70040
Question
A small patio required 16 slabs to cover it. The cost of using 4 colored slabs and 12 blank ones is $20. If 8 colored slabs and 8 blank ones are used instead, the cost becomes $24.
Find the cost of this arrangement which is made up by using 2 colored slabs and 10 blank ones.
Worked Solution
Let C = cost of coloured slab
Let B = cost of blank slab
|
|
4C + 12B |
= 20 ... (1) |
8C + 8B |
= 24 ... (2) |
⇒ C costs $1 and B costs $2
|
|
∴ Cost |
= 14B + 2C |
|
= 14 × 1 + 2 × 2 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+qiWQm5xrybWnnIY8VbKeB0LIg+iGU04xsu43g5N2rmUIh5LC1IUbQbIoi/uh7KqBukBtfrhki/NLad2aTgF4lwKumrv/5CKwo0mrIJJlzkl0jbwo5Pzu9LHf95ZH8Ke+MbjNN0gXrZ0Qc7p3kBnUYzZ0/cWojLPXG3ihXtdXcLYU4ooVu9i4f9zy7WHWWZQuG1gvd2b0AAaVyPcXaMjSvPZnlogYHng9qmPlTaSySAzKf2Wx5VSkJwBc+ktu21IrbXrBGkAAfXtTAgRf5S/WkMK+NWWYgMvUI2REZZhWY9BV+2/wntk8SFNJzI1myDJbUpL/OjDtB+C0GJPQ/+qEy4vRb0BM1Tn4m6T7TpyZH63BaL7FYdnxYsEKR+Z5jB4z5kiIO9LeSX81C+bOyWZvDCXdAt/cefxewae66uY+BXfTim92MV/B49keAXas2UV5Ip1kYBlB1BKV0qAfxZJDXOuz6UCkonOQZD/eKxS9csMO7PlH/rghCdyFSD0zMw6hS4qqYwa/PpqFbMdtmBTT5DQ1ykTLpfgK+jZ/crcVbLe+Hp1jRTwk/haAEnI0FTYixuRXmyx9DpqCdKSJu4GN4EYzxzQF7k62HWziFk2f42/VaCf+sDzB4xErP+y+u7CZ+5+cLNdar+C6L4+uNNhYF/ll/a/0+8A7xaZyUC1A5EFdhSCDzlRMNkux1eXkPmPi3O4m+Lc6GrVG5KX/2z0cdbtI5wBdA/33c+yxBxxCa14VcMkTVIZBIPdYJ4SeIxQRnsQ7foDQ7sT7ALzvmAf5tL8czbb3qid6uxwpmQo6HiVVPXS+JTVsMsUnR71yazEak783ElgTkYhhgp2GIrwH36VTI1GyCiok1qvxxskSvjuxbg7RbbXuHy2a8/c/13Lx+mr7c/EyiebaIJf8EXVIESk14mgeP0agMYD96m7NENvbSLq7LX2iG+25xXmbejwW3k8DcyobKko9voGPUshLy4YDGy1eMupa4iG/2m8kyM5PsjxF2jPJJ6ID3cEnP/0wJ1K5JrP8z38AvhL1nRSYw+/8KUpsFgM/dlxoNU3Mj6aLikLIjzkg7GR23bUcK3lQv3Gw1SaQp1SfU41N1+QH/0iZk6dU8whVuaEMtMlkB7RVE0Eq+1pWfALHufCk4cQEaELhoX3dzFyo6EHTbzciSXzwo6JxHCE8/dIPfff9iR4Au/9gYsVi860pUlnMCmVxbyannK4PZx9HnzIHSOiziywvwqWfDP8sIG+Ib11XBArgW9G7HrWcJqxJXd19FUw2tlPAs1CPCiutGUaAA2lNHJgYpIA2UndgSQEdl0aLYV+9p0AV1iUmM7/TdNR0RdLJlEJPlDpg8p6/ka3/RnMEliqmv2M6l7eEiso+J+IM2qrCC5aVH56kmA2llnWOkAZa0TuyPwmRwkeRwdKm421/qSDKDxzWhfaQVPSKK+N2qmwSBCO1T3nBdcAZxHakKv6XesoNXJXi0WkSsfJyu4Hd9iKmg5Uzvr4ibNjRWhO0DmxwGbDpl/zOvNj8zS6nLkhqrkFJvLPlSTY/Mb2e3WERzg5MjzXkPFYsrZzmnTm6q+N2xwN3Pu4Kk1AMEiYn0V+mz+52wsbBrORSylIV+ngsJdN74RMIuiQRDeppVLxlNLgWSXGNXM7l0MMqU6w/IYLUZmeDhZYGUV3JXNf39ziz9C1kGzn7alaioSDOg5xepxb76Z6ZfG9Gdh+CXGuEJNqi9qsAQem/BuaEqjnsSqVdK2n1Ywa49rW9Stv3efxjhz5ELacYtw6z+83DQfyuFB1wc0RIMx++xK7S7TP1AyU783Cc4Vr2kLuVu3f+2LcZXEK7TOwFc6R41Rk/z2JNumB+ZEQ/cOADe5E8HdcHZUohlEmvsIxjjzkNYYWGcsThc49zerLLpxlCplec3FzrpfpxnUy4tkwqO/bk5gwxj8YQnYGbk0Qbp/J+uUDX7UFk18SOtqzJqC1ohxFGaNfazC3VcvoEwhgrQD9vlYWcz7/WvPS5tGq2KVtbvg+e9YA0E05nWQHHyfKm0jNbcbVwcG0m245C226sq11Ue1CNo20jfDRBr+8devfo15bWNNoHxh6C0r2fiPJlK6grhuZvIwUXXye2LR4vgcjO5kYfq9o+CICyQMpgD1L54JwGlVJ95wzjZhH99aK8RpIvJwIojbfpmWMaPLxfsJZrAfxZFd1V/mZqQ75FbzVt7QmTdV/qA9RtZ03+q7qvhWrflGMS3vjF0MXEbqLAn7kM9pf1QhfLXxmuAzD/ifjM1PPlUF3QZ4P2bHTxLytU8grSZpVeahzf31DnbGJ2ANgVJSp7LL2YgertGsFbrdZw3D6TXcB3C29whLavGOeePqXNxJiiOsi6Dt1W49gcQkVKVC4MlXN+mWTanN5tpfxP5uWqDVTEo33lDK/dUKLsfhyOyuk817/KrcpMrODuHiyNvmIKTwgaBuRPTv4kgs+/EoEulCe+Ob0+l10WeVOIs8NTkuJp5LJJFKcqJRP1q/freRx9GCOhBptTV1ASyiI0+dqaFqXQP27Oiw7YVGnoVe9JZH28fUJvMlz2cFRIyaVIhAiP2z2EWyd5jrSt9wK+vFUDXBHQlqjKFH7dceNOOe1W43Ojfa3cTSTkZqm/nnHT4wtsfHRVV9e/zmVs//gULRoICCPTNGwQIxpvUzRvJMrZjSp6msa6f6FXo4Ct/u6D6yTjJV8o3VCgX2Jvi6J3cuSCc8+bMJnx7lVWl7iiXXBUsV6JuvpUITDOcnkUUVftIucr/Ndcpbm4jMaJjVir8L4nqr9mdAQep5LM3Nx1txPKgsuvsLagBYzkrJcmGmFE8b1Hxec2GUbaN5xundzGcM+qmKgqmK8nQeGxcG3qf4aM0sUyTj0uBzjHOKvCOS3uL3nxkG5lvgTCatVw1thiwfcI/e1g0SwHzXkkEfh7hXGTJ/IKM+qMk0Yj9MuQijpG2nT2iSQxPIRyJolPvn5LhHqmFlP6WCd83DPsPvUqiMMihONqv9RC7hjcwwe47ESh2hp8Gprc4YTirctOeaNvGIMTbOui4yptcdOCJMcY54DJsh6dGytLrc6ZqFYQBia8d3KnIy/LLVekJ/g/+2sP9c3yl9pvV/Vp5eVaALlJ1DqtJgQ7dBv1/6hB+PFxT9PFROWTTp8cvfhTh7biXVhIQV7HdKDQ1zBkab9rrjhMpab9gDS4Z7fdwURgJx6vsPet8KdRwRfGw+zBKTgYul0rILvoJNjkJOdLoZZhy28f6ARt8l9YVLj5L/7UofDQ3FNRFyMsREGq1ztP5hP5rfbT1c2hcQrfPCQiL8qpGuQYdyzyvhjpvNnXxms7RGMJNMEr5BTVArbA6x6qvrIKjlDPkvK82sLZhBGfciHB68+yekUjJ5DGBeG9f+XGLVxnOSRab9nykmwfRWWHpt9SxWog3P1hCMwtFSZ6RHWgvcJz68nOMX5PwZEvUYe1JAgeHDQ1xAeQ3mDjk/dGO68PwgrpQ1kEY4jlJVsJOOpbEPsmxKtf1x6ji7I3SfeklkxTVjr7qlk5TRsmznm+SF2Ixo3omA4cV4nzJ89Y16poWPz/tXDSQIycBLxyhFxrwVwHjFhRY7XtN57UJmpWAiRcaEXnGa9WbI/K/L15DxTrwXRf6BPLXvXOm1zqDMEzTJVT8jJ3KQi1kImecIL/efEE7g5QH/9vRB8iaJ7oUjZSYasjZ+uMQdi0qr4BC8B0ukx60lg5zbg9WNe41Z19wThlyGWNQlwrt2K5x3xkAFQQMtHMOAGG2MQaSYT29w799RFhhKiGUfVQ0nKrcoDyfaj0eBy1KAFfX+gPOZrjywX+QWsEW+/SN9WB8ORlMtXmB0W2JnzXZeufi2vXUT9JYpn8Cj9R5XmwAcMGrqM+oAsDxNFFdPAHEVSAr1F5j2fw39S9MoTgcFfgdo2Y5US+NZvTELd/i6F8NOlQQ6FMuL8RlgRq6+hdaEV+ei/8HL0vBxEgDvqC46eX1tUaeNjf2JouP5v1b8+BKKctoz0+1TvwNHMfT8Of13px6yuJUwYBB2HKjcVEx26HQaqUgbwheJvAHAicXG71ycTmJYVpeZAFdYPcxwHApGqre2WCsaOOwCubUdTUAPNRLMMiSyqR4V1qBLGzlNloc9f5sJT9J/TtWu1Q9pwFb+4/1codUZKF2vqnrPXBczxtqxjJhFeATFieeOKFUJUL1Itk1AOOlYkMA3iYAUtuwPb+JIFWluGzySMKu3KF7ewo+bOBAL4D/knTv+SDaSeprV5uKkEGV2MHXzJuV4eaY4kfRp5ji0qOlXvkP6u3AdnuKk1MGvg/nimAwiqh1dD4PATR7i8AqN/9nZfXCWmsWHocmD+h236TQW/O9kekKc0F6RPvgKZt6oSedaSj5gzhdM23YBaknEVEGxJ7909fywofRGRbEKXnmtoihK05MKCuoBH+UgUJR+BLFy9ZpBUDgEcwaTFlDwIEeOwkofvqg1JE7M0x9hyI3HopGN2iW/rBtEE7Uqm+01HKpg/t9VmIZMcOarITnr2XsQQpzq+2ATVTv+INsKpFplqzU8OhjvFNiMo+YiON3aEpMUeP4l0ZNBDP9ZbE7YtpJuy+01r0BCPslVFk0ncLTo+0y9wYMX9PFpzipkpvnII/WmuhhqiwHL1xo7fyYMjc0OpGvvQQ2W4NQwWb6e45fGwZt7DvupmPQhmEQDRJOCrgC70LUBFxAw1zLMhdEERPAWI72GQFdtRdiEU3hsfIPtKzHBrlhkMoE/qP+wiHTla0EPiL0/EGODmUWwMtXNVoxtNvnkbsWuaY78AkReFud8OcG6pwCKtfjAUht1047+uV9JemiP7BrVw09OBOpd2DB0B19R6pxakwSzZvrJGvLuhyhn2zldCxKF6b03xArPS8QaT5TCvB3R89eQ7mwTDSxJ76J4VM4bvXWelndpt9Ie/QbozwVrKlvigwHJ8QIoAOAMHGksQt14hI0NUuiAsCetCEkSIQBO+KpKjYYHfzCDEf6grGeYhwhG1ftUJbEk7DbS+TJLDp0+WOFiaFDlHWhcPpS6Dncr7wpyfE80Wtek26C/xQDlHg8IG8U2PL0bzUR2eMf/NyqwHASaHODNoLZWPGuUeKZkL8qfyRU9XsiedU0HgGhE5NjEI1uSZmXuGyElrpj1YjgbQSRPWH/RthEmcXzB+1+h+/b+Ktx7drx+dpUfWgreyaB0Y6i4hxKtiQU4AtGguw5Mvidu2X/U8RifrQK+gCUXHiqA9Fd7qhTAzHm5OZAyLdowVtfxMry4f0Iw919V02wh3wZeKI+LXd4vACeD1Dl5IipFCVXPc1+FWTYG9LXk1zH8Ee+Q3EFZIFnmu6wrIPulOstnh1F8WepOehkoADD6Sf++XZX2bPamRG8Gsy1N/hFuOan7kSMvyajccUbb5Phqs2kALQKyOw7O8DaMyG5eRx69MLMV7IsUf9p8dCNFEZ4BuOPLqS4lNMSLoLeao1HH42dmCeCQCwcbOyFbclNuKYfoaG2RFiolcQeWLVA2UmGwKbEuqdBcW0BYYpedktdo9uLPYcU4bCwT8e5WU7BfAOCpKE4rEa0/xyHNzbXml8g8lb1BOG0Ec5OhB8U84HtXXVZGqfSioXO/XIT5TTxMZelgjuAyrbkyd+2NqLyG6goveZ7vLzYlAudOshdnuGZAc8rvd2uvR0tSEQsbZXrswIBhFGprWeMHgYH5RTjutpQHQ+3iPGxeH+mWFQjxIEhpEEQhFWtzCZlX3TmEL0/voKnQ35HSEz9NqR2Fg==
Variant 0
DifficultyLevel
100
Question
A small patio required 16 slabs to cover it. The cost of using 4 colored slabs and 12 blank ones is $20. If 8 colored slabs and 8 blank ones are used instead, the cost becomes $24.
Find the cost of this arrangement which is made up by using 2 colored slabs and 10 blank ones.
Worked Solution
Let C = cost of coloured slab
Let B = cost of blank slab
|
|
4C + 12B |
= 20 ... (1) |
8C + 8B |
= 24 ... (2) |
⇒ C costs $1 and B costs $2
|
|
∴ Cost |
= 14B + 2C |
|
= 14 × 1 + 2 × 2 |
|
= $18 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers