RAPH14 Q91-93
U2FsdGVkX1+XGoZeMb3DjyliXglpb8she8vnAb9xb9Xs1SGbS1UfYI7Oc6EKXFEaBgcOlxCh7vKvTDbMmU+0TfIDIxK0y+n78HCI6Tjz984E1gQOwIYgdZdrlzTqIBQuDBnu4hr4vXGNSovwf+MCGSFrgBxXXyWCwAa7Qh/m0FyCcl5/Th/FWlRSWPjgvtj/YIdT4xPl+MR+WzDpEgRtwqvt5b5yaWcq7cAkZoixbJGUyd7pKVWfXMCnX5ZaZePKf/aYsYQ3R8TCU0KV5wnQ46/IlGEOdo0HJrHcp8kI0/FGJkwHhIoxw9knzP9vx0p5NPibFOntxbQn51AqRxkgF3uheFZ1erCPSXOx9zPE+zIrNkus5RAfoMODhEd1rSmHhh5JXMzkD495KTxALo0YBO76VsF1XmahivGc9261wLK2c84K9lPAm3Pc5ECWuYFmwJj1QCxHyWF37wwkV823N8csOOfXKstL4QBB5zOXcrEkv3Ezpk1SjrTnJfweu620SW4saG6ifO4Gqq7o8O05u1b8r4ANHEmzfIi7Vc9tkUJfSrot7PCKaQve92fMPAU7lVve+YzqGtrM1DY1EYUjvP5G0ChElPj0JtvnjZFrEa5GXxFEkRDO2qBih2SUva12ZOkF4alwSFldxhx39fc/ewmDd5j06Fv0WNz1i0GP4jnt8+3DKFodv1N28vsw65I1hGgLbdECzWV4gpiqoQpPquLGCE3VGNhplPCu8szyJOq2eBXus2XBjIQDOy057/OkW2XsdfAqUXxkQa+m5lVcgY2XXwp34vpkKEfjmuAO0jrNMHQqr7hl+FiwmrvWec7PgTha0uGzwTRP2Jc5pYjLei3PHZUyN+6ATfh7fiWfhY5NRfF92DoTdBA994qmiCHuONtqprdhgPo1aflR0N+x1Z0etE87AMp8MCAYw1e8dleAHTMAnziAWAfPMl9KG09WZpgWjMWoPAmasXz5T13QXnpxi+0fYQJKKEwqXJ7TauclOdRpTPzDEFp27lkpbfM/JqtqmJah4GJh9HfmqgkckkCNoOakvtu8usLQe4cc7FhO2QMQ7PJeIq89WoJBIRT35t6uHThw6nLDRkl0mi1Hnyg5GqWV4XI/7s8lnMy3Xr2bze0pW6qfBw44Ls4ZHtAkFtiPZLMRjxSNtexOD4lqZCO6zrcXwNUf5mEh6mPHOZ8xjTStfIK4XgSSrHyncH3Ji9YbJdydXy2KCxI3oZKZPkOY3OPlkCjCBsw3M/y0N30ycO4PJ8E1sD+Nnaq/ALijIrB52C1K/Oq8drVWK2aZMehphr5TyXtpvmAdaiz8sbmnByretkYW2B0JsOQYTttJlEhZkn8YdJMRTr5i9vUFLaEewDGuZPeWwFCXaajQY6XlpY8JKhlpMdsu6DAHP16HcFfIFPNLMm3Z1JcZ8QmFGomRJEaycWmumhm9O7ua085dihX9ts87Kgwl6z+bhXHBRY9mMjhY/DejqHK027j3fECz6WotjwqKZ9jbb06GR3M5nqlmHZijItamyJ9ne0vZM8yWcwpmkOE0WPpdmqrdINKixUKqUovQbnJ0tUW6liwnxcp+56VblPtPp+UvJhtvGoIZ/Qq6A2j73u4sHZojF3GmSKS+9jJIPM0PkDGL44E2Nymxv2sD5ZmhLR3m8MtAHXTFOsZunXlsS6jkTBjRGjLcNGx6ZHSRuvp6ZOqTLB5pwPidKHBaVQl/W1ha2txuEn05zxMD0L5MoAQpJtXfhQ0sS3DgcMXKdmXZRYuj2pnEqy2AfLAwSLOYQEdk9OukzeuQrBX/O0rD5qXEYrEdikXhxwIVczdg0DP6kz6JVYp9Yv40FGQLyw74B4LrmlJZFsfdrc/fn8E2v79JwPET37mlmILTI4p9rln/zf/KnKF+KPFX875R9REn9Z41grhFGM7Tq9FuVLdTrab94sCotF9bn6WyIoUksksfYKNhbx+/B7j7ypO7Wtkioqu+JKfPJjYB+FrqB3kPbc03Z5XLJjQMlQkpqdGDv7rKP/B/RudUYnNaB+HRRcOJ88xR5XpK6xQSadquGLPZ5wEw410Df/E7VUGdceTj7+Pj0BfzwpYJfZydHzjoZk1wBnOfQmail1+8UEwV7JSHOu56R3Q7z0mBOn7KiZMF9aKLeQBFATY4npQe2Ln4fSnY0JVYMKODtkFc1YPA3hDkWX12JvhcBBiep5jQOaCNbAFJnCXie9nFS7sbV8mMoDIKfTW2FdsQ7vNkzDXb5bOHGENAu2GMB5yZbTiLQRCpnOM/hECR67Ij9tFsH192UbcyrpdXW9YZeYh494yDqsbQY5S44q1gspN9mmuFcAegA2oI7py5D7tHvpHNHjjZANdD6n+qDFxiFrZIxVOhJMwIRI8LaV58HDyZkks1pJDeuZnfPJ4QbHda0k3Jnt8xMjLxtvq6Iw1tJeQkuMX4/nKljCviVoiRmyYQ6p1c5EvJPTtnloYHH1IvkOzAK9Ofe/4+LkpWIA91/1hm5UcQeAxcunerxDZbBu0TSQ600keWVLhkt7bk45MOa3y17qDWDAU5GfAvwPDvHwLLXCjj0RtR7GlVu5Y9o+twf3i+309JgyVvwskODQeZ55FedmS7dWI0peoLismHUoJ6WmW33QtaI7CWiisLlNZQxpJtkZkQ2CoJ3DnNa2vykN4ihR/5YOg9PcIdz4KBSGkKrnDugT5CNLvsrC9XzZ0Xg8EuONig8uwcs8ksoxnBONOJB8nTha9PNX/fEHJWR21CUIqzfTwFXnBqeP7pzzFqdE/RgxwdnithhtFx8HC+m3lJtFCQ5ugts6AYUgRgbNsQI0DLMrtEyHJ4UU2XJe4uesjRpj9UwUBWY9vxSp8AoIM+IFYc3+4rBSfC6CNh1TKyluX2W5X9LvodjddOb9JZATBxkKyi70AVHNkFYerQuIMG5RVDyWEphY/kOLm88QV5t5rhS+E/0KrhL4nYYhqfgF82l/upx9Ec4vbdX2viCHxcHvxiQVkZH3WTkaKGNb+o4e4Ct7xtsNUHvIkCwSTL/YGMIUmyDjxNVxUujLe308wXne3+QnuMJzqTpw8eWyxtYXwYgdqKS90Hs8cRaVhw4fFU9Ky0J96+Iyi0UE2mfX2cJTOjd/SofNY5gSg46UJHl/L7In47m+h0Sizq5EncntxINQq3qsI+O2jK7SMaydqYIUPWb81QwZabwrKUbb17Y0GTu4YROz7iCLeq/5Z/4cdJcttMgAVpoEly+9ceZBEOhOKzRkTt0geB2a+DadoMeS+0BnEP11/+LXSyR3j8Cgk8aye5wvfWQlKfQ4CFRNoMYWE+3dV6oREPzni0Hw37vi+cDBnAL+6yh40DesRBbuiZHJsdLgnp/pgAw77WDn0Prin4px2x585HdrFHMoRVxf9toXhmuhChubiPJEdoTgQL8Anzanf7ao9uL/wRLjD3FUJx3xvqjJ9nf1nwkpVaeaky2F6aUn0SC1ZnU3q2OAkoxGRa4tsXSFbUWElS+rZYZXA1rsfj22RN2Y/gNrB3CVygb82872KKa0ESMGdAgC3w23XGuyf2fFI/hCLcH/jnyOz6u/LUIreF/FW9hD4pIIxS9/1bP+pO3fKZmn2uUtyDWlyRZLMlxNLeMssfZaWiKT/W3+yysXzLE2eSxgRBtxLlXCUZ3KkgHcQ939gmsps/n74eVPHbUIHcFy0DmAT/DsBHi+RBSHe9Olw83Au3vDipk8ZlE2lZm0CJWHA0bWFb/3I5nSsT06jNKfL77R7+J1kShME9sc/DycAclWo/Q3uaLPmsJusl4h/NYch88VRnNOvMDJWAvbDdCqi/JuC0lgGidIjgEc6DKRddt/7O5cDppZOLJBpBMC1sDiWECNv89CbVGDi+xNwX0WubuhsW6Q7zvJ6J7fvZP6JpXEDmInUiMxa3yM98JlEzVLCKZHLd6L/ZPY3a9wsDpIUiBuK1JJrgug1d+TpmV84GAoqfzaXJbq8qDADW9qVsZfcA29Ct0qbz/ZLLUpYTSl7VymHRfTS6pqMGFb/RxwvnCA7DbQ0zBYiht5eS9x/lVRwMxKaH7LgIAdjK0da+koYMqWyaM3g9K218e7x5aGyU/2x+Kri2fearsaAjfxFcjg2VP/VuG+iEUpeFUK5rLDCMmkopkTXXLHF5JAves8A7aqk3UN7pRCidRKNC+rBQfwPIgeUDssn5lBdYBdBin18mQl+NNTszBXUz5lGV8qyK/4BBpfvyJpKrWjQv6a4GgK2j3O8eCqs7unRlDUhhsRsRicVOCvp8Yzjf/shQWr7FTcH+yUqzo/pTBkzPVxtEksVJ6LMnTJbZiCeibVutiURdxWpUYju1EmcKZksf3SoDEvIz5TgCKz5duDdDdEqvWzc9Aj5M5nHmYwMKBj0LPwKS4aRdfPKrX+Sm0WWb117XJS6fokeNiVcPgT5pdCyPfsvLWjfbrBkS+9WmR5OE+ozjMYsN+VFF3HiJlsv/h8WuG7wqJlewIK0CZYTolBm0pWK+QuM2J4D1UU2IG8TBwmI8cvSW0pTt8yySYomkRcL6KlemqKNyx639+c902VSLyx9CqqzMBgT0UFXhEcs/i5LVykfnqmWfA0zedRXXaFdudGvFue2KIHsK9b00yqZvlhIYvVvaEJlIq2c14qlpFzsKcgAF123Wkj1WEfYTnseWY35cOWkkkCEjmOclsd8awykxlbd+ZGpp0ZquF8LpwN+Ab4ePftkk+4gc+sHuN89WwzHy3VkcDcW1z6t+yP4dUnNAM1d8NYujJXOpX1uQLxWwvlUXaURNiSWT8vZPHxAvaFVy2KHskpsU1+KJBdUefh/qoD0EupqZ+U9oILAfYQDH4mcx02tJnXutX+0OGVzNjSEH0xvUQP9OAPFYHoMi47GpJJx7E+Xhpc+P0/uoPC4r5kT8rX/2tSc11u4ODOGswwqOTKlLDbziRHJOjd/Mt3oxVV8Z7ZX7Qf62a+ZqwII0Z36IYxtja3r6ntH3Kw4WLA9R3NR9dymc4Lo5V2jrapoHmjGDd8/PH5A0FdiNpS1WUejkwTx65FHIf7uNl9L9ZN9TO+1C9TELOMRvzkFflI6LIo3r9LqoDNRpOxs2GyEBTqvQwSLouCoymsSQPMV7jfxrkJDMnjPoNQCl/zFKLtJouuTL8O2DJxDLQQeR+4KRpI481R6nBLgoyATawXo3vms/+Hi78MmrXPywdrWtt+se8uRX3SI5v5+ycvKs5wFwH56d2DhJxFLRGdpFbcqEmiiqCmSHPAhJ1Ks48MDQVKZ3H6QT1QXVcGP2lcVZMsaKBMR/bdoilFwsEjLg2hltx65ho7fPFCbJQWEpOHfcbEygFUoNKAkuhQ2xonxDnvk1E3g7xiZ07geL7EAjKlIDjEv4Md64hSYHVPMjkyz5KWf2rLEJQt9VkBufcCCdyjA7b0FzHC4LnL3bGWOxSAMzkjIQ+UlIG9Lf7VTjAVgJ3HHawNo86G7fAIZCM86JWgtrOZwAY2DWZNWOe4E/rMxDu9h48NWZNUiWCV+zOEfQBCgJDBzKtJzT0ep7+Exfg2gol78lv8Iuiv8GJ4j99MHEXf1499vq4bbxG7m7WTrE4EabDldAzoQ8fI5uqMcunWn4TXlJGH8/okyunb6ShdphPZacBYrG85bO6i9Qdz4CcANpK5LmOrN1cM5q1+tgWapskQQVp5yoIscxHWQtUVsL7XyCCfIGwwk8eQLTifIHxtUk85vGkKyI5DPSMp91JwRsOF2zLCCeuu0hri+eJXK+os2Sf5rRrOaLx1gHRm742TPG7ANtLUv4daRLhwmItd7Y84ulHirpjv7nE8gB1ivUw+zwaL9nQaSOdyD1DGkjk2vAtWqgwZSWJXZvOz99yWGXR2tZiyJLrWZ5rEPfQDTEIZtfBf87RxHuSMsjsbRrsRTRj4x9yj3Df0geXURgycqIMKgP60h9lmDwfuekI7yCz4Elqlwmt2+j3eSS3Hs1pgsmCUEDS1bUQZ4/p5OD6Q4E7Cqr9m1Qv/OTR8B+8Ch8qqPaR/HKDpf4417cNNw0HTxAbeodaCxot3kUhVvWg38Nb5/jjKURUa7uI6a7lDQOLWIsXrNvSWEjqASnvn7rg/sVoM5ntXKnBxEf10ZDMoXb98cPymQFuAnD26J55wDU6fkiaMxOMnPrFJKE6lOqTugJMXDGvte7l/u6pSoCT/uZGesE8dnhTaHQAad49QBChp7ZtFqC+QA1JrjWwPpY1XPyEUnASoRchvpEwr2uZut1attXA79Syhi7rrJ8A8p36B8SforSMSUgIjXkYtW6qz7HWFQzSRg31RBkXyAThvMBGFijfEOhiUL2gEVNUw/A/tPDacv8+HqCz90levlK4nHQ+4oMn+kyEg9V1ttTo7Skxb5o9wD7A/zY24GKQQ9VZ6BH4BDTe1B6GYHWCLBaCux+i8jIKi8/mqBRsd0lqLQLFcBWcXqcyR7ADhyPXAdxaREYzzzVSE5p0KBFTIINnh0et7LsdKnIptEkIJreUOkAaRvfsvAjRcJ8eGG8MdHnp15vE/L+Gj3g5JPxI7pyGhBZ5QYCzsGl/Qf7SAKrwSmbJFVpeWN1pUb3AxMaeyDmh/OVmZs7tDcjBDFyGtd1ZcA4HygRaooau9lhzlxwN+kIQvUbPxBxzxfuIZF8T/UlvBisKUCdiXobTWAo5paq50bgduJCIo+JzzQw0JgVdGBTJUkUhSO9DMTUsJBR0/XqZU6iuffxtrFeG/TkfJCzVNiNQeMB8Re8blDAQUyBbumgfyAfQY31JcetmGlaY1dEnWeZHzawavAElzg52Fa8W7S0xZmRvMWO+JyAHJCH4iB1GkBXMlX4ldeBro5W3w/j7trTwGm8/0lx7uG46uksC5WlfYAuiI91r2iYQ0h1KRPZUqQmAdv9y0bELZK5KZmbS8D1jKli7F76lCQXxSDd5riPTFAnZJRxAYJjCFy8h5zBFSGhtIXN3h98/4zOCEE62S9V0tM4NR917/F/CDZLntRBhRnRKFbFllaNsggmrkPrkDUIO8BxXAHfOZ4zHM27AidM8juEzRnWdCO6m/QKWTW3C6bSM5CM3gNBocwXyLHt+uVkCJW+xz/ZkJmRW789gvkMHQTH43smZeFxvBfOFU7e7+1mawlgTSPeoszi7winEpq3+SnCyr31ghFoDQhRF8kRxmsswB8o6P92d3U5fy3psU8IzKMU3czXcPNANW+YBwXxWpyuEm0UTiV6VAN1SxFI4eiv3T7QbBUw+xfUxvDW5tj6l0N54lROf8sk5nnGNOm3Ox+rQFDtZV6w43z7YlYHhEQ/DlSpgLCttU0rfWQU0kf50GjC4xb0ikdpPb7FGahOjWMgTAxJtbLsTzC6u2PmiQ1H0SWY7TjqCzZe+GtUfuVX8f/rjnrZApZ0JvgQfVcz3M2drE2D1KEzfafLeyuB6W0eiKYchyJkLPzxrylQpVtuWlZHbIOWY+QdrDWQfJdSkVjHOqZZtcJHi4mEvLgqLBZSHMcC/WguDfV8c+T2wHGoO38vC+2tq6levkrH7kirx4OGMrAvnDUUGXrFcpbsmdHC+WRTXz7HRflD47RIo7LkwIGdGHAA7s4iiPL04qASy5Zo8Tg1Fyh3jUeh5Z56oC89J7jlnp0B1bdPmWPVnwbrCL7qYVTdlLm9I8LGiMjrFfDwv32YvIf92vsa/8AezNXf2LPwDGu1XxakEdVMvgCWuEyldjFNJX1QWqOfJDHfkY12I4hxQfM3Hf/2k5wqqWeguuuQFXY9b5DiliO8cOGPI+PjDJap2sbaxFKwp++ZNJdSYe1dB1fCCBq5isuVnPoD3ZcfPy7o/hW1MzWseWbmYOs0B1dWA28Srfs374bK1mM86ooq1PqRePcCrrRhatFe0H0fjZ1NjVny+SFO/c63xr47af5ZaT7Ectwsj5a8FqzjbN8IA1dCP83GLgKMvx6qXwO6TNFkq/S9MxWSR2k28kmdbBZsua48+TyasXnKujWi2XjHhk8hm1xRPL0wmDCGTIoao8YPFbk2aSSB5QbB15NYg97B2jq8OAN6CQZufFgko4eIMcFQYaWiKaDEuwqC2LWCILQ1Y2e54GoLZFL87ngAK3ylCU0aaSLqhLTsE4s7eov3Kk6tdu1FgfduOh5MfpCPjxJ6RjcKUqfM0PtnuaHtOH3/jn6dyM4H1TwJ8O9HsHP0Wrlbq7kJy467KOki1nscdyn/5me5u23/7ggwmB05Ork+xK0fo7XN86JynA0Ms5ca8SsaMgfSS7lrQbZp+saW//OTQYXdUDK2+j0egc161+782pzTHwwU8ISdS+Q/TIVsqEyfoWWKnCZguIFF1zc9ra8iYQEqIu/xdy8hL/gPWofFZn+vKexfgA40G5YrD4T2qtMse4rMUuomVqcLuWOQAvcY82v2sve9sNXyBXPrKfELubfqkaPU7qb+OolrQ4WEUIqiz+KdQv2qvWBaxSz9yMYLAkWLyypXInXIUCJVhwmLXO64hZPwFDvATqMdg2dTUJLhFhQuECJU6ff2O1vVuaHhFp64OZWcwNvvKAPoHGWZQ4M3KC77fQkC4HEaix9uJJBDamFd7SmrjxP+hbpLkkhmYSQ224Ih302o4tV/YvoAx5vKrML+jnKgiXaSqkN4ooZwMwNOFTxDZafYtII1p24tjS+VfYohRC9tVq2yY2ByAJfWO/ztg/btJu0fKTSHNladFqfap+0cHOHZaXwv+zAtmJ7b8jY/IJ1g4QBvt2NT43F0kgqKRSuC/taqZTFm5MvyNPyJ4UKBR1mk0L3iltC+KZV9TkwuwXdqefK8Oufwfy9G3HEv/WezRjgdRCauH5Hr+mVU2Z07Fq48XrURwpx1ZfBOuW3B+iVXBvynyp4M01WsReBsg3pCYS2mMg0K61Z2UDsKCU3dynpvvjPIcf1/8Iwghc/CTHUQjJj8Ef/dYq6H9J+c+qUjbRbZjJDLCqunS979MepqFfg1jWjb9IXOIBdu7Bi4hdUVZ/JbKtb/yc/aQY73Gm/AIA2GDt3s4PEE4GXMit0v4Q0JTqpgVrg5iDRuX7lGxu3Z0gH5Fz0oNZ175mQ0VqmX7j3BxniLjFD7gmBDGPmFrN06GUKZrt4bP2ijPJJPc2nQML6MvMR/XjTSPf0ZCwAztxBsWHAd8NZvfIFWFqSRWiNxXsnj5LGmWkdeFzZXB27MizMWC/PfVQ8NOIT+OrnjkrjCJnqyqKoiCOvWkwHz1+nZ78KyJQQw2WAklszL+1JSiUw27yXGgjFjFTCEOHk/l3RCAmt+1JCfGN5/jrKKWGXKO2kJWkTxoGWuKEiSaOyYFlplvI4yqC3bE/hWwqT20vb98F66+MQC3Dsz+IP2pA9g9aCr/NmrEEi1KeLrXM6l6k9X3Aegz7X59W8GV8s2eEDlppoYh9DL1rkCThP9gVR9dXJqbRYlOHJcWKnSAxOEgYjHeI45UUlmwjREc2z0EJuIsEDKauy8IY49I91SBlsaXOL/1v3fQzfBBCDaiqKagNI+gyK5nmZUXFVB4VuqdMBd4BO9fpDaKBQFQ1CloCq1WoZIRIciXKPg+1CSZczfYxdips6VdAtUDx1kqophc3lv8EnJm9QH3az9JrJ5JbwYSK4lo5YnvQppz/DweP/9MaLSKwCfptFcwoN7UN31G5CKZIfw+VhzshvJauPmG9/7v5QIiXszsle+2xYV4NYQYO/vP2PyaY6sEjOB6b3G6dbuGq6hzpU1eWdv2+vWzXcJSlFJDUIOBC+HHNCPzjWCBG6aEvx7KRB9NAjonQ216GmQUFL5wZyGIYNn2/ZrShL9DtK2Fp3I4eF30HZAMyxqV++LXGfJBDNBbmv+gF/VZ9U9nEbICmnjrZ0XBGFUpZ6VuMMQnLRIF5NqSG4GjH8Sxw71Ud1Ht1eBiXmZ/QuB3d4t77Vwoz/7BobK54HE76SSi8YyLT83noJdh8TpwecL+wevqyvTz5+b3ruy5S1VpQd/HMUfmg5KgpWABSKxG8DqRO+ICuZE9pHwTYw0IFCex19kxA9qV/Rj8+Sku+RTHiPt+4RM5uUt2zHRNdifj4uvQETekOKxeD3D52u1YQEqLmf97PNQt3SxNHghFQVXWvKaczWMqBXf1ABEyqQ/C7kygkKFScqzaDrEviQDgM/fYoLF/fu/Nao0WHE78jHUo7V1zbCQ2znvUxu0OfA9qRPF+8BFOoXgdESlFtWcoAy4fJYElQ6bQdsAvvr23pGomlGHZNYRFH6HvzeGTIedfPROYF8FUK/4TuuWmuMkO1xBUGOTdXttF0uHglx88A11HRzlYDSRUKa1yqD/trHVVu/cS4ANUGds+IckjPeW7JGDwEKLXPnzsdSTzjqv5gUALewzh5q5xpI/XfkJh3eaq7FQxSBrSModpnnJe28b1/MxNWZ/547Jfig6Hpvmzn94ybNFWqrqvwgFmbdvE9DQAKuvf3G1Cy62Q+vEKAjTV/ae5hWSSREr9lEaZLjWL5dBybYI7zGJVYAKBV5R+kj/DI7gj9DJ2eeSGC2qDm4gcF62RUtCMNJf9MWBx9cPOgd1VNsLqrz+FujexNQ6CMtOHatwX5rxrTmfxO2hbvQo11MfB5tAJL+jUzfSJ1WLEBrGsSM+/RWGce75naMpx5PyTPX63sCAEock70LUfzLT+T+7RK9eiOYWJKYb7CU3OqElqx+fmVs95yLgEKA4496tkJKULZDLAO+Bl7b2MD8W28SgZTfFP1oPJqN7nhL+pZoikYWlFD5ozXaOKElU4QGXXVrbW0OWevNitTZGrcWvl+ltEYZHzDpE720aHxbaOgkZGFJKaZHMDGzbqb8rbPaL0FNxai0lklEGHm7bcYDQPD8dm1d0APrPeb2LK/e2qIqyniNp876qDKd6MtTB66Vh4VmXjZiWnIJq9k1W3Sdn/BnE3l5P9PPW8ctzyhjCiiYYjCeq8ESOkd44qRX4Vdp+4RlrbHFejkfaoq76dLToOz/wL/oWn1W37K9h9H1v6CxEatUKHNq0e2exMxWFk8IAaBVk35L2zDOTmX7MHBgCDv8tfiJTqc6t32MiTgvqW+ZfRozmvexXFueShHL861pNaFZv8pcbRhVbUBzQUhdr0BBMrTBVzTyK5/XklOdpl81cz524T4d46LV5mLznfIRkqCTxKGs6orYgytyNjIw+NY4zITyz3jh9oVPsnB/rdC/MPWxvLvZYYMm7DWbRv1pwYizEHi/xeLGCtnxNWnbb5p+M0xOEyWfxDcn4iWz0zp4z0aTL/hEhuher3s/YYkHTYQ9ddPmk03IlkbwHiCCLoRbfTAQPJAZy/nXDrSoByNnImg9RMjIyv5f8DWw+9Tt5Minn1efFmimYMW3TPEA1sjpFjTDQltt3GdzM4e/6rvkgbrWrZ9I62W1UaZc+5AdUPYVcGyB62TC4sk5H8j6aVx5JUK/9iWAx2vZBV7jptlnbfCkldvasYJXauLGoL/uD+8AmTXQ97fNXSrRfnbiWX8bTTIPajtQktUWalLp22n6HvOq2x7bUTikXnQKUyQwZZ0lGSrs+Q+a21SfHwlVvgIhnKcPnjVZnfsYU2ff+OfcfAEXocYHI8Q3lsFJCoKNyYwGEiNtB3OTJv0YMNMwpuzztNAMxr61om+BDp8Q1jLa7p06zPq4cmj34tIvJuN9Iei5s2/b1rH7MMhEqgpFUxXEZ1MUQ4OPMXdsqtMAUWC2l+IQ38MniBAaIiv7PCsqrOLT3zFQJq6jNLZfLb7pHlAVubuBJE4Oxg+LfmOpPAG7z1WqelrCo1hSxnbZ/6h7M43ViVObGRfk4wrrPsRv+3CSEhRZieJs94pUvcqWrIPviTq4R3XHEP36bfEKIH7M+AxjToMrvqC70QsNeIK9dEFQWuceaZ7nHRPhANbSmD30FfC5rnD42psBXdzQNN2qsaWVUKsiD2dJMnylYVfRtRRavJS4qFHfdi+QL2qeiu/DgmA1bGRiOKrAQKpO61lbPMs6T9UWRiH9uVDvubTiSO2WkUh13xXHzBkZ5jAEdwsOuQ4OFpJMnUrQ0jdQGV65dG3ZeNAJxpCiRnBSYiBjg56xADW0Q/DCstPzn50AiWynh2TQQXeUhX7JCPraZobtL4VtU0ZYgW6QeR0qGV92+lEcG2yBPVv+tJ7KUkrlR9LUJP4FsBKtSqmPv3wMhwA/4klQihhLy4uYqbeiw1SAj+effmvfbMPXWtp+hb3QR1hC5Qvbk5DCAEXyu3VbO+PUj0+xMUOsXFy7rqYN8Be5Jj+J7uJgi/25NQzMwAPwp2mMwMzTkPG2dwD0D+0PcnwcZDdvgiFPoWbcRG6MEDPXS4q1MD9Zad/HEjrGFzee+GSJWZrPxYoZ0UhJ0fN1kh51CpgDWlmPZ8hADrtDiBel/2NoGTInrj/R4d0pVEA+u08AH5U6rwEr/0NquYfrTbIlMwuM/ocJNio0wPMkoCs4+pAogD3eUeqPVPJaYypPrDg/Pvo9gubPPKCnD+561CwBnk6Icc8no+wYBE4HxAccUOOrRoxpzCppHMRnfTo+oU8CFhxjqagnZNGJ2rpjmf2QzeyfU0eDEm46s/l8784/4/1m17nKXOhaxeHydXs7ehJjtlllGWm+InUJgp6C81xYqVisxtaKr09FMIJVtOx2NUjs/X4wl5OAP6GIfPp9TA8G1eRihWifhwUom8P7LAPAEROJxJEc1oXMvv/bBbQLcMT1FkIdTUvGANuyJ/UiVU7dCOIoDPk+qx02zAqefEj5ysEC5cvI7mc//dCUpwhGlJxGms1oukkb+kXlkuJ7k7JOdzDPScO/sKWo2mZOgm+eSK9MiZsc9l4RWYw8dZOWrLwMp4vi5T4Ip/kRpYq+typLCJQjraXfuLZBtK3ILLdcrICsxb8tingM4FIXrzvE1QHiwQddTo5Iep/wLkWZCS7p2FQZFtA03ietuapnhBg5Xk1xUB5UbMg/Po1plDbV9YdkPegGTqs4XmvhBFwKs2dNn//pS1U3ygfi/KZmtlC7p2p70aIdxUwKVPsoW7shq2eGvE1FVpUMNmBkSvGmTlSZHOs65iIq3Dcum3uN3CfIgEyILAEWDVLs41acgygr+8ZerKEuyPX2D1TtyiIw/W6+6Y578fysXug0NkkBkptsoyyX+dH17Be/rVAnKymNgmSRNh6eXa45a90a8S3j7E+xYRXMzGK+MFowni2PzFNh6iD00lmTrFYBP3mqcm16rgPhgIsByrQlgdle6rRRlKtUqmfUfEGahOB/PfVIHxulHAKSwqZuYpZniyfM5T+pU5WV+HBB4uxgKEhBhA6bmr5BQJ8n1FkIYEU2kMpo0Th5L65WAFjGesRZdC4GFsyzm2289K3cp9A3YIgL2krZ5RBHkNzDKQC/QBAQtJWfg5DNYTGhbYzMztwRHjXGUiKtzaWUsFZ5dogwIwvwcGI6dFEz3DWiU5heIX33YBkif0/7wKSTW1TqZ5/mIWdbgdDx9ZH8tAzlJjHaRtBh5tGK1il016376nVKHmf1bBTPPALaULjEPcDv2M08gO2potRIeRAzdlTkJetAKKfSA1l4zU9zAFU6JCSIPzApXlmRIQRcUPzbXssdfM87VItdym2rjsw58UXQjAcq1YRZ9GwAz47+lJ/McNEgHfCdf6slKo9kxi1GMkBrtNC7SBetMItA5R1m7+PPo2QneDMzMMFuDaoEPKrkWxRz47zZ7VO/Lx9PgHibcOUvf0shvTdlJFbmGw7EXrpNycp0Djvl2Os2WNbG1IJ3ise22yZ6RkCUIGqRJU/6Ae70BY+mHfHpk+T1Jep4TZ7/WXRGxcqlyZ1HDpMDaUY5sc4aBpWi//B9rYFmQibYnzplyN82Jp3rDCnZj7NLXrmdPt3gM1TrmpZqw83j6ypULnaQm0Oii5OuaiSNwJSIPVArVQqCcpqhmXQJVoXlccZOhdl5HWAXyQ7YMWZKKP9Rn1327Z+t3HQRadZzS21cxFRPQCVhSM4mUU9TpspqjrS5G1KLTjujaKmxKC6KBYoB5AGtgASPvjT1lKcDp/5DkgOR6q0hdKRr80w6hqHUCbPNrQ+iTOckkxgD9LgumSNBVHlUuX+33pLLj8aVJxqFtCLasjdlxpU5g9Fnr/cZD55NeSoR5tbJFbgnQHkbTz6GHnSPmnlHoKNclGoqd8aQcKCsBrMfSpnKw9YAOBdiauwXP+sCrZzGahbv4iwI6vPyCMaI+HdUR9KSajUiqEHSJeHpAFdnfZ6/vGqpgB/ur0S+Yn7tJVVXYoQdkegHou/uFZX/Us9L22w+SV40FF1F58v5ijTBY8E0HBP0AxpoeDHO6NJUIXp9/zf91MLkjUpcvLWfiSQzJz9UeXlfuo1qbJ05HhEgnRngk9o6gdWKWigNr0wWWpKv8X6h7NhU+pbmhSS31fadt1wZ//CJiVMCXCoIFSjnufzi7NMupjQKkk/HhWIGPdz/lltVsJ9xVPIvezCBeOG7piTtJXskbsHiCe2Dd+v5j9BcY6bo2LeVnQAFQT5RWcx202cFxyT9+kXBH6CEw//+KnurI6D/bxdIgzjDz5pIzzL2H6l2Y2USMQxCkURWFVNDybwih3dQNg48Zu3KuOtW37b93KXMA9uU6RfYnOMiTUVR7oVfcuXh3ZIPmadOCGgnqr/arfjMS4zexVaTQ4HSRzwlydzJBtxniu1w11Z/LamC2cXGSbD7YGMySGqRZl92cePTu4lknMJEqp4HMplnco/bZ/Mx/XHSsBM0Pyr731oMUGlmA3D+KnYGVfxxyzAthQxT2GlRuDcEKn8nfS+5YcDt3R5rk+1iDOzvZjM6zridGnXf16rVYGleTOvRpKwagw32wklZ86st+E1U4XUQzo0yeqfh5pxaX1ywKs+Mi8/vzmP1NLlbwrGXnh05M9oneQtHFhQNbTkRLrldaAmUujjYMUktY3dxLEGgJSHvLuIJ0Bq6ZXaDowFbQCKviXKJW7yVrBMmXCE/GOSdqJRmctpbBmP2+SwmIG+nH8iu1kwuXhbCBL/xWLbWhk1+0sAsiAc+nEZQM+9+SRtVkDHMPszoOmbucFqEAL6GdLijfWtDgGYZkgkxm9bo+Fsbq2+Rih+nQqsZnEl0cwrACXu8+6VfKzn1kmy4ivP8L47OBLCfT2Zyouc4J/K8MNF2sfTEm77QpBKogtilON+HguP3aUjiZTkWdvPB1d9V9Rop3HkDLJeWbLcQgpywF0iQ9c5C1EnMolvum73R9nbmEaVZYYKjZUPZE1yfJy9mZNZeRZOGJfAOawX64njQU4IWgaforZ1Og/FuueZf/l/PPRCr4vz0ZTEbLY5WLk0skJRep43lqIndSfffYkDS7PZkIa3L5/sc5Ozl3iqUy/WnYVlhGEAsRkLudsHDoRWTXXaL0GVgthL/V1FJqKDHvPQcI1tUC9uxYznOujUYI0TG1lPZyqOTJDQsh+CqIAvKDl+bF+AGT02XgAZtnYyxxivFKY/U9tIyrP9kkwEhp4W2K0YE7srsiYslK68PfwGjaOGPlS+CzTbIJJBTEebmkP8QTo+DjMEnu2TjH5Vvhejq/vdV4xZyZRsLAekq+ZpuK+POHNMVcGnh6oN5e/WAi8lwV0gsUkJQf7HcGYfwwc1y1ICok4tMWAGluMyEtFGB7WXhDqPL6nu69UxonU5fTmDee3njYRusbmzPviO666nwmBuQHyCSLHxm4h6IxU8Esuor2ys6SXXI9tqru/H2q1F7ljfrkyZ8eGreN9PUVxwUaCRm/O17WivgyvIoBMwbuPBy6Q20L739lD/U5jidjGhm5e0kbxKx4NOrlsgBGVe2EDVHm+HPS4VimcW0ExmhcQU1n76tZvXPQ+fSJoXtyMIRZ1vbBzRe+Wp6iv7drfyWy0sAF5BHmB2RhMFXWydgmslnxw0eWWwEeLuS/34B+bcTp9KRdVGWnNcN6WIxK5rhXvl5BIH6ygQ1Y4NQyD0JKOtDEi/m9U2vQiNdmcdoIptMJAnw6S1Ey91K4eMgBKGiMN6l9kY8ndC0ZkrCnFAqluunQSzvwWjYzhTLCvZhwXGY2rNwPSVk4SFQWOCB2iJrkNJzSpEFyFKaahlXRkkPZgUt5Me/rVY48axjahZsWTr6m5pMTn/Z+8aYueLM45x63pTm2k7DiehGf5EqbV3rDGAjm1EkBb2LEDHIYXr6lfbTOPGjsuuw+m/ptYC5gQW3CzjM6CK7k/0UFwv9eRbcrT6JTktLu4OKc2rXXsZGxT4YE/5Yq9gcZY1R+0HqpiQXWWpKIcDO1RmUwfdbMyh815rCU03jhCdBW4h70jO5Uw0GlEMCBERwA6uqqlkAzH9uW32GxJSHXlEN5OVOlEbs+7Ym7ntYOUwnlDLP/mgPO5/vyoMvVY/svcAYE2WrnVTsCSN47YjoOv2ILD64FcSagJ9hUSlsL3T7Uug5xSgJXYleKAmIu8So7VCjRfMZC0n2IfjUCxmGjQD8Y7uktjcA/upemm+2a5i5W8ygjyAKWRR0G6jdC3H61U1G0zAGFT4QUK9mrXuLlTnEt6n+TpcltT8053MwyXkB744SFDmlMYoXxJIbevaI8yuTRbZzLRRIIIG5q/Nydv3EGeFg62lHzdFXXYYDyrNVBkjPTLBHD1qOrVpwB9U2uJZXVdqgCAGgkhEnRXM+/hyTf4r2zy7wG2pI7jyI/Bwh9yr7HqrUI3UVrj2Z+anJWlLXJrvu8+RbAVqLY/9Fw+8nxI7/PUDZMtaNYHlfeKYQcDm652vxnkxLzqa/QEEuhRHQZnriroZ5AaoK7y5OnPvp8XjdWAmr/soRBdach8UjOsIpIx7W1Ege6+Eb5iItOJrN8/kism7F0CHEE/ggUxMkILRCOX0LrXuWlqQwDX0dl2FRnY0Dpslo/mEqho3nOEdcsSLOxGdciYNeDntBj1KsrFzK0sjl0QnDgYZ/XtnKXI+IGIg/uWqeZH1J6hfZIHJRwSY3Ge+XhoV2bhyR1Q0diBii3JlwpvlMvTvYzzv3smkAL+qZh3ytLRsKLPHyrFQO1ew9XCkzSpE0cPwRJMEKdig85/tyMsf+qvvFDshQ5xCyn1lL3fWYL95IpvnWYhXqzgAoNhKZf4SzsS+98SA5sqzeLAyHKohBsNDZMwOvdf1lwyQNiYky53t9q4a102gum/a1VB5uvHRIkbzlvXW84hVsHuW+x75UX4g4m4JDID1xEvs+8KSaD19g3eXpxkwa2n9NpXk+2FVeDvxWF4OTENsAm8y69jBnRWSRgpmj/7/k2Sa+84Yttu8NveJZL7mAz5ubbtpHJ7z2kbn//o3/llYLL+VI1UwRFkXxZJB+SdoPhnxa5q2/UJEVDGEdleCFwoTHVoVZ7PkE8xOwPdJPNqhl9LHxVO35MyJHSdn3jmdrly4SsBkED1VHs0+InAHBg6RZZvEWOz9jIRWdhhVq8BshmGInw7wJBZuu7Zw/REaow+VQVR3kAvpgqnuOby9OgDiz6QlIRRe3crq5KAiaDMMpTCgeiwQIGYEhNJwl2axlRQrN4N76fiKeP5W2sHDOnZixrwoqCfuI36s6KofAJufhFR+vgMI5CiFTGxEDu+xR9gK3SShv8dH+y39DTiOmiUYc+NaT+v6+jN7oZTWZdm0rLucQBnAP6I3fOwZNAtrWEMVwJtfzpL715757XGzbFUD0cczDbAiKZuo1DRF5ODKP3m7/nIuc2ZNF755ygYqJcQmNK8Us4SnQ2NQnBUoLufipU9zunb3y8x+IbIBakO62rh2O1hvSRwe+OXzZAQXpzoZdsp8onh7SEn0LWhDMqC/ZFYNDXF3GWqogGY1gv+vrPrjpR4BipEWdK21mI2pxJQqcnpi3jGEQfn8lv08iVQCpZcusRZ+N9gOrOQwNLMsWWNmTpSlOmUCQj43tNdT6Pch0SiNERc+Kdz5KZ+0p0T1Ez4PUaWCai4+jG8rOO9SmSuizzdOVPzeu/AoFsPJkdy4MQC10ioBhOmVvoVXYoOchIQCPUevMjjtSDYKi7BC8CPnEterp78sZPZnMwEr6EUdDOdRAqZt6xcVT+mjUr5BshIJ8ckMXtOjEBacE7d92Jwk998d9oFifZl2CFm4mH9LHJZ6bHY1rhG4eEIjbLYjNiG3Sp2eJcaWQhlm+Fj+0HnY4nIhQPoeK5bt5YchoU4fiNZKl2yia36FkqoojwK2wPHcUPGFqBFIEGi7uac8byPeiKEEVPMBQqt02RCtc2E84yeaPCfehnN0IHk238XUHRR6kuoxXGXLV7M2qcqj2Oe23iX622b7k003RZ4pHKSLnGCJ/xiN+BM1H+A/aXUOBtPsCf62xnlAdfBd3KyfZZ61urW2KzEvEcLooiS0Rr8qytOI1WxNBa/rGu3LoM4vPyw9jKHsnXV/JdWElloStY9fm7DPMaaoDpLV88VjPKV0rl70F9vHBy5WUjZN5iYBhMbUljpcVonCdr4y1w2qoF7MsOsLOs//WM+elSe0B8EYBHOh+Py/sTN438fZSo7EJsck7vUHuMFN++KKlybZa73DI0H58XnfgAxITnfm4OvE14xvcWjEQFXx72DDtHGvRpVJnuG8/6aG7u+959/IOKP++j6kiCsCuh493kiBLrf89maH4T13RjxHTvwLGee+EjmnEEo94pP67f/vUaxuXRW76UE8AAKHJhj5nsWMLwoOeg7pH4WbvaoHPjboDSf9ip0b9CqcAJ5SWRww6qhkyi3RMRigsrV2Oi1w5fBkfElZLjUMJ4TliOuuJ3Apf2k+gO/SbuwciD5Lin310xQAlP0xD+sbts91Mhu37uvCBaySxX88b+yCMHrLzYpqx/l3hh1/YI8rqfTjAeBfx3h6egVndgVDgxH4LpB3qNbRZVGbqJE4jwbiawoOxWQQ3SwOwoQtIyseW8fbjnLKxbw+mAIxEJwnwe+GmmxwfDCSu+E3YNflTDXG3m/5mplcI4qOql4Ww8/TN7BOJFBAoeOCQjCRceRNKujF/6paUi0KLF18D5E3HMwIt00O3BL41q79zawbH5kkNLUJSL4vBpaGQB9MKbt+Pm14+z2AnLNlvOgW9sAbHriuSqyEW+Rn9UyBpCpogDEGGsOB0aSEum3PiyzSodimLXQojETUOJHU1HLfgav19pN4OcYLQGcxKNhKBxjCkRb1Jj9MuMLRmJht226LhtbUVlF7Y7AHp2IIp0H9T+PsHX9ODrhiw3LA1f6lfqHphIEkHaa5fzAncmR4D621RR3LLqHqua6A8gvm9NK64r9TaTJEwae7n0e0UB4eROBpRAY9mdDXj6zvMfe5HaNqgFoevxqT49UvoKqmUympfda5Qr7jN5WEFqLzzDQBL9C8ZzBcDxdPjJrbRS8dCSECAFNCdp/8qzQKdxGvxU/che4NrNZoisXTXE0H/W6K7K/wqEZEJf3FrzONs+7OgOI2/I3v2wnAvn8dt+loZMpEZwHj/i4w7nI1bDhzFfLDLa/vzVjO2WJvdWITFG0MMw6O8uyxVNKooBzIuaCK8FOnaVh3FkEKzvfoTdkWHxEumlS5dUYKN6h7T9fj7KL5PFvbVJpNNX8iDLor32krJQbAYdpt6XKPY/7ugJ6wz4J/2JPQt/IKQ/MAfDZ5bWARiv4sJRvHp1gklD9igJ3dXm7cNvo5+PYU5pvccHJhGKkWn0ymSb9I8mDMMeeN1fRggLCIeid8kjZYiacQx2S82Sbedf0uzhUvSZRx1YWeWzf8LPDxNMUU7c7nbJIafcsL1Tnc1FWc2iGaqrNiOwaEKvi1soGgAGwuZTwXPG1YRdUO4fOhCVSPGZcXk3dlSBQQ6lykuDsN3cdl/fxTg04FYpS/Y2t8OfbGOGSmUEo0hs8GWOqP0+QU4n4lBykBMh+Cascyui9zR0+ut5xgfGIyYo/BJBvlQWGG9ZVisNmCHu+7v3m2heChtzrzEUlexxJENPP0EHa6NROHMa+OxVedTnaX5t5AoE4/xFeJIUNIXAxUEvIbVkqZYAEHuq/zs5BNV7U2FC2hdJCT2mw3TfuBqNdceDwlAf1ZcRw+/F8vxuk0WD9NgNW2mzzdM9IWSGa1cGFqywWYBNrn2IU/WXzeZsE/R0X8AVbEG5y1Iq7hfmLCdr7K9L4La5fZMtxUJHqbaNQn4azJnqjzqdEzBECVPdsieWJmXQY05qUKLmuIuhqlkBgPEbN7rd6sO7mnCwdYUzOeNM/GuHolNU8zZV/0biwU3VDqhS6vGpK88Jo0uswsiU1QB/AGXh6oKL6QDaUwzaRdU8AC0jyYXFsU98D6982QknQxCbKfIW2OGoLYfBUpL3HjY6BIRfudeTnipy5U1yatxx1HxtOTmhYmiRbRf/VabrmKayq+sDyh7Qq10qQwv5lhNpJNNQ8K7Yay9uTb4QoLTBgfkf8kvYISAg2wczPBtfURF3PAvupmnlu6CuWKbUxT/Xf5SRvmSriA0wR0geyAq0m4ko8zQl2UVtRdB0qtp6rK0+p/uY74wel8PEjqhFQ5mZPnmB/RbvVpMG1UsOvDW0TkUyQ4trK+8Y39pFYF2GoKrQU4dm3RKfOAB8yVr0hc+whwH4uu+agQ2fyEUMTU0NKGSkFYgXYBLnsIHJUhnCrO/nlZpdWqFyiPUxUQac/3FMqjLRk1dJbS6psU0BiQosB8xtLA60GMaq6Bu44lbavlqYHqZRtflQ7C15L8OVOmsoqE221CQ6BCNwWzd2HFTVwsqejyGCgV+AqJjR+lqu9vPBnWq0T7RZUE3OyVAMYST1/wzieunEQA+7e854Si4E/xrwU6p2Dm+Kc3N5vE42JCET7IrrX1Fkp44/O4OF5PcAg1cyaELE9IskTNp4H81J6Lsp7j0hpi/U5m3MOeQu0auMvwQWuocfblANIZ3SjzrS/OHJatfgUBcxV6kv0JdWqvuUC2sGeBjvfLOppl1nDMC4JYHm/L7TLBr657zMWWsOsLQP4KAPyqJaQESQear2duVx8KGHE7o7q45oIVCBf/ntvCiUxaK1jJocfoCZ3i24WMZD446xq6wvn/c4lm2c3U3XoDPk0acG7/PocD7fMWvtxh470u2fPqFrhdwmEbaMOl1kIGzTPDX/fs4q+Y89BOjR36H7Sw9WTF+N6HB0Lw3fBrbld40lu3Rizp9pT5FRToo+0Fw/5C7nVQXEgfB3JwQoR7eB5B6mZvT0Rm07i8MZDEiCM9khW5pjyo6s2nSJ/fpWacs2ItjEVd5IuzfPbD7lzvWPct/AsgkEPAno7qJipSbqg2zJhtuItUYRBsd1pFV8BN6qTBVkzzM/FbNtHd1ODmShv7xB5fTHWQ1/WE1sGcY+apS9Up5vmyA0UsPeL0wByUjNf01PYw/OxVwmWLdZbFxv1M/Iy2eTepgqipsMp/Hxj2oRMx/BgEzNZglcdsvReO4UaJjqIwuZFuHobDD4UJ+vLagg344bWciuH/Vp2d5WxaTmespiD6s/7cbfVNgnkF9EbkCJ4o0Ts6ks+GXpmwS9qDkjvYmmixa8jp8loM6bLjA/5vqS0n2wKuKPWjpG+yPgDXzxtfiQk2K0uDv2mta44r5n7LOVIE5adyJfOmD07OOQgwhrcjxRDGua9zKao22JFCj84ZBRxe0pj5AgrYOZfejSLXy2aaIw/DC5jG9dJWJU7iePxZsMMm836bWAqETmzipFBK2KzNgFMHRFmzZ4K1I8W/WPyz65MXJwOWqeYo+99N0+92NyZ6mRZPZsaxF04bl3O2HiD8xLmxewdzhZl4kmdkcYpANErhcRWiRQ36sXWJqIF81DwvOsSQ5+KWSEZnE4p8z2ayBbNOYXW07OatdZHX4ZDudBxccKucTD8kN3tmBXH3zXAoQTPuKUAO3p5fwKZ1E9ZL/1bUETEJf9YA==
Variant 0
DifficultyLevel
517
Question
Matt, Trish, and Kent went to a pizza restaurant.
Matt and Trish each ate 81 of the pizza served.
What fraction of the pizza was left for Kent?
Worked Solution
|
|
Pizza left |
= 1 – ( 81 + 81 ) |
|
= 1 – 41 |
|
= 44 – 41 |
|
= 43 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Matt, Trish, and Kent went to a pizza restaurant.
Matt and Trish each ate $\dfrac{1}{8}$ of the pizza served.
What fraction of the pizza was left for Kent?
|
workedSolution |
| | |
| ------------- | ---------- |
| Pizza left | \= 1 – ( $\dfrac{1}{8}$ + $\dfrac{1}{8}$ ) |
| | \= 1 – $\dfrac{1}{4}$ |
| | \= $\dfrac{4}{4}$ – $\dfrac{1}{4}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18cRXDqHAS9d5t84hBLvC9ux6sRL0KERfieZ1XfW5Dh5VqpbLp3CSpjpyS91evt8owsd2JlBC4A0lgcn63slHDtce0TEHmfsuOltxkipeIPbvBloKc9TNzlLdR8DwYd1bXpNGcGG/kSE0e22qlA9+SWCRyKfwADOgXOk03rjb7erVFsQS5lSNqHbP7nOUXzX7QO4tM/ABexliwlScMqI2x/mJjmPk8DP+RfJglx23LG/oF9zxUhU1uabHM7PXhm54TBf1U4v1EgMW1xXsB9jx6NORWiLyAMbVJJRdUoirn/pI0Vz3qF7tpe3FpoXmXoHXy+9DkFmwBw8jqavIWmyxHdaPWBxlGjlmMJgPwYanCLqhpDwPKeJZ9bJzBNR+sLfvyE7U7UVCcNlZTo41JTBC/NyI7wdtU/A9yiSU/uwgcTaxK1lQmBqXsFkUBQyK+Y7mc8sCEUYA7ULEWt7U3bXmXE6OOauK711NyK8oW3EknHtV8L9A48AEeTxIsqVA6sjgzG3w5tbIgwIw1IBL0g0Fm0m+xoYOhef2/Xx8YmT4BiPeJvhVaZMAm/Fy8mEZiLp+mF2RfDCjD4x0pOWy1fXwx7uGOnrUJQybz5MHH2Yg1r/zA5nM5FMFSpwuZkcksbIqvQAH+LXWbVDJ+FLbtWNWtvjJ7EV5yh9ET+SDPn2omRL2o/qnI6Qd9RroKKohKQjs0tcH08oYjkVfayLjzB4d9sgi6Its5BQRyq+aWg37gYVPJnX05ENghSC17QnduzSF6195tIDqS5hdtr7Vx4OGr3/IAiNCzjZLMkD+b65LavkEY/+15KUBlGkdBqmwreN20nNQz7ecA1E65taZfuvb7xF3OAQnUJCu/z7hH0AB6/oAln1gOeA+6AD2jZ92/puOzBxxkWdOMBRqrekTnlvOvJZUsVA4sZ+UXk5C2961Du59mGhvao26/GVrOuDWOfq6RbTJPHnxly7GBc+xpmeaxJjzHB+w849lmvx/AqWJzzY4HlgVGEdeJkkAaa8N+ZiA4kQSTy7udEKx8yo43NnElmqbyF1vM+HP5hCudniddtfNfa+KIc24e7jvpp9X2q/TqUd72TKdGxNXNrUpL5udaOSqm2X35cYfnOJocYhBOpzDEox/8Nw6t2kqm4uysVD+7rrimzlQIsmPH30teiamj32pl4aJhpcQyGrWqmF6THpkHRc4cvtafQtSfQDZBFobAERYeEXbVaJT62+dp9xLggHNxpQtDwD4arpo8ePkNBlzJXGqlqCAbmGFplLQGlm7M0/kTXsqR36mfZgvnmJDtyulQOfxjFrKUcSrkMyjqe5PPrQ15QNGrauzu93Hlfms8YDxgNQC2dXfruzcmhaIyzzDVtv2qvIpkUoFpt4V6NM2KWr2uO8uqIdcMEiUkteqqZjH8IWlL+uLItkweC3crnhDgnDzMkGrhDgZ2toh7uSlD7Oe5901/1KH+3cMW+VdHqeh/19ym3tQZBM9UHUlyCCPMPmUHrDU6F/GRgHBrlMEOx8kuqsSPtZGZvR98rd0K5idOL7IqzgcWxQpBYpGPv++63ddnMy3qnT3vusnzaH1m6AWFb80v8whp4uZOpTrjscQ+lFZz+/K/rYYU0XJwVBaodU+Mm8ORVj9Q1QV2Fr88uvK6cuV78t8PUaPwUNYV6h8HGkFnS6qqpfikRYaUet0AOTSNVIVBTHs9Y0zoSElog3cWL9YEciXMJoawOWfLxPoNq3E9jnK80REyZHubF2bOwlIP37EnclrTjSoks9T7U5XtYvSsXjw9S377bqRellykj3XsCmpNWi2xbM+/5QuIts/J9+HwOCRmcu1M4JZz4FLuQRkjwUpYyzwWb7EsGIsgH4TcC9TdKNvs2XgbAe3wqmffwqIDGSibk9FIxRgKhTEO8OOuqzdcTwYixoX77A1Sqnr+zW1NBlE+3ZIBMwD9E9ejuX8WMAQEvj8rZBdEoEKQ4uMS9ore2x5IlGM+Ol9RWQBcZAmm1mmvs/SRlxGYcC0L3g+ULr/MgMmSuXMqV02De4WCc85aSOyhx5es7xmvrBstAwVM1HFrSqV7TC/VdVsnZTcKX/k4AwezvdBRZ3Q4QhRjOCQOVfUNKUH3bTzHw0IZFgXG4OikWEDBobZxd5xrM+PuA7JhTNednjfwLcFz9EeCZENCu8mrYkhGSAfKNyTqlVcdmw0Oeiw8Gb+T7oBYDQwFuQd+Q3F4dQ5BCvJE7TxUsmOgx5QS5RYvRh+Mr6sZZITGhZT+HbNAPiMCXk5lCVZgmPmkBTaUaZTp7lBM1Dq+iVJwD4KqMjruWuL6wgyjn7vU2t0n6bMT0otbHX7amyxSWjUX0r4HJqnRQxa490N6fMm2T4lb511XuQXNXCZX0QQBv6BIi1RiBvDAdNf8oqTytkWM2jvsdoSPJWv+Hwv+aMCQ4lQndYk5CL84qDvBFoqeHcyy+vw/FPNhMvR/MmHx5xQtmVItNf0RsV2hOdO5qVdehFXGTSx2JpqRTKrElXJbWcJPDAK1KFVJJdAgaAGwQwMxUzRd6gnT0uBJ2C3tEoMuC9XrSweZTd3uMmz6mYpAsUSMuNO1z2Llnws+ho7RtgdyW+IhwXyp43fwoAIthMjoPhwmPnDzPuK/Fe+tRnFV4Z2Mos+X/XXn5cprYzaPouq8A6cH/OFEKAVN9NypPyyhdzmHBHzA5pOZ3Yn7xU/1X3khsxHrt4etTLycCyFFQPtcQWgG953H0L64eRhu1Xys4CvRgvSWdtpzdhfUtmvFAakAeP+sTtI4lDeYcrryNFSiuZa45Pas6oeMFWRjS8yVJvx4dZFmmoSnZsbZVdNNi58tdoBXsPbCxxmQ7UkfEEu89ArY06C0UWsZRor70AlQ048AkfyqrJr/0o1lH2UxTXsMPcKoiaSCqfSGhzNSQpdJ2yyr0UjU93yGhi1DLZknj4kk7mGTUp2SmbfqCoX8U2J7++ICBzsqeVXlHeBfFraBKNjAL5zxFunRXewEcKc6CMQtmfkFspYT1xQ1U6tIJnDDw5wrRfOUymgeEuXHNR7mO7xTdskFvEd4ed/rWZslfvCkP0n0VdqzaC6xGx0gf9Tmqs3qMNbw9Q+M/CISKQkR2/OtoXA1W8FJc1MFD30lDofrmkOMhnKQ/wgsCY+FrbIb2Iub7o0EHSA5M2jGsXhHdfl+vSO2Btx95f7YPpbc2vyLOW1Jfjxs6t3euvhh0G+1TR6poSFUiHK/m83G3RWVVNnLckMrFZxXgLF2fsrHxQDEgB05NgyXDs1v0YakJ80GQ8Mzi2C+suuL5kRh8JWWd2QypXPtSQwJ+5L7TqV794feovICzdV0j24dvteUQL/QEtIUv0tmGPbFrDkWPNgA9JzscNxg/83Df3g/VtaBrIM29lXM4hfdbXzNoqy/EUqmfZVSeCcCXgTxS1VqeMUtXWjTpWi+m6uukYPa06FasiyNLVEEP1JPbyVg9H92WDB/6982M4NqxYZiq814ik6YK5SOOB63WgOBhzTzN3GrND1boLCWUlK7YwU0F253y+UIiWGjGWaoRW5yy3sIZcXDaB2CNxwxxfw/n3K1wY2wARuvQPxDZGQJSB7MD2Ucju0UpSMJIjta6Z6g+pp2sz1GOcCawd2B+FU7WIi50WJuu1IhzsVDOUEHXcLEphqvVIGCAWMFpPsOrkrkJKU73wL9ebIu2ar0Xa0qxLzLlU64oR0paecmNlRT6c6rrE/QHMcaoOmb3UIo2tBbbI5wKbk+3oQOlo2c/9+HdpxG2fkQ/1JL9EVsZxI8H8SrLF5HDK6VgRwUteTrMb+yp0Hwr+8cj3seRI4FwzOkhnFZ+XbuDc5X7KPbv/pz5l6W2tm544oeA6ijcR+IW6hXyti8XYxmLH6A6kazBgEUsiqcATpPSEFsMd+eOrLLoCHm6PYIFDnmXbMuURisyeSVev+bOoCW++3//oz3nrF2EFFc91yU6G+AoC9CztoK0kSe0YgnPDR5F+in1VC7c6JqvNZMs+cv1+4ylL5Mjz6VgmLPlw96go42iLEol+IYKKGHGcUfXHNnvDiEPHpvvrysAo4pAWcJQApASI7t93OzAUJB7t++qxYqTmWWUGaMFF1bAE1us6UIe3JisDXjqZb7HcfrbgUGktj/k2Lgi/XCHfrJW7aqmseIyVN3ipb8wFJBljiO3Q/vzg+abENBTf6NzYgSI5+MU0PwBAdpChZDYlRs2iM+IKmJi0pohxT8utecci3BSr665/ABJ0sBPGMnDlLgdRBUwNBIMACZgXSNoFfcgfY86edNhSgh0E/daWEAK9SkUx3Kmnebac1XUeqn5XbVMbB5VSrnpG0yZIkxwQnLFG9X5BiJeEj2r/z8nN+vOSBq9VtgHT0+BLHtBUq5fCJ5Gf0N6maQQCQ2/DFS/czIW/+hJIfUK3y+71iwlBahxZ6cB20X278KP3kS8vdU4QrUEarsKst2C9KZJMlmMEc3Cd28kpNUvzG+D/EqPMTyOcYTsPbKLL8cqD2LGuEPMgPfAOx9aUIlDR0bwIJrNI+YgRO8jWrzy86UcYlrGgeqwLeKSyQtDlutC92GZtHJxm/5MkOr/QQIOQCoZEbFZFaThjog64DK0n5t0vBmkVk0dUfVeM8Jho/vtI0nDnrNYmPX0J431DIpkIbJEqZEgioF8C6XhUA6ZkYKTmLQeubz9S4lV4qmAQASbrdwo1CnR3OkqWF12PPsVUw3Av/TlO2a78oIiR/8RwX3ZGV/Rg/X/wI97cNB2EXILR3HXAhC1r4iky0cFWGCm3i2t1mjOPihV+hynuAYUhPjzAo2HRxKbtFJFY136Rt9uHbu8kiH51dxtQqHvkOLchl2ZigzjdYrMYMFTW9sJpPPjKnBZD8Wu4xxjW/7TeBkViHMgcIwt795R86zdELYV8izooeDAzqd7yYSaSPkbWAaaVFQ28RC7efeTpGyBb9O5qDEwk8fD767c8zJHTu++NE//MapNhdmvXDV++EZOO5XpVru3GOBkYxJQlgeVoXK8It8ng1yS7ZZw27VJ07GOsjojhL5ycup8flXMk2Wb4y2DpVpwb0Mfu2U11ceEEOvZgFkaiQiIi6EsneJxouckQwmAZMOkZPAOsiJnYx1E/TTGO7JrKrsRz47xT8bO+6WdC4+1u0dZtzzR6JbEtdR2yyqAGGdHDp+K9NXedQGr1VrC0HrrAtSGb4f3dIwb8BCyKfz8Dtdo0vCelxtedqfQRETLMovDECRNqCEovvVJYS50b0d9fcFef62Xxu6/678egGoDQoKLzvpep/kdWq5ZQZzGC+cSVJ4cnkgD9R6YaF15xmf7c3ybV8Bs3xKH3Bvb+p8mBfg5tjVa5W6Fl6/58kDGYv/a8nHK3P4eRQ0CPTVP4dECGwWCG2PqzbsCxBHd+zX2AtLXMqjv/NJsdXB482EFWGGJkoHkSyz7QiBTQsWrpg5fIoI2Bg+Z6vjGsNDFVQnymHJwRPCGaQg7wTN0VEqUI+f7u8FpAVXH+PV05NtGoCjVjmGpri35zg3EvyLASA9YrHv0/EmmItMIzx7q6lynYBOraqIDi/Swwr+QZEQLQ0gx/dw/SqWVtAO1p71KVosn3dy3A9mYSHMCAJ4lWWTTXL3PSzPmsKzTo/Dq+y9OLWCAGPYiAl3U0PRWi1t6SR+X0HptSxf1rkICk0xxvUgQsOoiNNgzk8r9GMt7MOcee2UCNLdVIAEbBgjYwdomiGny4Ht+31ZUV0NKe2BXc5zOPQslvBLL0351JDEySsbsbdM19qLUOdZLOVBziAnREsyAhLvHBBNZB9ym8DxlCvXDp541ue0c+XBQgeZ9uchqNaPRU8EGwEdpSK9l3Laeb9GgXQpsU0TZmjy5bsqn/VIHHervb+DBfpCHjzI/B3hZRwk9zilwluAc7OFbXyKzGcaR4HRDzmvlxSaJvUP1zSgQ60DSpMrB99CHJHKIrt4MCDXdH28KAKOOGfXzY6eVrJhsT07OOa00gOrTTR4qjKfRPJS8QqlKuGkp8TPJMViulGR1mTgI/qzajI9xSHaGZpls5SLat+jz6ZxDE4JYfdA+2SrIiofo1UvyrAmNsXFwm5GpeQ9N0QH2KsPOnAtTXJt8wFURl8LRgrZCe1HTf3fq11XC6GA75O+MZCHAeKHDorITZIEwKFmDNYaD5EEoFGVxNQl00h1FdrykD6nr6vrslJ3ncSVfl3UNX5zs36+GUKmZrfsHdfE1UCN0Zrk/XP/dIJN1lwQcLuoxERxIv00gT/v/Vx7xECRGTawqUCnhbT2xyVzFMowKIyzKNnBas2i39LFVyzbiFHXg/7n/tZwY099NIpP+XXCl1qglakhRYWeZSBI3zaVRa0329+KmymQGnvJrnxDpJuHNNL1eigxWYp7ZV0D9rkxSrBuBoOQ2NGVcVsCadhKTNKJaVbUEgievaArjRRK1EPX9Fgzu26Exu1OGsAus9Gb30cW89/gm52lFxcj3Up0lzy+04lgO+dpS32GuuOHsoML+xB0XwHEGvqeni59sKN9dliKSTUnvCJXWOxKpRW+AK6rRPwBjwNi2WDKa/kezsrPYqtGSXx6Ov9BcEjYb56BUg2oc3ctlCYEmOEfHqlKHFtHeRpsidjqW8OMNoCpZ5/tiITyc88tgdcWYNeQwd8ZHNj74ej1wveHKpNc7Xo81N/sVGo/e8NU85iWfm5vVJyeCjJIbk4WSYpofn7L7ocAN6Owa33F5UJqj66+b5UaJkU/gWEWOnokRKy48EWx24su/RaOPxuzxJf2T4URMkzSNBtKYApsNmRzCxPtWAfQQMl9/4Ly8paVMFDkar3uRV51YXveAma10Vd8IGuT268WG/oWPhtVh1rOo9V4EwxhAt67xr7f2/DLLvS0IpxYOOweLZV0gXAUV+bqXCY+hDmmg3Ud+LzNGoE/V0ikCSlmQ1RNQf2Zimz5C630E0fCL7douOGtk0QHlgzb9re6vjtL7u3yT4AQQjRnlb0i5mlYaLSPUdRC0ChS4o/1sx2FtWAfHVhEhOoHI5pGMKsc8ux/5wK/YRjOSIW23l06oHmInAQZnwmbqIxXdkV79v4rTT9oZj98V6JG47rWNR4H5TwPDhcEufxTgm6/dbLyZNyUsYTmGtu7BzNOx+RS+Go97Ky7vcu1WGGaMLqjPlugIoAgD1olRH5q4KaHSjXn57vEYcgGiljCU62PmLdB8CpJgquJJxQHEd1vGoWM5UEAgxjV0hzWAeObC6YyzZ8zUISdY60vhRDYnRnD88Q7UMpUeEkpxNHKAgpeOYVycWL8hSalMd0EuQOfh9uLztRQxGZGV+lF1P4iYKbX8kL+y+bbjhQ+X9OdMlDQhtw7Q5JDcQs6XNlf5dAWqI6Cor71MfBT6HVr0p+P6jhj5NIPZJxbm42yGBLAaHpyOarIsNibes4m+JqudYGETpuqIEW/gmW21GIeKBy32DnYlCLjHUECVvaNi37yxolEuem2YETIMUeYEF1BJku6+mKBdaY/G5hh+Hk2Jf/JwPa8N7YD/vMyTLyNnt/r4z7cHFvsQu9BMZ56ZJCU4ecywfU7tiiXrHjfp+3qOf9I0RkRHBJNqJJxYh1b3vtcIHm8ISPGptXoCzqXv7cObHjnDTRDf2afCaVxCHC+xc7uC0q2jYzFSh/M5wdp2m0aJJvWsja1Rxt52Dx5KQsKej+fgoilNEVvGmqJ70maUCQHVcFszXXQ7SJ0QFVeTKOXiC9mVf4d2wILyP4V5Eyk9+qoCIW0xnVnd15q0WczkJVtmtl+rdQs36XILIgxBPyuNc5JVo96l+QIMi8Etp+m/Dz/lrq79L0VsMIOHduqt2qKgdcqtZk+6UzRjEgkz4DMojzgC5vVTSMiNx8scpIaYRjnEpt346LNWjOjh65J79V/UuhLBjedzlDxJhrFpbA+HSR2zUarY+PrlT/udvlfE5xv45TbG0s0sdNSZRp19hBxRX/AJYMDwiwkpeeKD0Sz/yd+uKdzZgDNiln0FnJqUOpXfsmI1S84yvXH6G2z36oEADs7DF62myOW5sfW5BV/bsYX+M6o8+pD9tOvDoRMjkvp+vtQDDEWZE2qccKK6mIliwUupc8T7ho6LQnLIox89Qlx4MitCDxtas9+PljVxSxmEmVmM+lLAGYK+86xeW48OAjCoJCCZDsoBiwAesGcUf3csq1jSOU8a63goxkGNRlVA7KAFghQeYc6/V57UGqBsM6Gn5y61O3Txxcb+vFq0Cl83xO82dlNVqCozg5SL9Y1ElK1N6RAqx0+LCr5d1EE1lPwQ2haL3VyVi+P4UPrWac6Nn9RU82/YVkcFAPzN5RJZYFR4gRMqHy/r+DY2SMhOsTvYuUb0xhCoifM4WxF8iOm8geBursp+TT5vENzSO2uCSQOuOrk9dpQQyGOf30loaQT6tS6tE/rRPqNPLYJwEmMjID/P1b+R7eC8+oH4Wydw41nIOre/dHX5OGzIm/wWM+LdhRhJkBlNHksIgX0aDKzY/UQd3TpL2IHUKJPraKz5dll/vtWpfKY/UhmzOkUAQK9dbGunW3pZIXnslmlv6aPGwzvrzl5JdPFPTVMlGvQgePqpLiYu7RVX5coyrPaRpy47cksKSKRutS7KSM6Qw8E0QxFpKTNOHhNiCzuk+afgE+reGAHV/ccZrt8fiQ+CE9ohhExaLV651WTic5MVCydHLLbc1ESmNb9MPg6ZkojbnXCQJobgyAT38ny9lzEpsy9R1c0IQdcTJ+032iMG+tHS93zDKbmWdoPLFIPiMeNLDTy9nEtQ3OoXmMz4BP3J4ZZeqWPUsQ8dLahj3lP7UpD3yfvG8wYU8kyUzjxTSdlBPs2XaJe3g1iOI5cbbnOTonbtbu4HQTu/8LYIvF6jvHALXbI9WMp22+/l+lTUCvblsDf8AOA+31xaQxNoz9cms1Txmx3gk98Oe380gHnM6u4AhPEzUIJPcLALDKhPekSNhmCmGtr8gGB9Rta9+IDrF1aW5wXsvvhn5PeM6ipKmmXDS6UGlm+nOyj4h6La2hG3LulmtR1hINN0vvOGlVsau7x10pzhr8HlrJ7vERwpGdk621ipPAECRYNJZHQ7ljOE9jtJuVf/q0LNGJsmlyZUrwVgzI7myDoEkE1B/YyOBIjAy4SXtQZ3NtqGMgPYV8thRtJBXiLZP+Foga9yu3CiyfqWXIqp5wWK+aouc+zhfycAucdkjW1GSe5wjjVai3RV7KJc1KFH9m32zoZjEsMFZdIHWk7nL1dP2AyjOu606+CB1wxO/GB3dlGNvwF4dqZN4eyu/gLiLo0m82KAbDzatoD0DllQKN/jIAN4nSQj80Rw9yOrK6zc4jXTVP0CxTp0so8R4XmoiI8cTP1+luLSLxJsqzFcKc51YIX1eXI8FklmT8uZy+43RS9HktDr/6YLoB+DDklWh8tdEu6AxiqvG1fI/4/a2NDVeYeWnF6GPknBFnu7nQEXSfhiUbzMEpx5uhTDqXQiFK4Cc89Yk/MFXuGKhfzlg/vu6Z1/ZkfVgwYA3rdyFF81ajBupiL4fbUfyEShQGGtSsiXNzoDgzv9rOdRcRn885pMpnVTUpFnWROBmyQ4dql4z1zY0mfRf++GQhk8nee+1nkG9+0c76GKhSZgORBPbY/pp8To18sfhAGkCfB6fvQZdlIQ2t3aCaniLy3ZDVhr1BZ15N9Scc8q3dDeuaVd4akeGfXSLmrEEdywdq6XLWmJDe60OGC0im0/1bdxfrIAemgDDIsBrqnTr+QTLq/vlSiDTs72tdHPhMjWD1YEQw41fiqgoGH7WDVaAasHm00vU2qruczLQunhVokTnGN0AgWTGWdoVu/AqQmgNMY1y8h7PXAyzy90h4rQfDnmv2WDR3tmp+LNnUZXStpljwLAdkvOFjCmnS5DGhS2DkJqBFQOWsjZChE0Nk5pi8LjnJKKJxdDdO9BsqHOFsi68utZLaiqvyKvUZs1lQasHrPiJQZOmsRA1xeEWzGY7fTBbVRwoG7ofZMv/+TRqR1IuiBH2w41vTW8BEgAcCOz2d8rKJLLF7z+HVx02spHLuRIaEacsatZYmtOxjO24TWmt0mQBCg2bNGIkxRqYD8WGDa79Fpi+upryC0VV5UhiKmvRwMEybVxwr4Bx+go/Nqtq+NnM3pRW4nxC0fBFJUBzhjwkhOmIzVICRy8QDqSnNEbNt2LZHuCYp0Aici9ElKFKHddok/mmsDUhxXcD6fyNjpTH/VeKktCil6gjFMsFKwM+wppO1sFwStcgjxwltygnqQLcWjudZX7PShd0zziTVQbLEkGEdIAti6PHJ3Bzb0Pvv9Sy+q4V5zA+E824GHesQKeGIG25OCSHMpJU08btBOB3jtexZy8Q1KqLNsqaWEmKxxlZkDaZUEaOXwHBlCYBGVUIB3bISdL2uVG/o0hrf7zjt0V2R+Z0KYoOFUbPTBxj1n09kzLn5OmuEB2MABBKcTWrlU38J8IreFCH3H/Ns/r1Iv6NZVTnY79ncXeuXlbWF6xS0yxYWX3mmNZW7e/olb0c1yjx7imfKeFn6w6u5/0EZcFJMgSOFnrPH4S87syT7XvPqQTNEb48cRhKSyRolFa6XlcZj1Nm59V41j45WSXImleq/zTU3k5eOHvH0QU1Sc+1kTza8/xMpt3pm5J+Bs0Qm3ebuNvAsEfIirQDaAdxfaRQTx/7l+43J78e6X8I3iJ4xQ6887vFdkOJwiK/PeYNVfUsZTMyXqiJTFE+MWpYXIPDqmUlzcqtVNCsktcz+KYTs/iW8LH/6uXNKf5FFF2EvMHTPvo+/54t2JXUPvTShP6LZnuULq4VkkQLVqcd79bEu7hbi8kh7nmCLaXSsHQHhvuhr1JZ/xTZnRsU3xhg/lDA3+EeaWjApwZe+OYa52N6gtUe3kbHBqaL9IbeHFJgGhFfMHuuFg7egWyPB1wh8/uPMUBuXkKYsweUTSir/ffS/f2Hi0Psk68KVJth4JW7Nhl0leF5iaenq/OhxZuCDrKVD+F5cfQ9Q9tWjp65xze/mPufqWKQlP8kbHzbc7nVwEexYSISdo7x/sfhu6TX8y1IY1Iru7JxAPKHfyMzItXC/kYmuSGlvO1GJHX8X2xLyeANM7Btdps6/OgtEDC0eyTkOoyD1urdlD/SdkkBbA8UO21yf7qj5JVXx7lu5n8yFlS9gf2Zu4tgQ2OOPfkXOFL5AvhIoaLiZ9/iLUi5bzU0WMUQayfAt2EMFkpJAPcjXTPbEyiZx6IRHTgMMwpiNxvtEAcy2YPLFmxhefBXPNsmX1As//n9kduhnHaqzreoNzRGZ5/KmoGqJ4+7lo0YWEvm2b4/qV2Dl90JRYAEiEWnrs7djwcavn8y06QLd5Ur82GlzvlMQa13p4cf/ihbdI2jXvc7wXuYbJPU9PJfV82u0PBa3K4Ytg4mwL+hVcVZOYjITWFrwC/mwspxHiJ+Y84SVAjMd3suO9TBnjUKitqCF34E4P9SperA3/kgK2KoCxuMTHGTIGA8fmXUVEm9ARH+FUQmrUvt56aQpPZ6JCsJbpqO1YYrCz6KV0I3ACAL6wZn5AJ4veiO68FXWUabZBWmjSbN7ASfbc1UWW4ZW2VqafHfrESvnfXOgLA0FVvNoxoIVjVRXzIJw/7QbvizE0hVRgHKXyUdCEZLb/Exj/GSJ2sQQ7/6rT/Cx+Tqf7UhySsKB7eeA60jh/kdg86W8X9i8MWLEgasxkb9An9VDhTZSoP+3lNpEFT5+dsHL/xSggSb7l7Bp16GXFhgMA5oov/DdfmPXFwX/1/YrYMVaqHQSopfIgNm5JzQztYqsiqIlXwuhk0SfvHUJ0j6x4i8eoRqCEf5lvgZPJsZ43scWBd5be6suQXDKWgxZ6hTsSIVD/H6XRPdLPVIc8InAKrmWw6cBcXQLWIMDFEpj78na85obVE6cq9d5lhNGEOCBXk2hD7AxtYAE7S11SqW73nJh1I3IP+PLcJ0L2SOY6ym8ddbN7RzqVDHxRJ7/qfpshQkT4zpcjAQ+OHUcYpz6kRSfGg4KSVbwQ9Gmp095Jl3pM6h/4J9H46usAID24YniQvUOEtBZs7KWOzVKTK7m1yGh6LjVO3zoMTuyBRl5r09a2R2jSY1h8L1FTBecu6Uq8/LKW786mWhy5xiLWPEqLnkTvI+3vLBw1ivdqoYkQAuHnYuvRSOu8QtSDk66IyJJ8n0QlSvlhySlqGtkr9H/9WqPxfU0DESTrK28CjgrlGM/jhTVCCuMb+AkMMk2HyuL39Xqusf7QV1hCo4AVuhwwS66qdUV3Bwv1A7IkRGYUVHCensc6JCwPE1BGTR1tHF6d+Jgr5dQZU4cZ7wnvJgmQVrUEnu9vpeLFUo4bUg3btCKSyrkVphrgYTI8Qp/nNPD1DAzz5goSliubVG1DyOPxUO9NddkqIedrBB24o33jKIel0aRsRqW1gUBmQH7W7i1+Fv1s0G5I34pmbhSEMvc9L9ZSCLEjw1rgqLkwybrobI7P20TSqzN8ujmwX7fEs/a7q8dE2ccLkbuSfiyzGkoGxAXzMh3BDl0/AMlcc21twC+gvW8qsVP608t/t18I9re16qD+ct3Dvt35QiTyhc6LOHDCkuN9v015MECZcVwqK6CtiuK0RVHLv+PkhH/26xgkQ8V+orciqVklX/1/TjmrnVsbqqBEhY+FJtX8tr8wT2SxfZib4y3J7HHUu2+Dg7cJmgURreiPnYw2vHf9yEYtvJQo50eL6c2f/Mz08QGpb7sOPFNiotKZHQrmL+6ERhiQzC+oEkRrpC6+OC/FdS8/Jd3Kv+PX+o86o/ylVyvQcRHIZIk+2O6u6Kbb4So3aV5qTl75qD98xzh/8BBn+5PJ3aiC2KMlAkBq8don0ONlLYxujJwHb4nOMLgPFLeAPmaoQzMiZ/ChPAU1lvllxxL/QyMeTWo5XOe+k0okk4PBYGtBzqXQFNZr5WdWWUd6Dp/Dr1jqwJfBz4MlPqJlfx8SwzOGFLSLbX/vqMHjpwOXClwzKSYJVG96mHVu85YGqbeJWQgVd88nFgV/y0W5fCTnOvzuGHHGl3W/pVV/jY5/apaq96ujE3MS+BHgzEgWPMUcWlvS7O1Q3ZqXGU9bumRREvx3LQESHsgdu8RtTfnoKTzc2DuWg8qovVbMqMM8TX2H7Q4GNpaIPeUwangmhdO8yresltdB14OsalC7Gpvn843msWo+13T9aGzcq+wR4O/dQTisjwYGjtmjB+oIXFFKwfbMXGFi10aD0mFnVj2iIiT/LvE2aQChwc8dKfVbrJ3WWiYxHlFt8Zj4YoYEh6KKdmODZ9EOzZLUE8J8xOawua8DXxOOlq4Kj0Wc6rT1u2sIFau3bqNxtXncWpPTD1yKrutgyP/iXoPuE8MaZrKBq8wvY05Q6OOcgN8pezbFpn3QqXzAn/w0e0z25+/6NnvkYxBiybqoOLh9gixnJ2RpSwslJFIEelhusiejc9Tzi2EuINoueZmeaiFD2LVOdevauI8tq8fiKSF9d3TLeVbIhXWVVhR9CxcEUO1g6Lf1e835UDJKwNDypItMvAUlaibmPeFRF0VweiUBvsH/bHDjP4GOsUwnXLuGTGBejDOJIW/3vHVgdDAAZfJGNcxVP9HLCqe+nnoOQ22Y89SvtqGQ274qC2lGWyvzIpvqFzBmBnDkmaFcq35n2wV5i4MRaoCxociXV/uRA2atxLvaxd/gK+aMabkl+qfBtEVw2mR5IBI/fxoaE0m42DrG9KjWTfZx8OhyGAFy9frtEctPpOSqxClzgixR6e0sIT8DsVpmuenVQyLuw0aeloZgES2MLvRpCuOhNJ+YTPtNLcsmulXcP8EwnBAwjnyG/td48xGSQupZpHIyU4CYYRwTdyHMNu0BVeb4p8FIrW1DSIepPGD+sHJOevHj8g6CYmUklsQ2U+ZDkSox25uOZk2fO0dGyqznICcPsJ1kk9TSNYloVrLztKcIOl2+uccnior18OldoOdpJpt2jLukO4WeCUyQm+JG3MEQTnLG3Xnt2K8NnfMn9HP+UUoltWfvGX8uSF3tHGZFmIXlPYnr641c0cYLe68OjCizv2v3Ln+/ywaY4O588yfSe78eI/SCmGj96IDltKg3ef4P6QNBhz8pU9BDszjJp92blx9R+o6I3lRx+43Mv5Gco3qbA6uSYXX5aO6a2yNohup4z9JX/kN5Q4kbiqLG/fYdk4y6V0kM/QKZflO0LQZ1KqBzGh4nwKsWzwRT6JQiAmYMZtlos9zGef4zjRmPLSebEfhpeb6M9ps4JEhI813AYbL5EcY2k13Ap1Rc3NpdSOj3OICU1YsCe5i9F2p5tf+eliwFUf+tBv40skZk5L9EqNm7K+ZkB+HzqU2Y13cR5PS7fb19HEm/Wy3iLKJ3axntXJ3ArUZhMZxE7oVzJYN/lpp8sgazey7jrAHZlcwjDEC2ypq6QpO8S0iAJuQCh3Sl7831PAst35uIv0jPdzCABzT/Te6gg6pAp/xxYyZq/bwYDiAM8S7LC9x1DBq2OxFSDN1dp1d6bRFEzVlqqjBv3vhnmlW2dB93oOWTOoWLZkxNsSjQIxzm8nUYwsnuFa6V9qlyb3rJ61WLrEyw1qzKS2ttY6EC62Cc76BwGogdA5DL5W6k6TNr0hzn+YzJqN9ROLyMhcwkJQH1lGutr4RK0xQ2Ru3HdmRlBWDJxTRO8n43HDsv0f6PTkYnboZlT5xegCTvuWjLtDIrqc1owZbN87mk3CU9ekkukRVpiE2RfJYjt5ZQGbqty0kYfjerVlHXNItYwPlv1HKuQjx2397g/hvElUz/CXWH/CXYITSoeNRrhDmsfrgRn5LunRJy1Im18Cht38D/ssG2pkapOqQ/rEJRQArc+JQRSRLoBnjSbLeACJMgDIiHXIahEIpnIykAdr4kvcR5oD3IlbbJ9qgAjdJENVYY3a9PP4P/dBiNbIhG89m3UH+17yRB+mqjUmzRzhm/bWzNdGghWgESlSzMd6BL77wl7urxAG4TiKAPPilEHz0dL5St3dTvI8OlQqO5k0KBudzauxTebMKiJfiaCxnJ/x3gzIiwnirsYf1CV39+x0WjFSnEw31fN8oPcZnCrIrBY/dqOD/c4P+mD7CyfXAkL+uPXHpzTz1OXYrl4Z1kEwyRzOrrVijEi/3Kjhxn16iNqJmDEDeNcA1+TQXIKJiJHO948XIruO+dnqNGRuPQAvyTz1bd67t2ZgXvy6sADNC2RlBtli0rWAh4kEn8J0Irhpyx6/mn6oV3C57cGbPdntdwNvAZBBRrQfFW9VtR/UbRv0fwBXsnhrlFRLmN//kLnFfIeBf7k06S/ucurvUVnXudkSY/O8mEncmOUROOMgwKxNcA4W3px+iouParkWEAV9hPklxIOPMiLwfWSpAM9A8chTErPRM5wsdyDDGtKQKk8kqMempSa4G4xMMrM8JJwQv8AiNdARrW4YJ2bf7lGvXHcF5gDIF6BYuOY5RNHYuKoVK8giURSre8oaNQcoSTREtROSywSi2LMQ++xNTYTUqi5mXcKZQcMjmTq4STWY9ch3jd0GHOcfgHjX/ifLKv9LV/Qbr2Q7K+uzDYEUheJXhlyt3fW2qnHKWokwLmHGSPAJKK+FaDnD8udAzUR4gA1fsXdoEoARJqbhUvjvSiECG8ooKSGCDopGv7Tx6DWQ3mm4vs/1sQO5u/kJTxefSj/f0gyWbNFvF94YfYK3rCW/j+6PMtbanDKJcc5jfDihHv6K4GAJxWhgEpwhtzmcNwIhxFSKH0okuwSIOy7ADrdagZm9wm0prMDkKFs4jN0ipxzt64ad30Tj+DDkK/TwYyl7gT1f0LXZb7BVM8yFX9N5/T/bsTd8Y7fhcVmHE7pNwk1Z0labZFlONBCJ8TKlAJV55O89vvDSSPXKj1P3IC1yh1chg/Rcye8eYZn4AJc5nz8V7hBn9mzcHUBwG1aFY31Lhc1/+l26vlioAr0ZQV5HfNi9bz52sg/kKzKJPIQ6xgJMvQGESMhAddnxK47Ye4+1ErR5T7P2M2DZbaC2PKKS2SYt8HqGcrQrEgVRk0/7HXVAa3zugdLjkf0Hje/GJVS1Ecw6KkfWTo4ccUDY+WxlXUNAmxSjNiyYxiddeL4pjqZcEcD+iEXAR9IcWHDHXZ1y/IJFfB+cnPRaKy3KeUafwypb9yxebTYz7M0UQIipO5OM2Wi+LIibxewrOH7SS8+eYQiynSGlCcBnF4kZM7CxXjgx8z5kWKhPm3TXdOeSHr/j0FDX46af+Q/3j2jLBFvMrsR1yW1aTFYRqbsQi16oxVA7ylVYmsWUdAxSZ1rFbr9OxJ0fLHMW5QaNTa51OOG+xKAp2w1NvtdQKBoD4MF+4J5MlvTY8Qjruw6FNxP1OqOCJ3xfZFYiqWz95teSx5QcJie5CUw81C76vxKN19lTlyv4jruHoUWz+gGjcfXau+Acdc5aJdqEw7ssDXSuWjrUMHD7Woye2d5SUR93x9qeujvEMpVHrwyMGqMc4zKl402tscHlRltr9yz6gDq/mz1VqrZtcGf8ufpMstgemZrPazw5wMTiA2nc++7TI8notaIbzx7Zmcs1sNi4nIH0yjJsjVtXB0A9XWaYGG9b/GkGZ/87oI9hTjO/fdL4y07gbTCDrV48jLYgYX4Dqv67xUM9jBlEXv8VcXFNLwUyXz4XB2Y+9U/oGspsznytSmy+VesBELdN8XeeToW8tlDD1oHVejShVkXUB4ddHBJ4cRuQ98z+8UywZ1A5PyjU/yCdS+duojeSMzHpOE1MfT5R0MnjfWfm5OSCcnK71EFqgWR4sq8bs///xfnYH+CZKYWszqPHbqugrIvoukiTVZx5W/hW/FP9ZPtczGxoDBMF2nN74GcYA4jXWSiCek44MFqepmp0Y0i0Ug+qz09KpOwF84neMQe7H1iia47k0iEkdrdZkvzgqhpgGOGX3uY877CTDIKQPDaMrGWq9Oyw+ZeToHAhu4EyBfDYpbk1mc6Z8/KqYq5dqOtWrDoTCWMUI7E1aJ/4tFpyQnnB3pOeTvoPPEtgSF6KWDG1Fr7lqBDLbC7syz5cbvNfbnNhkleWteMYprQcGYrAzxynbiLzFOeOnsCx5M3adTpJDPaq2vp9Mj9t1vNy4migdafyo4QKR3BbOn1uE+BSNgy5YQOcUIVv7o9I4LMREuilnkcgYIdhPrinKSrlUqluGtV8unq/o+6//GWC782XHYnHBrM8/NI4nq4YgmfHJibvVAJG/g2Kh0nt4UPfCI70aWG9WcXUe3SCFC+0Ul2b/7uc7F7XMrPct7J4ossxF5AgPH9PRAnz1sRW5Cf8IAhQkEP6dRiBA7YPCfyK4zzh+x6IAmSrU7e3VV+fxlnWLaqCkhB8BySI+eUFFhnCjlNJ+4Vy8sldXTQriTWJVaIdXZqhe0cROQY/gO1EjDk2fNgFwG0K7/EV9gFAGAAY/z5IQ7j2mSq853VSTfaBtrEDLHAeW9EpBvYLyKGA5Eks13X6IAYV1JkQFeaCk9Cf7g+8G5DOUflBo9Zhj8nFCmM0PKPbtEjRYtbL7qQBZ+pERHAmHqZ7yA5uYM9JHCPo/ogXG57JD7P/Fxmp9UzjWE7mKRQDQAUYqfCgG2thb4YSUX92Ow2U+Zov1hwBOnEXBl4nfgkogRTSNv1ds78jsqKdmoFZnayw7GdrtCofK+xLqV/3BCFmnxkSlhx/TyNInkOh5A0VBL1WKEAErmoS5QfMhy0vdM4F9F+6L7oZdthVLVcsjyhcO6IlH4D8IO9u1a1DEdWQ0SNVedBEK6TIf47NLxXAg9UQI0v7l3/+VPA+08M3RKCIYwH0pgPAS/C1EuB/nY6YeFh2ae7IV3L7pp+UX0+ZR0ShUN9vuoUXaAthaXROQy81PPJIzCUvO9F2wwtHvxGPH7jKCYtQnSkLOmSBUV5Kj5xQZhX0Pl0OsWh4CcQQ74MNYHzFNiuu3TjMHwUHFzog/1Y6TFTJ00rdOsGbqQsw94WRtn5t77xcDm3wSUGO2geVLyBgSWA6DFw7hIwTwBJi2L6Lq1cee6B+wNdyNW1vGo2TAaGRtj07WHAQanBfyW3MR2CEZxTvNlZaICXaByiNUox+DkT4r1dcI1G3q3XTbAh7IPSGtWrkBx8e0EW55cbzUOqSqgOcfC8ojH2o7SCLMGWzyBnQH+/yyPzF1spLpxwGdhTv/C4xWSHUP1aJ7xwGEnAzOtbPsLB8gUkrNJsfSypFGPo24Pu0XzWO5/rWIF/zdD8LyPjGjtKhmahLhBVMCNMFc3DjtPD5C2mkzAiqPQhGh43j5oZfiqAc9QLLh+an9xtXsVOLGQS6kjJihUmcmVm1Y8zKEvCRIXV28nzWK9ll8FVzO/3NuAz6THlm/CBtrqkxWTryFClSfVhKTNWOQpkt4cXmRo3O6gjXfSzbumkneNwjP1X7jnqRXWC/IR99H1PQNR2+SYPmqW5qTQ/eWd35F4fCUGlbVGLoOEyqAoUgFUfUVpTMRGMh9jstnhnzf7v4wOQK57gmd2+zIOZpDFZNhOCM41esFFzXqzcFSHrFzACKWqOBlJ3gtwiZIvy0D+w3x6wBOk7B5GtHwACMn7pPxS2MqVfhQMrgV5DmriaauUsC6NvxF8QqbWVVbip1Q/vxI9L2HauZGNkJ8fHM4Qdz2+UCzxs7jtrOQMXdVFUxAZdBxgKNXZ54qHGvagN2kI30la50dSzpgDvZjXFTueakx/S/BNfHjLvYfbUF93aCXBHBAhSnoVQvqWbqagr7lb7gCduv3X1DJZBLNUCfFkPlc2wrNOj0QflHVtGjY0J2wkevUdII1meiAAq7KpZSVdFFPGGVFMe0Heos3NX05OnV9jSXt2Rm6p03i0gYQb1yRD0yfUySAhsI9mYlhL/FiJjc5XcIisCbVscBf3pGw2uIAxu5On/JaudDz/X0YzSgQtAgPLYDz5+alCtabz2O2qg8rBFy9cF0bRoB+3bvJJmZewicps6I33vMCwvemSWigMBtnfTTewd8/aEkdFy43tgy4dQRP9vDSWIquuqPbRRQxadhxUzkkx2g8nuCusF+54fHumTiRIaXPhyd2n7+HSOzVd/KhXXHMGYwZhG0BSQGIQA4e7C2FbeXk04XCX+sNbnrBokdYSDZsdVQxHN0dCuEe6V/lj70EN7q1A2Hltucul9VycpUcUib6+B7klL6aU5yEntnjnYf2EJjsetCiik/MIORIgFa9sMIM4MKKwi20ZwETwMRL9/AxB+euQ7re5ddWFPSeuLoj3xK/bfe7RlUkdb2CDaXvVfevHDldq0BId4JfG0YKnb5Jar6geRthgTJapoHQGOCcInkMBu3Ylk8cGCbtUWm0v1+ZpELlu3wlIrg8jlxZm87H53vYli+jGi6NCMpgqwhX8sHjJS/PCSyaViZj5g2+NZuWWVIlLhH/Pyu7wVJbdUqtNtrK2f1VhNQY8tl4dN2wypBXK22O5U5z6Prunen2NwqTgW0D1xJ36+gq2GUuOSe6MGlywGULcVNLVKYT14J68vvWZmfd1YEoF4vnQRmKqmBKCzEFoPo83z49IdEZcLQ6H6dbd8sZBxvcwVXgRNOtYFgh0++ekiV5bxMgHlYkLPSAI7ShGIA3B+97dgudv3KX9INzOIwq+4T4+n5Tx/P/Uytg2b9fxyloIXLlS5MzbCLk7pvqGaQGSyKVENCjbH4VfDSrg4ra+oYw8YmWWu51/++ddM83uMtKqc1WEKcjkyVsz2PktYdfApnnCGvFNPydoS//jLvUmvYBpqdKheI5X8My4BQXfwEoxG3F7Pp9d4J2g3IxKCT/g+Yjz5nKOg/g/7p0v3bv/LbbCWKJEQ/aBPYNZJTPdtizkMySbYl+EWYAtkwewTokMHDmzaquaFWL9CXaV5B17XvjMIvdtIPQ02VNc+uE4YHVIIc/uqtmcFLgKcGdpZhiztVMTQM2mTlew7ho7navJ/p4eEkD0+qhZlY83uW7PSyeB6np3RT89faurlXz7raMku60KRXIYXVmrXlPcL4+YQgFeGob+MgWC4b8TZd3oDSG047mjuuMXQSst6gGxzOfDY5xdjBVasK62URswsHThBEpS+MiDASmchm3WRpHhQrgFpJamO9GVb+4bDfEOY1PRaiJwRbFqr8FZGTaUtqbcteptRqr3iEbdIJpx1i5cp9b5d9KhmxO5MURZnJNTVaYKjjH0W7P1pFErsT/F4Rfmb2jDR8fJQ36NMMU9vwGtZcUnoiVuWFMPP/eaZIK8RvSuvsga4H+krkJutlmh7WQdudXfBWBWHVdq8zBxOGO8JZxZ25M+ID14befaewtoTalE0koFrzmmvy/94tmmcw9SsIbj/eKh8c+HpO34V8MIjwS/xWwIIfxRrjQv6Rz3Ipaku45sFCVaBwRBsOLgb4wPDaxSPR6tUDy+dqB4rVQjrEsdHMt22DuTk0Fl1KtmFjQVrn6bPcU7d1GQQ1raMjL88lVMbTbJcp9XLLeM2i+1ftIZbwyhfaTHPGBaAi9HR9IwW6o9i64mMOFA01qhXroYx0V6VVfawI/zhXrHnWaCnULaAf5XTHMO4p+PlHOgwiP6diUev9Y6fmYh39js33/gQ/bH6NqqqGqHyogiukfqFRm1xLBFublBqfcY9athx1iJ2aj7nx1eyJQmu2Z9npSusblU9UBWzC+CoCQSW3woHvQK+L+V48FB1HhufMilVSXSWNkmIN3W2LKlLhJOavAtIpsNvmv1LtqE46XGW5iKeAO+LRnzZmtdMrEshXGrWNIfkgL4jGYlWctAoxvEsK7vk2dh0wJOODkmFaNjVYHXtq+MrEZPPHEPoYbLKadDnYRJHlM6yn8ZZHQUNDfjScFmxqYFdeT1k5P2W++wC9aS3NJhH24kz3qv/l+aEcVLhHh3F/Fm4B2UEHVSCnQY8MbscSQtI/nFTkU48SPTI7wc/pmrXubEKTlPhPj8P8jGxBZPmu8C+zxzmTdA1Fww5tgGwgXPodc+wnwP10+WZS29KS1K5HbexWYmSRamFYs4GMDqEExERCaiw3lyt54FliPCcrvyvhYe9IQQXhPhdkv0PtZgp/FDbkSH1k78ZUIuV4tqDYhOhHxBJd1hHelFJFD8urhmanax70TF04CbORjFX+jth09PTpG7loJxuQYPeioZbf3tuHyJ3saIwMUUflTrq6HpoEDbdk/pCZZyoni6nwoOAdYzfMvU36Lga9t2C0qQQzbQt4ASjeDIq17hHbTzj/+9YKVn4QjH4fVVIo34QigIiiXLn4eb3702T195ZyV+zjFECbaPvBLxaZiajg8bTeLQRrZS2O78x/yQzT/xM7xHadCSMbXfbzFs/OxHKHUjluvkcLIiDPmMxLEOkPhE7fEoTPMr1b6yaJprFu7A0Qgkcj4/NDuQBjEh/dwKC8MnSF38nuyHCu02i8PhciQXNBdXCSdhxQ9CASRsTPEqntYeDKDA2/GMsxHKq3jU2QZ6Sy/OIZMi0U+TW0J1T6rPocDxSwrAkVoM6JI5oyE+j/n46Qe1GRhExLTBJ19yGnWPUlu+UIxD+q4vgwzmX6/KW/pBLVy8uqLaDZf7uXBx4q/RBJQXi1UYNDvQEA6FmkUzyvA+Lsze390MwicOq+HydvbmbzABeG+2vMn7Mb4khh1TQ9Cx/vwviXe4p0j84x2fZUauaZ8MOmP95cfdAxk06WMYYR5dugdyUoA2blEg/tOH8IWfpt3SFxKEW/cc3yI/1dN42pwuLoc3kP7ckjDQBGHi/cArQJwxDSoC/iaJhvYlVeIex/e6B4q0Kbsl64LzfSg6ZKFdEs8j7MiRmUwUQk9K+IL6yYim1RcvBszKKUEQ8AIJQfVfSUlxx0U5hI5g=
Variant 1
DifficultyLevel
519
Question
Ruth, April, and Yoni shared a box of chocolates.
Ruth and April each ate 61 of the chocolates in the box.
What fraction of the chocolates were left for Yoni?
Worked Solution
|
|
Chocolates left |
= 1 – ( 61 + 61 ) |
|
= 1 – 62 |
|
= 66 – 62 |
|
= 64 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ruth, April, and Yoni shared a box of chocolates.
Ruth and April each ate $\dfrac{1}{6}$ of the chocolates in the box.
What fraction of the chocolates were left for Yoni?
|
workedSolution |
| | |
| ------------- | ---------- |
| Chocolates left | \= 1 – ( $\dfrac{1}{6}$ + $\dfrac{1}{6}$ ) |
| | \= 1 – $\dfrac{2}{6}$ |
| | \= $\dfrac{6}{6}$ – $\dfrac{2}{6}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19IKsZsJeZ0tlFs41aYigQlgjP1Kj6T2WrBbbKp325E3ktbc0jKcQbIM94Z0/ukehJL57pYhXod8omCWZ+at7oIflOgk7p74UgrDK/z0fm3KqbXDpqmPGOiDuifkEahbQdRAb2w3Idn34KbmdHFMN3QvNHxKax+m8Biwq0+YuaSsPA2MaYXWiEFm2B+S/ZWJkbKv8N7y1X3z2rPoDnHWmFxUYq2M7QjBwSzHosp61ycB05C9QFinsDwZPrHtXaioC+xkYu3mLQHBSirYU7QSJnTwQM9pEW/gomLznV9E+UwqMN7wSRSH2XidKWANjr1MAq787vPMTJTIFOgCsYh+koX+yzpIe+OuLj2uBOmMAO5QuPTwmCiJVQf2F5ijplxrvdTEj/Optay7fRd/wms3C6yEU9c3TX49/H2Fr2SS5myFXeKRbN2ceqZ1ul5THnadYMJviKrCg8pbSoIrIKiFUhaVFZrgELE3h30qHD0Qr0uZ4QrAiNVvqWz/A1wMtmfm8y3Or2Rthyf4AsyVoOxnjHgQsUTIP7Eg9fmJWWSXTVijyF7i4TuhPZWe0ncFEDcLGFqQFMbVm+flMqFHo7SARxwQ9mwchIduWpS8rUlhMPQt/iIaqr3sBlVP/V41rSrL7ZgNfilZ5TSyWIuZgtljbKa2t+d4onNnsN4qsL67maU4PJDOcLrHPpD7bTPBow2b3+DksL8fbyovFJymeGSSu0LGUFOQv1dcxOSc2+6/82bCfb2youga3TfA9XiaUxgD/0iLfHKCoHPDjy3FRK1Dx9dcKXvr1Rd9+cZt/q5pvdK+uHt9dzlco+STYNnNsYBYISn9TGd+yDGbLkqG+8mKEXUDWMPGPL3m/7YMKl5lb6ktyHlO0wQ720MdIR6XUZ+p24RsPdEpIn24UgkoCFhCWYZuFYh5Zeo+grfQgwGCXWBPH++jyqcNYFbNtqt+dmM9MNoP1tlHAmJ4PDjeQ901TArNp27dYgwrsl+75oXLuoNIELppgJGsrRo7gP4gXjEuLHgooZwJtGDbIUEYjJ30yZnoepoy4HHES9KL1BXSQudqcskvODih2vYq4bYss+5PDUB6QLADoRNjwPtU8HBNRXqfQEQpHmWfDf+hAiDPO+Qw1BQyzbzZerrht9YGksxvLgRY1q7CSxoglKXPn/4Gy0uZ5/+zcSyHWbkbsjOM46vRnmUCEj1sfrVzPX9PL3urpKGEPsCyZNQdsUMOaCQTXtncEtKnrv5Ea+FWzHUwSIY8OAtdvnY0KK493ugJfxOOZc0KZx9zbu+dBW4oHxW0OR+XPec6sA1uJwL6J57J7SRktkV+HfMSqkMZY7hTXn2Yn/1OQtjwbVBb9bp7mh0sftOi1sJi22dlhQQX8sl7crUR7P2m3moHz/nJ/axldHEqpWl+J2cAsZUfd3K/aSDs7nz0IEcroGeVw2mvlcIL9j5lmbFl+7aBIentZBeV5fK5HIF/yzQHF5a+b4z+o7CpcE4r/Gqb+teSl7bmOZvYe4VFKN3JH+myy1cEJqNCGhEA9my/0XbL3RcjnVKvlm0t13hBlICjmZ50WlPHE04cXuEYs1TX/rH0Y/dHk6uZTOgPBSDw7Xtxwe5s2bQXpOu7yLhIlYc6fVccMCVQMIsfnhC/ywQb8ztgV39ALV/3nRoFSN7UvQ/XHoiQ6rEnsrc2HSJs+VhScPGBGaHhh+6lNCJvRI42i7p7TMLPBaEIk0fcxgir/dN7p91ywmqEBLh7pp7TOM6abc5sNdYYKks4kWpi/prIbNm46V6ZOxFCnDazpkCWzQ7wSjE5k+8OvtM629RYxkEw4eod9Xl44hvVSQHNPTQjffi8GoIFwoaC56939V5V6vNLvYrE4kWQTAvwBhx5KujZv0Zr7MtKJK8nAttB4V5aU4MPHFyQjkYErQjukxEOnNlc3uVdNYLxkH9Kw/xZfEHbmjKxEGUcLoiA9FI3djKotXQRfD2n52114gZ8kOE2xA/+jE0BeEXOa+YZgLbPWS4AeaYSNlWzvBrgQ5EU8fRlHEYXhaCN3j782i6Wm7snE3hwraKE6b+mCFg2WGlOnKf4RY4yNHSPF6Ks6PPQTCPiuSrCeXSDbPGbAfipuPq9OpiAwEU5/sQaY7G/9QN/NFImt/fvKnG4B8CKsNPn3/pn3Z5AQJ8z4Md1MYtUykcxvN6ICqF99j2kCNfD6IRv8FrigkDzD6z3ReJ8yWXHG613RDiI/k7cFT9T6JKlWcxGU7cIIB96OfrsRmwYrQe4qbBOvRFzxtSVJIO218zpQLOPTqS9QTULnoMp0bwgImDVv7f4sYkrcy9hLriL/9f3jlydp2qyyR85njkskqELMd6v2eJ2flc3jA9lPCoklO4VfWCdTexQF3+XqWMbbL5wz1wL5LyBaWIm6gYqUPGnXbms1KGxrBUquuhbAAGzpU6dNE4MEgb8h9ucObXD063mAUTK7jAbcgv76QYUCUYLYz6ko7O4F2j/hFiX8vlhvR8ZNL3K9mrOSbyYOhMC7mfMSdaT6fQeTri8yTC1VrUlClYGkBxt9FlgrQitmMCoyx+O+onkjsRcy/X55GplGmvDyL7zjzFgV6NgypgiNeEboaLwaYvN34RN2SJ5Uc0z3s2Z78L3xBc/5Ii+am2HvHjzMeK5Rw7cuTgyNnXuVyf+Ho8lQKg2kqKVAEksP+DXwDHCOUjm2f+/ta0Lf12DlfAJ2mpGs+2tkaRiHh0xoNZAj3RD8bVmJb0ZoehfN1nz7CG7FHWBs59SDCtXazNQ8y14bx/t08KDaFQC/Ky8FRTnGdg+frPe08ZIkAnlVmzi1ucE6PeAYA5DbRizzc8rHTu1VeEW8iCrAVCkRSGM3PiH+1USIQctvW/tZxv0BfZDYYaJMg1bMqhgKA2KT/okS/mcgaYHYpvhS4W/g3AmSGX9p89tYt5hJPqdyvATJ/Ws/tUc4nulO5Ku3TspZsyspOUSL9y8ildftcVbvQ8FFw4Ct1fiuhkliCRlyDAet+QouB2NOPTtdz4KZTno5AE759VKHc5BWADUmanwhQFfjvrFE8gHRW93aeS0dGPTlMaKT3ag1HEDEf0vvqcK0EsB1s8Br81DknKB7BY7oiHBXiWu357ywlH/xBfGZ3MAmHCuFAqX8ATkdDHIFx6QP1gzZs3Q8Ky2Ty4GYo8lDvgNFFTE1UHD0YhlTkbbGS9PUCbZNms3PIknVCFXO/Ajk6rvED5CDXFqcuNZSIuEkBHBqti4ZzBsXJFHVKsPAI/cbgssTREVnZaIT+ol7qEPEFrhpTiyOxWMZ++ZOtw2UXx8TVD1nv/Y3kOMWOUfmcHrsHhxtASuk8Wf/WF7OYQKmSkxsllYAlnluUwoAL0GfVd2+GAIy/7M3JSf6TYwvnv2WFqiWeiUjhSmJ9ImqOS8TI5AHoSlcit/7xFlmrQJ3JmUDWUu9r7ueUZHXS8AvaZMtHxLJ9pBBU2nM+ERug6+5kBI+agl/9CVK4MPQUdh7kJMe48ec95xSAF2FISeHDRVvAl4yuxCVF8bRASMDmoYFo9AjQpRzf/gH53PPzKISXPGU+Tgo6A+LSGSi7S9pguEuI7cpV9iMkZH2q56DK591JCaBzKPt1GOhF7Dg+sSQQrRpm313bQhY7yg9rlWEAZBi+eE8EyA9Z6y5XH3SWg6OqJMp60nb2Nf+vuDzmu0nOMPF+UgfR2df6rZeKS0M77ncoGa8MD8onEKmbWSjV91DIYX44gzf6FkomaZ2Uc//0mnTFZLDy8mlawfp6EIpyAps1pP+R9PSQGlOlGQEkYvwbz9UqQ6UzeiPJ12hEU0FmVWKvPdQstUvcGKWhHxoibbVuM5b6sWeplKWsqEkoLRNLEcZWmOwcmGCAU3HhSE6Lim+GlcgiyKZh+qPaW3APhrkxRmGfr0yVpORh2UjEpnvgg63oA8k0s9qd0hwrHpS+HbitAZhrf0XdrhBaiyG+QNfQpY9fEOHrISmgXYKepN+nd4uCV+IPGD3CJfqVtzUzgMhccA4BGnVgawdA0cah325zAxS0wH8ANa+o2c8Q8ID5fIxUBS/139NmB4jG4rsJbb6vxBOLk9D1h+4LC60Ypun4p4HGKH+27oBW1+2Wk6cciQAEjOi9vazkEERbc8xb5ADiCjkmVQcMeESBnWYJV8dI0n8vrWaXINfEAL8baChbtNwg9RQhsrylbxiUdP4IASoIRrCiyroP8bp0PQmmElSeLfqI39rHHLogOolN+WSECMQ+zEXr35ThTRTe/l1vYTc5Bn1EPjRwUC2qMBNrvD0pKAeZFHrqhQcbS3TPrOkvKwnyb5WEc0ROdMcuXIvw4fuT/N19QLaAMmdxipNwzcxt0ZPjgri+dWkXGDjv/ZdmhhiJGXNNY856eIS2VIMxNV5QKpbfrKu8pzGtdeGmSimXwUgzTFe+KQ+Md51o7xHQG4eYSN0WwAz4sBL+dvP4M3fwDWyHSIa3e1q4ozTTpzYKfjrOhIEp+4Shwq5AKOKI+oO6VfwN8YW5nYv/9KsfV5FMbX9RDToS2AHyoRRWIRmPArKzLdbuxmRClykpCCXLWy+Ax9aAcLix4dzOFSaxpn0wrLZkKE6TwPCuOY8uMSWxq7GAoJS8t8r+fD0yg2Evg3ie/Y0a9gmQjDf68ur7Wkqh5WI6oTKuNllYc26R885iFIJ+lbYiT2bcS0zBA5aeEm8r6NqYrFKAbIh7HM9zpBwMVgPmSlogESn+D05rG0FZ0eNYhJGLKg23nchtqhqU45ihOfbvuy6iMiOD5Oztpy3LB4xwcIm6Cztg8MdzG5/goVfyfX9MXdg0tAaKt4+f7qH7IIxyj/PW6u15gZ1qzuwRbrLcObkHtHInd3IOP7R2hKIScThDZ1AAMi1iMo3MC+YQkpuAB0U8VU2E3ULxE30Zl3lI/je01B506DJ2LD1CtiFGZL6rfbY2a/y0D+TxWpEk5xomZK0g2WJoi1xd/4ZXq9c3dOrt4wkuHQj890Ay2hf7kNQf0+IoqqE9Cb9kqJFWP0JGutBu54GyviPtp3sZQVe8VM6/DOZz7ZhjdrXHfeUK4W81HfAL1k8FjdfTF/3htYqN7iaNbLwJVtUUOm2SNkMHAaEXjfNh4J7D4Ld2k183KQjWEYpdrvzTQkzTd5RpnukJojmVgss+1kjNAnH19OruMM5j9X7bh9LtpHdWN7GfVLjXpYp2fUeTtd/HpUVnt5bT+F8axiNd/0P4PPhkm2/D1zPKxvx5TGGJ0Dr7Gabfs4WW1bKiB3r7aN2M8L+W5tyBv4eIpLxerBoU3pZnQpYPwE8MMCiprkVzQy16GyDeLiJiLje2kHHb1qvxY6tOn6BBJ3FJha8ZmHcPOpLep47gLRtMFykFjdxDeQ8SkvLWs3SdHM23fpzM0KfEym4/QTciSllxvpIMS6iL0qqCkEAwe0Yd2a17jDQZWLc8R+lXpE0uDv+9lnD9f56FPthO5CUecLFjDNF1Q6DGzRIT8i37/+rInuLxJ11k4VBLbGmVlHeC68QqBnJDPXmxEfioX9h7tIsMZA7bPiZGTM1emu4/IEXRdjG+yYxBehAa6u2zyB46AJT00r0xO0xuAp+qjM86uMINr9MHpRCSipxmSBEjy7Z7d/ZFLLKI+6kNc32gqKcJITAgtTbW3ESe1WogUY818u4biruzdgGqpOzsl8n7Eo5mtpR14/4jqE2T3WQn0vlx1e2nmlnMIG2YYpBvyT6QqGTBSLJsAE82lQvUBE+U2d9BC4m8gvOysW0hleOaCObarnt3lthQjZK7SYPra7raRVbxjHXbY+RPMZp+ws4HkP0P4ehVCRifYJ+qCoe3UTdY+xzGp088q2B2QI+MbUnNYorLAJNWSzu4SmqHCKvFB8CyUeSIJcv19dMmRS/fkQWlL/Tcj5SlG2/pGAVhdHnDF67FybaWPpbss0JofSMLKewBqwz2BH71JKvhDUaTfeSOwnH7uOhF0NbwEFtDENSQAiSAH42yYZ2cidORZT6JTW0tz2boodajBI9fAIwKaDyTQNAH2doCh91TMUn/9qxt/A9+k7ljZYotYj5iNA8N7IN5WcblBu3XI5WrEVPlY6/c2hp/rqJgWJQDRKo2nmq4/avv+4pW7GFObHva9Y1heXa8LONIB4Kb15MbQY5mlyKKj5H3oRm/ZHlx46b4bObo8LeiN87QmhOkpf09CmQ6CUj4XL541G9VH7TzUdXGoUpSLFxE0enxFOZSz4OpmKeajs5tlzLfXl9pVrAX8cQB32fL7o4RICdxmaOR6oaKGJEHvIaPbHKA50oniak4FcUhMiEajKxmqhLW73jDD2wx4tgqBGywwQEXNFZS4tf+T7UBY5B3Ns+EsJUsp5Ca9SfSFHRCpthI4/eolvhGSExU5FgUsB29fDEl2RNMF1JksOL4YqhcmHpot7I31MuMvtVC6S1paC2POwVWwsR0eUQGkLPoaMYPWlB/yEHh6iIV4AUFZTBbRQhetqCq67ZH5qMdl4H/63pRazeluKyJbrGxB4MIAQy0ZYBmDVQyYIlBLoajCmEUybPBUrimeNFNKLBqLRduJTgabUVdgPcGMW2AVZUmoMnYmLoT5Kg/2+CJycXgCwB0LrkIsLHeqewpvWCwZwdjXocmgOtjE7r0DLtpMA4vWEF+8AIyCVSaTvPRib/AeS6EMGedaq16EeHY/TY57bOQKZNViY3nArALQtsfHwVijPofS54NkIfxBP/r6jNfgwH7y2ZjkXM2ItJxY+k3vJxaz2MCuNTaQZqdxLAlyzuKLLEIjtB7pNTmZTSC7AlfYUd5UXSWgMmCFivDlRCsuM6qNFPxbA3QtXaqQMR7SWHesyLUcWj12qb5Xe3PiMxt78yvMxDm5N+0nLwzbeSHgFui9fVkO0gyTAmL/B+5avy9zAP5GrEzi0u3TOov1Ajvzj71ypTpPS1tQPLkzIm3KAixOE67LYkZ73bIJ0wtcWv2xLysZ3FunRlVsLyj/pPrxGb7MM9l4WUhpWrFestg2zMhk804qrFGcMSVA91ePwgHbsUBU2eC2b8mLcgALN+AKvAzY49ULkB3EkCJMHJuS4MQ8c5YUleGqalxPdQp7O91TwR68CKIUvUwpSOCRm2lVL8042x5YnZ5NUI2a97lxnknQMv9TI9JcInE46WzgCqHOwlNbizUJuEBc3kDoREIThEt11GHsElLeZg8J4v3FoxAakHAQcpt7vxBroewYh1Or5989uoScLaaDyM6cMkP9u7/3XG65asFzcVi67buuqtmUVSJ4108eIVYj1o+S53pZsyUrXoVI/cIJfE8StCR6OqLW4mDd6q3yh+IIoKKhbFgg4gOJQzUs1IRyIOFIUCNd2XL1wntKOu+MTaUwDxFuI0VDb2vbxlKDE4/ycDeCXAbDGnrv/x3FUkM7njfC/8knp7pUaqMxP42XC5loxkE45xZdyIzbncYXz8Iord8XobgwQ1nYHXswVNLbGGTUourLU83ozCiixPt6iNUsdFFuNCd2ERV/4zbKQ/m+P5hZZA65kWImokPCsxK8IlbL/abpYD46s11MbsZI8Z7VAICr77DrW8eXW6zgSfIrARrNGuiSVdjKyc+K+VbJIL6JmTOpgt+9Iici+9Q+8neNJP7EllznpR7rHoOeT04tujxksDnXu8pyIOU/MHrX+I5UuJdsid1Z7R+qztq7hy6LRIS8rZxN4lwPvZIo2r94xwLQZt23kG0qagCe4Q91sILiFtasKJfhfezKst/QofeYwXQeSJ3dd9fTW+/hiLxMuhUA2GbXlzFo7bSl+fxBhDz7Cm+hD8AH7JVXzCp1qGqwuo1kly8jDEx55s3QxB91qVXDr0aSmqAaFSf+ydCR1D0/5EM/ZF8KusqTKHTHjcm1yOw8QcLvqvCkGcugI4awHQZxaZQqKWIa7Brw073wf2CNMCM4lVasmNVJ06sDtk/sC18gOw0rqV2GtDbIfDaTsWGNC6cymQGnO77CYxs790+GDL4WEUghfvKtLITYZCnLiFt/8QZrpo7koc6PRaCQs52LA9IW9zXakyaosDKU2QzbuF93lOkrieh6EMUHd97KGAdsJq/vZBOj9hR0jAcbDzOmq34vNuxwlZp0rxhv3IKuUqdFkqZTW7HnGIV4F+Ui0wmLOQCucbDeUdFR4KxOpO/tg9SLOA6EFP8jNBSiLwAzKrMJFtb3Pu6AEUzN9q555C8yNfjhlc7viqQ0Hl0lODI/my+BugzyWtR18DPcuRuoFf3m/3wy6n1g/dB5KNIeQsxrrYog2Q8pkij3Sf4XB9eUO+7DX1kxGcIE9qr77lzaZ81oAaqJqvojYNXFBNlbu9/0S6N3AkM06tq99PkPXXXwX37sw+NBZWRnc+9838uNijWZd7LJ0o0tPPUxjrUa6vU/n1v+BiC9miXA5IqeW0fL3YA2003eFREsoqCFNNh9Cmg1MwpzELDiLqrnPu5G+bEMO48y31k+y+qmUkvtk87vCRzo1gULK3LZTYUB35QqSn/FvaPhLosNWTRM3wXeebDthkfiUocJnlCsaVlbsdy1dOzyqXvb1gf3uh8lJgyz6qPyjjdy5pCDWvCGsb1s2fBQVi+zANp/YDaEHb1pGDfJDKIMmVYh5zEJdkXbzBRcJ/gQPFeF8BHCsDMz29RRO4atSLFa+eFqCJswMeDS7Q/YR/E1fJ7iSNV3Oy+w8qnPMW9g5v9WEnIm0l5rVNqFvoB8eh7//dDEYXVQWBul2JmOqa/DI0G1r0ZawibTv/x5i4R0KC6eS6PQ2Hma3ocJToOzWKIT6wTMbuB0JMlFxN1Fk0qTQDdHc86lfmqZ3xPQBj2bH0PMQEpTMviE8DVXTvwrNZE9LoQ54ivLTVjFZMwuDc2hghfaM2sNn16e5ROZDZg+ECo5VXaaC9EXcgwsb2VAk1mzTcCHadikwLZY4WxB2WGGadrZauOlly1mifJHXJmE7+bWG7OFOoJS7GDwxlIKYbp0joJ0XIGHSkS0dF2RbU0zAV/m1qA0MWh37/MV82PdkbCxNzWMc0uxtJR36XZKkScNV34xJgjzMawOL2zfo7kuvrlMaXB7KXtSQ0kit6VRrTLDgkd37QPx5OmtxVv2POhcTfMd+IvLe9rTHDBAtwOUoyJLDS8CwLP+UYGm2h+d9jippv/E29xX/qn8VK4O59n4v7+AWRZUXBCoODVYHIiG/RuDeWUkXJ2aPsKxN+2OKCYz2Msl0f4TC/SFCk60akPhAEDwp3jCw15xMb2g2tcJWnd2CPWCsE4Cdl0+mC3lrcZeZBzJirtLEYG5Hwoc03EXUD4uFXtD1iDeqhTjChZxa/rmNwFplBq+wlqazpbAbSQBbz/EbnmCfVANJHwSqBLhzZIP4fztDya+PG6bKy1QYV4D4hfAFM77rt1LGQgCqcg9YFngXRsZUjbhJex1dHwfLltfNlUYadlTyFP7+ylUEgSAtYeSw80VYHW/jErYbnC/IpIyRVblt3NDLc8h11NuEa66k/sN7CqpcbOKz95na6s/bu22HsRbXO5UNZBo/kDNQavpkE+rJD9MAw03r4efBDdArX9WYivZzeivUjnyUizyZf3K0o5RQmiqMbkWKagM14ThZ5csZUo0e4E3Jqaf38Z6GqsQoxPji7HWHLek/xEWVaYuAcaEvd+95BaCGGwzgSVFY4G0GBMFJ3bzPd0YxCrk+VQLuPWsOiVbrzJUtqWzZon9MqwZubnWPjuulPuUt2UmLyy0Uxc3qa5Jl4YJaMvF5kIRXfdaq8wMpAs+jSqSS3NwbkLtnJ+0CoeEVQTeDxYVQ4jHIKLb9moNskddt/8lib7efHjLZPE5Qrafcfkz0IPnC1Dl7o+w5iKjRmFhP7SEH0K4ZDdlszVqMWz2ICijt/A4dcPQFxfEl/dKRhm3Ir1TqX/BJVfREm8LpB9WMv/NUPcbmVrCa1bCCqRfrzV1xnN5hLZi6WgO/rvcdBf5oi8a7cfjEZI4O0rbPHh25EUZuSdmwPAmyOfhSyWi96ZZNJdEOR+FQyZ1dvtBJS8wktyju9Z1nx+vEmp7EELCqtJtaAZeHmKOaX1FBfZ4HD3uLsx+eC3nCpSxmAJ8V8YCRwVPSF2DQ6eEu+0pYE1kUJQ2MtamzuXB84aX8QAyjIlRVMTQDt0Ym5YqMdfPmQK+MLDqZF7V4+VNSKkfVLRy3Vm/YPUFLyiv2X/aVN5pwFwt7WlvDEDhf59NpOOml6VK+OE6++rfvjHMMeP/sYnUrwma/FCnEeTvbOUTyr/mgD5Iy9tHmqMMqov8MhrYDzbku5N004F595R3VWChKKNjmAecI01vNoSNRFd+NgH44kO/V7kLxJTQIhjyeXWAbE167GegAI+Nr+BTaIS4+bakBtIGBw5fb+aS+KP1TbvCdaF4s/nwNsK946kdG43ckKvQ7PK6K2Xg/XZsG2OiJfBlwRw9MOde13If3Hk/wpON6xskcSfUYyacZZLP88GErtzdULeXlq8BjRgslzuRv4avCMW70Ca6V/va/4DcgjHRd4cEGdtf661Xe27Kx0SFchD7Veex8B16aKhaDmhURfh+1F5Q/GAdHpETGvNQltroVnsDmfk/CJCFt+lFjrPQPoXjWqSbBlIt+l6IXZl3lHNW1BLUX7zlNjtcY975RgewyvTc897kAx83E1y2Uw0seGoIFpGYPygBQSvqJLPMO7hi6DJyKVL+RYQhxJmldy9NI4HwFQ0mXpdQVqjRTSD57OE3+nSsrom1Y8+fZMmZLQgCUbHfifagIFjbDYpluxLCq1/VNG9VmlhiMn2oWSMMjzksup2q8f1bRmUWZUHCbIr3DLN3xafa7Zdil+MG8zRQIQX8KTt4REJvMIMx1UxuYD/BKo8r4MTujXdxGgS8OxvTzjFbRUZ/PZYF9rgiIePQ/BoRdHx5m9bW+M5R/5pESNelsWYMX3PCrndkGhPoyZoxTbj6+8yKlNISpSPAILq7nk9o9wdONv/91kuG/zLNkiNtmoeXtjk9cGNioFf/84EBhlpesJzpuqHKfPUoOxXZ0aWlMbaLUjeYPGdJSbLe2ug1p8AOckOcHU1kEurftf76W96oL6rmcccC5vsRe+Sfj4WOMY0dnEZxAdUgaaU1aUFJpix+/82ZKoz680JcTx9/Qnpk/w7NlxevteYyzN6+S3UVK4GlmPUNKbf7jtudslnrKEtrgKEjz+1iwwJypsOdlJfnZuZ+TTKed19yL/2Ilky1mVqh/Wu8x0wnkxbVFT91Tpj5RW3C9C/POTqBIK2ObSO3jrALTMxm/cjU+Hl7bYD3fyD0wMHNsbFHab87GLncQZ3Pm6jj8+qRfjQ0r+ue7wK4uJeFieUCnHCWpxuHI0omkNNaTzRGBuwn5GPaAeTxrUe/FsdYCm2oFzEMco73erei/gt71H/vPfHqNBP3yRobpaqUhkPNUpvb5ILNMB64IV8kn6jYr4Q+jTUF6KzkODK7SUWjUxxHNtbS5tzrP+Q5YNIYW5qeIlt4m1sv4QSp3iIRaMqK9ri/ONXKnVz6wbix4FO/NHLXlzCjkECHmM0RUw81nooUUFcv2kdqKNGLODfvLMy50WJJoSXX0nXxKGuneq4+f3JIXI73dMhZNb1i9Re+fFMpj6gRBh9c9fN5ztkyK3Lg8sJhJKGgzmv9Kwu5s/NeBG6t0i6d64cptVJ7i5ckkk3X/3intupevmW0EZh5ly0InHQbqyGKBz8tM8hljhH5TdUi+aY8Zne5TBmuauLCYs2QZHtcFqSidU8DDnKz1leTt14xPVy2XxNZcPv5ZSstEzngiXGTGl0Jolxwodmu2jXktClueKblYitKjRlOHf+5heqKVp5iKPpEc9Zmfk1PYkIIKn9JjD4p5M/G//N3W1kjt5ce5LLqQUyfyShLlxbAnnJ6O1iOi00d8gIb2mOHZ0cOuuZUrmj1Z7ExB5TOhoVpWIYJoJmEoxR9j9anMWJEB90YnpbRZSj25znGOSC/7Qc8UiMxAnzHxspgpVJtMn3uvdWcAMSsPGwtCYPKz/FEzBLH4B8yAtoxoyiklUtaHzV29Nmo5cY24rhg/YjdLjU6SE4C5FNPmJyxRlkChfG62KhB6TJtZjR4DCbxh0Xy408h84b3upa5qjP3PCPBorbmUlZmerE/fEFDLC5Efll39eKpiSYMSwi5jOJkTxpwGBMkbYBn+e4EJf/T4lCVBZR5dSyG/juv5Y2/PIB6hIpdFe4491n9U2/6CTxJlPa5fduNloMNrUfZLUb/pmP19sIR9vqsYslf0GYC9wOUfLyETeq6tSdBFLNE8vBYOocZDMOmzRNiQK18BfAf63LP836LBnY/KBXh/VHq3F12wZT9/Ars+FPXzg+5w5a/tvynOm5WRLufXVEDAnkgapuN2cpshwTmmglOPKlWpuS6I6LuKuwzcjRqPbpkiGy8Im1Hxfnu3XlTDFcdCI0B1xfpewNfr6w3tnWz2l3yrMo6Dswk73oqrR/4SkkMb+LiH7Qe7s3LV6cz1tnrbaF8lMva6IBS0aGXTovW+9lxEkVpE5A0krQTcLMSimgapIN2ByzcyZTHhwrCjKtf/o+We2fOC4/XWepoWcwzaQx1FrErlrUCDp1YSIy9bKpE5Q7vvYmb9DYQPNvod5BXCKvM9ky/Gfh45dsSGRt8yXi8Efw/SggxQF3K98B/g4XszI2gDZqnkp2F6tvZlrcFXTWBOmhOgcLD06XxaFbiY3kh+ysBzNoBgpmGJcKBPMcYA8HGL3LkTZaCjDOSIrDIucu9PTyeWFoWdWYDvEs2UZVl4GyNkTnnuAL0XVXcQLoDMkVTxXZ1QsA0xOK9rOTr/FwwB2VRdUMmMU8/rVJYxUfJCiSVt30KZlRgqRdv7GwEra5ljawzDb2cT7loHbIbEKE6Lw33EYWaI0ZeqtwqvMDjn0/L+g/SfSltwYe4+/MGZ7i3Y+DIDpFeuFCP23Wf7IMwDgG6n1JXk5bwpwAMmXg3PiNpvkG17hUnbS5IC9YkMidwNuBhypZYehGDS02EjhGJbrguHMk88i1wF1k3zizUTEzYomENPJvMK0Q5R3uRhohpN8mTjjDXOjZ4LVwhrUg4zaryZKABWoHYZVMsAZXmNp/gQTzQ3covJlCfhYM+k4F23B07uPweclLQtsWscDpdpe9BVpBPv5W1n83VAGOqn+nQ/85cYetF38GVt8chOxqnUGUkmkWPKVe453cjXg+oHutPrhA3c4e687KxfqmnhZPXLyugZnn+8LEfCk+SuTSC21eozCnolGB3aFj/vfN/QFq7ydw79GdspVCLvQYMv4yXX9V+G1rUOV5j4bG9UrL5CELdYpmHBURP+zPAKQTzDG1IL3NxHl94QfdSGeMqO8k61ZKPOV5326AOHSJ7V+dX6DLMCH/99YXzqRsWeHqiNe/ZoO7uzhJEc5YMzfdronGH1ap2L+Qc/jhtiwdQDmjC3ZLh1YGs/qSXLxERL5WLXUIAEJ6SEf9ZpT/cDjX6QSAqkqZUdnT4SQRKwPEt+Zz6YKwd3I0xr7dp7FouO/Wxlmqcnu7CSdRo4gUcwB5Jjb7jwnUkt4tiyfjXfJTnrebjfpCV7u/EkEA0eJPe7d7guLlrUHzYS7Z3dSIccK6EWd15xWAgjCBwjvJQKrtG1YFJErd4EdQZPGEfLuNAkFE6cpO9JPxkZO+jhz2k71LsIHyOdpOLdX4wcHwOi5CAEjfdTcpZict2aXawuEm0qodsPIyY6O9izQ/hvrJUVFIIhlv74GGofWImdiHN5vlxB8afl698evXubCnJ4V9nUHcVj4e/m1RNLTzw1qpQULR9fhYq1Va0vWIFp/npLXiXd2ecysc8HmHAUfyDcLodyzG76PfuMZWbIKIyu48R8m5XMybsXzlSNy18uyYB6wkws0ld3Aez4T65hCj49lgZGLuncGwZ37m5QxsJAgU8RMsA6CzGuL94xFlyHdsOOed114woYF0YiZzpajjKGQkJ6igw9soW7X4ttYI91uH3Ssnnn/QRxLPdhUk+f/3rE3Udu2RLDw+/We7P0yiFl2RUiOK4L6QrljZNQYz+7Zo5sM/MiomhZY1Bs3po7Zis3kgUveqfmi7oMP7b6dza8ZztAq9m/eOLKoaIsmJsS1o1uVx8bxD4/QtQuaCUC5kok02B9O5BAEy982bY1PY6oqZXAn9Ou6aId+DtPV2ty8h9fnVcSXj6n6OaJhZFW9fPdC66dDFar5oEZBSUfR4l3/4zIPyzaw9XNq8H4tA5vNTMfd6KwPBCeBzoiExV2Ra2Q3U5GiUfBIjJM/XEnxTGgoSIxIvlN2xVjuMpa/+9D1jCBZ0wxn6zLcg6ZE0y0drqzAhjnmT3lp6GOiLCLXX3a17PmAYzRlqKw/smpyujtW3GKoLYqoBxSMUO5sOZ9PKUAkPONiQbYElFNB5G9K2ZaczsmOcSdNNp8ZQ0RFpTLcRMRJiJAb9N1FxANqEpdRnKJbVpAH6yqZz/Nauk5ZJJV/O/CHGaYOzj3Kw7c3YpQcGREUFonsZj0x/T3YMnJtwssxsaVnIx9iPAYgdH7d900qMOwk7Oc9lKdOTv0cGh0m8Iqh2znbbrncTMDEiWOEZbo1BE2jFvohUbMi/E9FLtJq/NCaxyx062zgA/DyJS7hw3zS0LeKsAzSipOm7A2/LD39vDEWQAWU0izeRLu2IFSyoYg1K5J9QTY7ynS22RikwfDTsJuOhfUj5XVclAFLXNDhWxJYZp+KgPRbfS58UHOt3Ox4b1/R5rbKUvIeFlbCAd3RdlQO1jq4H5y6mcxe3H9ZNNO7Io5k/BaUDaLERgOtOlM7cMSlaqOWRPgrPbvQ6AS8WL2aZ6Rs9yOzIUU786Yk7eCX0iIAYsWSylfUrc5uGmbKZm3e4mctikSQNY0vXdcddgFBOrMFYZKpJFJ5UynfvvOih+XtWLKbC6Ft+Dq7mYQzP1QGoVK9aRDlR1+Do5szJ4azpp8VK5/+57H0omVHQfzAWep2+mvrjsZXprlyEENPBP6j5iiKUSwLdAu3lzV4L1Gdbx4kX6ifKQD36kcQld4sTpnAN3JAjStMCWv2chw2KFgDosKqwJJY8l8Hnc0nuyuLa6wE+Z+QcyvPN6YPQAjk6mBNZP6GGEZ5xcPDhF8lE+goDDl7URF1OQu5NAf7CN1zDQGVpkhXjPZTkjPVJ4g6Bqbw40f7XHOx2IWe7vNlKBZh+wksIrvdeZOb+IoDJ+Ym3380n00c5+qimG57cDz41xTb5XEYd7cU+AP5liQwku4JOn2TDz8GOmf6aIQAR8hggM0dErTGHeTgWAGgyU1dA7DRghv3kR9KQLvJ2RueW9Mv8JF8nxmz/RadBtJDYF50zNTIgeIcLUMdLfrxzERb3BUYqTDyJU3UVAs71Yf8Zdqf9fdKALH3tiklgL1HMBRanD0LdTNg37z58s4pihHFUfnHLlpE3wg5AuChNvsoLazhNDHPf/lluJ5c2SBYMcNa0calXHIpUq9vOn+jE1iMuCZh4OmF+r0QyzGCR4g5UEYF4YZckU44VXL7of+MeFWYh06jqpqyIbrv6pmsumh7VeSznjegMb8npz93RFTvHYpRGCW/WXUc7sTKyQfIf1uyXXxKVJwGQHtY9dwOPzcv4k+l536CtLSil4mtGskrQc/vVhuhdnAXq8MggAignnTi4o0YwP+Nd1fVv7RzY89feejFBki0aQojmP+iaiHsLwypnCOyZ8/OAw0JTQfJ9Ka5zReRy6zvaZ/+vTT+r0XUBgHHRN88n7EpFEkRJgBf9ZYKxOSGPlxY5CyEdaJt7TxvhJy5O1NRxp4JQvMH1plvAzLVJj1C5NNT8qt4VQU6Jt8yimme7mwXMEh50LaXSImaKjoYigNcyTpvwkxUdNHZUsslQMVRbzVB/0e+qfFXzU0rpAJ3BooqorA/lojO+CUWiNV+dSL1GW6q9TDyO/wWZc2nfZXHmXRS11fOLeqZ4WDkY8CU+yJdWG4S8sU0vfuK5sam7F2NG3Pgta8x7/L8xrEaSoc99vW+k9YERL2YPHbTxEr62iVBrPU86PevB3HRpUPx22clF81XSOdBS6YGC0Q/nFB+zy9sgtDPEcwauFHwX7Qdmx6Ufa+GcyX4DtlcTBuCQWYgt2P6YgsoYPvqdcmdFmpNf+B7Ce8ydzQ4OI7KxjVwpopqACMsPdnUv+oGJ1LF28REvXoyjobdo7rY2st0WQJnQoOR/JwFG6wQlVI+h321+nhVNO2nSVEqmmNfp5iBS+FtK2u/sOhbXfQl6s3hzdSVW6shfLWgQu+3rVFMQI5G4DNBFIYi9187V/J+vetukOsac2S5bqx8A9alUtSslkcUXkkGAHuLbghKnJdIVRX1es774sINfjB78G8qPGffIxn3H2ml8no+UpY3dNqqUaHeyEWqGj4xjuGtwZNgXsCyBh74pUP65XCNpKZIVRCc6XoW8PFTWBtkO8J/oO7Yk04Yby6P2aeXYEIIE9X7fYNaZ4ty7w4R4OcbCxIX4Q40ljhhegMJeH3zDjMsZ9J37pxuf04Np2oxaydzKEP8krJWK3vsTlsJYEpt2sDSncepFtkRx8Kohhk4zbsB/SMOa6pLCy/zmgx0BHgLks0keiiwg67w+WvMbTx3Z/D4vRjzkC7qDYo5wkRQ1jFDG1f37zvaLSaPDEYj/GSHhC/O6qQ1fEPI2iyuMeq9ACr8esvK1PJ3qPiYwRPK1ejTpqjT3+3+DgbsBdHLwHDtYgTSIg6143fSasBiMIfUGksyud9HcswuQXklgaq3ddyhrlqlaaxT1uGNQBn0dnYKE3s1OfYgVp2/H4Ddd3SWPJXdJmHW+63TbcVbkQJltu+e1oOJJ3J748tpqPSs1rYmwbImpEnxzfp03wHX4p4Wjs+J2F80E5MxnsbttkFOclz85yeGy6gCc3QREA/klJfCzmXdf6mJ8DvsXViYq6P4kpuihUIc2bhB6A6BpeCdtn/0POg4xyl0dxfYkfFgiaeehTHDCcshKVZD0e1lO+p00MDYTqYh0YqTMKjH2R98OKGXh69zlJzkNypvbdNLrp8bMnxVmQmZriM6u6vn2Lz6qQS1IgsoRL3JBFq20iAO1hZzeEuzZKUHjbLOpHFjshsG16H61hbSIstIAqYgcm9ubHFul0prLIkAw3+vamE8eH5yV89e8jsZrI3otgILAYHHzrtLg12029ZH3nUyKZMiWuiU7uIi1gZbsMp3BVuYZXLu9vcd4rY3muhWD1PVA9wJWGFrTxKX7v47vNRik2kAEu7fG7HvhoClzwock68NbqcaHeKQEdsFledmfe2y/hWaapnevZJGWm6qEsz2qlNccxjlA6kWzCl/c0tU14WG6ebW4IQNtrmn3txFFic7QEyPaqQcoY9X+i9+kyLwNJD+gekE8ZS6ujyfkjfOto0uE9Hz5TvD8n3+ogdlT5g82laD+QcMvibfy/tLYkKxWoJx6j8SitF99GhhfAD0HubVa8lxKIWD5cpfXcggKkh3y3nhXWpjcIiSHXVMoOBkjZ3Fdjn1ii7EQXFKFg7ggz4sqQz3u6KHNF8U4yJoqadA9VdvFGTquwrEgbpqJX1vPe6it0Q+LIJNK57z8cQnr4Bxu1tG7K1NKwOihEXIWgDV0xkOrMylmzvD6k1U5iUNSzUMbZItfEFt4xwFBa9Yu+gtTFGAm/W5+EHk6VBnytDnSXl1WHK15Un/AGHzA2pNhYrp72hqTBMm0gMzCq8BeJpARjVByaM8HscfhzO0iPrVTgrprKNxE3FjNKGuTZbW/yyittA1Z1vG+rhvAXPoezc+EUzA9olBT9t01PwmWXxda7IPMDs26j5dPpI2rH+HTlf0ydfFPHdIApjVN+ynfGWdHsitSlWgHJDrAi8VT/ec+T8LKUleT5WtXL6U6TmdnA5zV9TQKa2asxP86ECGJUab8rM7frvwrB/Zc1+VLh1ijsBis3bV1cAw4HiG5tpXlvIMGy3l9zYqO7qAAwPxMx7J5m0Vriy/QBJynQXpqGTIcRPfIZ7a3XFFyrfL+1JiOsi7tgPOj1fEMVwy8p9NT7/oH79eE9lG/lsOZYdPVQkI08tq1KfaTSWgjh7sf4I0hbCtEUXQDGW84QzdBCID3Z42sypce+HvSnbuNLVAIsbuopegJvh4Co9klbLDnSKqKkBlXKxZSxGvxfkCP8mDcZWc+S5Dq0XWHtpZbZnaqJPouMQS66H3hgFtnMrGMwiSVEp5APUNoXBMeHSyJC+Yy66IALz4ypQy+cm3KggqfqI+s+MHezBiYHwVtsVVe08BzThIpE8T6nvuI47F4LQRcyB383VaJpjZS6WtVPGt7MdC0km32/Bm1wCev3AYzIl43Gw+qUBCLR3UFrX9KUYWRUIPyeggmVgTObUb9PDVTDLPYlz32cx8UyltCrCqmOhRcTsBXyiY35jZgK+bLnL4EpI1SSNUNhE2KEIVWHkvGOX41kjLG1MXVI7VOhkZj2AKqIxHWT4KJbIJJuZMTbXJaUx0LA8pjUJVQ2uVYGyAQtJuW80/iP1Bn072g0+5/7xRU4qQv01kUtHFlVeDPzHgO/H83w26CPGvucxcKgoGJy2nc4OyHCY51YfvwFOFNaVckSL5X8epvlj/AJEm6YfMYtdCbq4mxm853tx289uGQIUyY52aCl1E8QwMl31AzHYkHMSIaL8A+SeJdY3ARsINToMBDu9x6ZCP5NvdTf3wNR8Sc7ZIQN83gy+cK5jUgbbvFJUSjYTwJykLUyEMhnSn24HQT1MLmS+5VE/kDTIA0qwv3SLbdIb00zP4xaYPNViJwNZ30xNxXTUAQ7IcRohVUFjtZnYrcKhxtJzkSPB7nwH9tzNdzqeMJIXjJevQ8W8VXZ4+B+M89zSLiO3ATgpRqxUxk+v0xENUDepzrKN+sgyIQXrRo+41QUhA6Tyt1pL5PUTYW0QGEyCpxJboMbuzRGKcVf5icRUlyWHSCLtyvemckh7CgDqCulup13jgB/0/4rtEs8wQDIrHyyLSx0CDVbyCKzMkyEQNHsJaVb7UlmT6LOaHuiCF9jJOOP1Nwb73z1pgXtwMcZp5ItxdswHv/zbPg1FlcAyHAMS7twy+M8VHb8NHg5Qx+eW/wrt9CZlnpqlvHHzwb3AhKKh8s/GfgYrZnNL6FYHF8DlJ0FY+98aDDjooLlGz4Kl+FIN2p/EDZuIj3x1QmC4I6QUSuJP0CaRvAydY2bRM6YRL0urkOf2Wkhrr3Uxw83n2Ulr2c80Wx0DUvO7btPVm9DsFZL98PHIhjoWYWMS0jcsiL8qLuoVZmessc6euszt/o3I+l5sKnB2foa4QUcHqvpJqzUJJBrg0XUh+IcQvLSBrLkWxhGHarFEmDHzrLTx/+Cjt2zF7nN3795181ewejMf6uWoa4GwJLmPgGrB7Ew4twtARkLPZXmbysZkQL5W+DhIg4Ab0I9HjkfKrQ2RBP9ljqQwuDW+ZuzQKz5lS3+QFP/fR+C7WDszRgD1biFxSM7kUIpmQMENK8upqklXYniZ/WVY/NH1Yy8iyg72nk2eknsjcfyXyN5qyLwk1y6is7MD7rkmIDnrsIxOiJilerfmTEpFNTW1PD7lXbfcMEXsGDYz3i4u54gmPstMPe5irM731TNGer8Lgl4LMNdmu+WODZJaPsKqlyxbTm689QbrYrGgoa/n0qHFCyCM3XVo1tgGyODjhoeJ4G/x5PGYvdang/M8mWwYCu1E5Sl7wpp+HMPaTNNVXOidXbYiLwjwNiMfizB6GRRGcYhzC0Yaeow8X8KnM2Q33JXY64TJObhTLARL8lcR5E0fipEq8rGj8AsCqjvzr8Cx67fkt4mEo2M6lVKWJWYO0kwFM/NwoDdS82jfY+TGUdx3v+NCz3sN+8nkKJ4nDhDNM5kzSJd31IHAkj5hx7JFvX9fEnuCRICy6f8TSqT5Gtt+1nYJPGwfKMloBVzxQu3huKPZkAFkT5VXhAMb8mNH3flJ6JTQadtOZSnqkx1QzRzB8sNf62lF4CRMDITBkki5ygWURDSDoSeTHkwRl41Q2VpZEA8C6s8BzQtjvk2eMiCZda1iEyp7f/RsFN3xrVgtcH4jOWp+GglNpv/rT5vxb0pNLxwc+ta4DiqhlsT2qOuDymWBpwJhnf6+Vxj3xhK2F2N4BTbQ9I5PItBzBIbevyO0TPFhPTzTGC1pDuo5M8K8XTnlQXAn8WfpCSGngOd437QGYVGGrwNTfn+kwehnjpv1REIl4++8sxuwwdFtNTgNjs6+BRv4w1AMeZ4B6uTzgfAP6y9GVUzeOGO+uKoiV1DhO7BSb0hpBUuOEJuGW5J4jnc8XjbC2B4w+Md5l3sja642M4klKw1KTGiSs1pRlRJrTCKUSoNBwM/Iib1yQaBCxTVy7QIzP3oG4TBUlF8uzDUnRcfMARnjxrKGMxDEa2JtluHBLXrbSb5rLtxkmXSUtv9ci5y+IK7FK99fas5SGVQRzwBoj5tYImdJT2YJtfCy3T/bcPop5n3VaQ2M8qg4/fGPtERiClp1zvNMxAJWMUJKZeDW9lEs86WnKCFDmrGaEqiMtyYIhBAz/LU1q6m2pTTK1j9Jj4iNm6vEOE14rC/cwyIbY9ih2Nh31zl/H5JqAx05Xe5znUb4QXr1F8qxealLuUFtcq0vMB55nWI5xMyResR2Op7JD5vmYoWPHW3SAplgVaFLYKkOhMkWWHK5rQ4aSk4z2sHM0XoFAlgzbqvTRYNaG77sU3FN6gUrOEQhAFxUj59ElL2pm49/5+7PA53QwvPRVMMBNLWRthT9gW7IWvX1Hv8kNlYKIrUhAu4lq2AsiwqaA/VHBBqxkNjh2lHxFsmhSBIyRgUHJ7uUy72JClwHSN/bnA3F0l0l/4MwGsD9BPJH2KNOudMXDSy+ZWQPAsaZkXzz0K9uIMSLX0Z+oIqgRDIT9DIMrZoZ9UHOZ3qoHynvuuqsqJlakNxSl8iymaPyQk0MCot8ZmUA3wLeFtlkwRXob3cJIW4HdcpRwg22waSfpmuG2TiLhAssNQOfkVaIVxsqwNWmEA4iAT9JNSKN0iavC7HZqAINXj1zDXxawuuiHq0bA3FrxwkPnt8eyA4r9hY9HTqJ7RLhvYj1uJi2IkClq9wuwfivL6cvdc5AtYWrZXroY8dzOZlSie/u4Gq/kPDZsV+aiM+hscwB73lxP1HGWnMyvubvFWDlxKO0R9En8jxONvdmpkQV0tQV5IFEGKbXWHo7wL/ew5a/2Ej9fnmkyeY+3M5GWOEKskwKM4iNH5p/jxI/6S8L572IRU4owSbCZYCPAjkHeSO743+r9/msjVGuf1R/L/YIyEh7Gq5yZDFINfYRYkJsCZ/F+Ov/IbHLHQqHvmTpldAr0VuncczRWTroOzgnQuN1SdGnpVqhpIwuCqVxba+L3wTDHS9CGe38SdwQBGIRVokYM/blyGA9Tb6Ae3krQMsprfRMeI6+lofELTcUBR/cieZLjWdRIehxdC9S6kqaeONNoLneew52jvCW5aJ8UL8RXF7TSpurz16EDC2eytVNUy90wNLrRLif8zzLCYLZt5ljSi6v7/UGniZVTbu1EZ3L5Das0UoBP9muOM4sRawXdAfxbF2stnGkHsUJrWaXIHOP4zrLgvM8vDKdWM/G90erJobZt+8bbtVO3LYSv2we7gK0P7+GCEbAHy7w+KR/LkcZ8zxHGf/9Px0ZtOpQjrYh+b+rpmCHc0fWD5QV6zLJcQqIYc9BriWXgYSLdatMXVYlpwd6NIvNAhyO+XFiQRsnZ+JoMcyqJn5A+5Dgeq68iVDcnfNwRjM4h/4ZVQgZoIMS1s4XNn8ZJrG8wItbnNEY/5vBvisBNdhR2KUbDwz08uZovuY6Zi5QakrG91vZkI=
Variant 2
DifficultyLevel
521
Question
Manuel, Jericho, and Tom shared a bucket of fried chicken.
Manuel and Jericho each ate 73 of the fried chicken.
What fraction of the fried chicken was left for Tom?
Worked Solution
|
|
Fried chicken left |
= 1 – ( 73 + 73 ) |
|
= 1 – 76 |
|
= 77 – 76 |
|
= 71 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Manuel, Jericho, and Tom shared a bucket of fried chicken.
Manuel and Jericho each ate $\dfrac{3}{7}$ of the fried chicken.
What fraction of the fried chicken was left for Tom?
|
workedSolution |
| | |
| ------------- | ---------- |
| Fried chicken left | \= 1 – ( $\dfrac{3}{7}$ + $\dfrac{3}{7}$ ) |
| | \= 1 – $\dfrac{6}{7}$ |
| | \= $\dfrac{7}{7}$ – $\dfrac{6}{7}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers