Measurement, NAPX-L4-CA14 o2
U2FsdGVkX19YQMRpT+UFYJEK47KQSIjC+KVaFkFExPrkWpf602pIHLP4cTh4OW3DiZLJla3ECUw+UQbm6aw8SC3ng/8IAen8s45+CdezT+tVcYghWsxAzKp7nHgjr9B3HDIdWRqDU6EIB9YWMakFv4f8qOvEAlxdscvGohzKdShBE8+gIQDiVR3wGFCEwv/LhGM8z4UcC957MfiNAAbi5NkfR8ele+SkiAxsBXVkS7mbQEUkH85NGc8Geh2GWpr6mNbWhdPCLQZo++87QwZ2DhH5gfA7JINVBWbSAZ24XLVDzok2t4A8oze2eQQ2peI59SEm0a3DpKqaNUUvGvsV1+QbPenXoaoQ0SL48YUxYg+MTre6KlCYQZdpSFGhYH190/na0GVnOqyfN4AVx2gmJeBa9fADADIrKV3HlKYmkPyIfoHJ+oMYxInDPjQKQo8drmn3rIOHwSvlIMPEGr973tR36jL9LEbP6o+CyqdyuAnGuRZ0SjcUNE6XYeS40PnhoWJ32gH8kI5dFYYPrGI5BrP0j3bpsBfUJvfuJ77BQURL4nZ0p4URienDuJBB2UXpiYVOh3CkCrx78fYG6C1QWD4MADvSxjFJjbn+SGZjy6u2AkHCur7x0YBfHop8URCkZ7VPWJuq7nFTAj3qNTHtoybxd1R2jy7EcQDkKMLdU7ldVMcXL5WrEDCFcsh92bMj8kggfftjk6OWtKl+4m082fOqujudpVY786sEUK2pO0oTvW438ONh/dhfHCBJtN7HEsR9odjVmXxRzSzU3jpF+bZ2nt8QXURgNOuN+6d5XWQ0g2LRV0oPiM0VlprehQsvJoeORaqIjvOjxDFRYWKwVe1ITgaEBRmYKlfqRiPT6zpVLbPs4y1G994PPK0gxcaIR2lHmsHw4VvShBSw2w0xs3iDipvUzb+EHT/QX5a6IfTovPL6DMP2IUNa/1K0kiv0lCjjHwzg+x8JAvCWpXs2Zf5KaAn9tOzgLiwWzW2aZBMwUwbSXr6r/LJsPR0puh/W49Pds9fpkSkhJZRcWJ1vuItECXNEDyFBUqQIYfuHSjdbgLdM/cq6Yv323M31B20Pl5Yu9+hrC8FJtgGPZD/Yi7ShWd6I4yN0F/psl+EAR5aLS44Ca/RxlAbx3t9iHolUNuFrhb2CZXBbE4M1J/FkoEPzhBvfWCE3Rr48JZIGuMsjHQZFeC6EdUgIeYHifpVkuw9YOuTQtipy2f0k2Thz9O54Xjnk8j/KERLY2wTw+tFNp4vA1Rb2QWvhztvK2m1LX1i/Ou5hc8JTBDpC7XOxBSS5GfVPU1qmZ39CAxLbhjmNVG8/QkiC9R7GuXNgn189JNo5RB/P55/k/Phg4qq4hsmHBhKJxbOAKGlGWO4IibZ33JZ94WkAqUMVx3/ujIYT2lcqoR1y7t9pJjmzFcK8HjbxtsyGrzjojznSr04FOKqMUX6k+bm/12FDY+ZcpRVZYZ7tBXj1Uhc1YCP4zLAiDMNbaibZSazLo8cb2JUw7Sqy2P8JeWQ543R6/hxq5tyEVXXO6gKTvM5gPCcrEYmnMdqccRoXzWz68I4R602TkVxOvfBex2UTuYWKmgUdYlCPrWoLOcqMP7Xt/TX7DN+maY4Br6JMObvCxLCSz7Kf05gM0bl/OtFKT3zOA8pRExy55q6cS9Tsx6iCYngctfYsUJSRAyWx1hbSJwyPQQDhhYdWP1W9UPrKA8gnsDRHG4iKWQRVY6unrllteH4utxx37eOdSU/YeUjnCMf0K9TzfmSNtjFVVSuKU/3i6/dH6NSKP6pPmQU+ON1SIVH/FzNViiUy2+v4MXY3V+SrEW9C0vxxvGaG8vFTUOa3AE/aWTGelSp3u1WGM4NsRe9XgNr5yRXW60vSxCKzyPY5Rexr1wSVxS4JOaz4cSvqUyXOFIOz/EiIhXN1uxkF8C/hLpNh8j/SKrrzaUylyxkxfPNoPJfbB94Ho8fSmUWqJ6fRK5EC3nfn/nV+SaFs630Uv8r5Mg3SRSZ9QY7ovOsl2XSH8UsUKtdRz+cZz9l1A/Q2gmqlC/Vkcm0zZqjrhSiEhBgoVWVoy3+1So44h17SDpyWupKCoxSYGDEfzayeiX3+hqvmzLI5fYppDV5uiIOcHtqI+bvOiI2YrmJZXYbXjhQWygM+GN89KKMV5rdXUFzB5lvLJSqPSpFIGO5Zs7LGRzkIuo5KDXz5DLpBo3g8H3zun9NCEYWlc0VWiMB5+AT0o3lUZ0l9afYJMoSyev1afQXA0aBcdwMl6lemRFnSR9bz8SCyxPBTwlfkuDPyrgMnTtFowuWSKe73owBVAH8I6CeU1J6lPsXI7qaABjgBmYsCet4e4D5rBaxVfq2D+yKX1eecqlmK/6D1WWQxgOpR8zR3RzfubuZhSZzapQ2pMdAahx2uiZoUt/dPBYCjfOjym8/AEBffMXtyAh0f899oHtGbnaSwYh3oRngiTlh4H5SkvG+qn7hhL7eO3mp/lK+298WMZgCPtPPa75FYc1YeA+tuhH6gC87L2Out/NFf13JME/6PaxkyAENxL1E6tJiYWvJWwq37b9DLZ8/xuDZI3uhmvyRMCOxXUcBhc+W50hkYQYOagQ42SkMZAlvRbaGXouAfa9uhd9PWDPMH4kTiu/BCTQ4m1XieLiXOOE1eUmBGFUqhDAf2uhoiyfVxy+HYzpnU2rISkvqHo/DZk4rHYviZUZJRUlFt4nx5K5k07RgS8cnGfUkQPVs7KlN8l2ev1mOTGnMpIEJOXkTimnv+7E4DuDPHw+LGl7lJ9NVZT2NdphWt6F1wpIsqb/N0xWTL5QEbt9zZXLq6DHPgosmlXXPvQ6ldQO3ar8CD4wbGnjN3L8TuTqaSUEFOHH7eWXFYbfqrlK2vJQfXwBj32p39gNey8Bgaxvi5b00di/0YU+ScgtgARU1PhCoi+7bjs1a+FleaWDkN2WOZJj+mtfFb76TzIUQP2OpVBZFMfLLbGyEv4WM30f7pY/UrJTWJt6mcQrY2h6lYGqFmLr1uKMunTpb3KAWd1gmiZZ9TNmQ5bMLxqpl0Tz8kgOYQUxvwX3B73iwPIW0pzloq4jD9aRSEUyxk2O0KQW5WgNgAfQtVGYXbi9p10XM0/DulqZzF6c2xq8sLk9a7lddaj/JpveYs8mWZ/aI5QpLyFf9phDVSn61kNZoo1JQ2ea8P+/iUw9H0z+cnWO1VR8fWGhCUIiXHsabdpFqcIaQ9iDoq0i+ZZuECtYn5o09PWNAioioelgusn+I6YijE8p4VWuAFSOz+H4tCTFIUJuGkGfnnrgtHX4F9+touJz5C6jzc1ESo2BHIemxN0gVz0VxVBRgWHcx2NSCEtRxLo0RvcmOwY/EPMnCz8eOYyFfgHNKQK7zrFgLYr+tR4z4fxH8TLM3cbKrunwvebn/90sokhSPwIggzFr5RkNuUgFYiIJoOaQOhIaS7th62Z8wMyW+xyfw99qXIdbLOdppOhyDHO95nMWmjtlyKjL/gjG8ANLtZLxYyaGanOAIkxHDeb66r/ru0/R6OT69/TGz5KdOx+kb69GhQdXWwWdtgwt4N3HEJCS7CP9nI1w9PP/2ConZo5YLiXmyzFdANNfN1dJxzGFAQe8utyJAe8jMsHeApbZcRKe246XYCoBfIKIVVhOhlQX4Hmyxc+CIPtV+GJ0LjWdFatTFKd9I9OZzHFUsSwm13JTW2zycy8IlySBwUcUgM2M5sjet2SsgVEpICvx5YTHt8j+NHYooBb5Kd6mMIDOHJLlaK5QlZaB9xsokIfb/VESWcO8JkNEOFuUq/u3dk8Lo8FjSUfeQGP94cdKqPaufMZnuWqVeiJ0QUHP0eOdPjYwoeZLUBsqNJounxKvZtXsgN2EoLUJyBkZI4p8ovGSu6jMrUUTOo/EJ1BkZ28VMd0lRyMEkAUr7d6rbJgg11y1YknbAQsrPiYn2oXQABtg/MXGGnwBFufMqIBdwDyZ6f7QZ2cQZIHDFTzxxzcvlPx7cFZj+xHiQPbDF0zlu9YyKyW6yRyWegMJ/nLR/NMbGRMZdJn20Hni3b7OPdZNGtMYzj7dsohuJLm3asPUJxXKgQDyC9NFnPzplC9Wx1KlhBvTMCBXPAiIaqepjhHpSZzDitr5+kcWOSzn1+ZrNWrHZL0hG14vEq1ZbTtGHZS6mPnYXOt7n4NNAfVSSZCROxw4R/Yh2y7TiNwhz/UXXvrna7syQaQRxY7s+a3dq3xlDHQ+1u/Nt+Epi6KzLGcMHRUW5LgIeSPO07r7SFhi2l1q/exhgkbLuGDhZimmi86x7ZzNoXc5kziJPktYYl1ipeUQrGUswAg09Q3PP05NIJHJ+FMLj1r+3VwMMkCHUxiVg2Olc+QYggBY4ztStUcxBHkEzB9JpCL4QCw8Y3YBpcE2s99XetaT2mglH5fjglHKYzuPpxEWbmprjQyhmj63pKuWj2H9H3vubH7U8rPel9L1uPywVnaFwNrmjdqTM0i8zFjLyWKq+SmvrSoTu218wfmPJOZDPvCstBNft345YR9tqErUsvIVbcI52IP6PC3V+m5iL5v/+8SeDqveEG9iEfyMZeF/lNuZb76+X5YCDOF3x/bDAFpIFdnPVeHHO747jo5vYnxNJSNIlqvJ4Or41NCgP2SYzP7+NtgaGvtVl97/Zqsg7PDBRwp933S3sbEitN+u3AlM0UbOwkFLjCT63XvrvljqQ8+YUDzcF43P/GTiZyBwbAsS/whZqOh5wMAtTUcfliIIoFNWzxbrlFhekM6c57lyUpGJhQHW6EaYmMmKHcj9eQedXitpwpiLNKnA4ZFkrixuWrE7dqx8hcX86WdplRJf732GuSIDUOD/Z8iCtfqyqyctJrlfSeIhHqrE67Jze/6xMqJ0TntAYzkrv5wLlzPb7spFFmubX/zPbBFxRGo6AmdnS77xUrmnQR6ywjZQ3jYSj+60ETtT32+2yhGzYQR86AbER0H/xUumAnC6WG5NfvVdmJLrA9YfPMMniG0zwJKpBA/+K4levPiOvenlOQm6+mOeBr0nizo1pdU6TCSORQsW/6cctZ9r8GrQF9xV+6QmsUAeJfXTMVO1+eCMUYawWygHL8ODSdP8rxyDZDSL5YYEIP7Hvt+BhtHEo+n4rZWyujQQt0f48aGnWKZlj0G/vFDLLNDWhZB05noGpSO9vOc6r7ryvzwWAWchUEXFK5uiVMxg+NCOZWRZtWGVeHNagvP7Tx7FWnXPBxVi1Ks5XwOoi6boqugR9i8XmKwyR4mtnMXHsxhUqCAmc0lHlR1DVkJ3brGlo4SSi/Ea8fIWOAlH4ymUrINhl0uTnJ/ErjVdZRUEmg17f88VYWTpkcexU7uhcLb2UbLypgIur7zWDKoMquiYDwzOlKD7n0aL4FWMdN63AyK0GbF9eXGdATXGx9R11lWe2I0N0oWxbcKcbeKHMJt116/bLBR1H7YjLQLyeQoLSKsAqMcWgVBpu6uAthHS89CzBIk8SHRGSCy5bl7oHUUkDYFo/m7Ry8lAHwj34K/xhOKGuO/4w48hZfAAdz7eRUO4U8KA8gRmzOAI8ohXtr7KkAs0819QCJ6akWBLbPWuFxwz5UeAB0Yf0XVymJArte68skZMoKfAOT0zsO7uXKT6UTX1P4fcL1DxV+YWOvUfwC4B3mgOeDlZquYN+q28pMlTOnB51LN19cmEK4ipOOQ28YSVNrZR2Lrk2q8SQ6EpePbHNDK9nOoMSevoS6KOwOxmunb743Mp5/1BJ8ZBWze6KGIQJnqSonU80+DN8nF/9ar740wLt9pelwTJebMeDlrLMBlW0kuJRVC1MsqCMEhjLmVs6JsSnbPbb+WHvtK5iYyDkNts/UD3z9A4fzzosH8tigPfHMaGKqM/tUB/DSzYdC6kaSLriCSB2nawh8SCYsym38bOI8mGKaGPe+djLseYUpH0lQ39loaZqWKcj2Q96qPUPzGmEKPVwIQ0hZf1qayHFq0yaoOig7U2qQPMEb8VLl6VJEZtj21TRx29DYlbeKnmIHHXL5/QPyLehfg23AjnQ64wx4pFU76l/W9EGFJoIKAO4V0zzMNuZnSbAm5ll11RgFXqi/R2nY0Z0mrAzD1OsXp/waE+dix/OW1INtQCeKNWojfEXAYxWm6cM3m8Hd1rUgDDJk2RRKxFhIfetPZpIFL0Kc/DKJQUsSo4QhuI43jz1a0N9+6NjitsP2fbbW7esFF0eAR3L5qyaQAuWllv1Niac+OHhtFBduxDOFLOjnB9oIjogjw7X7TM0G0HKUfSgixCFIHBtMGBAvxwcwh8Nlm5Zhtel71kQ+OVeBpl3AMB5bCivSnpp20Huey6aQk8LpyYiK6PAQL5mHxNTSeNNBMXCeqSUJ0kqf531fc4o/O2eGGHw2GhUjMhMONyQe31K6WJakysu9GmLvjlHJ8eAamqCyrubRAvYqnCFdltsWUIig+4x0Rg2UqCCPlkUO6v1DDD/lWXIa0hT/Si3jXMNctlISi2+MLZ30pLg5MBwf6A5uvuuXIJVvhc/dD5EKCZUaMUbv7Rc9q+Byh6O/dGPcXfZsZQISwmWUd3fxPL1h8KfylAzm9ctJHzvcHhTzG3l3gEW4oR5V24yY9smJQjPRe1MCOmFG+NjGqxa6CotCE9u7I1YAUGqFw2Umxlb95OCSfr8loHpfCKac/0sMl+20t+gGqqWGE5njd2BYK6VHRhFlhrnWpHU7DVXmA3PjsuXtiOLHczgKwqOwY4rVp5m2F/uonVIkO0jzKrR/csmNSurvlFNDuAwU9n6qqN5po/RSF5Jw0/XW0iefy6Q7HlnJud6dJ4LFUDpOr7afGz1EInSSazhXooMMGgQymYs9BNyXlnhhAsL7gpUCN1ZUk+I1f7SlcbnCZB4csjWY+Yqa6tDgQ1l8gAmTAOH3p/NIFSOJz1c0C0TH85JRagibwhdgvxIKUwL/pcDANX+2mdZMjhSfAdcfsO+6GnrfU6dMMjNznzxsYF6X3O8SXYJfnE2hFHVvxMpEogaajFgg07Hcf/bbGhZpUZE3Urqhjb8j8tp8XXnZ1SLRRKQrfcIQQ4Snz2CRoYpOVIFqq4lz47m6/yqLbGybyFCkHZNHo5qjC14sQzQEfQn80cGGQtvcKLOzBXKlWoeSO3tyYetSGyG+cv9COTAiUHKXateGPovYMxsVBp+NnteXHprIarijFTgbXkWI4rhnX+hH+LvQ3oIznS1W+HXzkV0AvJUWf1EnX8XilndY6jT10k8c7wOWAYIx6yAVA5y/w26VbBov1uOTK2I/RR9gdHYYCxqs69AVmG08GYtI9wVISTfyH3mJh4CNiFnmXp80NBtCU4KZLletRWw+k9k9NAGZM2p5sZEhb22sFno7NI/tTVFayebzvOFZfaO5PoumL8umVxEJop98gayUxJizZpE8hnLd4LpQqarksUvYq02JFhVSiszV72IaMmsqE/RXajFqOZUAYdWh/QYNyQ1zF/pK4TcKmbnEWjHr6GRytAy2ZlRHFKBqWW25C1UO9yGhWCgBHIStX1MxRT+GMhO3UsYK5fERBaGWSf+iNjZr1IkwIeD9BrDWUsNV6uflRCvVh0xoqzvDhzWeP405DRdYG5BnJHE+FeCYckN00GOZDMoRozuKG1NoKa3PygMwY63soPmL21BoeEYThJzqZih4Cbjr3lYYU9VnYkWqsmzvSKMgzt18evsMv3rN5olOy0I3skvBv6JamsB6DZr0PqVLcgR6iunlCwIaI/jciBHIJJ9PQ6P4O6viu1LyLim9+poVDDwB+pVQBMEkMJG5q0p5eBi/flHARHtB+5+wESQYB29/5lYHBNc4p2P2ZtxHucVH1+4NRYLKssXJvbBPa4AzbnFxH4V1djcV6jXmJCYMEz31zNgJz3EMbqrVIEi9r5/SnV4O8o9Y+cduW0R/+asU8W5ddjd2cFPRZWoORu2xuVQxGASfpnxTg7ld0eg8FZBiRKM8IGx9KpCHnUnxCyN8LsezAmsmJFX+2Xm2B1xWKb+IZJ7jnBa+O6pyNxV9iV+n71KhG1744BZWrSv6WDFr3XiZN9diY7oylyyxa6+AC50+Eq8JGB/lpDUVsTzG9XX4Lyj9V+fF6OAMWB+cwsjx3M088jIF3Pag4pO6/U/cw1GH/YdtqFGwkOMzhr9bIH0nBGe8O8idN4byioW8WhgLint82SOpqSXFmAcfgQ6+YZjg1QxSwOU2GLvWuLzc/QvNDzY1KVUB24LaHIylc/IKe42zSLuUbqBIhF3uTPJ6KzmXXNrB0JojcaxYgpt6OImsuuLl3vdQKbmQrb4Npt322GP5h1+vJ/L8b42trl8I3VQa7kmH4ikR4yacULrvvADgb8VPWtJ7Bk02tki16DtG9ZZZsLTU5S1XDkjOMKHcK+3slmLbWkymQHuu3D7GWy3zhdKNjiAZXUa8SJa1wZ4qsAE8q1znYNAJS9sBO3pDlDl//qRKtsRFYjNAYzk4bVHAOWeUcR5qzRPlQv8gM/arSR2MRPMN/5u7s3nTXaRfJ0XfJySfQLZtR3SB9xp+2VBUXlewV+FBYGFbfSo/Bm5bIL/B4QIupL8vqp7w0RBvJGzWAwYDVfC99OI89Px8l6DpDh2VLqV8t6YMY/BRhIcouZeM4izhYHCu00dOctx6I+xYoB0OTJPLsLCKBCVeKtVcQwUoO8acJ07xgsS3kNwEJefhz92d9eQHCNakpAEKCxUVbhkgAD8kyPmfN+7iBskASv+PL3hLYekgYkblNjg8MkKLPpweQNTAorvahKNuzuWDqQQYivDCpWVJd2+udE4Ovr9pTHYks64Pivf6CQkatman3DO6oVjhTyvFxy+qGMn6cAvK/2JPLrFO9ccAE8GsUtEzN/wRxYAdPb1mU/hhBeCHXTLI8VgFJAehtZ2t4fldjQUdYVp9Gf9xNeSex9lYIyPM/tHrrWLMcwalAQYmighbdY6zmo72X2NBXRQkFwVTdLh9vugqKjogl/ENE6JK71Q3rDVse6gbTx9ePRmOYxueCCZ9WhSM7iHCQLa/AL4a+DKYGVk+0U5WeYqD4IhNGMiFAMp7HwCKxnc9mFQnLXpGhe4Gl4ZkpuBYJXgg7AAJAElyveDX87DlOYfUoAbpiDHDsrIkyDMrk3mMMbi+aLyyjMuOR6aMIYILKROoZ/O71HqhwFS9xKLJk0hGFb4bzbVpe3A31w0yu4alCIIt2XM69D9AgsL3jODP+fR0iuAUcPPHz0PykMZedP5Wg8KeoGKB/XJxo1qnwsc0gukeYNIXwpwfFtD007rtmdqhUK5shyBJS84fYV8buBhb2OVSorLXXEdv65OjXbfHWRlbsHDLE1/SDIfElnDWgpQqWMaIAXNTebqNbJQXNRxC1mSEFwVuMfnQdbLoemyGFpzSl281m48OyXPrgkDn1fY8aOIt+skAREfZm1gUk9kP9opDKoAGgvoQ031v2h+cI0pBJ1y4OKSJoEI5AT10uPJC3xwozIUXWhj4S0jGh+y9QFC6qhWnjoO98XKJPCdU/Fv/D6fcKj5fPETHx5zukX2N9VkMXJP60unLXC0AxhxLqZanz9VsgC+OTVfpTaqyPmwuHADCNaxmiGSDFcGrr0C9gi+3lp2d4x50/9sD1IzTrjTS13behdGsBCkrhQVudkRHj0YFhdozEgLzemjfCJQj/MBx4gIj4QoxYJpUMMxALPTbp/Z+43lx6vjhkcvtjsq5LBzaU7t3m3GGzdo0y+DruPNSnWygF2mvPxErp8Qw9bG+bW+wcptIPSpu6cye3s2yYDauKWuIDoY741+nNRmtx93l2kfRkHe8Ussh+npaZ46HNpwjbhACx5bah08BV83tnsAJoxJtUG/p6yo58gYiC4Oj5kiu/H1JcsJiT2/DYSqEnv7TXI/3T2W3ufkD/jnws/WU//Yf5oIAGcuYdKEBoDLYkbE0iOgneVpkJmyU6j7yqIhZlFq4/Lv2ABWOtSZALFwJo4xa5d4w2KBEsKh2Q3+QyVtPZWwRipyW/shSY6CKI2P084+3oaKMsU6fBrpCjFNy5D4EMc3XNq9znfD5s1T6RQIySNoJrDHGdYnNQICEf/FTVd1cU98AuB9pEizGkE6/BC0OOoSW3V1cByV7QQKAFex5z9mstaXJDuPIyv62jGA4HkvoL8BrfkYMNKT7ER6cCVmuu+VH4oLASxW3l9QiDjU6J22xJ/n46g/LM5x/fWUKMx2DlT0wEaBCy47qQvqdNRD0Fj9lwzZwQds6EE1iHRIqU4U1Qso/6jCG1iI+Sts31yPNYcDPDdqlgYkytMN0e66e0sB6bcb7/w7r35S7MqXJyEvqymd3Kn4WZ8hE+d2CDLl8FWMdEKdkFjcoWkiMngOL/GvxbCQ4lOTopFrJAeFwtuWHOQpKK6XCcW5bWOOnqlDHIHQ4MGhKfna1Sx/hw4ToulWFUCYyh+p/Ugy8novhDP3YBpxuurcvMhqCaluLK74+jh3lwnwqbKBdVoKt8+IqY+yJFjBTuQ35Rbo+iX6U82Akc/RyniGmn7rwyOAkicjMW6Ra4mtH/dQJiL27kWWdi2n0C6DDUOJkycCDe/QcX5IUwuEKRZV4NXmf3Iof2triBIJnbTFeFgDae6Jn5f1+HRUNVU/EBD7rIP00IGqX6EUTMARrTo1U2CyOQPVT+ydXNJnfw/hpQFT2R02h74oq6NqQglbcFRFnnG8/Ox893YPUk1EutzBZb1E4VP46TevDJrNdxDH8ahg8ABBpSxwFI7tS6VnDftMvGogtuCgwv72d+v9qEJORDTHojl+JfCJYW/SierpDXfAS8OdPrFeSovBInQyDegc9BzwtEzKObZJKzWn43lyzizM8coKIN7hJV2MBI2pXY5pE+qBUBZgljtfJDlLQxyBSyJVo8lJ0m+2mJV/YmH3j4zwX/j8E6ktRabMpjMWewyAwIWGZhWzjtPFndWR+803/thFKgjPdbs+oMVshmtpZpszqIb5mn7X1uE8cB337NQH9cvyo2dYD8xuuY3oVP8hCLgvznnoN1XU/DNoo6sil4o0/w4hJCdERMY3uMqq8muPyLwyPOjmoM0kuR5SgS8Yci7CuM7hl3LweDYRXw3X0PJxBjk1ufTJeDFMT1Uk1KRzFQDPCu9ctgcyHYKATBT3qf0ag09Dno1AanNA9hvDypFsWVMNKm5ORKv5xZ/QiD99zQ8HTUvu6PcTcdQIeZnV3Inm0szJbcNyz66RYhiLLcP4wRzqgPhVfS2hbknbpsaBSbbUR/D+DVdasA247KIaynBgSBj+FT+vyD2oxq9Ft3f8X966g581kYfRAYY55+VUPewchD9nl6sIv2T3RPWtlVXnVRzY3pXTzyE7Yp9RlWpBkjizxTU5IwGaBOJHTWUAwkhw9j5GWZ7GV5weEvj2UozfJAlXCM4PYkF//ek5M1+rHf66zV3uB8mWwiTI7iK0EXWwb/bUjtYatZO471abnbUd1VkylIQ3xD3ZFabOWTSNvJxDgKHhFA27mBTajqebt+lxDHjKzw+/MW28POfwf3SErhKTc0UscwKXE7cINOuiiQisqZAnslQmf2vM5m5t+ZVkt9G9evANGJh1Tj/TLpVDs+6tijNvEmVwOJfsuRcvvkt4t32CS6dyXJUwGjXDB3MrVwEVWG5wnCSL52FNFvnvDw6ug2Rds3MxdFfT0EmKHQJ8AlBK6fUBnjY6gPd6XtRemohn8LBq4kGNs9YTsjDZe7BUxM3Wfm5c9jjL1X0aSEKM9UU6FJe6+HNi7bpEJbXOhcqg+jPO6Igne/GXBDjrgBznOXeSSSzJDsir1nZrHygnm19Uzkc40Tq4tj/nmCyiI/ptagxm8eI3J75Nh02jVYU/Bfh67SlUfIyJgJXVimGUZjJJBxnc9+wbezlnb/Mkzpnf2Qd57XgDeIldOuhN4gf3oTr39qXIR/bYi9sEJFWjRK0jsGDcWlBpuQwOo+YUe5rP9CQl3WwqDLUqWxDXQvxz8pKvEJ/fZOAeVxqx0Nm0zWvJZo8U=
Variant 0
DifficultyLevel
626
Question
Clarence used the tile pictured below to pave his garden path.
Altogether, he used 1000 tiles.
What is the total area of Clarence's garden path in square metres?
Worked Solution
Convert cm to metres:
10 cm = 0.1 m
5 cm = 0.05 m
|
|
Area of 1 tile |
= 0.12 − 0.052 |
|
= 0.0075 m2 |
|
|
∴ Area of garden path |
= 0.0075 × 1000 |
|
= 7.5 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Clarence used the tile pictured below to pave his garden path.
Altogether, he used 1000 tiles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-L4-CA14-o2_v0_nts.svg 250 indent vpad
What is the total area of Clarence's garden path in square metres? |
workedSolution |
Convert cm to metres:
10 cm = 0.1 m
5 cm = 0.05 m
|||
|-|-|
|Area of 1 tile| = 0.1$^2$ − 0.05$^2$|
||= 0.0075 m$^2$|
|||
|-|-|
|$\therefore$ Area of garden path| = 0.0075 × 1000|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/ifk2kWGDHmqAL5X1VgIlwj1K0qRsZep+HUZmv8V8BdP1dtp1b71C6U3yG5S7ztGJRRSQCCVbayJySl2crHWtKsd1VCCuCZ5r6XXUBDpfVl78pW0/ipOTt+giGuYo06O35nIUBnvfm37y/u5PMEMrtLMnSJWtIifmN4Ky2YehVrxHdYEaZZTy1d/c3VipOCGEdoYQd405UsHuDlYvVF57+lEgCm1GX4I2/pIpAnLbyFDasblmnNSJP1/ur8byGoRhE2RwH5BIYfRjTZINeZA6pzvpYh6Vel8CSh66noYug8nvzmIA4CntYdF+LjjuMxx95Eu3UlBdV4y0UDiXkxN+5Ve4YnkL0OIK6EBlmz7AD2aVDPy6NWct+Y0EI5yCqJOzeR7ZlabvlT9E6ZRczYzlWQFOGXAKCHviSwb+/GXO/FEQrw/EXiRp44HPuiJYpjMuhWLRXZuv1tp09DtljALNFmRn6Q6Qbr/E51BupdLCLkg4MJLe1H2cn9CCJOtQDiXh4sNwIDyMJJRR2AEmpJTucaiFi1Rzkui/hY2a6vhIHXMBhz4DHV6tXg6Q/t0+pa2r9UsYEW4lquDss3U/BWGEl/042gFsS9bRgWLeTYWifprxNwieQErBxiH32bo3IMOoDqHiYlt4X0re3ttOsTyUljpvSPfD6i+wzC0mna1AG1MtGwCg8sRwk6q6+VrPwLA64JLLL0+Kqa+JMPs4JHxevuVm2sEmMVPJ6atnrSxM7M5m5kJSkzU9Pv1qPQoqqDvyR4dJfLNWsDzB4rdvNqC7HfnO2ccSVYEzBxHs+uF1QqJBZ9lFWkQpPtk0g3iVobkPDQKfRZgnY6XKlaGrzQyRXN6DYsdN445Z/jBkM/SbW7eOryXb1QSwON9x/8TDCphGjvttQrvCEJ+DkQk2sM+JaXjp15aoG67xLnIDyQDPd6I4jTSZyKgligFecapwnYt3gyvPCMveQJJHIDyIImSNnGwWDDqITdZ2g1jwVKi6KpthsQ+odi7OCkxcB+VOgP5z9NNDldAebnW+SVpR3JGe2VMjUbFqdawFtlBm6IKepXnwdwazNtD1YMdUpbs+0UGJQIunLS3xgA6H6JGJgVFpSPPOOkLtm0XMYAlBmWc81UBSx606kN+cSdMssyxkMaKJPJDFGAeXV6R0tl1xjuWQzhfh/VRlG5oaTUxopAh4jkOG84Gx75bOOTjthD32jeceSdBsfMF7ZJqgUEbR5T3qjayqMLBaraI6E6ZdExdCi9RbXVcEHw8EdYRFt6x5tE4UWfyIxJSN5YWPZojGXkvQQXGf5ulk5VEPUwkhib1SaVe5ZeJ1/mfEfQQyRPyEkHYzu+7JVHn+hsTe3Pi674lt8g5/KiHjCk3AI9WiKF7JBMTJPCsd3545C+UCPVUY1sZ6pQpkTY8tTMFyCyRxGFAo8OfPaSwKW1MlmZJOEoyNsDvEdPdSlE5uhKpjoVBXTKW2KI0uOywdyPKbvMHM2qx4KL23aMs7aXtustJEh9+xwf9gB+VeRxesgCO8cczsPCNfOCkpt0tZGG4OlE1GmFylI+QC9ei0MmoLUSt4H4d+s4e9e1mC9Sc5FnycV1kOh+i2mHo926PWo8FZbhS5/o/OaaHomlpzLF/ucXA3Km6cPYp8ICEJwEesYdAkHYbzJAg8fE1ToUU9AhCTTk9QELe9shlZjxcEgRbvr1dY2wP0a/0pE0H1BTCYRC6qJ+YAT8QuKnsITjA7k2Xf+nMEXvCjj11IqxZu6ARFDp6IapWMQjILrqf3ywqb5T1FL9V8foJKc52uH7SsWc7OS3GXxLyMvGCWGlYx10Hm4zidVIWc1BBhP/AAG2gNk+DKLz9UYAP5tCKUjcqn3epGYq6sKwhAqN8aZYyCgESfVfWuqXO/vSK86To4fh7bY5OjHRrN5+0Rv1Zw+Gfn3mLc5bJfy9u3WvvfCEz0hUIIM3bxR3U9N56OI7R5+jfBe+dMcRztF8LHgrNrkMGt1HF/oFbYe7uiiqvyz9TRTnitMVvCrpqQ2x2AMvDqDbh3Q7o3PUtXEYOlKUSFjkvkv5IaRoT5yAExbRBeuOdst2Yi3PPZf/NjJH30GDqsmj+zXTfxBpCqr3R79e2RxlvbcYNc6/6/aGxjvFb1kOfyuRrsK95dYIrWEUD0U0yRDR2stvso3gr2KiBxeOZuz6R/PgKVoOVyvvogzTqWKmE7fnHJ5IUi1A/kQzPP9TXfSyoFiQhFsh4KvyUkLX7E36lE3Zmyp6tCBeVezOfvq16IWb3xiS/uhX5O5T+nDcn3WheM90yNq9agKDFkvJuEgJmPt61tYypCRRwhJx+/R1Wl/ckrRVdI8R9xYk4/xWxyWn/dbv6uQjZQ8oa7UZe8k1Dx1b1S1YKUA5JYks0wQW9+5lhkuesID8xV689CpVEx14Rhxhqhm0kZLalcI5HQFlFwPXU963JMLABkPs2LRnN1vRG3K+65aN7cG2H0px7N1xrTdCwpouNa/wMazSifsBDw+rnK8xIoaIFmklmG/MM1KM/89jGjzzGTv/x1ufkNcCtfmymh9rOQe0WMaGnkkTFSxd6FIIj1ByDDf0YrRXo/O1OxzmFeLo1ML6hLBQSfH+bfPwXcVJ0+gBAf7reiAkUVZSVEcyhfE8g7YQbyKrWRCmVYZt/PdjST8P5hvIKcWtjFOvkDJaGDSq5jCJ+N5Sp+wHfZTjxOugD5teAFWIGsbij/TPWVoUq/09R8rPzftxrnc5MK2IHetxE+Or2cPOtlZuBUTjNJfAm+ItAwC+OyqbS4IYyEdHAQLkePCnzx2koc5FF+OSlU1egtzAsLkZ2RpgJcpFI8aAiYbjyiboCL/fNU/eqb/iEEJ0Y4OrtdbYUfBfNfV/Hc0ipNAopK6ktwFRBC3Z52B/O/w9zM4K6tvfJpKU96OIC+V97a2MzD5mA+nUxW+TmCWwqtg828CkWE1gLYv5ryzdgTTwmnsLvoEwtyOQNMZizbSiBGt/Ze8UMg5pxNyESZ7IzhRwj1/jmnA7ai/Y4yyVcUeAKATLcj2CZdgfyicJwqE345+FPHgwbpiakJjQgxmdOLN2mlIpH2iNWoAzdSK7WfuAH4VtyaMqqQX5o3eHYfAkT/4gj/N5xesbf3RxvOcgokW4BBuRH+2vNHGAUY71slh1u30d/atZXhY+A7dwD7Y/0l54mApx0/eLX3EYGBFoLux0Su6d2N2zGfAdhJVY8eVLCg9Mw8zpLQBnX3jGjD1uWKVn8TNMY8+e9JlA7kDZuk1ABxw19Yduga8nHCU3Pf0Y4ArAeCnjwQzcFwFVTOR/amD4B6dWWHbLKaYCMol4JGjSrUAt+nnyKjcadH/92vQ5VA8kUmA7W2YX6e4sYcR+I4IooUhMxOcqlTXOplx+0IDLAnjBIkTyfln5HbgbwW4Qlfz+qkGW0ywz256fnGB4Rtzfz3BnrptHjWhk1hUEdf7S8ZcAvlOMJxEkMoAULKXfsLhIuWkZn7QGqCEEbSSKI8DhTrvsvuMyEcdJwZR2k5V/1sFM8+wCQzlztWy3yQg8Ob19QHhbSTT04cQpu9U5tQ+2SMMfqcwS6bROA9xvAXOVmBgBH4h2IcMAy4OSOn5SEHWnOj9Ee6hhrjMygG8xrqq9kPy4S9cNOWFUxezDTKVP7pPazojdeYGSNkXE8iSgXfqrpE7L+Bi6XsR36ksKNeX0YiNVrlkAeS+7TUwdHg50l44ISQhtpz2PwDMgG4WSv2ziv74R6dMcrVCD5n6ehOBc0qsWg8pm47b5czcTw3YexoZXAnZ2Iizi/WZRkRTnooXIXYBrHYgYun6b2RcLODFe+2JmYojIO3M1Q564jahDAyZR9kpmwYX7AakOqqkxuMM9TE+EwJZ2aQh+5ZbYlSqfccsAZ4nNqcYbMbiKW9cY5MysXTdUBcyf9r0MyO9Ps9IdmmqjmoTVTun+QCiBcFYmBHBodpNBDLdziw9gxFf4kK4t+Jw7t0vqpsfNFPMgeeOBjiCqBj6MVFVbKiUyVoHEYxKy9QULIZmedbpcj/k36hDKr4mvxxnvLpsf5PAKEs12kd7ApCUMP/Bs8fQBsrLOiGcHSODVzZhzPDJ4INmVvRo+XM4PmrMWgKU76YGX4cw+lt0dFmiJ5LdfyzGroBkEZUe75gR2C2kH9tjiQUK73H2XeNNV2zvoXoBuI8chlJgcs7nLwA2lietzqgIhX9muTM/Nt7p7whqxofvKwgRkOdq/j2hlXqG7IjdQ6X+qMXQwSrk/9d2t9Q+XLiO/AdJy7RRLHE0ox659bJg8zGexmM4jMVkGEgP5sec729AN4tv9bfqEqqfAgfueSgVdSvXW389Okx2uyCiLgcHv3xO67RzDhFBmdT5D0L9Yc/HcIf0JOztmJRZHIAICdpL+UXF+zzewmPH9YHeSo/MK8Lof+EFdmaT6YcLrzzUaM0HcuepoIM8HnUs28MDnnbdS7m8WU11lY0Pv+BTEtqs0qlO/ZeaYtVdCBJfz8KYd6LDd/UVnNtnMMFtM7xcLlN2rUZjIKMuqbCHaSR/z4V3150igsNWn5FSjDXeq+QEWlqSBp3tG5YDvupABt6iPrYmzkO6ZfVearU5p/srp6ZGchTTriV9KBOKijiTpplws0yL+rLurZz/YVhhv0Um2DElSGvSbp7hadAh60l+Gh3xtsjhf1V5dqK6DZTmO8J11iwzkpcimw14LY/WPGYYEYDwrcsE7Mnx/2Qn+h5NtLbw426LQmAcBsqOMqvaRj+lXRnvEt65fW+k+4dSpofq9//bCOE3HE5xD1/pGZ9pHR4XAD70Ov9flJLu7uuE5pmmNs3yfZfGPur+lZkEn4P80pYlo2puUUTKWAMx5CZ29zv+PS80FbfRVZAw1Ne4uF6SAutwfFkJ07gK8GIoE35HAxUK9k8h/Zdw1Fw04sK2KmKJ/uUGlV6H8pvViyoN1bpzSGLNi21WrNRVbbzTONM1aMJ3FZaxBX9PVizdyn5ztz2N1DksBBwnCuIxWzxFgs8/Xv4mCm9HUMf7S93poapRH7jY2CL8OojWLbws/FqrcgqMrjhz7AIsqEVz4ea/F968XYcITzkpNx5+2daR36+2TwEB3IsUdF/IaCRZuIOvzvb8Ua+AoRWzbInqqJpqjt99uX7zPCVBErhJa495FLzLJrYcOkDuPdjd5JcXexPsMDvA93H2IVlLK9rxRQmIkPkC8zFyBedtJGELHxTWtGnqg1ZbLYHFoYkgvoyVMMMxQkBfS1SHCmBTWtm58Euf1hXSSAfHJerpKa7FMy7lL44utsOQ4O2R7/Su/j/K025tIZSl8VJjHwBQjSosGZtYUFWv6hZ+VXJ1QOne9UGnRiSRcyfzfao+MHjHqJdH0Dcw184bCYfIRki6/MpWnTWXkGu/3onmQnSw/jXdftwNLZfvxT2z+AdbGe9BXrk/1qy2O1tMSay4/UxTrVrRU2nAY4hktPhCdKhyiRJ/8XZ3MvDJdpCH8QIz0IxTryH9GxDktLia8kWK5tp39FisyTOESKhe4vyLzjkzzBDs2L9h5FH9M+ibhQK/6oenTJuk1rcEPEoZ0OJbplL7lL6LiHqtij4oCBQ4jTrI6d5qcPiGQe3QsVZljGe54XI12ny4uuepcvpaDfTED2qSEjYJqQqbbB9xd5sSk6+qufR7EtieBN5qGfh+Qks3iOL9zoERFKB6vHLwLF1IEsPIxz8n3B/XH6Aq4m21xZ6eX1AV/nZDsUUPncZ1JqQ7mUqbXhykQuQqgeYzWrMFyh8PFs3llB/d7B5ruER1Pk2dOIXs1+EoyoryfGjbe/pbCZYRrB3xRWKcDrPj/HjWupPhoHw5wcbXgEua7jM910evNu80WwIYH5h7WYzPuKwUok7VWvAcce3FhF71+cqaR2iuYKXZjWt7cy5gwii68jKSWlf7XB3gHwfc5sV3Co9DlJpWvjiNbdS8FuwmLIQnGFvC4EvNztOidPNOyqC1kNWCCo2gS1u0F3F1ewBcO4BNh7+YKTqCV4cwczSwWxt717aMF3avVhauReB+3bV87A+UbrD2fGszNufe6OaggerhLOqIt8Tlb8g+K18fN0FDyjJxiudIS8UqYqS8tpZLEGN4EkoiK+SeOn7NmPnQaKwmlNf//d7eNQTkIwKMUh88XIwhBEbxglw8HJdXUbYUxi9F0UI2ZQ+e1eYSBSlr1kPB4lweApAwjqOOZyEwsfE8kNY0K1IrgCrrKWsp5rWDrry8cvbQHL29srFgfboqF+N16Y++51okybGbP/bxwmo8MRj6Kh7h9Xmox6PmXy9/DYPOytNbgHzwzDtNzTIbA7RXiCscwmtkKHirQzl0kiSsD3IKi8IGBmPlH1mq0eqmjGyyo9kHoR6EvABohafzaIfngkrGwi+dnK4Ki6fA5jyAh68ZjtuB2Y3v9wMSOB+zh2zGe4kPKICqXlFXAXdfG/UNId2KulBIvQKzSXfbgAW4SPPHTI/BH30rBoOL09E7bYx1iB0ow6unQ0xEJDu7vsbQyFy53aHZwpvFyxxIBLWHACXn5/FsM/IkCnHKSMy2fqJ2w4lhsVHP15F668QSMNxB5SjgSFKoEq1rDdxxHk2NIGAH9W7hhdM/EtZrGv/MNn/fNGz7dZXs+9i5NnKbr8v58tGaH2lPWblc+ppM2iCWd7AlH/V/ksIf0ND8O8KsDmWghONzRsE/Rvzcdst9YodgwptKBNKormOIKRH7yce+JKxC0eKz5TARIbuIDciA2IC2COW5DdoT0GXYuIwKpE6JdO8bZl0tqRciS2rpbFpvS8VA6boopQeE3zPr0n/hHKnueo1btnez0rDT+MlSoCz+btLBQ5h305BGOnl774+/UPky6rflvV8on/PDGZaORmU1B0Mu6mB1a9KbkFta50OXan2tDRjd1bgyYZwvK3metOo21I6IZj/DcsVCh2sxtwhB783wY2hhNa7SzUiv4zPnJ79T4krpY22FbIQcgU5nkCB38JlXkXKLMItHI8h6dVznfzlQy6cIK4pyYD23fdjeIhK/KSYjok6s1C5LDCimR4TiDwJpfNME9X6lsXhjW7h2wf3RWYy+5ykje+gXqQYehOnf2sZaGT1dsnpbHPQ7a4otpyCvLCVLBpuXbmwIV+NasphIvijZWFaYXO3ER3c/ly4ZICFsj+mPIZIasUKUjDQzZ1VOG+9ubsI6UGK6FCgcaOP23r+suCGGHGauTxTINMe8ABWu09yHEGSIpi/ZrluLGqcbKBuoZ7JkNu0SfzSfHsCSCkekVHY0fIvsFmdThKCOd61L6EnMYaIQ/ilGZFZWNy/iNqqE//oxNEmbDMgg0kuJoqCusNbZ9N7sff1NM1rBpi8zrGTGl/Msgy18NNrFQmzzxn+KM50E4TSe3iwMrbMLUvzBrMICaDJ5Oak5tqmenbX5JY2/AkneI4cHGgZFcpcCx9bwecR5yrOaiZAqo2IgSfKlMgRGAUqxoSxJalU3hPlAtlwD3YFZDT0XT8/F3xxhgjId9ocyTNbFaq7LPp8yXQQXJYPcuBGy6FzXw7G2YEocgxrtRNHpjWMIqN8uAsyjN0kdYex4jAWds4yIr9bbs1VcHQUDlaQ5hCeN8y7xR+lpI9HJUlHLclu9gcX1hBRdpzLsvzN7ZIO7ZSgy3KKaPML7jdF6HT/bMU2u9QvSGVBiL1eWeVV85U7XmcQ9WYF6a8Dpfzkq4yzPTin1hvEnjI9+PBiCw5qOOgqdgiBJNXxo0H4X9r5DSDOys2Q8QgwW5/zuZxn3Y5xZ7Ab6CITWpQlEajpSbVtT1FfQD5q2Ewk9Rse4zz/PnBKtbSHJIhcpR75OzwOAMb+mu9Mo1CxuKmb9avibnkMu9hF9OEwlGK1so3UZ/33OlkiE90Xtdnz7Hv80ep9FTYM1vCrlSpa244Hgl8qCPaT9hdTJXnj8VmiVJH57V9zuqHjxE+gFKZ2AtmCS1GgBKaw8LahdSaPgCDfzxn57lZIeO5+ageaaeLt89m7CubM8pNXBr4xNhWXssVIC3/GS4NlKoMmhbbKisPYE7qNBh304mo83JxD2Y0rw5uOR2+tHhUfOMcrf9eYyrJdyeQZY9LdgNZyW12n6D+n52meiZX2NWDADCPDCLjqe8wpi3p7HH9GHv7xHAE6s3H07j1q/B8Bx8et+0ED6S9g9LHW2zuFO/1d8BwYsIAXCnhzUe+SoPrYutpRsEcvDVIeBsibdDO0l5ZRpoCqKslUKYmPCwXOXMGrE/WenIqt1VYnPA4m9YiNbmCRMqQ7J4UI+sXEzox2ryB8SXXdgnnULhvTDiaAveuc8DZBPf4Hy8G5q4xdxPO7uSdWuFZWKQwb76mmeHXn1WDDApLPl8YRQY7XCdfzsN+JDOX8J0qynmmgsOC4I7E+Y1sbYjgo/ljfvOKuoyjEO4oHR9yT64o31X0cEPFgP+ZiiRx67fVm0Gp/K1vcg2eH58FfpqEYWjlide0Um7s1vSGS4OAT8Mik3I2dQ5EE9xiTdrkMTySpQce5Jx+5N8EqqEU/Jx952zNo9feMDHRJ3iwNmWLaNVBQvLpPq78ok8Z9m8dGU7HdFDfWS97PyUHt6z/XtEHFsDuePUtWFIv+2TIFNZNBewW0/qf1A7KwOBWYuXhNWu1uQsfb55ngCb2WdaFmWxg5vHduyWlZJjG9+MNFhz13KV80SqWw2jUV9qyvK0PyGtnOIDyfEXx+PV9oJJdvIkFR0gx6g2cr6CJ7bXb7xMs43XIBAwZUFyXCl+RBmp0tHytEY9C9EkCrBkLUKEO/dBP4KUqJjorvNyAW8Bdg3LfKupeT9ZnFTtdNZsZUwLq1dTmEJ4HDSG2JzJGffzsFBH58HRp6DOpWMApAW1zZSOnG9fVBx/i0jjntA8GDCI49/J4u3TDhBN365IXNqJ3sKQbOi9w8jmPnm5pNT7MdJzAwZSVdowXU2RcBSS28K+EpqtGvhMqCmNoXy4lWyPFO0S5Jxhvi5ummGqyZz/A+iMpVMezP/dwrx0cdfkLpKTD2/8PwWcczvuHkGHfH3zMJOL/pPli4+myM4c+fC7QLsppsCWXPScRXUTGTGo4F44YNO9JanSuZLKahhBzP3bvLMoDAQ4feKd0amXUBzIWQslNX2/slETAp0j9fXqdpbdB98g2pfPTEB3FzuQntPUxL/JskZZNqYfU80IO45Yp50Br0zBZQlYDgnyCbdKuzXZ3wYbTghBhEjWw1bkScDhhwSR4U7+sye+wHTSDlUedzR3ojEoco35+CjyfNObQbhD/mN2rLRe2zywORpbpk05BDAyKI4fjhbimZJH2aOp5C1AI99pp9o0aMA8bsLP1ciZSDrg3k2KfOPW2hAzr6YHLOHoD4Ev09WoM7G4yleX5HXbxDfp0tpecZfQOtXIBjv/0hh4xJZOcLi+HErJKRjgkMgehutcXrF4O3X8QX+agbn9ECZ7Ymx6Ikvpfw8lFM+NzpuZ5MmC4gAlnsH/aXmwl9qE1M9seGsHhgTCvJHxlHfnMhdLRs2tgRK17OBzkCtsukIEehTEOnklDJgAv8/52rmmUlGuDzaiWhw0TFAYvbE5haRaPWtk3hncW/Zt/cAAHZUO1o2goTAvpb5xr8Lz7gY5q9aQpmYqrj0XQ/fjfBVOjjwopVW7dSf8pgpUkiZIYRuKwiXjKGbHOPlGDa+NIxRf5fjk4NrDcTsvvch5+Vqx5LZzVd8+iuwyLtIbEVCRl0VH2xm4aJbb8luJZ+BiB/LIJ5INWRdrwhGVNhb6vwLNx0+FoMRQIMc0hGk24BKvOtapqjTLzskQFGvYIYWqVcMe2EWItFQSFIHOGlXVpKRZ53hnWZO1Kyf+bxcfFVwfFS2ffObWPhGrae88DgmmAGtxDsUxMNHFp2Vk5Xba88WKTXJKrKjK5CfG8vt3C5qqnJBAImeLUcQydl/GkuFCWP0hagHHv5VgW/+BQ/Ljgf7L5c+SCSVSwdYyBldV4g551xVLXzlKwSaFZ5f46LeaexnBzSiDedfRpLhz8FpTMSsJl29N3Cipw3TpOKbr0lZvu0AYS9Lt5EWkuRsycjQGFV20zxEUUVMv/OtX3W3HFvE1D73o8AgkE9uxrkvmnvjhpw2NL01gLyPicz0JAUFZ16y9HdD2cQpuPguy5J0x42gWWpXH1WeSl000OZ/o+ii8L3ytnl/3t4FQvXRzguFoJoMSC82WB3JUXUBirVg+YdELKC8J5eCK5mVUZn+DZORY/m/JoVtJdytPAA+nKNUVbU8TS+Pfe5NxPzgAkKJrHsVpiSEgUUTxiYnDpWl+34KITC7dYakZbNN7LmKzGHfeG3bSQWi/8KnDxU7R0Yu3l50E7wbqSmMwy0lve5qjjJtmdHIPUxGaywV9IrEacYjrMtGhOerjeFgy0Y2rIYc/F9dMaFBAoePGCu9M4Jgix6c4MY0nVG6UFq0w4uNb3ypD5UzGAjlXqQreFUmJSQ65r4VXgP6FRmla+/FdCqwRj6NXUJ3dbq+EP1XJAe9SFjrLR7cTgFwmecKmS8zmuzLvFwbYOdXwZmX5qAM4OA38JMsUHoBU30d93Tyy2dVSVInH+hdV99TfxGUG8k7IYmNM+NyJ05SnyEeLz0/zGb5xtH8G4Hnb97Ian8+jCnZtH/uklB6QxaCTYYA6RVA+PkXllIM8jFmtZHHTwH4qyN0QEvWNwKX+aTSuF/5Fc45X5JZSMfGUbeWCk8O6Kpk/soUgjQXIG8cOfYzYe7zWNiIZXQcPbD/l4DMavZ/xQdjCAYjXRX9g89dd2JLdsllGG13Qb2CiyDldyZpbbbyM771k27pbGCGgCDjRFDqmkId2FY/ScU7oXNTMcFpGoZQ/DFSWtJhofzmgaklr9BkHvemdnr7+JNgOebPSIe9XYWaoiV3cHEm4sXKVOuffJ8985W24m9qHpM8XMVZ7SbAf+psOoUvAU/i9yIbac6wpr7qr95pARokXzDOGidzenvAsowEOQX9M00bfeEGTofzCmEz8LLN+WXfLoF+m8JqL+nkm7MqmJlTuiqw8+yuzi3sCsIMNKSVbAEidvZxSzIpMWt7IO4xBu16vFVrjwoygROAyBrMJdQa2fdcdJwsKXFKkF8p7fPSxBwWW/I9ns1b8PdOMGJD4LV76g5ImAGLVAqbFoDqmzn13xQF9JovMJy6nmQtP2Q0MPP/OXK8KpH08y9ft0Fu7kk6ZwymmP5iNCrp7N0KYv1cCtwlGT9VEIGvFRgYIS1LkIPXwe34W8tlvVwpWxqvKQNl6k+M9bEpUQWRtSrtuoNrhHUkdECj1xoaUwzqX9L5Be+dwocyn+/OFH5448T4XL2Fmpz9xojFadEeR8pEcTtCQmsSVkG7N8j2d2sb6dCjZOn7nuKC161/S94YviwtMGj4oOcaQS5U8L7/Zl+McVUos86jrQVb4rPQ7UzVzmRRwVuSgYBxGGprzHWU2dAdpL5EO6EKTstMOW5jJBmxLWBhZmj3U7S/nCgZzm3PHks2Gr20TVED0ALznG+AkM/ASUsXTWQqZQU+8JqaQgxdg6DgbqLUg8iDf22QX2V5FUw9C2QITabTV67M9qtET8ZoS06FEePUnhnr4UissKlWU/e2AajMuwT+YH29fONzeB65Yi31380oJ2p77a8zKvqmxKcqkulBHOXhD6adAJMmKUNcpSpayVBRe8HUKE96VBDItcgXW/84CBMLjLNrY/8AFLew8kfns2P5fsnPNm+46C3/WRCaLqkRDS17WToG/I9QwFQT/aHsbGWNaPU446SIm2RFfqECBExQ5jkfFDxkQfPKfMZmc0Wa+iig+wT1CnB9DZjKKGbMecnWOclOJ9AzZOh5VdEo0E6yZAhV/GH2Bhrt1CplowEcbvuxZV90q2LvxUYfoYMxLsekJ9njgxqbxtX31ZjETYYNPx38IXL8Yt4j/na3ip/MJOKma0K0NEyGlWy1vFKruLNJ+QwpULp4aM0U0odTzW1t6VS7CFY6GPPpath89g==
Variant 1
DifficultyLevel
624
Question
Aaron used the tile pictured below to pave his back deck.
Altogether, he used 1000 tiles.
What is the total area of Aaron's back deck in square metres?
Worked Solution
Convert cm to metres:
14 cm = 0.14 m
7 cm = 0.07 m
|
|
Area of 1 tile |
= 0.142 − 0.072 |
|
= 0.0147 m2 |
|
|
∴ Area of deck |
= 0.0147 × 1000 |
|
= 14.7 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Aaron used the tile pictured below to pave his back deck.
Altogether, he used 1000 tiles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-L4-CA14-o2_v1_nts.svg 250 indent vpad
What is the total area of Aaron's back deck in square metres? |
workedSolution |
Convert cm to metres:
14 cm = 0.14 m
7 cm = 0.07 m
|||
|-|-|
|Area of 1 tile| = 0.14$^2$ − 0.07$^2$|
||= 0.0147 m$^2$|
|||
|-|-|
|$\therefore$ Area of deck| = 0.0147 × 1000|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19UXltLoaBCEY97VhAYOZ+ODfUrZk61L8r9uPidRjmLhu/RFVu5HGqw6/FemKcgwemMhuahBBJlU17AroTFdFxFfE2Dx23OfJnaoELeDCp5u4W1ACQWCIhdvSPcla1+gGAlfurH81osM0AT1CTCOQWSmkThI4iLQDPDGjIQNSyGDva8QmGatoYV2WkKWvRc5ZfpVZAAN92u/C6l0L8pyjZRdYhWfDKztT1OHe0Mu1RtH4rs+d+q5LLt9ARLqTM8s3ox6luvgWyBJ5XuhhLAaMYZS+kG5O69Yqr4xCE7m4rjprBzGiumrZwgVpH31ipYNa55F33kiBLWZQ8DCWxF5BsYUHd00YDiEDaDg96yzjvJmRH16iteWNrsPLl0pinEVI/5Js/UtgkZa9aI2mCX3/T2ZdPKCTr8T1Q/BwvKyix14o24a/K1JYKPGWuzLR5qaULwBw9/nzwkpk5kD+0OZZGd8J4cEl3aP7dGfNULEmpBw61QwYRDdRyAWqIgIL/ns61DrRuIfpjRyq0nEOpaE/mD21NdIv2E0U3qC0Fee47+yElX/eWyxM3w9/vUAM+ZzW6ukT7C1EiNFwKV3lw21Xdy9sl7hZr8Ol3QdpqM/zzfAlpkxlHmOi+EP4c98f5nbsAYzpIOT7RwR3UMZnBcHIw6eTnqFyEyLZZQ6R6MBMrzylFna0eolprR3A7emzPz+fO47MQfDW7xcLsSmyZT/G/S6nfPew8OQ+eTcdjuou6RqZMg/ZMC4+Jxyk5hJ1t+kZUuzFGYAyVWs1ZcT5IUxeWUvkbSFt7MZvJhoJqsLKzw8xJtrZ1zaURXv0Z968XA4PeI75EHzpyjkdplYtIoVQshgtRUQg1Qm2GgHzJtyVtTchZqO9kY7+8qbVjDCbtme5/Sz2UI+AIfLyBkRHt9NND02EQ1Z/Yyiu3CSamyAPAhMNCrKez8jqR/TNBjRMfMd7bgDLL9OKO1uaYZbSiQF8YypvWGgi6cUng13tYZsS+U0mWRC5cup4xafK1hXMdMEQJaFgIDI543fw+VauuYhKf1IQ015xq5ZEwAFRmS+V2sPy27MxD78PSjGoDx7SxaEafzdaizhUVXuzGKvC81ivK/7Ded4wrso6rnYJwS/mUnPrzzr7jq4CIi0Po22KWzZdqLykU+VZRRyUq+EUy8aO2SAjWHBrR8psK4RS3TqOIqrljtptRayVyv4Abvv0t1HAY6OtbZ4148VijfWB4VyAkbH6ziJ3PrP+nJ3vt1it5N3wo+OgYHfEKt7eim4xeYAEVPO4Guc+oahz9wJjrhCmNSDSgCT9O1nuoSlH7/N3aLH67BdOI7WwwwsF0LyX8qNr+D9tnwrZiE4yxRVjcrSbpr9ryPwMhOcxYtkFCgkBPLjg8QcGVgNSfMJs6kewzDNCN/RIdq+i40jIT2a55kc8QVDNfa6igRVZXYnUTzRo012FZC2rOlCRAxlA8PJnE1csaRTkqJ1pq0I0aUOy1mwdaG7h7AWAquPdc9Ytx4XV0xiwb98W4mqIsMj94tN+vyo7s9oQHumMaZAjJOEN572rsR0M9lhw5oX8slbOsnlIpCglKgChMpw23sP9paE10LuzfYDB4S4nZYgnuj/BG5Cs5OJCq54FjZhUhgvgL5yG7V3u5Lbnq/vA4wJb8hljinymwmeoVeWiTLPab0bKk6Pg2Zv6JICvVAu3ivgg238Y8fjNs8OzkZHoRE2JmIVqTxPoFMiad7DA7JFnf4rJY6+gD3MqwlGKACB8FkbPWx+Wkj2eEB8p7P7ysEWKhTOVSuyY8K8nFtilfCB3qIl27cxJbfVnQof+VTXvNH9HkdbdvnC0LIgDi1VQRYArUCOknfjfMqOTxmfEQOu91dBjPnKu4HMbDLhPE+sN+HfHGjj9ANUNy3h8gDeQZkXtWiAYDr2NsiufpPR/h+ehiWGAtK1TAmDklJDXtYbXpBXE6WkdMr8OcDIcO+AR/C9pVyz2eb5gCjphI4ZUr4ebYg30qs2o8TeRjYj5hfrAxd2JW/ig+39Y3QYxWWovsuAkPzKhPgEkBSLENZXNwNGTWvAs0YjVcn2+iMZhSnILHw1pUNYB1tj0MTMWRzX3UaNstqcvKbRFTjpmDiW9HCXa7H8TTdEHtJI2whtsogckpDVx2a9hyfGlnsonuStoN+1EyMFEhAFIQgjj1fqccacCL9RYgwvX38hRoHpZK+bG5fRxQKAy4JU7EaC08gX601CxgDdbOoEQyNEVNqhrx4mzeL3MnDkFgRjWPPApFbnzf0DBow2w5WgUqWQxlv3wX0A4lMDVB2FUWUvzJX7uAAAgWlYMacmNLglhXRMA1HUeUTWcqZpDSPVrrgMja/dJHF2wSPvC425ck5KLPV8Ri1N8xkvTy8UCjkgiq4zGUsKNEs6MEyxwDo4JaMUxhGyIOjTlfHGvrdvS9xpO5bdDYYPjMfnKato8CQTB9s8X6ZDVeujPENSgkUBfnWzy+e6BLN5VzfgTuhCkdwC0aKprJmomsv8txgL9X1V7Ua8p/+EqqbfUCYePO3+MgpMM2robeEsNyLJt9UUyBuqrZBic7c0vG7p81/eoDqwt8V4UeCmQ07j3Mght228VH9j1v3ZdMueol4ag7rX2Qiim5PBeYp4kQNK4YnoMSvADRmOKf181yR0RVAfKMAiyFRNHovzofBxSKLG+Ai92QtgGs7LXQ5FRnTQh6S4mtz/aEsqSiIeONXj4veAWJWV9Fse4CCiae0bUn8MRsJvn+NGr+xqGUpsb7knUjSxrYJPj1q7AQDBAQ988f8StuuPB7mqe3XnLBdTMcgoCcF0uiVoT5PKhNq59uxae8wOsr2HuMpZhZx1TK5AepMLvOmWLlmwkDV32Zd4nvGk46QA2S0ZhPSdttf0kxz/fCONmqruuN3sGW8990zcjFg+iYCMg5jiEXePr/UKPtE6Tg6n5duSQwB9S1u1n4MJ/BhVvSxjcTAvkyNewrWD7a0QHvFtW4nlQsGbXbkyjMhqPaxAsqQjnw2H/R0U2GYbuZ6oFR1VurkmyLB2jh/WqNNGNo7x6h7Or397cl7hKA6iUcZm+i31q58joJxAExQQQJa3W9Fn5RLAYIZo3JEF21twO+XPFnPZ81sXmEjFGBzjHXOKPhLOH+wRgWmXZqElRR8G7lXyG9Lb1alHkGGUT9Sf8WZRdJ4xO6xSCU85iMtaarfBWTenwseRH84VYXXaqFU1v40QUv8t9qs7ClFU5X2j3SmCMMZkq3DwQcxdCWFghSJ5b9qpBxHnywrgHN08T6weGeJA2+O0ULmLXGlzaOR75ViPYbdNX8TBDvD5ZECVtFXqhwMzFEZ4LltafM0Nh9ZOQgVq3dBjVw2jdehVcURB6ssjAJ7GOYmz6u5kWKUsiRAMsTdvicIaydBBCD+4vRRkSrAS3RvONdzFhpJ95XWTzSjmm/Ldb1ZS8DxKehcc9S91+hZCooMdv/GCI+5h8KCQISwcJ1tKvp/E03fNLt49eTBAcpVAanWkkOgeoUJguhGI9x1DLDRJJOIcZftc3scPv56d2PmHn4FPc44LpF6bUkn6sSv0Pk14BWYK3+Br+W1dzWiBRgv4prYQbSIkibWbXvTfJaPPP8EEpCx+00RMpm6fcLt27xUMUX49PNuXKiPaKuzvUWfjt3BIj/+hb8B+7kyHTmqvI3J2zsOvpKNtaGgEFJGFcoHu4JednPWH9zo+UwaKvnAKupnKX8QQoyUJ/I3xhvPnufLkhMc/SuV5VI9/srJY5YpDCn5anffQ8RAhdIPaKnm05LbhXD1qfF+gp5htjxMALQpoHELi0CrSHfobB5+MYfj8QkSVcqAOhp5CQGfphXUZ1KlsLrT4r+0X/UBlLqwMH65dR8IOkBpJdu1HEKMd1xM1FS/p1NVMMcNpRvTT34rz4KFtA2AzGH3OUXbP/QZSw5APD9lHZKQXCT3Nkz3d/KDyIxVvK/0p6YFD7NZebx1Hj0AzMBYmkvsiX9kjRZ/Oot3/vm7sVYCL10RqphSgQpJsWEWHFfhquOGi3EMi8Ohb+3uaYXjd7L3zZSMOCUukme8ocZ9/rnK3wJv2mJI18JKyqVsAT2qs4IZfULkCkEFNRSFQ12aHHxOfG9hqDt+EnRGE9+YsYUWuTzU4f5VdDgDsFVkM+AiFIDr9xD2Pw6etBaB9sUdR440RiHcLINH6n5MB1Z5/EWa1QodCt5ZWKwY/9fuy0/xF3y1l3D4NLJUffi4hlj6qu4Xuumrs/2gRNCzYr2vy5cbTK0CnP0hYDDRZMzK0eeZb5GGDektjAqi0n0uVu2epAglnFUmkvX7OCsncrvn6hMdCJTj8gEeNuJ5f7tcDrjFpfL3LsBV7yKJABeIUzh3gQRt3vdRhZpbXFALVlhKt/WfarSVmwRNogTc1E04AzjU+fdSPiabssaCkMaQfUEcElrvikOrycnEvpuGi3s1wlLaEKZKT6i6zbkct7xk5x5ZEsqP4uBvE42I7lJhxt+Y6hBTkvEN37H8KzfH6+/CD8xe/n/tvj32tooB5fxpul3roEfiBVj2cFYpKQAdPEIZgc5SbwsWaH6IONe66qYK89ofUcGiQgjqVxCQTjfQjPiczV2C3QfsduizVIYNpX8ZkE5d6dZGtr1YZkTnvwU6A0JoRkP6ISX4a+E0NriSH5l/hypfVlVwzBD4oJuA5XmqgN4iO81CaHRI9kk1o67SaE5zJ6c/apTF1MjSrLDH82xG4zMEr4ljeTN+gY20Eib/AH/JFGc8MPuY9hvXu+YD0YuGqUviRdiXhEXEg9wS7S4KpwoPFYr3yiFOt0sZMtaT6SpzbIM74XTFgfuubXwmMMjtnQvVSvBaXymCwTrYUB1dI3QECs56uxgIrv8AIJaE2xn6qiqN2IxmjJ/z5ZGpPA+2wf6XLc3Urtc0DwKnOcUSsi3wpOCzgP0+MbR5ymy2En86Ka+LYlvhQBOooiPCmKRpJEOz8+uZ5Y3cXzk2khY1IzSA/GEqKy+wrV7c72YUw8x29t0kPYOUCWpRC8Gz79u2CuTOcf/peovaC9lT9RGfX2tr7SrKyF1KyV1gGyJWopn29++47ohY+PQLMMqEEDrpZmGA+Nhb1fONNBMNul3AsKr4zrkEkO9nZ1A69/xKK+7IptHuRd/xGGd60B+Q7lYo4HiMns45LtCTXi25fF6XW4WlELnYzCtIdHw03IfYo6Cas4K+92Pa6Dl6dvWAwYL3aw8b4jbf5UYCf+66jkPpQWMtwfTMgaPZR/+JZlvaC9udY6Hzm6uJp+6PAP97SWOCrcyZCNxIMRPL2X2588idkACCRSuRJ1cAfXIGZc+wu1BT8Y25zKz0TGiTpJstaSEaREOtmXj0MZRwcZDuKgJcmc4WsfEVybwHcYn7x9XbQ7aLypRZyvqRHLcDV7Kta1wt9kIcGKUxUEZ++l2a7hIiQUz7WrgMfTw3j5EpiLleqiZCubgHSCj53UFKgRhtoGPVb3vTW729UP1WXbj9f3/YCXStlHW0K7027fmDk/2C/DmJdvEwzwS1Rr6Al7NvSq2Sm99OXMvFrbCcsNJ+WiQy+6x1TpvaYE1/4zjiEsAmdwWVJKPhw0HfAPniyrkvBhSswm+xQmvdMT+sNQRvUJpNPggMlk+GJNw+bAcSzjNV3E3YPoI7OWp1gWmuUQtR5RKHN98yBjmA6FgsImn7a6SynMCsBo1lzVROpNTEvjHc1baC/xaTz9ndNSokGqn4CSMR58PzIVpV2uKIJaml05e0vzhbvK0eIUJObfyl7UTnBgI7CumaWNNJwG8Fhb+CgtR7v84b149TsdJ2j1cBQN0HpAxXKZ/ZRBeo72TvWfnAetf3pZ30PZ5Z5fX5sFqpdW6J6At75cLJAdH0bSxUwf49oGdJYmswKnqw8XzgdZFfDnrLcA1inO+4Nxn0xgUfE5m80zFFhpaiTghup9VgoWbkXmOokRYrXaTYxKkFCHBRDqLnnNyyJET5ewYlRdNnQDh3GuK4/bP6IBXDVolXY/MVQ649Zqkhfkn5zeVDZ+QtZWiMnS890JkhAconsoTzQqg3ywhL0v4Ur7JnUgrCBz+MaXptctUX+miYgJXNFrtUUDZM+DwBkLoXHLzx5jzJqK3iZ3QoTlfUUZm6zaym+Mpc/Y2H9+SefKyE8e/p9XOH2hbxOkp+UWx5tHUriatbKJKCNaqrsNR1euiQf8MvbmpyqbK821ZF5VpCKV0K9YHJnLOCXZrGO9fpBJPJ55yLLs6R1VPCIu5SnqtqqTZKRmkTo6G8qJdWPYwrIkn1Yj88yn1nCeHr8l6GcJwZCa9td+ZxS3VDG2iFx7/b9mT3x4OfnOYv/5ln37568wzLRz/4uWiCFEMMKAoT//6l+CGcpFliLU/N0TF2JtX2hO0Iq/MOLXH/lYZa9a+WAP2txoW+e42wSZVEGWs4XOUk4JgntmiW1mZpmLvWViEkvWV2ABNAdj6vxXS+9hIPKkFh5264UyV5cbiMMHr2JiIl4oKhofPFEmQy9upOLGVxXagaljsSl+Pp8OKFQvUEtRaxsicnNBmoh4Yj1AQirdbw/2Tr5hs4Uk7m3k6qnLNrbiNHjdP9d4pHKiugme/lSGD68I1mslH4+Lmdd4nwX75CzE0Nu8Gy0H8NGFJuvuCPtlDsSNzD5hPACWQ7CgFpzSIdSJ9H8eIrAchAJ1eIh7NdcI0S4PmDb6IU2bdI8zjQniQ8icugJjsI0LC82iJOipHn0Z+BFPYa9yM/LWraPuPRNSkF2cQkc4Vh04Q8e0Hlxq0tToDPK7H9dI5IROEvr1y5Na+Ms3FT2zsA81RsMGmP8tocOs28PYzDqC6BE3ogNhMrf3Cxwxo7O7EBrlXwScgFgk/g3ABkgxUNVkHaJjfcB91X/21EJ+Gysq5AfbaSWvYgcOIug2cVSnRHR2Z3Sx3aqDfRQNgH4amNu5n1tVtgx5FE2KSm3GhYRStD0lhl6qTvQcYiM/NfkHuqKY5mNgdcNs3BmVR1rt16olsCQdtT4+Q/byUZZiNkIbppDeX4Loi/kIJqtmNPJDXBDa1zd5RTS3E47F35uqJn4k6KZ3ye8Lz2Fdqf05fCSsWUhhesDnzuXIlmmLyFVQQMYleRs7P70rEP1KzyzMx5pioxUieQJV2wtJxU9IDO6EyvDo00zFMtv7rHoEn9Y1PcjYVaVhouyaZPLkcwfm8i+3cdkqVgro19qlHgRn1dy1ml06eLhBmRNvoYK/vzdUl4cj5M48JKunTJODyPOOqC0I2Fbwu63Xl46veTz+4VJHSbP8ig4O5s8Usxa4dI9uoT72GoiQ6g5X4leFZ/A/MldGZ1wbsez+G2JD2lkJ5nYc9wCn3bt5VGzX1egub/fva9MqJpWokBxqgTQZRhhFzMZJCIQE0Fonf6OX4IOTd14SQXchYtBpQ8Vda+Usg2NfbM9RhObIK3qb+9JgVja2Vk2OkXbzTXZmJmhrJMia0LCH8f1V9Ubfru3KzaPXTKnZj2z4ETecBLCLCFBiEMepDIEILlM7A/+AvNqlAw5l+iW1o5n4SLoQPUONx0mMTrzVB1Kxs9hVY9XMUnyxXkFgUIIBzQVwLbZqmEThWIQ7FE+/EF8mn7dKaufmukYZmn+zioBLyJhPl2eOBaN+vvRPKhakAfVhVvsdYYPjsNuFg1ca5xjyIu455a37MFg/zyzi2ccW72zX5cXlkfzBjO8nvW5/8sE3hBDneJCFlqXeLKCXG9G5MOuAlC1vUY4b6WgTtfZuVMPXgM8aBHUe5VY0U5Urb+oR3mWlLutWWI0et8CIEKPhVxBOA0Yhtt+VKfDiQwkZt8+Xc+QbIcYjqXzPnSuiwVr0IXsWRihZpGwFrHM6soirCPwpwi1MabCfeQiqsPfGQm/LnhvtHLBT+Is5FPuUD/Mp4jNgvBVEuExB4pTJkdwsPQEKvmdugHaAvQHMH4srRCq5L0xi7lRdTbNSbxVPVFiEcthaxSxY4Jpw3ZglniR5rjB279mZXCAtTC9sVW3KXoZMT7POKTsnWfCv+4jd7l1Bkaqk1NoaDFcPsniHW8ebvcXDFgIaZjBzLgMZW/5aGHiyZxG2w8VnV2XTQ7hiF0QnMuM1ZH0Xg23d04pWfYPqz6P+eFexRf25JzRwNGly+g8/cnyhW6zakxLxzRoqemP5utBxCDOtBj3inh5YksFlGNOH6AcM6UtC/jqOPy18hQPH+tRvC1AdTCVD9ZwN95KSKbpe8wx8ZsSwP1VuFt9KwGnOj/SsjXBaXO8+DvO/VSUKkQm1elg+Wg8O/PhJJ9LyWRo8SDBAuDpI94pmu+fqL0cgMECnl0oARL8aRUA27k9En3Yg4DdWNE7uWTjSwdH1Q6GVg9lOmqTmHLyy7k+lmC3n2ehZ6EkR2vNsQq10v0EeSlCafSyq9Rf4NdoRV7IwM1oq89JMSmVGOFBZvx59q65BlZF/HS4uRrWAD68Pdofpa0c+hE71OUvfsqVCgN3RXfRDKRyydkbebkSZ/Dk7PYnLCChBY5xxNqd3WoNWUJVa4iSXX8iSrqGAKTEPanFaBHIB3XIq3ufM2bbyvSIcIY9l9gMu5YtASEQ+Vg4XCfk9KAoWbrWyD7EpXWUSF2EaXHpdLzxtpC9JN+SwR0+ltYSS7OEWdjsTVqCgZofExPYuNNbN2GPCzUB3Kqk6FgnIJJKjvhsacqzJryjjLN16uQXgNPMk8VxbqIGZblKo6K+7kmdZib4qbmTFXfIF6eV9OIR2QUXIssbbk2bNJ2VSiBh47Rjfuud8QdsWmA+RaVvYdRJcPhiHNRB7ASJtMFpZAaJVIJxGBZM2qgJBymMkLx472k8PYBAdhzqWWonSk/4louW28HBxawVv37+0q56Hsn7xad1wKKzrre8dMgT5hqlUMw6G70UqQG7m9frKxg9qcoqU/zPvze0C6LeWe3xiLX3pzxrv24rme6Z5t3tZrv2KnmBQPKPoO4XZ7FbEuM7gfG/fDASgFZdHTWJsLBSMWVqJVWFbuVuuEmFmsxj9vqCpBnRwT5DkvY/PGU4Xc8VeIT/AS9yiKlj0PJuodZVHW5ISamHaa5IWWwjJ1hDef1yCaLD7eZfUI1xepjJgviryQhIpnkaKg3IZn5P8MozryPZt1Dd/3pbGmJ2+kaeLyXYQGUAb0Tfr7Krtvt//j40au4UVJe3GbY9lJtbEFliVo5SLVET3ngWDoqXoDSiTFqaajnjOTEqoA8AGM11+lRHTIebanZZvLq2a1V7mc9+KXW1Yl0jraIxRokHLPA0W+wqttRLTOWAbspffX8KXDnKbfu0zI1PVrc5sLtLPFeaMgz2jZiwrlzicHFQxMho2GSYLcNQ2qAm37UJC9EanD2v2/osKN9jwpEvMgqXNR+OXNysQcVkMGGyMicsr1B5YCVAZ6i4gMuL+cgydwpapXzVRX8ho+4qDkbGbf5qSzkOHmk0oSWxGIzm9hlP8D4nhNR1EhQbU7mv5/tW97bgTE21ToBN5xRL2KwXRv0OIRlRx2afRSZqOcmcepi2tjn3iC+3IHU4xQ7ZyJNI8o0YxIctuGPu7m7W8ZsEeLFnSBBtrIsgzkNsYl62K15E36xPHULXN7VZ3DbXHHIQTR/c/wBqisTFyy4XazygIEZi3hVY4qIIIeDLtUCpsOtmMvns0WjF9YqVtiwSYzhNahLlWu3f+PVWExpt+Jcrfz2T2l8mHHiSS14A9cVmqm+txBXi2Zcv/1acRDXCKGYOHZAWpk0S6F9nUphkPvHYZNtdou+dht+6cW9GxHFK8nk2DHvDo2pVxnpO23rpCHGKXj4NaD3en3j8wBC2CI0SzMGbZAeCx8l7lxtUDjBTxSk04MVpVF1bnAGiL6Ktb8gPeP9aMe3DdnnFtYmyDEoS3kWrGvcyHxU5fFRgKTk8O2jvS0Jcv+kyQZT6WzJ+ydlbg4fUq70EC/f5j8amT48b1RdyX1sdkUhxHxgzHI5vXcCpAbfsokhCAvrts2WoJ63IsvuBHIw6Y3Ib0nv9Dasuw5N8DW22wkguTvrOKi9CRuZE8hgC6nPT5LEZ0eoxi03Ug6VCaYVZyMd9fbxfeiqQmm8fTPJ76Li9js8z/gOMcct+kFAgSDGsHJl7L8e7nm1Bo5inrhQKWEZ3suD49IciZsU2S8WKlJngr9e135fDQZv2noZTUrJ7EzMNmvKeALS4c587/73sUj2S8LdPMheoa1CuqXBpYtycyB6QLXz2ErRINGy2JugF/s1E3kFbyEmxDhsVog1VNlnIqo3DIkLLOr5h3A6qzOWLVgG7Qp8GaPua74+YhhxYa45hXYn4kK3beh6AoAjO1SYblHKTfgPembvSBvrUALr8JxZzgacjxaiDFFVOM0rRP/c/2jKwEaJrjNw6yKaXHpRY2SdnKMum6FevZpkn3zO1HV5X1zX1SZ+GfZ6h0ojtXbC62LfSEy43yNkxgsF63pWllPfk/M0p7cDQXQOR6dFQ3OK/49zHrsK+Jp+eIE4wrYAMgAr3ddaxWUdlyPPwlNyvinazq1k1WeHfA6j9fSi3jFbQZz05O9OTwtjeAP7DG/mVpt8+GlPjpenUUZfekl/o77s2/eqwWjt4SLb09KB2YfjAOKldml2aX4TE2b4c18Dw12fP04Y/jpoBVRIaB43sNkY9/RIKvRd6STrQYpufL0o26EWV4X/hZj1tjEUcoWNaiqGDhOpA9HSN/ZznwQFia9moFh+R659C/dWhc00jKhCbb8tuEXuuy8yn5F0gaH5CKxeHtPSSQwWKodPvp790c1z99AOo09jxMc8X6DsEUj5Ms/1MZNdKpmL5vpiooGcpZAIqP+d4EtW4T83fpuQBL7hAyP5pjvpKA/t0ftnHw1xR4ZzOkwNO8wo8JgwoaDhVIEZgLn6W/gXEZSrK37QzENa7iTCYK34d37vWQAYZaJJDE/kFe3H1zVY2pYTLFXv3WTOBacHvlAtXo9Z4oCDMC+uWW8PnTaBSpT+lFvtLhN1wee/wvqQj9o+i6V1bIMAjKcQqEerctk8DdsXtXR1s8TrT6sVKEP3bTqFqD1NZZwMKF95N3qBUQ4IIiYH/a5imNW+ot3JhDyhgvOaoJwbY/d27SanAxo7r3iVSrhg4G+qMAeDCzrVRjeU8i1MIUpWgT/5Ftu2yWHe8BsoQmy+A5XMVp/2foTdgreoR7lkBxw4QvyfULOw6na7tNFOUsBqST6kZyx6YKwyuO5XbtyNel6oNWZ8eElFOMMUCPridT4EhrbJOuo7881phgBy+uI1Mz40RRNycbvy6/xo6RBz2hwluNePJX/vcFaclP2tAgmygxaVlT3f61OpB7bYY7QJlVJS7JpOtG6ydwscdfLefN4Q297kTWjjWiOQFEL8UqBiXG2eQUje7yn+P1ozHmHcNgwgH5aR1LZSXS6pzMFEahQO+vtYIHh0wKUBsxMSp4NDli7CoadAmab+zfq4gAXFQUBDft94J7HoNSLO64Xkpipf0BEb6EMzAuJoyT6qV10icRSYP2add9EdGVvWskpGSrNvNJP/p3rvJ4QpkYvY4Q2MkhCHYpQ2SN3Zac5pA+UY5Kboq6JsXIZrZTJm5bcyKlJ8/g5CMM43lmkt6whTPDK9R0W7XoWXEMiXszdupKnL7gYIH2bKk76s8XFZim0bo7fdiuZ9TQ4DLcbdzFX3iwAUYnm40wjULdJ75dG1vc7ca4+rGZHAyRUFvEECECaIyXa7RtMuL8tmdpO/qWqWWsdt6MFzaSvIWRxb6NF0nLj3c+f9DeAZbyQAfvZ22PWdlmbGTI2R8RmGQWsyY5sianUkF4uQr7JowDihhctVEzx7Ypjlc5zYW/cGzKLqv698zlXe3bitJzwotABJb59hokyPJ/IO8vsvzBH8f/Lu/yByTt96vMK73kpOWqHwpDZ38tp+OCQxzghGmVf33XVFj7o/z8GHX39Vw/d5i03I2Knla+MTTQI0LacNy+ZB9ICkxGDYVBz2a4SwaroaV29E9N7Q6VozgQ8Of050lD6thE4=
Variant 2
DifficultyLevel
622
Question
Polly used the tile pictured below to tile her loungeroom floor.
Altogether, she used 150 tiles.
What is the total area of Polly's loungeroom in square metres?
Worked Solution
Convert cm to metres:
30 cm = 0.3 m
15 cm = 0.15 m
|
|
Area of 1 tile |
= 0.32 − 0.152 |
|
= 0.0675 m2 |
|
|
∴ Area of loungeroom |
= 0.0675 × 150 |
|
= 10.125 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Polly used the tile pictured below to tile her loungeroom floor.
Altogether, she used 150 tiles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-L4-CA14-o2_v2_nts.svg 370 indent vpad
What is the total area of Polly's loungeroom in square metres? |
workedSolution |
Convert cm to metres:
30 cm = 0.3 m
15 cm = 0.15 m
|||
|-|-|
|Area of 1 tile| = 0.3$^2$ − 0.15$^2$|
||= 0.0675 m$^2$|
|||
|-|-|
|$\therefore$ Area of loungeroom | = 0.0675 × 150|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/bZtSbCwdoikM3zvSoHSuBEvwdYb6gOsJ8YYHWv/yZIa462z8syKpCXf9fqYNwA6mAoWZyXWGI39r0TxD4G1/D7MSTM6/q74EErvqyLawtKNOuOiZKf2hxxymTgBsXP7YlxLp8GZKG6uLWwoTnhWt/0mW66fiTLEGlPyNJ2EZpwr+vHpOrvoVxpnI62S76bl8gJIGKRuMCdeCWgiRpeNriavMCjtmhFaABs3IXu0qSMHmDubtV4M+R5/5CtQJgPbyMeZosU7eE6OiRs1YyeK5OnkWN15GeK1q/fPoIb5ZDXUpjQAS018bRzAZ6AF1v9lIdaxW2Ii9CGuMOhgZZRmJX175rUojrY48cpeMveIxtkH5WaWZwuJiAq7jDGp1ztWNYN+CWUpAoEWVQremuvG5WqfYL+ASlsbZSfy6YgDDEoDAb0bk+Fsu7IYUiuTBTU8FiRu4pab73YEXj94GLwoLtpAKXcO+hWYtLb7rWUZSJAotZcx1//i/hTHZlYF6vVyXfeQnLmIDJVp8WQtku41k5os3CCZoIKsPL6A68msvA1xo0uClug/u7lU73G1VZp1DCuTJdUoFlH5fQusZUPwGOxpt4RRD96nvyMtLTqJfBTIyM8yzbYA8cB1QvMoWJskbZrI75L/lf4vjTRPCKVVhC+vnmEWaZg0puhgWf312Azd/s9r0dzu4YivZpEeauKe5MYJ8hn5fr0sstaa8xdgMtItnFwuIVFn530uDUF+AT4+oHeoAOf6onFMaW+8TPf+7ygeLDOHSkKLKD2zmJt7tcK+NtNw4Ps6fv70bFyF0myI+D3q44g0njw2Rtno9rGY/RtpY68gXV4c06bOLBytzxJ66FPK0f3EWbRb0vX4IfKQxXYrEz00hZibvFv3d+hXn5jel9vBcccjkmF2e9DGmYpvAULpDESh4zgjbDXGOYbxzj4YLzeLfBNLdMbrn6E1HD1qwJdK6QIIDS6z31J0Gv3g7QxwDjbmqT/NFza1ebhb0Jsl453QX5ck4AFT1u0J1PYeV/fCzT24YA/j3A6MKsmcuGU6a/K1fMDtOwzf7HaXTHslgl1im2Ul8rBaTg8gcTjajD5QVXEWY38QXj+DU30q6ALwi7lGaFviAQpS6UFKVBtARtzPhOoLViFvwbnF9hZAeQy5MoBw0rQkpl9ybfL/gxagy5iMOiCklJP1ZKgJlNUjQEyV8dP+6+I858lkZ3CKvrkUmYNU8OCHoY11k175I+5LWKBtIMOUDePIt6oCUfObFutW19aL6e63jmSwRcPPVX9qaSadPwMZb5sNL6O8OLGnkVGfm6a4D9gSGYv2KOGfQ1f9EAeOQV98atbA2Vk+ZUraCMz9D5kU7ATbaFC69rSsyQ21AMLBxpK5srjszF4UdPyK7xOS5vYjsfWajZIauDA7TqtafdhMUeBdCX2iHfWZijyT3vHLy9i5jIhk5Elz59clNCIW+faZBRAHg8zJVfSFn+Xxh+Z8KGlG8Bq1lSGrGFtxhgS16FmaaqjnV7gqJ6tpBiaaT9K5RuAaOjwiu/9N9UmZeEfR4kXPX+LX565eYUGU2i4dUlflwCBCdZOKgmMxPOahfms21BUBKtbpSVDDLMB2Lp9serWJr363KE0MXNQaDpTZbEaWwJi1bkR/FcPXHlWDDKm5uXI7CLWbsBZ1OwUOOsUsqnbtoqaZJotT1gwMitScwTYK9rfxOAreXR198g3USQ/sSHny0k1HmClTUYIM8OSMefNgxwX5vKvpRaohj1Meh477oZO6YmLhFQkyLM7GEnBAdLK+QqVRcgOCStYWNVm74EERnDB+XPaaRq0KB5gYKzmH3LbhfwgcMYi9aaBH+0xuPQvxxFxf+ZzGmGibYGuxjF+Rdjgr5twqS8CiE3xyMIYIdg1BqXJVgM3NXdL4DPISaQ9gVRyoFe98Q/BKT4Av/er4PW34b6LuTOK5n4uTcDPECP35fKWlAoA0tHQlAd0O+LOPReFTfzFYWlIbjkEbpJgUCmnG/uTo8NVfsoHyi55+OqoA0fH06rJ0veuUPyPAyMI/eMQsP97Lib5+Po9VaBiLR4+1H8nLBfxBHUx6pHR9x9TOiZc/RchCHXvub2QNwcJuuZbWQ3IxgXdnr8G0XJPhyVFP/bXLCJslzDiexJZ3p56lzn7cy5lnUomqW9p5RKjfnzjcIgtjWt9U3OsrTTO9CIWBsu3V+OW/sS8YR31Gf2dyPVJts+g6AmYH341C2h90dlmdWeUBhjG3hQx2hUbYMe0/TVnQgmFMnziQ0dWdMk4TBhOZO/dt7pW19t0FvEtw5tOQVp1cAJPjPFTy/qSAeoQhjqxitO/emOHt4tAcBR5zweVDghNg6gJ+7LYQGqAgKfQMWBJydXOokMlHtIOD39NUtCKCyk7/y2QJLviFdLyWxmWVTZ/EmbEoImqVTpPptFV6bKf+5PveB1q+g15INKjGRPREA+LC/FzbA3ROsw85p3qFzgV7fChpHPqlhUL7abM+qB++II9NXM5AXRBA1nRlj5WKbaNWEbr3cSVjJKDVtBwTlldzZIg6WohBDWUVVgTpjrn8tkNXY0LZFXy3yPvVXBvyB5PlnsvKfQtWwaHuNVrTc3Rp6OnQedMt1HyKlLwQYaktxAfKtJMBHxl7iJ1147rOWKqLv0uJeFNMS4ZUKgRJfAnnI+0aQHW9RWiGD1GPEe744dJtnuweRCqbTzAl48JeaYjElUFC331VfSuTpEaGi853H+vR1cNqWdNtNc86FXQ3FlF/WJjPfZwcSs7K3FjPy6auVsg1dZYtGe1+a3jj/FZ+dISGfvKsfDlr5MvHruyy4e0uJ22MhNe9NRwrQ6PxZne5mXGP7kCKjBRf8/wbodXgDB7f9F76hJ6jZj92QCi+bH7XXjckgdexIC/sMiQdVHu+7dXgyD/RiuiuxzDEBo/8Epeo2M5gtTlEo5wrx5zZ1QDZymj8iDCaHv3hcmvU9YFEzFChe+nl8Pal6NxkRFwqSL18+K7671AbvRjaMSJ5YzHP4vPH4aOeO5OaYZreKvBsn47MNX7MJcb1HRaKepP3z/HHXSgvrOHtzYKfZZGPY3bN3QgTjjPBC+9wM3hI1rG2BciLvxPDpmtI+d3Yh2zWUq3M0nwYI20D1V/tPf91KblnOf0nE3ZtApjZkty7aRT12pqwjw570jYtY7EfYMkbCHhq0dOuq1bEaOib1H7jRlXnbvtvXQ8cufCi8VeQxBvkbWtBcZ1D126yqJ/fi0AOcIho1n46oTVdJvyGyQ8AgCBRe2z4cH6WTnfQvYtkvZe+lR8SQ1wzXQUiWZ3OwG/l72urmT+37pMa5YVsZgLZWoFlPcVVNc4BbrnV8tkL9AW3LLA9Iq4ySOf8GtecuYpEPUBDog8rUNt8p4VhsapLAHy+/4sG3kAxubAHGf+Kj8qS+9mGh1/qTQN8ba37CERLVJ7CR7o8Ds1hYjagLdRLKYKK4XsPVOwwbbmC+OIT9PingF3iAoMk0jioARIohAJovcEz98Tm/WyaZivAvP7jcVj+UvCAMZD36UtPxfdeoICz6kkLbukbkLAARrSUnzWhMVnNEuex+DlwFOUdE75P+Z54wp9IGcOAVjP03aXY0QsXvkMITG83HokRF+PgcpTX11Dd2gcE9Hk2tC5DUYOtVIS/hducRDb95MCwRH2zhpRJGaV6zU9lWFTvghQHr4EevvFKIw+VUSKeTUq3KnjF+xMvp2tp/ZaQcXf0SJrNQvdNBpLb/ZmoID+kWJu21knnjkJjGeTmbSucGtWsOQbJuULv3U4ZrHujkMKFw4bb9E3zpuznIETaZpa7O8c8v0bQKC91j0uyH/hbue+GBZo7jXFmjuZLxZlux/8y4gYEWZovO2fIwEVXO4AxEf+bj+KHiAxtRqnPkyrmb1bylhLgpSMsuWfCLp8B7U7ZiKe8uMw32defXhhofomvangXkrrh7PInCBtCuZhYbM+lvPSyayqVZJ97GDJyqelMDQmuxflXKDURs+ZdIqDx+ubjZrYFM5mhrO2TIUxy75WdWnih8PrDSitClXzgJh3AqRFiqOXxbcXb++XC8H4eG6HbiWStNnPNEyDz78HujMUxsGEwb+//8yvP85S2D6pwOdUz4+Dl+paytu4Sl84iGoq1z9b2g1G2SwrptsuXbEsHQSCRGh6zXcQQa880TBPjBDnP3OHVATS2DJQ93PJ1nl6nK5Z9sXj7uBJJa9Rds4wqYcNkqTnMuWcgI6e6jiv78VMLbWsOXiV9wMLuWmGIg8uN2ASHRXFVXqm+AEc/KdMikpJamsVR0NnJXECSRhdMJ1YF+N4qapgsDfkTV7DCYmXBc0uVpNJymHsCE5UWO1U65JatBNiLGpLR8pq9V5JFN+rsTO+isQWIEulojURUJwNKj2rd33eSrCa09v0AOFJLKSOKhf2SB2nV/LA9EjytSZgrnNL4SupkoKAJCY6SjASqY9gEPWHec6lYWvBCncC6qyp7Z4tnAblukQ33fYecWLCAqZJ8VBKZQhW66KUz+ZIWJoNpPAIhjPL+i/rF4TLc6EDha/lfEnDyj9Sjcs/ZL9Y8UNdgl2O2imtDv6Kwds5luGAsk3HPQu0ucBIvITyLq8GPy7d8GvGZM8wJJYp6j8AhzvhxymJvyvr/deAxzZT7DUUzFr94pyn9g35u3E3nxC2CEODUDEa8K9e3bHSSQc+JP8l2jZth3TKOYEOlyFrQbS9z4Hs3tm0k8+3Z1Za1eItzkEL24h+fqFvdz/P4Yyh99/6/wIbDz9e+JfbPNOfgW/hZkmFHzjkVw977A8QqEd7CDobFjA+qxzPVc7x+0L2mfVFAXArpdsBJKB0FVrTN3IoulBiEKIWfjhnw8IZ1EnNQVM7ky0LEK8QjzOlJtJ1jd1MjBx/2V2pJi1GlnHEFAbrevl9rPZz0qYGKdUsPRYiOgLbaEzxq7r6vW4PDRidUoKjdl2esA3ihWxoGjh786ofetBAgIMCx4OaFxJ2TBTiTjVxvxghrt2sDMy4CXV7G6n+FfwKNSumkIylwAbokJ58nBQBgBdMan2gT1deXE9t25NvdGPi3u0j1AcTFSfopWBuZPLIEEyZ6AbbjRL8HhhjjDib1v+vsxqHUEWoM3KrwbgbA8YzgzSyBg0gs9x4uavvtQxzwR14czUa9jWo4dovuCh9eT31PxpTxdAjgGKWXnorYj+BnMfu6Ow0Lh2BKFyODe6pSPC/3nJgprVQb1DsABXgESg54seVTw5iHR0C8qZdKd3dDxAfzjXbjXG/ISzg3+AwCxKXZaeziPWBvLDyXWIxeoB37+4qfwTSZpISrhKCEZjlx6IJwqqdgNFwZRl84oVHz74fpbOlc60TGveVV0AT7Du4IV6uu8JTgjrAz9P13ZOXdilz+pIcZq+7nDHYQpiPz35y3ExAc/FmfqEVSILj/8tOHOo93hLAtFjIFLeZL2VtZn6EiPOhMhKE6LR4kcslDdJspt/GP+3a6Ll960ZDDVqQEzZd/dFQfWM2Cp2LaDn9vzpruT4lLwTAndItdOjGb4k85Mw6e8Q1i9+1w1raKl2GaLgcX2ugfzFjQa/V6Uv/SV9+r+U8M+7/DvdPrWmUmhi17kFvNF1tilyMRMiSbhrUd1W/1dIdhy1QZ36QsX2OxdvXF9HTzkaGaQkzb79hBegP7FR7Z+SyxSe1X6wtA1aPDunJi302a++GPSbDwUq9EyvmGRl4E6k67Ikz0k/xfNzmkajq83q13prSakavpwBWgnAT/HZbS6w3gnuHYi31RZoAzETHOlk7QOIHRt0ZrMqwMkuFWLQQfVC+3DHRjleijQcPdY6oOpSJx42JsyM6+GnyaXaFxdm1be0fr4okBsaGzbbX3aG5MNBDP6BFtu+ZK2yhcSNprFMvf8/V88nFmCyBlGivHtu0D08CeL9oVefj4+fbcjB3kG2x3Z5AEsJe1BlTRiwqayMBUeL51XHBzCqnq2ofiLxpRoPeL07lVL1eRmvAun/R8echaDdhscYQqGt9+hjTHngphAX5eEq/WlwNehr2myomUbcer2Qx5klQozhz0DCjv1lHocBNeVrzwjRXW1wTU9FXEnu49EIYa/M/vjuBReBm9WtMfKWKHC4sgBcC1fi1z5KHNVO1iqp8g5b1dWvASs8IQhf5X/7cfq5jrLxoamw8cxT9yEtpAfPd6gDHZi25HojjDqbVHcZBPYyqaewNfIoGZeHKldmkNyIGVRRqDozQv8Xb7A2yyblI+e+I3PCNhb5WIIJijwcnulVvsd+bQ9PjO39twAsfFglF6rlFhfZQwJcreoUwwo3n11PRZyKB46UFAUAmNhGHw6I1p35AdMD1AJOws79EXWeM4H+p8k/rlWoUtm00xEz3/E1lKVbzhsIbUixE50XG4SlTKgbDn3FwJW6W+XM8ehVZ5eiEdgReU1FRmHto26nC8HVktqrHKdZ3V6jkBuk+IhzyNt76mJMoYd8jAjhGLD4eud2NMVIJ1MebWSEhSkiQyT2oJXoeeYmY7tm2H9T37lMy/pJbrPzLoR1Nf+KxBKivMo925Pf37h+rmgDeAx6hBHuE6SjciBD5W0FKTNRbV7+W8Z2HXCfCSbq6X+4gzcNB3RqzBALek7vUJkv+Eam2dxrHd649C2JxaoW1yJmSibi9tbKVU2uh1RXVVps/26pmKYI2oDUUzglJIQNIVvWSjHcqAKqam2PqplOlAF28wkYM5Sv8hnLNcW7axrFOzUaJyIEmyfImqNuz73bWRgssrz4tKL7HfO+eVleCBYzY1D5vgPMul9B7bY0Azk1KARBckkV2Pf2Si4XolKLocY1A+/zX5XrjCfVzGwpDLap2XAXH4hrju3QEM9jtnUHjaQ9He1pu83Zg1eeeVARVLuTFg3rF+nVhaxjXklSSAmpLaFrc3OdoXQp7HyIfJwvPX3hfOImUI1QOnY5LpmWqXQ3+l47V9WFY1incVACq2iNRBglFa/rPjn4HEl+goRT2GyO1ff11daxRD2PeDFNwy76RU/lVYIKFy8Fcsc+UeHZGRT7potHcQy32QAz88kcc/hGCkgK2rlgjR1+hWVDMxk+4IQg6EEcNR7aiKdvIFUC8v+aKd/0lqOzL97GuWJVb33+16+poN2daVl1g+NxgqW7pSQJf+Afx0KKiMuEFLR2WzVrEdlVaHTj5axj27mQD95Ml17tdDEyWQ5VM/Vbf72txJ0DttV3WZWJK+ylVvz61JS53JdDDQ2doURAYsU1n0I94+NRheMigZ9YmLc16DA/ocR17UFKTZsjFK3iz+QP8/hZ75KsxMXgmfqJCZIQRlmXrrIqriXDNSp1JvK5+y1WsoZE5jnBvRMIJ57xMoQVz6jDgaqByeIsTJ9JGaWQV+q/YKqk4Zt02HNIAwlpjn32b+YQA6QM7ICWfFpSs4usSirs3LohU4A1ovCqx84SpKxskh6ERBu18bJQKpVJOHn68kwvgTghiYt+q585FeWyIcO4GYqAsXTUvXaDGtaTuy9ufngk7aZw1h1pZvILwTPHypZz8HfTyH90yn4QzO3flx72VJ74okpz6z5Nz41e5QDsm75WW7xkd3xzEW6d4ir+10YpsDg262WCo/DNlvRVFQbuMe9yRnq/NHgIDSdqM+++UU8CaxapyOzaB/O8hvmxuj+hgFifydy0A/8H+evxTRRfkUBqsHF0CkPETZOqNHpXa8IaEHsfjDPGf8H7TinFRIxOkWhOwsvDFfuEFk/L6ofMSJ5bgqx8SsBfPA9IllvTLDFIex5TwzMTPDdtVz0CMW20prgXRhrBaKjrTSNoGbpMf2FfQM6N3p47JXt0fZSFIyY3/kzcmtsju0xt6tzzCcSpBxivteiYlmec+ADzY6e2wiD1o9gadQnT1Ds1kvoN3DFVP90I8cih3gUkQd9zygClviE+s7v6PyJlKEr24EdhHdc3kPmryTcAFi7nZvQ0mxJAx2PZqDriVoQjqUpdePj53E/DD37k41OP1FudC3GH7kkItZUOLL+e+YHwhYtxojchaYXL7lgyx7Pog4GupiqME85ph5du6J/pjQtK7GCctdCORAVjOJnOwIFdhuRerdz6Nd3HKp3uUfnNk2/MsHRFSu9HO0owhAzLmZG3s1+W0iyjlHyd7v925zz6itqPZ6an+L5H63FTAOJyoh1CBCxjc3ihxsdI291U4U5ktRld04tNjc2hZcDPIySjEYRMqjb/ddM+1jktObYVmh665aAEbkWSBEYt/hmyDW8S/zqvZ3T2rmC8nOaAIe03qbsYOXbTVXLMumj7JK/BuE5LXfchnAUrhzkWdEcgLbc1B/bOKojjfp923Y0/cHvV2k8PTUoq9oorW4S6LtVPQ7hyDQWzE1vtVyAKKv1NCQt2g/kPOU2WClIqHF2k87yvsHYG9Z3HixeS8ciWh/6tWt/v6IoSz5L/x5d0PaPNhEZrAH3GpfCRmX2rxthAsoUvEN1v4zRNRuXA58cUAF0GKCQfrKOs21Y6mFgRo6h+luh+QHBGr+eImXR9VTVJPSV4cNXGau+L+Zq0wwP/bKRHENKBNlsUFLBCHY3bIfu938f7h2kNqL0Ld4G1CWPsiIJO9u2a/EO19T01WZ8UkAeJMKSEo03/U1IXt0eq27Eq+aVy9XRyiI5CayiN7wbXlwKf5NEh3X3bPg4gxJvhuWqU1/BhcYvSOE13PVv8GULoXwiOvaiB5CCSuQxh3qAbj39aK0RqpAywlUb+vtAv6dfCnXhoHSx5ptfNcljWryUnG5uQBDei4Gdby/j8sB2tWoeCR5MaXZpdf3tvDcbu3DH5q+cbV+TtosGTUsnJ8adMld45+APXQa7c0btzcfU1HcRJnlvxO7wbAN/E8yPfxOBMz2+RtlwhK4Buy+nDmCD36M+vHXjyYGcR0luEGZu8sUmxeYQK7ygwJTSCgBt4887AaeuKrgBGUOv9aw472fh45DYqTyNw+YLIMGJBAAIm6hfEf/WPKI/khiSCu7yfxWDfo5NmjIfoDMAg0R2kJeyiNerElPAbWOEg0jaSml7xw6dXpKChPxl5Ox23w3eYsW6Oh1AUtfJdFF1c1jjJzSE/5Vzz1pkYcPzVC7n2C6jYsZCe+TTc7s+/grnI9g2OxYRtv4ML4rjg18n4JtJ54K1s6i4pYWgG9SYhoYb6hEBzGPOs99bA0iEIDvAWMpP5XKoTu9A9ZXa7tGbnts1puGUpEhLRF/t8+wCcA/6QsMHii+SAUy4RCP+f8+936dBiro48WLdzDLJBA0mRrhDK3TduDUGmwHlcNbHXEJfM38H+FVbWIocJGj7rlupiJsKasZ6ZWeVqtTKmtKtLaPrd+faSHe1aMtWSQls+C8yBcNTDZVpcZYcJOfSxNA7kMKYZih/qDw09oi3Npe3xnRY0kIKNm2FOh6NRGnrXszkrNhFVy+gzpfK7rSAorOXcOBK1HYXwWtwo1iWuCZZsvi9M9nNc2KsFh/vJDa33x3CF14HrEnluaSgU/wHuci4KlYBJJ4DXqzq4O5JnXuGKBZH9qFJWmQTRgV7d6qwXST4yT2u8zTH8JBBBFNG119yALPjHDqaQuQtZoqBT8BkbN9lyQJ53B4IoqDhU7o7RfCv8vIo2TDspU2aLjdbRJx1NZpXD8Bquwo8n7iCl8FcW5e4um60dfrSmg1erzk5JNh38ETAMbZKHbsAynA0GGEg9oX8DcizrcgVmO0HD7qqWNn4b7+1b2VGaLvP2cp6M5n0CgzobIA+OtMvHdlmR3Src94zNSaCT2a5ZX1OdvBOVyE1Q3Rw/4weVDzPJT1QnawaUzPA6PkY5WtbMUSLea5U15JvuRqdv3Msjy3xPHioJo5O/Shn5/8+b4nANDa0kljxbSRneIkZXhaeD2PdzuYXDJxPNFBPCiKFbIRnwZt+SRDh9nTUCY663gHDh7vP8/imk7EMrwhv7DyiBlg8KijgQdnsM/dSIauy9rOXb8upfBtdyOsxXgGo/J5p0jgd7yY1UV1/g4cgC7lKPhXH1150XqlGx0e2BPRXA0B4rC38dGK9hXE8Egt5rRkoVzFSprfNzwGJgwBSOC0a7lv7nYV8Cb24sFuO3swJWOgrkmCAPxIKjtqX9g7zc8aZ4OYSzwUuEJpduER4rhCBTaejcfuTAZFLsiaqTDQMF4vQVo55A5YM3kFtDryEQ1wtT4aeSqmIOBkadwBT8zZ1LqnS5wwnlGxVo5o9Wr+UuG+XGCpeY1NgWKzNnt3MvN2yBUCy9uIw29feXOdz1TsyeYjce9FFC5JM9T5X0P/n5poLZ5Y7vVUSGzGIOOelLeCNLFJHRKr2M92FmlG04ixoiuwatBoii/A7EMoNNgZjr/GtYiFdfwJ9XmW+xC4o03IQR/3UgjLKLmViy/aKITeKpmbxFaJ+q3SPydIwVUVtqQoiUa0FIc+0F7ATdUmE2dY9xgFmdqpxkANwX036WYgFdpW9CdXspOpBtdEFp2xb9cRXiE9WZ4VfG3Pk9rKcsVSFwwinVezelIAuvEyXtdqaMW8utIpKSagkxB39jzOIsIN/5Sb28LJ3Mv+6n79IZxbgrEjAyDoRKDN4a82KeuHDzOQCbUEFfvvzuZcMMvVfSXSQ+rkjy/Q3Hl4aC2B3jrEI6iH1t7f6R0hw6f1TAMP1mFXfwJzI0draH/2Vyfm28ds1GJbmSp8xSTqNyYUG3Y2Ann7U32JfQIU/GF7T1AmpG8mpX4iURfdoM0htmqaL50Rggs0MIt4MyK593iyi/z6nUKIBPzqe6sOV8H/hbdW0Q+D4AdxP+PSPM87z98l9WPvQMOZ75j5McuXHd9OY6I4DuoqxngntwRGtQgzmwz9dcJXx8Psef1EHHDCt1mLureHIGDrpt+Z7ZYQbf0z1cArzkjYUeBirl4fVmi3qKXtS7ZHLmuAQ50u5V1pXq6APcrh6MfggbVPPPiV9m/F8yXX+lPvghHMDom++QL7/My0wNtToduCXSPuRhYDIKhI3lllsSjGx4rRAKSBr+ReXuxQffAjKswFK1fzDoA1rE9mfMMlw4NgWxFGyqFL/rATEfVzXkD8pkncaQtkmZxqNaeFfAYN+07Ev4DkFhiZpAcLIKw/iDmT7hjO4j3zqcqxpT1LtkhGvfLmA9mR4jwX+DvPUvaQyj/e20GH7LP6nMmnQjFfgHEEcLdWYCFRLTyrubnZ5CLirYEBQW5d7GtjvUqFkGpYERN31+ekKCae7Y9Rgaj1xjq7OUus4hsZ+ALBN9jlJyQdVO9KQkyZYiD0BND28ZCc0yCyYY3XHAvUO4Yr1ucmi5+EAaq9lVxHfvGa6x0Veym/KjRqKInSsulEdjWhhZsU7T2wNzsIlY4ls+KD9pAU59wYlNCb3yFx+BHlQBImL2C5YP24o9Zife+YevVpsBydzmTGkxWVkZXSvZoWlKsAngybWPm8blp/ktCrBV1PTOXuObUSCHLM/fQVqSwSO1quNJ+4bxYHxBnppma5XPvww2VCVlVq47WpOCJMl3fhjxiDCiwB+uBnT2c5idtTFVcGfoD+gI83bP3cXNyS0w5nlJyPicXXUjsvNvLpGTJ4fLTuYp2kFHt288Wu7JezqDU8Z6njQ/Zk7YM5G3EyvEusfTsPHmzQYHXYkHnBV0d3owMnTrSH2MEc7xVbNu0z5H048Aj71OU9D/KDuJp2A1PpFggZqtPOjTc6U+K39V3OaY9pveKtWLqAOxErOTEvX/SzRrH8oOcSmvsuMfcD9wg1NhDQkE8Q3rmI7r5csdQhr8jfNyG6jZXogVdEMefTUx9lk5QyO4oRyj8adQ1A1ChImEpcIdXRDqXhEDtfK6QGXwkTVcSUS3am4GSWO89O1bB71Ilc2O8R/0rs75lQ1D6yL7kM7ylrUbebzi/IzXY5HP3TC7WDCkFJO95fMjod7ONnE0wL+JG7w252CJL/p3FFIsXp0h3f1jAE7SEEIfW/a4iTJr3CXsIONcYS7MKtqKgegyENGxvuu7ig==
Variant 3
DifficultyLevel
620
Question
Ainsley used the tile pictured below to tile her kitchen floor.
Altogether, she used 1500 tiles.
What is the total area of Ainsley's kitchen floor in square metres?
Worked Solution
Convert cm to metres:
8 cm = 0.08 m
4 cm = 0.04 m
|
|
Area of 1 tile |
= 0.082 − 0.042 |
|
= 0.0048 m2 |
|
|
∴ Area of kitchen |
= 0.0048 × 1500 |
|
= 7.2 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ainsley used the tile pictured below to tile her kitchen floor.
Altogether, she used 1500 tiles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-L4-CA14-o2_v3_nts.svg 320 indent vpad
What is the total area of Ainsley's kitchen floor in square metres? |
workedSolution |
Convert cm to metres:
8 cm = 0.08 m
4 cm = 0.04 m
|||
|-|-|
|Area of 1 tile| = 0.08$^2$ − 0.04$^2$|
||= 0.0048 m$^2$|
|||
|-|-|
|$\therefore$ Area of kitchen | = 0.0048 × 1500|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+2plf+KsOr7gGxsFbvAOIL7O58KBHSd/bbCpk9DJqiqbvV0GDmPtBERLVa4DEVVpP7gvdlVP+WQrCIpciL5Vsa514/11oHdK0pVpD6XP1S2utH4uAD5RomeEWt9OjWBj5bf/TlBTKB1H9TkskYdjXzGStb1WRBFQaqzYs+U+c4HGPa0XjuN+vZTaV0JBJnhK77VIeaMsiorCMdN3PRWlVDirrUushcg6g+EjXxQg0DrXzQlaXL5oyVcFmxk2qST+NaVOtwlfnaVLJODIykoy2ksSCGqcvw/q7znOBxZkYHhAfFWdT6NMz4I6JJZFiz/gyUkLQCXAVlTWl3CZ33AaGLzUwZ6aRms0CuDoghwBHgQlIIxxPdKxReds/rRy7VDyGTyYSaWRBRLE0KYlezDy5I7DXV2zPUHgtK2HQ6REFTEXmYFPw3KrseOMrgHEIuOEEHOvNS/awHdupRrURXFtXiseh1MJdjWHjqK9+3DioGQqM6QOfiij/tftOT+xBH7FhKIxGR4FsGsB/WZ9Rs508g53W8nRPreSTJF7ZkSa0HxEpubhydiFX2RNAQrG8enCaSYEIOdUPThjYi/AzCLRzZ3k+YPeG8eOayTIqsx6giuytydUM4mdCmIuQ5zYUEdttm2Nts3IY50HQb7kSKrllvB4lTYw9q7um0eXPk4w/DoERV5hg3vALuSoCBXGgMZI8nq/2HlvlJA4/cbFAxCLPZXlH/Avyy5ZWgAtLkYcXH4bRhLYoKclVb95SaEehnUW2fQIiUPlOkJZmNXFXgNy7w5A/jA9PK6iYAdbVxEAVB6XuB+y2zQ36OSzNTYveplHkkwBUQEDzdjZBY7pU9iH71KWJoXHkaymwiEV4Vpyu6fFPY4XGmYzcqlywCzuC6ozefUyxZ85ueqMRw2xjOaSDZPEBzb9+obXo8hBmSUL8S9dBtZKcf5z3/bcrcjilTPu1UTB15Y+tEvzowMWOvLBtHHW5ktSGeI2UNfJC0qoCRHjIiqSv2do0g6Cb1bQZGqCwq+jvA5QhGWste7tvq+hp9d8FOjaweFHGcVQvjZdsVJ3nPxXNmT6Kjiw8989rCONq6NkyWPQ5avacIDjeQGykgew0scXny0CMCiEwjmuOP+Zp3WswokPmzhP6y0lmQmKA8uwjGoaEo39A+Q4987hlYRO/vXwtwKHReZppEVcF8KV3iwxrHA0XGQkorEVJ55ui7YS3p0VfjLpXTOMUwbRNuC83CCTyKezbNwtuBeG0MSMrrp/UcGI0bI4q9HgPZ2XkClKPlhwwGfPacbD0trDLpKTFXCHRDoWeG/T9CuQAGUMB6l2tNtncx/g1/FbUc9fLSIuI/MAr3ZBesAfqUVCdtjQ7AJ5+z2rhU11G4uDm64nUx5DGpxuK+bxY97ySpEjAclxvlyHYIe0Ad/eZdX3SkR6cEdGhn2pJoC3G+CoE2w4cJK4P7ZXEPRaMX854xG823u45TImTyHoaW0q71PKo2ibK4P6HmeyEcBhT1r0dQvUZh8Cv1kPzmLmV8uhajBfGwlMZ4d9CtYh5ceERE5PJrjhX65x37xThs0uhAGuVgjEPjRUjTkCxYNT4vdALiKRuwfqSvb9z//4Ivy32FUomskXi6Z2jUhmcqz9Hymg5dW3x+jq+MiGYp16q6jXJYcYPPCxJzZp8Ojy+9j0Yaadb3IryyRKxVL/a/YfOXrK8/16261F6dRmp/YaEDKnRqnuu3k0+W9PD0+DFp3/8xLBvqGb+Kz+NEWI0MtxZJpDXmUN9+ArjLassQPCKV/9xGZRVsHfHhqhiducNIFJzS2HQ5O/3V6ppYvBa6ZdpeDkGXpMLHcvnSKK0DcUzgZP1jw5gBUerp9hzbEvjacd96viFkF9XPAkzrber5iTI9IQSKhU75kIIdA8q5sTDYlb3OqnHTVZLA/1LxwpGZyWgy081dVfuer5A+xAWoSHoSlHOokqZSIeNyHy/W/JsDicWN3IKNN9BZIae5kfAIA+h8Hx+MAD3lrsLNQ2S6OyALfvrAEBOUX2ZvEfy8i2g9r642DJJIZ/jG/I0DY7VgVQXUdjgUj7HlvyiPca+dzJTl/WOK2LLKLscSgaMX8ohCp7ckGxQFoTKpj+ruGDGNk94scv4wlxRaGYLKRhanBfhqBg+FkLR1CCMxJoxoHb+fiyEZPS/MWlmH8FulIWqQ8H6leR3iMdOeeBkpKi6U2bK7+p/a1fBF2A3nD5/X4CN3yFpbMgDEIw53xHIq4NCFHd7aMYW+fotDbCna/kSSa7z/G8A1JbVXbhYn6r3V4w/OWwUzgCfQoyZAQIEOeocI8aDzIofmYoliskmO2CCkc0/zKW4cqgv/vGDd3rmKpEedDTCa1l9eafB+kO2Ac8d0Hgo4Vpaw89EBynRlnB6CWqpB6OmQdvFC93Joxr6RVi1j/AV5+Af656bogzarJGAQ+fYE3/ztWupT/2kD2UgxCSkxntmL/FdEdIrLH4nSPeBVPDx/KEdC9OCof7P8v8RadKtUuoAF8KmGvfqaQmGyGTf82CphgNX350dd8quHdJ7MhS5RQ+nvnNS/oCQs93f+7bLFg4mTJ3UjuhJgKlHbyynEJqAWrkZ2iBzOZH7w6ec5mS7+2SuHkrPsi5mgu1cI5OBzzOce+5R2sqTfqTDpKL49e/WkspeR4KUSnD7xtEoWsJZ7gbx6EondReF8ENUxG4kIpLcqackQ2D0/02pdfLdFzfMYs6yPYhfGdFfM8EuqjlVfI6zIuGZQE75ovla6oqKK2QLrrCNOEqvctzrRvFj83BStBMBdHxfY8ZbFjeH72vjjOcqllO9obW1orUbL8aui/JWbYP3JF5eKCf5jePP7FKQN3Zks0bHWTTDjs+vxOmFRtDssTv/Eg4hVMPRNXn3w2fgQQsOqQcWTBKGKAFLMRVkd+bXHj59xELd4yDWy/VUUKptMo6BisaNsWW07Qb0+HaFGQVCzoEDNF+hvUpJcVfl49RwZLPhiU3k2fAE2+dkM9whsAsCdmyGV99pJP73Zi7A4NQcPqZcuLdYy+KC36dTv+E18JabiioxazhT47slnDPdHsSkIuiuBlMyEY3JaPP0o3CdAubpvg0xqz5TxtqqlKTRTTV9nBB6t2/Krf9mKBTcqQq6qFEbvQzxk0sMg8DTY2YalWlxKr4VqCUKLL+zxVO86cuqjoYOSoNxR2czEJwzPiq8bh3aq31vamnZxxh7XEC1x97HlBEyzWzuH90gvf1zijAsNjD/pjchjzj+zuXA/b3WI9AzG9UZFlPaY/j1DL4IqqQ/UbYEasKiAnNOpaIkOFZQ5YLfmNTkagwKjcjEEv7ebwOG63H23TE3XOhiglVPhXF84DC3jo3R414YvhG7RrK6yWgTxP35oifR4nVf4nPNdln9iQmO2lM+9Y8C9ryaGhnLvEGLpB7Rd5xe6gYCbxlYzz0eupe9SFnC0I0w8pGRY9xxua8MC33lw7fnEjTSDnnHCz2GSgNl/rMUFK+qHdh7zX4DaTUe8WbeB0b5lni+R+iOoM6McMuGOZj2u8e9Rz0TI83cP24B32tAdgQrSyLLQHW+aP77oXprE4nxCuA/168A/hC+opv5jsA9ogKwSTpEFqWDNkpFIyPVTmtRLlhMxhqVM4NZ1ud7i+HW8VxRPrM/9rLfzpLqHqAzmu4aOJo7A9/TOJSE0z8gljsZ37GLp5UYVYU7EKp8K0TjJRZcPSAt+jjhOO1gHZlTYEGu/PeDhUVKwjFKDI3043uBX+qK5DXO9Wj5uN/DgcCk93Xu08iqP99Nkhbeb/VhpWYuf/Y5NUONuyKCUv2eikoixPF6vxxnEUYBzCqC95ZWyeYHYiTPYzbKFZvbWiIHl3uAAqBG8TtTkBGKvqfMB0oizeZQd5l6S5X6Ym5+0xlk7ro0JC1L/8/8flmpFM1XrtEzwzzFJvT75/g59Zd9dCg4n51tsVJP5IINWpsQXrLdxza4XSZ0sDEsPB8mPCVchUIvR0im7WbvGxF9JP4ALKULXrSe97EYlrrna6ILwQ/8SfJ6MabEvsV0XCWVFmmU9AazV3PFqbdfO8btmjLiZLO3fzSAUO5E8sl5rVGQtGuNgVF3CiBObicyC5XT/f9dUO2AcfXPl3m5SK2x/p5pBlzRUb9i8U6OC7Py939q+7ZNo5tRwOySI5aJLwHsZVAURgEN/FsMQlJrrZux/Wmb1MO9YqyNUFuJUVjDAAA2g30oovJ0Gs8ehQz0sxDehJN30bFcSTa+sz035U3iRzoFGT24jfCJLoG+BAs/Ui+oJWJZi402P4ek97050FlNY02OFWFycQXYcYP7KBDZahytUS57z9r/nD4Ou1xpcw3jNvJrH/e8mgxy5841/9CLKXJYQKsAik4Ct80qnAMr5cScLzWQLu0DVVssF5KdAIZg1GogBcz7Z2rhiy0ChfsiSzTerVTY4kNUxTTrGpSWDHieiM0w1+iDAEWTqOodshMAox/6KCzda6IfgpVGERha90BbmmAGHT6XyH0Lpej+BlxYYfLpQrLi+kj+nsKmjpaznsCNJ8WMCBdtV+/nyjhYKU1vts4LTDOHUzyDjWIV5bYogf8a+QLSYRqh+oWSzr2Ab/bkYohNC/zzoMW9sNYD4svmjEQg1MyEWWZsz1tNlX/vlOIEyb1e1Bt9ifVRcD/tzDyNRhYl2nultF7m2SG0VUzcoggEmjcSv3rulN++x7L29fnal0/2groAl9Lr9om0IpDRMrBIsixFlipJb1tK4RfesJ8h3ZvpOO085ssYhSCjUMCUXIERLBu5MJ0UVY7mpkVGY3nQe8YxRpz3AJUHjlJlNpGEJ7gV+YcK8wfEbXpfkjMck3De/NZh1KVAtJB+ejUEYn4bfgFofqdZBS43EBFMoWs4ozAGdXq+WWXbFflwAAT6oVHxsRtI3SD1VGLyAE9oNUMfBHhpIzDwGERM/y7CYumSgF4/wvOGuObiY8EtdliRCDZ57i/10CiVpjEuIgip4NlbFBVmJ2vxAmP4mj/1iqYxJv/C1w+NaA9/Gl8Yzuc/NVp0/2Uw+u7cJ1nNI/c35Jwzk30BLsUbBZSc24OL/jccSpdSuBo2JBqkiZYfScxFQLoPBDEvmEJS22yCWOFcc371dwche0ecgluMnwglZVKlsL1rOFFxBPrPsy125l17MfH6Ua3tG/R+mVJwjDYkMhAzTLRVB97lNiJQr9YFUlk1u4EOaSCwF/0SoQO0hFw1S0QYQEj9G/bPW0+mFSWVbt+DB898Hww7DhqeDSkLkvtwMny5JzfdyACbd+9IcDsnR6kIaN+tgVoxmir/MGlfgJpVxypX8Uxyal/gKZ2RhXqltHvWKVKDbJcQ6tnh3CLhxCjN505+ws4QBMV4A+6wKwiSu9tVCK3wZg5zbtjaqOVX6e8PbprfCDpQsHuWQ/r/4d4kceRnIynsiH8skGrsYbJFQYMFOCsqnpmNuhS84dZMUnfkyelbVUsFH1FnKDkI5ed6DRGduWp7orM3DeMr3RPXiUXj8MCHWFbC3w81kUfvb7vXUGNIlQ/cVxQDOb7OUmrXXvdXOixDv1UanFaPMDSr/4a3yd1lIWm4eQtFVC/DI5/44rvoCoOkrWdc6gHtdFNz4L53+2XTfOjkoqHJemW3HCqvsE9TETa/8alBFhiTQIl8Qi2DhiKsqeGo5ZyEKUM1b7ttVnkgZw0Wzn6sSxkivp1H4aSumYTcfUdvid2kLQK8EnTK39m6V4wt1TAd8G355nb+JPB2NleH2CJ59ArcoCUGLmViP1zd/H6g3lyjxx1wSiCmbTelLPNxtu0tHqhEJWsWgQonly9R2tjjcwUGRTb8V/V+EK8mIGUQ/4QxmxHNGkptH/cvLlFs9Pq2ZeBDoh4T3zcsHpqiQj4+/S5fCba45SUd5DbCQNaAd2Q5Pcv2mEuw6CJD0NOTOaOWCeMoZINsFIyQFqLqd/TaVlXQc3uy1TJmyUQ7CfkIH3KB5af+kdrUAOvPumRHlhOHEAxdEhq5y2VNqbxhqq+y5++gC2toBW7x/ik/KcSXs2z/+EfzUjFLduEQiDVv0IH0JDBU7GD66dweBX1Xe6ZBPqYsMKhSj1fO1XC6X81le/EN5mwV8dKXRoZbW96ysid9+EuxlCWxeZWmDazRR3GWbW6ZVzr1xFF3josNzX535KA9kkpX0e2G0nuGSmcAcXQ3QumeGrut/BBjpw2pBJhGb4VIIRl7XQ4YDVXtXpdna5hcLMif4yMgS4zq+8pSeCNPocuiXvF9Ge8F3QajaBEH7rQ+NX7GKDlmBDkO83l3GM67pdyaMRh/1e/vWxZKJQ1hW6VLo1zw4R2IfHG/1UqoUPKItHkCWssR6qN88M8zjwcR3HANHuErOTwn7QTnIh/UyGwWnLUMWSHKVGPQnfStLOFxpm356DpzF6rKDloN6tmgbu4Rk7vVCErTTArlzLx9oJQVSBANCAdQxh64eH/W5KKCB1cTw34oJwQ684S4Ut3uVibCHYrzuxtjSj8obcK1fa3JOu3IhWcUaiXL/JvU4hIWTKqgaL6tCRqezYYYKn3R4oV6XLlyw35W29Rz/RZKqGZnQCioAYArCnMEmEBjkT5ryEzH3RLQatoLibw0XgpLp1vC3R8jRbg8KK5SRGkXY0v7KnDruz2soXLSCYMQdetqVIGyPMsaIA9IvBA0jWYrdTbwY1uwzrNXeZFP7helQiqX/TRHtEC33tVjGAP40HrBtT1Rh5ALOhgpE0gV9RUw309DRW44dUuytVOSKPxTpwySktT3AR7gA6/qUUdhI0qeGE6VlUkQv3QSokth9yGa9Z0/AVWAiK1EBY+yekybXIZlBZEewQ3nVSkt9YR7EwiYh1Eh2uF13ZdVnENXNWiXajcMOBR/JcQl3jXnI/fzoVnp8QCHNlxjkYMNAmysGo1RQWeDRFhu9/DDn9k4H/VhR97OWlswJtoeAN41+LgoeMkmyRcl3H2hyLC+G6T2vysIC0CVlKp0x/ERSGuhxznTx0+8XisMWT/NPb0v3ZizD50dMndvtB5oeu2FKHq0YndHOnT6m7rpgihdXH56xbVDuhGsWVRnXb/4yLGDCNl3rBLz0s2Jv7zqjsL78AXFa6xsEgi7A/DfywpZ1w34boAoq+CriWeXR6yxF1Q4YsDyOQ4aDq2uQtEwY/NvXOph5Kbc8pQtJRA9ldf5q890Binul0bLqKhlKSAxXhSBJ2DxS9oasNSykRkfNgLjfJYxL2gCRdsZYJT58TYIkCHG5NQHhvmjGuLRUG415qZAgmNTLS8V5B6qU++7IYUVUtS4MO92Movbajm/7stNdX6hOGYfoQ6ikXUOSrMkhByQ73Qf1jc3qsvCEtmm1tAKtJLDks2yWvNIBw/qx/RlctV3GEluZoO3A4oqYaS58c3vvojEIsKfC+I/HzY+2PxBTtqHnlaC7fjNTlFjWOHDt3vHSeaPtqEf5ZVOBtWRbPS2nCv9nZqTiYmvOCmChaFbZerkndn9qtWg/+73zPN9WXGjIS3EacRjSUHgi+fyu/JpO0vgbwVrlu7++iaOu1426T9aJohNHeyK9ENKreRxkMfEpcyOUWhF59RCHF28SWk2iRD9a0Hf8mcH87Fgg1Stteq3Om2y7cMa9nYyKZ+YkqDyxt1kwXzSrUrTYm71isolOlxXC2H97SzVW4Jw1dzr4+mOxlh/y+ZCu+oELI7UwG+tQeq6BT+PEK+kM5gwUnl/y4+XL1nCeLutn4NmzFZftFeCUnSnAYfG43huj5I2NRa0CP32ch/P8UVXnawuvVTEk9z5KaEkWZ2KYuaW11LD1ehFger/9lXMLdjv2+Wuth/WobxJLqYldVb7hROOW7OE/vjG5FstYMVHDuI0Wz+K+zja9kf/QzBs94pWoKzLD70xjvA4ynHE/1YpX2usIgK9Y+n4AygCKNAvzgU6Sp1LjMG+zDTFO2iQnYUGADcXQS+szLJUqrtwBd1AZNQ1RTHlZBDOYSmRGAgAtifkQp7mEYcacCeHYi+DmQaRj1noJbhd8z6b4JGxxOoM/lOAPN20VfIyCBgYfg4OuPvskCK3eIY3zyvUvN7I2cmfhF1dHODxqK0e9cMrnzBSmNblB5mFSZzboRx+Qpa5o/3DJfNDQkJLBTur8Prr0Zn05xEtX4U38Uf+3Z646hgKWtGu3GM/M/UKgQIwIeA/yd5CiKzfL7eqxjx0jIPy1rL3rQ8bqmCrB88jYDA3UXiFjHYHpJqlr3f2DO6kPqR8Sh4zOB+0pybgUH7PygOHtwid7ZG24vku/tCgsY0DrPDnkec6YnoQst1S9GJrJEKv1V3lMFYitrcjaPI5hyQR9nLlsIvRA4FlceD7oEIFzlHY2OJO4BgsYVtwvaHZv0bfl/ZxhgIterKeviq3r4Y8kqrnvVLdlx6448mEZ4Ta1VCTZRacj4NNuHTh3AdCjyHJWF1iBLm2Cxc35HdJOqFFiBp9R4MqfwHwWGsM5aVxXiBFBjSvZyj+g1ydeZwVivuWEiV0JdT/NecunUnaDz026wW1FuQtqpkWBEw4mbDQB1i5XJbZi39WoTuP9Bjwh2f077DBjodGxqPG22DNDjObpuvFpKqKyglMXvtvEH2ccZBxadjoNFAiGuW3Y/HfLrUWq5Zv1boTTXVD/4TL2VNd3ib9mRrLEoVrHFqfITwJOSjufCC6UHz/XNZzCrlENaYUnH2sqNa/nmSJvC40tDdi1ro1eL4XX81aVRy72vnMiS8mI01N5qypwRR7faa2hJ+Tq6hQ+VKTMNzg4TpgoNXuSFUBZ7yY57x2Vv+ri3zTtPLV/BqAgVpFbY34FbcVTLLHpSS3sJ1wyKg9V8cuJIYqpq14byIahvg/ws9j9iDn1Owl+BwsB68xEd6BCPXOtd09IjT75ElejROE8CM54bHjNW72eoy0A+3xGDCz3x9jsE/4XsNk1Uov6Mrx/P9ALdgILqRQZC0Tm/RTYn/nopRTqVOyQbOKimZXKS3me8kfGbapYeTYVnxXeEd0AeP9X7BO/75UyDux3pOsXjNmNcGHl1ccC80xs183OLXO5w+IS1EeQMVnQdfO6p+AAI6YSULlnJRX8fiWLmFSgKOGvHKVBoe0R/dp/oigKaU7yACw3LVD/6iFccY5uVqdd63Ya9pDBJLQUsDGYsoM6HomgJhf+YCqEDZg5OTqkZZJKcl/kl5BofuDwde8qIe0hkMGGkYY0qcG+vJ+Im+sMxalmkXE4Dm22R0mOO4AevWUbHa5clHV0+gdBkoflF7FR1gsHRGXSmaT+F2uENXm1EWRBz7Rj4s8I1c6kOa2hfF6DVt8GKQlbsAGjlPHieVndf8PuiIFo9Mq1l6Q2a6hjjtZHEeVLJ73WZN16ocUnLOJLkTqp16E2v2xC8vnpQiomCF1CVEMgJh3SjN5ZHU28uBtwZ2nWwVY9szhAuINiW64WDoo2Mk6Nk1ZyGLx7mdX0njN9WG8cU6QrB/Aij8bALokw5haffw6EN3OOmnE+N3A6K71FXFvcWz4b2Zar45MJQHTVkVC7EC5Slm8vi0kEqh/eFva3Mxz7s5M0GOSTRNnmUs+UN8hqLZA5VbncYCW6DLwxFreL5PjjRmslsX/wnMn8tnBTgqh5COYLfkSHtIZSbhbo4oJKlZJqCqnWVOngvujyGXthYPuWdXn5bySapLhjdrVJTYY6NyLz1S1ar+peNGwpBr0ihEHJyDTu1pzY4Tw7UQ28NJnAkN9vi9uDxvlVtaqs+UjOZCt5jAW9SAxUwPp9EzKLgu2VaaiDwjw9RWOF58iCASj6V4Hrii7lHCAV7UkIcn5nvIcH5egE2bbDWKGLbczO7/5XaiWdBPOU6O4B35BbGx+jT7C0N9/su8ByYUxEa1TzPo+425F17TbFp+QXT+aINQ6aQSEJVWYRlUFyEohivfvKtpMRjAnAx1CEnxbg8IQvXNbqRqdgOYou7H8lTKKZFKhnAMYGNYvX4s7eLc36QZeh+7qa8hS0JhIcDKSUNDAVJ0ftRF9FGlFBrbZlAVnTx5rrMX8XKCkWsllx9/9A3lpCt6noRkpeKo5KmIR+wkQWTO5N4gPy5IwLV+4ZHXLGbRIlIbvrtat/CPKlLbAJ01NIbTAVIaZiaKMpGGriKKgZUe4+6jLrqftXeEP5Zn0MHKCHDUxP463RfyjnAMzVIpgcKHCX5pAtJbiewPS1qRATVXLOwFrnc4g9hMt4DsMWAQC1PYyiKhdha8MOCXpXRhvHIT6GN6aEwobWM+3Xbk0w+5WysI7Yg1+uk4wf9NQWJgBwwKdnHxTGp5rRG0Ck3zzEWkeg+G5tCTsxArG63GPYOTqybd2V90i9sPFtb2s5gUi2b2dKxWTnawhSi2ydQ3eLdnbvlsrCs0MFJZsd77tSBHUgiJEYNUSvQELpJsg9FEdQuZM7sMOMbWKsUByi2yOEPSSz92NuYSkfT1OuEl8BWSbipAozzhk1sMPlIC0UduPPgWBKUs8fWPuVmsk9qJKtHqcRoo6PmuooLpb+ML+AigydmD9/6sgAJTeySbrXhpRJ6hpPPiV2meNmTOiy/OG2h/q32Sy/ZpJEegXTXfhJ1Qtuq+Gr5CJpvzD1Lsej+ZBaR6SzfL3buNwBHDmymgvSbHL0XHmK8DMFd0kUe3VCqmYXEbkrJga4IjtPFQ5pRPnJwoN0PFbPqqdr8zbYVAnXyTrHaXkSG2m1JuP9QQ0qp814yFqrJI8mAdxsCf1200PcpR7sDFgzDxOCD2RclGAXTC4LW/b3RWcr/xlS7cR9OJyS3UAySihH/DqKtOXKhRz11uAR9cSKpAJvk8/EVfAs/h3q/UYqeducpzvz5x6Z94uOC3/HKAhYWkWk3NyC6OQQK7iK57vGl470SxGlER17cR1e15vvWfkv5EPm08WBkWlsQOE1tAokLKYqG7xGxxANso3srUzgJleNlQyGIf8wMnd5QbfvVq/nbL0PGOd4Vs4YPj681+CYLrUydUIXfEcK9MiWwl/Ucu0Yo6HJwHaUS9ZgZiI1XGcpcAGkZvfcvi3KDRN2ROxgYDGxxDteq7/zY4B25PyLjTI8fvzr4JS6LWOnK/WAdRF6CEVdA7RwqybZv0+84jQDjRdUHD+hRmqsre1NTD/2b4+ZNWsgWlDoBNqKpvLSiQUJe2X/0yXgzgWiqRsie9KRqWqIMXbha6+tHKt6bWs67qnVVgmhN367pF4OZTfLWxpR9LPa/DEPBZm6t1Pu9fXadnOQz6Kvl1NzCVM0jEgdCyWE+aiPla0tmDAYlPm6KM+uQjYdYrJhEbTHU0k5dwk5SAaVYD2q/Ac+u+tmG2Ygeq2QMym1OBE8JDPzv0GcoVTJKHexgw7NezHUVMEHTKorH7b+cOl7IDjmr63lfJOwjOrQT5waS8K4ph9jkzB69fhxMDqCCihNF21Iafvo7vMI9V8gUmy2Gd3+z0t9r9omrc4/BvnJZMHKjUjNo3w5mKscSkqspjqUB31azcEi3+p79dT0/QW93HXDcVPKhhE8FttWmEsVmWeEz6N151dFCikjxM74j0r20tFYlrzM8qvqPr8Xw7PUM4PsiXzQEp/7qJzSG4ShOKo5eybeFZEpMWw1r91IaDn4VOkureba1rhWnKs7958ojIumqTp5ScuMSA0PYWH4+Q0qQTEb4I4OfmUD8iC8fUp3CcSiDkrs6ZYXwt/LUn03ElHEXs9SdN4yVMoxYL1cmGRAPe6y2WHCrSlrxYtC33+zyUyxn2NTEk9b53OrSqVAgK4ljrXTpodoj19C99s3k9mkg6C5F9kqWC2N2SWmBLTSv2perJJ3JnKjrYfJuGO+Re9BDH2CmAxuzQYzBvcoNW0ISUkk2iuoYzDK1yhEw6ffifxTNpd1nXqyohS+ZZSJFPVwVGZkJX9XAFpgZswfD+TXZptJ3JUqeoSBJ1r8Ppx0K45OAASz7uz0Jh1e+WUv7NPVOB8mYlxFNq4k9Sxkztlht7f8+uCOFCKcw2RWN/MbYlv8PZChgv00xs/yswA=
Variant 4
DifficultyLevel
618
Question
Bora used the tile pictured below to tile his tool shed floor.
Altogether, he used 1200 tiles.
What is the total area of Bora's tool shed floor in square metres?
Worked Solution
Convert cm to metres:
6 cm = 0.06 m
3 cm = 0.03 m
|
|
Area of 1 tile |
= 0.062 − 0.032 |
|
= 0.0027 m2 |
|
|
∴ Area of tool shed |
= 0.0027 × 1200 |
|
= 3.24 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bora used the tile pictured below to tile his tool shed floor.
Altogether, he used 1200 tiles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-L4-CA14-o2_v4_nts.svg 370 indent vpad
What is the total area of Bora's tool shed floor in square metres? |
workedSolution |
Convert cm to metres:
6 cm = 0.06 m
3 cm = 0.03 m
|||
|-|-|
|Area of 1 tile| = 0.06$^2$ − 0.03$^2$|
||= 0.0027 m$^2$|
|||
|-|-|
|$\therefore$ Area of tool shed | = 0.0027 × 1200|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19aokR6FGnWiLEV5NMvucTpuGotHefLxso2L0dD2fiZSjhWJv2An7j70BnkXgBS+ccgbYQNRvWHFgrueNKpkL+Jlb/7tmibXbYfHMFtTfKRDdCjqlnAwHAXEYsLRv+QOJTSUYFsAJ5wtITYDG4Y8gltebMkLJEnhyqGtxZjtW1bCIhJZnywpTtPgDHfcd/cBoqxOrhfEL6wyUVwt60qXH9BVQPTNGJi2OLgO9r5eD+Cu1rrKlQk1sJ4mleaAuEksGlEkCUP7tpRnG8ziEaUzNmlNg4aoe27JIp4y8o1wiGqHSgSvLXHO8jPRnej7Dug3sWGfv0r778IJ/hJoWqnPmw7EMuM2yrnhGM3Y0a6RnvIagihJ/qHz6QrCOxMJjEOLulAQGnywAFIL4WXhfib5bx83RWHbKqr51fqSbzdU62vcBiBQd8JahkLTsRLhD+RBWmOFhHDiSOjLzuH4DkgARJf8vdHE0upEzEIoRR6JcnJ9MkPg7EbM2PlzmtEi+uYVOF6QvNf5VF4/nMUZK7Tt6JxUR3lbd5ZRP/EOmJacCysnB3lPruMMLVsKLNucLADHY0n6jqL/+NmAog+zPNjYljAufGBEOz5njnPWTVSFufqwdE2QrzNoWtWnYO0dNV8xm4yFLnmrp+yDeWd7ecBtDDbwwk7XoL0ZnMG+9am6GhYeV75nC1ii4sGMLwWrRsDZX2MeFdcIzbWHAIuEkKy4DoFoWhtDjv1+dnUckJf1YV0UcmJ2RGm1/0HGATSMXQ/4ZvkW3O+M7sJD9RiCJORXJM40fCo/RRSt1XdZI471ighOx5XmQZoLuRmd8M69hPeNzIM5D8QKgRccXenR5n4S0e7I/TvPicIlAPKcmap2OrtptCe0BEnNChAFkWuqLsuj3zmhYgVLE8p7JWnAvg+IaMy8cfy5tLwllisCp3qJ7akpIeWGDMZOSwzACKUjvh6t3YmNnrLZS5lAo8elwMsKiWkNJMdzFDaM8R9dutCtV3zS3z8RPZRThh9t7nZvNEHDnFIVhElYgktu7oywvptiO/X28AfNtF+dk9yMqcLj+IVoXR86HQqIravARWBJwxaPlZ7CflsPcr8pDAPOX0vx7uUZyarZJRAhOxe7K/U9nZkcBut7WRTa/PBkA2+q+9Phi5YC8moedDfnyFmQbGUA0MYqQaD6hDBT8UvKOblLDGoqF06hYReCwO6QiT2Oa4jfxEbPAyToBKqaXdHKyv4ao0iq0EvDM1CPrJOXdJtdWT8ZUNVyGJdhJfCPHfyz+0JeHmbiqprWBCIF7TAWiUP2As+vWJSg9Xd+DbBdEDpgmVFeteOwORcHSWTF4G2INTn/HifqEjL+WtsqAYuw1memukww/xAcYldKy5VlE5up1PbqD0hC0iiYljdCgMEgWvTGtVq9wI+oWodGtQLqgWD26W3wa02CHKQNlR2bLVfvc5gQNIeoee7zVDBXsD9bG3Pj4fo1MGs8rKJ4FD/p8ZAzsss3QdBi22Ic+LZb2BpwAHFzg7tqnS9yWzWqjDjXi0Z+jVPplmmmY4ibsb+9v7bsqHY7RGNgBwpfUJOlw8GgDF/aB+E0kDjzZPBQphTjVS9APJ/jzDAH5gR4k7/GIdxyJn5EHPEiCvLPoz/4WBTwg/CySkxeHakqxEz6RSGSibijJi+FG9MTEraEyZA/F4uCZE0ZsD4sQ+ad50MUPpmn9x6A5ePMFIVQFs85PWE4AHYPBDd5RzcrfIgNwVqTApln7XLRm+dKB74N8cNkHsoTkoxOLDTWsaD9Z0jvnsZ9xl4rTlgvgfVFVC7/NLu4s2SIfzL2GzwyMmjy+EXKgOLsM+7AzKf/QDgDbt0mAAapJU+Qhs6aoIBT+iBBunVFKKzbWksWZWqkfUkLTM1l4hqXfEaxyx/8PzUwAJqvUkeehfjVh7KatnvFXd8h7/RTkbYDzz2Tkgj+wG7spEa+v3+beAF3YaRoKuqVJOhbbppZDPjg/wLLip1r8DBz1GN9TvF3nxF35AGaWwNiH0RPNaC8ZpH/TWZbuSG2PebqREecwmudjq2aIJQ6qBOHULVIrnxLN4hmq3Qbd50ZGsvVF/b3Bq5jIaEIdFi8kt87uV8WH5caU8BNIuO2m/+ObOVh9Tgig4JuxK/nK681JcGBdNlnoNedm9mecudBChrA3epySicoTLvenZyrk/0AWwvgQY7HZhyPomdxqmSn6K2zKKkX9f7ahH8jlS/2tGAt3418cfIxP//g36N/Q35YBiXRkh/R+3e5nqR42srFC61RB3rtz7FfGgAMt1//xWWfzOOkMsSL7NHqZwQqBfAzeECCZJVl10gM3LRqTDXYqcybxkRMAPn5JxPZrTZbQRagXL45xQ3QiC0CRk7rMN7P404QkA2yl8HYQhPq90k7PsaQ8Cyji5TPrBLic4/thUt2hW9dlHhSf4syCkVGLqle0oPWWipNh/0z+F27h1ISG/UHXS0kt7reiDt8Ase7NCb/EB/K0YJ62Yi9xhKyAiWD49jshXA0IaRzsoIF3/MoK/KfNeqTbK9xJILUbLwcjJMQDQUivy3UFMnhIfWiDa3V1n5IQRCR4yN8KHV9V2gwh72hvSLCDRjj5MuJsUhJPbRr2Zg+3gqaeq70a1JLV1tfqyaVnR23wYkLjMfkW5BkSzUFLzNj+/sBUtnaGG7VCn0F+L1yVJyFx8sW2F6FoZl4a+YOMU48m+DFAGAdBLFPKrg1I4IUwSlSFqzkxg+DNxuU1uIQFrs+i7sMOCG7Ylfy8QOEVua6ah8gSqVhiL/2sbK2pN3s0OBSvMfnorjuJ4LsJCGslzseLOFW3wUuldMs7yo2MN5I4SAVdscHC9t/DTSV3MeNQuTPiaMxK53/bf/LJSuBLwbaD218rKzywRzNOXqOTxVviLoi7Sz2Ea4rkwbIV5wX2gzITBFKMJEZjB2Pmep6LZX7MRUNNWhsUeAKj1pWkvTmW3pelNYXPrWGjxOTWwYGUHIuuahguv1OVOHeijA+k+1zGUxwnqjOtlu+Yfnx/VvCqgqH/VA5VqMKJomlDj3ZyCz6kfs64zkbmlNrMN5D9zsG7QuVAbfzIuvZZdX7SErgXVANqr3zzZFt8rmhIO2J7FM59VhUuICHyl16fIQyZBDiyychY6/UVoLIvjLHp2MIeuHx/xXJZiB55wVHNz4aoASq1Yp0rp+O1Q6ZgkL+wh41DHMDL+MTJkVQjXDGrwXGk3WdvOn+JqBlBkPqWyth+NBPCHVn2vxoNMoVJRZI3vALoep/eJpYxxGm/g1GfBhn3XRPMb/zOvgokA99SGOIy6CejqOBTUw4Va7V2cknsNxL7dJGag52pKaIwL/5MDSzH5gkfCSPU5l5R7ctrTC2aqRbcFPapNze0UHbwOxTXS++3yGLVQfsEY0gZiqNRBRBCLEPZalXZSM1u0Uzz46//CIO3uPE+yH5l6h2qd/LUoQVEpvrVa7zpMlXlSjsAN74+KQ0WCeaxrkdX3xS4RFipPAftSDVb8op1JkPYkEvnNdRSgkesuzbkhNM6f1/4YHiQMw9qzigYSw71i6NePZ5oCGKVKJH3ke+a3fA0CZ8As5G2X5t6vA95lOgi5G2wU39MVohKAKEkNGI3dXd1qu+qW2V+NjCn/NbdXG2DjoITJ6rzrgp5uPsQBEfKpjcM9mdSAN8OH/KfOnGNKWVoi9ko5xznAtWAxI6DuBmD3PY0W5CZdN4nM0pkMqZ24Zhg+2fNMbDRvkOlT4ma3UAO543awudNI4wsV8g2ddYjt7ozqkea6FzRjNEtdRuJTQi673njsKeQgLscAq4SUOgxhDM6MmPLGJWKP1ecAl0rl0RngcwvnZLB/zfL1YaCfPrrltY6Et6RJ1sPRDh280du2F93o9ORfgaP+Wy3apIWxN6ANDnL7Y8c72Kd7XLusdw532T0ocH/zP2Cq10pct3VREUxL6fR0BoZwEpUum0r/deWgOvLahuSFebQKde+JS1EpbwWqcoHIB4vpc1Jb0n7u0za3wg7bBRyCOcr/8Zm4gL7q3tex4ASgZmGOltAGLk94RFSmT2+nEV+nJC4rNgVR9JFNDpPYDlHgTacPVBCia94cy6swrdpphcCeQLEhh4qhRENWIUMneO7R/bw0G+iY8ERWaW3Sgo9LBJEzxrHba4B5TvVikEOLbHLlIUNDvO9RY3hSRUaCZjJFgbbUqzSiTv/6VFLa0qh5E3y3YZ3Xqk2d4tkib2ANiKjvbmayCRxrha7m361HIhbwzACgt3WtWuumbh106KphmWmJiQwev3fhrPkDKBQJslspRWQNYtEhgDajLWwlavLjdb2k9+g50Io3qn17mFGw18tSt/+BGCmVmdNavH7o8YUksv+IruxFr/unsirqeacmJAOxfjMF0mZwo/4fv6fXZM3QtoNx9aKuoQ0q96Abviyi3bDsP8jG41J1d3elLZ7Wq25US4U0JTgEdQyOrmzO5JxD2oLW9HaMTOuMt0ImCMkF2PLZxJZiwOtlLJFBbv737vdtl5ZP+uHYuJ1IPRgHRhum8pCJyaYEXznE3QhOkSADFSaHkcKxW62QDKysAT+7JYUpjXDfhsXTDdelMxbpXrY9Hoh9AQT4k2l6PhAsjbUWMcBHEf45arRhr4DN7/miGarpnhZWA5myofwOhxRCMORMLWAE+EQWNhGdLeRkeeIQWZA0aegoAdne5He/9jK6zzwf/cTCeFtwTz8TI8wEzAZRLn3hzU4IJCCYFe8wpVHxzXLScMeleg4E9qJnPd5Mtfa8V3BgFQFM+tKfzHxV27jga3NB5os9tP4Xe/mzCENcdClGqfdabJQd1cQbvnakccz8U/X40Al3br0BJyC9Im4B8orGf9HJX8qpwFLdw/W4gt+MnOg0duy21gHPbVafevoLYKTe2WOw+MUXoXB9470UGb3uUdOmA8WNnfRm8rMHomOWrhvf8g3v55kaUnSdDUjRH4f1olEelizjumSqDcZtG2al7HoEMO3hWuyC4Sh9NtieOc4hASzzZXLyV+oa0yizS3zIZ6XKF4EExjvSch1IaHqP9JKL/JL/XVFjztcyRLhTZC58NEWVD1XGtiQM2TlKx7OABH14Qzt0W0e8u9RoKsy5ldBKNG7oGyBct/HDRxRNxj/95biRPY2rfIaT7AUyaQtIAD6jQlwIhx7pAPu1BD0JwX4n6xR/ZOHm5dz2Krv2OV79YMKXwDrwpXjyIwfG7QN1wrY8kGGAR9xGVhrL6X1LwSm82HeBbJHxpT+gKxaKJ1tnNPoBVVoVADxz141Y1byf/xcPOFk8BfSKMSOTsWMx+hEP5uPtz4HM+BP+95AoMnSK/AdBZdv7XkjR34drGVBK8Ni0UMHSDfiv2meSZVOi/bsbDqq/33rcsGNHf23z8onSeKZsKTDP66MwBGgg92SzDfuje/BcUJv4FrVx42x6XpBNlFzbGNVCoMgVX1jUQ0jyH0Ff8SDfN42PNlFKDMRF8iDwCQZeYGO/2JPJ9ue8rN1OODazY9TUEHkguIj0BFMmzuL+cLoYQSAuScx94+hMrbDnQWVo4oDtaqGGkGaMnV7JEVmzmmmqR9ZgDvb2c2r2QSoDXcGY6P7YIMJZ+Ea/+qfcL/JjJvqR3Iih9rUs4OJZ+Pohvoxzv8W+FI8VZmRgjFiMwLopwaDHHwiq6pxf8i+12WqyUI8y3FeZxgbqF6YFikWsmbMGWwl6RhbkCYYLWEsieofs1CVHJXE9SyHyNbz+VFN1zQeRhvj+lUfBxvE2WlsocAmVU9ReZFxE4dXMcRRFd3QGNU3MS2BmT2cFN2wLfDzsgyvFaglO9oa8cI79gQ0Bkv/90pZJRdsnXoUmkZx3oVicw4zouxHrqgbIAhyLWh4pNx5VJp6hZBqOQ9h+5HFWDO6dh54Z22AAsVYDn5N0zXA66AjL0dVywYOIsHzEse0h3vor6iWcNz9dD0nzROFFsTWqH97SVUPXpc7x9xmkHVxV+vJLi7rW/7fpbb7ShX/J8I0zlg2+6srcb2dCTqGAoyvZ4+eroY4HbVv1o8MwKIvbzLJI0dJqQs0z6XmJ1kw0/mVOhJrHvtvqnhleEZhQu7zw9Fc9N5T2ItoZyNgmPRaJwj7Xbp6yoiqkjHX6XNUfn9+qv9jr2JM0tL8IqocAV2Nt1HuF7KrzlDSXCWBjrbP8NUHQw1irWRJX7ZU6lw+OkCawAcYrPt9KEftdYX5gbyPacAicN6WH4KsyFnEjJZlaITj3wr9YAjb/INJCW6cpIXUkB4OKB+J9ImLysnB/jrWPvGslr0AI4lJDTUUGliSbKWd+x8Sq4kxhmmqRQSR0HDPJAPsb8cJpoEyd6g1ZqhY/OmH2yjEURTYAFCVfAIW+WwccMg8met+HPXpEP+JXxCYF9uUnejcuXUAepOEgzod3O/pySzMsYVTTkby1rhLMeLGl7vx8zaQVsQw97pIC43PyzR9U3cry7Goz1IlfCY4sPJeIsDTrbM5OsSZ7ZIOnd0DVQmhyHfk1U3mbId7brXMuvWH4N6TRxBddAyG/+cbX0phy3Pp82NWNdg0bolkXeEBUZNDIN/aYgl+1PpjujJCTpEEIlSpFLcHIPkrSFNMYFgBHlodnLPVKu0QcRu+hBXXWf4pD2+XbdrkbTK/XJl1ZC8NGx3r7K5RRcqQmRJyo0ULJ1Hj7cqkeOzG7Skatx6GQh93p1awpSu9R1ULTW4I1Sy/GGw0VZXZxHws7HohO6N2as27NennLw6JU5C/1OAw34t1cLlqlWDaGvN3RZdUTb5POeMyhTy7OJGj3TwOo/Ra6m6fJ21/NOGKGv01Poo31w7mu0dtD/y1olbqnT0rbVFDs4H8inYM+Sx8O9nvkA0G+SlyblqTaSezdmSgeIq9TNBxsqQsuI3pSBUJF8CNalqG7WDYfXSwszs5CNBaw0Zi+oSVld430OZjTSdbAbV6MA1d8Rr6ItnLuoQaLElamUvJhudCMIcmTEir1ii+A8J70pXZ1TKHSjfrj56xV88N7xN3rvp7aB4NvZP5N5lHQgfj8liV3AI2ZjnJIWiqQ8WyitrOdaxOSdagzC4ylizbbLMZRFaMA457uG1lf5a2WjX0Wl/5MdbuQ+CJ2OA54VqfIlRxFIls/QOCTVaBhHlpBGGefsF+JHXLo4jn/68F7aN1nNuFrZnGV1e1kFeZQP3Tf0xfNwM7ha/QLqp2FQ3bJgHOwgFFAdT7N9F8pfS0yvUEzJbyMOHMknVC+juInKRytxXI/1qxmoRJPQyQb5wKrBg+2nEnFraroCkjLLXXHTIk4qcKf3cExmtbk11rrHFYpVQjIBJvVb8STK3hfGmZqmEdXJ/qECiSt/Qa53K7mP23BnioSVQ6K2pTopnpKrC4daHV85ahuIoF8uIWELZBJ6+eqRNdunHyaXswev8IOZz0c+LNm8nkoX1DbHQwzIvP6S1/oOzeuSA2uGcVXbl0B9JS/8CRQBINAw+JRM52hW2VW4M/k1CYxVz4vMXEWTwofwhQQQe8sSKSRKpIkGR6aEezI/+gaL3jmw6zQLq+u20868wJc4/Dz4g7Thkf6rPcMXMuwyQNrpp1gb90Sbg9iRKFeW0Xa8vN8LQhgVYXAePLl6/29sPb3HUCk1Lb/kgy8cQOcIY7GmYtg28SY6UkdcMoV5uUuj4dxgUuvhffXjbQQvItjJM6D1qUEivGFKIy5MWzEGBVrujN1lrOTTx6whgpGDQdLOJll964XpgOVaCGiNsjvR8OP8EhnR/bwGiChsHUfwJIpSILpgCnaXj152Dy83tFtQT/R9wWapXL+dMjbviWSYX3ukvWbvzlyLs85TijDxQK/T33ezlNyBpypcQlUXqXVrUyA44vC8p9gbV21sGPkis/TgVr4z7hXMltlNrRNTRKGEdy5ijrjcB80+PmrqJq9qIdUJZ6nIihyaKOfoW1Qscx2uKgMN1F7t+75lQeWK8qTkQuk8HP54gNVk5je7NElSZEzSYGHujwFdPAL3y5eyxXOLAno+Sv2jeq97hZ1lj02rhszMbKNVxMNmBiXKS4JVbIRZOq3qz8Xtg216+T5/mJhFJ4S1RlYR8/vkA8WQLHPcdIjdQXuRInGKDlONzd9dSTgWEOc53cWaJoK60xEID6Ir9wHP02WgXCu90uku7QIjMxYqnIz/B0hE+EWqwlROlxKIidC/BkiEF5hSx6lwrxXMaYmwlvxjb6K8Ypgkm1E6lvDVAuTpCLS5I0resNZQh48X52bXim/5ppm3pEF7BHorMAUAT1LuvEFqMStU518iHp9j+KAdOs6WP1JwapUo1wiPvpe+E1hI3y9G22qOhmyU7bdhah/aRss9QvATDVNtUnnbpmXm+MLpdnrkAeGRfA5HXrTPlvd7BeSYHdftaSm8PNrahKrMa1rL9N+0sBnvTD6cmxAVnlPRVfUxH0lY9pq8YYpktFTXn3atarcbB/5/ElAftpsiLYdT/Vzq60PCSll2OwGONHGuq2V4SaY70qmtJQ4HWZPc8gFkxZ1KpeRrnsJFfHYKE+845iTSOwaF7pjVCDmf0g1wghGcef2NLXDzQWgrvczLwXWbz7DFpJC2PcO11RbknusYWM4Vnii53jlUxL+RjaSes6jWtrhSYfaCLBnzQdQeEThv5Q2DH87G8KLGJIPbnYO/8BreKGw4nhbPk1J6rV8Djl4DYwwPOeqvAPJnK05IiGsdYb3KRxoWgGjUIDjble3+0mor0zlvUtKGTdpeQjjaZZsj+t27BQAvl2h5j/+0wE4QFof5FCGmp720SvJGN9iCQC8PucC3zkFfdOCIxaS6g2z/vEjGth1JhOa1O91kLDc1udepVM5XUUhX1uokuSYTkrZXY32MWOMORfLbU2cKgh1n9NWwqRxAqtfF0wxVkRfJA23BJmv/cq7P9l6BMCJ1iR85apkhS5whWXZUm3p6Z5tkp/xW70ZHZAE5uQGwdICSrgAiBSmZH+cv3roiwvacvnAcPHKyL5O06YfA/NEJoaMxJxJ7zFeeH71/EDu36EK8eRtBQ6x2fODWBDPX9Jy8BllkZOZuEuIji54QxY83PdUUVkl3s5VcDUi8nmHDJmxUXFL5WBkNbseb3Q1cDQowk+XCj8FEAvK6Wxe657hKIEoktVdq6EESOZ94BB53rty1pLX2Mn8oUS4WS81hhUNLJ4N1Q0TzeIbvwXuwU5bnugGGRpzYCrvEMtmr1rBljackNZrVrdh+1lCYHAi42SA4CWg3HXJN9lpQwduPpbNxV9U6i9E5jXBXTNVejmtRu7VpxUlxuzvFAX/FHjIc0FW/yduEWo9HeC6t9ZwJAjkCGA6avXx8QA6qPfx8wN5ga+qcHvLsjETpxu3dubYTl9jXvhQSXNTvnBuU/dqDWCpPymdBBtaIJ+l9oHbTWXJHFgrlygvm45LXSI90ae/Y/udZE1f8WmO8e3fh261L+k1/FQct2JdQvRmJSRnfQ056aap2tAGUI9lN/tkAm+cW+cHKvgTyuUJsE/bPbZPqvSTy81aVNaqMCgzeTmyRd72LOpX+7qkeYuHpTna3T0Dus4wnWgsO94XQFnKpfs89X2GyYOtUBLparCnhgWYLX7FWiXlg9m204L6PyDVIC+n1l6JBs/6fJydVoVjSFmirp2RDnyX5/uZjQE5N4lCPma/tCbGYcY1/S1jzxFsZEAkiEKZHIe1+uht90EeegL3URVTix0ug7RafM0jPYGPUw3WzHyAq7ykBhi6K6guhACJtgxNj9KqZX+6Bf9GQROM7vnwSW2J4r5SaljVHa0VJ+uCEbmi1fMxPeeC2ehCtV5cEDJWQjGcNu9MOYoAkCpoXFNxmmFkPiAjz2jgdzxtCUavzvjh/1qxJReyNMjs/iZu932l+tYmn39Ph7OT7bNxp1UGNYKBEogJ9K1WgRRqXBTzvNC59jw7DBJPPDH3oBGuCGOYu/L2EZJDryoK1009RclRQqUr6QjE+n/S+u9DN0WBnYzI0CPpUOzUj/vXCkSgh852yaUZwq7BpnJdz/Enrr3pU8j1ZF9KMrPSZr+HUVmfwkubRqCEFcGstHKezm469TVH2E7pkwBDrQJfV2M0Tc6Ak1hRy5z9eblvKph2gR/YXHA6LtIEvzqQytQbFic3mfgq0fHpb+9G1LGZu4H70Id+voJIGfPrP8o/isxjRqqN0kRMR0Tdz4rVxbuTbX0OdZodbkeyO1r4nEiV0n0JdQpEeU/UJdCJQfCcWgzU439xWTEQOeYRDpxaYnT+YG4egK7QJkofkd7vY0jpwrGgecRRbkDYVZLBjotaNeWnCxTuYx63NVE/3R0O73iln4nxqo+1Ec0CPe6/R+rFRhk88yghytq4lRfu9n6KFuz0QAlJso3JMKlLwZjTtDHVO51dhcRPgVyAjSNsEzyFBDFsaMnXA5PXW757B5pE5V3a5d2l77qKwrPiEDRMr7IAjjAp0f88p27lHLmua0sIS6f1riH9QSVka52HkSLlfmDnNZhafNaAxnvpDCVJSIUTuvWxoMhcPdMXD45gVyx2uHka5PluAEib/GJbdX5FrYpDlEH2Hbh3nTqxH8b72UU16I+X0e3MbrcmZd/Pk+sKWRlEmhh0vlvjJ+ir8ceh3RYj6fzL+WJAnjvsFhR1/ynRzVrrJAWEbNETah63rkXlS+9hARL83dL/juuFrlLpN21qyA8c+riiUi+e7comh3fMoVfaujAlRZ1APCRdKQ49z8kAtiz1rXLc75yNg9r9z/TeoFXF1fWHgasCJAKgs7y3CQQ8dRhb9+JHXTJC9MfEfqJdsnzoUSHHghG5HSN/7bKFrJri3/K2aE+04NVgCfZbEtKmd7IVoOCWngEmrBhdzQCnrpuZjedlmYcu+M0K3D6VYo2xuKlwu34BpibrAxYp6KKIMsh3pbH7DF9oso2pL+N2lldEKzAoyMNSrd2XOj8oRzxiodCsUewFTNe/2H4G2GyumuGx7m6PEJkBVMR6CFvMpftOny9IntatvHTmN/+ku4xog2LfmshY3g/C4PPrApvEWPRCGRgzgydK0GhrIV4bqb89YSF6Sl990FVmaQPdWP7s7wVg4xjvcBXkU8yBTzYR2wUEZLFZW/jTvqA3ZbKWfMTkPFl/4UL4f/wNNxLX1C8pF+Bjl3WYaPRcsSJhR4uGTJR/T5ev4HCS8j8z+j4b+uxqU3P9CaYIZz2fts6atMjd4jYuBZ2WXSnGTn6Q1n1vKM5Xr6ZTsZG4kmsBPtRiMkJ2N/0OlSVZNB/Ekm0bYFyaK7uRtltfy29nnZM+NIYQlViHDyAIUUu5+CVGxuR6UrSrTTqOmlKHKDkHbjBNDCS7S0a9YWAJ6xhx85kYXuILqxBHA9SVa7nTB4QV40T4sA/wCT/yiOUUBcEU0FrbSVAZ6CvqZ+IbIkaUMCvlI8J4Vi+sgwhTvWFigPp8rIpG+mhEKM/V4urtnceCHiLH4DVlIgjrfRG/b57mSQ6UpkQ6VrLPB7olSAj2F/iA1EzVN+7K6bsw59QkdM9KTolUv3L9NWZSB8oiK2B3B/HNxxLngdPu6sa737LoFZB8FHIqgvPhsZZwTUlNYR0JzwML9ry4O7RDt7k73rM2w/t9nqs7lY49be8gSxBk0pBQdWAAPQ8XDOIeUAO6LDE6l3LkBvgQ3dCkz0ZpbCukGNrgB5w0VcG9LhhmBqvk56SS/JzoOnad8SYxce9SLIBAZF2duL1WMP9dAfGeQJDQnGVlbFOt/J9oHx6D/YTcxUJ7ZJOtgBY+8JlgyWXDN7E1+I3wL7lbGVSiYplq4ijA6VM5tzm921vK5UkvxARctDc3pmi/LJzIEOmdeTsXGqDoIk6MGMTJtNZzoEq/k63IUpuiJoUL/PL7ESlzgu5sC0DhDzER4qkssp/46VgYn7m4I7vKR2VTc6J71ccG1RR5Pv5HY56byHPl09RJIx5NlS9Y5Tu7RgvFDuHtEwPfjaIl8IxXGZ6lIELyZ
Variant 5
DifficultyLevel
616
Question
Binky used the paver pictured below to pave her pool area.
Altogether, she used 50 tiles.
What is the total area of Binky's pool area in square metres?
Worked Solution
Convert cm to metres:
60 cm = 0.6 m
30 cm = 0.3 m
|
|
Area of 1 paver |
= 0.62 − 0.32 |
|
= 0.27 m2 |
|
|
∴ Area of pool area |
= 0.27 × 50 |
|
= 13.5 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Binky used the paver pictured below to pave her pool area.
Altogether, she used 50 tiles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-L4-CA14-o2_v5_nts.svg 300 indent3 vpad
What is the total area of Binky's pool area in square metres? |
workedSolution |
Convert cm to metres:
60 cm = 0.6 m
30 cm = 0.3 m
|||
|-|-|
|Area of 1 paver| = 0.6$^2$ − 0.3$^2$|
||= 0.27 m$^2$|
|||
|-|-|
|$\therefore$ Area of pool area | = 0.27 × 50|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers