50043
U2FsdGVkX1+vyljQKkG/7zfhC8QsuCQqQMHHHtWYJwuSJXtEWigBwo7FBwJKY90qPcZkgp5iHdYXoBAM78NCwu/x7uoGYegV5IYeb8aM1B4L3U76H93AId58ICVD/MkPQi1Bdye78AcRcwDF4wTUucfYGRupD28nQLFhVeUTTixjvz8ncnDdziupPeOMoMriea9gaJsXtZSOgh3NTRCCFD0ZALJzSZjWtMc8DANz7+dZkmMfwfcz4Lq6YugDZJnVW5QGFbVoIXr8raEaFi2y8dosFRHSe6tjBqvnGm6k9v1KMCRf5KT2VABA/7laT5O4kjgjxfvyfsU75Kp6uH6uvWVQewOgG2G6nYDOFU3SThnSW6ss957NTbffxzQr3almFMZmFGSULhgPrrJ17yobdBtmajEKLGUNZxsPP7LArJctw46I3hmOTVtwBzacz9a6uID/CMCOUPQ56t0XQwJ6H9vdLMRr5drv6CCpBqOjAqH+Z9fDsOUT99TBhPIsljF1Niyb1QGiGOYcjlPLiy79SajQENmIE/ry1zr/OpXWodnev1YhdVgPL8XNOQEdv0Q5ugsE77l1J2Y6Wg+ntIXDVin/BNPFMPacwg806rY2mGndALGnJMtCr6vZ0mfVjuOjxrLr+BRmXAPZvuv7CPJPaOTLvzI3u7+MSGSndG674MaOGwrpexhV5MPsU3VqFETtcWoQimmUhzhADzBsCkH1FbfaSIqdtRUn2SrnbY4pRcJtczrUXTcEs0AmehMzSb1YdABwkVJ3GeA379ddyfNGCh0MiZPIrGGh8ZbP0fqeujWZ6V7kGTu/M2Tn2SlvaGeB04+eKLlIuElva6A5XIYrqGeXvn5tz9I1Wf2v/eg910OMHai10Zdpmu5fdffUY5CdfoQy69hu/B+gzlgKE82UNIrsqYCIZS5GJNvrNlycHO5HW13ALh7w6schhRk8i+C7WNdfQrb/eawGukLcKzjqxGoLIw0GOxD0gWB4MJJyp2eiawbUDt02is9k/6pPqoEYveBYZeTCGuH/q+LzkE/yaM1ENxeAtMsrWmR3AI741BHXWrGydjTUidILk1WFLpXw6rdEe+3+MrPyTKc6371TRm9e/xl1ndJLe6GSzUVODoHpl3NA2zGvExM3Mke+AdxVpHvQzPZ8cS/4l4ay3Gf5ciGQnU4CmkjCOmqiaarAqPou6PGmtEh2orYpSIknlBlh571URXxuRB+bBtqriajc6dLpRjYdljb9axiMMBvb9MN8ddVZwSZDDE2S03FWfzGwxaibVr3WTedkjuO4BNU3EmISCbGP3liyMk60U9KWyVI3CHq4zLr99pxszRJ3qSakNZVAb/FY36AKf1wKIaw2DPbgGVyIBKKOC452MZ4pTiA1orfjPcmng6ZwFn9WYM4d5LuYbUCn2vq6lgOr5DBkSZ62kDByzcc5oBMLU661vWaajsGdd/YhNfCu94AFT/XdjFdxatS9CmZHhkr59dbCwk4dEw7XhkSl+/PQYzE2ogJuTz6YLxt2hjDOzac580Npqro1Dw9LojBMjveWe7KjqpacFhYA1CSi7Ci/dzvCaL1chIe9QJOMRCuV1O1H7RGBixjkldusNxIwwxG+rLFD4hLuRn86UE2pHcYdE8t7GCpn1yiw3twgeoeNpYBn9o4QA8iycqY1YMYCJBRdE4ywU2nMmkf7XQhU6ARMAO+HNQTfwT7UVrRUFOJWJPsIatcrYNX7EUmB2hnVoT0NF6AMEw+QNGJBCXyF/E24bpn/aQPuZgI67QiL5g6OyJrw8kNmUz+HjhksV1R1rjNN98o3VeVM1Wd4ucNVII1Cltrh1Xac0mAK98chY9h9eSunJmtHJocb/IEIZQtHpYIeZU2/tJBoAB24A+URjXq9cB4tL2AmngJKNpHiMGVvg942mk7SaA1/W9HynWPFonM8CRqmb/5cs34aGw4j4WTXKLq9ise1E6B68CeAFUo7T+ApCBHSM13pXlFwaDXjP/czr/x/EdD7Gio0NSaWHfBFi9oZOiT+t+oZoGwFRf5oe6E7YBgv89XRi6ZvkiOqWU2WFODHv0EhKurrj8GlOAUuKY48UdqzxBWGBIczVa1G9ItHypuiOxHlTgLA3bOQVVuJ8+10Wr2/cZ3KzT/61mS1QwAa/b53g76saU3Za6EXU1DmjmmT01N2MVUaPasLtxfyrQZCXiJvdDs1BvOYjk3IlVPlMXitDYdMAlgHkcEriCEMUiFCPvnJ09bZZQTe96za7QSiZ4EgFFnJx+hSBCED0O1bAhM3YEojcyNI0xH5C3tuqFOSoH8ke2eFQmq8dY8J5t1sezNT9vCKvO5yc7mzW4D4Ii5uy8Si64qvbsMHp+fl+qFw8EcFcql1Pi2T0brj9eORZta/TPBVbkU/xO9H3H6EYw+WOFrIx3udzMLjlQ5UGgvAyrMTw2LaKDtKs7Qxnth4pK10PopP15UaETziRSH9kY0B7LjBSBTisy2cpSF5OJeDNcf6zNdEQGBGLYbgJw02UI608tN7LPyBgr+U8MDSUIR0s4rT0v5hHfO6XLurbinXoapJVaCAVPTI4uowUiM5weusL5IOw4cO337CSFHVdOOJMyKCG7oi7I1oniIpLvNTqqLV133SjYUN6HRaYSPX92Jt8HW/fhKeVKX501k+6NW3pIVg++ccOqvCdpVLuHF5p2thrikT2RjDgCEImVE/FQSQg/yVHp6zigbwWNkxt2WnhOl4f52LF+WbC4Gd1GlnMl8cw4GSODWyXg4J8WhnwpZ4DMvwZ5HSJnFmbkvejbilHpp3nsXARhrRTKSYPVaAlpNaVx4itJ/DTrjTByglYvXXyU247h5vEYONEBIwSQf2hmxRtLGrEVsx0JuHaJK+QrMT3abnf+p5kgFzqXhBmSsK4jwKVqbNp+kPT6OVeL/MPX8dl69fuD6Frlxu0ifEF+/T0i1NyiIMaYHHotQDnBau0tI4bUKBII5hdnuC/asfvKq7GcjHDoXsiLTCOBaWfqShkX7C+GzxuozKWEa7WJdt8fkE2LEPBf9bN3JZQEWAsm1l9ieW9Wg04nUIPT7x2qO4A3WxyeIl+4fWzlV0S4I1+HEYAJVDh16qLZXN1htA6faF5fPUwjsf7HK1+/4qKBjTqUPtD4O4ITCQtV6ygN9g6NwBR66Bsz2ZGuiMDTPZSk7qwPoVG1cWwOcG8HVIy3GXoD6hiWi4M9k8JSK/unhiauzEcpxT0PnFOBcuLtcPG3fQ/m5451wHwtACVdjHKan33ZBzhzrEm041Z/Ms5pGGSgHD/k64Jda8iBTGLsI8xEW/J6QREim/Lu0vp4qBGijyYHO0Vu1OyzLJNCjZNmauuHBv/EFw7VddHsgfmbfM8/MQjdRthDQRijh5P1Ufw7RIz1k3zAjSZ2YtAk/FsiKWBz2Z5Rj1PrdEBd4Qp9ASaXfWMc+64nLuI8xYV1JRt5Tk+uDzHu01NY65oLvqp4CfuOR0Sw55LINnqKXmYVe132ZmmyMavV3Az7TCV6j8HLUyLKrsG5GIifj0vPVEUog+9zJTYjlXgQtnq+sioEotigbGoKOG5Crw6+LjiJOvJu17sw+6wKqus2GzXLhGWdhqzuzpJALj5wQSCf1fIu+9eGVJPZZnXqIq7Hett/a8M7HzdFFgOja4LDaZN/y5vF0716mvKsOyNuvtjMfa+PNOYKko2enlF6Qn3j3NIYrWG2NxbmEQa+PNTnel2F3LcoyGa9KOKf//5xdbcfIKM17qZpBhePI+mqm/wu+cgyNslqeenbjPDfuVyO3LdCjOlxV7du3hIl7KD/1y4x1HfaS6B5C/FotDcoulP2RJpy2hHZpyon9EW2VuUl+zMquyzJSu/ce9C2MtBqSBxM3Vlp/RwXHoKFJ7yvYgcuiNwNMx7y7sqhcO9A1Ik2ioUOheP/yQBTkJZknB/tZMBEk8a2EtqA0oLg3/m+iK532Ac5/WVW3lbZqOXzjCkPUnNxbDJM/4++7dz/HqR+BjsO1zU0TLXfFqR/lVYJyZHYm5HgAN7/lwoeU3lWIapB0+GY/Em6jFJ2UFR/rE69G9yrZYi+TlFD9vJzTPpximzVF4h9XLp9Opgww3OoMumxlVX6bRrS527sZJJM82xnsoqieFGiHfiWhpoJ2P7W8mppBGPabQg8y2mLlCpkwY7tQYuraAIFKGQBpWo9BGoLkZlxJsQ+R6VPDe/0Jh12i+t/FvKpOSDElxsGl3s42ju6F0wKi4GOvjACSOQpvsZLA6O5LZ18hHSluIPG+N3y4Gs8gdDYBvgxiAbRfLjXVQZ7L6ucNa4cPT7O710NV/fyemw0bRLLJtUsxQKXttkKuEHVfHGqUtufjJblgBaAItltcuaBLfzESuTiz73bhxYBCSp6fS7pRfkOrKck6y7lSp+FzBusknnL2EyuwRY6zkk49WzerjtrDdUc1rj/HCUhUAf4+GT+9WtzyRfX7I+U4+m9uZxpjTtN+s3OPqmxP+u5oEWgnIabujB+5bwrEUQ7+t19i7kI4+AjpyEt8ESACLaEGyOsKitqqrYASdw7pFjD8tDvOHwmSwM35SnglamxKBq/IeCtbXBudehuLARDVDKpg3dnn1RnjXrCjROraQEdbIH0QbuyCZE2Q71sZodlmV3PaD/f4jSVfPm16OPJPH2159UQyVq6tMgUBDjNOUbqQnXtgQ79Z5Q6kbIU8cHmrWVExAZ9UCX45bo1ku+mmdDowuGlx4OkdmOQgHRf536Mqo35Gdhx2eVkNDqyAPacsXRl3KkjN/Lo5OnwEsOdMnl/QNjLi3/liQwLT0+094se+4x1cWPZSAizZnh1+aYyJizx70OQEVSB5L+713pC0P3p1xFqbkp8KMdCHTAr71oM1B9ty04yC3jhsKxa79jvMOIscDVjOcOvGrgrD50cYfV+UbjteTTdcW1HfxgNJUEHUPZ/5J6nGQKnfQ6B9Oob6eK64EtBhFtoDQsY1aRn41ih5t7bVmOpkwy6MIKraU3zp0uuIHCFeoymZskPXpxT+U7PM2WUJvhNlagJJmtArTwwIghVK113U+7z2syhtWjH8QhBcHEt5pWZiEqiMpvo5yQMeNc/MmXTB2KYhDymqgOIWU8uLY4DkTMlDPikrvQniLDqrWS4ejEae/olSh2iLKdfglgQLUVU1A9lgPTt9C7AV2YVpYjXmuIrq9N5ErLZdC8IwWFBL7msKyJ9Ffr+sNXzzixkZBmUXW4raMov7g2BF2uT7rX+gkzQkIVBop0s+C76bH61MwYpUpMZOTkNy3k4WaE0y5xwmsYXpBx4ef2RbIhKEoMvXb3XXpDh1aad2GmXxSgZTarvoXdlnKIy0XhjgXjFHkg3zd3ZnRsBzPFUDLqx8dV6Y2VlaU6cuoE/opz9WGgVbeutotzRfU4DfAibRQew/Oc2m0mPJlFKzq0H8gIyCaJsJxxH6INorfXqpTiA/4Lnjz69nSOOmdTpXNuTxM6scU5cbt9PgzIwsnHuW2xNVJ9D7/ERMaA44hFc4u3e/7VU1bEeenK9zhFpAzSsjev5O5/gp7cQ494TpjMzbpF04ZL6qlJoZfinDKe1iokD5gs1koe2Ml3/glPV6xWK/bnq323gHO1p+otn0mV6TtzNYNmFx2NCaa0FX47vnlJlGltrd5A00gEIwk4flVwfULMOx6TWXvUMkeH4EbPX6wCp/bmJDqw56EycQldqdQoh6N9VSgh7n9EieEVkaCcTi7CAgoOfIlNr2mN7MW3FUQPAn9AvjZF6uV0PNivkikh+SG8BGL1MuqTpnP/A5P+tb5nw0rBb08RYrDLsFvMa9Z5lGJr7vVwvgGMpc7c0mQ3T3Xy5yVTjXFMZm1DNTuyrjhIgTwhO3brSnODfKSbfzwzy9+fToX7FQcOKlLTTiI/C1VcfUipPH2RsW3QN0qiwlAecP40pupzy3eQ/ka5XfkdvluXycBP2iMRchmcjrFfGdaWfo62+mPV5yqIdSJKLsf1z3GS25cTNhbu/KAFEcUrHq4wcu3xYOHykeENIXA2cepQpDf2MlRFyn6ZHPwsbCemJVF3nBVhKD6NlA8O0PsZmyuvIiwrFv4W2eNdHFN1JiaA70jc49oRIzrf3phO3QnwMeRS8UxnwBQPNpJvg5ZrsSWWHHDqjg+TPUWGD0kpnSfi+lS3eWhHFaG0KxmFN85eZphR0790SYTaPZmL9Q7xhHkTQblU+Fu04BNy25C9bBhAjpD9qqKfGFFin/Qv5xT9JozKbN6Kq9m0uDezDescBfYtMG2oc6LHtyZPPtiKRAJiDct+m27d50PAfNy81ed41fnTKsx2OkhrY1SjthSqkGMsf2/wNoY3fM9OGM2GaYQFgUMLv4RTIKSXp/ljXzk+o9fRJN2XQKjDdFZHlJoFEBjQ4avbvEHm5i6MgdyiBVcVxqz8o0TQZRNLvDgNpAuIEKfyLBFPDU3dsucjJomIDoiNrov5mYXPufSFBqvEy1NrsCUo+9lHqVSmJDl/NyHaY1p91nwbB+30AwXIn1jRAUX6J0O/P18+wVqEjx2z2d2t4RZADpX6uOttbHh5/VOoZ3EcU+yjIcVKESvYmR4rpvcryscd3rlZFiPeZhaFbzTNVZTkce8DYRGenVdBvoSKOvzKYweFUA1WZUv2zbZ3RZ2qANIKqnJPyKW25cddrsMdxvNWFIyDF6VWYZGuVuztG/SEcUUotVSlZ909gnUwxozOfkp+IVX+g/B3RLpLdgVo7XN+TGURjFDgXDWP+dLUmeQ/lpX8J5mCgUy5/xDz/CzsJOe97UXwVpTFUfeIk0nJo5Z5O5Gk3QpwPetp/MEJeNHzO/q5TMqHv1zuoceyHo+bQLje3Amfw6vHeJzx0VwnKuMXJEQqJWx3gU+UOBuj7N9FiWQmuADEMoWULO2m0vbMaELqtRMe7fOAVdmovmmL1LbMOMpELhcRmhNLFYhivwVsaqVTtm2FNP2Yw2ciW2MsZyRmhpELQW3nNkXjQuzMpup4w/Y30ePhYGxMIAeGcUUUOh4N70t7aji9V1krFcWWUVR/J+qP4YE50NYWpyH8SZnGu8X6jZyNmVqCTuH65YSirRg5ymG6kYNbz7fdlSzT3EHDu7mQnodYTlo9mlGo0khLHEp5uk7FMZJO3sIzvgsKWqMqMakqYFyZvmn/rfR5zw/s9pvfwAn3wqSSENFcyRbj+Z/beV/Suk6VZ9SsILZV7NKNCKQWqtdqyVzpCOjQ59azoqFvrl09InWT2rVMop9NIyWnF6bsO5pvyNgrI72V+diR1O9yCVKjHmGSI83fcE+lq/RlRKClC0Fw9iHvpHmWrZ8R3fOsSfgJJkEHVvVfy5ct6zlAj9QyVfb1Nx9YcsjWyyIEXwJNngPUq2Gnua9R5rtJGWBG4ezlrUe8UEngkWVZs0oseeqhbWFPbmduEKdLF2YBVSmz6gRCyozGoKMvyhEJZZprhf0ybtR1rETeA3ASAnCg4ETdWJEAMaqvy1LVnEVp3Hkz1Kw9u4ZfXU8QmBUTSky1gML9rMiT0IjZW4QHzofjvFxlTunJ+NT3uLz0h/MG5c1N4DC1hGW57gX6tLhQboyOCPDQ/6rtb17lPa1ZjUIA8gi1kotf6gdtAUqEQUsXSNFPuW4++vLMEYBdljtoSjmaoBS+3JAErd6Dp1qn5NPH0sdVdA6S1pSSmXzLn9aHug76qaFqJjacOtwEfiJdvrYwlrh/Nv1nVmMt9ChL1OjvuBwX4E1VyTaT3wmS4Z+2usQXghXQMp9OwAdVaSA4MhVqe7BjoCNKwKLqAOLXltp9XtbgXF1OS2w7AKeio78S55hW+hkVqZHvbl2/Ru1rAkg6F/KzgmBVTiEKWMq4JO/cF1wJOC4NzYSk71RR2UrOgsdQA5kEjQW5Uy5GaKHwnyQAWA5UmylOhgvjRJsxqyS3vgcGsE6nJkOXVJe2wqnLZkr+/+gfkb4pqqFdS8BAs5HUmJ2rgRjvZKBt2/Mfjc98Ob/6oxC1RDAZmR7o2uBh7C2mhCSbQKCs54BD9fIE9pI4DR2X30yYaDhJniZmI1cyvRC6Mz+mmHdDKJswbVUES4c94eXQo/IF8uy21BcKztPV9II/RGuNsL4r+Q4EefokW8An4DUxeOrApafylUij6gVDB1EH2YTpiTnYikSfCU4fxeTYJYMa72FRO63bxJ065KFWFy0R7wFa3JGhTreOn9CjGzFXvw7555+HC8plvVttKEj3rnxPNXhctfZyZM8jLwOkaEn3nV6eRsPeR+CH4/IlFCwLuyVxl+koSkkry50bnHTJ+ARS50onXmmcYmlBxx8TxrbsVqT67l20/6J4EYRuU1w4UMzuBtgCeMYVQ0fzoI6Dj/4RilxJMuOP6vqcCr395mPhFp2E7FX/GGsTneIhlT12AzjW7nuQkEqf6yW56A1RjvyPxB8i9mMF4/XElaJQlcj/txPJZ3rKWR40ripE333cpkWDVbtfu4P0ilkbDx6lJkFDkELUYPi1YdSVSei15kZP/Ihc9Ul8i+4a+BT3tHrLggW/8amlTblW724t6sWK5RNF05XmmtifU400+e0G8VqtABtsBHURuh9tSohDCNIID5n4nlA1tP0rKlgNm+3Zq724HukI9ME4rbLXye+6gZJiWrg1xUPmJnUKZP+mwERLiyfjfgCGduQGxmZkvSK//J7ynhlyVi6rfu4r3rzZaButXGGi/TAwuuGxbNC7jr74TwC9sGMT2bc0yrxsVsgddzs85fvT1hnqemXQza3H/HKTUFSQIozBqMr0uQwmuTq45+kuzhs05mVjWuqDrot31GNQZbfV9r7bvAO4qdhqX8k+3iC2odgh98Sz9OygUjWvVKmlyqEDqW1BOyhoRDRMbHfICaUKHwjlAz8pK/E3OHT4Dm11I5YFWkziOpQJ6UrVrl/sqcM9eKPJVt8Uf7zt2MB6PTgTARJsH1CqpJ2vpj2p8NKBfYeKjoJkfG9gzmOun8hAI3hc35cmxY8DoD1w62B0ihDlE5Y4jfTIXC2BWlyC8a7WokP0Eehp+IPwUgPPte5QEHV4EnDUG09pqPSqkPPC0D6/7Ajg6qPHoLeEYqkQabUkB5Zd//3AuOOvPXWK70VX+69YFesrxkJo7Y/EkpL21Lq6Y5QvLlfX6k8EC6C6g7a4vxeuxrHLEJ6kIkL2mlvu4w4wJZtBsKZ2eQ1OErqPoixtuY3v89nKAZH/6aeDXI6fr0bJnk1/KPKz2kpisXCwddFxUqpP4T2GB0ws1iRl+CDyYyCHGVSb36Ixz1jt2ks4kCZUouwbXATHwVR4xINu/p566NYCSqSR0IiSrYlF34po6OB80xoTuBbVQmyQ0PQudiqNQdIx5SjeqNgPQa3dZYGA6HQd7Z/KrhpsPQ+QLRC9SiGBoZytqJ4OzxXGvJtqqbWw9609sSIvAldPSBOV/g6kGp0WPQUcW+55Bob7kSQSfqyUEejU0N8vQfY+tyarJDaLEGg+3Y4EYjxtQD2dITQrTamBVPVfyNK/zJ+Rc5Zb5sjuTwlZdUA8kUsEQMFAE2GpYQtxR2NMd3GXzsccptw2ZMztdRrih311nlpq4eGJdAuDMhIBza3biYs237IZ69g7deFxQl+6GsBFY7pgAXR4mxUyNzc9+Jxgda0KWfiPGMs1+wQRQNhy47DEdTyh3s9jzn6uo2vj9IwUa89Lks4Ldy1Q/vlTwqZR+o9gSVXEgTt0pJkDNyuGUq5/Yn07TVwrvTCWwSrcHzNOKLwGEM0VCeN2ZQRqjeaaWw8Iq2gWKMHuOSG59CGwgHimFD2xBNU57bnmiAhWq2a0D0pugYiYhbi1K+a2v6cGgve0KedgD9HcrQQA/9SZIcAVYgjc54px8hQS55ctZ8542Ifei3oU5pi9xCyYNoasqILHRaD7Sqigqs4vpyXRg7qFVku52zQVWm6RANqFT0qHCuu1T7zo2H/dnbYM6++xRHDcmv01s3CQDwcH5ZMzcUPBzBujLwxe9DwpneHNE3NNsWYREbmoP3FwbjXA66CC24mEWh3abe5+zPhAYWPmzDARf8/YX0rUmER9N3bu/alQkoSGnF7ciDY3VfX4A+s9T9reJXlwsSUq7/CPx5DB+agV8ChKaZGKsetHgwZhDLmow0PIxpTFF8koWJj5efyI7fE8WP0cxYUbGtpmffqU9+G4ROGyfyIJdCfnwJktR43MiVtTXumDYQYGydlq7p4eDHQZwBswfXsAf476sJIKr0r7tXo6+BSItM5/LFFVMTkoGtrTN/kGc808gCbbUlbavpnivKhug5s82awJugA8NEAfdUJYbRh3JN3HnOhIh6YjWo3Ee9Hdep29alvLqb07shXZPD85kR1WNiCPIEuv/tfLZ6EvGuF+8rhq4HZ3NOGPeFiY6kOV+RwSghzoMkOlj0b+dp0hn0wSr0uiDecfZIWrQEu/bdItH+4WzYmQi3JipWAdz37loS/Vn0ncqrDRK0XIDQbn75x+SL6NJKBg/+f8AdMqp0wvdilDu9DphrfqxfeyVXd5HPw7LJ/S8mMEfKamNPCvnPyvGOFwpBwE+whKrr0naxlrsBtgk7k0LtYomakjYUdCg+GL1kjeC886IhkTqWwUqgitazVOcIZDOGoQJLUn9m4MWhLMKb14nlTEq6byOuT+15zDF4HE9XGMVgttW3WSZ//92l9p58lXt1skQ/BiBnhMSZ0fTU7UAEyjwvIbhK7Igis3Ewx8WtsJnJ9GrDm54R8VB4B57kvDFLSZKwm+geEUJg+9vCT6jZqwszj9NkhyOJpb3EeTt18/sWTNKH9BzEK2pKJd2up1B1atyyJCnWdPSLjebzeAH/DQO3GHp/CRSbRAXtU3sEhEkNVcU+YbKpaE5aJN4Kk1n+UshxxN2NHSTMH6IrAAoBrgnihyHGFC6VaipzvYMDJB2w4S7BTvCMjfxxLA6w45uaLE/E5CA7C7DV3emOSrT7w+on1GzlCpEiDGgAHS64d3Q4NOq4KwOyFfzvh6Klh00GYbLJKC3KFY/HPUm+k8Kc9S40+ioqj0//gpPfXsrlpI5/4rfB/TLshqYRO0FCliHODgxBt+ZsWJszziSHYusf7a8aFzy4vCx6XxnTEsWreWOpKnNy8CkcoawGiTdPqR3GfjXhL1dSil6EQsf6PuZQL9t6Lql+b4965hR5rlrvQVzp7NZMTrbjKTzHbeYzMQ9OuwsCt05tQBSb3Xpq612OI9U19NIL66YJPVBW31m69Vs6Md74J8S2oyJCgdBqTO+kTRctABoSmllgD+wl8rUdwP8H7ZI08LZ7r7GxwXEBPJ49Id3/JDGQzOsPev7wqZlO8A63xD/2HCZG/LQ0KQlf6YdD4DpoaZrcKCHW+Cs4x1VNgMxIHsBsnQPCrIJlREQdpB+0b08jEXaVwjsJcAKblCalmsSgrpJH1V2sIDf+A5MoQTPkQiBWVSKzNHv8d3VwaxcwA6TqXu8lk1ssgOH+krjvSb/OKnsgCtcfhWX1D3rN4XPdo4kMm4lAaTl72/Bmz1vae9sao84V2T408Kv0279YBcus9ZuHbHxBslYgcxeRG1OS51QsEGcQBEcCBWlgUP55JlsZDissHIrn35BOGrHayaLM/F3i/FK3M02i96IQ0WsFpyuX1Bn3f4oJEvoslWblgP9sTJjc5HNq5UFIXVVM70hbZMy/nYDnuzr3WEl/GZvk9hl/EwepqVA2JnJFlAnl9lGk5eDrSsO2W5EMSKIjwnMllOaSr5N3pm0gAgR6rsh/y5UHxGcUtXfMF7gFYLc0Z/7uXlTbCrSJMjvwm0be2B0+V3HNDkJ8AV8AyeGArEL2w3ZBz6KKgnAUgOthoPttWD/IVnFt+YTNCOokuySVVhk35/IZwDEFH9n+o5bggwWnM920SIvrYyvOxu5WkDPeb+COQ4FgJ6kAQeILfM7o/wbzyrt+6TTK++Q5No03FcrH2BSsT5P+9j4lpDCQpVJx8g3hSvDWEC2o9uEVYBiNXC1Gm/0uFX5CWWdMTtQYSm9AX0lnRfZhs66fVvsG39Uny0c5kuT1HyxHFjE8yfwO8e4WaMjBgjm+tM1jlIhsNOk+cmeRbv/agnQbpSeo08zzu
Variant 0
DifficultyLevel
620
Question
Lines AB and CD are parallel.
Line EF intersects lines AB and CD as shown.
Which pair of angles are equal?
Worked Solution
∠CPQ and ∠PQB
(Alternate angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $AB$ and $CD$ are parallel.
Line $EF$ intersects lines $AB$ and $CD$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2016/12/naplan-2016-20mc.png 320 indent vpad
Which pair of angles are equal?
|
workedSolution | {{{correctAnswer}}}
(Alternate angles) |
correctAnswer | $\angle$CPQ and $\angle$PQB |
Answers
Is Correct? | Answer |
x | ∠FQA and ∠FQB |
x | ∠CPQ and ∠AQE |
x | ∠DPE and ∠DPF |
✓ | ∠CPQ and ∠PQB |
U2FsdGVkX19IKJtw24dXS0dlWD9elRBD6eu3DMzBLM/JlSjDP9mt4wxcrt20gdESKTJf+pb3hLIg7rthA6Bf6iINlUOf5x748kiW6OzpEwKmwzQzP5NdgkEaHCe/zPFyHC6Xg91QjS0yJf8IuGBjMIlDTFWuFtFk5Dy/jbIXy260ldxsXzlc5W1/4bzSD9TLcHV3NS6kIO+tr1XNajNpwHVYgf9FFhBak1CNe7OWhhTv/tJxme4aQYhWj1IgsrJuMYPdPVDU1ng/TRXyaXOkTZR0Q7IWGCAnPcAhmxjeLP89I1FyBURMVCzvlOjk2DB6UzBSnaiFe4DGQccyqwfemSbcfHh9Pej/6uw3mSgkIKqoWOfrDoduTWkwa5xZRD+F416wV0G8QvRhS9m+Oc3fZlw19gLcwWpTwwGBau0G6zCvR2/P7gWGT1JBS3bO0KrvtCIZux5Qdp0Qktbmuyjm0rZTUCiHgDMvTUxX+gVL6VYsigmMKTMf/E6D5uxSvtITbrcWE/Sasz6tiWcwINq0V6ftF4iLuM9GRKEWgESC4DY0nHxfXrubrF268qElAZJZW+sX05SMByiD7yvYnm9kNHIthaunaOt4w2+AVVoalUrL7J7Y0wqiNID0vHcXBUXqsZUZUNo8IroCQYqG3KseOdt+qriPSmMJuMKVQwrsEqSZizetGNzcw4Bur7KKO/FcemPJHHeoBR6ypGAJWHbjS9ZQf5iVTVcXxaxahnUd3Eubya6dNxkqmkZ7gpvcJ1S0Z+zxiVQ6d7yfzxohmw4fdMHr7YsfAfzExS6O2Mh83tn3K5NcaKPONBW+H1mhP+3tSSF1bf3HmMABEl9Pf98XrY1r1bX79/pSvSwMRNRpPy8nk9lDty5WvdVyqBJtkKE3Cilnca2Mp7FQC4OZlcez8SYqXCx3a5vvQ+8UjiCvdg98adlfPZb8vMyiMwz6I3vJoZ8HbPEfR9AZp+uWgfWLj2UqIpYSXRQisFGxkZ9PhgkF3P4qHY/rR1kWlYN9ermS1aU5LrDzCBjq+k00yqevZGkQOHoaYv0F/x2M9gtXS0JjITXpsefEHedp7Gpc5WgR9jIIrCIAL77BrJPzKqeGrt3/tBTwuPQcOK8YXRi8gt5w7VLBi/YQgMpMkD/UCSNReJkjiVZSTGCaPF3ZB/uDpWAUIktsvUmJu490nY6gKyGAd3yZC6wP8jkgzkHVU6aqePHhgKroLzvpLohpGkQ+sjF9IldrQ9vDX4FaxII2uq5aki2WWoFDB6uBFptxokT9vC+K2yHtk5tE6ctg83gCt1WozepnTc2EWeWOUpYNN5eeaHJa7fUwRmebsoMCob9LmXYFBwes0fAFMmL2LaEFXMJtK+Mq/pv/ZiJ5SN+yUvi+v2LFim7glFJEnw5YZl77VyL0QyMY3pCB3Hh3ANa/iPHODn6B3Y7UhHDp5Efn1xeXkuik5rusip/PUyey4UCOA1Gc1b2Wp5x3eFcJeh84Hu6f7zYW6aiyGV651+WfcXGyp+IlCKfyEREL/0sRiK7yGpPMB8Bn4Yk+5m4Leh9nySQru9d9ptDgkUnv+eC1G9FfQ31bPCi9wKjSk90ELCWWcMiUH3U3q2AND8/P94Ili9bsYkl8a9dBND2U4B3MDCAN6Z9DRK5745g42XsIYckS7URMFXQjmN9q3E3WaJ4oBL5J+fhnNiz0mOoWocxqdIyPDeftTRz4/XmP8qJxYRGRFd/lsKJ6b7c0vwmtmDTk87owEuVtOrFcqhjlBHOMOOGYPa+LwHen4iaqDqMuwPPt/unYzQPbn1Phg699LjDPROwEZtS6dfydeGmL9odwYUhT5go4DFi6eWjjLSadheL/6eLYmwunahDo3u+Ta58FH3Em8st5yosXIr4KUeDTPxnXrk8ORMEzzytNnE96p5/LeIMrtSySDmLnnEXGo9EqTR1WNEkJ+bppFmsfFMPXuQP54E0cha2DdpKE/c84VDBhTGd3Ag5PPmh02gTAKVXaSvq8rhJ1JpubLzcpbJrbThHMXtHVfgVAEP9p7Pn1nL4OvRPNjK2dIsSUyTfZCT/IC1z9ZS2PbEzuJboAcSJLzG522z7ktLZt1X5WHH2UtvJGtRBIJAZk+Pk4QC9oSVy5QUcpkFNJAaYvHUK/U+X0Pv+bbiNyvA8lCTc9JFmOJ8Cqqmf1lj5lZcSp9LZpiT0Yk6cz13mAB9cIN//fs4KHxowpZzXThy/Cpcq3vbv6puHVP1Fo7DInmGmGkUnRYcwMIn0OZbWAMfyCzgP9fOl+u3ZSzIgbOHAdhtO5vH5QxqgrGXszXSBHtaNZQwFEm41qBYCi9CvetS1IqOz2p8ZydizJiFLiZIppA4EwK6NL8y1/dSUtoGFI29lWwCKlrs6y/LLfqBPQnWLGVS0dMEnXPGXHeaDQKu0PIGenIePnJ+nrNGxAuY/l1Dfa/0Bpu/5FuIx2Ugrj5NW+g5QJwmz1Ga0wSmVWPn1EGPXXPutQtGWlP/J7rq3mpKp3SfnIBI52crqBihHa70OjlYXw34GdoMiTdAO1gw/xME8b5SuSRkKtYoYzvJYGWzcXyAd6atYtlfeWHeAas+Oh854iyXqrUgQgyuKt00vD62tj5wPR5VJ43IWzcaxYNTHMtQTOJhpVZidX79/0RSySC3fFtCQbv5VsT40A3uDmF+HcmfNeem2t22ad6Zcphf9Z/4Yk4pDuwNhn75iQEZGuP8Ga3CUBBQAeBrjaTN0spxRuKpQcs+bmyZrTb9qqWbv2dWeCR9VGUBsVv5YYg0vuQTH/0nJ79Pp7hq2GU4WmFLmQrUwAK/Uuc5y68clpG/xhPZg9w1Dq77lbCzf78w1pP1txoxTCnq6pkF5yB75tm0sKfSAKIlIZq9Y4qkw6PRXnxC5iqITi3aLPrwjrQN86dA6Vb2mBJeDO29cr27fciGRASBPipIX+EqvKYQNT/G+R2PO52HcnIfd9B1IXl9oue5/BszMy2txx1gkaDy/tcgZzv2GvoBnsegGe0m+JGozHigorDDnTgrPDrezn9I68pEOwa6AFVT44+vWq3LKEm+o3f+aOFKKSLGDpLuf+53Z9cqNHl0kRJkgYwUM63hpEzEI+AnVcm/x8v2XUv7e071TPXTT/lSDoEp9cUr40bP6ulCA6tYzmxaP6nvPkxRoPt3XWaRgQcLc/k0bkmkX0fhSRLuENoug5XZbv9Qv1515DfswigqoTNCYtLDmWx8vlplyRkBkAQCkt43yXpa4FTPjfmAVePD7NOj1HNMnye3269TwtKzGOSrX34VtIjI3U3vxgW2lB/lvF6VEXGIuvnbBuZEbp2A0Bbr1jadL5GORPgoXqW850iRgN1k2/oPQ7AXmDC70S1UFVdfxkm1C3LMjeeTXXj+YXZPuiVjx7EM4tcz5eXUMqkXk1Jr4CHwcYvzak8TCsTEZcrDo51LTZ875u23SZLUQet2KCE9pfMbYnegNCbKDR2lJYK/nGNvDq03a0G8L4DKcLVA05a4mnJIp2Sh/sY3ztiOFR57wut7zWJxpr3ONhZ2aQ8LIsRm5dN57JVLzB+atz1EP6vZy3xuT7B6egV1fGi0muC8nuwNez3VqnV0XsNeMNUXH4QNtF1/2Sy/tM/crwzPTVl6/cP2ps/Oj1ZYIS486Af3mhvZfAIzbiSze9OoO0xy4DBUfm3qN06tGGWxWZmfR+HUiaD2X09Kfju+6kakwnFp90waEsx2QMElalHyYXQnDwU31/uMea+7i0dZQCmIdmCcEr+p6f5CLr7asVXYQRDZD1bbYK+W4i6FZo59qPCYkkAfuhOtxNO8rF7MICJ72K3d5ZQuI+pInMw+5u/mIDH8rhxe6mbRW/wHfPoH5T4zEIPEKT0pd5EVIqQVBrpS1K42L5EtG0Z3ixddQH65iIEXewkt8Nt592p0JzoZ8dTFu2lMZY6aw1MudMGFT8byAXOiioJlbq8/hbuE4lIhsThY+1OYyOonMNiUgvU+KVKDHGQXAtVD6A4orxWNmq06/q2VhP5A8uduvAr7afToMFR4CjgPjdDVRkfhMjjYnKuBntDFQQ0Td+anygfew3fT0sbTZ8UWvTrmZzR275m3MaUA9/oP0hDGfOtUjUGvTBDJZMZpKqf0e9/28Qz15S9hWfMTaL9ohpcABzkxbliHuq3DLVbgIA566jaRi++oj096+f+ZI1rIFNW/jaafJY3jDu5nauHfJCAk9c42qgG1BtCauZEYVdffneZQ18h63Q8x3QSfQte96AvjL9Pb4vxuNmwHqIBvlsmuRFnmBtidJdrSxn0mcJzESmw7oKq75Hv3dPYkUdRANiAyE5vZmJnUR9MFPR7K8x1KWSa4XoD4TsAFzFv+TX3+itVvHa01M0NlS1C9RnibOoRyGPS35Ok88HmzRg+xenmqLO7y7Isw3myEUCCHBfSBLC0XpOF3GYjzmVTEUqcDW37OeHUDVaICDVNV9fLi0HnNoG00bm/WbVjxaPTBpyGQZxvqaXkQ72eWNbsaMDTVJO8YfT6eqP+FMQZykhf6E6parfscDC1OshfXH2Hwti7h4B5GaMDssHsFD71cyYjJ0hwsexq6CSFIU1TJjnadZr8JnjtOdzctNxUwEILY/i6tq2pdsSFMo21VsEaoHxWI84cYZr0BQtBr0q6A2k6kd1zARTFMHJ0UPUkIYcw77f3r3eDq2OhnsU6RkZNybUphRUPCqYxn6o865ssp2YcvmSgj1v76R3P375AdBQnpKE3PCrlbKQ/OnN4QfEqZBlHdgBhWeAKBkYXAMCMT2s0bHllLy/XqnTX6oOhf2dmxFxdpnr/GdK+FOTDudJCMnp1jidc6Y3QPmyX/S+36m39NPGANb5IskZl//fNT0/WFr9l/OvuN5RinHEzAYuuYbda76Ksyda2bJxEOP1cvduvZuil2xdW4LYLGMIjuqVnc+Ev7WUL1frtONKoaBhg5Nv/AQh5VR13ddRx2S2QeAZrv4dOzTgMRuGPQNzJNPukvky2CU2lRazoP883rZtY5UlP7lQds5RT3/FtCWYj+A1tfiOI7Nnlq7bnlUuhNlIqjenmF4b+Nv9j8cow9pcPmVoHXLGyrixdloyMT/cSRZaHtX0Yh1HS1PftxZ3Bf3fkjVj/6XZjOmFhBAp75lzt5g5ottVXrv17fw05BTg5xp2I+YIRgz092SDv530h+5erdjzTrqUkrdx6MXYiSR5tllvbqIC3AEgEfYclKqxJvyUup5N+3hIAryWm3K2Hn8R9vMhQI1NaYPpNIynksJMsnqSNN/CaW802NxIcBOQR+H6pKGhstQb2Gh1vmR/ypQDrioPxDvrTTKFQuszbFDLJOzt3CydDTXT06afHHtDjRM46QCApf13mUdG9Zlx+m3qlDZMbxSLJf8id1QReBDqcWW+Ws15Hzk3ZIaMVke73H+gq/DU2M8hO2854zArqOp6g1GCocCUWX88DoLIg07ttNl8jF++Vm/AtR3FMc9ePjZah6p+dmBMOUnVZNAnCIHAjXb2G8zYUVoqyFJAWiWEMNbG7SjuhOhSJZuOvaQHiLkjn+ywBW7ok2NspXUHxKUMrlZiZj2akmsCqrm5wMsXShtA5lB+Px3LGVUxTyHKXUFJsR9vULfnC/iTmgczj8VhrZLENj0EBL1BhPXFA96Vs49ShkPjmT3jAy10uoNHr4F0HjGNzK05oXe4SerpjoUFToe6a3+Q2cKOAHLYQnZOneTY+QNQ7wBYWzOgXTWrkyFUphQPlBr1c6QMpw1pyMEa7UiuiSeofiELa+YFPhCQ2BrPCvt73LJU5/4BaxC7aCP5JJsyFze+oX5U3I0ELtn3apBVZEKgJVosXsho4jLhLRgNYla42LULLc/PkQLYHjVUjrj94N6tOhN6TooNlbIMn/MGC1KhHTc8TgsV1YJEhZITr6MoImjsUSybBaC8zsSTf2mFSoD2h0Vzf8OMPeKcPIwup4+odzecUr4G3j1vAzdT1QgPsfmoReZ7dv75gRoeg+1yu0KLDExMl4qf7Kpxam1dBKx/OiqLhQor6ZheCOhluJO56w6qzUPRUeweBrI8hin9wxqEdgiYbIPPQNPpEnR6ZQFJiLj3UWFkqgWyvqKy9CAbjD1YtTef4/EtxSzNWy2gxHOdLDh9sn5j6xmpMdI53nE8Q4Kwty2q8GvbtIcXJT7dsWA8/v1I1gpsUaL1quKjGOMotPUiHbWhZzWTh/EE9gAR63F42MGXUanO+q0SsjhJs6QzkRdNLm0f1Yv48Gw8qquM4XxKDfGwFXuMlztPRyWai3JQTs16/tVwg4yI7cADbJWezHB/1jlr2Y0eTFOLLdWFdpg040R5KRF4I56JIQIh5CznnYU9iVq4t6X7RqTerH5OzOAsNvdHllT26D0rkqcLX0u3ZTvISNFqu6FU18KQhggXZ6D3pau6lc4WMiaT54oFhRQmraIQhAvV1QMZsjkCzPM85XohFLXEKU2ZTdbazjw375F/TSS3xfHQy9+aSuI3YT+ZYVVCx/nHi7NWzDJw/czPEuEFVZjFB3fjKvJQ/JUfDAgBytQuz6wAOeW8vbr43CmMfcrD+u0524FbWmKZjRwLSHhUKKwfXUNXjlcnYLAh5Fr5W/hA8c6w9xHwFjj41hagumbyAoXfuXiqfWY2MC+uHiAs80diEZfHzURwPLEfkfLolcLN9IkWZu10hTi+e+k21lFEL3UeHe48fidjdFbqgEyVdn02PaNH+z0ymdgoJM/JbHzEnc3at6Uz4mCG1rw329dgJThp/sqwoxvPN/RLzQCKFw26xR3dur5dxVRnrCn7Gu7oVKk5iwNd7UrQhv8oii858BhzH/iB6DDgdqo+39haUS5tJT/fMpEVey4rkHMUM72g1ENn0KtywWdNFYZ73fuQFoOG9ql7rM/AUWqZ7G/pei85Mj99YCd9pKMDHkwH8H+nAEaNCPzHHBHrpUdXJkLDI1dyLhI7S14/gb2IjFTrZIIpmuQKj4ezM6Y35o3m+3y9qVDzYA/oCwNocx4W/6QNHL7QZvZbgvJhawHnDdSsTzYO/CCIkiJyraK4/DgJJrLm6bvX1NPg1/tWh1cmGpBOBrXGngphfs643sZ7nrNqYvL8ju1K7IEhSyT1iL2GY/ohqudUMAI6eeJJVqTU5BgYaaGVSVbRIETTlUyTdGRMMcSHV9r5wAL87+irnRD445BxXch30vYx6lJeGoWWYv+LTsYVTo9F5DosajKnyd5gnWDcgtdQd2KqaXlObTvhjFsqVksJu8rrrK+Qtfs+/HTLQVk6O3Ip99RAtHjbZnXFtBfeHsUHUonhNqb1Jk7kbRJdhusKEWo2ai/ChFWPCHPZ8J07MoFrhZC6ILzSt07hiQfVcNV2Ek8UqrVzgFEwFafQvtYH0tF3qKGcvTei76T8FQdGk1bUdIVHxV/c+HmoqGvxLQCi/2PrGo3vMx9jY35NV9mgtyf8AJTOodOZI0rYwwwaG9JCtoTCzbAkRV6TbfvtpEUpusGk/f64HT5NkRt0OTfVAdNn+1JyJaFzQ3/x07v2fD/XTNZdNb3XWOwzJOEIjWibBlpTaIyuL1keg7gzOxFMkFvrahFzJiprRr17nYuhpkjOe2BDlDFkohNwyGt93Lwqxd4Tu9fe4lEYlpx9cDm/HfCX6xKBhRG3OfGIl0FupIgE7zXFI62iiIAQvkUmtuaDuJnyzj6qCo8oVZ9KHkG/J7sUdehvXpeacpn2HidNYJRMKpDMOubu3r5rB6fLIE6WBjL5TXNyw+Ps3ER/HX8kZz0g3vzM017zHYv6bGPPkk+KQn8acFpVbOvxu09BiNyZxUdDCAYf6EBd+13PQgany0t1ahhG1tQZbKJE9gawzNIX4A7zbFi0ZX6jQ3+/53/rgTSffblUhGIs9xZAG6Hd0UbjcZhWRiOp6ikx2JANHwGhN7roAG1FKmb/YDuZvxre7oLp5yXJFz5qNSMDyGMNPw/Y42m0prHgr/bUCNYz5kpLYcER9uQh8PF02ndJE5N8/2sTczsOuNG7RPJ5RrgKkS6Tx0jgXB+6p8TkEKUOGZYGJO5OtxmBEBy7WfsBKatL44RJa/NtNnYI24xub4AAHXWhtHwlV1bHz502G+PiCKv7hyiv0uf4vug0Hg+lV/Xx0VgmMu0Pm+vkcUhDDBhYm0HT9jWgpH6C2eObC5zySzrF5h5HzYrVfkhb13Hg7o8ZheonQejlv82zgAynGZo+kS8hHj519LxelZtIiMYOvzewLa402AmZJKaJCne7iFRjx8fSBRCPws86YqUn/AYYhSMAucyzKNJJhYIAKKPJSIc29/RFmcIasMIJ6D/vYXOxyYPrCNdaDXJlhLx3rBMvg28LYoVRoqe4zfRjGJ2XcoR0B12ineoGohHcFVjC2L2eMIKFTGC3pKHca2kkApS6uH32HofGiauxHLHqO+7nOpnxTUXNwnF3ALlhuozhVd5kq2vrlxJJDtGYY66AAPAj87IvwC4KvUa7ww0H3Ge4L1kV6HL/yCtze61cHXHkXHtOreuRBCZ99lFJmMqrtgKBiWLNbvFOFYulLKSaHG0BCSpBitBZ6nfQ342uHxJkBYG7xLWJKRZG2N+5s7Gs0HcKOQhIrKx41zqfPBat5efEEnDtfK7Ilio437byvrfr9GTO61/LQ36+guB9DGtuit0azxzox0YZx4jftfnk2IFVoycx+imYv6QOsWwsrKGXcdsR5L2uxXZaax5T2X0lvxxHTAQjbVdKr8gsl0+5C2mE8Pt+YeRNgXZeuGkKeKieZ4zNzZl1D/3KEaBbb3Ay/383GjzX8lOJt/isZtIsvjdD323O9z+IfL1SkwdZYczINpJcQsgk1bEcVd4qGI9geQsl4uPxE/H/sF2dNTdZ8Es+S6wBmbngzJwJ2e2P/N3tRJNy5F8N4SRrt3gIW6iK4JDIb409XwKHJIoYKa5Gx0Ew5BRyUlM2i9JDVW+xcBYWkE1wSXHULKtN42lnmK2KAeEbS2G7LKkGvxgpn4V+BwjzQJZZDZof4RUzs5FUsK7sebMZYvE+iTAPqio6CppZuYoETTQXPUSbtpGU4pGzPs41vQWnqkNTlwmKCkk5/QfsEgJttn1ioFjJeZqaKEPM1g2Btrc+S2AwJsAWpCpgpwOuZEmQs/VpMWXPfTuop+SHG6s12wYWksNKW7JqzTdVaKNFX1Zuo0y45ARYEz34D/EmLMyCVvgP0PHw76U/6egoKrMpaHXdjKL6w0L4dcE4J/h/rhYHxXRSXKWej+JH4vlRWgl1lQz/Y8VEq+faGHPIsWUJ1DN6tgRPmv1hMAzUwZ98Oqcp30mgGZlmKq7e4WRPe1l/Abtoo3CS3G9B6xrxeaxiv1uhuj6T8yEZPxecEoN0lDdGLaTLsI69DqkOtDLWwxkUrVcnmD9T333XZjk3HbuVbEGezppLrjnXuIw6kshde4I/Pvf2vLFc07US87x/K+IKHq1mmkOONTd4ieZoF4kXq/T80uDIjoTVfjihKNyL52+UeleUczaJBMAPLtA07OCJOHkt4RmVGQMK01JZegmb/mZ8tlwMGX8XDM+HSgRc/xS/rMjQfh+B9jqQuf2XCZDC0Ui1LlJL8C+4E57fg/i/n3QwQerZH+S+Jb/yE1PGZljF4C3YyKBQ9SW9n3h5xMQT+HxwfE4dB3hqoJ4uYiGV+OP6jp1xYaEfwN9R6th2rA/6YJUWBiyGCuMBHShi02PtYU85V6UTmBPCn5xGBa8qfe1KfHdxS97UOJpQpMCNfmg9qbVmwfxnbg3DM/YEv8EMeExUBM9fdhemMH3qJ9su1hjjuJFd1+fQY6jql9dPwNfvTOuXsVGbzVumBPfWk87kkAy3ZblDn+zVXDIIl8vpeLl4kuvFl5+WfszRN78DVjWmRHYWwShVQknY1q/9zt8yi8LDxXqSuZowMbgQNzVlmAmW2V5m4rcgvfV7HJtKTPD2PnkzNqAMEt9F1MzpG32MizO2mZvynBUmfvhGFVD4qmk8wlc3ZT1nkDehOsR8WZPbIHKn8wByLcoSZgKaysuaj1+n/uYzDgKFqNAEH1esEJpsMGAnkBLHbSJcYhf1UBfVO111FwDVnNk6rgJ4snHvToCM9uztmh1+XDRER/NLZPOONJajMU1tDf/N4YyW8mb+ZZirnWW8qfzNtMmgwEstg2cYczoNlHUbJxuCjjBxVbKszpg9BRYCEXL0Ixfw7uoQF8qcAIHJ8SCDkM5JQKh1F3TQRRRPmPZrFZbVjIuX3M6EQmRFis3KqoHedOBLUyyjwbrkyLYnOAPJ3CstDjnYq9TW3M2/CsA4uh3HbthZmqxcJ03W0iFkf9Hwys9ZWpBpDyOimD1Vz7mAdePGw0cnTShD8zKDVRjZzlGAxsJsEpND6Zyj1XnZliahLtesognWRUpbNDDpImxH5rnogT6W6IRpScsU8Tdgr5xaDadHpwe81T0tgZ9y5m+9/7i/kZjMp2DW/ALJM9Tdl7BHRX9arJZT7f9xHSt9NZskx2o+CCcsPYut8pcD1MLuYUY/XDNBOA8CUQYYkYNdYGnckXzSxm0tDQZfYsjFVSg+vB/yBzTu7CPMcKj4/ovAk+WD/DEmT6I9jB+tGWlhlgTGfdBRiV+2x9PoK5eCTMOkBT3JJOVZfEaYugas/UZoLXy7mngr6qTvR5j0cgVT9lFj9P+HwIJqx0t60SMOdtodN3Ny9gGHLjAFn6khyRTJ8VWo16c+0lC4KVOHPYT+lZHSajwYl0D/V+3Hp6eB3Cr4BjHNLkX96N68de7/cXAXkwbugtamm0GZKbAcUEQKQRLiLlRECXMQFoNrMxl1KbnG8NqucARM3iTRuDWKnISicIJmo7BWefR0EDUcdN3InArts4t1rUc0vSkepkZK6omqRA0svGIwVGCh5lOwm2SnLV+N37sU9vQm6nO9KR4aTOloLBcJ0AT8M6WXFCtjyT0DFtmSka0GJW6mE3JNTfRihqPyb8HaRDYbeBlybCzucuYQSrlavrHy4o2cJJh9Gs0A3+HbT+u7euyjBXPw1mTeXKeiwlQXW2Uv+MoMGAo/gyDTA46Dzrd5NaR+A5BX1jrWQ8aVIr5ZOMLN1Di3B/Cw89l1Svzm8/lKu1WOiCdkOmBjajrWMJfDBskekeKLO0Hutgz+9j+QwWS+j6EYMjJ7b8jqYZR++9p+TT8mkl8L08J04/PCcWGn43azAaIv1BXiWA7hK64LDoRl6GckUNgnbj88klq86jfwsgFUramCY6t/nFl8byBQ/lniD2l+Cef7Lgy4mzs6yhemKsqAsirt9P1GxAle8EEU4tlxa41SrnQkL+oQdRFbOmtSlaqsMTebVdgm+QQ2yARIsaQEv33FCQ7obi3NoTaj6PoMMBXtDb76O2ctAI5KD++JjtaCjb0h1oDAs11EkM43EqT4fYuMpbX0MbewvCTDMsRDxSUMAYG9UspPeghLdmZULW63gbQKOvQUnykqahqXfQ3zV0BMTPDjb2gOqIkXIK0bibUKpENrTs4vyhuQbEMhd9YpMNWPTRXNckQLRlxOBrJnMhg+EPWlY6RIp6hhSAKsmLe1QEqdxcKmtaApE+8u1NLjm0hg7ub3VGmoRNtnIL08fOkPqdWigQZ4mt16G+DkZzEzapesCawjqpZTnQAb+VljNP8ygqvlXUHYDMF8beV8k9k2HB7S44/kcmCvMsBi+dAEwJ7lTy9s/W1aCiinSbKlLQnPZbbCmLQZUmf0Gk6VhPJTbbH9CfBbUCTimX3YGHAtPLrXd8fPWbkg8GIRBRkyBVKVu7NvfxDFEjGMz/WZcWyIFS+V+qHE5iOQG7ky0dTeFkjFm7cnKhAAzf62PDYbdoSwstK3L2L6xEJ8iheAnHGAlDu7Wn8eljHg86dVshYvaphZ6/VORwV8NCTOmrNpFt1su60ta5+SW7HKt58ZsR/ZpBgHwhT30JxWi/cgnfHxW4NjGM82sJqBWTKTsB64GBkLbCPLjHWnQ4Kpu31ii1z4K1s3Lg1W1jfMWj/Ofj0HkwKQqDjhGt7/ABGfeatAKAIC1a+lc6rOwTQwQOhTXE400mex5CwOSlCBYW1eqWbClNI+DNwOKCRxSv2N
Variant 1
DifficultyLevel
621
Question
Lines AB and CD are parallel.
Line EF intersects lines AB and CD as shown.
Which pair of angles are equal?
Worked Solution
∠FQA and ∠QPC
(Corresponding angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $AB$ and $CD$ are parallel.
Line $EF$ intersects lines $AB$ and $CD$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2016/12/naplan-2016-20mc.png 320 indent vpad
Which pair of angles are equal?
|
workedSolution | {{{correctAnswer}}}
(Corresponding angles) |
correctAnswer | $\angle$FQA and $\angle$QPC |
Answers
Is Correct? | Answer |
✓ | ∠FQA and ∠QPC |
x | ∠CPQ and ∠AQE |
x | ∠DPE and ∠DPF |
x | ∠CPQ and ∠FQB |
U2FsdGVkX18cINOt/qTzX3HuMmkGV8/dKlhRV5Egbwdw274IVm13s6lcssZLzpN/+rvKI7j+Mo5cEPf5Jif3djYDeFpwaYdngpFYjRNcYgiH3+Buerh+giSP6zrHy2CrJhGQDyqeyy6HviX1jXaYOxONn40DLRQSOfBwLjx48MQHm53T0Ojt/RAVA84NfKGxUFFPXpalD9x4tq6NlBV0PRI32GmOWKE75njbFIq2lpJG3DMlWygZ6TRHliz94Ea3m0mvSs4MwgPaJpPtNa0gXsKPbFExi2WYWEJF9aoX56qowT9rldkMz/v9Sl8RYjF6uDx7hlkF9YRK+LdcW9OmyQD41mcaRipbeLvh/TU5S2fV6Vj4ppQ0hoK6Vh6lQbItEmEHTYLAgRH+uWXZaS7cqnk17UeWZ3kSp9Iftp9IQfK41H7FJF6YSMT3q/i9ilxcMZyyux9u1QwwxgZeZBWKj2bZj7YXulAZa4sl5/rMfCSAj4BSdOENKiqZTsqfnaZ22Y1CxuEIeKMhAYadv6tqVhlO59UYujvd9PmENEZwvetgr9qnPLIdyVTSn5Oj5syT0S+9YDyriRpLc0VPmJq+64eQjG7iDosVcRirCHw5gwHoqb5d0X+cgHrayum4vJUWyq3LX3R+i8nTpJa3EHLsKbrn3on8iyWuO6UK2CsbKHi+DC2HFmmT/XEXwLTVIAQ1KJQOG3U1/Xqodd4+ZflJAF/iOyfKNgvXY1kmJimCGmU3XuD541LH7KS4G2bfE9mcW5r5/4LGuxs7djyxec6V81A3PIyA2anXsJKBigDcU4R/jcik+d7kINXapkwcSf3C5LwzPvgiuM/iomxpAVsE8oWJhDmoQ+8brC2Os16JsjNI3AdfS8AZgroaSXniI9uC1YrjT8TeYhl5Pvgiy1C9WCSoHU83JTwcu6PtfhFiS9PMN5UgeNOoUMkb2kKUe5AWx32FMvVkdC/KpO0oyRXPNxR77AMeeuLckMH9LL29wTZV9WWrDuYovjiSVe2aOJHzAbZDCRVrYlI35ufjcjtAVDBPjgdnO+QL+u0CRneH0Q7kaiHeflTh9zctI8MTyOXnaRbolrAJZ3AWkuNugrnV3u5XPRa/XIIiPzUfEUS+9Oucy910il4SKyt/Yl8E18pd3nc8e+MbI/2Bcj7063NZ6p0K8rBosxsF3IdHuj5UV93uFATY8CPRem3ZV+pnsYsWvJvG1UMMpFW4bXskQDjjumE7lgBik2K7y5mMPAXhdAgLKE6bngs1RlnVGUirO0FcoABRipSdHvDnebioQP4QWFa5bxgx5augTTrkRF4Vaz36KquVAyWFOtMniHvoOQHx5ngNUalgNWs8A64ZC/oHWfeTAIMfKN2dFnp5Jr5sYeEJ27Fr7G7lAt6ZzZaiipNbTpropzCCWf3lCxjkTst/jZce+kj2ti64EVLbV1tfk2d5+qjpZY4WVzpznOrZ+PUZ/YvPjh/cX2nXh3kMlp0Kd5SvdRONvGsRPjuL8ms+bWqLBzV/dDDKg9gR2Hb7fK/hYC2SAawNKjFlJkfK2ZA8TtT9TKqWUOACNuz2PY1d3VFt0/OVfzn2ny7Ppu3RYPbDCdz/9yy2l0h715VdWHhYhoL9ZOFehKyD3VHBDW/FXUKbHQrMpt6o/A+mnuqK/Nsx/TTOVqPyya6FU70d0isP1KRJco7fZidai9SB2vugY1IsAh4V+Ze9gtMrpe9fAejVoVwdpPrFNoIX4ftskp0G079vSNeMZ15i21O/KK/HF8OSUpls5IJ6brfr6H5eeZn2PiAdOnB/qQDOpl0TJ0I4EXRQr2ExBiwMWYwVVi6ZFR+vsJL8jDVuOuCKBaCWkp0QhJgYk7Y+i+5wZXVzSnkOJTVNL7ARLCyTSlxFvi5OgHcbdNw2O+JNUcv637gKb4UB/q+GNUe/vH00PHVrWkfQ+cThmQq4zdtPFZwD+Qzbel+C3O9sRryFgc7niZnNYqzeszOtAfucBkTh20Nl3spdzQauWGwB8ypIl4vTkiGM+4SY6Bmmmr2ngvYTi6rDOC11z/CNhwoXQ3Snl+Wz37VFUiHAoFt742qsAojeY+f34vnK45gG5cZ5tOO1oAs2g27QskNE9qaq2e1Hvj59XBG9VOTuAMIkFPBhBh6LK3nIEhB5g9LRUp3PRZ50ZLZ7s88lAXY1CBVT9xOuxjKW4G8ueGzPROkftColqC504qqFpxcZfKR+XSepUXPbusDJ9E4bcKcZtD6C0IDRtdAdLs6oIciNx/y8h+aId5GL//VJtIKUi5CsEno7PyABVZMkj/ZP0iLYwzSZ5HQpWnlyY0rHRykB3BirBJF6NFsVH/OtLdgfQd3pxAqS+x0j0ZhEbfvFikPcEKdGq1RYqVuas1MMKutaowuZMRtGIyDTYLv6K4s+y6e1D/elgXtixJ7qxIt8wjFjDXpOBZDwWlxPZHZe9JYkXsI+omGrl2haieiVWWrC2tHNxQ0HK6f/oa1STQ8BapWAlLERxJVjwxxr9NUary4LAjAEeoQ/5oUjnjVFv7xLXsCyGZ8pATJ9RZyoP8a425frdVMK5bGlLLylKPGVujw1dIqPh2p8fZiReoBmZe6DFtWp8wJG6tF10wY5sk0wUWR2bsMlSav8gVihkz4493zNDgkdcHEtTylH/rIuJx9eLEU3DkNLDwwAoFT7K3awdLy5V63WKxGf5mdi3LtI5JejhCs5lXdDxxzBCrU8QqZ7CjBgpWvF02KFRf2VZ0FnzIWt0TvJxcxdSLuuUa4PwwaCCn8wwn5/tacpbEBMEqy3jeyYVBZAJ5AC/32zaNcQwc+3vY/x4VN0GFH5y9WVWSGbrrf8IMNDw1lFzQK7LiFVjpLfknDoFTXJr+q2hma7//M1DtBw+q6FcoXrB+Ir3SQyFNRsNQm7QjAIrbU3+LIjhFPOFnUSifzM+BY3HhbcFJ4je+00FqMGAprFA/kcsq28QckAvjp1qrI0ze0yVR1sutbYQILKhANHBDUteeDdt97KxJzUzf+aTxJCXueej7awFF63uyPo4qhAOKuDi1OhqysaZxR3s9lrU986xlzBi0BZPzA7jhOr4GBijbKU/DYQzAfRTGioTaKLyUs3DEqgHNU4jbV78q6Ni1/xHvzSC5ILkOKV67RYiM6n77F76KprikUrMwUNo4xHghP72ZILdrbewNW756a0IJBi+irTbri3+rb7I6oEO5XXm1LWz/vH80blslu4hHq1++nGaTb7MtD7/+NhUBhZhqLsX7tTIp4j9XVYW/KQTImeQMq83G+4oZ9pfGW8IjNo2A0fqZ7fG2slUn3SOUltMvUht6yz6icAsSxXdCQJk1Jn9mxvUBQKq/ie32HylCPNp5ELEATVQkVkLrjC0ORn8qABMY/OsIsHPv5Lhk642GQIndD0Qsb9raJdchYmbHtcQDG0OszOG/mrYFeZM3uxUGDKeObmkUXGrDEMa4LBnQJCdrNlxzl2Z/XTIv1FkbE4MFToNx+cF6ML/uHQyWc6gTRUkCthkMlFR6Pag0jyjbi24cQFuCNmVckBaJ3cybHfmAFn0hRLbAl6TGuABQgAx84XPBaZw4ExOt7Q6F6T9gWJ/UN77n/sktGuUidJEfcvKmi/jhQ6RXqMVfDbhSGUhYf+Es5NIyRtEj79i5b3PqZFwOTkOl608946OE9XGqHMI71rVvjc7plwNIzQhbwe09594ZBTLSs39xi4kJwaj7tu+80ar12bQ/cAp/j5z2VqXxlmq1oinN50P/FDPlxaAIoF5vwhr4L9+oHgBpdRLKQnmA7CSjf4djuPNsbxKHxBx+SxgBQEk7HcgdBwtdONUJkKHuTOX2z+xaCVPM7Cdz/dof11UVypJk5knBJ6BNa8sw8DSvjje7WWH8YysERQTKH17OEetnxeeK0xkUdG5m97RlODFzbk9nZkaJzBcUOJITIfDT1ahfsNpKVo6hGSiehBvPZ9A49ZTFU4DDiLTlpUTsjUyfcw09SsYmpaZvSERdZpdjJ7u1FRa+TDyah0uXTBgSt283oDUMqKY3yclV5eUyVEIlntduIpehxoSM6Kyx/gLDDwN3pL7jtohEMuqmicOL1MFjlvyLXzlgepXDYVS8vjmawsIK4M+B99xfp6z0x0tUtUVaOxDEH5LbSxEhoMGxnkNt99B37eB8Fmpn4h4+XPL6a35yUPa6hFGKy4u2cI+DipXF99FDCNJxgm/G6zMdA0jMIdXR4Bjfg3IW39rtTrFx6Y/DYTPfw7mFQ39sjohMyX0guraYElzGAVpLlVF1L6VdO5xqA5G0vuTSIm2E5M1i3CfDr2EPdVDozJ9LLbK8OICKH+/eKu0SqcJfZRcAFX5TUMmGXiEk2OS53GjwTWeYpG/wbXXhEbFa1HhlggKO/Ni98FCwr0/MzCKKwLZxjI/uRk1qy1bI50d1b82WnMuWl3GDh66RiKATDIzwebYS74qKN2NTSYpim64wLxcqmeAnJ0+gUCcKdRLPLuecTzK0sGQTN61wOg1CeLRjiCrZHzasggble6Mo8th1hetX8SgpmADzZAWAsTIvBDTzBEHE1btYMlXdzOMWhbh0SiN1zmbfPHkjubgOZkg1U1mC1Fzl6oQCVKO4CS+TayZciD8vO1yDh8Wfnx8MjiqGNFQ+5zRDAtAhuawAju6qEPSKC24jd9AS8FfiEG8oQcTckjsAKpe4yr+eFI78/+XXftJKkwajlERx4/gcQFpT0BY7j3WEoiAf6CB8twx37ToYk8PAwir4RSj9BJWpM8slYzuVKq1u8SQ70PEOJ5hXA81xJscxCQv1Wh1f0biwt1J3kn5u8mLsVHS4o3qU1WK0PuuF+XOSMKxTfUy35NjnZ3B6PWDuQ41uEqjCeUvJoUfwHTzFFTn8CXgRwEYMpZFXQapt8fAVgAkVyieGyiAo553EGjfDKl/UHOvzaLC5/Tsim1z7VDCIZjVy46SnSDQvYw5XSIIZGaG4WZGEn1dK1VxFsTOnN32A6YjAXSFlXm9YbgdZ3lUTIX0NOjDEJtCA0AEa+pPTcRC1ScxkF8njwxwHV54rMrdh/PFwc5OdUpgpFLy2PNDiMqr/uhfEtTITh1+EcgUnE159kLqXbdJU3phJkr3lznLBO3M19emfoFTovwHoMOH8rFLLNTDs5EeNhMV3AMHIXZ0kp22cC3VgMLhs81XBWUNsNzfb5HeeHwSxySY6Q2eUcqyEHmwsFXzvfi0oYW8HIhA+qolCw75wbwiWyvhxAXkamqapL3DEFZlZqUL87eRAoD8AlBbo09zscW0lZE7QOkB3aW1A7e+vyJwlqVmXlHHVK7PqcCp/nlWc44lyVm1ajhJ6VsH3U5Wney85HWW69wfGpl0LIOQIEoA5RM7jANZu5xISa7PP2uIe8nj6aXOEqnAYXgXVnXSzBMSBku6S9oUUxwTaxb4K8YJ3frii67Z6N2ifA4UliZOqVws155x1QX2GLnL7AcJQHOYrjmvmjzHUw5l5NNyiyX+xRGdO/JyqF7VKjKwJ98ZF89uEwuEJwT23+XqG4SeHv8rsvixvQOX83IG4o8Du7l01fzlmn2LxNUbY0Rlzd/wUx7/s1nlgop/ScAsHnzr5BLLdISVpqfDMzwxDWSdfyz55K0d/33QteHNpfuXVNZ2EMbE0EwRgkX7kc27U06/iMnYIIzt16E7+IeUyr6yBeuO+3Dfhzh44LraKsBlwTtuJ+tat7xeNd1Ay6nmz3CD5XRDkC2hju132PXHvxdEwaP/WU8r9w88EvUrM5qdfyX/BtQjjrXC/13KZw0de9QdPmTPJYIp0QB3BlxZ+GDGAxUF+IBb7l0K8yBRjRyVUFrmXMDMco0enDN7KekVFbj/kgJApA5aywOGCekV+OAuJXsfePQwaN5nZn3XSVtFJwo9JCi7NaSncWPYufprSFzaBPr4MzZLsGIgvspSOgU1DEfz92Ec5UK3f8svJyvjwdCYahEVS9L36uQ7eqGun2pvco8Uoy6l3IrgjPg4y/91GuAZWx/d2mFzOwxZ+COYO8wZK4yh5Ay6mSPE/4rZkw/DYiV/sgkk4J8wznWRv1UzTN26U91MTwqHEracoCazcfSJpSUN7cyspjmMQ0/ipsZ94xXeUdsPudCpJne8m5smEELQPaGphEcBaWajwQrEQnJi5/5xenHu+08Fxj+/tfSgO/6xNvEf7iq6OcH+adsXNvlOcFQrXITZWyX4sO/IwL7jr35sTMym6VEvogvuyHl7xrGwppoAB1IDvzZtKdP9tHj/QKe4j8a+pXst3fn7/8HMWCIKcl7BBpVBRqmo2lahQhQSbkHky5Y5c6YW664gKgZRSVZK1bq0MqCry1uklBJGRcOJjIAaKui1QLpWbXDlVmvugeSLBAhJPJYOk92Ajkj4RnfpN4l23NiVjh+Fkh5vdu9unPlr0SXxCsVXTfMLN0d58jqNriTKIYXX2JndEgmHKeubmyZXj1ThirbgcTJVcUewrkDjGMBe9psWsqkxQjioWe1dWjhBAJwNHxMJXvtFHXWPCuT7w14gfOtyI5MQowoO0TXHWkkhM29oC6AVDCchZzhd9AU51MxP80AoG7S8WiQxep+WtpF6d2SlzN0RJ/f7giy5PegFjiP10rk1ipuwkRHF/A+F6cWqLK9e0rlMWQ2y3jx3RmjOoq0uPYAEaj+dSy0ivhg+w8jUPYUlRgqoUwHMXPMmPCKrBliN07aLcMdx7CsAEjAuttxXTZ1u7FU3IDAKnRDQxgpoPMnu0IQOulsytMGmUmknx+Hew5PVr4LziJi0lwcQ87j4fDb48Gym7lb1NGP62Yrvyhk/tELmwIsTsrPSQYjja1V9s0LHxUBT4aExRAdJCThGwwAJGm2wZfi0xDx/VAYfTU21Y2TcaB8h5ZVOYq6pVCgseMXYwy2JfZ5odfpjpC9MvMHiByfWs5wBzd8Z4pi0fnsBsDbfGG649t//cBLAuBrox+qrEdhzR9qjNSm/jn0Us+9FqAgEVo0KvFeRr6kFH5LuOCQXxPeYjIMZ/28KWTUEWtQyrAqUZm2m113o/NktTCTnpdft8oKpGp5Z35PVbLv4wuk07+Gum1Wnm9OBVjrx0jaSWuUtI6hVGQgCAkyadtlzh2ZmjErfxERj3pT2NzsX6Sqcz0Zoj36CfoxvNHUxi83fUprufJ5mQ+DHK8EsMP5/11ip5pOGXNr0JHQetnTeGawG217XudBp4N2zyuMOyf/b/VsyyZoBT60icu8vBffgAZpn/ymOqi200iKeTX4A1waLtzTlTfDT7wkpUdmp+/fxXi2zAIXJ4dR7mdSuqhId1/6QcRTlJ4P/sJ29bLb92CLd/nIhu4GB7YxR8oCb554Q+vY/QvEV/ary5PmggHxEzv2XpYYIyjHesGMnqLFx1fsx28Tz+qc4WnRJTL8Bpf5ypuiqoFVG0Od/EkQ5220xlQLelnhvq4mhS0Dtc3LhZ8BhgMphnFdG6L0z+5KHn9xjtjXmKy1SsTxkFYfNMuMC2UJrlxm258F0RUgIZzD2GAq0U8qC0+xyrbhwRct5gU49rf3U3GzBp58Fv37tyb0ruGfZU15yXGq1eAdOp8VjbMunxTTMbcnsE7i4X2h0xns7HWQDF37xt93XG8NbD7iVETLj8z3RqHvi59JWlCpkrPJfqmNnZ7Tcoiaugkf6fhbGdUmNpdYoIrjxGoJ77gnHOx/YFIcZU9XgzlgrLcfHrR5xCATrkIO89+8j1rb7IpHyiLmYGkGipzHhybDxcUt4FLfbZVeYxWGJe7oxEi1FS9oFEe/1KxldCBLBbT82Wr65vNeHBZdmCK0Wudf85+ixCDwwJr5I+tH7Idv3E2GmD5WXHjecTj5SIK/yTIzo3qPPIfFTm/gxHk0fkMTJOol5dE9GE/2nj/gJjjesDcIoXblHVBGM6krLO17ylm0YXvd6Q5cU+8CvgKx1ui1Wy7xIBA1g3XlLOvQWSLh1MtpKAoeDGwuDD4wLq4YFv/PJClJT5Y0wfQKa315jbZaGdqSbif+kEXZrFI+Yx0RZASxZaMgNn6mCnUaLVIozyNkAOQOVsOnDwdlktpph6VuMGpFd7UzsjbnMKyt/KFfhcSHqmkUQIhiMB6442ku0w3pzGKJ96qgjE1gDCEwY4usVXGR4CpbGnY9PpZulBPKp3XnSFc+ScXlVz/Tt01+k6E1nJZEnnq9EP7ze5ve22A+lNkqjoQ+fIWieF4M/hCIYWBUNyfCQKMx3yT7hyZZBfsYe5oMov2XgOCz8A6daDXABdk9ZnZtO95dybUfYnv8f0buIHSvlwdCt4H4h6UV12kQidSsclErJaJE0g60dJ0N0rEIb9rHqTE3lwo+RJJ4lQpXwzjlJF3Vf54Ve3ZeUPrDeEroqGxDjT3L9cX/quFobJaiCB1EQo3MFeBmcVUpb2v3IVfq8oiS6uCjldLv53Kp7e4w/0qGfNkBTOF5ZNRuSx2UTVEAU707YBHn0MAc2MR0QzGCAXsyHEerXgIq9NOmMfb9kAW+QIIl72SKKA0etze+ff+Brj8ZUiG3qmzjQLAp9SswsiCS4nqoheDUN3tzyD2GmgiAFWw0Z9Js7351n5t8P53qbZqOgNSeMhENOUTTs5ns1LXGZ7BNrWX2G3M6bhvdDiMq8moBtMKbvfTDtn4boLT5jSFAP4bmLB5gIAFloSGAaPBP+viGGK0kFnUPnpcgM50lkYzEKu557kBKfr0btSYJrtAjC6sN0qchhwRwR7iEkxJU+lPOeY/tH5cWIKiJUSj57FRp2Rlbo5MrQM2A1HI254KEdG09b/AIvRl491GZldAM66bIyfOLR0mQkkWIQm6a6dGWWKman06J++1ox6ZQDmkc3qGUAUYHUmAstb3Xb3odv3Kd5qckKLYF0oK/TABAWr3aK9TOaRuYuxOSqgw3szMAlJPiYbDkpX5AEUm1Pi3sr02kuI8q2YwSib7wEm6Swog1Mkdkw3pwOJrJNRRPQFLb4RLkdByJaWpdbiAtjF3+Fx7kGQ3tndZt6mh0REVyPPR7/YydKZDe6xegoOM+YQRyUc+FvIQ1b2VBPBwy9frBdIcFJGDcETcrNUdKaqkYa/HfwIn2pPusjQXehFWXafuxoGOD/+P9hPLxb3mX3TXccrQ+5obbqTSUor1lGYJ/Ugfg/3fWs7tBxndazSDRcIJ0JJXyogWX96kNISiKVlZg/Fzx4Ku/IgT2rY98ZrjPSIUaKopqTrfonjRq33xzQPhostDrJ7pizgUzBULRpJ5ZqbAosFcF7TDSW0uWWnYhDP16ja1dKV/sHVsR7XUKF0TLZK451jSHdPqDlD2kRtCrVYJACH6N49AXVnMa+I+bNXQx+4Jnnt5LY4lSRfjb+INV7nrTgn7RDm6if5Nhs8kCRpH76voiJ0P8VWthuGsN5u40PptxIPlvwyFjq8O7yUQ+0Ra86zfv+LSFSboW1esoxOhzhLVsgVXq7nigMibxpK2zVz0u+MTf8MBdocwHLQ8KbugzaqAkzi5ctNGIRiE7aFCenY+9Wfyb4LXh28vAousk5Z5OFPjsNjfOrI21og2ztCJSBB1njbH1Qi6PRmxCYTngk1HzDRO3XnSnOWu/ReJ+6xDvMFvh7g9Lo588VSzha6yrr1JEpvGjMM9f8t8GHjgEtvDWmuscbSKOo7rAWpXr4DQaLTheJoF+bYK+6WcZdBk88S5X2sLe+gsAAZRW1Rr3h6UExGBJgwBeTWNUtp5O/ui4dThBgRRsfV3zJG3vHEtL2wvlBQkZSQWW4XgcDvkCdBusKn88T26V/IFdFWI8UdHdn9mLCJuS96jfNdCAzquwdQyQWQuQ0EFXwixCQ8PJkcB0RX7C1pks+B4mXtyMsS09mA0YBw267gQI0OdLBClRpoqV8ssINUS04oOWumLRUFJ2fcGStf8+Qroka1SZGugnE4Fsd0lxaMWaBFPms9Olo6jQ65ArkdtbMXsSiZD/L0LRMfqQe7MX38YlFVHeo8392tpMwr57H5VgNYBjLkF1QbnEC/3whhWYCl+kndx/41hOUjCmp36gD00G9jBDapnGfh6Oax8iUR0yAzAnp3lV18NsQfvfy/rB6Dpb9SG2EvJyu0IseDxn1lQXknRUFnBTgjvt/YSXjtZCqWS/8rIY/UOHXY5beJRjjrL/2flJzv7UDPDBTnEyBni4WFPwhDroeLg16UtzQ/ZAgc7rsD8AemwtoV7DOPkZI4MfjcV1PhOmsd47a+c2aeXT9Xwqvu+CC/wnNxB5r48mmXHTNna/Vzkmhmn6Zsc4tl1+vFmW0ccAvrCr4bt9nINxWqUxr8FX++XDHQq0mdl0iR/kG7W7kneN5xCime9amIUXJWbiPNreqI/L68zmwlLH/sreY36MLVHfAnNSfAeqjkAnlWfytC8nvgmV9tF5apLd/dI2rMb2hHIhFDtFoHfDhW1horNsWcDRnB+JN+l90tz1b03tzQtCX7gs8MKHgP0NZ/SaHNs9/IaMRi1s2GXdvtGa3n0ggWKgap9MB5upkTuDh9ae6tcdo7lE933nvOqlCuw47BvKf+Vu20HP//CqPqziBnZy9k2ktvMpCU7bQh0TMbeaZYkR5zMKygTFCneYoe/JdJNqNaM1ljDQZfY9TMJvjau43H/z07BFzwhkcRIOq6kMqTL+SexCasdVciifn1YGwYZPF3qOAXEMyYz+TmO6HVISKC1r+fa6YnDcBMTn0dPZdMP2IF6A2Tp1/YsVrM1/tBbgr0vDCb+zgy8JdlL+K2UmftR7KOTfHINR40BfBhVU6MxWFL7Q662dmvqiH6D2tSn422uqoNUvBW03swvWptOTw9ZMnMn0g/w87JLJqPEDG3/o1MhIBrbJRvE9PbkFw/QDY6RbN5aEJee3nOufeJbgoRQXa0EBhvG0eAaECS+Hfi5/tCttCBg/dN3JNytmVZsNPgdlqByI90TwyMZPqoF9ZFYIl6U5eKIMc6uJNDGnLWIGvVrX0uOWTElQ4WZPdFstqcA8VUJu0Lz/erw3R5doQcpx5AfbByLC9y/nl5M3iypyJOyoOUdaXlNMbnJBP5zwYNAUoxE6ho2h3sWQx7KhHBJP+qS6Rq21DpWkbgE60rrGfdJx3RYwbVItInczhcUCuv6VGcvtG+waraV2no2D6qscjdlpAdawyIJ5dAOoycogvBQu7J7yAKa4MxzsO/JAF91Tx+QhSUHKUkMtNn+okZlKTR0ooUroaxp64+Lq4ZvhDJ5Hq5dJ1YMf2pMBUW9bA5VLxBi/YmBUvEZLNr7+Ud0Z1/oTRtbuiM9WmNLyu9kgU6Ff2BE/Q/8lxO9qjdN/uIPG/AzyRANe+VS3sDoxe7mikrl4SfVLgvInIrOJS4ncE9KlX/bUa4quyEKnktYouyWyTG7gA/N4pfBlCiGTUPGn80az4uN8E73+l7YcUrZwU96z9JFWSdF0hE0hA/qfSsufSrf5gDTz3mWDvYa0Ngls+dKYCFKqDHKsWJPYcSQEuAU9SdkJoh8nv8dMMUZAHTzlVnBsSAKHxDoubHK+UqJ8dGZ8dNxLimL6He8Hby6BVYDR+AroZpjN1nAvCqwLErt12z0iw5PxOe1o/jRsbhLKM2cOV2nalaQ+UZSE+yMCjv3XBCUO8gZiEvAUVrC23lw0kw+qEqmQDEq8uKHXQXNO6wWWKJB62RqMwarsscUlohUxnl5u3KKXoVTHkzduJxZOemMtNeQZdygbYtCYcpdyjN1gMwBudJEtCl9wbQTWE3mLJCei7Np//TSSY5KYp8VvFJrdysTRSiU1uN4V2g5gQDYiipZrPiNe41/OKkGnwjIHUyV2wjruzUcMe3vA3BbIY+CvRjnKZm1EuDOQ3uMJ/e+rOlJRC+l5278yv6knLSwk/Blh/ZqCI+LyujLbxXLs/TyozbcVPeZyQjQrz/RTn7RdkJQQDaECr8DxOX1aFthh0EZEjEVuxEHm+324RRxr5tjiGP5roZdfJUrm8WeILAGS/KgKmCkbVQyXQKlb+Eyqg20Co9v+C5RkXffwudzTXhgwUmUJGjvSNIid3YIzn8NBnbQlA2nZ1yGtuLtotZWD1SGasGYZB6+gZGSHPfI4LaTGQqtL
Variant 2
DifficultyLevel
622
Question
Lines AB and CD are parallel.
Line EF intersects lines AB and CD as shown.
Which pair of angles are equal?
Worked Solution
∠AQP and ∠QPD
(Alternate angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $AB$ and $CD$ are parallel.
Line $EF$ intersects lines $AB$ and $CD$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2016/12/naplan-2016-20mc.png 320 indent vpad
Which pair of angles are equal?
|
workedSolution | {{{correctAnswer}}}
(Alternate angles) |
correctAnswer | $\angle$AQP and $\angle$QPD |
Answers
Is Correct? | Answer |
x | ∠CPQ and ∠AQE |
✓ | ∠AQP and ∠QPD |
x | ∠DPE and ∠DPF |
x | ∠CPQ and ∠FQB |
U2FsdGVkX1/YqrxnwiGcDW6nOfOWeWsq1NIZwS6q/HZ5r5w3zrmZMDKyXnFFP+xWWafJsS5A26A+QsSkn1hDIy7fMwykOwZ/DJBlTVfSrkMPGLQFkw6GqCih7rG4ZGK8Xo/8mE3ezXz3tqkfhuQKmsCHW88DVNA9LCmYR1RKbvIvqtEqjRQ/NpRzXEwNhIAK5XdL8EEizAcf2MT+g7CTdozfcMOLIML55W+VvPB/3abuI9m6GEuPCFYmh+dZffjV9mRmcbApHm+zksMZK85UmIzUSmAAF2Nlpex7DZosOZEi6bgNEt+e7Z8tRrLPpnC7Mbd9T2w/7s0pyfS/EIXJqhG7q/vVMo6Hw1VPtmH3YND4+16wV7jGRrIzXqEmR2tIENAeWl+SbcXg/nXrYppJUUIaMb7Q4HtaOQheNASKFaqxuQBWRpnyVqY4QQykgsIt1KBmMDsUPl8Xwe2zByBfwUf/rkPbpjEHt0z1SeWu5lkep7hbjjdrrpMfpjDfCz8Oytgowod/E3gxa42CaJNFn7k+3Hpx/yp4A7py6DYkg1kJYR1DLflE5bafAtQ9wue8fEr3xakzDjcsHwq6zYbhxQySM9KhybyI9C5Dbd+PQpM/UAGghzIhBS7AylihGiGMTWPHiijQX/vk9lXCyNQTyElD0FXeu+spoqUPZ3D9sGqdYBQsvbJM+1FDcrXY6NVx35mrGK97qGWLjaPI2d1VPn27T2I3dTRZc5QeOJ3KI/H+29DNV0rvckAkLMqPzraqJzvFZzf6ryaqxVQj2XUt279Vg6no8KmctFnV5NaktLYVvHSFkdsW+fahhqNqkThuOGrrrmxWbvS+3v36EhPLCUc5Q/b+vCF29A2Djs15bKnkeJ73XouQ/JQXhPe1G1yuD01D+E6dq4rUgE3cmlYzWd98lLvj0x7ax/GcYBzzGlti4/87mZuATrc3wM+kCNBlRXk58c+T7ESmfUSd4gvUrZPDb/qVkVh3SmexDvBZaxq8rlovQ3qNJNPmrcOaWUQme1sK/eMs3070QdyE+X69J7GbFlpL/FFZTHbQPaP/3e06F54MMbjmJsdp73tTd/uj3NPcZUQU757uI8+931ycuqt+h5N0sX28/Xvl0Z1GtdAiPRQDrfyDr3Pt/KUd3aOvZn0Pf6/YocbJqkh8d9WnXBkDWd14FgXFlPhqSiPobxrX9qPssxePrMKvQPcoF2oVU0nE4Tu1CIcQ1j+0aTtjmKT5/Uwcdb1V9qPTROUH59AAoNSUZXuqX2RsHkuzvu7uEsDdXCx2IVbJo0odeG9vXvFX3bssQoUGgPwxsbFLSNhZ3cut8yCFniWszn+y8KDt3SwQ+sBfgSQJz/26LXc4fvVUWU1cL6AjVkCHC5xnSa/Vd/S8ZBdQAZ3K6WsgB1N77TW9+D427t/5r7apOjLQWCy+wMqw0jPzAScoDNLHq2b6t7z4WF3Na3g7CLXOwgxQUlZ87lMiK2IWDRzZYtMWGnupcavJVLzY3gXwp4YERbHvxAeMWeeE3dU5nL8ggkYW51UiJSlsOXnlGTbFideqp4sqO5fLF21JBjnsD4Jv5tQm0xpRnZocWyavKh4KX3r1qx6UKPVJtAZs2y10BfMjPIogFuNWvPI2u0O1BDwp6QtwXslWY2zaCj2nODnWtU4iK9TqysxBtohqtON4hpdyR8Uzh/Tdz8DP/v8t0iVxX5kUUw8X+OnpHqVr/pQ/ktL7SXKp0l0i7mTp9e2LCLNFQCPSRwGsS5XmnksAgVV275M3aI9YOJaqioznniaABMSyiuMl67HHsZRmO5Xb0A6e7CQ1picZAvEKvDPlZ7gDx7Qu68iqksBwxDGzWiUpFObdsr/i3DtQd83+G7cJZLdVy2iRFWhSo4jox/8qw9PeCmwDMEgwrtyx5VA+uxHa6+4M2QjtPW+J06iF+6ivZXr6oz0QDMhdUAdqlgEnQS/Mil0kYIasrMMLnbkvK+8ft+CIA5cOw82jH+jDIaF2xQoosnWdT3KRY/35KRnNNLUBHaGiqr6wnHQF0y9VcQN/iIn+6k8Tva5rmi55bAI4L+zYFdh0PnGhKYm+1onZUsuoiDoW80alM6ZpoWItMQTZX6Q4fFI/Ga9N3eZYMahYBZMcH5f29IkqOjsrnCQ5n9IzCW3QczbVWu71558TbliA1mIv3eGUHT5vRwg8zids2rdz67rj1tx4E9tKlOXCscPxRwO2+icAAGMmyt16QCvBtdAEFTkg35PjgVqeto0mZi8OLZv/5Dlln6mojazZ+0Pu7EowgawF8dBdtKxYM9GcTaePJ83oMthCRWMPIBl1NfakET2lDFrcHDSmTeA5Jo4K4cMhKiP07fMmHS2YjNgS6SIiBuFujeMDkQeiwlqynw0OP/Yl/um8VXN+Q/84HXyQ1LwQmks0GP7ys1l82hSe9d6lpA0oVRU8DAcdp3MOoq9TztBRGYa/8vdLK70Mdg1x0Y6T6gF/EIi28GlPbjO2xi+Ku71W0u04XpxVeU2eaVcWWgfT8yCThqczNwUihuM6nNR+qU5ZSZYHb2LlOZCSywTrMmKg4fUeiZs6/aP3CpCMb/3lAN5R5azG8cbkV1Za7JsAiwrHNqRjbulbPAQPlHZ8s+O76C9YoXNmj96rv3Pwy08I8xVbUY2Hir4wi63cafeczahTS5dJnF0mzGmQtD5AX00LxYc1zOYVLqXLxApgdf+0+JjwEt3AVkHmKZ1a6YeP9080hF0+4j+Tp7t6mNH5W49OSR4k4thHMB3NPTglyDhBqOq3SoVbdYSe2eNCnaNkG9JT9WJfDDhsCS0DPrBgi/o75Fc7tZ5OOkbaJnElff8mPkFM+Nc8xoNRiyDyEunaDLfkobP/DM7HYCaTCZO7wu1VWwzypd9B9kaT28FhTDqAxo238sHU9Lx4Q2tPCY5REp8BjOtSlu8MaQ7q3rDDozombcfNWNS9h3FHVLE9yiog15teC7k4JXKaMU98EuRz61xUNvyKT7Fc7er2vMmUUZSqZiRIxCECMLDtC+ZnI/HPM7hguczcNg1c5+jbdpm58+cIRXRzFFG14ucU5wX79IooM8t5a1vvMJA4iAFFl15hJtPKqD3dw1d84QDaijQLUOSdxAkqjt0c7v8JYHFiaZl9PWa1CGpTfqqjpQnmieBaGPe2d0Y/UFF2/giCwZ7rKv1GZo6AhZMakCD+NR28eGrkHhSLFsuiKNwsR94jYx/SaVl1ap8BhgY956p1QkQRHMgLQr48PjkmqoMK2OFj8Odm2EvGE40FA6ipcYJ804eLNKdQIT2x86EW9nBCC4MUA7u+N8ygvZstwbggGDm/K1jvR0ig4ramkF4AOrTzLKiw22xrbm+kbvgIefSKnP7seSzEdovhYGHd0qFamdIUMfiImoDg5bdaD1Ob9MCKRD5IvFfqn5zK34YqdaeQ+zDDVK5RQgiseKMsWCp+y7Na+3qgPkDkbXuOtoIdqwUVIf+iU700TTvA7g1qBl2csmgwaLDl1ZEBiG/AVraXqDfP9DfSU8IPtAvhmQ9b6oRJDwe6ejMOwozFnEqT1xxE9q1/Qpv2YhU++8QQWl0WI9JJD3+Zhftb2oLKzlBgbV2l1NipAhlf404gGF7mDaIP0wIXHdHrknZRzsweAI5C5GgEdDWA/Gsz2IFhJ01C7KEnXwZoAqpr7Xa2X7b8ARFpxyTZZ4OwcXGEpni0UZIoNLIwBB/paNjkQftqUr5JG2ui2Kwg1r2rBfrtNeila7BzV1bxaTFEf/O4PAFsTNC031hTwfOsl9hISbnR0ZU7rTUBHk8jOslGcT3ZphYQiYYnv6YVxsubCO9q7pCRdOTPixRseWUJO+obb/vr1TMVnNZgQYzKsLf6FHcwU5fePIbiWPF7UWrNWwgVO6FGgWNEpkYCAZjn1lEGcxftGtBngyJIu0uvTkL67L4JP9sBFaHTt83XVwEDM3meNtzkl9LIZJugJj8N3wXVQbfRp7tS0Qnap4V7+MGruL9AXOXwRIfpTYh/UhucDiVVUOAGFDGcl5FwMVmZkS18qMltD7B+sjxAboLO9ekq5+jadCT8kFJFjJBrQW7y1+508mqymbI+3+KcTuAk2HLlEN2eUuJ2pryOExHSJwUen7Jg0Eq/2wpDK7nHE5sHjOXTofWLDp26Jsbc05Ko/PGXRwaGE0sNq2mEpaHD/OP8OVhH5QQp05592vbgXP7q8fv+qveEoXbBTs4nu7/9+0YCtPvCKn8iWDEyO9AoEIqcnJNnLR+t9Zpui9Z0yCSozKJSyooHtmVBllgsTCzXGJ6owj/87qGTcblwCgnSspRGrmKP0UqGUnW4KTc/2yhk+qt/gbuPuCRwL8ZggKHM1qoPiJjosqIP6Srzaxa3J12cvBpB/BFTuVExY1wae5f8wJ9oKZKm4vKwHy8NK6a96TWgG8QXPYzLs3nchcTuCcz8yJJ5N/iS4FMJVCDInY0V7GRzowd6OuYhC+kExIOyifRK//6gu7EaXOFQrFcx4EY6zwBgD+drVABm4ZgHBV1d2Lxj4LpGKyMnD6FEO9aMSjjR9nLyOHaUba6UHwOZH0ItUJrvuEyhT5e1XueD1e3Pp/93r/KdqyFHYTuIhPUh1Askjli2cp/jMtxImuNBp4yOKAYzX3GCufOdd9IjDZsF/cZUg+O8fjBB9R+t6LOKAKCiCBXCIbAamg+qs5TJBIoBXjuKO1/actWBwwznE4Bko95sU4RTcouj51F/lmqokzKNOaawIyRpMq/xHi0+YNKHTpNsLdYgSeTW4Iv5osWHGkxVNKJSeeHMNevpm8HVlou21/wXTwMir6hlmG3BT81EIL5jKnzI4P/6ejgZWYm4TD1G1VRtT/N6p6ZOEhF090i6OiN5lpbso3xzhvw4tYmWMTTMNPQ33G6iTIIgD+mP2YxsoCGgeqpKNCRj2kMZw7Bl3sWcRnYHhZjGnlvp6kaEKshatahMz8c96ifg5ES7KjxUivxXThUSlph3gW+ikUXzm1ajheD7IO8Xyw2BVyASZf8c8VCO2i3tWjTnlhJw1OM1dwfu8PtzvXnPsqs0smp6iyHjG7LsGoNu2n+xP+5ehRYduI4tkNsHaUc1SnHFaDTMYk3ianBReGPTI0YbP8zj2+X4PIWtNZsBIqHx8ikyjGhOuTH81TV28sg1DOlW7i+vVgC4Nm/datYKGghT8goWgKspCQ5AWQCLL50lknR6LXpSvQXhTUoaH5xla/JDzPY3Y4dzvbbXkSUbzrydFh4sCJwlMniiHIWrkBtn0+1c/w1AK9U1bHmZg/lEa6VFLa6CSvW1OmbyS5mrD05SJltUfkGSr80vX+QM0YnYCsscepASP8ilZbqF1uIlFNCKGhjEUCJtacMbpuAVx8r92pplisDvUmX3Bxd2Myq5wQf9anzXHo0UU0g7AIGz2QAy4AcdL/cbJLcu6oelHxpU+Oyl+tY+OjRzO2Hqg5pbX+rogqgHNTFmcFI0kVq6EZXMrXwVlKOoReMnnRLVliWWaD0vnINTbo5pztW//tGnjzdcQ/vACEQ/eP6GtxjLkcIV6R1UMoS8179UJNdH4QLgyLa/Y1xVIsGLXntAXVWEwP8ajsEvApbank0jtosrl7IUPRMhEXlDfwnzucD21UfgkT0zOzo7M7nxOmrPhVpk9QX/qsHhYGnP1fZGn+HXsECGgliGTuwaz8vFNzM7BHwS27DUMItKRAE2aRP5oYn+npdSXYqRAS8HOhjEyCCJXj8BSMgdXQFxoouwm0deg4I+/qePKjFCpIPkBF6/FYDoZupxCL28O259pA1obLlm2Dbe1Pndqshat1p8haer5VNiuORgP3TLenjohECwoAaTIEaD+wO+mdHacEP6+Zck0p4IGINsiBhuomCz5jiLbx68Y8qe9S4Nw1pJBR5VVzKiXbQqJQLssQMBBIy6rsdqXEja/WbsZmhSG89QXYHtxsiNIvs0sNJgEqIelUiYIDffQ0XBgA6oDAXBmU9lD1n6RU0r0Nh6qZ8MeANAbpxT5bm1D722rdpF3w5UoGkF+JwZQURIVpLKN/ClrQXkL7jsuD55lbAOVHevbZdK+IbxDM5+AGNHaFh3GAVS5HPCST7RjG98RcjrstL1uHIRB0yRoVnA9mSGfq/roYYKco49UnP8LofizQN3zezWBML65tekj8nK7iQG0vLKKNOboD41Ptlk/DDQv0HvG7mMKj8iT0fhswpl4MJQd6kEhNMR+wnXGWqbAQ6yy1Ii178feigxb7EmbW04AmFxEGEUb7kHAEmCPNoVbInoqQ64cqM5659KCmSZVcBK+akROxAVZrQXPf+BJYf4O/0H50yCL0Akzzlhdl2ZAe/Tuzj/RMdlNwWAjRwppJs5ZUlcjn5GBFLsqgYF6mHLC7kkbkptJfkc61kRDP3N+glg8+TU0ZPqtMeryNshBbtSM0nKmruO8tlaYuK65V9bWVjCG3IHu7LXo+p39ZIJKzTsoa1d4I2ZZawk1crksxx9gppyH/kFS+pYa6WISOv8ddU1potjZwzv2lHrn0lAWKII+t3pgjWRS3bpn/RT3EQvPt+Pk+y7rIHLRlIKcFm0HYRBkhvqhyPrPfUTOfR81XKOzLd//4ttDHCCJ6ylNJyRu6u+KgTQW+KvwtcdudOZcErnZMoGcvGxTKiw5oNBINyXyVCnbGnE1PipRupMf+YXNMnytfFo/oiI7q44Ooz/pgp6XQoaY7wNvXnDWxu9WSS/GNkeewJ0Z9MHee2W0LlquNCPfw4xkTF1TS+8sNdW5XKqHjjm6mG5tKllOXIAd0Dcx8+vYXTqSj2h8IJzwLZegBks6qSIiZdLYQ5uCV6DBzNGEhy+6kFYgAsjAd/mZx5qKvisWWc4xtzpZBuzV//eOjyCGuvKcisW24fdeXWBhl+SWZjbolzdbiVyl5rz8JTi29Rv9I5mx4WbquRAKbzzhHDBfU4iSUuGrMprU2T3X/8i1D6JFm4+NGoYYfywXjwPBRss9Wq+nryrw+L+wXjqeRMYc6QM0caJfyqlLxZGEwuM1pdydVbUVgwfK4xQRJJFsBH4Os+fl5L22OdQL3LdV4BJwntVp9BDy7L7LsuQ3CHuvpDCtf6azUIyZcvArKCuGTbWJCmDUBRa4KpvG/6r5VZ0bSaV8YkzTzXUw0HpTF7s+IkQd1Z+NZ3OzXKsxGfYuSPZtck2jz2iCCmxpjDupD6dtB0rH9kDz5/mvmRPVKgGl66XT5IEb7jzk6uR55Ag98Q5gIlJrx0xp/2CqVU2kssjzBWQpTmgymzasylbWk3sTq6+x6mSb4yvkibqIaci30H48CuNtLkvSsGLgJWymSM+OrVTriGoWbK2fMh3vgezu9NrSNJe5RTN8zHSsnnsyysb0AP4yD0np15uJx7E4wSxMApnbsS9LNcCQRQCJClkWTcf7iVFwat9KoyLglk4yPxZfWfDJwb11my61Yyl08NzNENS/VMJyHj2ru/N/uebV+awRvc5GON0hp0k7QXTy4P5LOsGiEUiRvXBmmA6LClKSbfxDYcw2oiTIHEapejZmhu3d3CIa4IgjCuBkZm6cHBiI8HuLkkqcaqFwAScGy/1qMsBzN+3gbWDl9bGaFSps4Kid0+dyZQKwCz6N+wZmhMj+iSofqic9Uhx+bCN0hhPD+YOWgLRVzxGNF8ZJyzEAErdWnuXpu+c50Z16pur7I/b+H+dsLxazk9vyRhtBsyEdbdNqAwIRktKatFzWlkh1aPWfGdoMNTo42xnVAhBoCAEB7UK12gwzCB6xQmZ0xhEHHZ/qWql09At/xUropTJr2thLRTFHAxdSlDcn4raMGEz2GncA0XG4VXjzvTgjhS8cSsBcK5hBjgg43IAfM6MyvSIpKq6RkhHJ95V1uiKXSapBhO7FQnkKCMAxDqfgE1kAVr2GPcvCRPzGvJeQ2rh7xpZhKJgJ7EHBv+DJ7ClDWZ6fIsPE/8WVbEXrksnGk2ITfD0ocXJPzbJ/WnigqzkhL6BQ3XEEkgcy2uKYEBpN6UHbMh/Pe4FNuXpmKTXkwDbgf6ZezPV6WsEu/q++bjgFgj7ul8HeYgBYh1ihv6bwhWs4tO8M1wL34IcmIS9powAfvdUn/qTX4TDjlA/eOgg4TIvy+tUs8PkUkodmDeDhAH1uFixP9Sg8YYCPIconaWnF4qmoRjFzIBaxQ4nUNbaXz3N1a3Qfb/24MO74vXKpnx3dNr3vgx1pEpHX/p68UiSf8mM9EunR3/30tUwHOErFZwZl3nwOxs49rKvFd6i6WixBhh4a/Q1tIVwHp8DYyncAXAZWCvGUN7a0qzfSpd2h83kfEnOTIzeV7Yms9E2Hsnu/D4O3z9Fl29j/rbrR0sCxKuM9qEpD/RNvFfECUCchg8oDvR43ZODBEyu3yXqrcgwjJSwzF3LUUpS5+FgXybJYkqqy3wWaEesPMDDonOZzOYc1oBl7WWKo0brOzlP+a5tbqamxysunyrGe3j+xWu1FGiZYDLo8UxzY21IDb9fkPFpVerrtiIBbP8xxN1uWai/t6N+qidtMJ/OPy1bQufsbiByPSGnjN02MOyVUq+T4IGrlEhJKOR2flzi7J7jgZg4SrzttYT4mXuNO/lO3AfB4jaVibW3YmcLxqIuimpIBPVmeQdniKBb/jf3rZoGM/+BhR5AB+spdZGil+Il73Q0YEKmhgT1puceXXxHj9sr4DiQxCdQ4xIGqbBsBg/C31sg799VdDzOZdE86HhCBJd4E40jTBcTDluLbHxloUfMbY0c8ebLcraFeaE1DkO2xkiFRUg0Wm9zLB5fxIPSWoVCRQFgATFce+80Fwx/mESnhNiiMYFARvYWyLtYv9yy/7VwOw6sX/BjHLaZq9+kJBErObnqhwSfTo2UO79wUYdZ+G40niMH99Uq81hLtP1Xsi0H2vRL7JJeo22nbNIvSodhDRI2p73hVXY+tmRydrz7816PeO4qSNq5U2/sf2RkNpx12oyZmG3t6IKtyR40nrFAI0BWBpV2wxJqz9KczEw4wjCtD0nl+P7q0CksntQGbLkl+l0S16l8ncScufl8/0kNT+Gy2sd3zX999SFSnWkbJp4VEP1bbjg7bU5FCyPs/NSrBv+62CHHnyck9BCnSSiIssQrB4xEgz379Zm5vvugIHQlq4+1ql/RU8rPR2xf7P7AvmzZdGhye0E2U8pvUa6cFiGgMpSU3feIZXBLbVNOPII1ZkTp+MqLX1FhPh7FdGs1DS/rKH95Er9Y3sdxKWti0BMnyhpboFnGl7PYPiZTdgn68M+kpmxKOXms7c1RhWZnxQIAMeNDvPqP/g2hGXxSJ928M9ZPJeFr5ljpoddYF5PAaXpYUYt7qXpQjid+5tgZTNbD4RlbqutipyLeQNlLhNWfDa1QA4Bq6gu7ZCegtXWQuNXaK9gyseO4CTbs+xv7g0J35YoSy+qX7McPkwqVMboRGO5jdtYBAPN41dSszFzfffgYruZV34lbmmWnkfB2YO10tZvEeOLnony2Rrz1yhANlsFOIZ0z6i0cOQKb34+P/ucVpGNOBFodpVvpYji0XFCN0Va+6xvyimvT19clgK+z9oEsRcEYt3GmBpj3cbeLDyYrlkFC9rAtAv7JcCeUByILH3MrTdmxULvt/pnpTAX0OoWXWaxbPIShyT680YkFrG9SHUPBSHHm2wBclnUkLiwOoIgiY1M67MvKua/p1mu3EWhK2tZE+rgR47rvA2cqATJNdJD0ZsO9Oxe8wvnvUuejw0iwgwRvoV8F3+d8R/Z4Q6/8Q4et18uGsP4Cy9syNq1ZRJKXsO6LAPg/WjIoIX4VJU34kcjCfr6KuZU6rqTtrOwc+mGUqEWPMQGdfloORW1X1ozEn0NZ9LyYV3cHCd04NYg4s7zOuyi85Jt8G15pDAob2jJwsJzAJOmNQB/4ZRhyvSAPv3rgp5ayo/WL2ZehDaKMVB+XRGZrCgjefYthHFU6/h9gP9iLrcXEa5qSw770pmSn8qs0acgiCT+rLuKhJCPaYihvsh7xQ7109OxzU2iC87N62Z5oE1ui768afOCTozIsxh34stEcnY+9cNDyAh9X7gQIm5PFrJWea8uIBQ3CblHUf6qgITDAEc5aRkK+mjSdr7StsGU3TJXBU0fHuOXyoBQuLsJTEZm0VmKT2nNq2By/zIoNWq8P5MntPkg3oRgn3LFOzX5/+Fy0/ywNjoqCQItcLkSkgbxjBHwzOA8TJFnUZVVPlVhOfysJWDuULOjLlST3NKeCX2EXGDS4mRQWYtzFnFlqKjNirV/ZjHWANN3v3v1s8M/f5iVfZzFjZ5WWigPHcqJndyW7l9Qc/LKUL0lMh8gs72WNflqxZalLgHYOHvt/QpCNZ766/j1mJFczixZ0TfXymGh9DpnvPVRI/lsZKb0voP7Npxk1mLfeZ6voRXd4qJ2O7j6I+7AfJ92Jhg2EsbOB1kT5NuZvKioJKjrW3m0PVOge/Cl/RbhS2nB+Sbmuy6UCNkwCcOkuqeoeBoYPbXf852jcMZXoAzaasi7E/uICxfizqGOAHxx3e6HsjdTx43qFFkCXtzMjX0tFRtu/M2h8bVz5//Lug3vM+C5lfvy7e5BWElJHCGQlKKjTX94cHQgmChNp42PCAwXUCjh4QVfR+tE3O6hyS4yx8yN0TCydWhlLYizvev+ss2Mhf0ZUgTNA1KCiPlWokhJ8Vp7hI4lwWbANFPZ1OyFyrC3LDxwj1MJEh9ozC+cViuz6DZLUDE83igfgO6eMFY4PrzjvFVMmOAO0alYBTZsMetp1Rq7TB7NHGhs7ZhKQkmaGIEkvYxCb6yV6JX274aLj+haLnbX7BmDC8n95X5oL7q3JsqPLPxzR2YOdg0ozspj6gcDWYH4QPf92s4HOgpF1k1DYrP8pp75BhHn3KpsSw9PMU62qOTADnhdLDaTKYDFr9BCeW0FdwJGdfW3MWTaFrwL3Rdnuve9tOgbxyWNJg4+KQW0auPBTfQvElW5clknvog26NvPFAnrr8gpcQQm5p2TsMisKqKwo2HtcOdWYSoJnbPoAlgAikD9nl8h6w50BvDgTmD74s7wJwz8r3bsaQgl2qJMJAi//FAsKCAYCG0G2Ipdrserb0CQnmF3NqU3jOmbw7kTunZMnEZbE5AiWMpgfYhwOH1ukWFKVJhRk7GaGma7LkXzz1qxWPDG0+Df1BSUpxj38stCO9arBcNYB3VSl0pmgPDUqRAiYSKyJmEd1ZZDbaffnjP8HxkM0XKT5HcIlMp9/6Gw8CGKSM5/FKxyyJ/mfMZvORXR4FmrrMZGZE5UNvLGIA7eB+fBNYlYRCm4NFwsU4HlaJfow6E+ANHC43gc2RCAhMm//10threLkN8eHkW4BKTyi7xH0rWARTG9/+FAXXvXBDGreMI1ce73W83hMFP5YVJpVIKEVvsPRUJcVnGHvikyJe7rd9VBC3gJNP19csG0t5Ee679pRlPgP6z56e5E1ore2z795/Y0ysktsb4uoVEIkU/+YwO4vZWLlEY/g+Zy7CV2N2t/eHgkGrI/Q/Oe/7QnqGP4sSs2Z9Pt92uO/o+UQEShyltqq/3QoXywOKXI4U/HHR00HLSo+Jx4dXYXpJNB1FttdOeBTaXJKHGF6TnwLm+CK3vXpYKMlYJLlvHZoDud7duIpzKPnkqJ5MFffutvl5zOktCqPCHAFTLxyku/heG+Tf0oMyKDdBihUvX3O4jPPZhKOAxXlLWJw7hg072l2QqKm6hWnwKTwTiOmoczspJeyKpiWYONx5NNOHM/qjR63aQoAMe3dlfo6+CjXXUZkZQIoL4W1UbhxCstdn5jyNexz2y9FCWd89Hc8fBYnpTGvDSL+qGLVxWbgjugkIxbUGHYDIanNPHqrl0yeuohHeZsGzj/NHpkT434ozzmtoILaQQhZsO4BJhFYPHUSHg+g75ANGZ6NtBOcr4a23lyTVlIAbDLVR0Z1qwCEzHlP4HBMl4a+tRVVn+pAYgFjcTQ7eVs8pJoGQikrN7nd7prC0rSsaFnWlbhjEZohxDG+5m433EaEHG1GMvC64aHjvwSlBzbuxLDZwzi6il+kMKYEuKf+l5ERkVG9/mOf9EnbsvdN
Variant 3
DifficultyLevel
623
Question
Lines AB and CD are parallel.
Line EF intersects lines AB and CD as shown.
Which pair of angles are equal?
Worked Solution
∠FQB and ∠QPD
(Corresponding angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $AB$ and $CD$ are parallel.
Line $EF$ intersects lines $AB$ and $CD$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2016/12/naplan-2016-20mc.png 320 indent vpad
Which pair of angles are equal?
|
workedSolution | {{{correctAnswer}}}
(Corresponding angles) |
correctAnswer | $\angle$FQB and $\angle$QPD |
Answers
Is Correct? | Answer |
✓ | ∠FQB and ∠QPD |
x | ∠AQF and ∠QPD |
x | ∠CPQ and ∠AQE |
x | ∠DPE and ∠DPF |
U2FsdGVkX1+I4YjQy7+Lg6WkEXY5BpvICuatLlSCoS7e3yjxSVkzk3H2w+m2r4FmOGazK6KMOOKqUFwAcNPe6yWRXTNgHnLdYfSS8SMxUvmH7RwXj/fz+TqhYGIPQ8WmnTCcoLf8yIUdIWQ0I7OD9s6zxLNQW/eqWFjDgGgZhO9iD4Hmqa+xDtrLr05K3AofzQ5Yob9NnJ8FlKWDO9jt37JWVNNH42Ep7DYhizpKEs0bHdL+kaVlgnQHEU6amfImoKym6liIfT4aEmlJLrEgNqqLiB4Lvbl7gd0uBmO1ZNmKvPaExb6JU/s/IkQlTenmR7WJSTBCw+cM8y4VX4oW33dK56cxbBY9hCurmTvUkYWLn+WqKqhuZeHnlkqZR7HwXUK1EQuZcIbaWfxrsL2g6GWuQ5Jo0PeYCfGRPt1OaikIWepl6GMRjJT9LpizBrlZa1/nGHXrzCvcZNrbvA1hqGN7RzPxNg+32W/diMW8lVgYnmVqqe8r+DAhRvfZMijfiKImXDpwtfKPSiEX5qAzjgS6mm7tXt9xGy2V8tR6aJRYjUMyxHEWd9Qcn1Q+potWZz2dVbUnJGZlSP7YqOaIEtMi4Pk83DQIGPJ4/yaCJdUFG53gKj3fFQiCno3SzKxGvGcf32Ha8tfdjZ3uNunRWNuUiyaIXm6neyLe00Zqu0dnLr5UGEodAmvFr1xGHFXSQtBzcyAvZpepKryZH2wYCqRAmfaLDhpkGzlqeYNmiy1f+2pzOfgibpoWIlzs2PqkrIJ8cMA9SnyLz1/NYd2RuLklrtl0YTL6LN20/AplFAEAAAzvsdOHOTzjZdlgp77+qQiKs0cS9ZpcTfBQFN690rpXyaYVvb6s/Gj6MaWuDma4TGTZvF3DENHLiJOxFSFT4EPKYlyTq961C72r2WTAjzmqlJTiOBX4tnE19yh5lJBLVejIigZGWkbGO3V9e8yb9OWguV5BAUNxpq4tUU9MnJXROhEuM624EysV5OX1zSnoKmIoNBGuZRyu8y4dtWhCfqTY5aW6a9WPaShij8Lo1ZcTDKUSREz7Jwldp+YkvSqYWMHZ9iLHloV/VSTrCnReqZwmFSIxCp5zzLKRUn8d1tXprnI1kI08O4kKOs41VOWfd33laaX9N2NvmQC0HIBj4vexFGczMgJp6hcz8E6XsLqiAdUU4vcTDNYijHItFMWX6ODQ6gcTOT0pPikoEdwXz5JCRC2iRaGMCSK0+t5T56V4LYvFGf/1nh8zMfPEVmBQtLoq8TprXHhgFnv+iBiA9FLm0ZsMxz9UX0xgGRFj8gT9xQyo0HMk4dLh4HeZRx/4ZcA8wpUKxr4G6/O4zKsYjTBYpO/IMctlCkr2PBxh04LtH1XfXmo1T0Cg04PYRF5/kdojN/xKZtuZdjgPLMnNRhe67hzW1n2SRB0omx/xM4ctRzrNGz48XlFuBKTLBFGIEzuxK7IoMunfhAt2cUArVOA89+1PY+XEQGIIzIO998g3rswqUt9x0eIwmrGTRwTTKPV0DxiiR30rf2gd5wi7uj1mC0ppbHTCFdgq5Zx8zhu7Dr3cOhXuhkQjZ2nL1N1pJT1sqo0Ol5+/RylUI5DAbFSyIYyZKFNIokKn52jzuN8rKI4hpfkvN0zGGp7qZr09v6CvDq/R+nOa/SYoe1f2kpq/h1a6WQA2YLiGZt9qJniaP2Evrah0a6f+eVvTiGwwzxFMdHXRKVU+fcK+/N0HGV+6MwAgog2wCYz3zVQoD+LBNOLDrAi7Kcfx6GRZfW4UVgItMjN8TZj6aOElJ0C4gDz1fd0ssEfb6uO7ojrwUcIN7OZHGecYXAz/zSzqtmKSJ538D0Y4dQwKblZMIVtS1WrXE/Fs3I7s8TlVCarY+goaE0VOogtCtV9QJI7MWMGSJHmtT9ZebH77P6+cnD/gdvOoYNgGBkA1wZ6eQYdH/yGA/1Gtmyu11KCP+8fFg9aaBZCAcdTVP8WNvXTPcsGkU/ef+Qth8aullH7BdARnt9QgE9jAt4fnMIVr+jiq9e8Y3F80ldpyFORod4eOOWdK0ciZlqu2zLCjpxuLAn8KN54t9n+o4KI5SPL10nrp97TWj88M5JkGUAROf42fsWJT/p7TTY1kwZ8f5pJuoVJoTumdACtnISS8U0V/PYA7IqKEnVdYyeWt6o0m6oxhoV9ShwYKUtXZxrYv75qAFjiXJDeA+vj7J2N2/9EhXETL/t0Uo6c4puAsTnKacXuuHsPC0x1b/Ky38jIGIGiCxPFKSX5AXP32ySeUwyUUiva+L2vnLU4WiWsL04bapzMlekeUCcRR9Ik8yJU7h4eNnoxMgUX5bm3X7mje1BsNlUZNbg7AplHfxT9zEpGO/PN87PH2tTRlg0pYY3UcRcktmZUUfH3M+iOBeT2gF5D3Y9Po6Xi7ab+7tyY5EunS8E2T92bVAVcUdc1WTG3KJrA4S1JTEOgejvTkGnhNzMOHN9+xAYGtiK9wSjCm1f7ZLnvfhI4a2vRtr0WH2C4lhYHQqJ/MIleTKJ5rAMu4geTdA3WBAwbfqW65jFeiT8HsOnvhgWRjNGbu79Mkt7tH5Wt6Nm0pG+7Pvk5dIHXZsBY89pRGlFNyE0VEhHKH1JNAZs/eOTLOGtxIjcSAgnJeCEuIeEcncknYIGvfo45zyoLoaNBeS3zDHs9pF1NVp4/+2eWu1Fl7iCfsPoAzoDo9ieQmKdF47t9yoaXv+zhPR7GSMnk1QW/GSfQeQ1GMMAhXk8yeIZo4Otidt2tj6IOQPjJZzZF+Ho9lzj3sqQy0cQArIR4rJk7riaIwuOdtebTIKKXA9vpmHdaJo1EBH0FcxILGvk7XvCYtyslppxq9I2P9s8W4+AihxzLrIhhit/uUo4UeUdPwBl+yfGTz8mz1+zkyy6Ohw2iGo/6kmz0jJRKHpeuiRhU8nWwJS3HC0ACI//g+PxJ7HUIMtHpozEzGXTgn8tz6AB2vVyRqGUn7LMLygaJT2F+nHOHnQEU6XTlQEZSzCw0MbsPypokhJA/RBAfHybEJt1SMKb5CbsyvT6Yruwj1B4JYtJZiXxw4E6VccWAFKEV8G/8rFGrTiXi+uX6Iudhj1lPCu84CVQf85tezH5MIPt+r3Mkdk9qpDCEM0Y/QCnjMAbm50C60GUZPsPKltXKQRs0afhhEpr4Qmc7d1E5txM764Aa9NPNyc/qjb0X3f/LF0tldkw7VpHpHKEgu45SLlAj1qqbyhaLHWLSuIrxO+UaVJQ9ByQst8456EoIVBQ5sDRLQhPpYFw91htH5WfAThHaPOjFBPefjUKZxjK6f0qqqRdxD1enKkG3UY5EzQ0IXS7mXcoXLKTBZru/2JV0Ld8IWs3eeqesitwoRXxMJFnwxq0hkD0sKlba63+Ia2C8XgR6KLKRYysb+5m6DOqlXbbVj4VdtCK2Dti7fAzTVxj1MKEHF1iho3VGFmbcIPhOhLXNcZd9CPT2o+ZcYGmBEAe6S7mJK3cBN4Re+K4QX1iRFvgkgVFCRf0Fwc3ncPNXR+h4pQOdELy70yIIh30m/MyweTfT1YumOgfR2zljpCI3W96hK7WabjYFjfbvZkBjZZl7/Sff0YFklRVEg819P5k6e1ZI8Qn/xFI7O91hEIUVAO0L7W6lDZet2VuxdW+SvS6U76n9KUf627O5EzwoA6s7JUAjlbHPaBR1hMItjSnsUbJEw3jSFtyHVwt08X7vWdpMMudBmBYEF9EjGZBYm/mWuY6zYmQdcgIo6sMw32ggdczoPnAGK4X23MmsuwmbPTnkUGB5wmF/6CeaM4x9eXuboGLwjuyU5xvzNF8/PYZwqtT4uyfs59CuyeY5+ZaGpAQE5+kba8q9zjKO2QnV/+O83vt9y7fb0r+6Rjf7dYoh1CTQFI8u3B1uIlr30cJYYrYVCyDC4rl27cPFv4f/SQU6OSwmuarASF2aCyKSKSyFxp5ly3HUR+l7cq4ZVVIMWtyOYxdEQI7H/+Hqd2cQsDkZtbzz/HCJy6LfkWtH5i2fAXfG4YiiXaXH5uSfhzkzmA7ChqtIj6yjztciHrEI07C6Hu2aEQ96oH1hl5rBb2CEEKD7SuzgXQrKgd/I6bJxtOZGdq9MVXfRIjBbuAkUXTwDJV02CTEqL3COwQHGPRUowZJBBcUjLN8GUTnHaQp6o2/oqAnbG/Jrc7FMUTbJQNOsZDk3fO8IaUP8uOiTYAvkhllcdkMJ70VbYyFfNlNUuTz7tDNpx0GZA208RyWYyXGBf1B2IDCDyoacqgiIVE3HuWUL1MmCVmA1Bgd5TxKQP1WKUtzrt7Dmj5MPLt4VwP93a3aMYNL+VRd/PgKjww5n0LJUDRBv2XhwOMyeBaVFNHk9f5Sl4SGwcJGMGWaxx/5kT+WV05jlAUEjxc0KPvkwt3Alr+KrxzgYhmZbve4lQd6uvi8U7ekLNNxPX77YX1w8wAKIyi4HHF4rY8z/JJv0QxJ/HrR/YA+qY9GVJzyIT4ikbeZeRbZzEz5ylwI8fCJlgKnpQ5Zq8OHFNdWA8hMa/SBam5RTp0ONEAfhi35MnM+Jdz9h55EbzSK1/R7yf5lKN1zPoqpI15JXyN7uRxPuK+9arp/PmBy1kPvq6W/1gfHAF2f39I7qvDoA/EMOAdRZ85grFnCYleBB9493vwWYWv1UVhS82gXmC371JVd006GL1z4JbEGVwUkoMvFTWUoyH6eZVDPGhra1F5cPUCwk3q/NwkapjVmOsFJtwjTzxoy+4Epvw/GsUjtGCvbVpe2E8RA1jOgfX5zbzfhyzKdNICfD0d4IzXRpjaU+s3H5+kFcgS5KfJR/uoYD+nV5XOGH+r0eaGBdl6mAhg82yYeDcpBa3w9b6eXfoR9ZbsIQ3y9QTAnNA5baRa0I0dI6wDIwcAFLZtR6cc4BATtwNSb10Z12EJ9c+3n+6u710z8+z3oMmFoeQR4aBHYfNMnu8zElbkO9BRGmDSLBz/4dmVC01BB+PhF/nPGoVOH2y5eVsr6yq/UNeuHYusM2EFDEpqzHFIQIV1AyWb0roSPpCNW2WFE3Xv9GkJt3AOAx14rrzpH89o0fH2FkCgO1HAj/uGTQiXUQBkMj9SNjPar9ilQZwv1bTwb8uLt4FxO/rCSvu7DNGEJNI75DJ2RPFG2d9HbdqFZlOxpRBbcutOIKy+OtxbnfIddupv3Neke4WPRagi+TvgEB67hzp/3vV7mgLaWHMGeKa7TZuws/j+taX373eFOnrhMOGRULkrWShYgvEiZa8hNfLabBAa6loqCw3UzReyonLyEK8i5Gx13OiMgek+TO06pyVzenBhLGnvoFMB04NDwOTnrhb1m78O57NlfTewPDKZmUhpk7u80luxJ2mncSAy4NZzdJn7P2wthH4Wx30Y91Ut+MG9vpvawNSqxVzsqd/qHWisvDqjWacx2tZ50Ir7dphGIEWQhAc2UMishZ2dQmT6L4J7iEXZms2+kzZ76PhJZyUxGVeIdAMCPhg7qqpgdbO+/JwUAZ1Rg64ZJETYAlTa8Yp43YFgzsuBunnURVj9gLbTOBT+6tEhklRwqelXGyfnHwCD/mHLy/LVd1dRnYi1tAnTL33QhCOBTp026yaJ4nsCdlrPf4AdkZW8uyAmDjuoSIqQml8g1/+GgBsqt5NALTsJ1FEnucY2if1zt7RdNI3IuLg5E9I+oxYVmu1Y37Ov3QWsr1KZbCtv/pXa1yXk/muHYPA6dSFqyjjVNXa/qESNS7lWQstLhAvHhIRArs1fz0zy6OGpZHrGxqe6Cwn2xI5T0E2v7mt828s9NxQN/G0DXDSzUr1CESpPMundElCBz9zDB3ZuMXNiGeIjYSn7+gtCTrycsQpjlKMDtG19jfjYZz4VT1/5mPi3Hi5jJfyN0H4lR9GvBsUOYxkJGevPjcjEuihdj++e/tikqrYmqc1Qs64vExE61y0uECj4NbHJeJTzD4jzk58XuG6//Gbyxu54k7aPaAUodTovD6A5z62jYI+NIDaAR0AWntPZF5gX8YsI5hqNCMF8Da8Rpw6FWT2Saq38abxF/VO7BP5nVtnbAEhgEkux99bziYu57AusR6gfYk/Qdzl28VCg6KA9ois+ppZiB+LNlGCsfVJlhHQPK6t15583h1QLx3EiX6p+eRqapyyELOdEyAbO7FC+DHXF+SzO/KeK4nte9ryee0dmCe+cUMbjEqdVv8k1V2mPUS27L8hSiTI0R0efNigr+ZXrCuxSYXBYU7r7zs8TD2uEV1y1JpVkvfPveKK6briSfopfy6BqmFAdneBMBtJHmeJsGcHRa9TNjQFqnzt8+5V1/p4B2QURDkqfOSKxyKjbv7MuOdDeoZH16leAnZEhqYvpKQR7zbmE2mGojGTwW4Ha92lGo/9leZGGz/jkw3nzuG29cAEey+NvotrMgv0G6Ukcjs5+IPmMKOoVzd3kqGOpiY40KsWJ0uTsHVzpPmQF3UPZFM0kylEv/TI9XEzRiG7b04E61+UPU3isFYuj839lVF6cf4xiCetfevX0u4s6YbbcpPrxcMUYMcnEQNxHIG4yIBLBiSVpKkiVcTpToLwmNbye80xBoGWeRQJDlnKlRzlP84IpCcZFws62eOP2bHVVT2DVnm3G0zD/dwixm+LKYkC8qqAHOoEJ4Ok98EbcDDUXJagfe94jN9D1qWqoJNhX6ugNgIAhfIX6lvvIGg+LVsWnF1KzdBGdRK2bsqwfM3t8A3o3mlzIWxEzuhj0FRoMNk1/ByVyREx0SeltfkloqBE95fTqCN8WcYPcUYQ9muV+BaVHG0Zak6HhG89g5YNP3dyccNX2K0kNTK6LL5oVBcBvc79A3Wy6p4XnlaUz5vpxOt9JTZfVmQl2Mr3KBeUUJVgcjB8b6R/1zxT6rX4YGtiXGPD1lplCAZDLvKMkFy0OHvbUBh7NPfCL1/muOLyEEJ8NVJ4BDL3zwZuhmqzzCpz4nKCp5k0AdoxZaka4j04aI+TyF3++2xbtEToIv9b8VAk0zI7dlOJw110Vwg1OEdHxrTXCOUvZPLky7fZTzg41Pzdf49nw8zACqYtMx1xEAmvbJ0etZGj2r1baeAMnr7cRgXB0GOEgE7SU88i5qAty4Wa83NELYes6MWq0yweB9lO0OSD/jkszT+OlAMuZZyXs/xvkX/GKTQlqIF4HIr51HRDYPXXvvKsgDKeIiubaLfWTrBOCO9ENCSH17cyt1I6SC/cyOGYU6yhKZiKeK093EMlnbjxJBY8sTx0/9uL4LQX9X7IJjv39EUPU8eiAPbdDXdDe+9O2aR34wUFlI/85/sSwdG62k82/mPPCzlk+kFsvY62fFn34FvVYktNHyZCFSXdQhvJXogifzwuAoIXu4xE17SIiK0T52EREs+brJXtdas2oGmFV6SOZK7sqHDOY+Dv41aJL/fLApBmbYw+LQYz3eVv/4rAuwJixvAyFYbou87vmUZsj6nK59ChYl7Pnfnu7bNIWf8l3n+dbqYC5wxTALPeTpBKwCUqX1bPotu7fWL/RyJqscV6Sxyk7x5mpBL6bZMyrCWVVpw91lLzUY8D1zMBi9PLTIMzT+F/yBqFRPT+julP7IyF0nvAlSzWCO5Hltt/y2GjyBGcrKh8lXWvm567yC8GrURVNWZrmqd2DTcKDZ+zbaRx+2CMnubrTAWh/PxlqOJ0kSKSndBO062ujf9gKgFeFkF62cJgu3d5VwTcIr/TybT3n6VOgEwmRFzmrXOWcajyR5BGjdXGQHFgi3+oSTKkzQyBiKPq5q/2ZhsF0e2QftqIwfgqJ4rVjI6mbe8tSwQoWDqYecXyVil74pLgZtay1VMP8QSnCB9gyh2po204LTdN/aWWGAZy2hbAHl1t2JUGI/EFjjIHH8Y3Z+d+Krn9QzvqKgp7UxhJc0oC3fC0CLE9CZ499R6jR2rSPHF1SVJoCczrMzd+X5FzvL/ccF/fWdPq4T+IOq2hZ+O4aEfKj2w8X0A54eVVmOx/0TOaASXrE8rCsEfJ/cAjlLSMS5tOaQ5pz3GHAbsiPQYRiMrAkrNYKrX3rxWC3tesyhmxkPnDNS6HHG541qbl2M0Lv/zOJno53Esu5Pss2/yXSmoye+67dw73i3uxO2oPPDmAQ6cZ/yeJvjWmSXlzmW2nv3sZ7sJUp3sO+ffmX/1qYzNu7x8gKNCkSabldlIYeQh5bgHBXhOpbWpW8Nt/mb+SLsPOdQvQoeH2evESVD0tOXKXRElJOjrlKFwBgMgnlY7C/o+p+7BXWLiIRAZyL38h8QsMspZ8mMsdVXFD+z/8GhRcg2XvfPKOSGdmn7mRFLAabbEqjnBdx7xHCIuGj55Huf/uu5papYH+xjBeJ7HJsr5TsG0EFLaUbv1geaBY3khQZyV2gvXxjmZjgDrwZD4BFFOg67Ey4XwpjUPJZhyI9q0M2m9BaMENRMb9pKICOn8cjUUgXZYkrJDANdwq6zgro0HUjbMxd642Ab5/wpCv7e3O8ib/tolstbqMmb/EIrcVpwny6kgmf8MpP/pDkIeyXgMHzuTyVEbX6CdWpT6J/FGd+H4ICn/WRHceubh3fcmR8a5vIbeoOpnWBsvTavl0jOg8Q/CEwc13Xc0MpwVfpV+nkxSPU0RAesX75m/VN7xsQZrNq0XM78418NLHyirhOVOfbHGoT2aovdPhJrL5IB++MjkMz5fQwuKfrdiGOpddTC8pugQP64CjSDZopDV4qS4OrgwMiMquDQKg2Svly3s0z/ntmF5S9FQiwvhgGUAypcZfLZK0qolrOsoTjtsiRxWpejFKwMy+g4c0qpmyHfwAnAUNF0IFQZGZFuLt7yUnQXPBFOfqnJDl1QZ/ouLROifj59LSDpPw4mI6LPP5wGvFbniWlITLcojXIa3OtAZlcgHrsA7yARxHJ8KXPBPWgEE9O9QvNxDc9f+0dOxWlCcYNODuvEvCX9R06euox+eYnhRuYpMD6vfQompEwQH9BTkbcI7vomadGcQhPN+MIun/FK8xRRvEixzE/SS+2bMs1pdya/W/ztPRp7f4Ht2M5IfGrjeoG7QeflnkLh9+y/towkcwmSN32GRqNBwWNBX+P8mn4bQSpBeqU7s0qju4KD53Gol39qlkXXd2SdFM+apYueUGjKiTloH4BsG1OQxx30BOx73hyv15HOq7/Sb7kNMcq9bM9aEP/GZBSA8wE4oF0tg6gHnFs8PwUyhGs0UBsLrY+gpLlhyOtm5a4BgisjDvccfqh0ZkUwNJ61Vu2mTzOReEV1JviQcNeuoZ4dNzNee/ReUhYM+NDn1T3cLA2+ku6sOZhw1EKMsQBZuqoDa2RwEdKDrHilQjKGB4xpWMA/onKczYCoMjhOIVUogaOupgetVr2t8o4Jw0vgE+XmnHkIlji9OihoqyJC70MIfJNiTuwab5ANRGf7V9ZSA3jz9oBQ8qkjMHXb0vMExcFyY+0khmJuk5ChxRdB7T48N0vD1iBC57e26EsBx6Dw4xSqFCjsw6438xCbLaGuU7TUehVG13Mr/vrVG6y4BGJ94Ol1WILnTXwe4hEq0mFEPr0CNPR7z5JBSK4XI7YQ8Pu1gp6oBdu43lzfG8ar5kDlmtdnZOD7UKQGw5hmetEvZ4kSnIrJmSNXXB7hzBQm3mJgkU1/GtS7O4xyebpHxW+ZfjtG6xoPA0chfU/osEZocGupvySOVaBKzxSX1j77vmNmdQNcjXcyETQk7a2dia/Uw9Sz+EDWLjHhbv1qrHEInmOTVtYgVykGk44CFCZEjfaZ2N7DaUI8DF2Ri+do13Q7xab0Ghe+O3E0zUHk3/2j2bKJyrKtwVjKwYddpsKGk7fuxHOm7z5O+EW92teWPRopzbtYx/vjS4vnQ5EiF0wFq8mQ6lh6uDZOpc70K9WSLXUPaqGBxpU9BRkZbh0+/0aZzcCt2rItrJIciQj9qP6KsMhDhhZBXUR1xBDqGXXW4ka5s64sfI6+Tin5ennNkFDNdLHjPA5VOogycM+/0dev34i8Sd5NkwKmX57lFO4eVxKUxMJiSjR6W8Zy2Zeq15LbxnkdSRvMdkBH9bvoifN+l+NqV0iFjg1kZYRhGSyPmi0oFg21PpPLzpXXne3d46q36cLH+3A5fEub3T28/DfURsOUJy28mhsfR1sOhS2mAJvlGzwK6VIia1UQcCtWXONJnHemp5AB71TP59aQqzty/m2e3J4lI8vmPEwhBrhbXxBnpAQcl7aIvUz4AHnUdutvhhVKE0CoLtFvms7D3tc9RYytSTMPsu2We84VqU/eTFkT36F0/XhLktm7GLyUkiSwj4l3TH49od4tvhPHxUJfOfr9XQdWMKH26iguiSnJULrRgCT4M9ONyPEX+GBmRiMosuwEWEm1eAWMe2ezw8OWtTxuVa7CMku5S8Pz+yOHxKQ+F+PGNQhhyusTNZCZ1RDP1au/qzZkCB0eFl4AUED8GkHKGZ+CSwUxKrMhD1a2TnrObWGpq8qBoKnPdLgP862pEKdzRpGhimXJ/iCcp/OhYuvzzCDiunuAdwUc3fDdV3VCjpmgZ9OkIFYGCHbsWoIvibaKBRulvU7FvIvduPvyojF+n2a+iyuhLqUI7N8UbIMnFLBx7iBCFiAc8m5jg7p/rjZcRn0UxY94mynSBLnu8UfVIKX+1S9xQU0wK92QTdolMCkbrxolUTP10TVDWlf42zQkijjE0+wDT+bK60iB5vgOuaGksAValAAoMB8izItNghA/giaS1HX4dlvmCpYVqJxiwhV5tAOV5UoNugc0qnI2FYtHMZjal8dx75AR6zZQzdjvS4AVXHjAeB6hL31yED4nH8MA4FdA4rX55kGHgXFINctRt0eKMb42/N+bybpC4W5HBlElywG7P3fphq6H/oojBwCAx51Ed/T9BNjpzJeBN3XTvEr6OfARXBLhcQJffN7dhjig0u2wm6MpK4KfNNueWsI40hx0w4HCjP5Xp7RBq7MXjzKTr4tAv0vlN3hLlaS7gG0yUkqXBaIh9dYOXTyfHKGl/tHwHtb/iA6yVK1IoLbq21bvN1quneJbdupYK5gGPKUZWRRb6AcuyiNqU5TlKSBDPGU8GOWpkP6wRc30j98rp3eUv+6enffOxt1DCslQU11HohpIi96jjZMLuCp1zWiphQD9+V4M7Me8pu3W38EY556dfYqPGGdrzfl/nOMfOjxbXr+MFvSJanZrZTII5AhioYl/hZuyjCTfGAdgVBL9FCdFpi4kUO4sWbOv/h2YTMXM4TGfW1VlS4Q4xWL8vkPR0yR06cUdK+JKGLxIqErmqK+tI+McxPpkVhqnhjrU5lWvWGZvl9E49oW3UptMfoVn+KgzAGK4HOFF4r1fyHLnHGGgkaSoHgQzPKTHkIFwpSmru1MTYruaotZpVLYOWzZLTiGfIWFPJ4CixiFO9OpGE9LQNSbSnAzngWqnWJRDYtS8YFHj7NyTXfbrHLVzfC9FGLk1r3hMtNyNibqK9HoEO5Qlh8kKGDAgKFgwYY4svE5P1cOINPOxHacK13Ss3wgd9yj49WHhP07oq1C8Vylk/P0mzhNbgKiUc/Ie4YD90qgs3AxSZMhQTVWPgDTDlSUjnUqRvYYZpGJLEQLeLajxh0H8ytYpheH5joFrKhf+vnGPtwik+MbkSu+YNPL72hm8DWZB6Kuaifybb0IZh+JTO7YCHw6cJ9CU63nW4Wk+lkl6GgCqatAVbYdr/Ms/fO8XriJAYn7azfdB5KANbQrEgBSx87jBySXIIG+i3JcOsPBaTjsYddEcseZX2dcB2clHhSJ3U/TN8DKOnq0EEP+tMsVN4Eg+l5l7rjpFsIEs1zAuokEsf+YE7sPKAX94WUP6OH5D7pHb5S0X/NwpMcGIrntk6g9lUJi4/JIVnecof20Emo6IYN2vSNQNSEZ4N4EoLGZpI/K+TPQPWsChAA8b0qcXT0zJECi1II/osXFsJCDjPgkF2szEu65zi3OIiKE9MbwQqE/iqyPbreaGWqIfTJ0zeW2FjtYUX1Ln5zoOWN3PZkNb+eyOBR3rz70wL2u6FU9oN2l2Dts8ZkZTfm8HkbvgbRm7oH8wH64OIe+F/Uwh9ebmQvh66EveVMjUYi1tHIFdyOLlm2bUb0
Variant 4
DifficultyLevel
624
Question
Lines AB and CD are parallel.
Line EF intersects lines AB and CD as shown.
Which pair of angles are equal?
Worked Solution
∠CPE and ∠AQP
(Corresponding angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $AB$ and $CD$ are parallel.
Line $EF$ intersects lines $AB$ and $CD$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2016/12/naplan-2016-20mc.png 320 indent vpad
Which pair of angles are equal?
|
workedSolution | {{{correctAnswer}}}
(Corresponding angles) |
correctAnswer | $\angle$CPE and $\angle$AQP |
Answers
Is Correct? | Answer |
x | ∠AQF and ∠QPD |
x | ∠CPQ and ∠AQE |
✓ | ∠CPE and ∠AQP |
x | ∠DPE and ∠DPF |
U2FsdGVkX18s9tqxHaWY+pz9VBQIVDe7ZcjEmDWiXGJHCHL4aGDQJOHc0AcokouY7N4r038UIvadoUb0HZXVMbS5dS6ymK4bEphXz/ZAiKPoNebwJKKwSXuNBdTQkgqR9NUy4dLiX610qeB+VOE8Fs8Tj6Jy4UdnpZesb0ghLsXBeyAPUoRaaOqhbuFwH0pzNnc7syOTzgGXSVNSZoQfnqXWsCSYba2A/zp904qDRiUG1iOfF0hzVLY/UYaykH8vocDqZm5fFH4Qlt/3pw+jDF8YDnFt/oddacr22boVN1aNccz/FbnOl44+DKOY3pXgaU34al6fckyuyvuaIKJXKQs7ZZ+dOBYtbsxAdGLU4dMXfxKR6iyN2F9KFzhM79v7MBiSj2fH1c+Cq9p22UryIxjQBfHF5zVWozs8R+YEb7F1jtGaLIfBTOvSYmIPG/ibhHckU0iA/dcGXG1widy6e+A/yskiCJ/oyiwKzIRV+H8UhJ+4SHwkzVGOJNJxce1uyfUdNCQyL+qA3Gz3robbBEi1CUroJVaE0wYPu2IUOl0CC7gUa77uwpyZl0G0SpZdm0Y3OFRvVpDYNz0A/5ouM1TlONDUCYlF53dHSeaK7VIDs5Q0MD+VOM38OCbc2nm1JOBUxssKIdfaezxIDjdv6sM69DWXTOuczNrGvI0ZFsyVsYJV6OPpb55hc5JG+ZfpMXBKULXT2JP/eC4WiAhQPTyF+hvNdl1alYb2Nq0pm7nfmHEBCa7LfSTSGlgTHneB6prJOujenmh9dLSYX7IwBfF98w17v9FCKiUhKBCOx5zMjSecuKVufxwPU+m+KyCMFo/Ps/E4oP7GZumVJHQxlHOTb62/pDK+TL6DdgH2l7r1rgPpEKtMDbRHSJJhPZ5yNPheb1ENoTNgzomI1PGtb/RymsVQimV79rhCQCN7e73Usw4zsYRom8QCaPq1b403Tnw/hr/ccEwB7QxKC3yi3FyFyUYsmeqWTcwHLeHKa3fcDwbIEUmXUxWrgSk2AeDb19SvNeXzjOKvO1KFNAl7aiapG1Z3V0Jca8UnHyWxBWRhiVDImaXP9zyuEvmYAZ1foaS8Tr3SC0onyNfPHsp8N7cu4NuJU3B+cQH6oIpNsbWQ8QzILE30QfbT63cXfSr6WTz/b+9ryEYF4MDgfLaQjYrV9v0PzGW1eyceB6Fkukcqm0ceHdeLngFZOt/J59P/q0yTgYT40NOTyti14LAyMcuESr8chn/vQ9QrbVFNvhTOSi6IzTdRUnchr2UCCjWXRYi97IyCO50j+6FZZ9SQ7uqtTkOdzNKDBBbuXE8MdShtXlm9yPHz2svbr0wza0jC/53NWvIxVLJIPAmdYMMaCx6lv2A7kTvLFwI4Zmw9shiPXmp6sIafihzYK1pONLV1CZjghkHf+DgC8wELQuI0V0qHx6lXDYY7TSshVgH+leKDaY5VOjb2YyyKhikAeAtxb9lsPEdLw5nTn1Sq375o9c3WcAXOQwlciROZJU5M3tONEKjej4uR7z5l4+9OKUJ3erqdBx+5RCsV01m/+7YIWgG1ecmos3znjouT+9o6BYYBtljrNCGjDAa3J+5cWuOeMWTVieujPXWMHnEwME2h832gOK4101hPocwrkWUbOWDI3SDru50vPJI3GnhOeQYgRQ4dYqF9g5n7TlLlNQdU2YhHj0/2mER3smBowPX8omvfNuA8hRvNdAXlqWyjgmqIvH8yehz+eEe/oHV0BS/RggAn6BL9X/QiseEufuzl+CBmNMaJUZTRu13WM4QWdEFBDvP6PXpbJaBEJT7w8pX30rbPpxQospK8ECVomuwimb/pFti1vtkbTjOuXagLyY/VH5oYq+LP6+VqixSCmj/mxQ3SlrxRu6g8EXMBzpAwvSQsmxS8pw3+Qi6n6Ncw4tqK4SxxGiHlSwVvbXUpYSXWcvC8AI36OfRo9KF//N59Q7MwyLkGjoQoz6U9LD1s/NY/yaQu94cLvn7weo92JrlXPtDditPxOO11cQCcDafcje5Fdq/tceZrfLZw2hWs6erOBsr8Dnb8R6nvsASoM2/SDNZpa8TQNQvy2s6tI9YpIwxG0Jgn+9bnwq8MAf3cA2EUAdCicfrZdPhmeAaPTYUi5zySVzy9/uqyNL8cLcHPB4gwdH/f+4MuD+yPzGcuHihxc9dLfXudmhkMULEVvTT4ixNxFShriseuZTgf/9uJkJfAhQdMT4pjOEOoBcQPTbioK0EXh0cjeYywSOu/925OROER2zvwihLP1zBLaqWQ1wL0YTvFpQrknQ0zl9gJNNb4PkgGY+nFZS4qdF9AeGfjaJlRQIqr/pJMeBeLLf6mQXpBjMZWHFneUHbEXJ481jz42/BfXtsnor3xllMIBjZT4nP+oBQ+IyjUye+VKlXuiwfHO3Dmg+TS2X61BTDFvUEBpwoEKM0JAy7B3bMB1ITGdlTjjFOzwOYINohDLxNos2DLqhuRU2MmPU6FVHx46TOR/SPWV5rCU2tc2VHqRjR4ea0c0wt/9CSoUH7lzmMMv/DiaJLbW1lEVcR97sYPWdtaqQSP/bGryXsMhkgWWtHtXkH74770lhvsTgrCbrusBG+NPx3Ld44qmtjygpSbApiVqXZcglTSVPtzwOWy4zsRdTpbMxm52MNsIEHl4esaP82gzH164hYJFASCS3TcwaAdO/hkTRoTbrn6jtgnIl1SdEs766I5vHmE9U62y+sR2cMMNY+Ymv+y8cBR6w+rufbnjAn0C4rZLONpoWvnsUqqIP6QBdKSz3C36FX71Qj8DbHrv3hxvdxUcdghoLYt+rwfYKdyr0cBHIY3LBeiOF1zJn79xWiArJrHULXN2l+mEnWy4xzYrDxbGBJbXVtdekzJ3BLyE783F0P5ueYfGgQ73h0cxJ7nM/62Y2YgmQyWSTnGJMwvAH/iFycfQMcGHHtoJKIqR9cAiWetn/FIctRTA9hlXDHo/r4LZ7U73qkcuOe48kqb5POtJVvJ8gd8pgxkj8TCunaQK0lNuqoT7fW5ldT82gSfb4xT1nNL+OsZA+xVviwoK8JPe3Va+u0+Bfzuzbkbfnjt83KUgoHeeO3L7V7lVBJaH8stwtD6WIC637nRpiXGGAC2Pmo773CjEgG8p6Fc5WXnuJMK3c1NXaLzFHWt45lHhfOxWz8d8ATaEdXf2/p+CO8Yn6j4vVWrhwWnI5mArQgPSLqMbx8ZAXzr9Q7arbEV0OtFORdd6AV+WV4emxVaAdrjfQ58ZzL3qvZCPPe0KJ1ihHsdKfnB0N4sRffo+szC5MDO1KwxWauXnqSaVDSz8vlhqpUw44QH1jeutQiYgm+R396yky+mp0CTKEEPYthhPpq5efmkDLw5Wzcv95UJzODy+QfqjBBuVfjg2TBroBhErlIVYB8Uc+eMB5t1PTIauukuaHIP9xCbfkIX3nIwAaOXXXjr0DR9XO5wog3MwpZV90uVOcKDgrLi7zgcOD2al4cFOiyfHvbwdYLgaU0P/X32nvDfWJoD6n+RLHJdZvop6JMlFAl7qE3FtnIPhV74oc97MgppgsXCOEo7oeJ9W2Y80rH8DKo7b3R2afsZoKkLVXrNTz6WyTC27TB1OuxumswSf9yQL0SbFdoPj0XVOb954Gvj68hCY4y5M0urYaowlrYkYESq6W7gFk7ulMvD5gEpiMuF+Mg6JIN84mPY6BJr97+vNaLgWFjW1AtbgwIZ/ZfV9pQLksPsrcxNLJUj6FYJBboABxX5UVAaMDw6TjI40HjHpatAkdA/PjodvVpVbvNoBeQ2NMJOmX/EpIwm1pRuxNrNlv/RUm+TWXw68r9ZxUrkS+NabkidbnP9Vld+JkKk3feot29npzhzajf4mdMZk+JntpTs51rq9dkOG9aXfr+DuWxNltCx7TEEDjtOk2ph//tzyAeBgSyZzh9WxeR+LoSWZvxX5O5vf73rPluQ3lRkwJdAL49D84UwXeBRIgV+kfPCCNcsSRPpmoX3joAyIgt1YDePa0NuUoCJXZ0WKcePoagj/Ph6Ltp+Q3qva3lZFPicykaSxqK91FmSJXMaK7C5bieqqGgW3zs2iabOO9OeOU53yvqxPZFT+dAng2JZqYZwSnWplxx21b5L0/3K3YBdW/2WidpLgiQ5T+ajZhOeQkq4nyDC/K559t1winJQzJfFk+bfRIFsiMLzcnr+JisYWhx3c0gnJxbgNnpWRbQZZ/Lvd/NtfFhD1wzUAVKkZPgep0lsNQMEEXKnSpitwkTymnRwhrivD/wcdcd0HBjztQ4R4FkQc/TlvvdpXAFc+BnzcCRM5GNFtpcSBMuAIaNqf2/H1YcPseFAD19Fyvt+fgozQvF/1XBiI7ebBICs/EpZDIagywwIiwTKGeCvDYqM1ztCmb39HsEVLG/A2RDP260vMhOMQpfw3ucW2wHPbuV96qL2o1KL6GdAzF/qFFG9cxBaXzcW5c8wI8AWWoI94OfnsmrVk8sgNO206926Kr9N5lNwESQMqHyns/j7QFgTx3TdP0ykv13DsiTyevbjv1yzHulznsS/lccqdeNPF/zPwkCcB344U3Vx3D/9j2bDM10gdJd9qdfBqHqvzK7mpbb4kCJU9TfRew5Jllm7gdO23L44YW6ys65uTMZcy2INOrW64mew9IKRLaaUYIlP4uQLrF/MNpW+ceiaIsfeIHEgWHmbx/oOVMx5Tfm41ezqzCILvxPeDmmDEzCYpJ9fHPiiOw6BMxboFTxMx1GMLscH/QeHKqKXnpF5V6JgyP4b7kdu4d99xC8I9s6Oa23dz2WHZ0x5Xg/8sMXJ8BSUjQR48NRKGy3mv2qX/rRNmwaUbhcytTwEm+g1JduZ3Ky0QiHKIXB6GXF7FsN28DmYiWdVNXv8BtwRwli3aAWYK33QZOYim5CupfbxHT2ytkM7DLRxV62utFZDMoBBFWM9RnVLT38/vRT+B34e0AbSOWtQ80yX/eG9UVxE910y1VXF3qFFHvAci9/7+LtYYtBrqqCe1JbYMZGMU6dZbMjWks0QGhHUwxeoXYG+3OgM7y7f7gMUria33/aaXKofEGJ8ZdD1bzAQFWkjmdIh4XaEM4XwkH3CYC3MbkqSsZu1uxwYj6GHODiF4b2/qfLHbqmGJ7rdHtGxU/ff6NsCACJromNAUbVzVV0vwwHasIlUkkySaEs2I1sqQ4pu/svNr8z41PRz9LJLKDcWy/SoCa90eXrq5t6KxD1oPwEJg41TwDK6wNzy8Y9k5Vl70MG3zG5+bD+O5HIR4XKZRuGRo8IZDf9Rh/bGj24jqXzL42Pvsl+Bn/PpFD89O+jPeUGzC7zVjf82rz51gB8aXE418kuRfxhize4nX4iGjsB2nAnGZSQIY22uxQTIjo5sJ0BSy07jKbW47MW1zK+440sEmLeHO+VxNZMLAOsyhyjlfEPqVp3nU+s5YewF3W0gO8K5S+JfMa9a27Yf4UjDCCndh6/wSb0nqHIetX9lAF+xm4y49fVirCa9vuMCjHXTPHlCidmtSv01Ik3ZY6NLTnKUN8CkC++zsQwfzrh1uj05jbjCzCs31QkwAyF8o6P/8U5f7HxUJzvSyU1ZS9x71QLpzWfgkiTj56IE0dQNRqMYKtrpfF10lP7Z9KqgfpNG0YEqH2KC3gDf/mn3Rs2UPhKQ2+1DM6/6qPyQlS+rk4giISA1MHBDd7LHrMLPVUBYWfmKspbRVWP6Gc5LPzkwpGcElcypgjqSH4g+QJfgkwcGdTvJilVSvnYtp4lHv0cRS0IRcBeugerA4ZbkOr2VHHni+j2/Thq+dXPuFHAwn0+uOYMMcrf0Oeq6OMRyELRfKvxs5F9VAbVkzO4z8y+BYISzr8dr2VLoTA75LvCeQY+sdm6dotduBYNqcqJ/lMvnpMmy2oaRc/wuaFTXqGeVQTXoNNvJKf10BN3heiHMM5Klkmli52KzidRcGtmiisv4vUyqzpTobvflBiiVI9JiJQg6Cedm7S5ffw0wurF4vcMTMzinjqHwr8ZR+lJfeERHHAf45IV22p/fz/peSVVl8Kd831nKO7KeZKdpDmQWBw5I921lKIFQ82ecTBke+UBuGDYYGANNCzkWibE8ZKFTa4Z8SpU7f2p7vE6FjkStvZM61BXEY0pESSJDstgHlKs2NgegXt70aD2JDAq4rP3yG2Sn+aiXnOqV9ZvBhn1dGsPQA5zFfpb0DdknrNYT5Mfos7xma4b09ylVAZDVPvt7y8sIcWc46T36KzTj8FuAxToVYaEPN9dIvwyuC9lJyeCbyDihEs1Nv+pPllAd+9KYGANyJkqZjHewjOt++kp3QtanO/9a5wrfIuvblEXunxh/UNgS0iBUjTkTe5EAF/mz1InzMt/E/p0vJhbkTyb0HuSc2u1dksI/PTQ1fXwQH30Omnax6eSB4XFGPvefifJ8oI9hsFl/A1BvGYAXQY0Q//ZXpu4ltLdJOzm8xJORQgOMrPnx3UdBAKidZdMAIPKWm/cNOMtf+4V29gKm1RAgkvGDyEp6H5ksz7veQN9C8crwgnpgZQjgx+XEoJ8+Ehw3zBw8g1/0v0SLCRSf0T5N2sT1CUq+jIgJ5Hy1tI9ZpUF8mElTRflcvmvYRTPqmnsc5IHFy2kz5zcN7wsegwFW6c2ZhEQ5gmD3MhWwIO8MkxLG6agTixvfReGa90KsKrbxErJpyumhAgOy+hHhBdcbldeVQWMW5tGEoqmYgzJYJjnAomoYbzx5d9Br7wI4BVXeBusgrWSl/nhbT7GsZUx5Jcq8/82tmWXuSmYZu0nDJmYne0H9+qm4/HeOr1ROKFecC/YXiSxNmeOhd8uOOzG5n4QFNo9Xo+AHhC3YR463rq6GXqxwueQcuwrO8C8/a9AnC1Fskm4P8OzRQ9fI1eL4rtaRXeXHsMUwjOFFowyUKu1+Q2v2N3kPpRZkkrQvaTPU9PJuH4A53Q9x4a8lUOzhnUtto0Dw3WBVoD+dlnZJdCm5ewZ/z5Vbp1YdBCAegNW6h0zobHdhDR5XP4rBSNlgLOV+wq3TtnSnLJGaJs/nB0pqmy2Ga3okB4fRhqH/Dgy/9scw5qSLMzGroLTCu20uPeFs6n/CJjhrnNAbNlmP2w7c4D9lQcCumiO7g3q3Th/xVcCUUQ5JGxOLwWWdJs/DLy6xxxR0eArAtnCPqTGlog3rwXT0vbDWz4bdeH4ajL6v9EAgiJReueYydyDTjb4TrTRWDX5pm9zK6UTQWqvyoK2HM0rxLM5NgzVIeOW88cImfDzoJ6r2XPk0TX3PAJdRpetl0MFK5QT5ql3/jq0N6kD+UZgOHPuQjCCvGWQnLfgmr8hyG7Gwz3+DWwOIOjm42bnC97cFGG/B5zio9MZ6cMm8XOPWhAe7PolNmrlVx53LjgBYNoEdAoUPFS37wswmpZ8Rt7Ks0UjSHhgSISd2mLrFuHB+uIHLuJsttzqny7mm2cXJRuNyPuUEL5P6v8J0FDXdrlqUoWMk1LHXo4gTj/8vR6585b3qmKJVfWW8tpfeeSoJgUylph4eW4M83YkiHcJMqiDHnCho2a4qC8LlwSdSIc/Rts0V/xBPU4phfMTREX4uAdi3HjroH2JPi0K+Mu3aLMDNY65NCzD90Adkf/7KJohwOBtpjBWDQy6juBrbZryIYpu5hSI05Xn/td7+Rcz2+hOVOefRpa+Swm2lc+sdLpCHpz6NloPkTecxtKIA9e9qH+63BNX8Fbb+AejdCSMd/FamWg7dASoHUS9spkvzualulvCDaGsJdXzQXujdF8j0IYCGM7NDD1WDX7OH29HCLj01hAlhExGqm90obbuHk+jRf6Mqx0vnhPlRngtTS/2kuRvKYqCjyhYG86Hci+HHk960dwsM6tcvDhfhxu5/gJk8+ou0WLXwTpAX1Ydl39Il5B6GhYYobUMNI5CqJIDtNcWojM8PVlVz30+tblZ3cA3SFiW3jlW9Q3n8IQlfYhHTczQPDcILO6A33+LHkWq3yf4/PXbxXS3u7i7QQRuP466CskTHjMIyUvATW2FP24KmxPDLABxsRcJtrzLEtYRtjTNTYFcgHIupKDV6pOFwWtfXEpEMsNZyedakaZeUzMJ2+PM1k/8u1c5MLSD783TqWhHP2LWWuE0vVca/nTFbnggwlu2lsm3dKg5ix5F+w0ucCO4xseqSBgSM6cOx000LiQwVrFzGmQCKkynUVFAH9u39wrdyTy5YhQ66Ant8wEOW0Rsa015iiOMDh55W6z1iZSJPpFfGenA4fXCzIqtM2l3QxyKgM1eBAYvXDDpb97WS5b9TgKDnz5zhkqbOrvMwRnEbHvoArquMR0qaxSayR6jPCxLU6zeIB5mTpsLi/FkRSCn32/+LXpAQrPaC08Pn9ZKSP/FYbpHyzpSta3RxvvOaw5+nprtymJCo5cD+ihHnXi0AnjYOuOoaQBKqSNemlCaZMLzZrJTB5E+t48laEaCBBYMFIAmmbbsCDRku+AWwyFfRVChLnJ1OG/e2+qOfyYOU5OQyFT1HdfFGicrYODJ4aou2dojGmklQXzYHoeHa2WBmquozt+xSv4zljQo6OfAvGYyrupUdI692KJliDVbZuaJDl/PW7ITCRRApjwvz4/lojBXrvDIL985lRxonm3VAM0PLsC3cKRePZhs2Sy8i2HcoqSPnHD3sYV1H9TBVMVHXot6CEY2keHh90GS55EZokxGv58k9FMtAWv4x4wVTnTKZgFunvYXoPqu0JCp0Ecs542/xbGG3+KwrSr0Yh5GQkZfJ0h29AmiTZZr8WUwPqjSIhJePt1nF4qolVrziToDmvJhxiGhwpmSGZkWLMyNqoqmM431xHFh6k8+CoaJ51ZQbcz+kIHOrF2QcMYni/+S/L2vyN5YVXpig1i3KKYa78QX7SmPG09/E7p3XJJCFwTw/EpaFsiGvL61smSEOrwCpLtKQ9COA3s3p4uuPYOUPgPdBofu4IdnbnE3wSj0Ca3JE+cdPVCpy0zTB2B9zx08b7g+BIiQBveqGT0Ej6Bmje44SMJjvZW9pJiHlNBQBE30/qSLi+rqOtUXDWbhHAKTYy5JEbUaqlNxDoY0J2jUyKMikfCcJliu716757boR1FD73T5LabD1p/vUw072AQIOqkeWLbr7RzbTV93Qyk/+CzdVbyIBmf6I/wDKNZvREh5of6Bw4BUeS1x0xGvupjT1plU2vvfo3xE3ES3YLjtza4oD1viJ/gudI5DzztcTJTbIx12Ej6Rs6+J9LUGQs52G1iryeR6p/Zt8JyP1jkNb+M+6XNNDudrKcg//BNG7kPf420l2ng+LDxJ3cTwPinnVKTQalGAvfKGCaF2fPNdMo9t8HhmwVtu7V3VWUBkoUeZvKk9cgXCOxdWplEq9Ze/YyeB15up5famZoLAICHN4g/VBCOYOpjzDQjAOnnWer+nJsAE0xFUhQYxeiTaNE1qGrm761nhwDSz2yKkS0RylGa+2tNJEVR9g0BGTWgfnsd+qmBu2BePzmzxfGJEejDtZFTn1XXGTYzZqAzAdFoycy8EGrIUsOGy+ja4ycKrVbx6Evxt08z5QoYfHVYhxr8btJrRMTuiBzNJjMEXItCdXQTfKpMovGvM4Op1dVCuoUn+v9aprBJpT7QWRyc2L1NhtBjUfqGWq8I77YETfAxTK0LKd/iUcpIaysDj/iyKwv8a0xxuld1TUYckRr/sxqHIHaDdf6PIts7374QuFretUrUeLS/73bVet5iTis5lPywvuJr9ZNDf7LrnqYejIFu25S+GfuyNLqTUuU9pNvqYl+M4of5brddHmLA6BEdSsAa9RtWOUpiNw8tokPUoyI0Ivs+VPx57mXw89kqNjmxQX8sBfGtdk8B8LDSK9ip7nyX9IDbfVj6mKdFIdzZuDv3FeYUbUIDLtzsu1OtrhThhekCCWQxuom7KVLQLL0cssQlZq3Ty0C2IqwbezOHoddX7T3YFOqH4ein+IdJ04MJ7huYj9tMFHK1ay43cAbbh5SGKUdpwi4qeKo5JXTsJagSf24pafqTPWmWG0bVGaQwrd6P8QMQk5P04qfaN/X2a4hznIA8rHucZyypT4+E3waM6eJSXKG324GmALwjpaD1NI04ezq4wkcFQMhT7FedE1wLL/3TzLpjNFuf793nJUaVAWEk9Z2mSwhUE1wtlUNsswhejRFoDMV35fkvQUyogEb0tEy2RrGnmc37BYBW4x/FAEn7PBg1AKwFSiNuW3ACF7Pz/+Of2KVtq5KeXbLeBH54B6Oi6Zs/8qCWslCRLK8Fm554GpPngmz2f1NzTKC4lsez+2c8F51ZmROHh2fJxV1gpI9c81XMMcX9dgMPNtj+Jw3w7ti4Lf8eEEgWQShFusfrhh1h4RHI5YsNW3gA/B5R25tCPnndYUqJxE1Pa5lmT/93FxJsq84oLNY/V35On66jgPekyf202JQ90CO6wWsnltVi1it+EM5VwKiyR8pq8qMM+BWO63hPQLlHPPKO/EFF+eT7T1fUDvEIfdAH4MmrBBkPZfAZCeldMAtA/EEl0GHUwsehlnJU2C1gl4ueuMpl21rZ+knTt+8I5ZeoK2BMKcc2RcBAswnHkVkTIiJNfXlKAVcUhdXT4eVI/awjyriDmQvGkRjhDrDrG36O+R0UXrzA65RsUZK6Ludu7oCB5wMtFxxLg8aavrvr59hIFeSohjivJRx4WvV2RkAo938PJH++rkE0VYscl8RYopnr0FqSsx6abJcDYGnaHmMCUCJx01f90sR3Fs2BVas8+0rA8vDhdzoDr1yymLAvwZiJjPhv9c4xjEWDVvzuz7yOQoL9pOg0P/1q0mZoRlvgT9KzHOcmnaRKSzugnPSrRBYgIfh2T95p3FD5tw/BtVBAAqyZUP8SATiu7FuuzdmBkh5NBntraSjHYOm8g9wTcCshUWjwDc5xJNonJk17hiZvhm2BXBModOqEbSCg7AwDaFpL0T5vCQtZNrUOZNv1w79r9zU/ny1brzuWUK50VBKt8gqjSQBb7nxnkoKEuslN46Kg62CYqjPxtm6PXHOcdUhYbOg93s7oRpiF/WrgwY4Uw0fEjccUM3v9QU7lKBTuAX7BUJB8LbcE/u+nfPM/Uu2/qCUXXPhlAQR5uwyZI+y3CACr2dADcBlpplOuQW4PuzDffWsPvHPizqG4tQQyUPZZCaRVajHpUzdHn9kkWp181mFGpUCzT6D4GocjSPutyWMibr4veDGXHc0LVtTUwwUerRkZsLq0jJEgH+ix+L+dh4E1gjf+hAZ2MWGc3vcFoCVX/WD8S71XriQKA/kwO8l+VTJXmeiAYIyd/XFdfFvLu9PPiwT/mn+lNoUqwT1Uw/AFXScLv6EW+3F7LIIlnNCCTa+BNy/O632Pg+ersWiNL+oeuk1swh108k5EmFgRY2BjjvCHyEWX1RzjWSq6usdBM+43mwyY9sdPkfV196X/EDrmy5YlGe1lomOk3IuXZSwM0ZJ7D29KV2+kDNq7rcz+IXGxkrH1rVk2dCOqn66ex8ygrBYM8bWz76O+SDdNlcg0Op+RUbHw7aYvMNqIrygxdbwkU5fD8FFIXe7j4FYxOa8qRF1K4GbaohByy1dkHQUdNTRfmjP7MqVjy+1asVULN6CiqRZWd65rT5SSJkInwuGxGPm44tzHSn7Ao0xhU2wxbCF/isDIXA2vZ+OkpFPPdxNwx2pAcKhT3Vzmryvju2RMYOPpVakW/cxbXegLD+2w2Luw5aRHVm3YGC22bcI1O4OuHv1oZIyM/Qx7PRC7Veg60jt05cmkK+G61TIn34ZkLNZi0Wy45pw1e43x2Qf24hn6E306qzP0+7ZMoF+0hpDfmyouWonCg8zLb4Jzt0JA0F1o57WKZ9A4yudY85lF90xT2m20NqnppyuY/WbUi0fJjwT3K3eilbAyBUL5eYHYGhJbSxUOl9b7Ysqdbqxh+X5Fmo5jWb9gU1+gadKa/QzhQNFvwefSmbFfL84oHOeaU9BY05CkL1ZhVU3TcS74RsQg4UBSDhfQXe5HDVD4XFu+HjJkYRgLoXf1ItZBhD3ZPFBAsYw70usOIzvuPtLbnsNV4jba44Qstt456HXLiRQPZsuMyPleVFxTROqqRUWNkNecD0L1rqjL5ZZRRvp0WoAVk11mbaxMkx/ipjiPQuT4sR86EMpF/oWXlXdgrrTy3MUCrMDULyYesUnRP2Jf7JFyPlc4dxNBUHHVpPEPNiXqOrDCWQyzMW2ayEW/To1BAuhg6qkSZ8UDsmtEXoSJ2gpdqpW4Awd0mUlakyIqamUKeaX+0g8yzXhqW7s6mYsZvxii9zRePaKpkAB/ryH6Oo+uk5pXe+dWBqFly6+MpudD+G6A8zD/AotfnjcqBbtKjVF8u1a9WwG1vd1I7EcZyWH2xNU5cEtJ/H73QTvrKKPJwYMzcLD9CEoqmtgWhYLx7mwKaLMGblo/USDjFJ21Y5s9O419LPLrytpcWd7CTC8nT7rFBYtxx1k3ZHh2IsF4S2Wkl7SI7QffWeM8zzg1mdMLrYcXqHyjUBriwmBS7ctvMKDV1JSKF4hO9Kmw3wj+nFnHvzXTCWTJMjeytMCjISoS+xOGs5eflhc8q4NT3mxbfyB1300ZKyHtAqnSJMPnxXCHkzhQ6cNuDD2Sv8OfBzMi5LwSGQ90Ac6ZrryoAhuGdb7NJxVp2XEHG94gqnhXVJ5lgZdB0Zhu/bSkmNhbkVTXjuhZ7cypBvOj1vihU9+FdeRf72usgW5XayGEPMsTlNYJRZZxJjCGztBEu2D00jG3u7SiTIbhT6ANXQKI/rQHMyPolncgLap1DulnzQFAjet0K8XugJTA==
Variant 5
DifficultyLevel
645
Question
Lines AB and CD are parallel.
Line EF intersects lines AB and CD as shown.
Which pair of angles are supplementary?
Worked Solution
Supplementary angles sum to 180°
∠CPQ and ∠AQP
(Cointerior angles are supplementary)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $AB$ and $CD$ are parallel.
Line $EF$ intersects lines $AB$ and $CD$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2016/12/naplan-2016-20mc.png 320 indent vpad
Which pair of angles are supplementary?
|
workedSolution | Supplementary angles sum to 180$\degree$
{{{correctAnswer}}}
(Cointerior angles are supplementary) |
correctAnswer | $\angle$CPQ and $\angle$AQP |
Answers
Is Correct? | Answer |
x | ∠AQF and ∠CPQ |
✓ | ∠CPQ and ∠AQP |
x | ∠CPE and ∠AQP |
x | ∠DPE and ∠BQP |