RAPH Job 12 65-66
U2FsdGVkX1+RLLZjT11wT9HPEJP63nSZP4hzwAqCvRi5TKgOKcsQ/WS0FTMI1zGYAszTi8jCzO2UdhH0iFrzd4yGjJwxL6xQ0+eCGbLvyIuwRWcfBFkDg9qUr5QYXkvIR09a/7D/L+Xge++sk08dzXjH2An6KSwYKldUZyMrHNt5P35bXIFmG2x0LxLU7YNq+vmkOkMmFT95w5MhajGDNw8vlsI7kr7Qw3X8lDQs1ThfxNpwmLy+hf8xLOivH2I+n1w0+CO8XxEAPQQvhm2womBDo8I7WB9WmVPtTJU7ZY++r2Jsioarju0hDxx87abs7B42VGkUTL9IrO2txwos/Jw294L0xc5eFp0TERo7EixIHFMqRDb+AyprHLHV7rwqJaANVr5PQTEmtlhmRIoqqbZY007tbEj/SFaYc3GoFUYV3v1G1ljWTZTQ7mPnGQ0Y/kRGc2jHue1UzB4POx0VD1OWjBhzWqHf68/7YlBPx1VVFZp1fgz5Clgn5DaRmmFjVicCuaXcP8um7MGfS1j/WZG5tofiZcv+ZTTDQTpw+M1Rq54F1nYcHyOqsqReJp17nDea0CI+TLBeZnX6OzIgffWf+GhS+IULLfmuci6zw+Ddcr0lRZY00QRAokdLINDxhSylMxYYWbtkFjeOnMvS8rjh49uZA3ffAJxFpnRs5hRHdvl2tlKzR4ebaSN1IXRaQLeMr/Z7CYiRZ4IlngJWHQcU593pKEV+RYancaBOHwubrf+1pHemVykC1BGHuBw8a2/KVWaISEEcaH+EfPP4WRuvBwH52Z57RMXb9bSAj9SzSr0em0BGaxNptpwgQej0cpqj6FlwYEJtyF6YjKShTwCOe3rvJFs28bp5ku16z5tqKx1ZAvbsW+PlUefHKfUltvjyLrhnd+rkSsQS4FuveCPmORxH12qtHlNgXRHad+fWflrqDIZVq03E07mpS6IHjX/j+WcRrWuuoZP2asWq5mq8pSb2btI93TJWc1jt6UikwSFBh08569zKsnmyJ5L70xImFjmvALG9vb52EvRG2xmY5E10yITmk0vMhVEnnoTbcTUe0krMReANHk/Cu9rJHM2mNNwmD9a954d53QfrFxYy6hxm18HaZCgjy/N3WtKY4RznfZ23HMOcmGW5uUSBREKKX9fnQQxINnGiaElfJq7PAbFLQvpiTXrZ2b0C0pSQTkTaSBiaE4lP6kB0HCHo9bRm1kuez5kx8bJsV/4QxdKQSmVm03tRFx1B72pWhWKTd464u1mtWaR3kDjvT/d4jf+cQnkfbYOCUkPGdACrfXikynIvFz61FErLwutg7lkkpnlWCP/d1AvxUgWUDFHgs421YSGVZeW4Y+wR5eINY3xLbCTGF54ZO3E3xIsbFbcHX9My4rUuwSxlDg7Ta9nMZMcJ6QabaBI3quSWOmglCq7jv9j//zwzBs8kpZeC4k9mtE79OPW0j74/7XruPmyXQ9p1FvGxH7nD4s6V0m5HvAj658x7ZxWrwlEBm2/T+YRlLQVlT+4RHMhU9fR2nMJQRmjV4ft2o3sGA6XWeIshauMzhuB+aLua+xJk1k7OECAZ4Uv0tSrLBWQAAzA9wxYU0GlvnTIGBsuWFaEpr8YifIebSxzrWN0FwqmJbgYXsFiot6KJLi7EcyiIABJW4Gt/ue7egJQhebgS75XgoaAp5/aeH870Ms3OAUkr2mW3evKLSQfrue+P+VREgz6myyvOu94polJ2piwGp0LXiilca1oS6aoOTCFFlEmIr9cVZw/dSk3qM5AOLdh0nT0ALoaqs9jm0CT/LU3HZTrYvN/bDZ8YgIt0OFBNy99KyzRauokM6rw7fKorWtmhRxqIysMG/RpDV0TnCNxmUry6CY8BiCDgGSZpAotkVP/sYZClDfCCtUyGewBi15i/pkH507MhXvOwBwFxICPBtzqJyqOtEVMSxwiHm3HQ1pzyQt73Tnkmp7rxUqgeQQrRjavkz9bE+qfWLodFLI8wKzhdQW+toT6IsKwcUhk4msuTDf/MujZWA3cGWWE407csJAThFs1/dbd/0/f0z4He6Kao/E8/x9GVej5bt6aubqOYfdJx0Lih2Ejkq/MWMWBCKOOq2o/N3MIeDlnor6ojr9b+b/wGB9b3KcyR2IhI+99z9Qpot9bPriWuHym7KFwXZP86ULnVEkWt0qCM12T+QZo24qJOCQAlCMSQhj51Rz/ETCPoXAbx3/BxMVianU1HA0xNV9iitDtxy8mucQmgSgKN8u2mZAefRKKNEO3iC9KxH9yRLMLvyt5QroefuihSm0y+2IgbHZTyl8wHKO1/cnMxhRgHwqyw8W2i+ilVkh7JqAydYOsZIa0xB6Vqw1I5MJd8linjZaX2f+hXnG3kvpsXGk26EjA01F8eU2BGTmzVutsRjdLqq8w7hz3gvpCqbJogOQyE9Jf3/lGP6bMvFhqkMQJCDTyNWQuOqaz9PpWWzLFV9eIqOJ4eZRYClqXiAkvbvQ8MDKScnrQx/KugH1ho+BmD+O4hMG7M/pW64nfltAxhAX4S35R1Rm80a5PVQ2IKbrZwA8ZgX4z2NVDp0Ok369+wMMcHOmU4KZandLvHOWbsVc4zLL6SQ53108EU59Gw72Qf8j2zNBsQC7627OisRrDmn/Gd/PQA0HGfIV2/M6wxXHaLixtaeDb39C/osAN2B6k5Iish9Oh9z0T0mHBoVslmRi+bVczx7CEpQxXD/cra7jhbAZ/ZwBm1YsFBe3dGZAT5DVNuAQ8FahSQpSeBSI/2XmDDqFQEtTGTeE0061KxI2ztB1an1SlcmMPGH7epwhCG0pfHE32WRPvC6Z99qxMgWlaCT/h4J3C+oMQyGb8thDju2XdlIXrTZhRiz1wMglOGXCAub1aI58lui2jUGqqfYal0Q5bjAY3QNeTVpCIqZ82BbXqbjm1D8977Rmy3dL0WpXXX4mnZ++S91WTgH+Gxv0SslQxbZ5B8qVYXoFlKgvSFlCTkUk6T1toNPnbztR6gy1wq5DJGsIhQf7ffNQhv349SSRcFwrzDGjVniSSR5TZd+7Mz9JeNl1O8ghqKW0GcRW2+MMnDId6RnXS5GCM5kqTeC5CXyUtrDWB26F0Z1iIIGXaanuSCBHBHdmRgFeCCW2J6UR0Luj5ldN5PMogxrTLCQhInQFzDV5/74k4ZswJwkihtn7UbrynXq7Q9cznwECCM5FcTgbKbsGpWvYroLB4659Ao1oWIy4WqZvj86uph0qgQQZZJMAT4eASQwnS3qpdhfGd16YQbDYnz20QXg7UeCoiwT1Vn4DnvHj918GWsvT2+EtHctRY416FAwMe897SQoM0PAR+reMWg5PBqZYEIrR2bdN5hmLxIHAXU1uQr+lj2ZDZ1PU5XnCiI8s8O9QpqLplZ7civOqnKTlxqg55xBKWuWxmkXvjAa1prpSn+bJPXB/jXAzyNPpBSETVQJqtEV0VJ5v4H6SqBK/mAeqSQosDO4eD85hp+U8YyS4XTBZA3nta0fUns23mtACVZ282rP23H2ML4cpAiOSI4Ww8oHdq/oy1+nJL8IzykmfV/njJHQu5L+uVrjoV/G3YKgWwIGNM7GraOq4k6YWCtpy4Pcquybw56IAvSmct5LMa/3+qBGU00vSQhe/S9fNGt7oNTfy643IPh9kSxhDXueEUGwp1GXU1FuOZUUVmOEnR2gA7nmo62I+QeOosmkPgzYQPfbHIxANrey2Um0OCsCwvBCZjP6lKGdBwY3hJnC76RMhP7XyjEUHcOUSWqkxv4so5Dz/pIUE5c3gkLx9yRMj2pX89Jf0wcNOkQuroVTR/qCvQWOmlGjhlunkyHZlDYtUl01bd2xZA/UORJSkr0GAyBk75Dju6z0G6V1sbCFOw1Daz0CqM2t2WFcWZJceWo3ABLcFtySMsnlxOBw9CDUuG2k8SeYTlx6D18M9ET8WL0Pe9vGDAbePLTm0R1eM+26MwImK70GeaihB87OPMomexDypR8sy8j0CNHQk88zA+1q6iAbqaB1DVIpi2maMXWblE3QjURreHCkbOOhWUMIDcbtNWhPUAd5Pv3BiE9Wq4TMNU0Tm8pDhPe14vLKqLlM0JBSpSm0QM490WOXfvy4aXdLqONal3Tcg7J4pu7MTVOXUZ4ZsFfjJ7lMluCjE3aqKtghspj1zUCbWmR6u4YvjM7k40zuUFn9SRmdXk2MIZjOy9rUEeBYOX8ihLrvSlK7lVKs1SWdxTvj8ohRlMddnYhl2RdTOZ2fnRdmFROOyaCJIX5oQW3ctDXGWTMdAHFhXIHgbFTrFHfAeDQMfbTSoX2bHlIbK38mDVLoIZ51gU0rMut5Y5YVF4m0U162IUoDtU+/q7XPkbbglRLOprNKSSm259hIfij9jlKtR8z5yl0u3A4W/t3ED1NOxXiC3ak6h1n5j5KZdylHBAc8M1lyOn+IHN3x4EpgWKF6NWprgUJgir0iz4S14apRn0bYraf0BcDv2eNtqCYioMDM3TyM43l0v0tqldye3QeMGVbBkxFdXWFu+gciB8UEwcFBF55P4iHRIhl/QobMMg+mIMT/XRYz/iFP8uN4AinhDms/NzEVIUIqlZq7YG5fjz6Ped2/s6uc7niJTFHkskKGUlC6PGyA0p/JcpXOSqwjzqbP8a8e9Vv0Pv87m/Dc1vxGENFNIjw1IT8c/J3TDUPLOE4LAPUzMS+saZRbShiF70R19P4/KOaXZC5K1tqWS038cUnQkQpovjY/xCgwWAk+ExozsIxDQKlpPWxjpUIu1kqUoiHtY0RaBR0reYU6NyleYRHaRmYKprPMWr6HsmQeKh+xMhrYFvWss0qhDWUMiQqVzSrYBAElyUXvosx2d72cRw0cO2cwD9T/psSMHf3GnOvJ7aprLZ8ewwl9t25sDV/t9A6ff/DEFFBFFS07RJZ9etxSE2y7nsbeCzeNJIb2SnNzanRZxfGMq0CQTYvuWACU5a+k+6AxIJb1FtkvttOMJZ9Ls+LMOUdu8W7Wk6nhwl6FY0qumMFomDcmUfosPO3njhMWCCitdSnuqOVgrYUSSMve2D8alOzthUS8D60rm598f8Y2gxzPxFhGWw1yoPJ0Fz4LP8XvYBZAUHZM5BLKM8vzjdIe45q+deENoaaie+oD1lduwVRFM/ZRoYPIP7SqYhhKfdXh/imGN1SmT3ebF+V8OoexUaSAXIhHTVLXV85xvSb+YOQcOZvnlEuS0W/I2+uqyy9+82iWT9AggRoOO502oENXgeOxJ4pL28Cz1Vkk+fhw4WNVm0xpsbaHcyVmt0hUT00R1B7AEFsWexYjIMfOubmbwx4aS02gMyI7NdsJu1CAiURDb99d1TtMRxzr1wukwE4yokXymEoGl7PL2R4XjPHT4CaEp/bJry4/f8MXimGsYYB/47ZqtZDZp/9x23aarnmU3PHGyjdnNx1qBey2Ec/Gs+gib8cG/0RKhpRyW4GqmdScQ4zRWMz1w9sAY0/CQOmntxJD+EaREmaWj6sMGCZRek7nZi69SKWhMyKAerIkffVhu5SS0hCNxT1AjaVVuX7bNkbG3odP4ztN7qm4QFRTJbAtTbh0pUhsJ9lgpXZfcfpl270E9SvBIei4o37jCl+JsOO7me/rCM+6DwAc+/G30eIEWD3En8sK36eV/BTcx1Jq8t4wR6WOumK+JOeRJgIc80acTpS+x9nKUyYevloBBhk5GBrFDpdSPGy1d3oN5nfYvIlcqCfHrea+/XGEU/txeZSd6C7aLAqkIuG1OcBr6ur3oD3kfaxU7WSrqvMhlukbqt0nY61nhPVxZ99/RnzkhdezZnf/v9Nc7v7sxJfa46ow/DeId/CWcfLK7GzAfgMty1A/jtVAK6IUJzFWS/eDH4c7zmk/qQ+QoMS2vW+6nxgrhR2v8NjUK/WNFwPCWLwpkOfQsMb68dTAlNA+NNy0sx8z+gxWMA56Yubemc3UMQcQXWe6gk76tX0ADWrTD/CCDLjftOx+ojf8aVnH+DehBjVERqkCd8ZF5Sz
Variant 0
DifficultyLevel
425
Question
Which of these triangles have the least fraction of area shaded?
Worked Solution
All of the triangles have their area shaded by at least 21
Except for this figure:
Which has only 41 of its area shaded.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these triangles have the least fraction of area shaded? |
workedSolution | All of the triangles have their area shaded by at least $\dfrac{1}{2}$
Except for this figure:
{{{correctAnswer}}}
Which has only $\dfrac{1}{4}$ of its area shaded. |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/09/65c.svg 120 indent vpad |
Answers
U2FsdGVkX19r1BtW+VBwg6o8gXmg8Q+eGKUn4CZnxevxd82a/0pVzS8CsfdhZoQWeYlCqLj30R1vqhkQNEOtnIkRVqipsinq79p7SAgr/5/O2+gFBBnSv+bvLdbAdomnd3O5Ry1FtAwrAoFQZU9GspTdeaGxuVy4EDUQmInnW0ir+g/eijWVyisLBC00+lfX/6PegmqMoHMT8TT4YZ0RCDohmrNFLhbMecJEbgwpA0tbWi+UrbLJZh0by3Fl67MoxyN1ZHqCf99I7zgeZ+62eAMhZuJyKv3vpJpI3v/RXzH8VArM+naVjKX9vSZIjaoE5fqTw9aguQ4WPdQZlpkJm7mNWMrek5hA6+C1i3fL7AQQTpEu9vfmlRMS/aIUtFJ8EaTw6U2+6Ma9H/s+hM5ihTycniBnyNHiw17V2sMYIqjn4nORZyjd7/xPZB8Ag+vgnMckzuMt1Cuqsa1b8grqpP1F69Aa/3eFJbyADj9XIQmIBrPgOyniPWAR/yKu9LW+ecKNIal/S4FRdQnTGZlk+W0WxW/Dik/ychHSXbEPr+6NIUhSyJHh9uK4TetMwgf/uXUsnCbbLkFqiv0bpqHhMuUe8QrkZUjFkaQSjaFoBwzuMphER2FLtY/ny6FUKLdkXIm2TTy3MFupdyfaT/xVRgHt6l8toRMm55EK2QfIEUO+zvpIyRb/38ZwGkUOmmk0r9atNrtkotsx8aXTdOn3OV7rG+qVqrU5eJbonEsQwexumOM3PzVvSegmaV7YNBMIzbyHb6M3snEDsSqYAoIPYJPnaGaWt+PC3ZsAoXdSmBOR/3uL94GpBMCQXwpuEo0UBFNM0o3i6a7xZpEkS6esu6zMNocdrIykPDWGIuuyp1i3NZHqM/pX+FwmteQnG/xSE0idaUJJ+9cYMG7xQTsh4K9eB+PiD25U6STaQkSh5tfmfpYozO4+1zCvS23IkHZkyHnH2lXWK4L95O+66Y9Q/rOxtwpmwbTaI8WVjhvGtnt5iCinIC88q0khhDqqZYHZvDrPxTk8QxMz7fpfImgtT5TYNIZGNuswekBNRxSf1kMAzjPibZT4dbOhIftle/CprvTeoJNjzHo3hhsZKLgi/LnVxaZWpdUE9Elh12WyAedmYDtPQYmVCmVcl6aYIQpBotqSLGPvxfEafDiXqC0QM5Q4E7Tu9ZcKuKgePG29MO9gfRm4HIBdVbSf2Khq+WAlrC7YtMDtKEG1Ovr1Zq5rDnTzAVr60bkWS5x3nJSwYZsgFM7PQdFf0klsSVNT/7+GWzlMbBso4Vdvm4Gz7L77bTGbfhg5Ne4ZC86iG1xSnxnPyC6oMsT2M6LSXjKjMRbWp/TEuhV8xpf4tcJue9RbPts0ZXD0vqhbMTC29rIN9SRxgNI1Oe1JPU4hbd4mqudfKZaeFU5Mi9mm28MZZUlTDm+TwD04QrgGFAdtUCFusE96WsBU3JppZYAwGsxVoQtsBqAx+UsbmboCKBs7Fd+ja1MVyro9NSqkpTWrEIqazoT6RJSLhvL7lIKQrvnML72wykPwFWzAzHYbVOTW2N2fq7sGgj8QRlBr4pmOXtp214UmTYpEW9ag1Wzamo1SZc8M8YbHPbhRWT3ijq6t3FbY84jIof+gi4WXCUwNblkZ8YTyBZ3gArb/GOrGN59sf0AHfAxRr7oH2H8yCF2C/XY5EW/2MkHAiqySl/ZS2YneNy7M+3c5C/HSmb95T98C3xhYyDff5bXxZKoBeZtmS/hCU4M8MeaXFcfXXxWum6DEpko05xRiykPJ88giqo1nMlVCBvWUBET/yAFX5SY6bODOXYlXtWz4pDLnWiLjUAzI0Q29LBgsIvlWk09g814+3K94x2rAJIYehRbuP6gPQatGqMQswmhmCkSyrV/EoXdWalxwneJKKtFjJ1VNcTrhd7vKD1yrypqNe5Qk0mVwHBarqTtZxhEucqwDqu/54ZoMEk94ztYvQ5B0MEiKhmO7tpCk9PbD9jKxMPIcjL9ZkvxG9kWWBMIy14nIXoig6N1LyDucQ8E6CydA8Po4kW2UVNVzuoI44O6H6pvAVBKgpLDtcwrMgC79cQS8rHUMT4S1c1fDQH6SBeVmkZR/6G91yZEWlDsK0VTTayeb9Z/RqLJtNdZiBhWIHj3/u2rUZsKmDVsc/SVzpcjw3XYtH69sLKmDT8irNQwgqiPky/LIOboRwiifxMbyQ4QqPJ5CzrNyClLIqNJ0Tha6vVgp3an4L5vHedObSI0M+t9hu8hhbAcRGzgbl4wo+3cspqLUOmv7CvOsl/9hFLV9/toFzCYAPPfk+COBH2+vPNfORLNVaQrrat7zesiSdW23EK0VHt6Ry2bmdb0k5fMGaBPAQIw4KcHmPS8O8BmUBnh9uVKtN5utQLgZhC0extGClzF8HIt0kZrN8dgwBraehz/vW3YVnNLqWE8+Ucq22reWhvvfIl1DyaK/otOxR5sgb5xadSHxMg5mMS63hEBwHE93VJ0WK7jw0OwcxsHD3SRIWKU3M4bZBgwXi7tdOw2JqMXzJRQXF0pcZIPvua6ssz+Z7dhbDZgCPg6Qdb8K52AAapjWtBEuS3Jk1847RSQZrBi76y/IzrtYl2Bwqnvgy9w5ycHeBYmVI1PNRSSQA6ZHRBEw9rDJkz/NLWIRkBsH9YD7zDBgJobbN+zs7/fN3J5MKoMtVm8Fx9klxw9lB3Gy4eecxPNqr6H1+RsPKP6lDryjhclX/7b4DLRS1qTkWtjoCO0cVfes4p5xZI8iuUUDSQhG6aCQv6jOkkAzBSVvITpgxfPL/wTA1DvTttmILFne5sp6e6w1kZ08GAPwRHlqHEg+hHQ+oWztY3KAM5lrKIIkmO9ZbSK8EGq32qZvut/PDkp9DHz53w5qz45R4JlELFMkH5INquIjIjRAoouh5wvQou+lragdpZ5jirY8BcDRQHJxdiJ7PMlOxuojToLvDH7GDvrNUSTl3vf/cvlI5HPF8yY6CDx938ZCD8MANze8O6pnjKTkJ9UuI4dkcQASTgwsERHtnFdKg2WGgdOA7Qb1EwSIiuNQUrylFmQGMC3BJlDzMNiqGVZ06/YDwp3wO7RdUJoFGB1zK1jTclcJKjEglYTSTei+pmO8PvOi3kSSeS+65Ey7/5s2DXuKzCwIOhrlwzum/CwzCgqn7LYn0SppHlwn6aWID51H7MWaUw9ugSqVZJYxCa2Jf/hgUWXc6lgCJtwHVm2ZUFk2baIrBtCq8LQiuw0RelnalvdE+sNl54p+LBU3/t3ogGavK6GCftyZ5ZHMplEmlLyHrSBIyxCBpRPfjNwUUvkZufwf0+FsG6PnDUR05nc/Y328a5TzAMdvig4LboFuu2YHjbG7FdobjG7NnxWEC60Tls2FaWkNz2RS+5SNjF9/eti4LHg/poWQjSRn7jvimBLEmZsQYCr7vi8VgaNK9d+wq3Vctoj0/EMH4l/YZnp7YwV63WxMYTyociTCnILiDY6KJU1e5uVHiVEYk0P7RrkRghjf+vaAhM2R4MLkMMEWrIE8/uVtpEZaKMa6FYnYFBwajQHRdLy9zHjRmoGVFeMmVIs4bsr7EelqflYF09WRS8x7t9o3Xpik9zGi0WFwSsLlt6xYAXLWu2zQJlGKHtxtWYVciHVRo9VZbqciYBwRmfoWUFEXR0xQzw93kZhsN3j4S9Im5CjHzq8rBiDIE28U8auAph9BY6I5wBjC8gQG0HwqX8AyX4G4fOz3CyXR23LuL16uXAHC9nk+v8V45oZhdWlQLrgAdJeNpJG8s91rcylPs6CeAmMvQnM6jQi7q9onQZzAN8hPRyF04uQh7EIImNWln6/mmcnqxCX2VzqyQZ9pJmn/gWqwx2m8rucKHojvsfx4bqFek/TFtdDClLp3uaqApcm7EWpLYJZDFZOGzTVD09jmTK+VyezXpuJlJlJ/Jd/pRvSbYOMQXZf/yinPurJK4dFQUtnXvT5ylDP3jMSm+HTfXtOWFVPJd23Tp2SQL+kpeleHdt8s1xvKuBeINDhox2XkUi9CURC/Fh/pb3JiZgUquPZc3OQw4DH31dN79j9vOmCCoZK7YH13Vx6xXSOXoOU+ggT8YuP+10XeZviIZyG2l5psSPuPUhaqx8s3FdCtH6uSbzeP703+bupKC78cdmSWPY2uXdAhiBYKJT3xQ8ONbQvfZAT82fiHHRRmPsxzNzHntrXUtWcs7MheU+rE130mmGqaAMK7xawjuAfZoIUGRU4OwHLrw84000ZVYIPHoPu2frGHEiIRO/MJP0yfNp3M8RUP3kY4PhVq/wSGa/QaeH8RfSBsJZktbcIriDNRtE4KK6IJDcxptuc5EWYY2y1YNJuBDNHP2QWoELHVYqvu0ghh70nw7DiXRcMa+UzW3X6FvHTG4YBDc3QbPzTysWcVrOk2FXpU1TsYQqOcyzpTkTiIyUXCCafzTvoQO3uqEyihxHuOP6+GmSGRqCqtpfHbk4P9dXOg/wrePOmypwi5SQUqImWeNLBsUvg2RA/jkvl9EeyQuL7YZI6GRP3zEE2utdJ6MEYW7r8ZDeii8wVJr88lsn6PSEuNzu+UD4jGalkI9c0XycFF1S/UOcwx+ncjgN/dPkEpi6CCFiWuz/3tAtzLWkN94TKw9wObeeaHyDNRUbze+qm4a7nbNeQEinSwNvV993nA0LAQmMIOBU+dwQG3oAIXt0D6XHdlv/xUVGenwOHuPI9tLKowO+Q0/xuPzOBoSRUkfP5u4y75RjV/Xm7daKv+rrgt7f35rPRHVZblA0IYgIukEKnpx32v7TnvfwD8dtIGsDiB5Xb9HG7wnVA79RpjlLFf4CAnvW5xXjGnqS4ArXIH+45iryHT67aqCBWWeMJtV8NBM/GemdTVvQngoOdPAWP4MlhL7iv2I7T9oMR9/0snRHmPtOzFC1y11KA336xHS9wLe+NRlvhctFBjFrqMNn75wasTVSZlKenZOmQofTj5WKPvRev9EkunNdp1e59Fu1U6LzeQ7cFL3VHlYw1S3NUaJKeJPPS6iLYb/scS0drvnKRndDli6hTf6D1RPivQLJyj46dL3yitR46XSyI4VotroTAHWX1EA+Fu2k2fAJtZprK4nDAdd/SqPQ5T8w2bgzJbClvI5dk0oky4dF6UYGu6y0C6qs1CV2IWaayT0fM5//gdSPvro36eO6WZQFE5uzK8QXuArktBajH6ZNzcoik8kTwKB/J4KnnpYA6Sa7uCOLr0Sop6ZmZK7tM+v9uYG/nTQJeMQX++Q/vvYpyZYyd58ABbOmScMrg/Msy5AEKfqZcTS48OPlLWoPmiTiDlFmswRhDb4GP++tzUEwVY1zCMU2qOXVMEoUDTOpxHTj+CxeutnulXMTIdB7XrLZT+mEek+asJGRLxZ9bYmz1uULQCZiBFvdNamnCeOz5zRvlYc+yqp521OSiZ1tZn8aBj5WHFuQBr3tcixsoQBTzjP/QpHvBBPi2pqdy/VsOsH8HaCY0kd/xBa8dChYk1alqQvNEOcEXJQQdC8TjzgXppTeWqbEB5qQwwmzy3xxmOJqCLrgkhrkh2DJ6s6CpkZBN6iOsyQsrBYMKWP/HB7/Su97yzTYt/E5uD2kZQFWfqRYm1IV38ftBMD+xuvNLGrKuHf2SOKzmcyF2ZZ7YxXSII8JfdoZikIwjNmCy5ixfrR69sqxg0OLLnX1bzczW2vHRjcHSu+Gn71PfL28uloy89LMnggUgRdJRpI50jqBrzYLskNpcLFw/4P7D9VVtF1T+NEQZkCVi/1blaxW9IIgNbVRneIFgObYUXdFpV2sA3RDBdvS4GAIFkEMcffg4jVkCD3AYmmx81iNgjq4v8YhbD0CIZP85OWuymllbtrp+LdIhpALG5Liwtt327vN5LLRS2OOIT0phuHOIrmEZZlvAL9v7mgTgpqGTrT/oynVtgrlMv9spZBvLWmJ44NJNvvn0Pi06Afq/M7dhcaW1rj+ubT1JMsoBLLL6GK28QRJGWON2VjakeUaRhdx/AIYgl+8Zu1RHbaN14WenZKLgnEBu7HMBAX5LJv5FrY6ohUnrMF6SLtW5vaXDfO7L7GmJ1UbpbWRGSSZyUqJ9laWrrxigxZA==
Variant 1
DifficultyLevel
427
Question
Which of these parallelograms has the greatest fraction of area shaded?
Worked Solution
All of the parallelograms have their area shaded by less than 21
Except for this figure:
Which has exactly 21 of its area shaded.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these parallelograms has the greatest fraction of area shaded? |
workedSolution | All of the parallelograms have their area shaded by less than $\dfrac{1}{2}$
Except for this figure:
{{{correctAnswer}}}
Which has exactly $\dfrac{1}{2}$ of its area shaded. |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/09/66d.svg 170 indent vpad |
Answers