Algebra, NAP_10060
U2FsdGVkX1+MMhX6zZ1IbR7LJYiLMvPMzx+D+S1Cq0c8roGyIh/URv9obrkkjL2slU3O9yCCxvFu9Ck89HqfmixoYiqPG4dB2RnZvtKIS/XWszlIqgKIDJVy/ZYZC8iFt2XQUUhMKCh2GXBxh7V2NdxRQxjFM0shJfthRwuY+9j17np3h+ClrJ07Nx3ow4XPhb0zSyBa+Jp2vchpehqbh8RGHHCJU0eZshUVzY3JjA/I+jRNE356FcylrdV/g5HvvMCWNZKP44l1d2W4nBSBCVs9GdB6nR07Hi4Wf605m/+AWB06KScwcErhv9yqiHPZJIJ6gcZ8W59d2ldfJSFNX5qQTKp29qFMq3s8fkbAeodUt7nj8Gk/twx3E6g84IzxIjs1rGsTNZHBGirhCPHXdBamOGbPQLIf74Mpk0s+83iUfPNDmVDykrVUd0dmjbJNWJYu4Kmt0w3YV35bGjGgFkkIRNuus7XbWfcM8dU3S8Nr+jgVDldM7+FfQVxBa4opeHWphrgcUhshJYbvdEL/YhT0IWohdPMcCFynexe0BN2gtRYzD/qd0rcprADYs7iMF2j/VGT9hc0dcGI/2w6sr/OSExqYY3Py7u7+P+1tqlhSodC4HvfxrQOSJsZpLwjcRx7dI4cq+ovOILgJvVmF6BmEKnlCkY6C/AFXvZTWEJyHj2l2MUJUNtFQN3eQxFNjbp5reTH1nB9d/Q1GFHGUrvUSRK06kJtJk+DSukf8WQHoOS0oT3Ch59nVdW1Lq+6H6yUN409d+sSyEQTv5a7E6E9/y9XzxhnnkgZbkrvHSogCDeN2MVyD9DxECJsqpMbeqmGTvMNDdj3Lq9LB0M2UtD/q+k3evk95MB90kxv7gZXGDn8SUtAyCM6IHtWkfPWF5XqX39xtJ9v8fZgbaheKG04A020gWG+l0ckicMaWgXYxBhWNe/7lnfHaDC0GNUN7ThKPUIqqQWDUyc96iYKdb96FV7zzUPVdXxFmoxEcrFlYHzRSv4AMlN8RaqH8VRdskIowINy5yniC4hAtC0keGkjYRggG4vAGNyNdN8i25yhnMvwsRqp1gumKS6cKU0yAO+qJfURKEInL5qJuBWxFr94t13VWoM5PfawKOBWlkRzFcPhzl1XmZ39KXqmWy7dg/EU7khuVcI0SHApJMGyWQT1AvS1+mQ/eV57oo4EiBIBrkmj49UOx3dTCgEZsqkfvWxGlqwqqes6u020aGuveU525z4qk1lBBmWn8nhoMofLnh8XOv4tHC7011rLXjon4mzZZFHJoM3K2Qawd6xVXZ29gbhuV4AbWkwai1tgIQm1U+bsPkOkH5yOFgP8sWFEfBI6e+xIrclCEiCO+5pF91lbWQyFDNPkw58YJCkuYkDi/s9GpwAocu2/PKFR+vwAjlQTydCik1JmUjJjpEqLu26n0ufpr18mGxNxpkpSc3Sui3bC9ybdwHnNnKpH1HBgtaXaR8q8Yb/JZS/kJYF0BVuoTT4YvFxSo579u6bvNl9Z7+a0uTNT1B18eCVF8lerfdXk9Nl5w2u1n44XU0TQe1AD8LDeLEiJ1HbOdueqK0gXVwLdCW+ko6ci3qFWlXYutmEdWLPER0k/i4jSbCF4kkEfby/W807H7L5RlQfbV1mIDRwKNLvtC4R1sBijosvgDRbaVC754w47RBtNxKR3b0KKf3E5eR6m0J/lS7PxB152miaX2I6PmmLAbtwTZFXzGf36vSMZ8MmYcAeoSfNQGAJAQLqZxQQjFwuaVV2JRcG+GYMD3tOcI14KfO9ZhTr15x31eDT6gKwr2DOB1xn3vXgrGLgkq2u8LVSlXrFLC4y90p1CwUq2qcxs8QCAHYjBoLNns9QWh85MHaRuJP4uFX8+8NChoEk7/gHRyyRR4lQlcBId2Z2Eh/vCp868KYVsO/T9D7fgRrmgB8c43aAesWzliXLJ8IMbtxEoKpvFrvzdQNY2osl5NzM4ZDBntB0E7lCUIbs2sZNYdUHpQP4EXUSJUFaB65UVWVxWD2FuaoRANHrKb/Vkea35GuTyVAYoK1pfHQsgFjQWqy1lNMOaslCnYeFNs6djSTjGShaAbB11MWFhbtgrI+YbBJuGAA47YZDB2AlCMp6w1Bu3U8B5XtwPrGKebipG6BmA9dqsLetoI8EKyvdZIlt4c2ux6hjZ9loh/OnlcJtDdogGEbyfjQymVhLzwXhMQ8rIEJU+SLB42O1ShqJfShuftrIRBXeU91waaqKtoOqqoJGUijS07iorw4QwVYMlso2hTNTLcLqVBjL5UwNyezIVSeRQPXcoqpFUWiRjlxvFAnp8Zfdckd3fMouV0W0P5bcF3raYymTPsLJO4SWnELTqEnwkpaDeyyzdTsPuJKRPMuKoYKOr3qFFFQSp6phsfIzcyZV6EvFSSBjcGEr3VE1d1d8/FqHg4gBF+eRM6JtTWVEsy2Zmqz+Kpdon+DS67MPrCsYN8zSLxCSuwo69sTvH5L2fOF3S+S9DjEymZt/I4EwOsG3FhI51Ozsmc2nKBRMYo+43oC78e3JTVUxsmwbnucCUm9ctGWypLvlSPnkgmAVzBJfo5aI4rDJoNJfZfBy7agGCbcjIpmylTLfYkoITVEPKrJ5KyW8LCfqay3sjKvgZ+SfegEbMip2QbCnqHC+4jUX2toe/fRtHVb8j1NoJMkyxKYC/mcQXR7IY/qBPMSfzRr1WVTU3icQ33bVJrYm7aj3NXZJOww8Mii2kwqZSLQ/PH7ecWll5oQ+yz9FlXBNl480VKSM41dn0KFmZD6MOd88TvPuSYETknLtl0/5rim9Sz62mm6o/pFBeT2IV/wKHxt9Yi6Gwq321zTC9vln28h3Txhiezmk6uktrUXoqNoh0TpzHKIyxh1PFtCjwuCxPjsKO8fqHrF6QlaqbZU9GKYYepYl/gHHmIyhQ8rwtneiq5eAeOa1uq/g+BnwjBvkeMErbIYNTtBdx3NidCbwljvkDvzk/uCfoBdN0krBUcgruNPiYYcpFBisi9VXnJ4NWtA8VRU1Dg8CdpISN6LkbDj0CUVw/d1Ia5XDIIktJPv10/XKx2G4HA8hYbz5d4b2FIEWRWDtXKQGC5HwMU8z+q3JiHb8D5RwbF6O7XNM79Llrq5CGDRZEPEqm5nebwyS5Vfmv0nuozXh/jq+AaZwKmhc3lYy2pFm07Y15FJBWIuGSGXb/DiGB2Oe55aBDwADmKIuj0ZM8vDmSghUNI8K2k/sfG94DFWYfp2IkA1xjHfV1v6CprEMhCSs1QR9ZMUmx4ABxwwYZpd4yNqid0ZTm3YgcMsm5Ylpsxm3XW8bGaL6tRvowuP8PnFf2+8Wgj1xSmljBrHw9HioEgpj69hhAXzPeOctc4tcFvDrhzXbTMpjSnlGoiduF4/2/rgS9BO6wOcy4ggfdEDV52fXVBQRROTuEh629mbFsbou/iy/jW9UJuaI+NqepzqSVkQaVmsWGzUkF5kDHhdjFfWxPUoOJKy7WruGFlDYkNuaeQjlXtTXfIkCFAHDKUDjBp/8QRQLFFgPiqhbAC/QUf54wfB7oUMPN/ISSOlIw34l/zrmm7v7nqdJkc5kkmAOMaxFFRsIIma0VHgRfX1+OZ7sa75WEqs7gIEPGz5YRBhjf4Q6yyUgOnLJ+kfrLvO/rUq390KDJC3mFPvIpKRwVRKn8gmvKn9DZ/xRcVAbGZqC6GmSBWI+cF3wwQXoIQXtu2HTXvigeKWruHViQdP3d6OOtw0JR32/122sEwWALTuxo/vs0bCMCjmnkQ7203MGtM7Qhd6CHF96GpeVjBf0BqNngZLoVQOlHbYa5/VdoBpUNLKyQLFL6CehnNtopLMaVppF6wBwoHss862cw5uQwZ2yAgOz9AGpBxSDpVqKFJ1mx8h+4jeRdRxs+Sqh2BY1pXc3cTXViMpI/qaTiJGkhal9EMxiXn4v1v8sxTqeE89fJlcTwpQX8ypdI0wNFl4tGWQm6W4rqNQ46D9ig1RRj8n+UsKFcRjpm9jNNdhM+zzAOs7oeC/qub9WdPf5pbE9jbZYTSdhCL1E4U//rf8bFBmtZyxZf6HyACBMx0D1cfqvtv8O9pVNAkpE6y6x6dsr7JyDTSmP2YOfZuZP/Xn97tLADKUjoszoeRMRquOAkdXHqjpzRNj+BQg73LivuFGCnUunBPaODQ6saA4J9sbZDpbzPBOdZSrBOhg0X1EEXLmm9/J5GgRL45NjGrdT8FUF5C1T7u/HmLiRG6OfycDdnN23OGQ6St4rqX7WCXbXsfHIgfzwUJZs3ZiTRrJFUxeqLWVoBoWWDwVGO0wPlS/tSsG+KvFNl4XYguRyX3lJn87ovUhxxdMj1ZCTbAB2eq/rG//Vxdy+azCJIAa9wPPkRAteruXX2EShElSRhJnVGxxD8zVS6dLyoMDwpcJ7CxA4qc6CxY+d6KieLLOXRXhHJNTGZL9j6dM7ZUCLEkYB6Yq9Ik40meTFWFDthG9ISEEZjeD3iciVZ4L8ivP+8JoMxFNqe/HvSm87VQwjtIuHZPCGiMgQW4zSehBLp6kaM4ORdpwTmSrnH/t2iYxu1Fgbpk71S0AhF/eyYhoUMZPQI7I5xitHnXSV7t+sZ0HYbR7ycc+T5kp5u/fNlhNLv4SX0l6RqmavzZs9bsbqu4EgC5NNL9f8mtbiDrdBUjBXE4nmDWlLMkPxlbt2mBvw==
Variant 0
DifficultyLevel
361
Question
What is the rule you would use to find the next number in this number pattern?
87, 91, 95, 99, ?
Worked Solution
The difference between numbers is:
|
|
91 − 87 |
= 4 |
95 − 91 |
= 4 |
90 − 95 |
= 4 |
Therefore to get to the next number add 4.
|
|
? |
= last number + 4 = 103 |
Rule |
= increase by 4 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the rule you would use to find the next number in this number pattern?
>> 87, 91, 95, 99, ? |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|91 $-$ 87|= 4|
|95 $-$ 91|= 4|
|90 $-$ 95|= 4|
Therefore to get to the next number add 4.
>>|||
|-|-|
|?|= last number $+$ 4 = 103|
|Rule|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19y9dzn0ev51ToYvIYmRfdiph81JYOHMZfmwhvGsTAy+9H17eySMxQaet7g81adydvZYCsyPS/X8kTR4Kf7c1qPjCHVwD37zlhH34bmSSkO62NswTvJB1yg1McEtFy0lpwd3jr73WsGTlmGakrLmJ4s8DMTpgnr6K6z+R2NWrqSQx6x6ub8/Cs2fNrNNisMdKhr5C5JTp1XPRXFzj9lYAgVS2d8PTUX6YL0DFGA7ROVhCWShRfosDl9ntAfTU49Os1JZh/y8DC7jRwzEHNGUJBsbbOYgc4ehpOFfYdOwOQ+wjBEbmS5znwzjwVPP6UEhtHDdw+Fx2pBaQUs8mi5aExHIK/vXsTcrg/1JOFfdei+5Mv/qvQtpPw5lf2BE1iRei81+VskaX9B9Pxgy4ZTpJaCkWTatUbm24nozZIkiNgZACoUsrTn+XsgIhNLBSYpde+yoPjIH5iu+KoHeqptI92HJPzMH+k+Xrvyo7PUC+ngVmtsoRD2BrQhEMlqX2kWiSft21seCkG3SRuRo+pTvzqaYwi2QItxuzqopOvHIQ9sIEn/mVFUslWNIK6Mq9P9fjSo8pSiYKPAXG5TdTyIF/XfpnBdhe4/GT+fPXsN6+Ham1juk83StnDAp5GmZ1cCBWYf1iXIxj4RDwx7MlnalsCJa+ZMhYmkCJP4XTIH54uyDbh4Yhkjpltrvu8XB6e7rEnC+FIIBnyi/DoQ3u9/s8tpsS0WTeueOf/ff4rTAOm/iFJc0C32BrxagySkIAKy5qqsxQlkQrUdvfZONOgDuHoIC/PEg5gO/v2jp2L3GaI5XH0pbzgqqZC0rUnwqpAQrexEMKKg1PVzAfxjvzm3EgpRtFGJBQfT1Q6tOaCDezBxEIbByuKi0wTK7T2IWi6uKD8JZ3eShRhyIAikdGnEHwVJZbSfyFxi/LNOxQ9s0KaP+8JcmTn8N/g4Q6PurA7Lu6N7C7h8vW5Jwdq86435ftEpNL1sOMzlMRAltMdK4aZT9g0KridCrsHvR3B+5BDHHPchKSymysmVQ4mxhZzIP01yAAlZPuD8UqUgwkrGsdIdDfg1UEx/SyfWALnzXFv5wTqJoP1WaFXDUGWEItJEvtu2+3mhk/7beQD3+A/LVoDqP+WGiEW5biJ7OJ0kXkH0jMfMb02YtOq96KmTCsm08Y50gdbAl6F8FF2vEA5jbTdhNdb55TSGtNArBQ8uJYeeEdkX7bYSD6x5Bjx2zveVfWSan3MZS7L1Ax8VLzn+TS3N2HEAFSWZji1gbs12V3giFPL/pj7IXXCSB2OJlvT3K+j703NoNKcxmQSm0sRd9UzMVQ9QpHc0SqEpATioycn8YcoDPBm4c6tVAMArD9hxNGJPcGmbHMDdZ8j6NLuAIO3piDH9seHIlJYIFye5UkrOhcO/S2f4uXJqz7yFwxuzIXQUAaXaPFpj8gqTA1mAxniV3+bGrjiIpOa4QE8lC33zzfcksNn+bMDhGmhYheEtl2yg1+Uj8LYiLuRUsHnYreFK/nVWn54EVmyDy1K4DO46JTt9xleGB0FgUyowUKKHRWWTgdbFtGRVyNP6qeL2og4FLeo8v394omOlFlKaTQ9UA6bLIy2BnkW4GyoYCPTOkmcQO9x8IsnvH/U3jfDCabw3galzLHQHytYwfFW0Fs0DoKA1XGmRi153cuGfgokoC45kmUVKrvU4+Re2/gWzrW89VMdoLXtygTiuIfdeNnPXCzWJglt7yC0yOdBh0al8HtFGuwZYDMYiXdqcTrk95MU0ctsNwCQ41g0iMpopdg4Fh5Jm6W5MXYn86lHJ4GDo4z1SkYk4ZIt2grPpV5xoz1Or9pRLaAgj+0+FMioGDVXScZR3VI9v7xjPl10Bolx/cORz+2nDZiF5asHfrrsEih8dEACDLBIcN8dD5zwWECPZ+/DjeqXyxpVWNRRCWcH2I5F27PGdSFnv/nwhYpT0DB4dB/eFte9oKEKPxOSdvCpym0TfL5U1tIspNrk8fFC527nnYOuU/2hfU/1AzI2ZSWUhb9RJEsSWW+SCe6wrGVx+pF4qoQtkPS799N847hN2tg/T21oldCzHobES7db325cWX8EHuFfekziD1KrZmcK8UPoQ/V62WPUuEHoebjTFddUllk/2AG4ve1AmY8nVbXg1Uj4+IOtnpaEZDCdvPci9t3gozRDYKuhwB4LWIidV1l90NvVQT675UTfr/do82QtjYEMQ6jBMCSNu0XAKTZN/QRWNIIj86aywPLgk7gHdX1kP5U4DhBvhOOx19jGeDor26E+AzmOjxLRSu2P8lYHXjOBld1ZH4EKhnTHE9y03vcboWey0I9maSDOeGqOWWZiyR8mWdV0mlONmfC37Q+39ZQW+hdrSiuoLRid0JHemLwngYkhjLpk7rsd+hpliXf+9MaJI8zC4wQKvraBKtaj0RlH4qiVND0pnCfc6jSBY1eQ1XZJtpAe8VyPX9FotQVRZSoBo8LQ3aaH+kxWDXp/Z2LmojQZC4U5QhTFedZDSbJBYxTJ4pApG2kw2M0oMi/3tPugsvF0MhX5SzB/C1BQx7V/lMLj/GJAiiyqmBjx5gAEPE76CGUy6mUMR0DwByFHyKkd/Zo5yqTnFfXCM98z2pzct8U4dWyR6qh6ZmJ+X9Yv/0gFdt+PtUZrtjbARJScZek1m0jjlMAgCehiunMsvQrXc5HDce+c2c25BbzWJdAyfq2rZoggeRyMwHpMFCrqnFoQmZJlaytrD59zcvQci1Hi1W5+UKvvq3IVjBhuRyNTcn1nhlKS4usjq3T0Pdc3XW2Nz6yXvAShVRgTpWBAxLLPnlRqhbhdH0lUumS1ErpeoY/ND959D6rZtEb7ZA5ZtMqQyq9F9TX7IBQaO7UwKZCNEcGtc4FztqFySwHXd1seDnqm+9rjWvx3obuVzBA2s6EUrU9E9jpkJLsziP8ciPIfxFOf5Yv1ABnCSg0CRi2jvGI6wTnyHSL/dJ7pBq7/FSryEX4MEN38Kd/WzqkJadZ2cigs20vFjSz+990QydkS91sPOUOHjaBrfBhmaXsBMed1KPzuiLEn8kOAwrNgqL40fFAd7NAO/Noiwkx5k8N8HQwXjA4MbEguBXqppBt9W588870gK3ShwHIA5F8n5JwWQtLmYu1+wja5mw1m92Lm1IXKpZ8F2pKccBUjDqPXtgcs6S2ZHO5lni+oIhvTrkaVsEaA3WinSXol2NoPNQ+PQZhCLnuiZ+ekJzUs7pXStDloQ94dFqhqDmjhMvyF+BqKmP7QSsmtkNHW3wsbY4C89m9qwB2axg0eYU3JLWhs8ENSmvT/3gDFTIBenw/SrPUB3djxbyk/QNGI61ILyO+R1s/TRsrOZU5p8tndygNE4he3kru8nZmjiEYlDVA7HYHnhX2eCogpjGcAwvmJj6203t6rQuepolJKDpgwrd83rpE3C0gaPZaAcDACqmaS5efaeZzKHvGhUK38xHzIPJ/IQP84XLGUNZKyJr6D2U4lt/4NRpIyumeKFgpbwKLxvwg8t89rzzcoSAcHkxmWqxQiDFfK0pIwUMb7rYGcYLATyDhRGx7k5S4bUEMDDOd1DMjLttThMzBLERZxMKx2FoJD0mc8QyyYQBIGV522W46B4U6f9cE0t7EhLq/bcl4qIEi2rJVOQRQuv01qHxf1pKtKnOE8bK7dz8E1R64xbmYXjbTdoYSjDGUEJa+MrdQXyHU/ZlgERoLdit/cRdiN/J4V3k3P9UP22Aah32kgJDZdNHmmpuE/MDrRbrlseaF8xbhBFLWtzLrrE9D0JLc4YydhzcIa5uav98gjHZrQ7//vDhpI0FpRMGmciNrfBKFIUzfUGePSDPaq/bjfR+RWoebiGxKcQdoCkb1qGdSEM773gAdTTfVVNyzsXPxS14BVgR2o73zYm9931Dzj6WE8umtPbDJ14/NZI5km1V5+KTxulO1+LAKA3JVQY5wGIo1c19m2t5wJie4cwInIwzA1TI26VGfY1aVIG37u6W2fNb2jzQxfhgyhP1iQMmSbzws0c9EQuCKdJ/4qLbTY3TNbNPvZ/xR3+Afdaz/ORXOFFfv/ZiZ8mJISDxkk7427TAi435bOfjt9Cjr3RIQOc4TGpR++YcKDUaqwVNbKS239eWqtPRjYARkLztyqLW5aPwTDaxleOmdmTH9IC6FF1mbl6lpHhSUNRqFdNi5iUrE18EMtwGUT9CaToQ0zOIK7vZgvUzdhw8w4K7l3Qxd97RB1l6Dz8gQoWbCdU5IFKw9L/PtRUqICfbKc0JQ1jp64nya/+xcwop98KM8Ri5vDschTyOK73OXm3yFthoLFJLC6iRPC2rhOIwAcnr70PTpfJ5SorPAXO5NO/9qVeUtsiq1NA1YoAyWZXpMhomVJYWuMGlkm5y86gBjZ00L1OMu84fSvhFvbrLK2XSqpahkrKZPgOf8oBsegIT8Ik7doRmLe5lcs2cnDMtJkDG4B9NCDwURoEg22WxC5tVDnK0HhhePqxHB9K7gIzPuXmB7AWwpC9RPrTclb45QcMyj66EHef5RCScHkaQ7epQFIelPaD9JRe3rCYDlS4PgUN9rpmyN/XWKy9U0o+nJB0VtKOY3dxsXqXU5AVi5zrHfy5DQ+OCKwndtbXeTkOHQ9YxQPk6shJhxT1UEXhmHHdqXanAvDALYNh0PFCr9nCzuQx44xetAyodTbGf3EAVaQGQ97oqxDSgTGVfApefJpoIQA3lv/B8ks1QFOPXWsRm6DFC5xK8t0yj5sz9sqqEWfqtV5aROt1aQwVa8yF33SW8I9w82guPqTDHaLxaVV5IQduS9LNTUiAinL8wukLlGyCmM1l5uzHD6n2NSfP9PplhpZOMCixf+m9Z5DQkW6gyh1l1weR35NnYQA2W/PBlSo3saFeIrf2mdcCGp15ftB3pQ/wQn5uPWapsSkQcOut35JoL1AFcTcFRu8O2DGOKFFZuDehwCmU6NakGlpAMb2Tk72BGOQOjiRsTbHYl58/K01ksqOl/ieRe1T7DwhJJFhRBcxG7nm/KSVkmgrOGDXj0dNBvaLP1I/Rqh9ljGVbG5UgG1drLj4yHMuewc+s9pZeQN/yAYNp0ZOXMi1QWXaqwqWBe1L12yGzsYnabWV4jioTNrzFZxvspV9dxF2HDJxuicwJOPT66tOmqN/sNRP85nJHvXRqMEuy0ja9pmamxTvkFUbPEDYwYkXyoIOQ627RG+sN1ycddgST9K3YSQ5bbdnROsHRqYhtzPG4Ltt775FsPwwhECIe5cOsa/9AogdLEFlOdFOge38Cx2HwzbqBo+fQN91QKeJErxmGNtcgHxh1VhrpF3IaVXVe2U+mAUF72SfBpvT8mDySkbg15UOdkSZiU6ksS3ZnL8TNtqAbb+cUuZZqwdBAuoOptkIdqmnQQu6kPOBPb6sT73opIvkMMXVlXQ7RS+J0VsgETffn6VIgXjJrgSPgPH92/2vxVmzPHgEWwwh6fDxFX5ysqWhhCrwrbsDp9tapfYuZiaEqpqW+3kEA3Z8deOWRkKZtmk4xJeI0o81Td9Kad6Z5HhEReUvXM2iaV+J2AcdOatzoMD7JXUjCjuEj68zRSEGkyasf1E8/U9X8djgSKvYQIlRoOZ5k7/iNKOqE6IxDySOcg7emknopmgRcIMT5g1fZjxEXcawbOcMhbzJQslrMb7gNF1Qlev6N4pSEfgpZQFNveeKej1EMADSQ7CAir0k3LHmhpM9/dvf+x/Tj6o0H0Y+70pEueuMEz1fpfkg8LjGVh2eG0zGQ/LIYPMwKu7fwyqMp/h8VDa3rGkDmOCZVHtEn12btoiUWUYGgxrnm/KUgl07bdXG4q6+511GvqNm4MtscuoHT1aC6GpaOY952mSKPw9caRhyk51wCLHQjbxo5pilASE1+9sGiscpKEOsYFQQ0osJoo50t9OIj7S4+HJJ1tdqkKpyGaRqgII6YhZVH7PB6m4BNT7WklTc5XrBUX7ZQMltdYEJozX+h8F1GfLgLjxr6/Khfwe3GGW3Uj3CFT75HZFLGq6z2kF0/vrS0GV2LPXyNjWHzqufVm9llv5R27kHQZtdikjjrGZXi9SsrPMwKRCLIEerAjCQt43MvRB+V+zIK1Jo7/a0D5E7dzBDBZQ6Ix8HlRi5Jol3D+JSXKRMGFk8/JHB4RZYlp8QXFUkKiJfyjYEwJj63jkgfYfYnKyZjgeBAixXh6bDYBhJYXejGRvWON/nOIxNw+AR5GFsYvw9/dPDHNpr/4Zvo54Vs9uEzaW1FMFHIpv8qH/z+oJ8SQ60ksKONGKqRANMkaPgCyzAvru5WALKvLEwyV4Wdozt7twlbKwQOSCedHZ0AoDQHun3o5PO/J8a8auvS/pp1KlcLI3GbILbfuH/sRKNHf4faP4IduHaxZo0HXla5X2KzTASSEPhEPXGaXr7WEszhWlaHw+MFHhTNGsaUwUWoQNxJbF5LSQYlIjPQZ2wnIo6uBttkJUKrUfVqQoZFrExLuqEPmAKA9L8U7JTSG8k7tXsZmUCKce1N+TCiVSml9R/2MUCeEtuqqWRyuqGIQ3pHxuE=
Variant 1
DifficultyLevel
363
Question
What is the rule you would use to find the next number in this number pattern?
102, 96, 90, 84, ?
Worked Solution
The difference between numbers is:
|
|
96 − 102 |
= − 6 |
90 − 96 |
= − 6 |
84 − 90 |
= − 6 |
Therefore to get to the next number takeaway 6.
|
|
? |
= last number − 6 = 78 |
Rule |
= decrease by 6 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the rule you would use to find the next number in this number pattern?
>> 102, 96, 90, 84, ? |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|96 $-$ 102|= $-$ 6|
|90 $-$ 96|= $-$ 6|
|84 $-$ 90|= $-$ 6|
Therefore to get to the next number takeaway 6.
>>|||
|-|-|
|?|= last number $-$ 6 = 78|
|Rule|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18jNakbSO59JgwLAhHI1QOVEibuZ85cj6BHSFq+SSrklajDhT/DjrEB9uh8gId+Dwak5znuEiAr1V8U5PpJG5aRG+y4/M2T6TysQG4tF5xJO64KYf5KNz9oc42EldhA8p6HSJIOEWzAK1l6f37m2RElXI54QNbOD3PNImyp18At+6y4BPxWKdlQ3GsWlQNbTFa6ySygNtWAG+iQ0U6/sy3oDT0268udYkgdfH2j0zetK9INNvwFRaP1mzM8VGbp03aUV4Ebs9PqQG82OmMS6i0AgR0DAsWhfELpFz/D/0aCIV5h6k8le2TAeuy8QlvtYtl0Fg03MNDjkgeX9D5D0KMVnSSFhCnt3iJ4MlKz9iVCK7ZPgIW+FoD6vzrYrh+rlRAxCB7vI9kO8rjFgNmFhmT8tBNj0v7afxYZTNicIcE/Di0HYwD3qLuIC0SseolaMKHDWmysZFP8bNgNCLdLIzgijCti/BWRCVSW/4TCMEK94alhtQoPe1GpYoHsu1NIF8EtGvIg9Nts3f6SzzYMb32UqTc+juZHLZEBCaznxDk9cD48TdkM377YQQTXQQEkls6OkknM7NY8qLwr/uZ8C0bcMDYzUJpseGLoVztEDqxf3ysZj7N+1q3sD2i3IqctnmW2Y0uiH9Qg/DAKloe56TePyznrQbVM3c71Rb1utd690lBrKwhfyuetxxbdiidJyEvCBN26CwetDapT3+VqT/Un0DI8SBFoAcZmKH3mstKScqt5NwSvqWoTK/GqtYcIYR0+NvOdIThctRxg+wNbqMo04y4tj1cfaVcbOZJV/bApege1f0hTf/ISjrQiURuQi0uO+4hUm//V29MqdvgKduVVK4R72k3DliAZvg5FQhC8w3VbVkMaqo8Fp4Fn3qxhJTvzCDRwFbMMSM95MbhxOsK8swa2PuStfMuCB0YkYF17szA9/a6smg81BoC7UiYOg5FRvWaadFtX3lncLLKFSREwdPc5WFDs7qAG+vMj6hm8goPGx/glM5z4/ddT7NekDBRzA8kqf70LoN5lR6tk64XOpP5TCvUDwREfg+4nyDX1VwyJvkrqwnS2L9nUCMvxC0qOX7McWmtiY+WVjp7NNQVAPGYQVqJmjCanwwXbYrenk06v1khHfn8+/7o2Z2jJN+BxKPC+yJqjJh4IJCZwCXPD34h6bMF1J/zrFbQyq91/BAxGvi4fZkVyHa3Gk51MydPOsy6SI8dSO6rp7AidW03kI42WV7YRlDwmG5b1zrYOY5fmfquF2AYLCod9GMz/Xx8m4bj/f7Kk7KzKbZEfVdDR0KNktR5hGV1eYYd+D+hh2vcmji8E0+4AU8aeY/tErNILhBsmCXE4j8w3TvZtFhsjRwgavXtsGZCrzq2GSxt5Y9Ac3DjB37Z+jNFUgQI00Xlzf+hvUHQ7/qGb1ZGxUBzB9WPd7RLE4zb9BEGm2w9003wlaZunGkjkprcYFqNDg/6vnz3hVixzVqVaLAhh6/agfwVyj9seg8vjdMcxESwZqoWqWbFQbwAjTortyd15U0VKVijk/cQDmizNbUmfbc8C42fi+ULKA7GvT47S79P6xYfrqjsvnXgUFbxx7Fe9wf8MMfBc9qLk2vCRUbHJlfUDx0R7ZobUq+FIFl5PFR1CERJjm8Dzc+nkJICSD/Kbku9RLEybt5S8nrCTluFtPbcltfrQuBcomuHwgmG9HIn1KRJZjytRaFgYTijM2P2vtBz9STPDNwLUxT/RZLsWFPTefNzNi+xGX8UBdsmJeYGPQL2V4OguygArfO/YLXSNFuCoM1FPrDkB3aJnyv6KhHPtosv5Zm84GN5215HuhYHBTyJ31BRQQ5MXbpf2KuCz+uuCkLVjna6uK74PDfHJTFCxk1m0RT8qqBGdRrAwCQu2yNMw72uLF8mX5XXo4Ik+HhTlK6Rp2hUr++ldfdTKEwD20fnhl0IB+UO8vHbPklZ68oo+9QnYhBEkqAaMrQ2xxKAz+R0QzNcLiAtWqSyB05OxXkB4+URKppFgb2CFp5p6EYUjzwVy+oVpv997Z4TillZ2RieUw8fa7DVDaqnm/2I/SOR4z8K8Lgk/Y+25Yk1J9pxJ5fsXYCnbp8b/vn6DzrVRrPmGPa02pwMQre4dKXo0ewsQef1xjuEhSZ7JwkThZueuxPXLqALO8Sag8zMVAIix45Uu7k9Ym554Q9biVn/S14Hi/a/g5386PNcN6fm24S4BKBUUV8iXMgdUvZEZPHYiI2pHMivCijd8b7Kj1nUTHeAuSH2e1g1zdKm7XLG283byoNUuog+3sBLBJIrLjXZaF3yzA8nJD7bMIpG2P91S9A7IuMKbN4lymf0FcaHu8cxzxSVxdL8GwCugfGcAfSP4WBGI+nji5IJ07JOjzSobFIY/HmiVG6VFlyOBx4lj4eBtI6ShZLUkSTyrzMS+hF8LlnlQUA7LZaIGTfCIZdeMHY5nWRzCZ2p2oD/B4KDTqRw5kQGlxNKL1mLAymqqgsQcni9T5urZTNJ15IBZjADKZFmoiv6LJVM4TRFS2Xqli5ybXLaLtVT9q6ZBJsLU7152gCs0bvXqCqPSVvim13VN2WBw6Zp+aerT9IUr1NXfiVuz0Yfdmx4dazEK5W2IByut7CNvh0uXTx6KVuPzHGW9ZlYnm51g/Ou2BSVR2IC69qvtcbyodiCF6ykAzM8pxxzza/ftXJHWAEKRonWiznsaWw/ZbZ4NtOldP5l0vfVnGyKyifY8yPpEnCds7ao/eJCh8PnvRQmMBU9kWMk1+gMUThqwNXihLABUadm9G0SvGnalM+QouvjjdmjvrYu25rYWumdwYHqWBXgszJlMJhKU5+21hMnefk+R9kOaV8E9CPbe1vGA0gAS5m8R5tIDHo/t/gEsnm/VMD7JiYpEf39YvB4jhDRU/cUVaQS4v0m7iuLF/jhHYQEbfKWReiBBnlRQI68b13HCZ/e5kO83xJ9xJfhmwtUHkoUzmMAY9MGCgegmm7c61z1p4QotzWgV5d1cT2KcV597bTB7HrLh1nxbMnZNolvdFIOmJlhnCF9DEzPj+ROR1pYkoSl+JcGtLpT1haX+djRgvjewS9i1FnFDv5aHgvdEqt2w5oeNMAsP4Jr4STLSBXcy7LAja+hS39ib1e+L73xA3umkjeJiOmGI/scbf7dh8jEwDxReKDV0br6uAtXSEzZSQl3Nx3C7C5iZGv1skrTG2Mdmw4jvQziSlLdMViEE7yso3ajxkmwWGzi1PKIWxK5zgCR/ndbv+7vMTQ3o0DajDas/gzxYlavg31VvqnrsPTfWkxloukl1hfP4u+NWwRH7Px2hc5icWySxJ6VWSdFHeL11a3oyLeVaqJn7Pmwl2d7aEx1xUHtukQkAtnaiUenFAPbA+hZsKqzfbgrvm4OMBbVAvap9OkluCzKCdBy/dJwyQev2k7Vqaf/urj5ldciB+ZEq1nddqWNiBv1EzY6nH2ob2A4duwVnzzHep/bVX9WXZWBCq+HybAS6DySf/8LGdF0HFF9FUg+ZWy9vu/g9FHAGDnKPQC+M7fyKw1ieGTrHnqPr+YMJCEG1UcKS1kPeWAyTxxcvFwdpUxtW2uqNouuY+VGKP4q3a5c9GEB4zu2bCzmGXV1xDCko/jnfBfZ2AnBJ/vV2aja6UjsOD0Ccaj0pkkbz9Z/kUf3lmYx0vITbNKUVmwIRRvtsCtMW7+L2h7iimcqwQvuv3t3kwWqCg8RD1BeGGN/Tu/cMDprWJDohA1ZUjX446IPmZmrl77RwRJEdsfEdFWY0HEZQgKSTvFev+UA9OxkF/03qvIblZphI1HdfAGqMWx48i3RdiOjQRjFbrC3WXxml6jS78DYjV6qiKJ5t6Pv22MQOn2pfCiUBuswMik8tSXsKxrvyQW3cVIwl9IyVj64v4eR8KPtyBbW8BXV9atrrZomJUjgrYw35gzxZaXbNJGZ66r+x+DURvt7hbE8OVyFooYL3xKE6H0VQZOvRgNoLfwkssHwXGKMJpruxlcXsE+JBV7YQhE4dpOi/+NrClc2QzRwmmDgY3htLiZ9PwgALtkYRkoC8YIcj/ZRefNFkq1kukUpzWxRhESIN39HOxrI2MCm6yzquFrSRqHVbqOGCZdB6U2WmI0MheImIXgQyZHO57G4Toe6AbYcp3D/WiIHaitXgeP2Zcsd85asd6maxud5heKGCcbCeYWEtEuSbn3GB2ewHAP3BfRQzFOWg0S3zXvc7h37XdXQNKwQ01RlHs0/AVMHyfZ1cAr/LrtUSDRTwdN7OKySYtYClFRPVRWE38mlyTm5pkP4tjRMgIGQk92PPExYyDZKL+3QTWF5UVpFh6USTdc2xazEUA5+sur0MmcHqAgKrj7yFfcvOMMN0nboGCjWw6pJEBzLsvZ2+wcYhWb3NxTSIftoSoqhvQxBXht8Uo8BWodbaMyci9qW6CryMnnsHDYKrKrCUxox6eGL7ctfnwE8WbYCxC0Mg4AzHGdMI9wChJpcgWk4fr2GP0jBhpqZJZZQBBvAeb8MDv2nyd3j7/yQ2ZbT+KECerRq4HttiGHUT/8HpLRPV/Gnsz2sMgJIjdRCt15wD/GuCWPJfo4QqYFO84egL9Uvr47ZoYBc16AfQc8BSuufwoBmNydNAOCCKk7lvJaJSZ/1bnhzMogH3RnAg0ab5FW4R25nQsZfUKDwhDg==
Variant 2
DifficultyLevel
365
Question
What is the rule you would use to find the next number in this number pattern?
34, 46, 58, 70, ?
Worked Solution
The difference between numbers is:
|
|
46 − 34 |
= 12 |
58 − 46 |
= 12 |
70 − 58 |
= 12 |
Therefore to get to the next number add 12.
|
|
? |
= last number + 12 = 82 |
Rule |
= increase by 12 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the rule you would use to find the next number in this number pattern?
>> 34, 46, 58, 70, ? |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|46 $-$ 34|= 12|
|58 $-$ 46|= 12|
|70 $-$ 58|= 12|
Therefore to get to the next number add 12.
>>|||
|-|-|
|?|= last number $+$ 12 = 82|
|Rule|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+uU6vTnlZR2mCV/w8D+r2u0fnf1ubU1/fB0BILtRXUZUGcEpz9VG7yiT11yQ4IM/QOXaa5RAV3ctp3MnH0SQryEnzf4eiyt4EGcwsTGRYafBd43Lvq3w3hVzVT+VR8f1W/Pzs1OY+9ijnResbX3gDXxmgQJ8TURr4M6rOMeATLEZVwalPnbXlfRPV3HDcdE5HhKD+gZA4f7cPwfkmCD1nWShFA2MUXa+zpdpeCTlID3SL2kg+ti0z/y0xFsQSJzDjniz/9hoQjeZioG1tyq4d1tAlkHVmNedKfrkr38nTVZ5f6NzX+m04O/vJvxd5Gl6nPAXlBFKvKj4K8BbdCIn0liwzFnDasqqdgPypoXd5+RjDIy8A+Vx0c6btb2vSOyfQ1AS0ceEVFztK8vlPuoOuWIuWkQgGWm9Tps6awTb4ILFwmZhM5ZeeBSp1FieG+IouoIvylTSJwdnJH3cQmf4Zi2qdFoWN0TaSUa8asBdV0cdIwKZNsicVlYQ9xdc2kCwIdm829DZQ6MLg7am6+Ikp5vA+ZksXrgPtRzYJz9IHVWDR+I962cWz0g+NAjYtFF0hmM8xrb5d3m4MuvYX9zRD3EH29At1PAHVdGj172vUlLyMSeB3ttQKf3OF6SBHD/k9Jgo2rwsGl+kXYBSVt+wdUpDMHvdcXF/FTSyLz6Fe1W2hWInyN1Zr5iy+u6MERWUYJuM5eTa92QJYQBY+RxjlODcY3ZMepI3xQALD85k1wdAiT+L/RB/Afgn2FGJleJ/E0dP5/6OA0bp7zfo2WS2Y9EivDa2EhqyhXEUNcWfEbvOB6gVSmAXDf1vn2GkaLJE7yhUw6UKCAJb0B+etHALw1F9vIHbKiSGgbtarHr1rDyhsoZzcR1aVKb2qkmYO5Cu13jG1BBnPnJ6mG6rNz3mnv9iqjrRPVe3H8i3zq5Qc06K8ecS1l/ZodX3sMg9WBFOf1p+ZakSeMb5nZ8f7yh+sc8HjgakNU5BvhcUXhSmjft1rsTfbh7cDQQNOyTSz5kSJqYXkRf8ivoc9h8WOQd/Zqg4tAo4L/KGwCMI8flaRosIKpwSVYdGuKEtfw5NwyxVibWEfJr+MjS9impgGZDjJ92CWFv+iEjxYjQBmEfcF/OVjFpCV8DwjJfgNEZIv05+xRyfyI8muXUuo5znn90q83qWfFpkYTthq/CTh78Jko4AhRMxAsswyA266YcaW0t0SyIT3UKImBpKBAfRqTmRrYgSjE/pFGggYA3HHWgJH9mSS5sqytNErb/ntI9Wrov8vCvKyrAigiczjgWCQTB+798Z8FDekxIGWlVwYg8FE9rBxGQoeq2r6KyIaWFRze+wGW3/cVNorA1T/zfSjHmKc7E49SB8G0/2SVlmPxNeb8b84zENCAWOh0OUIn3V6Z4fE0kPV21OIxiJxv4PY95KOfOkB+sPM10rosUCEzqA9bXr8fyGcpS2vPhhBFGql8QFTQDmBLbpvs/BSRGv+aF7lXI3DPBxjs7BZOUc9pEvCkhG0TA5OsrgvLB30Z6mbFMJLyxrknZLp48EGOfGhEX+1RUf150hYl+/dcY9Ya5/gIpAYQYdqHWF1/Iw5bj1OJ9oWE8axREO+P31HVsfVSMAer9xCVhyX3az8XjuetrBHUOw4petxjXbz9lnYHGspR/k+I3JNenGz8uL8TtXaMNloriYO4CxDBlDvS9GTt4LB648kfOP37F8pIv/FHTvyx4pKXZ/AJxJiJbV/bazZlJ5yM9t+YAgxmn2DbRnmx2OET7UdrpSa8f4ux6HdO3j++Umq7tKg35nSFYPWnsap+IHvQVSqUkEnEFq+GQZBqTl1EOztle8ucZp5FntlStc5Shio9WAHukM2cuqHjKEg/t62n1FJzffXclsOJFYS3JXm51pHU1ojnD6z/3lQLLVAro6eDO0bJz02ZYsHsPZ6FP4DBMGaiy9AuYXPgMpBBbvRQT2Zi8nKuF2ay+paMfVentwzlhPKsnH/Bi/axSS+1oFYe+OKZiZIoVztkgOcW6vzKM2awqrsK/7TkagdryZ4AYKC8W2iim9BV7HrErAkdDKH5UxxYG5fz/F2D6FzvyaqYvAHYiR8FF8qkQvSCB+aGHihS1cBDz2ggCNy69CTAQch2TFgvUW3fTn0xU3udOSnCOU06xMQoYcO+8sj7Dns7elvxJqDZFOADFxuJ4kKlaoGCxnjeh/Tt9Ts2HsBb1/nLWAnOREfJzny+AOdzSOvG4OKkWNJv8n6d4SqJmVBGXd8B1z4tDok+lPI4Ov55YiIepaoVxJKrM7XD20jRwSpAsREF/+4B5Y8oA2MUUiEo1oVZKs/uNAk+wsG62KIw/AH18+LpBiyqgiljN4o7UDeMhMxTOR8D5yH42U6A5EJPimTUwA+xPKK6TNkNrgrpHM5nhEr8ao++WoHFcCAQmJPFFzYPwrI6LXzVsr3XtWHHPuW8kQFI99WFFfKR91OPXLkz3uctxI14HqVhaw51VYxc7io5UAPkKZFw8RjAB5oa5PeCzeI1v/p0/SxiajRttrYky8qIU8g5bccIjpXE6uKDWDS2dJpGmoKnR0Snx83pRD7JhwpAjgfW9HDTvmBRzTfqs7vwDxvlmNwKM+hrthiCHuMaekGYg6MISUuhvGyqMK67ZeDmTUo5VHF/92lJ+3hkUeyCI5Diwdf/bjK4Aj7pjrArNJzaGLBTf7TN26nJXt+L12vMRQR/kXWNfU7wGy0piYh1K4pq4LhlLHz7X1Kg9QVAOCBZ4VF0+cUSvQi+My1OD5J6wKBEsSqV1fRueEyZyRymJWraiG9Hp91DiiGSRlLSXhz/paEtPd3ukPPh9iPKaXkuNFjpsuEXJL6J3jNUfeI6zI1g7V1pIykfuScK2+JWqBobgDaLDhqTo12UHLeZkVGkUGBxW+5K+fYt+c46P7fclDTPB346U8qWJ5VXF23q+kreTWo8jEwwxfpn0ylOGpyFqe0oDJI/lnL342EVfCsU3jE4fLmZogBjhFbAsY/fLSx3VhItvybqS3DkNM8DmT0N6RcV+7U0opIva/Lm2r0WgL0IKzD060BDtQb8mIWlmga+3gvkKtXRnWHWw6zBPw4ae1T9t4GMqEfJma0zNlkZ45m6ODTcV3ET91EQWaKGBQ7LCI5gGkvfWxt+hDMulixt1lg4Aq6jgKQyX1oNjnWvs8w8lloXNLJq6AqGqNt7N46tvRRSRRVVOZGbDNxEBaoRlt1KP4YV44f3yHPrZkljzsknG2RaHRcJjCUsilGX54WX/1i3A29KDrYO5fqgXeRGbEq9MyLih3k7KKm2MkJy/DILxkCr1av+XbNHhsUl9TmGby3P11TmzunaCrNv8i0R2hFnXiCX3QzUcG297ivePCDOYgBeaj2kGYOIkKSHSs1SZZF50n+gpVOEVgnOqw33c//eQj31UjHwEJreg75xWinNPfw4BBRDkBH5tGktSXJu0zQJ879zul75oEUCU3oYvcdnHqeMeDLwzMevm4YPhCX5Zp92LQnjp/amzmaz5cZlC2HGYpmisZPx4VUE2lsBOymfLQQAuutEozION6LTSGMWLwUep+t8alkT5W+u0y7iLwL+XgfykkMx0m70v69J3Puc4fY2ZKV6YSiekGj00fBXcHlvKjQ4MyOsmGJeX70GVprpQe+vKvW3kgXeY88TSMjGSCaCelqPVDvhMv+TKaA/MjyHsXBiSuhQ9SN1lbFmwGTAfJu6Rq3agKCsKeZhbJuqytBnM51JXgCHc8nBhKkOSu3GwdhqRVJxtQ7GqMXYi4oSQdB/6DeIioi8kLwbYnKVIHYEryB0z3ncu5bsAkTLprUbMoUv4tOMbIfoCHksq/d1FpvqV263Vll0Yi5AVH11vzsVCelhKoq98J+fSaG8dUNi3R1Na4AsY7Sq6sm73uby9DrUFxk14Z+K3y3sncFPhCm93BRX+6rYK7x5Mx4CcpK5Dym7F52NazXC1QoHiUTGhv44rfpKF6865T2+o6pRGyflg5nAYFbfAEpI6vUrEr7p8nIXjJRDndAH5PYW5npuUKZQRBL/GzCDEg0mraqmlb7A1u3JT9pgW/3gGtf6kjhfbnhLFGyBye14sTdfo8mYd6xRy1SOgXBKrQv1aTTkQShXuQ9q1YoitL7DBj9/e3iWtLypV8bvePc6iyFRzqmZOvQ4hPGeDWXyppfYifhg4kiDtrfhjz8S/GBXBJJS5PKigGZ1PsRhw61YVxC8vNqC6X4RRTU9PbhTIe7qeHeseStkal7V+XlncxnSxHSumXgG8VHq4C2iiDh8iEheF78/u13p0zOmNi/rWjpTcAUIJF37g2jdz05EH5sxmn9Ze0ufI5m6OZYANdusQLL332DbWtHiKGBBz4yAppcCFuxZm9CBOU8vXuqZIzcisLAgEey7fK44QW7yE7B2tCiC6f68oZMenxVwES+nRy2puhcFv8TuiIaL9BsvFsKW0/tyP9nXJ1UE5CJYqCU/7LSGDpsBUsODK1sZeQoR5U19iOIaez2t7w4k9bi0cAFj/QvmYhYo/V9MV1sEp1DPXgWwQwU1XgqK50WGYBNPf19IxADiIJ9c449aQNW2aUb2AONu3Xt1JGMBESoJM6pKmWkk4lXooTtRcTbfSf2p9iCibdnCptsCJ9f4tkyS/gtVszlz3eEUSsTKmu31zg6Tlet6w+FRxOLybevbPpt/5rYSI4OuoVLFVYYKQkmZthOpn5BSTRRA3LyNavP8z25SYRz+P1KqxAoiqOTPNM7MD4gpmK0VDEuWmrQWjDuXoOKVlSf67qbN8qOvTplt+LYB94iYX+GuALxspEd/BDUstM+JgD4TdHH7Y6VNcf4AQP4DHhnGd283Xc7xBPMFSF+xdvjWd2tn+brKpaq+KIkbYgB34kvbEoSGoBDQckoN2KKHFcP1aCBWlNjDf/P/7lKRPR8HYUVCYGaLN0ycqFDcpzZm4QeC7E05uZI8GTjVqvKykrS3RsdZtEVOpKNQSHP4AAeedmHOCWOgHxiCc91w86IEbk3MS7+x3U3ivgUyzVAa8PyWAHiE17ULIEM+Qz7L0Iqy1t2VBz78jjjqQDCyWRVW6IA0iarPSgu2DitRuzbTy4r/QPo0CULXRD3PT285b1EcOHzuUhQ4OxsbcAMNuaxSNf8Vcm28ZX0njjIyaUatIiOaMCacfWfEm2p/UFcRglDkOwgCzrz2hYhDS7JCKYNkHgT0iqKt2wREvr4EYdA3zqPnxUl10wOJLdY7Br+IS+V3x4HIxmYqWX1BZU9JPvf0BAj7kn9J397LHKdK4xtFnWtPz6Dji2yV53DjeyYSOe4y4KKPk/fRjNMDbhJV920dLER4aTV5BWkdFrTGNkXtPgW4j850d806MIrDtG/SCU6NkvSDijGBu9eBofmWyshE5pcIzo03NRpny4thhJ6BgfzhCk+qm8R3tqjHql4X8dTTPBduYjWHElbwclEJhOcYciiKS/AN4du2DaXFn/9Lw1Jb06AhXbGmLUGb/sMiqvfzxaTgs3LpiaihDCa0Jr38FAEcjUi/LjZML4/OMJkkyC/eb2xEO/y5oUXQ3Ju2Rl0ILwoqqGRum57UyACKq9VVKb6dFteKqToEWgOjWQ2y6tJGb66nkkQOiqENtTSKD+UzLbI6x7F+/ByftG/vFwci+wcoGIwLdGpTivhXRJDfSK3u0nRkNaNcwZ7kafEowz5Xc8NaKAoAZCp5hze50a+dyi+IVaB/Z7UPBXU4TM5PdCZp63xKoY+71gyrOfW8QM1d66etqDImH2wl9z7I5yImD5GuKwCAw7FUKzb7FIZjGwKQhFyySBg7XHMlhCDnRhfI5Btvj5/6V5zlSrew99kJVExoJcBqClwEFvN3OUucj/6a1EkyD4KDD88whM6rR+/iSUyUhz6V+ztDsuMpaM6CWxXnpVZG2aeFmmP6PH1LQB1u7BgAYKsEqdnuhKzwgF16Sg1M6ONhhKhCDe7DmKCtjVGeYGq1Bqge14P8g6i3yJUTTumAniFNkLfCH5RVC1JqtR3FykQ6GmhO5U9nr/tH2rzehSrCQ78EGv5KJZidq9Z8ehlgibXetby2PT+j0f0qomTdVy6/wJeQqbqDxOABqkfj5M5yf47jlJD4MVYgXeGArnEJzdxHTFkt9uGqsBj2sfKvYvQECLEu3R+QCBQYVnf20ZAxCiJ3wuiGXoPdsA1QijNzY0xz4stzaHJhO/j9dkEpI2z2eyMPboKzbhjEqmSf88eLgbvcoW23Hs22XG2eJIYrv1YXkcD/J/EV25Wf9hYyt3z0w4m2p2ld3ob+sYNOQ6ZWcF8gjOHOhi2FmHeSkV6pn5LlOxDgQgxo14JvIOgvSAOx2H0ROhbp3wOOZiAwdv4UivBJP+pHpJyKwHMkD8Uh/7QC20ph9hasyCBtHxOnF7ickyRGBN9jPRXGiUH/Zlr0cDkortHADZx0ujpNCal73lAr7+ySJ5esEtn7xJYziVGPJ7K0PSDm9rp11nSr9moYdLrJN9UNNl7gmhi1l+Hyc7pzaFCw5Ia7wh+QrgfeHGfFqg2DQsRR6h7DMdHTpcg=
Variant 3
DifficultyLevel
367
Question
What is the rule you would use to find the next number in this number pattern?
71, 68, 65, 62, ?
Worked Solution
The difference between numbers is:
|
|
68 − 71 |
= − 3 |
65 − 68 |
= − 3 |
62 − 65 |
= − 3 |
Therefore to get to the next number take away 3.
|
|
? |
= last number − 3 = 59 |
Rule |
= decrease by 3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the rule you would use to find the next number in this number pattern?
>> 71, 68, 65, 62, ? |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|68 $-$ 71|= $-$ 3|
|65 $-$ 68|= $-$ 3|
|62 $-$ 65|= $-$ 3|
Therefore to get to the next number take away 3.
>>|||
|-|-|
|?|= last number $-$ 3 = 59|
|Rule|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18On8Qo+Uc8NtiIyAzLhtG9oo4TWr/Mc5tsUYmnJ4k9pTkejQjV9deTKirr2OtxCxYxzWCg+crahsCrQsOOYlcjWWJSp/NsiVWgxdksq0n6iBSS+v2Rjcqp/m5wPLWkh45CYbeWGPUciOtkj0X+JSqdSnFYd57JH6cIaieGwr+wdEBrV9FLi+vutV+0jqi3xRZ6qf81D19NxhxmO03ulFTqBLNeVCgJqZqNW7TDbWdJii7iVR4FlltokugIkySbOOvP7yKPcEUxX4LFstUiIo7zd6Z4xWKyFUnoqdCydnbMpLTzUReKSxmi8PGQE1eh7mBjX1QgioKFDRcXJXLn/HI9YAi63hBBW4PuuNppSXbCjSUCC+f0KLw1hZ7FCttxIA0qHCHySbaVpzacVHV9mWAL9LkE3YZMzm6P5qIhnrIh8ptQUWMCSXz1+/E5EAQW2v7cnuS8SOGQp3ilIRDQhXNqmn4rNm1lFuya1wVkR4Jvk/TJMokqOltKDWawSN/hUijf/oqSAmobw2C39PlJWHgoLeFpL7f3vI1gA3rpVLiLXNpjHk2wMJo40Sz/aDsrplbBESU+fb3tWc219lWm/8/vXF4UHhGu4NeHq818TG+xTRhm6Y7JauW0RXovKjor3P224SMiFxR/eVGI6MUxehV3y2DKe6xdQ49cjCnojYd5lAs7suwLCdV4fwS0CvyVX99A/6wtBm1uR4Cccrp6lZakBeallgP/KZ/MPo0KGNFAQEhvteFKVHUwxzxz7UG1xh/K2uneYSmpvIjcYl68/A/BrpPJhalY5Ln3LZUMU6SKvTcHGnBOaEUROBuvWHMxs9tTi7iK8HrNh+BpkJTUFueEJuea41WButbmyIkDl5N3FLswu4v3asCRebqwqny9bsBaaQNMEr1UwsXSTfbWUutFO62wSsEwa0gHnlbsPn16L/ySeUjJ15EoeX4+lhbUa1t+lDzDDRv+TL/NHBSECh00urDSoIdkhZAm07wVD9hoo+RokseFLhgCGuaNwj6nlJ55dNMaQtO806/0U7BaH+4JfPY9RpVK9JbEWfWRfYZ5Nez9xZENJc7axxss2r4s+FI3IjiK6NCWV55bbsmSiUjtmrxyLNPhI2SQZ1R2ZO+Y3do6Jp+gXXc6FHT/qP26pNyjDYWe68JWYu9RCA6J2zlk/61DYzaoV2cFyjXdkTrblCIVZ7rwW/HP2CuyZEotWXbvpvAYmuvPkVICLP6w7qEw+TDrRqH1rT0UDkS1R3mTXJjntiEg3WSx1/lkAN8v9TJ9vVv+OuXxh4XKXNA4o7BPu3XUNbByOEfC06G5q7iXLvOfSAPIP7+WmrEiqlp+sZuFryU0ctgCwxjScv7TkMhyoqTCmE1xqFuwvmRKlUJZXvKlSLKSdOOWjJxmZktkO/NvdbViLJotgAMiLOcfhHcrKZhDNnUIOeU49fQ6tRUzWDfuZw3yBvsGuJk+uzchGhze/pxDe0LS1CkiQ+i12VMs0ldgyZ+2eTvnPtzKATx+090rN4D/ia9XvmPo9p9e2JtQS16+z92GHs4ARB+6Rt91NigJ3IEUZPnEkFPpGUd5TGEDJWWNCph8St/YndmyrlwU/r91DvZA8byhqwRzqoWR4a73GDUjOimqTOYf3XxoLUl5zMdeTvY9l6UTR5N5mc/78mcz6p+4Y8KCuSc8//luT1yx33PwFDY0M8bF3IaePbtUoANktp0czAs1PFWSxvVPAbrV0aEu3pg1+ZhpWfhO0C2IN6d5Qj6vtT4iBWQeW/nXe8zDLs4hlT4WBaiKRdoNf/4tw5dnfaAw5GyNAeN2EZjjG7Okf8UYfYGIMl5BL7+/dEsXFpjvqagnu5lAnzKpw+bwAEsji4RrcCDBpm/asPTbh3DApOumPb4QxW1JouEFcuUjF3myAHFFuXEA3qGB18P+IO97usNYFSzmGXZS4YmjzYeLUkF8DPmRl1Ry7SqR3TLVqPiRJgEL1u3rzJWYE5+J8MA76BFValIKtk319f5OnuCvVFpUbL88SOQ3xr71z0pKvscBdOjf4YreIb/4QtxAmblajaUhUtKB6ziCFhSml1zJBJ0/WskcIouCpBIly+CtzBc1QMhWC8CiNxbopFbHhDuRhIEK2loUGjwD/8tkxZ4jErE/Vk3aqH4isODcUvajSw9lsbmYCoDRX12ugvPIctACRggtT2pL5Hoxb2PxvsDhcpVnnf+2dM/YFRMqYzfaab0+tcDwAZ5qZWTvXe5f9JoIQJO5RmX7hYaHsTBm9Bg+WOXa3SbUDr8GAx8HnHehnPeHBzutsFvLEWtWvx/7J32yrK7RbxHKCGjXOy6mLsuWMyAFOdHrfBF/0tL/kybkptgssL7VJD3u/9xX28EmCeAxTsUQieZANtRWkxrj2vdvnYy8Bdj8f2fxWamzBN1G1N+adzUDBtpmpJlQbbgSVffQuw+rWWyjyb1GRT6Rz6cg1Q2ZMh1G5x+F07tFXAIMEZMP3GMireYkWPhegaA+o05z/lbTRNxL5zcJdC5J8Ij9nbpGUsplv48T+Om9B7Bks6r68cvXYPwdBZXpdkzYvZohBk7WHnfeD5DNiIAE8ybKai/rZBCjk99Ug08OPYKuPoiAjqSSsVuZFpUv4lEu0Ae66hMQoL0RxW2rv+pRy/DIgQch5tTKdaBBqmsmH4rjNOkyVT6Z19eEdhlDuSpiKgy1hZoI67dpxY7FnlcTUKDtEIY5+M56M3MXZLz2uh4Vv0xbce72c88ru6diu2gU3R6YOOquJczotf6gPoBjZpP4uKr8PSlCny0ZwqtqwSIgCOcMSlEjlO2mdcbWYrZ7fCJGuNUTrpb6bYOtvlX77PLyUhxs0IBzfXFzlEPkWNoB7FZsHVK9Sc6tDiMwjWxDrJ+nVw5wwa+0lMgIdfdj/15j+jM/D0HcU2XlfZSXQO62C6qleiytL5v4w4siQK087l7A9q/xX1rc7CWWUTTYJUwZJMfrkBtg0BH/p9A0MRzNKGAqJedO4YFon9RiETovFWQY9QVCEqqVUbUFZx4nrchU9Hq8+8JSvGjqGO2ZPpLnzlR7ZFhgzeUVe8lPnGJoFebJoCshJVbrTuS6fhJfH/n8HDRdNwultz/O/zsLAgJoPyPtiBnNQPFV9j0pjRVkWT+bXVI9LaAus5IMTNUYw0AxBwbL9p/jNHd9HL+AbVTAxGaqk59ogV9Xn+wRCRrKKgDET9+ZiPJtHX1j/gJk7JaABTbfdZ17B+lrcMZjomztIDsuxsJVoJha9hTiwTVjRkfe9ni6B1Cbh49QI7gpjf6n2GdYccLPo6GfDQ9sCeVCp9mqPmvWJ1us0oJQL3IP71F8dqJqCeyhKGD+Ah+tFeIipohr9++9iRFSw5Z/VL3A621VXnzsGxixqgWtIiiAgbb7XFq4EWMUbzujPbANUY+g9C5mX8MP7nRggq5SMbfAc/RvpL8hplUO59D48GO1rr1BWppaERPin0IzlNT1j0OXra7rb57daIOdQPcFWBPSo+xkL0Y7cry500L2qGCMmmBbB5tgL9+qIDRrtkaJwd2QkgPffeMPOXzdZp2XZpgHh9uXj9XUsu7toA6lttYqR5g4TZWxzFry5WF3cMGhiy2DaYv1/Dp28oL3bKGGUgAH3jPl+Wra1MK3CZUDdvEAV9GL7KWZ30NRfQwCJ2fpZq3WyclCJq5lwT+VANfuVFHRyllOhR3KJaEeT4U5LJkVr99DYAfiv6wkiSRmOARruVq3ShIQDLLLFKogenR1SL/0UrD+dwWCV93VBKGjTaaRG6CLxP4X3lPXy++0z5NrilD/owM7pRVLx3e22iFKhDMcZkL/hlGBq8bsA1JvsKK7VAbOVwnM81rUFWWz6eMCHD7eatdyYqGOIPDpZyMwC4vBIA1wdP40at4oHxhL+C9Ax/eIgy55f+jqxemrG4ScJlQrVr3CA+nRpmJDsV+b9xGS8d4Kp6OUneS2RICoO/TNYCHw+N/B1iVCcLlWOd17PL1GJQN1SymffnSsEpof9a5+k/TGKQDW0lVRXTx2OgzGVk9BEPJxxrXTRue/X96amWdknY9BIulDZUXAMH4pG56xIzMb0xyDUFUu1ajxPi7QCkg6YOpnIwzpyL1XowuLrAKJ9FrbI+NyQIhbpjFlzenLjjP3kUi03eEtIdrqnSoTSDj6PTOulla38yTMX5uvoKdH2tSfgNt52lOmP4luZnA/h4sr0VMDw/MxxShUpYxLt6yORLiQHGGPJch6Qr+VDclJUlIEDKHQg+xmVQtNAcGV9NR4Q77rCUNTjxIVuNQG1xhHCCWL6W0wv05NSVM5n/38aIhT6tt7IpbasgslIo0eJPt2M83Xc8EiGutCAEUjB+NKSy40TZyeLvVjnzb2ASe2bGm12wgH/XJfXv6qGaxaAGsrMCg6jvCylleh7tEV+lArEGPAo14a2Nmmp9RLPXF0Qswo5LwRH5TmXp0MKBx4MleU8OmwLCjby0SMDG6IpAUXPWu9rJwgM2rzmS3DRNwwcyvxqQIFj4esK8+8TNCrC2gq3T11C4I2OgnZ5bkBqRdgxr8BbOn2bjKYdNV6QZ9nc6YaxHjhcPsHK1tXpiwryThzLC6wMgx90AcLJXpY4Sdt065adb9WxVjeXQMmoXT8qWAs3pfpfQIHRo0vUX9B4RHJ0m7sHZ/xvK9kpLizbRuCvQ==
Variant 4
DifficultyLevel
369
Question
What is the rule you would use to find the next number in this number pattern?
135, 142, 149, 156, ?
Worked Solution
The difference between numbers is:
|
|
142 − 135 |
= 7 |
149 − 142 |
= 7 |
156 − 149 |
= 7 |
Therefore to get to the next number add 7.
|
|
? |
= last number + 7 = 163 |
Rule |
= increase by 7 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the rule you would use to find the next number in this number pattern?
>> 135, 142, 149, 156, ? |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|142 $-$ 135|= 7|
|149 $-$ 142|= 7|
|156 $-$ 149|= 7|
Therefore to get to the next number add 7.
>>|||
|-|-|
|?|= last number $+$ 7 = 163|
|Rule|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19T7bJ8MD270mh0i2fZt6SzJk0Qozky1a3aOJc6BCnNklHF1s9Th4naQMexvrNDqB936x5XDAvVh57FtEawQ82oetw6/YZWf8dQT7hJjSSCV7nBCxpGyMhwvWLvNZsgDRujK5SDRHoRDh5ZebeUuKJ9eLzOOb3DN8XHJktECWEYgJ4xEjP+Ww/6+ixJfifOZoacxFgGbUE4MdekN1dQdygq1cpjJKZLINjo9ulDgZ3hFiED4PmgLSeRPMjiOtBK3tnzgd4bHgZXtizBjp0kYwfJ9276QCn7DMm1zw8yJWMlFZLZWyOm/KK4GTLx5LGE6Dh5wrWUVJtWyk9EcxMGMv1lNoW+M532rEbbtNlO2LjakRRgqF2/UfvdRGv+7/NoHOeWkSu2RbdY+bn4TX+7wlVB2/U6JgRX36xJeSSRhmaAeU+3c09BFTFy3jzWy/pwVqTOzOcNDWC7V637g8sc7ZvMBFd0EZ1B+rORURbmzIN82jisCrEvFym15hklyiVdg5dgNT4KoUkXb0OS9sXsMX3lacCLPaEjZsssyhPWwZXxLc59A5fQMsZcnuqGf9Gx4hw4Imat5Vl85ZUkRsPMHSOvhr9ShvXAyIPfv2NvUxhb3+N/10ZbaLeKFPAUTYK80YPRXnGFGM3+ZikV8bDV/BNWVEPLHixa5lWjYcdDXvo2O+ly75lbVvZ5XrdQhy5ZUGm1VvUAQoRnLFcYlRnH3VU3JKqe/Lzzu3BRnuJeS81FvjM1L+O5ZMNH5nwiQSWu+pnzX092jiS73r7N4jwyef0Jb1RdGPqEyVonph26AuQTmnO2LQ1peGfMz9a0ZveD2R5gRtU4P4vEcg7e2DftQT4IrZyRmwViwyhu1gj43upz6qJ0vK16PyvTHfVyx01gZ/aBmOL6cta9QNO1RiXkRf3OWP9pWFldCtl13D7SsLckWvYoXrhU9wfVfQA0oo7sPGR8ZMw3rY38/gN78cEKmSXl4LcLZ3Jk83XXtc6e8LAJlcv3TgH/edK7ojq0Fzg2Vfp3nwhKiW4kKbkIqMZfWR3+BHrN4ZBc8SbsB3wSnVaW78cuEpdq7ln2hK9p9BrsFXHh4JjeKsmCaWoQdwFXTtmrktQ0kQSRbbYyQ1IDRUiQabiYIWSO9vQRaGTSwXFoRxvkxQigItTuvyv2KFkUng7Hl5wmdWOdGP+bwhBzGm6dnACV49k2A5RnpSvzSoFNo5SXUFzWL79zNGWEV3V8wXbluuCALrTDnGyljjGh/ZaAHzBgvcYHhIPjCBJDWdbi5vhhI7TBir8holTC1VxmO18Tp6alI+XzqvtBqq4O2S8BhgV6NI9c+CyAHK68UDrY6WGXBpaNQ6nJdhDxzzhRQn4y0IvOGPGywE3KBzak2eTRiAIPSzxbCSGTC2U3loLI3DKHj55FYt4j6R+sLnLjSXMXS0rFpCI88prH7ukS0vuMiUc+JRrtbsMWykrpZP/grGa9re0rlP9q8sIY0OazAo9HDJEEi8v4IhgpjBts1Sol7VjbFzO0F2Mdo9FQNDXWL5f0KUHpUfUwfUPCcMW2HE4tmNh9QPVy4sx6RDNxCN3vCy4lqzNCikdmVhJ+LNGU3CV5hDg8HbioEd2KlZ3qJ56Pcx8zzAeWjWDoT4IaWi97gR97ekslDmP1A57AhEiaysERaOE94FnbqVRIlTosbcMH75D1jR7NoQBpiKf8fp917jDYzD0wIKm1br1h/npApimzVtOCrhS3YG1pV/Bum6L21WdOlfdv7OqlnxLEwiPwI9p302JkaE61wQXzs2kXqA5N9hpmWlitc0OcFCSlneGP7GNdqFKJLd9wnoe8CotaX3lig7WIe+GvwqcJELpeA7M4BJRTpp8K5Eg0zPCrbRTjCafxQMp6/zxPvNJVLrov821e6lNuXbfo8jlfSG3we4+OzqQF+TTS2sTJH1Y99J0/Db/R1vJXhfzxEM0X50psZ1ejCJ1dk6C7iE8XKXZXTQQxVje4XCsYejdPEPBsGfttw7nyXTrGC3yjVS5k7UVCXcpTuROHwbWuDc15wsYbpTFXguqihlet7tusoWgS8ZXZKhfGLDS07ncvcZINBRHnkAcVfgRxyGZeR6QL+1QjZ4sIMsbKwD+TBTjQjjzTpVIlvBE5YYgsl9+iyLvLW+D6ibsptHs6VskeNzAS5YNmPKY53VQo9sd2r5GsX+Rb2GUEvkFOEnmGpA9tc+qM+IieR5Ou40VSzsBXBfmKaE26qJU9YfSqTGdCoFYDYVF1jAPaQMDO/dUb77W/MucWG9ewrIMfYPMl4/yKQ5+nXo5J6Y+WWfZtvRfQLvux92O6L3j/Pjox5PsBkQJ2smeLQNAmwO0qdmcj1sUck2rN3HAC7RUobfjoGVlUIzXZuEzTuj7NilIzkYBNehrIXTFjMK9StMX1djoAHrpQW59ZXfTEyWdQocVoEIf14SymIpj/JhBCPiGtToyBcMNK5PgTG9xl6jmp+iQV8r6fkUF5pU8qY6vVP/k+jTh0NoE61x7KN5L4g2ksF0zXtS76zsCpRBHzs9z6Pi+ZDYmYI/gNpaWYBg7rB/T54w/fqa5IGEmhzCimOPUJVq9kco6t3eurfMJFuYPAUiyy9WUrGqZ/VGA1zERnaHr+YK+UCWAsRm/H5uc0aRMMa1m/garZlz4Nw9ilz8vcP1GcKsZ07fdKMWy85GFKDm/bUSoSYyJYeYdQFqL1YO7++921f2PHFn1hSBUM3j0kpHzNgNjZEUiISCcuvpLT8WVRyhW+E2mOqsPCL08yFzuCIvYOOtNQXBMY8xvE+agkK/wP0jKLCbImDQgJ1mWI1IyFNb1+2kvddXmzsxWqMyyiTnn1pKJIMvE8exU2+u2cfk3dtIqYV5zf8z6YZsU7UPPGGp2URrc75gEq1O2OGS/yM/z9boAflfud4SzradrU0SwNnP4JfZ7ZOJmWzQG0fySDOcwApLJYuaEvnRp+g5DCOOPNifQS49twOUp9z46bz8yZYVx0KWl+sS/1VwXbgRUfHEV7kJzq1W0n0spEolvPNWhBhHF6w67IQh1EYnc5uHtn0384sKxj/eD8mMinzCPkQJ0ZCh9TO+Pc2zYPqkV63cOmj6NhqBynoy0k1s/wq0kYUrY0srAFJy5KnvYK++bHsNDDmFj47lviT0KWTzqo95CTG1mX+1EfVRuF31mtu40B90PwolI5hTp0IkBHEQOP0LU/TxJFwGQ/s6gqEFNYsGeForEB70ual9rQv38s+qAQJWcpH9nVNrr5noVEiM7CZXc+FrOtW1F9Sib4puWGt1BEYkyBrnt7lq7IbUMM78oBnK9HvodOdVWl0ryEnMrlzzIyNbVUTLSV2A6czh4IzTAYasxhiYsSLfPJ7/jCeQWe/3kwG6H5PclxjRaLk2zgZ8ZgI9BrZmLelBNcgTiUQvtma9a6R7Y10S7bp+7b0t54WFwnuzUV6+JrEukzVDli15QX1usF4OIPZHrvQALA1z6qNFu1g62EfV59+RwqNHx7KwCF9Ya/yFx8N7LCa1hKStWAJaQy9Pl9U+RQ0le6JTq9umRxqJFEfcPmzhegJuNjS+MfCukCYRsV/oqrXY9HM+hc/TDiJUrYbwHMVq9D0BjZbRFujfrEXzvYkowqot/WC1c0hvDLbnsR3oxIyqv60TRY91XjJwjj/t1ZntEhDnijN499vcOvyuhxfgW0gXZ0NpUNAoG1dlyMkQMV+sRJKhQkdGcKJVr7yRAW3YrigG5pCLSOy1JROE2nj9vg5MnHr0oZkaEM61FLPVg9BXGmUQAfdo24Tuxkd8bsSxjsnhIybW7f1Ip1fqVUjwNWOhwnE1fe2I2hXUW0fZ0noEmMNCnXdO+nILKfbKM7d4lDa5X57/AXo8IwYYDEHpOfGlSEUd2V5t9BAg/tTnvF1Vnzhqois+J7085Vv6AuYN+I53Vy1nLSujbi4IVlFHMoldICKnAofT1iixw5NHOcKV4ozEmT9ag6/d5Y+2LD9SwyrhBjs1d82WG2f6YLfYiEAUWGHZpkTssifogErpjTyLLIlzOQy3F+joMJtY3iqUSyIT++vJLeWIMRHIQCXcvV6npGzU3w+HZDqXujB5n8rOxst9rorG74nfqjg7OoHTpQ5r89leW2ZqGyVpaJOxwG2ySE/yyu9OskEOcFWaeM5jlap93Cg+8EWDiU86JjBKtFeyWoRplvuJdsHTLRpluoPsR6rLTNLO6ZeAAt0tWijuL1QFC57IOQtsNb2lVmqjLG/ek9aIpM/pBWbAk9MACubTvyEsxkXIpQo6fDsTI0ia+WWabg4XQ8s0gbufGg6BMFRf9NyhUQOBkF9x2KbMFebhCcSm0byz+nCTGQJdcqjzSBgF1Xxv8LAi1dsfb/8O/9Wymudl/QvjLL9yM0YwLcbtg+kTOZij90UcKSCYCdt+x7sJGf0DYKZLW0bvPNJN4D/z2W1LHj9jRpVDQR0WnBSmPWxCq7o6FGXs2HRdNHGlJ873HTUEf/yv6hqkjQUc77q9xRQeOGbM2BEaG0qaseI8Wy++BmseykMAdJgSs+xdfsrouAReAgwQ8c3VJUHGsLvTZD3eJTogWEviTCZgZjdQ2dcUFKypVLh3FxeX0nvajrvEgNbhkFGQcmWJwpp+JPqPIOR7+/0w9KWqID9qQzYSvt51Fw/tPdNAuKCantl9PvvnB0SkXGMLlb+m2XVUT/4iChGtb9aAeObvnYL1Mh3Nrn6rpuRZsOoqsEJAJfQOPNt97vBi6rlV6TgrfCSUJzqNpTiDxm3bsmKb2IMMVg28pfwAPDjqi1qcCqNKmjZ4lkYnvqUTDPOpPAvibwpruuOHGCkBE1vYo6UyWT6wjN54gzhjyab+b54YcHoMazSHg780w80BwXYRhRtlrG73gmP/iOSNZJmBoBdpFpaOMh7ap44WrRfWUICbQhbZ/ma/XaAWPxhuR68TNqsYu0vtUcZewMItLFyi2a2L8gL0GSZUmwgvMM/k0AO9AMziJxKIGnNhVYxHfa+6OdEtOhWEPttKON06P0cY1CuFwT/zPX9s8Tf3/DocIE1BFlZobqtZfsEJOs2TJ1UHbzShb4+PfBx646ujdJgfZ/NlssXF8L3Jj4LFIm438NBagysyExhps/n2m+yya7R3XnJE9VkPUK7IgPP8WRNfiK373xCMRVhpIORZedH0Icg2cgtSLNkcTmE1zf+GbDrWYLZvalI237rKCET+4qNXGLI+Ye/fTqLcMXSjeRib0YUQUl+/jqdLlSLg29a+08Po9Kbmo5IAWPAy7Yj0WPQEjz97ujwdEA/y7Do1sa7svYoAIy2XC+xA8Lo8iOcuwsB7cE7JDWz7F0D5OVeCj16UrTnQbT6FDUwdv+Nd9bAVQuAiXF4Zrr9U5GMaY7kX9VKlisxCIoL28w2dXRDsXkAxEhIAYh2vW77426m1IqSrEliyql2j/+I0J8beiPykNyLdrpgtqjuK47PdNdn3yV2Vk+DaAtQVeCK+6jMXjvMBTF+/+w3VfIvmsL39VmdoeJwKuCC/6q/8R2gHYHyU5X8X9nARIcEfCmrkKXBxzi5y3GhGQ1b7PdVH/02a2YYZH410M30c5dR/qq2Bx8PZ/s6lkb89DCDCqqw8W3fAIbxLbWgdL7GoCOxnew0w8/IH+OsS6d85WhjIDh1hgdUYso5eayMAxSF5pOiDKJnRT77COEGOcZQPsobOkAM4BK8ZzMkjRHIQoTDG5J6mU83NKLjR5DwFKD0oOCwOdK8xG4J39HvdJ+DgFq9Zx4snDIMnApoYVtyhC/pmuFURmcsUuT6hPaZK0UG1HTrIQy9ur6Fdw9c96FJJDVNtk0MG4mLegONdRzfgCWdRyP14X28Pk+HC3hlC1QzkFJqv8RLx6+RsOW/PCyq9oYO7K60BuDXqXjFNPFX93kzw1tAG5uh8lLnQdjPa0ZIcBTyBbh3Czao5QzMIBwhzaoEJqoXQkd6TBl/AZmWCqGSsN+O5k31BJMGX23kj8OCxzjk+MHJhFiZyxUOcU6k/LZdcxc5H/2+PbjdV81vvG04IXi/vW/c3VduqM8EfJZksV92BVXOOu4clA2VwSKF4oqkpIOLrLv8f7cVFqfjp1t8NRUhRyAUpV2BuZV39aivzF11tJMqqbBa7raD04c9T49eLbkroNw4YTBn7wB9b/1w0CosdK/ntDbDC9ZyIDiRypqTbRu0tbJ4W54OsFnO0QZ+fMrFIIdD/YCyOcQvnCZR1XgcTnRNrawua7hyEDtOpDpk/6hWwkGLgMR27ihSwFdCivdCAa8M91QSi7Ma9d9N+xLlY+/cLA7OpOTtwPia9l/F0bfSMjf3vAKU7tW+0R7FN1G9HOEhqcv7bKOP1LJuuH9mmvttDDsSaX67cnX+OCdEqMCsGuvF/CTmW6Wcx6ZDNAhVcEy+5Uxl0YG4TobWrIBfDeUjcDNCIbTdrU5z+/KnOTykHljsQ3TDc+gu4u8XLVAmC/w62HfeMhLliL62ARl41J+Fn4/RyG8kOoikTda+u0MncaVwqPDt/bEwfSVOoiucGQAr1fqVPkQrpmfMbB44Lmay7bps/Q6eREPaHxR+d4oHni+ykCd/YG/YWGJBnFdlyVETN6JJRc3wtnRQmCXGANebXHCl1yDD/YdsGEDPLG3Fr5vaqlhEE4tqhUlCNr8oeDceMDWDtw1XepEDsI/wy1ofbI=
Variant 5
DifficultyLevel
371
Question
What is the rule you would use to find the next number in this number pattern?
118, 109, 100, 91, ?
Worked Solution
The difference between numbers is:
|
|
109 − 118 |
= − 9 |
100 − 109 |
= − 9 |
91 − 100 |
= − 9 |
Therefore to get to the next number take away 9.
|
|
? |
= last number − 9 = 82 |
Rule |
= decrease by 9 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the rule you would use to find the next number in this number pattern?
>> 118, 109, 100, 91, ? |
workedSolution | The difference between numbers is:
>>|||
|-:|-|
|109 $-$ 118|= $-$ 9|
|100 $-$ 109|= $-$ 9|
|91 $-$ 100|= $-$ 9|
Therefore to get to the next number take away 9.
>>|||
|-|-|
|?|= last number $-$ 9 = 82|
|Rule|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers