYEfayUxJgKtaje9mfOVGCD0ReAi+AVroyvMogHTfRHIApdfoBFGag/Wa2BOPeLMBnYd7WqSkELLTj+Ru7lzKSEBQMN2dvua9XKgq9DIOet9406c9JADJzRWc18Ojq0RNNUZvxZJRpgWAYv9zRQwPZaMJMvfc0D5srkM5PFuCA9ZRo2AI3ld/hfTNKQ+nyAdUy3XYkD08TP8dF7zhKMS73/nQgEY5ukRNMS8nNGL4N7/HAJxrqq1UwRp9Nx8F3oIytI1lldHZp45HRj0P0MbVqEYK72yPpXVRVXjRPKqgKTkYlSbw1jR//3o1Vl3Q87lQbI0u7luagypUuiYO7KsZkqJDL0NW+TjrI/hdQrwL7Dnb/EAOpWGvIxGPl8Y8F5P6dpgjl8o8RO4OR3jh4BPYNfnv89P2PL1v2Gd9kUxIbY5FduKxC9Ne5n7D+qpXd6NpFasNFDzUwMO747gmA/uROuMhi1U4YlyRF2+RRpWGAAGTjEHuaxR0FUMkGh2UBxW5G94U1xmkpyPUamG8spegVGYVoeeQk+wtSb15oWKWMx9HyyjnM6MhIm8iigN5SoHkykbZZSWxNXYnFJilxB6DUag7fg4B+66/pzr1EO6SqGyXKd/i4D54MMxBx+gRbaz4ONToNrYR9e8xQdofpCdWno0PmU2pAGDzDjUayrbfpeZzueBlWDrnw8gROXeU0Qst4yC9JL3YOWmvxRuOqjfO6VHNLoKq4vKzAoel4GMHtRbwAc+YLYA799zN7fvJjrxRUXJTJUSxsjZ8+0C9C6h3iFExo0659nXbCS4LTKdHAxILZQSXmV1xbWLnILuQARBPSy7eEb3AS5qJjQ3TyEcLD0Bbcslj9WzpQHyQkwQ3M6WBmJdAyk7F+QqOiFgsFjvW5az1+KjrVm+5neRIC70jb0ScGOQNbu6lrwlm1teAMexNsleKiNUqLhhaxN1SHcn2O/coUGVEOIFfp9EZh0yEO+jUm60i6HwIyk7T7ysUNkzoWW87RY45LaaHQdZfL3ERsIJPmVhXMC514Pa+e+Ebye8dKhNPqnxtZjsAjX19HoJDo9dWEA1R5z4T6p0Bxv5RMqP2m6Yg/SosXSpR4Ak0LO3YCpTo/fCzPfK46xp32BFHkBk7jyCgC9Br57Yx6I4Z2LfaCyyka0ANFoA+HRo6ujpacVQEouXAPyrs48N7tPnPjipBWaf/gVYY/hnE/URcr/zjNgSLgOXGFmOjJJMMxLqUvV+9X4UN9jxWV2K9qQgvgZaUWrKoUWSyR6pTHHJ1Kt8SRuFHN6nYMm5xjX4eDwDTBii/tu5IFJ3NVkFmsz6jNtGmLPWOXBgk40UKsp5NfCy+4/TZ7HYn1B6MlGyNLz/n9oUE0xSxZH4H8xcfRX+Oqdx6Dsv2xTzzcIqqj+NejWRAJ5xkEMd4oXZ5IuXFxsOb9v0kVZQQ/hjN4NwO9ld57xa3C3XPEDavHkBks4nzsqb1yzWhpwEsH2rphCuxXj2+7DramH+UP7j0xrqd43kcxsxocXlaKIx7gCU/jXAEooZ1qZ1jG+tULTFSUiybO/VJjUJ7LEBDAEulvzF0qX4Dsq6tlmH1HROgtOoEuNHhhB5jJAKoRadJLDXaIa4UGyb/EKcWrjZyVhzt3a4YU42k8h8MfsJbIaGCK+qkFe5Zaye1yPeHZLWbiIwS46lA0hf7h8MlIeXo5b74NAroZg9Wmw6ETyu54VSXVyVsNSr210pKXEVOuT888qRJNjq1o6YXcIlEMKJKZIWxVscGSesf7hPgojlrAddvfFi/rcyBd+FnrLhj4AsvcHIxDYMbCrrFxBs32hbFH6S8Y7hQ9+B9/etho6MF3mu00UlyOurnZo8c5+kq+AinNySJNg2DacKqQy1+9G3jxh4yiA9bVy1XPRHhoyw4ytofXqfEDsfSli2Stgl67HMZNsIk6tUdr9RkNGqTLJYZqg0sdTPj1CpppjWTsSgKvLOi0p4Tw2NP5me7oLFJOYel9L+JYKKt3rgQRklQFuGtz1/t2ySL6dVRlCfngBLYXchRnWNkHEwP24X6CRUJcT7xXwBmpEUMLLMZXo7Jum8swfmTR6mqE2fd+0yYpzOdbiy9demKnNoroIgmikQxTkn0gD+De8M71MNEe39lmmaDjPboW6x63/hlmOu2Nv3vKvc1TUpb4Zc/GYkuHgO3uRougpZw/wRCViaEy1XdspHCxYJ/BzzZZ2IwylF8hKBHAxqKKhl6RLtgaM5cnHYhBtg5rcpcG9bgMLh8dffAjinkYEIeDt0JLspcYkmW3qEg9NiEzbCYbgVTh42gUtbMHMiMul/Mvb3IZ/C9/nVzzkATZa8Ae7kp8XgoDB3r2tdZecOgWLmcUMMkYuNXJcGNwpI4fh5GMZvbafHyViRSbiwqTgykNEChexe5L0RHgaA8EpliUq5iPyEW2YB8QrSUgEtuk6HNgabr85lZN0AYYqIROFe1/EHZVfTm27XYXT+jY2k0/NTThe6xtCbZO88+13SbNF3GgnOR29ZeZZleWNM0UN+GJtEmabcxwLsmoQ8hAN6BTsq4fpZCQtaO2L499iHQoHPPDk6GaYdTw51r/diSP/A85zK6FBLQCnuphppPUDTVbkT63UEGH/aOot3jsr18armI9xhrGFDpEJ/picxY9aIknYfB82989D/eoyZuZuajwoFfMvrBAjwaH9axQQB6jl+uVArO2WXbKr+0OChPjfX2yvsZaJbDL9BgiXQ8lE23a2XhcEcdn+YJdp9B0AsZ7K7SmaFxdxQ/0OHN+wpRQnFD5PKnHFPfElKUvLY2mQab5UfQ/3NROctl+PB9AU6cACcjfU8lN6DKauSR1GYeN4aON3S5kIAwoa3GcTQH9FIpmhPzqDA4jQZpwTV736fhz1Y8Ruo9CYyFy4TMfz/3xflas9x5Phkr6W6vDcXKq1LQwExBZ7xuRZvloeowvD99QepeG/XX/ZbIlaF5qfhXsMYS5MHOsqPPHmVW1SIY5OHZgi3KB4nSUztyAx30q7WnOJ35vzXEdJo4m7zXXH37c+YHirsdiQHT5i81UYlHH6IVgFfpAC5JvaNvkzX2m4zVwspHbVSchzph3r3VtQSSif1zVN25t4DaOJ6Q/ivuOMkOulwDNEdoxEpZw8bzrxTQ10xYfIlZFbHHyKWVVB/ISodJ94Iz8RbAjOSxH/jYiKK2yfNi/6cno4pJzsvzdjodGFIA/qNnCPhztd5rk9him7fGroEvCwYzR+rfTGe28gPtvvnXD8bXPERVFltt1lU1YOdhHbxngdPNsJ4i+zhcNK/R9OkJlJGSiGY8poIIZXniUF5QPbysJyLaS8PinWwWzJFAxAq9fOBD1/qOndp44yHfwx5QWoFgR+OqkbyD8xBYYZx+IUhZ9RabG0+U+03ZwKh6aOMvrgjEytpkTHEhHJIXqF+PnfjwtRwf5gIfznz2vvt59gEhz4qO+8Opftq5M/6dOIrJJVRtBaPL0NUc17MNY4zxXOpoSJC7CZMfLyP5eGYibXT2h4ZlGb+O0nNChkaSAH3d83sqOIUd8eIuPT0KyPe8SErKaGXREc6gsxhnxIN/YtPoq6VvrSctspyzboHcuF9qyrOcngIEK6GE2DIHN5jgICrw22F/iDY/2SCsbUQeLop1WoQqKDxQRHjRRb4VSlImlPkV3Yq/etv1IrB8wG8ZBjU6zgW5GN8m5sMKATOGgkL/bHjF0OxEvGYoqR1o42u9dB0rZXIaxXBZl3yhJYzfAkQu0W7zvozBMxt95VV0kcKnQnL1TKcnUUECMlpoIdFG6/+n3VhOQwdoOK7vlG/rF0eIIouRv0IO6Kkkw3V8ITPAIcn41oaLHuKDVt0TTtsflqHUhwgqNxO12WrhGYJThYEni4tvuPOOXOFnEU0eqBb/pcmeoeSRwyf/euhZ6ES7eY5qmrLufov5utQn1rMWBIsog4vzPim4rv+um6w9x59p+EQlzJ4eRVQXVkxDI+Oa+WVQ/QWyfFTB4Tk2K1tA+4AJNV1pQcIE1+UJ0r/tNpIHItp2+MW1bixXwNcs4vfOH60u/xS05x0tILwa6rRuFJoExV7GY4cYxjt+7Q8ccDWoBSip0RgSB4IeYpdrpd8OgXvzfk2CA9/YCPHahRClhrqzypzFDYdySi+gu58Gsl0NYUFnEZa+BgHbzI04EHx/skBhzc15YqE7uv3mKxD8IGLF62EnREOUqO0dHzqBsAgLiZOFCKxor4US43eFGyeel0n/wqB8pH/XifZsldWNADUaSlz93krKI/W+7w5kkkV7hjLGbHw5bAPQ2GRkpUDqiWhsYnnc4Cd6Vooozec0zvtlkG/LrLPCiDd5dpJgNZuZI57BvIPB83twD1/eroEtCMRj7auRO/oa6WlZyviTkXhWouE+MlEmaIV0GezF02fcNNF2TKWb5MLCY5b2F+jjK6c8edIJqqTkbmjjAIAguZGAPdrYTA/wiPBse0gOwUW1OYCJk2/jDJ8vElidOzMZJyobyg3WZnCCXCzubeX56T5t96prgzT0C09pSOODoOhCTmghqng1rVcX7lYS6OLwAiUkDNJR6fWQXvouRCxgahqze03qcR5h+I4e9fw3P0sTRw==
Variant 2
DifficultyLevel
566
Question
Sanjay pays $160 for his prepaid broadband.
The next time he renews this, he decides to purchase extra broadband and pays 15% more.
What did Sanjay pay for his broadband renewal?
Worked Solution
10% × 160 = $16
⇒ 15% × 160 = 16 × 121 = $24
∴ Broadband renewal cost
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
cost1 | |
gender1 | |
gender2 | |
percentage | |
extra1 | |
fraction | |
extra2 | |
correctAnswer | |
Answers
U2FsdGVkX19rAfdgVSJHRpaWys8NBSCXiyabezDJd+NBn7u2+8jOnBQS3ZCQho1ceonURtbPUNoJnkY4/a/nZb9Nxv/6jqOaHPdxZ5O6zyybygcYyJqLbe3bUF1CpqL5GY+Zj4mpC/SiYvi5EScU4ufn+pcrkJKZLEeAOoPKVBxDFGpw98KZAh8qovhNgV+yyCFuEoTDXXxGzPVy0y2eqMPWrXmmlb4Yt1WRgaDWf4alQ5RKgw+r94Lo21pXWBxRWEmTyHmK4HCTIGYiasTBVWbvdF+6Y9GUT1YjJd0XrX54eHcNG0hn8KZY2hgrNmEqM1PLMZeIaVR086yRyDSUCOp46oZdF/12c/BhilP52QFUgl8XjeFrzCGtIRKoOlHNOVfox2MTIl5lb8xEMDWfBiaRa32O9gSUVrhakezlHYpBHoYvqPcUbMurbfpQcRM/taXa5GW5F3lFORPH/e6w/uaZyfvzTE1ERC/keVM2bSf7/oIAqnIpUPc55Atf1PfjRqNfx6DMgmybTMAXh7W3w57cW0NEqvkMhI5NpGsSA2GekAVJe7OhkS/tDcqzQhY5yBYlZa5yWDZvjIvpbh/CF3EFI9eP4aN66cqpqqiNrj9krGMjEuKK+1CBFrNnvJPmqbjf5qSVXHReZ3ayXqKYhinbA4bv4Sf8qV34+gKPIeKCx1zjD3B6xleXkqOWTG3Y+BbwOfXrnnswiNPJPnZHeBFb9eEZ6awdhTEGDNrPiGQpKYKC/8VacBKGUgixSHJImHfqRLzdAQXAannVfA8jzK5rT+gB0MXh1NBA95OJf+9kb3EZpX6SIDtqVYvUyLf16mEpxoAuoDLksVwQpIDCASg5F9dAggUmrzngmZFCNNsFE0jUGmnd08vDpO4SJyP6W2/2CtKdLzyKbXB2HJQifuRaVGSIwGDQ6U4tZ6oRV6Wl622ifUphBMqqJE5zJ23er2CiUdu8jy218hBcFmBa1KRC6kQVxTgOKjhjH07h3iadE0ilYCxylAc+FoMSiuugLSGHzJU7deAAWzz+Lpl91b5CoHy5U2u88LoMnF6WjRi9/phJfekYeoeEQfL78ULze4UNBkYnu+nnaf1D9YyrNuH3V9w/qH7sNxPAhtWESizYIYOtxEmE5riBliA6vzpXxjBGsSv0lGjnkSbGH7x1q4H6fTB4UHT0mxBhYDHpKswnp88yuaWHWwTd1vj5fAR5x6qwwnn7lZpG+6pFqNSJq+uI8AwSzFJe5OxhJuBR4Skq5wmVdDftCxdDJw6m3X4Ob/JWNEGsyjOt7p6RePb6h3yxNzolBCQft1GWl1bEmwvz11UOdYiIgSLoSQV95m8euu5QUTEK9+ubzFgxqh07sTRkNXaRTiHBtW1V0gNPv2HtDbv8cIWjRYIY83OSe3FduVP5iWpegEIPrJq/wgg5NiMnAW4gcYGtSbgVHJQGV4lKTMo6mhuiadxRJLbx+QLxoUkKjX+80yD6Nq7oJeN3T0k79/pbBcsucL9ZyCuf9flyuP70BzOV1hunR3pRzXu39KJIfCoPhubGFYctI52zLb0Qopg87HPwmk9/zrQK3zo9Gjs/aQUqTdYR1JXEwRAp+0XTosmeLIc8L0VsiLJWt7fyIsdbfjw/NBo8Zdz70G6KUN1zgTRISa4SMhvCP3eSF0yKdmh8f2FcgFmCGPxS4xdEud7gelTuzWFTIaGp1CltYptfdJBWE9R3aS1Efw93wcftiOTSaYjzFDhffi5CMW0Kyu53XI+zLVmv3JpFqJpuRFpvlewrm9X0ZOf5RazBj02m/6/R8XWs/UoCcLBL81oqbKEMUDg9YGlrnJskKt4VrKMz7uvzjkgAtNCX3eW3UfMaPCE2/Z24f+6Yh45SLHUeZHYqcNXM183Nb6OKGwRUZPLfDNrDEgjmNY4HHeqlTa2wWEYPPgqu1ZYb12LhMDNKi0T7Oej+CjLS6hSMInB/+3+wG3xx3BIsp2omw3yBIBGPIX8bt0ubswj5mloXc7o0fvsCWN3Pq87T2wpjXni5wE6O5Mc0F6Rrrd18JOjfoJcDX9Y5seJoJ+dvj0ytHQrpFbfp9E7puFH/zWkeDdIO5V2sTkKQrVnoY8TJCgN85kLIjSeJ+tkemiDEGwRYMmZVvrrozXB9X/OW9iVNt4vu1qYZdVLCx23WTXp6LqmqztxLFlOkDa+Uwu6CXAhzuURO9t9eH+ypELPxavtBy53Y4WuGEYMNyNqYF5Td6Rs5sZltCJh32OBls9ubmmfSdhQAERsWQmVA+THBSYjmEAQPbPs98UDA/+YPjQCh8vpO6lX5s5D5fuJvpPi8EW+ZPTQpw+rcfHwEqsLWi6mqAf3oXxmxPReAwYlREiSvGTu8aGXFEfDg5ltIYGKpM2V6uHPbQFu6P46mpdKI+a/v9EWvkYtZvrsKtmaMsjFeeSa8n9emQyW8ez3x3VJ4Kq9vUp2+5DIdZGpLMpFQHxNpdKqHdgf7yZm/FdpSbb3vW9SnHM36NBEIOto0f7eplBIlMpJNtTtz08S9sBSjl9PyqJuhEQHm5K4rRK21MnU6fVJpK65wKZOB0WrGLwL/Ki/y5H+GK+PtJ7BBG44GCeF20+ofa7Ob4qm5odztQCAtu5+BPK5Vd4h8MwQ5drfoKD6r/VNskN1qbU2uB5JXQDpAFYKzMrNhnPZe9FPaU+QK/rSf/psHXPkokqWtHSUcEG/XQBb2nIrh9q2LBb5f2JXeFlEdtnBkfz/NpxQxqNJ5t1xDmVpvYafta3wLTo9lBKIzOs3hKuuTicJfSTaIV0XdJhTm5FmEVJNgd4lxaHYruA3bOsTzi2ac1rrz9ubA2qkEjikYpyIorc6bzAA+Bd5Uyu5V98bNWnStQ+VZ0Bkjx2xs5pE27NANC45GkAf4hLfPvfjXFzTIGot/5Uwc6BlDF3xbdTrIbgOT+pv48UQckaUWgs3yOzZnrPEvVq6VL5/MPGpjEJqOxp9X+X6X8PnkVipVJovXZRcUduUHPb+GiwJuUUmqmQciAM9U7YbyI8AxbbxTRDRhYwblskxfh/mv6hi8efzQXQQedMPUDmSnbb5tGqf+mJ2367eOf74fLTbUn538n000esr1hx2gjD2u+BspHtqo5l92kpJ4376qIDoY6SzJLVTVs8Nw39ssqq3yMeCsXQOxmlm6hUwRj527EqIMTyZR57iKJVNkr2ocO2wwPpG7kHfQwH1fwMcYILuZzJZHjNTcKuU9H2RVatxHbRYpdaijHk7Nu4QytUBgLV7lioDFDgyM0plvSz+tAulhRjlmbUJHqdZIi3QuFjhBNBC2/JJbM475rSxy0sR8TfdXd5ABn2V6l2bxUiXzH6oni834apFr8jIyX4Lk7+FfCrkv0eEZoUhWpTwyVjWJJchiD60pwEuj5OLwBf8eruT38ndl31LiMGuhSgCtFbLHJhmQZNzmet9lCUjLYcKqvFb0kapPAg+6xgcJq/2t2h42kj1NCouXXPp9/o1djNnT4TCJa7SS4gS1LsiSJ9mdbiH6XynYTImz99jsq/cBZqS2WPZigLNNLHQim7MjXHL1Ychlotkbyw3yCmPFalnToUQZO0sD/9QVlImnVH9zNmnoYgA6hAs24g1qwDmojRniWTDDmnE906QDQrrgIYA6klUqFLQSwP2+sitO6HoGbzwSJqiJVEqM/7zzoNWTMD5iG1dToMXucSOiqfw3p1D1ukIrXfQV3UBImoAOauMJ7gnUkza+zkaqlCeemAHpDXb3Ht20w44EYbrbbqDmcd3hIJ8W2vck8rGE0Acv3eOBF6WTuk+MC1nJU8WGbPEaP0ruO59m/DYimKJ4bTlDtDZSGW18cZNiwzS99hv+x97se7C59SKRajKdDi31gYUvAYhCmBz5cPCYDpvCiGhF0heYSoVu9z7zDc/eLVuybVbHJFvPzGvz4vD+GohAvGH/1yN7BBuW1aZA3ReK2/6anY9Eq7/2xCWTW58tiR75dpM0Gy3J1ZSE1ocWFoUdP02sY73mp5f04HlPIPrX7X4WtzZVudoeMco+weS4Bq0ANK6HLP0UXIeHNYQ2SYZSF7tVwoTuV8QLQ6/NjjEmG+nBNX0QeXHc2+1j7WCM/X/Fk+74OED/qpnVDQqEGj0uuHs4+zyHvg8mN9SDoISeYTLG7sLmseFBaRI6/ZJWmjmSdvMsbFSNSxt3YtGBnqoyrB5cqXsooa717REG+RklxWNFSDmzRyd5dQONFCc709DpFMlt4p4G6tCd0TW2iFeZk3nK99Ft0NESNCodsHcGVm9ZWgHihgHSWPuZGFSXrIN/vNbHdWnQji72DQ/akVHJnHUazGmer1gpB11eTGRQubVvF8GeHbGu8DBESFO5d2p3wWJd6Xvk7SPerHdWk9EpOMrBm+ZMWHowpF0f7PC0HFNjZ1OBvDh/j80lR/qvddUMXNqDNzNaTgT0dBoCw3XC3p4nkzHjof68EF+823Ykb+RsL9RSp02Pvbp8vzoTm6bZbk/gQ+L3+bf+mgrjC+u8yjVHMYUKV5LhsQzXoyyPbbcLkOeE5xID9K6gRKtcS9a6IlmWjflinFOhT9poXAAARi/f59/P4IInIesfOkXYEkMKoltCUYW16GBuDmuTttxORzuWLIPxFSyrjULyRMHHt+DOOb51nlu5IJ35jLbrvHuIL+sc/9IXmA0aKFBJvO48V9Tvt5vL2HHoF8C+y0s/ub79+g3Kvcrg0ZB+w1spUEp2EYpdtRRL6Zv+ext1dtYM3OWCYZPvqnhJ8B6OryqQ1zgYJp0SOMiwfCFShtKEKQC2cIeRwszzXK26O5ZYtCzBIHA2PUm3mZ9M1p8/HPTFl0+U19e9wR6ZOQ8T992QOiJuBM3DHiZuXU3dU4dJ2CNEdeVPqT5jTLBrstNQ8x1YxFYfUi/pRHODISpTJAXWxduRed01ehDOCUF1aplRhlqiVgs9KEtbc2R2maYmzjhkgJF3zcuWeWGlHkeh7EIbt7uoOsNpqUhk52T/HtNAA07CqLvO3H8DiWGerZ0AOtJegsQMgm9y5tiZlfvH9v4N84g27cY+FZqjcYFf3/jnWJEqfBt2CDcfGEk3brE5tYf4K/zMCPmiB3II2lCf0V24TH2PCAXPo5MSwE27iwcch4Iu0mo8YyHkDqzTN+6XCoGL/2OGimdUh/rHgZwYwbQibYpH0Vt6Tzc2jIt7cxs/NV/8f3CsfWl+JSK8Ao/EItCYh33Hno+f43i+n6mka6A5L3mJK5IGPYOFwhNHWL/zfKIfyk5v569mCZxVvfBnsvJ3SxhsR2OHrY6zO58sBPPrKvcgHxtzx1/GGHWFYa+ouTeXfZR5Z3tWpdXUFlXNMAPqbKi2wwWhXF9jPdbkNM8sDzaTP/IwD2vv6/6+LkTCdgKVVU8B95Q1C69+9OthuKuHMsquL+hTBuxby5TRUwIWkV3nd4JQTF9GV2F0RN/xz3xqE+qDYEFWm/HyXULTN3Dovm137ZDKzl9frdlnqP5eJZSdHOQsyTZyjB1G+QeRE+BPH2DHFtRyfqwBBnUEA8CunWpGhU/fbmTMsKP2C59Mx10kRvYhQXaOUVSWaF7oswavFZL31mxqdLq8pWBhZotJspuyP2AVoYhfVHWf/pOMUQ1DisYPLWd9dEJvVxuc34lIeegb8jyLPNJV9GGISs8rMChQevaBLG25eGHtjTm5fckY2AOY0Q92fIwW5Xzc+7HzunxE0lMf8xdFOdPqMwjOKNsVWTGD+clbve2GESBfXP22FRA7wvaS+m8czfWE2YpJaUGZD7Y3VpiAwiWwU5s6rxLMlXpsJrEBW/NWPjF8xI9S7yhoks1NcV7eV+DpSIv3fHTtgSxb1jS6faNwYR+jqrd4zq7Ai/Gth8cXe5f2Hahbnz+Nl1Gl0W6WQ0+XVTRTjcWNTDolQrgnPgIYLZ17Pwp74INf3Og5R0EyS1N817II2QtP7tRo9OMx/HE0Yb8/Cq/4+9LzSCqMmxP6Kub6fLLIIbTENtWZGXkqtOCKcFl3GAXcfylhGJvaC9g4IpYZFOFvxw6SDzXPB13JYlh0FnfNZ963+yNBLLD8I2O5KVVxfHtYdvhYjS/kmuB0uDlA47fDXXLV2VEu6ChP1EpStjv1bFU5MZ60ttKOyui60v9YhSBnVSuebrZvJsjUwYwtNUbs+k122CQfE7ncK4hDEWVSS2A3kmS66hEZCOrk2yCLT5CT0mkT2TwjSBzXUYRBwRwRbbn7FKePwwGfnCcQSKsV94bpCH23775nyfZg5eXWyWSWiqyn5YedmrFl/IBuDz6c0MJH5ook7ZfXki0HRRX4t75gnQs6xlJJz2Yto8axTi0q3XsC65GxCtMW+2MqTfrjYzehHW7nywH0z16XVvkhLUNdmRK51KtjZmQX+f4M9wo2KERfqOcK8CA8RKGrRgTT3K0Mj4EHG/s6khK+/U8dnI4tpwGpFNWCON1HY8tELVTm2Flk4RmU8YJWIbfipc56YtASzBQoeYxKX+mW7Ux9LSYILsgMLmapq/pmXj2hlfi0Ek+/
Variant 3
DifficultyLevel
566
Question
Cary pays $60 for his prepaid broadband.
The next time he renews this, he decides to purchase extra broadband and pays 15% more.
What did Cary pay for his broadband renewal?
Worked Solution
10% × 60 = $6
⇒ 15% × 60 = 6 × 121 = $9
∴ Broadband renewal cost
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
cost1 | |
gender1 | |
gender2 | |
percentage | |
extra1 | |
fraction | |
extra2 | |
correctAnswer | |
Answers
U2FsdGVkX19hunuyK3GcIlXXn2ofyU7DmnT06gSt4h7dVVPvurXMlArs6w6XqzMfq8CwdPfMXmaP4WEWKtcJJ1eyNGCz/Yt0WGJ2/buxxH6zBJVIA349CryGp2CtShPckHQrCIjDAegkZvGZ1EOJ1ZWG+9/KqhLMQ5UPbYz3UCkdZyLjaCT3OzDfyKeLYTP/WhElDTux6JSIj1Jlxo8rdf//m78xaGVn+LTYV7K50ETbpJ5UUEuh3RpdYQaH6IVg1HXN9GIV+R7eYu0Z95HEz+lNwVx5OveTte+Sqs5uBt3q63qVoSptljxTwvI1hUsmhgB2n7RIuSukVGtMJZUEYlCWHG/2W6pOkO1bqU+06lK6W9Am12f83lrHMO63tTrJ5/tui2kBz4D4TrDcyqHewXvTpUvRtV4Q0IeCIFhip0LHo/Di6NDYKWK5GBd+wtcDAnnnheOMX4SO8SLTqJPTACPMqPsVb+iAAEfy/RXsh55NJC1v1v3R+kuD9aHP/aApjey2h9pYy9sJrgQQLrQ4hzsAubTx10KWBJqbTNbrA1m8+XGPITM558muNdGSVCkmJw7SoHYAwymbk7rDb7FIwWSXfPWJDIkF6OWCATx+HF/8lMyZ8w07J/SYueilyLtpt+ZHjv76RbghQEIl+Wr7LiExiMqXpB2P/coyMnKMD9S+1JijJpdwR/MvyjHk494n80DAkE0c0ZkdEC0ZbA/E5epPJphoJyzewPDSxEXmM7F58TMJltgD/lWLrPbbzBDJ9nb0zHLxZi+7S6tz2K7zbJ1aAPsKHoU1IHzEf1M+G8pVe+FvgGq4gbaWK7yfgOXtzhxCku+5sftjo/4yaHdXuMZT8Li2KS7M0N4WIhKR023y4nrcbOlVL7TAZjoci4qiLOOd33mSfoL8I4YEnsvIg8aExzz5o/f/DGQApYVYDBtKMoK01YFfOUAMC7hSLahAbq+xIpnL6He/h00AMC1f2L4g+17skTWoh9pvc0PBEQQAIx/9GSGm5hmGCzDvdQFMfm9piLbKW78sa+2NuBSIn3RC7sKdP2Nn5leY19m36E8E0BMuwN//ZqfCIFNt7EohRFFYlAB5CBG9/pGKmwLiDade1XMjV5XR/8PD+dTpIfoox2kMts8/20jtp+IGd3rhSorQdGFS+tzH9bPmIham6p2wuzJLWOpCUwe2fApHWxufASyOjPFVQgac1KkRRgM/xY6aHy8mJrxljH0HLINXrwaNTn+g/J0vzKYTMaH8ovxCK4p1Pt9K2bakxN+kkMsFllTBC0tqHsFOTU22vzetDRgFF/067Ci70wvYymbOEZNbLnu2i1kAnsrwvSFSr469Bkdm9A1CkA4SZ2g35P60YjRupze8fEqjocNlB9J4t07eCHvXKdLCbYAZuQE3y3JV899XKt+bHGxsXm+LxqxTJUaRQJ6d8esQRyqz9rPmq1c4sdo9Xw2bDLT10ESKtjQIqsSMsUVcmhpktxQFhT8tO14SavMg/c9Ca0IN+XayQzn/b6D/4t/2D/eTvRGWeLYUGSv/6O87cTN0l5gF7b5sAxPnJ8vvZx/rlJGm87JXrdsHnEjULE4lozoqoNbEPRYHh8vw2W0BwU4+SFmhjlcJARXqOUytRf6hmxO8Ew4+ufDMQRRJrkj+QkTf6cEZAlaFUvaTHJ3cPUvqOz9kkwGpo337CgirSKwjZH+qlF9l712YwOGTSTj6qP1FCQnqpi6BMwzgxVK3LsuVGKsn4FkFrInauRrc4ADg2W/y/4ZaxvoUs/qAiixmJ10vfFfXnC3Tzh0+mIOAITPGfmmB4hyVknIhNq3Ng+QIPd//2VBM7Sb3RgAaioJBF0SdX0EChSqSntDnlXwwAize0wsYy74v7F/mwO1XYI1I7AR8w4TrLViENoCrWi44cLHvOhp7KX701fKquRgM0iTCGLCOOzJLwoVOnq28H6rtKRyQQ9U7VnZbnJGp9mNRc7WSPIrKWuGXB9FlLgZR76y3q24W2cBv/hGCDLqWCrjTVlvqzNfiXi1UM8dlj9MtYEoqbJ5rQSyTQwN5+eQYks3ZIY8NsGHw67IKlPMs95wjr6idKYrWswxTjz9+Q0C8duZzRfmHRns7TCX+ephBIihl0ve5uYCrT+O7uzDRoUcPgYGL8t7UiE/XpKYCVOmczFpvlgzrfccKAZBnXzn4Lz+roR/+rXdDhjBuMCuyeC1vc+m+BH1N27mTkZvW/rftxBApBSEwJ6RG+5dK384C2NTtjRzhk50fxwFVQwuq/RdOd/RZdZ82HzTHWkNnRIMhXZnuYkL0BH4BiMKIL5aw/ukXlpdo6bNL61X3bMPoU8eyxy0hSjZbaFCZaie0Kgavy+sM6OE61OpTRbeNevCyj8JTjdSGd1WGnnYNh5FVJFOFRBLI01czx0MNi6owdCD1+/dNdDa9ZW3ogy6aIl1lzty7H2biX88Ph/gAwj+xxsANp7n/bDY15LM3yJiQo+kQoHlPWvVDgV+zsts1a1n42BrswDZoPf/jkK2k8km7ze2LS4yeZHwwfX8D6FsdYj8gN2pOevKWOE25SbP/16l8bNMGybIt2zDiF0l0bQIrqjBAibTqJtVV0OGnyeLi7YxHu0cMz77czwT9a+r538yoUNT9Ga6DEjQOGgVHaQS9TZa/I6PRwGCfuiGzOAK64S151el6K6KmeCe4cURsWgLTVSdjT8ihZqqO5cfgpzaNXTas0xSeraVfW2bcrh0gT5nzeBf2trUD7Q7MgdiTvgRItg3MpeamUI/QjMiGSL7LMvQ5XxsQwQ2gUxddnxKb0/zKFZvAub5uAL9g7NSRR+tRVxCxtuwTX6xRoLP1H/3qsFIF8t3+jhxuBtN4JQtRqA6kItfw4lDHJ6lfSdvP8Exw7AZVmSnKXgNJM+j+z3DAvJGNinvlXLg/A4hQVfUtIj0cbzuadBkYaQbY8qQKJbMOromurGMsKum7aSx46c+k4nFkwmpe3hN2tI8NMD2BOboGGsrAlL1gv1yzOhEYgLT8SKD2+6/PfxNwmbht01j/ttcgkq8HR8TO8wevvw/UeNjKI/jllhVUCfVzFXYL4qcZ0NdVRDhTr8aOwC2aGfTNqW27+0AOqASwZjbTy7U3BXY/KsRSfPdrWSCp9F+qqtEbZb6fJ44im1gmwqsiAztyFsqfkI9PHjVY4Fh+1TpLWYaR2VqfV0sBN0vFgLGOSz0xayK0CuOz4U3EpdidseAlg7cjbv27/6pGhkvh53wSOfD8whHsojBLedejRI4S/QyFwIMRV8U4kyL9r3DibQt1a42gjb9DL1/vhFNtda+jq39P2Cr81KeBbcvBqFeyuCfExlXFw1lSMnDSTsrfuYShQXapmu/i4gN+GtRAvsmD+IyJHpKKLH0fy1fG0pX5KzeF2s4Bv5EwbONk2gogKBmA4oqwEgXydTT4N+F3xG+j2HjyLt5MVOgHgsHc1BigogEkSJe79e5nJQTSuC07sQpQwndvailvlBXdtz+/T9yC9qhgUHEl1x22f9c0kLzzl0cVOE0GJMug5uUM+KmRQIyUMGlL5YN31pcUlyWPy7sQwkIHQjzZcjBuGuR1JE+bKIxlHoIlwAcYQ6gIOZIZfVC+AmEtfsNngnP9rWNCSLImHrHb+FRtwAtPhYSMr8DjNNV9H8cMC86J2+EjQPCDSAIJDSdzqxkGN5g0CIdreJX578jque0w+ALNAC6kIlSwO6URUygsAfL76usxtVes2gohuTRH5i5s986HZZCooUiV0LsS+J+5X3lLq959xVBwfBt6c9zL8vGDndxU9WhFQRq8FnQ5yblGMsqmPBInTNVR1HjvOA71QBSp/4uHmJXIhSZlyOPfZNlsm+Nl056LFnUROdsknhKD4pbwzIWIl5tdEwc00ec1rQwfFCKB8BxAx0FBS8gpeWSB1t4iHV6a2h1xhgb0JKLhDxYimZdsy0SXVmxhp3rDWkJT5T7D2TuZRb7cOFI7YKGwVvLxlIpb+QUliP1I3YU6jJX8YVsd4luE3TvxVWnbwobUjfW00UuWUArfkSjLTpdJvW5Af2dzq70EGHSAXmBEDywT2Y/0ZR18BkqV84kysi26nhx/T6aJvk9d+VzfB0Qr2C+IRpjeZHvCqrKen+U9Ed88hXCBLWAOkBEWQsjs2slv1dPe7NG2ld+cpXPJ0Es1yWAE26WC9S43GAFVOKjWkB3uC1peuhFswdpCfu1zGlqCyF8ombCaQ9OAAmEw0H7iPHCtwdKt0cl6ctIkLJb9jkRMzv0zWB/T1qUUwiLHs9dVDJJQicKuhatSK678LCuF+3+JQVSEwzZRhEnmuqvPzK+Cf38eEvX4Qb4E9qWWhQhuaViDiIlhY/PYgsnpN6Xqx0um6eOBkKu71Br6XgTmEDq8L7UlIiVPBe5m0WvPQG/m87AmvaPpfmgYd6rQXAg/jhRxiCPVvhT2Bh2eri8Uudb1a9KjlpUS/9fDg+3k5gVjMlRiOKkXhwiUqEXffogr/ArW/xWL8sFNTAP8tckK1K6N8Qe62TPvoFeujTAfazK+hBtSobqup7Opyc4SXkiKfM0fQzn1m4fgxAQ8SYVCO2J1Ud9n9MBSgvXWJuVLVyAiFqYe0WH/lNSQnHSoxAH9W0o/UUQfkxgkQgB1cVLFSn301D7E9kDAYkW/avZv7DAe1BcoFaddASt+jIR6g/u0tDPsC97HwPLCcS0ow3aE4hcBJ16PjE3CSDXVIhWf8XFCE+r+KINnfis03Is/FsLr1X29W4/G2J2EyJiJQXTt3JlXkfzj1ex1DhZjyoQNBXQ7W0Fb2nneS+Z8Mpfl/QBc0tNm1Kohxu9uvYKQ6v5u2K/y0ZJuT2AUYJRJ2WRGKu/TAQVKhHLVZphQ0ZcVZScs87Cap/z3/1a3DG+nTLux8IrWb0VeDrGQqfZBTDePPp0hLK1Zo0D526Tt6mYgd+6Ry6JsbBAT5qAtM5ETz6imYTvPEA1UL7yt2HF63NPV3zoiVj82QOWLNjFoMHILvv/PO5yC6zKmy1ZQtSuPioMFqqW7RQQPYPUhkRGE0i0clbpEPaonqL25ufcAt+V8zz/UdBHohX4H4hjA1aDoJc3pUnaKEAUEaxsCfo7uP6XaBXSmHulya2I3t5qlCV+6oCYnLNgqWPU53YImFbfT1/4PSqtMdd5H5Ec3/EjVG+OPLOsOJCzdGhYTqykpTbWxlt+cvGfs3KzPfNotGpWSQms+hEHlT2pbzqZWb1G4I/MMxXvHO5EgSIlJH1jMrCc/ieNxYaGMJeYzWFHmrBAfbZcnEY4z8EURQ0PsMbFfVUOeYEyJy+GleMMNELSO9QSY8cTUyMSj2PeDSOegvSr1gpSY9ot+m4FUp50Xa5l2DsTnm+4L5/NRHosrzdtfH3C+nWMAVlBwqdlGdaHJsQQJt4xNECpKbj05xNEX/DsY6BFGt7DM7T0Mfsm7KEjAqSz9Dos2+qsef79hNcIjumt+NSGCJ4VEUIkhLCNPtU811OSICpKNEK6nKY7LlDJqOFtLkOFmShFVWIrx4fHS9laHMEbh9o4yiM1WB1jAAXvrDXYPikys0lUn+AOePXa6XCAlPh+E5qnkZZsaCWDLY9GLkp4ZrmS3MrtHLtec6BBKqwkCVB8rTDoFz9YWwsPluf+jKqob5uZXwxMQ5gBTlaFxSxiiJIR92Psxa4dksha+rrdA70sYck0y9uiPjAGtGmG0rxKV+buC0LdsRfG3cWfCnuRQ9k6S9X19BiAbImi7VmSXNyr0zvDeF4QQGLpz9k0uptcmNPVubw4zb8LyA7gvV3dy4U9ae7hHRgdf9KQFrVtBsISFDK8X3WZ9mAkm/9k9mqjN3eZsMcZE4crpReLFdETK0x1yA6IgFOAF50RuILH7vFNfx7aAUtpfURWAcF6+SmdMYBQ5aOvsCYHBAojfpFATXk6W0ORlLKhRZKUUhSlKUmoebhBdBBLtZrJFNoKtKI9d2/VN8aIuaLsaQxW9/uPNPB2eX1TnssRWOtgErPPcRe6luucmyk552mhXYvptccFsiMKsSRsRaUr+2ns158ISOaKTy4+1R43sqvJJt9TxHc8f+xWNXE1UTR8/mAN78u4BTx4JQZ3/skiE3SNxYOKRstog84dflcRuRxSfr+uc2V44r+vjaHsQ7nQ5stqsIcwboS6JL+SsX7gfbctRgZg4FYhkjf3ejEzRprrSkBVw3yBWWI2FwSvtKTliHhjRR7UWKqJa0kj55iGZRzpmMhlRDR5qc8FJUqQw/PP1oEMr2LOAo3yFvIjg8gBdSQvATfzdM8WLnyzkexxgnpErnvOipoDGeJjuxnWRv68/sSi/6YBNkYwffIo9n2K1zCzl2+gBvmpF7BYh1TDxA33F/mm6cl4pXSsvZmGMzDkGJ5l56oYoVV0pnUGTDX32C6M+wEKZZPXZuF1XiZwb9+dHT62Qg5YcS644Oh26tsmMC/duxFPiijyvWNS7JIOSauyki1fl61ugSy0CEUMZELgA5n50qWQpeu6Nsl+gOvADZzdHM/RiHNTO7+f7OtLd79toJo1WRhjt4g==
Variant 4
DifficultyLevel
566
Question
Olive pays $140 for her prepaid broadband.
The next time she renews this, she decides to purchase extra broadband and pays 15% more.
What did Olive pay for her broadband renewal?
Worked Solution
10% × 140 = $14
⇒ 15% × 140 = 14 × 121 = $21
∴ Broadband renewal cost
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
cost1 | |
gender1 | |
gender2 | |
percentage | |
extra1 | |
fraction | |
extra2 | |
correctAnswer | |
Answers