20157
Question
On a certain night half of the moon is black, 103 is grey and the rest of the moon is lit up brightly.
What fraction of the moon is lit up brightly?
Worked Solution
|
|
Fraction brightly lit |
= 1−(21+103) |
|
= 1−108 |
|
= {{{correctAnswer}}} |
U2FsdGVkX19A1TvogncOx7ZhojtvL7mPn6q7dVphzqi9kq5oFJ7qT1QMDAiwQq7xjognTA13H+J7JAwkHgul7fLvLQjjuZvUp1+fAyjFpcWxRtV09uObrlGNTOv06k8cqGNqrttiC7clSCUIcnuQGl/HUeIttIpK7YDGx+wt6ltVY+Hz90GaDB/ugdgydNf7ngC14QHBlZndQBxz1mgJGFAEphuWbNka6N6cbyt6o+FB74jU9BLDAUV1Ly0AF4MDBFIazJ1nDpryk5xf4BFfG83NRJZXQIwHXChlC87paYl1AQJgV5MRklqPrMZDZjK5P97gScp/FYA7lQv1bC763BIR9MewveT1d+Vq3maAw2aDZEYa5K5XZJ/cUZzjLTiriSd25M2SSaPZ4rhC9KRQkslVGtP/vHngeZ4I1sUkY9s02iAiWin2NJnlOyY+URIM8FA3urwZNtfYGndcWZJwNa52V7jZYfMuZtZWyFDk3ZtH43k7wLQDKZTqfSdtgSGxResRydqDCgPlvt9p+um5MuATAxiPhbK8Vyci8uz3R+5ATYSFke0pHrUvmTiNNaIrAuLMDqcm15y67V8Ur2z5BwouvJ5/qsrA0y8NHV2QuoBoqTiMKHDoNKXgRVn46Z8sYsj8el6Ozh28PKIVk4pVL3g3VZE6XFtBPWFypY+Y04Z13Ymej4p2ruCYTQZk2DW2kRNTP8C6DXOVKWM17SqkXdevpE+t/nCiT+E11ZbauwW3fieZeJkSjnMk/EjJzTjyFhXNsqRTeJHuARtPEXV1j1WVF5oseYWvcGXAwPuc3RHtU85b31q0GU0gDC1DBJe5GF8Adbq1g4Ek1rlS6fOWwwCWGdIWxFPjr96MOY0YT+HScsXw1mu/0FbiZkf+MLg+0Uuqdi9AnLcEM7hMtkla/lzaK1EnL+RwNulH2vZlQEOn69DyKi/tWbHhNizoSe0ASqSdIRS6WxMJlX8UZoRWZ+CU6NPWOVl6VCr4VMy5GTcTZHYsgTPwW1xpcuWMhhc4qOlvzEd0tYbnSs05qDuYUVSjwkQ1r9Pz8/M9k/hXk6TFRkb9CL0RI3e3XiepirzJAiZAWWr1T9eCTvooI2FpGZLVw5677UyvEczpVznTLY1wmj0qqqK9LFKWN+Jrfol8NKW2gRZQLp1WHEdBztw/W0czAMAATUwLxT4TFLXI+uXfdF3+sZCck7Uzh62KMnCCGEPikvcEoKq/RaL6fiFafuY4LbGDzm4uNw+M51FPD72RfbkAtSr8XGrAA1KlP70+lGchpuJU5MiQDb1GzcpOrT8jNWzrDIyV//alYei8Ctj4F40JcnqXhEPG1h0IucE67uDxFoMmkcVUIe5rEOO16gQLK/s7trAVaY+xqwBdL6um7du1lTFvsC+fSt5omBABXUWxdaWQP3n2u6iBiuDW+X2aK9xUqKtT2U4ir21QmtvNLUEU2RSzyLooeuZu3LusgWFD7VnwUOdd4ripHB2EWlN+Ro4rsqLhvONAoehnKvtMi+IhBN8be4L8FxXLEbHw5LX36GD4P7VZxbuL9EBKuLIzVzOITlMUelMGyuMXfr0oxa3q7eXnMpRvCz/yu1rStpqbTH80yDMF6fcRZirVhHBguBzujla1VFpezMJLjdBVIjAlZlGVkPNbIbJ2YmQwtVmil1w+XpiBpd1Qqgg60vO58JtK3rW0k5vwQkPEWd6z2hslmylOX4aH6IIi+gAQfljY5MCaLpjySkS22yemstD+wZAb90HZreV/QL9h7iakew/DzEzpu/gy/lEUNw+nuNfZWqTGhkqzRPia6c4U8ZEAjqyA/jWP0uNZj5Vcv2hFMCktc0wat9wLXPtTJuIJo5KliTzxKIOToJ8MUvJLZJMrXACn9eRECcf4t0ARtlzzvi7itSpTZHgo8hO/F/TSOtETk+ho5yjhg/V1ArCmmAAftU0DG0wgr+cvKNrycWejATLj6prEqjcqZkBYyew7tH/169swyO7yS+jvd4rqkIbGn+U4U2NxstaWi5ZrWEGDVgd9QX8nMa/kG9vWoYAwmq6+KV3cmB5Hfb0fPzsEQg9Fiuv7WSQThqtGfLLzUmU336R/T6hyK7RAsj2NgYvpIEoCvd6wbIX6rD2URbTuORo6pepCH5ka+RzkWZQ8tj9t8eZgvtjOL1rmEkXwiHNzO3y8biP++9iaLz42xPZUIQUHiL+lXoKkcbg2dtMdNeRi5PAxQBNfxreUTC1CCGpdZKy3PoHKtgTLzS8VDeEBBaxOML6pAGO+MUC0p0IYG6nh2v+ev4XKsKgD4w62A2JZElXG3h/nS+gZYtRJ7TApHSssIxbM+Eji3AuJfv0+tm/PyHcFWX3w/uy+kBGEjJDyUeskppyL7Xo35tAxXBxmMgcnCsc3T7yGE/7rPOohN7EZQl05W4esr9qDbe1JGNlner0EZpTIGS3Gl7sC2NygelDDrN0YS/3oSt722cRYsMXUYkQKmHyJGX5BU1NmG1rE7RDo6leUMFmC0iePY2IkNOiFBwAGkJkwSaJICVSzVo4/6PSCbQx8e/6F5G2cml8LdULtKlQYj9Nraas0wNhk+HJ3/gC+ugxIFP8EbZqVZ34XUlRLIcN9qMgsvBuQ237vSFn97u316c7CHeCbemhiH+rSQUCiBBPKewV3hWKfONdu9jFpE+KKjoHsBuU9OSK9kIL29mJWgNIkxb6GICc0mhCQtibzy45aug074kmgYBqI58zngpz0cYLg/o2/fE9Qd1Lm44UWgdGnwx+GWpWGbhqJKwpm66FC6itQIq0AFGBNHpcDlup++99PcDF12C0KbkAJ+bHAlBeuIXYbsBvTQ0wkeQewPBboXpdj+a9TnPLPUX8ZKsNXILWCVN6fQhY3hhMN/QUnzfPpz5fzzTPTaXBJGvzZQs4/Xoo2WQw35IvRLZAJ3Hi6/M9znXRe5qFe9C+w3PpbB8D0MTBKldfc084qYNXGw19vGIJlU6qm/IS2j0SsVGIOncSNgXq+jo1V05N5ejve37DWzIiJaviAnlrrU20dU4n7G971PFOFf3MfUQgyHPq41We98d7CifTeLUIt+4uZvJmLH6I/brESRdWvim+XjQd6BqYLTKlvYDMTk9vkOUJDtYjB0K/iZ7WSabc+OhEUOAS62LoQqQioHH0e3Vkxy3RKxDfRpyTAb5WXZPFNWRS8zX0utAfOUC5jXKLMBkB/d0mHi64beeQwLVoBi2yfIW9vo5ZhxGuzD/RrRlkTkdvgS951cIXweQQ8zFOfCBu2Mk6+eaewGwJZzMgq0gMzZiaCvzvp8Nlc9V+43lzYGNOI/HO28I8OnzP+DkGAAw7xIDAA/pRAPxTliLkcyVAhzhbW53Ocuq8zFF50zWPfzwmNky9ZJeJA+UMZMptQ1CdICtAs+5JEry89iI/l9zhNDUP41snVIKce6ZeUqDRBnC4ntEqm+AoMHHI8mjXmWPNv6l4Osk3U4DE9yUFGGT8ELK47zVcf8jBWPcWGV6wENe2yV+jlHzHH0MT2VwoEaA1ZbA0PALQA4QhTc2BIrUMgT0UB/Rzr+WBbpQUvzQ9jLbKsO24igDs+uSmW0grz2IxBb0v3BdDRJN6D4J2hi6vc0SpUgmo5CfsxLtNb26HK9omkzooA/Fk7ScZr3StM7r0bX6QdGsPxHLiK46Vf4Kmg71p62SAkbaa6Fs2KCrLYkIvIukcDhidWF8fWdm6Yr0B3G3pzU4WMRmqnhr6nnDBAYOUPNrZ8DeKT/sgeQ0MvG6s4e244uYcEa55lcBYP4YSIsxUFVBe0Mt1IFfoyMTa36tjuowzVoYfrAxoGlIgaWWbI/xrwoT6PahtDn5k0d1K1v9AGpgYtwiRBWeMvgQWYmHOCnYVjaALNrjO+jsPjAxm2dusGeTvxZihV2dLhha314ZCWHh7B0aXQOz3ItbP9rus2fCvgt3PhO/GWWVsgafWnhQDXt2ZuRg7x8txvv4XkvGkbqUw+vsySWIs0ijNnP29ved0r4aWpUA8mm+8Ld9HKWBCW0xvdxZQTAYbMHK2vbCTFdSySlCzcWd5kL0VPyJec4/ud0RbeaShC8lZPUNCFHy9v8TcEh+2SKx0yEcNEz1cd0IeHYC080wB6oYhzYa3kJAGidtLfjgXxO8n8/5hXMU0qEFsalKkVszOCzmDejD5Wk7kbk9oPHCt1nVMWnTZE0FahcxZ2h4ct9kz4oXFwPtw6wgpsp0b3RDTOfMgTqNlk+3l1KxmsMJxzBPa9aqcuI81eS00gGGuycWHHRg8AlpkOjyASf7T7gqObNpvt+QGSNDFJjiu6HGKcDHLVcj3dRyh1qLuWY1TpN9gxw4TW1tIh9IKLFP73ymcAySqm7ZiTPKwufKvz0JIH9DwSNByZnVHp67FuEfOVg0/Xs6tF8FGUsifs3G8m2WL/pwnYMkNqWsa7oJSJu+q5ClHyIg1M99gUf+uDqQm1ykvBbOZQPoOFN91CNDcFjjfspdCclwaUt5UkU0ihCA78racTkSvnDOJY9NI4cgdKmLo/Twg4VYJhjLksgndQF/Hb6KNZiEgHg+i0g63mZH3PNVFLc5xDjFk5bRTcZouR0sQMJGRM49oZAOvDbOkHEFAwRM2dT3o6+vbABHUrzgjvQChtWV+Ariu+9JtP+IZW0SHGIdqPHpI8mJQqEcUVPq6ZCw4kboXTj5g1C5Ua+lPFSvOEOQ/mcuwZJqxHjXGlXNFyUN4QJ6kDiGrRI6+tlfeP9c1LRcp4bh00Q/4Tty7ZGbm+AmOMgq2zhpCra1mi+bP6W9XE5RB3jUzZZCqUySSN2tfrzBkXIVTmGgiTdR/6L4vZqD4MuQzlqPJlyi8mOhZnIaNsvFXXXkkSfSLb4fsloMuy/oTSbWYQbhlKetEG5xRlxa/OQcPE/Ee2RwrPWkFn0okFJB4acLwrzi51gP7ehLFqe35GoEadj3S7rH5dyLjUBMiyW0od7x2ZfeCgjBak30flWnQlsVzYB9qkRoNfsiHy7eC8qeFh0KaAI7Pz+7QIBb89SdqylrBzJNa/hrwbzCExjxXv+IHsSDXPrpiQqhrHoBbhlKncInT58me/Tz0yEocXfStLo3zZfu3WxXCUHvjkLUp820irOGrBUaIJP966RZ8pAj8Js0GtV6AjXo+eUq9AOpltXCZcZfcosynKqjjUpak1sz1AV2O1VJ/mq6oZ+5+jOzvpulqGo+C71HuyXpHhRR/E4QhHfHfco0RaGdmcbjv+Clv9+C5y1vkJL5LS1ocY6IGbNtNQb8Srm222ed47OYTFJdev1mzI7gGdbVYFZCeqBud4kOx7lDu/qtFbQOqCXdr7qomUY9qGcsq6QLFVgMhkhCH6OUyTEnNmJxS6b0iLYAUQoKtwbvb8Fj1KOCcQkawlfIrIiyfAEO0b/Q6WEHFaTJfVPLRP7M5pl1P/NBjFaSh+9kVypTPZjTpvT9QAUF4vkn+uN+2YSqnK8d3Ayf+PFEhvb2xQ9LFQJLgYP5QwJvj5BpwqhcDbadxV4smvHjef/Wq6prv0hnyDW2tthDgFxzdGBkUPaWno8QuVPcKkEHZFF2iJAWDz4FDMWVFCBix6almLiZE+pxr4j7ox1GeDLXynUJOhcimZFBSA6/WUClSe4e7uVJRCrYUXNcT2ILrNmuvlkMpqJ4uwgrY+olcxakGVtCYEguDYMTjT/UHqSHlHOygNBMEFY9A1nOLhZ0SyUrBY8HrZHqnaYAGK6Y0xNISuOgX/8wnY4S8boI19fjIfmClpm9M4s1m/0oVYn1Rhrb9rm1Lk0rTiAyauPoPfwn5FqFPAV4IW/8vzqekCUO4S4R48IX2ZPwtG84CsHPGMQr/W2J6UCnpTSwPQXPHnqAKyuCj8q5+C6qISKdtseDksOzcWtFnHLzdm8bvC4mh/qRX6kP31PEeJRHpBhTU3Hv54x2o531KozMomaNkjquuP5+Nng0a5phd4N6QrWTNdVKAHheKesmgSFYILa6UkXw/axZyi/CsoHSHhPBwvaU1+dUHDWQdGnwqcIv87zMbVLFz3nCl+Fr2RMuU4JapWVZyDXJ6X1NaX+Yg1nkRxODAwG1ZbGjPCGA5WnRpxuEVlZjAWnFJBYVK1L9DDoOqjtefoStGnLWoBETp9taT5Z/KIhywm1eprMNvG54XXvTQg9GSoolw8l4/d6+lDHjYQ/KHG80Os4d1SkXp2hbYmgzK9VMJzsEereALhvrKET+oPcjWT/WB5+8WmE6/g+kwD46kb9hRxxzKvGA8XmABhc88sJgSIhNOdCbK0RO3c1HDwAmBZdK4idH9nBa+JS/5JOAYU5FyfLOPP8AKxNJ9Asj52yhuHEvWbVUIIGdV8ZSiE8rnYgR8jf+lklCCtsxknckikKTg57QRi8UKDPTf+sDHdsi0woZfmwac5uL2WMUSi34iZOQyWBgzxeJHQ9xBVFPDEFMH3IRO6kuVLqLW3oVL/YDWauenAyGxRQ1BA5Mw2i2iRS4tqXth4NooH9id5UcajxpzN5oTLCNs+29XYtsC2SZ1FAY5DVvAbuNKV3Il9egdAjprbKKzkrJvPlXhbtP4HVjZla6qqd7BO74Eu9Pz/h1pD6f/jiTclrm9vsTQ6lrecscmOFpaPkGriBm7Su7T/3CKSCN97x+vi/oz8gIGWa9cFZEFnO4lEugF9Ofn65shc/81AXtIjOKnB1MrPT8CKmdu+f/ds0gWNsfkbo5FoEkOjPnPkbMQb2hfM+AqZ++kZkIo7ub58cnFgfLXaxxOGp/i+gErbSfMvNTdA33QZZ3Tb5AFuzA/QkopvvtgG/SYBExo6nGSz5djsB1w/Vqa+/bmJ8No5hCPDlVs9/8JTnX89oa+CpO6VN+cAJcCvcdyOcnUjE508Nmr2++k7n8D1VXtexIp0giq8aFoJ8R3tkgnCUDWK9kmY6H1pQX8l9v8UxmUoSYeIUJakRR5gz0DEEOd24UsZLVWuICr/GFXVmcERYvZy9RIp1b7iVC7G/qE4kYScxzrdDzzKCovos+H3iILJN4Ld6xb0W6AUNiGODyY1hcjZsqRj/3ZP6U/KmXZgfYJ5FWYWfkroNfd0b00Laxdlx7uRkLEU+0J0A4IGKqDK9Vq40QAKnArgmqx41LrwNRpAWGp1FUT9VQl5DRSJrvyDZHQ/xqK8LYbhP/+yd+gYY36HW9NgNQkc7qdsU/ZRxKuN5FC+hXTQwPQslT/4C7NZsCrq7hN9OlJc03dVsjO7KFD7ZAmKoBbmoA6iQfag/x2dmTRa0yCt+E1PmUNCXVbuCC+poiQ7PH++mxAybO+dEcLqi0CD2+Me+/UzmbghM7f+sJRV/NwLPRyw4MtPDvfWAI33Syez7CNpx/PoeUnXOyh9QRBTDuwYFOWkjHKDQhX71b+7kLwcjd00rqdvygU86gkt6kEy7O+5rNf7GoS+RBh93Rs9BhqAUXMBGKkP0MK6TVaHI0g8R0q52AMZiR7JEtYdWpTSayvfql0C+iRXQvrrUsz84gq9uDTK72T17VRWesTU3Pr3OqDenGR4XDaNgQs9Cei6Zfrc4Q/ccypeFjlM7/iQznLrPyIPonXRs9+Qpq4eZH9veeIPx9w0ytPDp4UEsTqC7MZho2vVRZQoh0hdHqSoegsegXDel5tpFlBU3qZIIEohKsa9C2mdf5mppETFeIvlLqzX1SMV4MMgGqmiU9Wtp2xAWtiBqBXL+amE6FcW9d6WYEE/HqC1RjZjDqicmxZGxoX0oicUd/q5CsA47GBKs+K84+2Eu+g2GTun62AxMR4qTZUSOtUUsb6he3bD9DuQGpr12k6xfuiBn+m+c1VvBSsONeWRo8pOEM13b9GS/d1kkT2SkR0ohvOkCEp+xTn/Hs0+nsnFxDBxRrRrkT92cLyDopmvovmaI2eKFkMcRUiJRoMjNzfi+qKewBJXSSKkV8B9DIYbPp6ew02ALGp6As/APOSYcvX9IJr4tGMZ1tFVgJ0o2PZbZMq57Pvph/Hx4MDlIPxe+FSw/KF0Q5fWI5nbNAJIdavkhZlavGrcJbVZ7MBBqZA3wpV4mMhTjLAc9LJgUb+TfTsKSdcOjI49krglUpsF2TllQYTnAfkJy8VsZoOsYt57GZN3FLn5te+cZtI2J5GtB1tFqYd0mfaZL70PojEwk3AD8ZvrXh0pqoOD/YAzjxWR1FpXyeIt61y23HnpNXGOHd6LRVPtS3gNmvYCH0vizecUK9Y+0y+yHVEXi4/yc9yhbNJrBRvTG4Dpqx/Xz2azwy4HEaW01Vq016qksSLQpMTRKkamFLvjW7MMnBODpcG0mFzpSmyQnLgiLPNskTFX3xEX5Pw5FPivqPI8doMXD0MUY/2Y2kL/pJxyTIxgiaZVieLIUUPBePyTVnjjhzJE6apEBmCjgMJt5gY2EIByycsecrVw79Vlo0PW0c1XXgYCNgFCnI65QM3PYPb0545APYxBq3QkvToCzruLLD8S+ol9uyWSXCVKMcOaUWsmJC3bwLKbmMMRZ4nUKGKEVUSF7rCPk++SkvEWMM3gUeaILdd/UlIcqPc4kIYgYqa+swEvhREKhhbvtcwQvNDfibc4UOzDtYC7M6utBqe4pTlIUnXsStH0fhU/L1dCVjCrx3E/fKGC1Mx90R/E7/XTNVoGWpbQJNQn27Nh7waGbca6gUaAaTH4iL2DyWumgUadQT3NuekN2lI5Nxo6WWNPoFyoUTSLveGwU+JV/1HU0rFggHGASXnoza6fMKF0s0rAmYvhlMZEwS+y0jyOkfoyXK3xTw4aVtVMFUhuBFyG2StWg/yps/oOWJM1Rk+5F3v3kalFaz4dakNPq5/bzqUAL2z07jiSoU6iHCUdAfPsA/sTNuMOqw6SL48qF2jKPk3uyTpM8SX5/uz/OEzstvAGi+hy2dFxs6+0tNcCFxm5jwZOtRbo95Z7tejx9Nt6l4hMyD+TG3uEdnze0BdvNbCmt74UHTfSwkYuecWejOd7oiJOvxrO0ma8Eso+hk9PsIsW5PT+wX2EGcy11Ein9TGGEym55zKOu5J/jrnVL20+X5zxuhQlrxzwe1SxPuAdUvnbWD6s8nKV/ssVt4jqWoS6nyIHgZNUoC2YQkqyBehhVAMSnSSwrmDcRMeP4BOw6mT7J8Gkz1j+QU28gfWUvMmAlZKddnZCIbliypHNzcRp6aIsU+hKxfVKhSRuXd55TqEMBoD5uvrDzt6ck5C7+CdBHJufp8ypT6K0QuOzmTY3bUn3QOXjbSLIQJ503CdcNVQC18rgPROyZ3Gi5FWrBwtw/gTnr9C2uv+86Lm9FlBic54Hl+URM7Vsu5IL55ZDBDKLrH1uYa2k6JZcovnDkq1xZsPWN1Hro7R4S757si0d7FZ9zd/Bcsk+vClnTVyF5PK9/lV7lIwWtNAvQfyOhYwRBiqazsnJIyP7MfgOWDg/whm94jNLMcLj/IoWFfgXVGAlExWT+8nF/acxHCyGGTQY8n+yWi/UzqC1FLbXqyY2OK75CkLx7qI4+SYF8C+Qh3nCCRaAWcr3IIZ7L9TXRg20Z5dV9fJQSCxbnyYRd86KovYPGUlGLaSKZ3YIdJdK8QCkXc/ww+Y2GZOB4vt6I7QeLUKOscMWNd5l+yP0rLUoOF6JB2sRa3YqUMmSMkOJ+HCLN2OsZ5eiNX2oX0t6DdRZDZ7lHHhTnbRxhgJO2Vu+Irq78zJmb8LmzCkH8Dof1/HexOWELE6TUvNgfgaS47BN5EnkNojqESjfMU4Xj23+NSPEthPVs1dPZ/FhD4TAzzaXLCNwv3VfX2Ag7AB95Zj7Z+ELeOaByOMxuruGDCTeW9T7AHtI2PuKr4fVE5XpivBCqLc1OotJ7rJw5VkManV/JkPCYWXSf+4EA8M3emVbjq+Wv/m9yJKU3oHcm7wS/H1SjsxVF98Qjj3pjC8SZwYa30YqDtzP7MpUdpEfzVQ+YY5cLjHyz+7uizUKkdTQXVAGQRfLRdZmWi7iXdVcM/667Lad1Uoq8SI7xZU8aBwciePkKbJraVewQEk5e5AHwOT0om8lxvt0Hkhsswn1gK7a6HaMLKkYuINYQEDddKiTRyGc8iXLEFb/mO7D1BJJSyy+RFeQfQB7bzd0DFEzyvoZd2FbOyQOgXO0+aeRaTa7IKac+Tdiq2ymGlaV+cl8A4tLraun3ISsnM6O6ullDOj1cNUdjb8xZ6g913LSA368TMzwTwO6WlmrgYnvnbSOInfdkAWK4z3keaaDSn2sRSJ5TAy1f1F2Krz0jQIeW9zP17XmDX1W+21Mqljp4bdP/bUuUzdjTq5C0bc6WnasDV9GLN0r13T4b4JQiHXfRdqsobUif8xtmXjITO7fLSegpFT5a3nXftCvRZpvnN/bIWCvoW84bWmg1W81kTQG9heAFexzCFo7cSWpYm8HVNSYX3Cgbdf1ugroYTjtFiABMGcde5rKZreMUPzyy8g8BURqxaLnBpbQ4NVbY4+a4TeVBkjSIAQMMRM1G13MJhUTWOv/FwVto5YVYcKJDJMWQeYN3VQ916W96CP/KhdjjTZF0MUS6c52QkSoWoVpQHsCL76sMRiWTzjtsDCRXGDYamZxfe3S4JEywmnjEuX0ULoapnOJ0VefDX5VP+GUZeWJ7aNbWfWM/uu9eCOkDGkawNfITHg67byutIhEUGoYTjBZEWlQkpfumfGjOelo9fId+PCuIMMaf5W1UHKT0cq9XUDqvKB7ElsXcI5RAZKRU3+hzslesUA4O4dKAun9vB4iemYIe+mUixrAIXmD9zyTJK07H9l5YaD9tjEn7De3bd4+mIwEAxG75XNdQORipf8fq+UwbISM8pgCkaR8QbhoEHl9pzXIxM+lqsjdzgXsSb1D89bwXDd1Px9W0mSbo7GHEw+H/CtCzwWBUT5/ITqMrFTz/CiofQIlfiqm4cMEPCvjXbpFqqEiGOPS9o+FpKhxt7NFPEvrUjCOwcHM8zExW4eUCFdufeesA/g1OIC1YD5Dsgp88BOvQuKcep1qOZtYIcrf0qVZ0VQfmYQj9lEywJPxI4KZxX2wrlRMT99PxotCIO59t5yGDHZKkD/eOH5zmkgGIqt0tiebsUmwlCk3i8sJMkpCxj+9QsefcsB5k2OYmOCJEczZb9I9QmvMbwEF+GV1yVHIWz9IpMYUYNPR4TB4HpeEhpxvdQagI+WS9dTiqHR6CiU6SZatfLprgGnvzisYG6sOHf6gF314QUqU1thB4LTW4RszOdq8d2Epwwjyrin5G60TX+P2tWVZCx/QZ8medH5YhV4wkxRy+5eupYum22TfFo/AGgsdJXNg7YVdIsMpkE46Fpm+Q85zD4zoCeKeTTRfVB92fd1W3L3fNmmIk3qciQh5aRnEiDPa2hE4S8hkJeWPPl603E2vvtjG9zoqCB1hs13+1Tm4xxn7WT9+pcX00wPFU2SqHcNBVJv2caOWCcPBO0Go4GOD0zlgVXHX99RTzuIKFaDArrBhN4vIt5Lio3RGaqlu4o7Ft2BLySajrOQyc7EuRwboWUEnOa6Gd6wEZ6o0D0ZK882HNqOYAxQ2JymbpmzjirvVlcwH8Qsppobgt7iIvA2AtPd+8fFYGYsT/5FoTXHw1wObx6LE5vpNBB/cnkPStU2MhG+bCs2oZ8QDPx4OwdRcPFw3etXfp9lL+ZFlxNk8xnqnK5Jp0siLSEIaKLC0835fcx+8IorASUcJE0s81KOOhiwqprrI1WhsUvt5rmjP/HAwvO2hygFocSikXnCqUMMvTjG4+IEoRHiIwUqX8LsmTc1lA9vKT6Gb1hYUdDSKykB9Z1i4Y5L/YxHM6TrebMqfJhjK1XM4ZP37Fk/grlPFtZ5YlyjURgmP3Oui6YACVD+O0Up7RIsNjpWMgdQUlOrvJUy+/qhNHZaCPE4hl8SnJLQM41ZddYci7jL18Y/JUyKrd1cKFZzPZdwL+B3P4/+0Z2SKRBTwFw1E+9Yq6bzAK3e5+2w4DcJfFzzDbkzjd/rldAHhwQoyF4bkDoWDrAn4Ob6EyLFOzskUp1NhZ4GZdiyp1192JQvtsZOEPCo+fJIugDeCHpoLfXxDtCVfuexMZjC2nt9iFO4ceDM06GczBOkgDgWyBkh26Iyq1c+ggbGYPj1RsNry0EsQZbG/+NotxdVcvbe95yzgPHtAwPwbQQa6Up7IqLY0/Tb9qQKuzEJjo4JTTdcU+P6VxdoW5xMh5ONyw48iaNe8BPYu1OQlgXcu7Y/WKSAYPeKCoDhBrF2gtnHTHVHCb1MlN3QTPQkIv29sV2kBjhA/V1tTj4njpyYbaOZV37x0xPm79PixnVVhawmXvfzVKHerDEUeGAoFBpKBJPHgtauOxG1WhErXgs4Ud+5gKvRHVVEQihwf4Yi5VbSOHYTULrPxVL57N/HwFCAp5qQaVeUuMXo9/8ZmnXSRUAZCeK3U7fvpTMfqJoImSzvfNBBTiBZ+36h6BeSz5YLNDz5FJkpRIkNkgw/mCYaSR89exTUMgUVU350ywISxP8Ee5pOTBJ6i09Vokb60h/VgTWJVEjfmesyKHjUMlg+eAPUFEWoUdB8h9MhpyK+z40o6pqkuBQdgdTGoKk5QTlEaDlMcqjwwT2h98R2jfChEHD7KUu9XlgBvtYXp+N5Nbtby+DCm+wMrtuJ87ZS0xZk7cSKawS2JeCgdfn/AyfkQKEC2Xq4nW/hetOS3YFOO0GzC/9oB487/rBnJCoF2fwwXBfSKp9Wr+3qWnWb7dn6Lg13yq+YhtdxIM2sqvKhsnfGoRKQUjb5GwNmaW2H9W+4tjA5d3WSK2EV1blqrRVPfHroV4fomkBX3TiJkbWt8kJHfCwF5qrARF/7JlVzMi2Yn6WiRdMdDR5CA0DpG5FrfOjinFKM6naGVoceolDgCJkcWLhu/z5Wi4Zb6yZ36vQ0mZdQh3CA23tXO0dJZteCq4ow3AzrYttDzNL8C6XxQS0WGUaICuKnPNMjJS27J8vd2q3HZf5uHUFwyc7Z5duJQMTQjkT8ESNaLvWtAdKBRkxbQVaqoqOOm3DXmHaAp/xIv4JAF14XHsTauVHYO3CuYzTAqQmu2JiqqlJM/4cqnDlTqG1/xkl96xJZrmppOduN36unL3+auiJqJ9Rc1rJ0siR9lA1Z9PsHIlr0qlMj/k1wjup+F61fh1K1lJF2zbrl/yz0KS53KI36u61UFNkaoyMQVnstRA/FY+gPAzID4ED08om2R2Bn2/l2T0voGOjyr4ZoQVmruv91iTliyTj9lLKzH/nrmAJDCdxE6if1yaIHJ8wKitadBO89UM+WuK92T3Nuk6P4lkbpl3d9W/s4vTPLiEmaCIyFIsCsBGlBpinz+X0DvcM5b8/KUzQ386Hk9iRBX+ourN/FgVTmvkeDcNzBt/2mAZCDbRBjpYCZFjg+RUrTPU8YyyDmN9Nw5pzjcuvKgZ4bnAedfvjEPt0as+3ydc7vCe+UZfj8atJ2tRcp8sEc/WS14CKqLxUzBrc6/s5SJ6ZDoa6HR2RdasTq5c3hcaYrSWuvhTLCv/Fg5MQ7q6wZmiV+UqX/uAVfqSBd9pVNvnMTvB/ZLLXT3ajqfi74z6iIUQ4wmX5l+sRPVogiwyz3xg1YrBVsWbOkP/VIkJWdqyE3/jeHVhiSeEISowFufopO6io3lX/eRf/XqRGACnzRq8BTtjftXq9sXJfs1S/cKOif/HnOTi+SIwQVXwMTVdTlnK0+bwzbjW370uQWhAj8FB8vvakJkOv/mN2oBgEFtPuQ7R5iwB67lmzf6yp5uD4P15dYkQ/efsutxRDmT67oM75XLWU12OIr7WB8z10jqToFxGnGkWMxZUHG13J2DMkfrLTwglMls1rPswkNmcsPfkPhIjq/1+SSX3vsXUZwx8n/ZJ1pk0AMkelD9jGHevCRmGO0t3pGRtw7cMg85t0e1zQgcVQ+UJ2I677YxRB/hKUdtZUVS+irLaXI6FgNBUHLYSWHhp0UVxwLwWOJPCkEUYb1SJBOeL4rEHMdxrL7dPDRhcIynhi+HrMZrv8QiCo9ih4EEGpF6p16PWMLhdnYK+tSWQEJmQF9qmsxQkd2Mq+cXavl3X/4mEpaX1jzajviG3/IlvJmTbHKt4yLRmGEzl2YcYHdefDBx2BJEfn5y6RkfAvoLmk+VTvT3x+g2lOf093aglOklJ31sxrhiWqL189Pcje8RsiicDIT9yQodHXdgdA9A364Qcz23+C/GnPiCT9gdJlJTSUwWyMKVS6hX9MpcB01cMELF0vElVbp6srJtfi1p/OyWh34PQ2F/xD14K5MmzVAbznQd+sv36SQoyO4sPvhFeuhSl/yOaeK8sErn9iRh3lRID5iuQ3LV9J/MpDOz6kVIhBuwV+6Hfc7S+VKIkK5SEdMLSop1lotoeKvzj3RtMkSmGSXqtR2JSRfWYcySndkU7O9Ojt9Bj2lc3q9W1gMaq1mQ7+HUnyDfRVxxaCndaaMkQ1NctUf8+uk+iXgPiQyMQnd4VrxhvL7qjB4Lf1ayGK8Ecg1bgX8g9VpKIbkm8f7rqbL6RgrE8XvGEBB7MSx/kiWol/j5JkU4+HzvmM9250Co77TYVQu0A6fBQ6GfMsw3oiLMEbLqww6KE6kwERU9R2Ou7JZoYhIRIG0BJhKsArnD7qxlWDEu0mK6e+gftXWjlrYqbcUhaHCRfUHojuS2Wh1iZJz6BiICwHgJA4v2WhWd0IH60ZYLJRn+fV8XOu6ZNHygyH0e0Y/F9Vp7G7G36KOCEOmVV+pRf3AMyymDCXQh4GbtEA6N4YE56lP7RC8jGhifuPsJz24SnSc5ykLo8HbMHcQCGXYeuSL8nTVL6twPV7nxd0KN9nhyl1qEJ7qTjQ5zUrJQ6+aNM2SfLoQOq6dKvXRvnEhj5UIPgOFY0iOV33H9msQF4LQ8ra/7kGX2N1wvsiTBfPnZt9tO72mTOEk5zAIjJsIfXWP7iBhzfnZLfloypf+JXzK5HXAG5Bu1KnExubh1jCiqSoG/HP8GoIa5sE/1yTVyWpoQP9AG4ribnnLStn9yG9+dj9gAblzf2YbFCX17QP7Dqda0h/+6GOqkfu4h9YKhbR9rc5F4lclD70TcynrzlkLykAWADoA3v6MI9eEDJ8CAgsNJOWaCow/cREDxYYz7dSqO9EfRrCRabUcYDvEppBae2h1sJJN1XMktJlNbo5hFn4yRiskujfuTnaoPU5DxBE3euU5CqPK0GAzHxRmrSgfF0ANqOTvIRz6e9l4YcIGwqu7pIzfgA7DtDR6kK4fQpB1yi+OMNiywmBb72YW0bM6peme1YqaG9uFxh4KlRBU+fMLf0BVlEasaGOtoE/6yxu3Vb8lL2wJcqSoSquP8DnreIpKAEJeE6CCC8R6nXe8V1THcGECKphaYYJ4xk46287mWjPwQ+OhTqQlqnZbmupLH/g8rRsM+RtjmcALr0T0PIMcNmPAnEBCFHle5FSp4xvBdECwZgOqakPSUxFfn/PbZ5IZIEhzKMH9pAgBC3M0Jn3dheQFsq84sY18kRLTp3R1JEWY/YVQV+W37RE0cG28brYi1zPL5YX/fBJGRluLamYxdx0YKLu3KS2shTCq5ZYgNWeb98jq4yaqcktyRO6XwX1iqL1tom68+TldswS4p1xm61orU6ST3Qof+qOewFyy59Al+hgmfd2pwshT7inVId/shKrQ/YmpYyE8j3IEuZBTnyNl9IM3mC9dZucGpa6s0z3SQbTQBUwbMRDywzH79zcCSxVw59fP1jqXuDbwVl1V+UPhVy6WuK1AkQ0cqDHx4qQ4ukQi59MJpHDMYWgLbbAy/SybLWRkFjMzjFf9Mx8K+gJ8i4muxTPp6jMmheO0q35hrH6syaFl7vgemTJlxqHOkyPnBFKvF3hBn3pM0P9h1KN6r7p6ZR6c8/+qb2FXya0UgGlscoZ9+4yvxrnQTKJtZYkiv7Tk7+Vk4IfcS17ZtqD8WwRc72aDoC967divhhDPp5vQODCTf6ANK/0EzbeXuR9xbvGbOGz2KlKMovicIW4ZvzxDONehnkrhjZE7wGfmA34nTu8jbLtciNLTiv+nbQ2CMlSYsaiie04XZkyS17ECS4Yj8otBd8I5bdUufLPQ4NMyvSp4w/M3bFZ41LdPEurD3ItfFNaL64demDRyngnOMs+EQp6AWpMacHa3dBNozcDh2AnKtBGWkmiuiQz/G4Lk492S9ZlkwuefJ2idLPIqY7UtJRYftHWcyyqYT3T7zm5qSfIkEEik9/fFowMfmd8fZR2jBO/Lw8eViObpdqDvCLGZZTdmj2fwmcMikfuNy0Bs6mniA/aQUBK6WMqntPh6J5jlsjCZajIJn0nuCM9Gjvnl0aY3GGkA0N3IL1+N7rCp6DUdBZriR6vF9ywzpyzrcRiHjL6wYTrF/lDYEVwWHV906lerT3bhCCIX5jDykpUdRBlUiaRu81Ow6rAjCn8BkOP7jPFzPRFBBjvrRAkamRI62ohi2nj0muxg4R5dowzn5Rky2Dh+HTWKwhIDtlLToTR/58jT/9PAW7ZbydYOwK7XZ+gKU4tfuFsOvx5IsKGmgMOnUXBPuQHGcbQww0aFaku5hvF1/ky5OvHuIjfud35GTmg7ARKmSpDrkJlvPLeORsWkriejyKwaw2C0m9eu7gtHH+HvYf9i5mTxhZBmCOyxXqURUw4tBOKHpNI+cUlrVb6Z4PkBkDurVAP4QoAlmyn5nzz7wWtEzvc6do4uFQqolfS1+ZzfcqYcdh9lY/bnq1Ea0DhTRqyZI306hYZdmTrpCm+hoiuv45sEj6pfYjyy+3jyYkTSdvSSN78KFxCdK0ifMTIlGc0r4Y9aibVtBU6CqQhX1hPCNW6TXBHbWezgiWP/us08t3bXwyTvE3SH0ZWTEXeA3VRMVYrN7XhiUZUUTLm96heFdRk6FpAqF/sgeI8UVZS6dcoFAmUzc7MALbSEI0IsjV0jlcBqGNzMC1M6ng4dX2TQUVcf7ffTt+DCH13sdDStqNiBbAlBW1Dt6TCIZobJPgfXZ5cerzXHHix4Kr65zq8H9uc/fHFAI9BT0VLoZ9PIgYvAmgOdMPQnggX6fVmZiP048Pu1RRe2m4u3QRNqq7/SIFVUdlqX3eNUUxvfCtK64tRLPyVdUQo/t+BGE+dSF7WNCseGS4eSH+r53UCjS+EPI/uW71iXjFdhf0RFRmRcfYI4qHazMrDoJQ3eZCs9omGHpT6iLuAU+m6EkFcm3BU8ZIp3aV4nQzYbhsMUT3uXaj4ctvWXeOi6fvVJpoZe+RDHn0O8tHhZ4kj7UGZ7M6u7CDD7R9JYHmdXcnKlZrzimknacjOIgjbby395egXCzmR8gyxX2DShiIjWB4t5JWSAzbezGjFnDMXb8lSCpeNubcT3ClWzzmpS8lbfPnUboymcCs2tB0z9Azli1OtI0VmXBrMJNrjyNv1j0ENqaz+e/O6CLmRHOG9c+p2j8fnSyT7TUzfxyntAVlZu3SvsGz3JN26QGHgY29byg/M6Vh0+Jjn7IFVOSSHgmetZiHkPoTVI9hxc7ki8IUruCTBGtncdvSR8lBjDosvpDJCoOeGZsDb9lI5yP2Px7Evr0loS+KIo9BeULQDJmYTUtxk6AiSWR6Y7XM+RyssQBmWi7KQwc+tYQOimRB/P1iHN1GhRk+y0ycKh+3rSTxYSKXM5EtjEt2NNs7Z75Su2F2mXmZTwulYFHrgnwGWOchac2lcuDSH/iOjyRDpJ7mMuFUXeGN07+7SOLKWc8REHtD6iDNo34jMKAL9UVnMnUdiKx5/XS/1o35LtS4FwNKoBHbAwBI2rcYciUYCuOB/AsDiBTWudpMHnaq33aiUHuNK6jXfj3HT3uAb1EXdqUdr6YMO9BWXuZuAEa/5UQyweevhUorzxRZgVfGKBHQqFIw5ZPNugl5q+qFYQE28vF3Mnnjwl9MQbuqvnLXfGX3+ULY+05wwxZf6yYVVH+s7O87hviWoGO/H7ZOdxsL7diJENxbqEXTbZMrTu+zzr5Ps1KEDj8D00IB6JkVJrBbotfE5Bk0WZQnByKnSyhKZW1M38zF74xXVSsueClFCKF8OIL+eTMSvADBfEm1X/GFHDWJBtzxdEfmACoBNp65g5XpZuF57zPrFNNBqmMyP/Z1wN7rrJ6B2lYxz/aDnDp58o0B5dua2yhbMlho2GnfJTxI6+Tu100epE5+r/XhdcW1Io0ab+qCv8n+Rh10rITqfX+L1GOmixxiH2FfOczQ9m0eHir+OeivnrTgDRAyFqH3qkp/q6iqhHs08IQ1rqI29ecRbBflmkwpIocidIXT2weR6FoHSHKoGrIWlvajVJzLW0II4byM+PpFczDpDj+Qfzv9WNjFM9qa2+BJyqCEa083oM4CHoP7gaZ4JL2jicha5JwlACIyCKwt9RF51EHHoPUcA+EW8ozBEb0xkScxam2FjMqbkXu6BBq327Zn9bXiLpWY1SDxEP3ewSDR867SEKkM9xbEl0l2qZdACTebVxH8rtujarbx/wjksjqs1QMFwlsTlZpKjcVr6zH6FROdMUffRCS2CG7FzwGOvBvrs6ANKTafx+5luPu/9xdQDoKgJ3Y4BfXyyreM0Ytd3Hhnc3n6FM4K1IZFd2VfXTTzFx2PH9kiMWzZhtWP68OmO/3oZfEmxmYBsniMq6R3El+7LUzNcmTxZLt3s9UQljBxE503GS5oEtEYuv4yTKxQzVSR7OiRxzy0e4KGBVHjGq4yoM94ePdmoLCEZBu6WZQnqmSVRIrPd1U3hPRPTYnes2o8pOpXSWr6tNeAECLnkbgMj8LBB+2REOTFYCtSgHEEeicetOjX7uOOxogIWZ71GIRcxdO62HzQeenGpcCqAZ5b1GoUhmflhoPi+SuuPAl/niBp+wkJWnMdRCXXITtwK25F3VYViLIj5B9Off/eFRU8IFhCio8YCrIAXC/ONf2mmy3iXf1H9kpWazqIBEUG763yKZFvDeGiJR6ow6JhGw4gt5xK9rfAnTwKwHNYeaHAaMn+Tf/LL65REn950x9xePJRx5aeRZH6HWfrNMNlhD6HYC1n4O/4cCweQ+ZfiuFK/NOWIMbqp49K6NcQxYObhosH1kBygZ3B5Yjx8xJyrbgilTEtMpyIIrPMSMs8JOGOZONTy4zIXB6dWQckOyL0xbJUN2vRdgiLEsGHpHLpeSHNCiYgGILGTI+I3e5M1X3rRh2NSRC8S+nLT6oL8W2Ugx2CsxB0rDUSwCkQDzrPgn18xS6iALPSCCCKhiwaJ+Dn9Zhk2Q32aiU07R19Z+ci8qiqA52sbG9qKzYrrCQobneZEZ6tKb1asnBg8uK+MlWerID2cFRPVTnyJkuo+f/2VmzO0xqFkDxl1xIduGN1bcjg9F3nPB8WLHjhp38ZHo=
Variant 0
DifficultyLevel
574
Question
On a certain night half of the moon is black, 103 is grey and the rest of the moon is lit up brightly.
What fraction of the moon is lit up brightly?
Worked Solution
|
|
Fraction brightly lit |
= 1−(21+103) |
|
= 1−108 |
|
= 51 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers